Open this publication in new window or tab >>Show others...
2018 (English)In: Aquatic Microbial Ecology, ISSN 0948-3055, E-ISSN 1616-1564, Vol. 82, no 2, p. 199-208Article in journal (Refereed) Published
Abstract [en]
Sterilization of dissolved organic carbon (DOC) is an essential step in research on interactions between DOC and organisms, for example where the effect of different microbial communities on DOC is studied or vice versa. However, few studies have gone beyond acknowledging that sterilization of DOC influences its characteristics. Here, we aimed to provide further knowledge that enables scientists to better tailor their sterilization methods to their research question. To meet this aim, we conducted a sterilization experiment with DOC from 4 boreal lakes treated with 4 sterilization methods, i.e. 2 filtrations (0.2 µm, 0.1 µm) and 2 autoclaving approaches (single and double autoclaving with a single pH adjustment). Quantity and spectroscopic properties of DOC, before and after sterilization, were studied, and DOC was further tested as a substrate for bacterial growth. We found that the filtration methods better preserved the different DOC measures. In contrast, autoclaving caused major inconsistent shifts in both qualitative and quantitative measures of DOC, as well as an increase of the maximum abundance of bacteria in growth experiments. Nonetheless, there remains a trade-off between retaining the quality of DOC and achieving sterile conditions. Therefore, the sterilization method of choice should be guided by the scientific question at hand.
Keywords
sterilization, autoclave, filtration, dissolved organic carbon, excitation emission matrices, parallel factor analysis
National Category
Biological Sciences
Research subject
Microbiology
Identifiers
urn:nbn:se:uu:diva-331676 (URN)10.3354/ame01890 (DOI)000454321300006 ()
Note
Title in Thesis list of papers: Effects of sterilization on composition and bacterial utilization of dissolved organic carbon
2017-10-162017-10-162021-03-25Bibliographically approved