uu.seUppsala University Publications
Change search
Refine search result
1234567 1 - 50 of 894
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Acciarri, R.
    et al.
    Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
    Adams, C.
    Yale Univ, New Haven, CT 06520 USA.
    Asaadi, J.
    Univ Texas Arlington, Arlington, TX 76019 USA.
    Baller, B.
    Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
    Bolton, T.
    Kansas State Univ, Manhattan, KS 66506 USA.
    Bromberg, C.
    Michigan State Univ, E Lansing, MI 48824 USA.
    Cavanna, F.
    Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
    Church, E.
    Pacific Northwest Natl Lab, Richland, WA 99354 USA.
    Edmunds, D.
    Michigan State Univ, E Lansing, MI 48824 USA.
    Ereditato, A.
    Univ Bern, CH-3012 Bern, Switzerland.
    Farooq, S.
    Kansas State Univ, Manhattan, KS 66506 USA.
    Ferrari, A.
    CERN, CH-1211 Geneva 23, Switzerland.
    Fitzpatrick, R. S.
    Univ Michigan, Ann Arbor, MI 48109 USA.
    Fleming, B.
    Yale Univ, New Haven, CT 06520 USA.
    Hackenburg, A.
    Yale Univ, New Haven, CT 06520 USA.
    Horton-Smith, G.
    Kansas State Univ, Manhattan, KS 66506 USA.
    James, C.
    Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
    Lang, K.
    Univ Texas Austin, Austin, TX 78712 USA.
    Lantz, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Lepetic, I.
    IIT, Chicago, IL 60616 USA.
    Littlejohn, B. R.
    IIT, Chicago, IL 60616 USA.
    Luo, X.
    Yale Univ, New Haven, CT 06520 USA.
    Mehdiyev, R.
    Univ Texas Austin, Austin, TX 78712 USA.
    Page, B.
    Michigan State Univ, E Lansing, MI 48824 USA.
    Palamara, O.
    Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
    Rebel, B.
    Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
    Sala, P. R.
    INFN Milano, INFN Sez Milano, I-20133 Milan, Italy.
    Scanavini, G.
    Yale Univ, New Haven, CT 06520 USA.
    Schukraft, A.
    Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
    Smirnov, G.
    CERN, CH-1211 Geneva 23, Switzerland.
    Soderberg, M.
    Syracuse Univ, Syracuse, NY 13244 USA.
    Spitz, J.
    Univ Michigan, Ann Arbor, MI 48109 USA.
    Szelc, A. M.
    Univ Manchester, Manchester M13 9PL, Lancs, England.
    Weber, M.
    Univ Bern, CH-3012 Bern, Switzerland.
    Wu, W.
    Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
    Yang, T.
    Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
    Zeller, G. P.
    Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
    Demonstration of MeV-scale physics in liquid argon time projection chambers using ArgoNeuT2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 1, article id 012002Article in journal (Refereed)
    Abstract [en]

    MeV-scale energy depositions by low-energy photons produced in neutrino-argon interactions have been identified and reconstructed in ArgoNeuT liquid argon time projection chamber (LArTPC) data. ArgoNeuT data collected on the NuMI beam at Fermilab were analyzed to select isolated low-energy depositions in the TPC volume. The total number, reconstructed energies, and positions of these depositions have been compared to those from simulations of neutrino-argon interactions using the FLUKA Monte Carlo generator. Measured features are consistent with energy depositions from photons produced by deexcitation of the neutrino's target nucleus and by inelastic scattering of primary neutrons produced by neutrino-argon interactions. This study represents a successful reconstruction of physics at the MeV scale in a LArTPC, a capability of crucial importance for detection and reconstruction of supernova and solar neutrino interactions in future large LArTPCs.

  • 2.
    Achenbach, Jan-Ole
    et al.
    Rhein Westfal TH Aachen, Mat Chem, Aachen, Germany.
    Mraz, Stanislav
    Rhein Westfal TH Aachen, Mat Chem, Aachen, Germany.
    Primetzhofer, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Schneider, Jochen M.
    Rhein Westfal TH Aachen, Mat Chem, Aachen, Germany.
    Correlative Experimental and Theoretical Investigation of the Angle-Resolved Composition Evolution of Thin Films Sputtered from a Compound Mo2BC Targe2019In: Coatings, ISSN 2079-6412, Vol. 9, no 3, article id 206Article in journal (Refereed)
    Abstract [en]

    The angle-resolved composition evolution of Mo-B-C thin films deposited from a Mo2BC compound target was investigated experimentally and theoretically. Depositions were carried out by direct current magnetron sputtering (DCMS) in a pressure range from 0.09 to 0.98 Pa in Ar and Kr. The substrates were placed at specific angles α with respect to the target normal from 0 to ±67.5°. A model based on TRIDYN and SIMTRA was used to calculate the influence of the sputtering gas on the angular distribution function of the sputtered species at the target, their transport through the gas phase, and film composition. Experimental pressure- and sputtering gas-dependent thin film chemical composition data are in good agreement with simulated angle-resolved film composition data. In Ar, the pressure-induced film composition variations at a particular α are within the error of the EDX measurements. On the contrary, an order of magnitude increase in Kr pressure results in an increase of the Mo concentration measured at α = 0° from 36 at.% to 43 at.%. It is shown that the mass ratio between sputtering gas and sputtered species defines the scattering angle within the collision cascades in the target, as well as for the collisions in the gas phase, which in turn defines the angle- and pressure-dependent film compositions.

  • 3. Adoo, N.A.
    et al.
    Nyarko, B.J.B.
    Akaho, E.H.K.
    Alhassan, Erwin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Agbodemegbe, V.Y.
    Bansah, C.Y.
    Della, R.
    Determination of thermal hydraulic data of GHARR-1 under reactivity insertion transients using the PARET/ANL code2011In: Nuclear Engineering and Design, ISSN 0029-5493, E-ISSN 1872-759X, Vol. 241, p. 5303-5210Article in journal (Refereed)
    Abstract [en]

    The PARET/ANL code has been adapted by the IAEA for testing transient behaviour in research reactors since it provides a coupled thermal hydrodynamic and point kinetics capability for estimating thermalhydraulic margins. A two-channel power peaking profile of the Ghana Research Reactor-1 (GHARR-1) has been developed for the PARET/ANL (Version 7.3; 2007) using the Monte Carlo N-Particle code (MCNP) to determine the thermal hydraulic data for reactivity insertion transients in the range of 2.0×10^−3k/k to 5.5×10^−3k/k. Peak clad and coolant temperatures ranged from 59.18 ◦C to 112.36 ◦C and 42.95 ◦C to 79.42 ◦C respectively. Calculated safety margins (DNBR) satisfied the MNSR thermal hydraulic design criteria for which no boiling occurs in the reactor core. The generated thermal hydraulic data demonstrated a high inherent safety feature of GHARR-1 for which the high negative reactivity feedback of the moderator limits power excursion and consequently the escalation of the clad temperature.

  • 4.
    Ahnesjö, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Tomographic reconstruction of subchannel void measurements of nuclear fuel geometries2015Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The Westinghouse FRIGG loop in Västerås, Sweden, has been used to study the distribution of steam in the coolant flow of nuclear fuel elements, which is known as the void distribution. For this purpose, electrically heated mock-ups of a quarter BWR fuel bundles in the SVEA-96 geometry were studied by means of gamma tomography in the late 1990s. Several test campaigns were conducted, with good results, but not all the collected data was evaluated at the time. In this work, tomographic raw data of SVEA-96 geometry is evaluated using two different tomographic reconstruction methods, an algebraic (iterative) method and filtered back-projection. Reference objects of known composition (liquid water) are used to quantify the decrease in attenuation arising from the presence of the void, which is used to create a map of the void in the horizontal cross sections of the fuel at various axial locations. The resulting detailed void distributions are averaged over subchannels and the subchannel steam core for comparison with simulations. The focus of this work is on the void distribution at high axial locations in the fuel, in fuel bundles with part-length fuel-rods. Measurements in the region above the part-length rods are compared with simulations and the reliability of each method is discussed. The algebraic method is found to be more reliable than the filtered back-projection method for this setup. A reasonable agreement between measurements and predictions is shown. The void, in both cases, appears to be slightly lower in the corner downstream the part-length rods.

  • 5.
    Ahnesjö, Magnus
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Le Corre, Jean-Marie
    Westinghouse Electric Sweden AB.
    Andersson, Stig
    Westinghouse Electric Sweden AB.
    Tomographic reconstructions and predictions of radial void distribution in BWR fuel bundle with part-length rods2015Conference paper (Refereed)
    Abstract [en]

    The Westinghouse FRIGG facility, in Västerås/Sweden, is dedicated to the measurement of critical power,stability and pressure drop in fuel rod bundles under BWR operating conditions (steady-state andtransient). Capability to measure cross-sectional void and radial void distributions during steady-stateoperation was already considered when the facility was built in the late 1960s, using gamma transmissionmeasurements. In the 1990s, redesigned equipment was installed to allow for full 2D tomography andsome test campaigns were successfully run where the void was measured in the Westinghouse SVEA-96fuel bundle geometry with and without part-length rods.

    In this paper, the tomographic raw data from the SVEA-96 void measurement campaigns are revisitedusing various tomographic reconstruction techniques. This includes an algebraic method and a filteredback-projection method. Challenges, for example due to artifacts created by high difference in gammaabsorption, or to accurately identify the location of the bundle structure, are resolved. The resultingdetailed void distributions are then averaged over entire sub-channels or within the steam core only, forcomparison against sub-channel simulations.

    The resulting void distributions are compared against sub-channel void predictions using the VIPREW/MEFISTO code. The region downstream the part-length rods are of particular interest to investigatehow the void in the steam core is redistributed within the open region of the bundle. The comparisonshows a reasonable agreement between the measurements and the predictions.

  • 6.
    Akansel, Serkan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Kumar, Ankit
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Venugopal, Vijayaharan A.
    Seagate Technol, Londonderry BT48 0BF, North Ireland.
    Esteban-Puyuelo, Raquel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Banerjee, Rudra
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Autieri, Carmine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Brucas, Rimantas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Behera, Nilamani
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Sortica, Mauricio A.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Primetzhofer, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Basu, Swaraj
    Seagate Technol, Londonderry BT48 0BF, North Ireland.
    Gubbins, Mark A.
    Seagate Technol, Londonderry BT48 0BF, North Ireland.
    Sanyal, Biplab
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Svedlindh, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Enhanced Gilbert damping in Re-doped FeCo films: Combined experimental and theoretical study2019In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 99, no 17, article id 174408Article in journal (Refereed)
    Abstract [en]

    The effects of rhenium doping in the range 0-10 at.% on the static and dynamic magnetic properties of Fe65Co35 thin films have been studied experimentally as well as with first-principles electronic structure calculations focusing on the change of the saturation magnetization (M-s) and the Gilbert damping parameter (alpha). Both experimental and theoretical results show that M-s decreases with increasing Re-doping level, while at the same time alpha increases. The experimental low temperature saturation magnetic induction exhibits a 29% decrease, from 2.31 to 1.64 T, in the investigated doping concentration range, which is more than predicted by the theoretical calculations. The room temperature value of the damping parameter obtained from ferromagnetic resonance measurements, correcting for extrinsic contributions to the damping, is for the undoped sample 2.1 x 10(-3), which is close to the theoretically calculated Gilbert damping parameter. With 10 at.% Re doping, the damping parameter increases to 7.8 x 10(-3), which is in good agreement with the theoretical value of 7.3 x 10(-3). The increase in damping parameter with Re doping is explained by the increase in the density of states at the Fermi level, mostly contributed by the spin-up channel of Re. Moreover, both experimental and theoretical values for the damping parameter weakly decrease with decreasing temperature.

  • 7.
    Al-Adili, Ali
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Measurements of the 234U(n,f) Reaction with a Frisch-Grid Ionization Chamber up to En=5 MeV2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This study on the neutron-induced fission of 234U was carried out at the 7 MV Van de Graaff accelerator of IRMM in Belgium. A Twin Frisch-Grid Ionization Chamber (TFGIC) was used to study 234U(n,f) between En = 0.2 and 5.0 MeV. The reaction is important for fission modelling of the second-chance fission in 235U(n,f). The fission fragment (FF) angular-, energy and mass distributions were determined using the 2E-method highlighting especially the region of the vibrational resonance at En = 0.77 MeV.

    The experiment used both conventional analogue and modern digital acquisition systems in parallel. Several advantages were found in the digital case, especially a successful pile-up correction. The shielding limitations of the Frisch-grid, called "grid-inefficiency", result in an angular-dependent energy signal. The correction of this effect has been a long-standing debate and a solution was recently proposed using the Ramo-Shockley theorem. Theoretical predictions from the latter were tested and verified in this work using two different grids. Also the neutron-emission corrections as a function of excitation energy were investigated. Neutron corrections are crucial for the determination of FF masses. Recent theoretical considerations attribute the enhancement of neutron emission to the heavier fragments exclusively, contrary to the average increase assumed earlier. Both methods were compared and the impact of the neutron multiplicities was assessed. The effects found are significant and highlight the importance of further experimental and theoretical investigation.

    In this work, the strong angular anisotropy of 234U(n,f ) was confirmed. In addition, and quite surprisingly, the mass distribution was found to be angular-dependent and correlated to the vibrational resonances. The anisotropy found in the mass distribution was consistent with an anisotropy in the total kinetic energy (TKE), also correlated to the resonances. The experimental data were parametrized assuming fission modes based on the Multi-Modal Random Neck-Rupture model. The resonance showed an increased yield from the Standard-1 fission mode and a consistent increased TKE. The discovered correlation between the vibrational resonances and the angular-dependent mass distributions for the asymmetric fission modes may imply different outer fission-barrier heights for the two standard modes.

    List of papers
    1. Comparison of digital and analogue data acquisition systems for nuclear spectroscopy
    Open this publication in new window or tab >>Comparison of digital and analogue data acquisition systems for nuclear spectroscopy
    Show others...
    2010 (English)In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 624, no 3, p. 684-690Article in journal (Refereed) Published
    Abstract [en]

    In the present investigation the performance of digital data acquisition (DA) and analogue data acquisition (AA) systems are compared in neutron-induced fission experiments. The DA results are practically identical to the AA results in terms of angular-, energy- and mass-resolution, and both compare very well with literature data. However, major advantages were found with the digital techniques. DA allows for a very efficient αparticle pile-up correction. This is important when considering the accurate measurement of fission-fragment characteristics of highly αactive actinide isotopes relevant for the safe operation of Generation IV reactors and the successful reduction of long-lived radioactive nuclear waste. In case of a strong αemitter, when applying the αparticle pile-up correction, the peak-to-valley ratio of the energy distribution was significantly improved. In addition, DA offers a very flexible expanded off-line analysis and reduces the number of electronic modules drastically, leading to an increased stability against electronic drifts when long measurement times are required.

    Keywords
    Fission, 234-U(n, f), 235-U(n, f), Digital, Analogue, Ionization chambers
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:uu:diva-142438 (URN)10.1016/j.nima.2010.09.126 (DOI)000285370600019 ()
    Available from: 2011-01-14 Created: 2011-01-14 Last updated: 2017-12-11Bibliographically approved
    2. Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers
    Open this publication in new window or tab >>Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers
    Show others...
    2012 (English)In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 673, p. 116-121Article in journal (Refereed) Published
    Abstract [en]

    Ionization chambers with Frisch grids have been very successfully applied to neutron-induced fission-fragment studies during the past 20 years. They are radiation resistant and can be easily adapted to the experimental conditions. The use of Frisch grids has the advantage to remove the angular dependency from the charge induced on the anode plate. However, due to the Grid Inefficiency (GI) in shielding the charges, the anode signal remains slightly angular dependent. The correction for the GI is, however, essential to determine the correct energy of the ionizing particles. GI corrections can amount to a few percent of the anode signal. Presently, two contradicting correction methods are considered in literature. The first method adding the angular-dependent part of the signal to the signal pulse height; the second method subtracting the former from the latter. Both additive and subtractive approaches were investigated in an experiment where a Twin Frisch-Grid Ionization Chamber (TFGIC) was employed to detect the spontaneous fission fragments (FF) emitted by a 252Cf source. Two parallel-wire grids with different wire spacing (1 and 2 mm, respectively), were used individually, in the same chamber side. All the other experimental conditions were unchanged. The 2 mm grid featured more than double the GI of the 1 mm grid. The induced charge on the anode in both measurements was compared, before and after GI correction. Before GI correction, the 2 mm grid resulted in a lower pulse-height distribution than the 1 mm grid. After applying both GI corrections to both measurements only the additive approach led to consistent grid independent pulse-height distributions. The application of the subtractive correction on the contrary led to inconsistent, grid-dependent results. It is also shown that the impact of either of the correction methods is small on the FF mass distributions of 235U(nth, f).

    Place, publisher, year, edition, pages
    Elsevier, 2012
    Keywords
    Grid Inefficiency, 252Cf(sf), Ionization chambers, Fission
    National Category
    Physical Sciences
    Research subject
    Nuclear Physics
    Identifiers
    urn:nbn:se:uu:diva-172205 (URN)10.1016/j.nima.2011.01.088 (DOI)000301813500016 ()
    Available from: 2012-04-02 Created: 2012-04-02 Last updated: 2017-12-07Bibliographically approved
    3. On the Frisch–Grid signal in ionization chambers
    Open this publication in new window or tab >>On the Frisch–Grid signal in ionization chambers
    Show others...
    2012 (English)In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 671, p. 103-107Article in journal (Refereed) Published
    Abstract [en]

    A recent theoretical approach concerning the grid-inefficiency (GI) problem in Twin Frisch–Grid Ionization Chambers was validated experimentally. The experimental verification focused on the induced signal on the anode plate. In this work the investigation was extended by studying the grid signal. The aim was to verify the grid-signal dependency on the grid inefficiency σ. The measurements were made with fission fragments from 252Cf(sf), using two different grids, with 1 and 2 mm wire distances, leading to the GI values: σ=0.031 and σ=0.083, respectively. The theoretical grid signal was confirmed because the detected grid pulse-height distribution was smaller for the larger σ. By applying the additive GI correction approach, the two grid pulse heights were consistent.

    In the second part of the work, the corrected grid signal was used to deduce emission angles of the fission fragments. It is inconvenient to treat the grid signal by means of conventional analogue electronics, because of its bipolarity. Therefore, the anode and grid signals were summed to create a unipolar, angle-dependent pulse height. Until now the so-called summing method has been the well-established approach to deduce the angle from the grid signal. However, this operation relies strongly on an accurate and stable calibration between the two summed signals. By application of digital-signal processing, the grid signal's bipolarity is no longer an issue. Hence one can bypass the intermediate summation step of the two different pre-amplifier signals, which leads to higher stability. In this work the grid approach was compared to the summing method in three cases: 252Cf(sf), 235U(n,f) and 234U(n,f). By using the grid directly, the angular resolution was found equally good in the first case but gave 7% and 20% improvements, respectively, in the latter cases.

    Place, publisher, year, edition, pages
    Elsevier, 2012
    Keywords
    Grid inefficiency, Ionization chambers, Summing method
    National Category
    Natural Sciences
    Research subject
    Nuclear Physics
    Identifiers
    urn:nbn:se:uu:diva-172203 (URN)10.1016/j.nima.2011.12.047 (DOI)000301474600012 ()
    Available from: 2012-04-02 Created: 2012-04-02 Last updated: 2017-12-07Bibliographically approved
    4. Impact of prompt-neutron corrections on final fission-fragment distributions
    Open this publication in new window or tab >>Impact of prompt-neutron corrections on final fission-fragment distributions
    2012 (English)In: Physical Review C. Nuclear Physics, ISSN 0556-2813, E-ISSN 1089-490X, Vol. 86, no 5, p. 054601-Article in journal, Editorial material (Refereed) Published
    Abstract [en]

    Background: One important quantity in nuclear fission is the average number of prompt neutrons emitted from the fission fragments, the prompt neutron multiplicity, ν . The total number of prompt fission neutrons, νtot, increases with increasing incident neutron energy. The prompt-neutron multiplicity is also a function of the fragment mass and the total kinetic energy of the fragmentation. Those data are only known in sufficient detail for a few thermal-neutron-induced fission reactions on, for example, 233,235U and 239Pu. The enthralling question has always been asked how the additional excitation energy is shared between the fission fragments. The answer to this question is important in the analysis of fission-fragment data taken with the double-energy technique. Although in the traditional approach the excess neutrons are distributed equally across the mass distribution, a few experiments showed that those neutrons are predominantly emitted by the heavy fragments.

    Purpose: We investigated the consequences of the ν(A,TKE,En) distribution on the fission fragment observables.

    Methods: Experimental data obtained for the 234U(n, f) reaction with a Twin Frisch Grid Ionization Chamber, were analyzed assuming two different methods for the neutron evaporation correction. The effect of the two different methods on the resulting fragment mass and energy distributions is studied.

    Results: We found that the preneutron mass distributions obtained via the double-energy technique become slightly more symmetric, and that the impact is larger for postneutron fission-fragment distributions. In the most severe cases, a relative yield change up to 20–30% was observed.

    Conclusions: We conclude that the choice of the prompt-neutron correction method has strong implications on the understanding and modeling of the fission process and encourages new experiments to measure fission fragments in coincidence with prompt fission neutrons. Even more, the correct determination of postneutron fragment yields has an impact on the reliable assessment of the nuclear waste inventory, as well as on the correct prediction of delayed neutron precursor yields.

    Keywords
    Fission, Neutron
    National Category
    Subatomic Physics
    Research subject
    Physics with specialization in Applied Nuclear Physics
    Identifiers
    urn:nbn:se:uu:diva-185076 (URN)10.1103/PhysRevC.86.054601 (DOI)000310685400003 ()
    Available from: 2012-11-21 Created: 2012-11-19 Last updated: 2017-12-07Bibliographically approved
    5. Indication of anisotropic TKE and mass emission in 234U(n,f)
    Open this publication in new window or tab >>Indication of anisotropic TKE and mass emission in 234U(n,f)
    2012 (English)In: Physics Procedia / [ed] Stephan Oberstedt, 2012, p. 158-164Conference paper, Oral presentation only (Refereed)
    Abstract [en]

    The neutron-induced fission of 234U has been studied for neutron energies ranging from 200 keV to 5 MeV. Special focus was put around the prominent vibrational resonance in the sub-barrier region around 800 keV incident neutron energy. The aim was to investigate the fission fragment (FF) characteristics and search for fluctuations in energy and mass distributions. The strong angular anisotropy in the case of 234U(n,f) was verified and correlations with changes in energy and mass distributions were found. The TKE around the resonance increases contrary to earlier literature data. Furthermore, the TKE and mass distribution were found to be dependent on emission angle. At the resonance, the TKE was smallest near the 0° emission of the FF. This effect was consistent and coherent with a change in the mass distribution around the resonance. The mass distribution was observed to be less asymmetric near 0° emission. From a fitting analysis based on the Multi-Modal Random Neck-Rupture (MMRNR) model, we found the yield of the standard-1 mode increasing around the resonance. Because the TKE is increasing at larger angles and the mass distribution becomes more symmetric also at larger angles, we conclude that this behavior is due to an increase of the standard-1 mode at these larger angles. Based on the formalism of MMRNR, such difference in angular distribution may be an indication of a different outer barrier height for the standard-1 and standard-2 modes.

    Series
    Physics Procedia, ISSN 1875-3892 ; 31
    Keywords
    Fission, U-234, Neutron
    National Category
    Subatomic Physics
    Research subject
    Physics with specialization in Applied Nuclear Physics
    Identifiers
    urn:nbn:se:uu:diva-185303 (URN)10.1016/j.phpro.2012.04.021 (DOI)000309656300020 ()
    Conference
    GAMMA-1 Emission of Prompt Gamma-Rays in Fission and Related Topics, nov 22-21, 2011, Navi Sad, Serbia
    Available from: 2012-11-21 Created: 2012-11-21 Last updated: 2013-02-11
    6. First evidence of correlation between vibrational resonances and an anisotropy in the fission mass distribution
    Open this publication in new window or tab >>First evidence of correlation between vibrational resonances and an anisotropy in the fission mass distribution
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    In this work we present evidence of anisotropic emission of fragment masses in 234U(n,f). The discovered mass anisotropy is correlated with the prominent vibrational resonances at En = 0.5 and 0.77 MeV and coincides with a verified strong angular anisotropy. From the outcome of this experimental work one may infer unequal fission barrier heights for different degrees of fission asymmetry.

    Keywords
    U-234, Fission, Neutron, Resonance, Anisotropy
    National Category
    Subatomic Physics
    Research subject
    Physics with specialization in Applied Nuclear Physics
    Identifiers
    urn:nbn:se:uu:diva-185307 (URN)
    Available from: 2012-11-28 Created: 2012-11-21 Last updated: 2013-02-11
    7. Fragment mass-, kinetic energy- and angular distributions for 234U(n, f) at incident neutron energies from En = 0.2 to 5.0 MeV
    Open this publication in new window or tab >>Fragment mass-, kinetic energy- and angular distributions for 234U(n, f) at incident neutron energies from En = 0.2 to 5.0 MeV
    Show others...
    2016 (English)In: Physical review C, ISSN 2469-9985, Vol. 93, no 3, article id 034603Article in journal (Refereed) Published
    Abstract [en]

    This work investigates the neutron-induced fission of U-234 and the fission-fragment properties for neutron energies between E-n = 0.2 and 5.0 MeV with a special highlight on the prominent vibrational resonance at E-n = 0.77 MeV. Angular, energy, and mass distributions were determined based on the double-energy technique by means of a twin Frisch-grid ionization chamber. The experimental data are parametrized in terms of fission modes based on the multimodal random neck-rupture model. The main results are a verified strong angular anisotropy and fluctuations in the energy release as a function of incident-neutron energy.

    Keywords
    234U, Neutron, Fission, Resonance, Frisch-Grid
    National Category
    Subatomic Physics
    Research subject
    Physics with specialization in Applied Nuclear Physics
    Identifiers
    urn:nbn:se:uu:diva-185332 (URN)10.1103/PhysRevC.93.034603 (DOI)000371409000006 ()
    Available from: 2012-11-29 Created: 2012-11-22 Last updated: 2016-04-13Bibliographically approved
  • 8.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Alhassan, Erwin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Neutron Research, Applied Nuclear Physics.
    Gustavsson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Helgesson, Petter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jansson, Kaj
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Koning, Arjan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Nucl Res & Consultancy Grp NRG, Petten, Netherlands.
    Lantz, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Mattera, Andrea
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Prokofiev, Alexander V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Uppsala University, The Svedberg Laboratory.
    Rakopoulos, Vasileios
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Solders, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Tarrío, Diego
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Fission Activities of the Nuclear Reactions Group in Uppsala2015In: Scientific Workshop on Nuclear Fission Dynamics and the Emission of Prompt Neutrons and Gamma Rays, THEORY-3 / [ed] Franz-Josef Hambsch and Nicolae Carjan, 2015, p. 145-149Conference paper (Refereed)
    Abstract [en]

    This paper highlights some of the main activities related to fission of the nuclear reactions group at Uppsala University. The group is involved for instance in fission yield experiments at the IGISOL facility, cross-section measurements at the NFS facility, as well as fission dynamics studies at the IRMM JRC-EC. Moreover, work is ongoing on the Total Monte Carlo (TMC) methodology and on including the GEF fission code into the TALYS nuclear reaction code. Selected results from these projects are discussed.

  • 9.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hambsch, F. -J
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Oberstedt, S.
    Sensitivity of Measured Fission Yields on Prompt-neutron Corrections2014In: Nuclear Data Sheets, ISSN 0090-3752, E-ISSN 1095-9904, Vol. 119, p. 342-345Article in journal (Refereed)
    Abstract [en]

    Although the number of emitted prompt neutrons from the fission fragments increases as a function of excitation energy, it is not fully understood whether the increase in (nu) over bar (A) as a function of E-n is mass dependent. The share of excitation energies among the fragments is still under debate, but there are reasons to believe that the excess in neutron emission originates only from the heavy fragments, leaving (nu) over bar (light) (A) almost unchanged. We have investigated the consequences of a mass-dependent increase in (nu) over bar (A) on the final mass and energy distributions. The analysis have been performed on experimentally measured data on U-234(n, f). The assumptions concerning (nu) over bar (A) are essential when analysing measurements based on the 2E-technique, and impact significantly on the measured observables. For example, the post-neutron emission mass yield distribution revealed changes up to 10-30 %. The outcome of this work pinpoints the urgent need to determine (nu) over bar (A) experimentally, and in particular, how (nu) over bar (A) changes as a function of incident neutron energy. Many fission yields in the data libraries could be largely affected, since their analysis is based on a different assumption concerning the neutron emission.

  • 10.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hambsch, F.-J.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Oberstedt, S.
    Corrections of Prompt-neutron Emission in Fission-fragment Experiments2013In: Physics Procedia, Vol 47, 2013, 2013, p. 131-136Conference paper (Refereed)
  • 11.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hambsch, F.-J.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Oberstedt, S.
    Sensitivity of measured fission yields on prompt-neutron corrections2014Conference paper (Refereed)
  • 12.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hambsch, Franz-Josef
    IRMM JRC EC.
    Bencardino, Raffaele
    IRMM JRC EC.
    Oberstedt, Stephan
    IRMM JRC EC.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers2012In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 673, p. 116-121Article in journal (Refereed)
    Abstract [en]

    Ionization chambers with Frisch grids have been very successfully applied to neutron-induced fission-fragment studies during the past 20 years. They are radiation resistant and can be easily adapted to the experimental conditions. The use of Frisch grids has the advantage to remove the angular dependency from the charge induced on the anode plate. However, due to the Grid Inefficiency (GI) in shielding the charges, the anode signal remains slightly angular dependent. The correction for the GI is, however, essential to determine the correct energy of the ionizing particles. GI corrections can amount to a few percent of the anode signal. Presently, two contradicting correction methods are considered in literature. The first method adding the angular-dependent part of the signal to the signal pulse height; the second method subtracting the former from the latter. Both additive and subtractive approaches were investigated in an experiment where a Twin Frisch-Grid Ionization Chamber (TFGIC) was employed to detect the spontaneous fission fragments (FF) emitted by a 252Cf source. Two parallel-wire grids with different wire spacing (1 and 2 mm, respectively), were used individually, in the same chamber side. All the other experimental conditions were unchanged. The 2 mm grid featured more than double the GI of the 1 mm grid. The induced charge on the anode in both measurements was compared, before and after GI correction. Before GI correction, the 2 mm grid resulted in a lower pulse-height distribution than the 1 mm grid. After applying both GI corrections to both measurements only the additive approach led to consistent grid independent pulse-height distributions. The application of the subtractive correction on the contrary led to inconsistent, grid-dependent results. It is also shown that the impact of either of the correction methods is small on the FF mass distributions of 235U(nth, f).

  • 13.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hambsch, Franz-Josef
    IRMM JRC EC .
    Bencardino, Raffaele
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Oberstedt, Stephan
    Zeynalov, Shakir
    JINR.
    On the Frisch–Grid signal in ionization chambers2012In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 671, p. 103-107Article in journal (Refereed)
    Abstract [en]

    A recent theoretical approach concerning the grid-inefficiency (GI) problem in Twin Frisch–Grid Ionization Chambers was validated experimentally. The experimental verification focused on the induced signal on the anode plate. In this work the investigation was extended by studying the grid signal. The aim was to verify the grid-signal dependency on the grid inefficiency σ. The measurements were made with fission fragments from 252Cf(sf), using two different grids, with 1 and 2 mm wire distances, leading to the GI values: σ=0.031 and σ=0.083, respectively. The theoretical grid signal was confirmed because the detected grid pulse-height distribution was smaller for the larger σ. By applying the additive GI correction approach, the two grid pulse heights were consistent.

    In the second part of the work, the corrected grid signal was used to deduce emission angles of the fission fragments. It is inconvenient to treat the grid signal by means of conventional analogue electronics, because of its bipolarity. Therefore, the anode and grid signals were summed to create a unipolar, angle-dependent pulse height. Until now the so-called summing method has been the well-established approach to deduce the angle from the grid signal. However, this operation relies strongly on an accurate and stable calibration between the two summed signals. By application of digital-signal processing, the grid signal's bipolarity is no longer an issue. Hence one can bypass the intermediate summation step of the two different pre-amplifier signals, which leads to higher stability. In this work the grid approach was compared to the summing method in three cases: 252Cf(sf), 235U(n,f) and 234U(n,f). By using the grid directly, the angular resolution was found equally good in the first case but gave 7% and 20% improvements, respectively, in the latter cases.

  • 14.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hambsch, Franz-Josef
    IRMM - JRC - EC.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Oberstedt, Stephan
    IRMM - JRC - EC.
    Indication of anisotropic TKE and mass emission in 234U(n,f)2012In: Physics Procedia / [ed] Stephan Oberstedt, 2012, p. 158-164Conference paper (Refereed)
    Abstract [en]

    The neutron-induced fission of 234U has been studied for neutron energies ranging from 200 keV to 5 MeV. Special focus was put around the prominent vibrational resonance in the sub-barrier region around 800 keV incident neutron energy. The aim was to investigate the fission fragment (FF) characteristics and search for fluctuations in energy and mass distributions. The strong angular anisotropy in the case of 234U(n,f) was verified and correlations with changes in energy and mass distributions were found. The TKE around the resonance increases contrary to earlier literature data. Furthermore, the TKE and mass distribution were found to be dependent on emission angle. At the resonance, the TKE was smallest near the 0° emission of the FF. This effect was consistent and coherent with a change in the mass distribution around the resonance. The mass distribution was observed to be less asymmetric near 0° emission. From a fitting analysis based on the Multi-Modal Random Neck-Rupture (MMRNR) model, we found the yield of the standard-1 mode increasing around the resonance. Because the TKE is increasing at larger angles and the mass distribution becomes more symmetric also at larger angles, we conclude that this behavior is due to an increase of the standard-1 mode at these larger angles. Based on the formalism of MMRNR, such difference in angular distribution may be an indication of a different outer barrier height for the standard-1 and standard-2 modes.

  • 15.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hambsch, Franz-Josef
    IRMM-JRC-EC.
    Stephan, Pomp
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Oberstedt, Stephan
    IRMM-JRC-EC.
    Possible anisotropy in the emission of fission fragments2012In: Conference: 13th international conference on nuclear reaction mechanisms, At Villa Monastero, Varenna, Italy, Volume: pp. 223-225 / [ed] F. Cerutti, 2012, p. 223-225Conference paper (Refereed)
    Abstract [en]

    This study on 234U(n,f) focused on the vibrational resonance at the incident neutron energy En=770 keV. Due to the strong angular anisotropy, Fluctuations of the fission fragment (FF) properties were predicted. The bipolar angular anisotropy was verified in this work and a possible new correlation to anisotropic FF emission has been observed. The mass distribution was found to have the biggest difference in asymmetry, at the vibrational resonance and was less asymmetric in emission along the axis of the beam direction. A corresponding anisotropy in the total kinetic energy was also observed. The observed effect was consistent with the change in the mass distribution. At last, the experimental data were fitted based on the Multi-Modal Random Neck Rupture (MM-RNR) model. The yield of the standard-1 mode was found to increase at the resonance.

  • 16.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hambsch, Franz-Josef
    IRMM - JRC - EC.
    Stephan, Pomp
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Stephan, Oberstedt
    IRMM - JRC - EC.
    First evidence of correlation between vibrational resonances and an anisotropy in the fission mass distributionManuscript (preprint) (Other academic)
    Abstract [en]

    In this work we present evidence of anisotropic emission of fragment masses in 234U(n,f). The discovered mass anisotropy is correlated with the prominent vibrational resonances at En = 0.5 and 0.77 MeV and coincides with a verified strong angular anisotropy. From the outcome of this experimental work one may infer unequal fission barrier heights for different degrees of fission asymmetry.

  • 17.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hambsch, Franz-Josef
    IRMM - JRC - EC.
    Stephan, Pomp
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Stephan, Oberstedt
    IRMM - JRC - EC.
    Impact of prompt-neutron corrections on final fission-fragment distributions2012In: Physical Review C. Nuclear Physics, ISSN 0556-2813, E-ISSN 1089-490X, Vol. 86, no 5, p. 054601-Article in journal (Refereed)
    Abstract [en]

    Background: One important quantity in nuclear fission is the average number of prompt neutrons emitted from the fission fragments, the prompt neutron multiplicity, ν . The total number of prompt fission neutrons, νtot, increases with increasing incident neutron energy. The prompt-neutron multiplicity is also a function of the fragment mass and the total kinetic energy of the fragmentation. Those data are only known in sufficient detail for a few thermal-neutron-induced fission reactions on, for example, 233,235U and 239Pu. The enthralling question has always been asked how the additional excitation energy is shared between the fission fragments. The answer to this question is important in the analysis of fission-fragment data taken with the double-energy technique. Although in the traditional approach the excess neutrons are distributed equally across the mass distribution, a few experiments showed that those neutrons are predominantly emitted by the heavy fragments.

    Purpose: We investigated the consequences of the ν(A,TKE,En) distribution on the fission fragment observables.

    Methods: Experimental data obtained for the 234U(n, f) reaction with a Twin Frisch Grid Ionization Chamber, were analyzed assuming two different methods for the neutron evaporation correction. The effect of the two different methods on the resulting fragment mass and energy distributions is studied.

    Results: We found that the preneutron mass distributions obtained via the double-energy technique become slightly more symmetric, and that the impact is larger for postneutron fission-fragment distributions. In the most severe cases, a relative yield change up to 20–30% was observed.

    Conclusions: We conclude that the choice of the prompt-neutron correction method has strong implications on the understanding and modeling of the fission process and encourages new experiments to measure fission fragments in coincidence with prompt fission neutrons. Even more, the correct determination of postneutron fragment yields has an impact on the reliable assessment of the nuclear waste inventory, as well as on the correct prediction of delayed neutron precursor yields.

  • 18.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hambsch, Franz-Josef
    European Commiss, Joint Res Ctr, IRMM, B-2440 Geel, Belgium.
    Stephan, Pomp
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Stephan, Oberstedt
    European Commiss, Joint Res Ctr, IRMM, B-2440 Geel, Belgium.
    Vidali, M.
    European Commiss, Joint Res Ctr, IRMM, B-2440 Geel, Belgium.
    Fragment mass-, kinetic energy- and angular distributions for 234U(n, f) at incident neutron energies from En = 0.2 to 5.0 MeV2016In: Physical review C, ISSN 2469-9985, Vol. 93, no 3, article id 034603Article in journal (Refereed)
    Abstract [en]

    This work investigates the neutron-induced fission of U-234 and the fission-fragment properties for neutron energies between E-n = 0.2 and 5.0 MeV with a special highlight on the prominent vibrational resonance at E-n = 0.77 MeV. Angular, energy, and mass distributions were determined based on the double-energy technique by means of a twin Frisch-grid ionization chamber. The experimental data are parametrized in terms of fission modes based on the multimodal random neck-rupture model. The main results are a verified strong angular anisotropy and fluctuations in the energy release as a function of incident-neutron energy.

  • 19.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jansson, Kaj
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Lantz, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Solders, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gustavsson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Mattera, Andrea
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Prokofiev, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Rakopoulos, Vasileios
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Tarrío, Diego
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Wiberg, Sara
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ion counting efficiencies at the IGISOL facility2014Report (Other academic)
    Abstract [en]

    At the IGISOL-JYFLTRAP facility, fission mass yields can be studied at high precision. Fission fragments from a U target are passing through a Ni foil and entering a gas filled chamber. The collected fragments are guided through a mass separator to a Penning trap where their masses are identified. This simulation work focuses on how different fission fragment properties (mass, charge and energy) affect the stopping efficiency in the gas cell. In addition, different experimental parameters are varied (e. g. U and Ni thickness and He gas pressure) to study their impact on the stopping efficiency. The simulations were performed using the Geant4 package and the SRIM code. The main results suggest a small variation in the stopping efficiency as a function of mass, charge and kinetic energy. It is predicted that heavy fragments are stopped about 9% less efficiently than the light fragments. However it was found that the properties of the U, Ni and the He gas influences this behavior. Hence it could be possible to optimize the efficiency.

  • 20.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jansson, Kaj
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Mattias, Lantz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Solders, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorelov, Dmitry
    Department of Physics, FI-40014 University of Jyväskylä, Finland.
    Gustavsson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Mattera, Andrea
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Moore, Iain
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Prokofiev, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Rakopoulos, Vasileios
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Penttilä, Heikki
    Department of Physics, FI-40014 University of Jyväskylä, Finland.
    Tarrío, Diego
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Wiberg, Sara
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Stephan, Pomp
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Simulations of the fission-product stopping efficiency in IGISOL2015In: European Physical Journal A, ISSN 1434-6001, E-ISSN 1434-601X, Vol. 51, no 59, p. 1-7Article in journal (Refereed)
    Abstract [en]

    At the Jyväskylä Ion Guide Isotope Separator On-Line (IGISOL) facility, independent fission yields are measured employing the Penning-trap technique. Fission products are produced, e.g. by impinging protons on a uranium target, and are stopped in a gas-filled chamber. The products are collected by a flow of He gas and guided through a mass separator to a Penning trap, where their masses are identified. This work investigates how fission-product properties, such as mass and energy, affect the ion stopping efficiency in the gas cell. The study was performed using the Geant4 toolkit and the SRIM code. The main results show a nearly mass-independent ion stopping with regard to the wide spread of ion masses and energies, with a proper choice of uranium target thickness. Although small variations were observed, in the order of 5%, the results are within the systematic uncertainties of the simulations. To optimize the stopping efficiency while reducing the systematic errors, different experimental parameters were varied; for instance material thicknesses and He gas pressure. Different parameters influence the mass dependence and could alter the mass dependencies in the ion stopping efficiency.

  • 21.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jansson, Kaj
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Tarrio, Diego
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hambsch, Franz-Josef
    European Commiss, Joint Res Ctr, Directorate G2, Geel, Belgium..
    Gook, Alf
    European Commiss, Joint Res Ctr, Directorate G2, Geel, Belgium..
    Oberstedt, Stephan
    European Commiss, Joint Res Ctr, Directorate G2, Geel, Belgium..
    Fregeau, Marc Olivier
    GANIL CEA DRF CNRS IN2P3, Caen, France..
    Gustavsson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Lantz, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Mattera, Andrea
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Prokofiev, Alexander V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Rakopoulos, Vasileios
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Solders, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Vidali, Marzio
    European Commiss, Joint Res Ctr, Directorate G2, Geel, Belgium..
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Studying fission neutrons with 2E-2v and 2E2018In: SCIENTIFIC WORKSHOP ON NUCLEAR FISSION DYNAMICS AND THE EMISSION OF PROMPT NEUTRONS AND GAMMA RAYS (THEORY-4) / [ed] Hambsch, FJ Carjan, N Rusko, I, 2018, article id UNSP 00002Conference paper (Refereed)
    Abstract [en]

    This work aims at measuring prompt-fission neutrons at different excitation energies of the nucleus. Two independent techniques, the 2E-2v and the 2E techniques, are used to map the characteristics of the mass-dependent prompt fission neutron multiplicity, 7(A), when the excitation energy is increased. The VERDI 2E-2v spectrometer is being developed at JRC-GEEL. The Fission Fragment (FF) energies are measured using two arrays of 16 silicon (Si) detectors each. The FFs velocities are obtained by time-of-flight, measured between micro-channel plates (MCP) and Si detectors. With MCPs placed on both sides of the fission source, VERDI allows for independent timing measurements for both fragments. Cf-252(sf) was measured and the present results revealed particular features of the 2E-2v technique. Dedicated simulations were also performed using the GEF code to study important aspects of the 2E-2v technique. Our simulations show that prompt neutron emission has a non-negligible impact on the deduced fragment data and affects also the shape of 17(A). Geometrical constraints lead to a total-kinetic energy-dependent detection efficiency. The 2E technique utilizes an ionization chamber together with two liquid scintillator detectors. Two measurements have been performed, one of Cf-252(sf) and another one of thermal-neutron induced fission in U-235(n,f). Results from Cf-252(sf) are reported here.

  • 22.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Rakopoulos, Vasileios
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Solders, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Extraction of angular momenta from isomeric yield ratios - assessment of TALYS as a fission fragment de-excitation codeManuscript (preprint) (Other academic)
  • 23.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Rakopoulos, Vasileios
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Solders, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Extraction of angular momenta from isomeric yield ratios: Employing TALYS to de-excite primary fission fragments2019In: European Physical Journal A, ISSN 1434-6001, E-ISSN 1434-601X, Vol. 55, no 4, article id 61Article in journal (Refereed)
    Abstract [en]

    The generation of angular momentum in fission is difficult to model, in particular at higher excitation energies where data are scarce. Isomeric yield ratios (IYR) play an important role in deducing angular momentum properties of fission fragments (FF), albeit this requires some assumptions and simplifications. To estimate FF angular momentum, fission codes can be used to calculate IYRs and compare them to experimental data. Such measurements have systematically been performed at the IGISOL facility using novel experimental techniques. In conjunction, a new method has been developed to infer the angular momentum of the primary FF using the nuclear reaction code TALYS. In this work, we evaluate this new method by comparing our TALYS calculations with values found in the literature and with results from the GEF fission code, for a few well-studied reactions. The overall results show a consistent performance of TALYS and GEF, as well as of many reported literature values. However, some deviations were found, possibly pinpointing the need to re-examine some of the reported literature values. A sensitivity analysis was also performed, in which the role of excitation energy, neutron emission, discrete level structure and level density models were studied. Finally, the role of multiple chance fission, of relevance for the reactions studied at IGISOL, is discussed. Some literature data for this reaction were also re-analyzed using TALYS, revealing significant differences.

  • 24.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Tarrío, Diego
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hambsch, F. -J
    EC JRC Inst Reference Mat & Measurements IRMM, Geel, Belgium.
    Gook, A.
    EC JRC Inst Reference Mat & Measurements IRMM, Geel, Belgium..
    Jansson, Kaj
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Solders, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Rakopoulos, Vasileios
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gustavsson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Lantz, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Mattera, Andrea
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Oberstedt, S.
    EC JRC Inst Reference Mat & Measurements IRMM, Geel, Belgium..
    Prokofiev, Alexander V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Vidali, M.
    EC JRC Inst Reference Mat & Measurements IRMM, Geel, Belgium..
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Analysis of prompt fission neutrons in U-235(nth,f) and fission fragment distributions for the thermal neutron induced fission of U-2342016In: CNR*15 - 5th International Workshop On Compound-Nuclear Reactions And Related Topics, 2016, article id 01007Conference paper (Refereed)
    Abstract [en]

    This paper presents the ongoing analysis of two fission experiments. Both projects are part of the collaboration between the nuclear reactions group at Uppsala and the JRC-IRMM. The first experiment deals with the prompt fission neutron multiplicity in the thermal neutron induced fission of U-235(n,f). The second, on the fission fragment properties in the thermal fission of U-234(n,f). The prompt fission neutron multiplicity has been measured at the JRC-IRMM using two liquid scintillators in coincidence with an ionization chamber. The first experimental campaign focused on U-235(nth,f) whereas a second experimental campaign is foreseen later for the same reaction at 5.5 MeV. The goal is to investigate how the so-called saw-tooth shape changes as a function of fragment mass and excitation energy. Some harsh experimental conditions were experienced due to the large radiation background. The solution to this will be discussed along with preliminary results. In addition, the analysis of thermal neutron induced fission of U-234(n,f) will be discussed. Currently analysis of data is ongoing, originally taken at the ILL reactor. The experiment is of particular interest since no measurement exist of the mass and energy distributions for this system at thermal energies. One main problem encountered during analysis was the huge background of U-235(nth, f). Despite the negligible isotopic traces in the sample, the cross section difference is enormous. Solution to this parasitic background will be highlighted.

  • 25.
    Al-Adili, Ali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Tarrío, Diego
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hambsch, Franz-Josef
    European Commission, Joint Research Centre, Directorate G, Geel, Belgium.
    Göök, Alf
    European Commission, Joint Research Centre, Directorate G, Geel, Belgium.
    Jansson, Kaj
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Solders, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Rakopoulos, Vasileios
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gustavsson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Lantz, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Mattera, Andrea
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Oberstedt, Stephan
    European Commission, Joint Research Centre, Directorate G, Geel, Belgium.
    Prokofiev, Alexander V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sundén, Erik A.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Vidali, Marzio
    European Commission, Joint Research Centre, Directorate G, Geel, Belgium.
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Neutron-multiplicity experiments for enhanced fission modelling2017In: EPJ Web of Conferences / [ed] Plompen, A.; Hambsch, FJ.; Schillebeeckx, P.; Mondelaers, W.; Heyse, J.; Kopecky, S.; Siegler, P.; Oberstedt, S., 2017, Vol. 146, article id 04056Conference paper (Refereed)
    Abstract [en]

    The nuclear de-excitation process of fission fragments (FF) provides fundamental information for the understanding of nuclear fission and nuclear structure in neutron-rich isotopes. The variation of the prompt-neutron multiplicity, ν(A), as a function of the incident neutron energy (En) is one of many open questions. It leads to significantly different treatments in various fission models and implies that experimental data are analyzed based on contradicting assumptions. One critical question is whether the additional excitation energy (Eexc) is manifested through an increase of ν(A) for all fragments or for the heavy ones only. A systematic investigation of ν(A) as a function of En has been initiated. Correlations between prompt-fission neutrons and fission fragments are obtained by using liquid scintillators in conjunction with a Frisch-grid ionization chamber. The proof-of-principle has been achieved on the reaction 235U(nth,f) at the Van De Graff (VdG) accelerator of the JRC-Geel using a fully digital data acquisition system. Neutrons from 252Cf(sf) were measured separately to quantify the neutron-scattering component due to surrounding shielding material and to determine the intrinsic detector efficiency. Prelimenary results on ν(A) and spectrum in correlation with FF properties are presented.

  • 26.
    Alam, Syed Bahauddin
    et al.
    CEA Cadarache.
    Almutairi, B.
    Kumar, Dinesh
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. CEA Cadarache.
    Goodwin, C. S.
    Ameri, S. A.
    Convergence Studies Using Method Of Characteristics Solver For The Reduced-Moderation Water Reactor Model.2018Conference paper (Other academic)
  • 27.
    Alam, Syed Bahauddin
    et al.
    Univ Cambridge, Dept Engn, Cambridge, England; Rhode Isl Nucl Sci Ctr, Narragansett, RI USA; French Alternat Energies & Atom Energy Commiss, St Paul Les Durance, France.
    Kumar, Dinesh
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. French Alternat Energies & Atom Energy Commiss, St Paul Les Durance, France.
    Almutairi, B.
    Rhode Isl Nucl Sci Ctr, Narragansett, RI USA; Missouri S&T, Dept Nucl Engn, Rolla, MO USA.
    Bhowmik, P. K.
    Missouri S&T, Dept Nucl Engn, Rolla, MO USA.
    Goodwin, C.
    Rhode Isl Nucl Sci Ctr, Narragansett, RI USA.
    Parks, G. T.
    Univ Cambridge, Dept Engn, Cambridge, England.
    Small modular reactor core design for civil marine propulsion using micro-heterogeneous duplex fuel. Part I: Assembly-level analysis2019In: Nuclear Engineering and Design, ISSN 0029-5493, E-ISSN 1872-759X, Vol. 346, p. 157-175Article in journal (Refereed)
    Abstract [en]

    In an effort to de-carbonise commercial freight shipping, there is growing interest in the possibility of using nuclear propulsion systems. In this reactor physics study, we seek to design a soluble-boron-free (SBF) and low-enriched uranium (LEU) (<20% U-235 enrichment) civil nuclear marine propulsion small modular reactor (SMR) core that provides at least 15 effective full-power-years (EFPY) life at 333 MWth using 18% U-235 enriched micro-heterogeneous ThO2-UO2 duplex fuel and 15% U-235 enriched homogeneously mixed all-UO2 fuel. We use WIMS to develop subassembly designs and PANTHER to examine whole-core arrangements.

    The assembly-level behaviours of candidate burnable poison (BP) materials and control rods are investigated. We examine gadolinia (Gd2O3), erbia (Er2O3) and ZrB2 integral fuel burnable absorber (IFBA) as BPs. We arrive at a design with the candidate fuels loaded into 13 x 13 assemblies using IFBA pins for reactivity control. Taking advantage of self-shielding effects, this design maintains low and stable assembly reactivity with relatively little burnup penalty. Thorium-based duplex fuel offers better performance than all-UO2 fuel with all BP options considered. Duplex fuel has similar to 20% lower reactivity swing and, in consequence, lower initial reactivity than all-UO2 fuel. The lower initial reactivity and smaller reactivity swing make the task of reactivity control through BP design easier in the thorium-rich duplex core. For control rod design, we examine boron carbide (B4C), hafnium, and Ag-In-Cd alloy. All the candidate materials exhibit greater rod worth for the duplex design. For both fuels, B4C has the highest rod worth. In particular, one of the major objectives of this study is to offer/explore a thorium-based candidate alternative fuel platform for the proposed marine core. It is proven by literature reviews that the ability of the duplex fuel was never explored in the context of a single-batch, LEU, SBF, long-life SMR core. In this regard, the motivation of this paper is to observe the neutronic performance of the proposed duplex fuel with respect to the UO2 fuel and 'open the option' of designing the functional cores with both the duplex and UO2 fuel cores.

  • 28.
    Alam, Syed Bahauddin
    et al.
    Univ Cambridge, Dept Engn, Cambridge, England; Rhode Isl Nucl Sci Ctr, Narragansett, RI USA; French Alternat Energies & Atom Energy Commiss, Saint Paul Lez Durance, France.
    Ridwan, T.
    Univ Cambridge, Dept Engn, Cambridge, England.
    Kumar, Dinesh
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. French Alternat Energies & Atom Energy Commiss, Saint Paul Lez Durance, France.
    Almutairi, B.
    Rhode Isl Nucl Sci Ctr, Narragansett, RI USA; Missouri S&T, Dept Nucl Engn, Rolla, MO USA.
    Goodwin, C.
    Rhode Isl Nucl Sci Ctr, Narragansett, RI USA.
    Parks, G. T.
    Univ Cambridge, Dept Engn, Cambridge, England.
    Small modular reactor core design for civil marine propulsion using micro-heterogeneous duplex fuel. Part II: whole-core analysis2019In: Nuclear Engineering and Design, ISSN 0029-5493, E-ISSN 1872-759X, Vol. 346, p. 176-191Article in journal (Refereed)
    Abstract [en]

    Civil marine reactors face a unique set of design challenges. These include requirements for a small core size and long core lifetime, a 20% cap on fissile loading, and limitations on using soluble neutron absorbers. In this reactor physics study, we seek to design a core that meets these requirements over a 15 effective full-power-years (EFPY) life at 333 MWth using homogeneously mixed all-UO2 and micro-heterogeneous ThO2-UO2 duplex fuels. In a companion (Part I) paper, we found assembly designs using 15% and 18% U-235 for UO2 and duplex fuels, respectively, loaded into 13 x 13 pin arrays. High thickness (150 mu m) ZrB2 integral fuel burnable absorber (IFBA) pins and boron carbide (B4C) control rods are used for reactivity control. Taking advantage of self-shielding effects, these designs maintain low and stable assembly reactivity with little burnup penalty.

    In this paper (Part II), whole-core design analyses are performed for small modular reactor (SMR) to determine whether the core remains critical for at least 15 EFPY with a reactivity swing of less than 4000 pcm, subject to appropriate constraints. The main challenge is to keep the radial form factor below its limit (1.50). Burnable poison radial-zoning is examined in the quest for a suitable arrangement to control power peaking. Optimized assemblies are loaded into a 3D reactor model in PANTHER. The PANTHER results confirm that the fissile loadings of both fuels are well-designed for the target lifetime: at the end of the (similar to)15-year cycle, the cores are on the border of criticality. The duplex fuel core can achieve (similar to)4% longer core life, has a (similar to)3% lower initial reactivity and (similar to)30% lower reactivity swing over life than the final UO2 core design. The duplex core is therefore the more successful design, giving a core life of (similar to)16 years and a reactivity swing of less than 2500 pcm, while satisfying all the neutronic safety parameters. In particular, one of the major objectives of this study is to offer/explore a thorium-based candidate alternative fuel platform for the proposed marine core. It is proven by literature reviews that the ability of the duplex fuel was never explored in the context of a single-batch, LEU, SBF, long-life SMR core. In this regard, the motivation of this paper is to understand the underlying physics of the duplex fuel and 'open the option' of designing the functional cores with both the duplex and UO2 fuel cores.

  • 29.
    Aldahan, Filip
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Svensson Grape, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Beräkning av kostnader för lågaktiv kärnavfallshantering2016Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    The surtax in Sweden, which exclusively applies for nuclear power plants, in conjunction with low electricity prices, has forced Swedish nuclear power plants to minimize their expenses.

    At Oskarshamn power plant, estimation of cost, associated with low-level nuclear waste management has been conducted several years ago, but with lacking knowledge about how the calculations were performed. Therefore, the purpose of this project was to establish an independent cost estimation for compactible and non-compactible, low level and medium level nuclear waste. Cost estimates for free released low-level nuclear waste was also performed.

    By analyzing average economic figures from year 2014-2015 and visits on-site, an excel-based calculation template was accomplished. During the on-site studies, several visits to the low-level nuclear waste management facilities at Oskarshamn power plant were made, in order to get an overview of how the handling process works.

    By following the staff around, it was possible to estimate some of the time durations for the different parts in the handling process for compactible lowlevel nuclear waste, that were used in the calculations.

    The price for compactible low-level nuclear waste was calculated to 6,72 - 6,97 kr/kg, depending on the activity level. The non-compactible low-level nuclear waste price was found to vary between 4 – 48 kr/kg.

    The large fluctuations are due to different activity levels and associated additional costs in handling, measuring, final deposition etc.

    For both compactible and non-compactible nuclear waste, the storage cost is a factor that dominates the total cost and that could be minimized. Based on the analysis presented in this work, the cost can be decreased by reducing the storage time and/or store the nuclear waste in a more space efficient way.

    The cost estimate for free released material is low (5,94 – 8,74 kr/kg), which concludes that Oskarshamn power plant may profit from free releasing as much material as possible, due to the fact that it is highly profitable to recycle metals.

  • 30.
    Alfheim, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Definition and evaluation of a dynamic source term module for use within RASTEP: A feasibility study2012Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    RASTEP (RApid Source TErm Prediction) is a computerized tool for use in the fast diagnosis of accidents in nuclear power plants and analysis of the subsequent radiological source term. The tool is based on a Bayesian Belief Network that is used to determine the most likely plant state which in turn is associated with a pre-calculated source term from level 2 PSA. In its current design the source term predicting abilities of RASTEP are not flexible enough. Therefore, the purpose of this thesis is to identify and evaluate different approaches of enhancing the source term module of RASTEP and provide the foundation for future implementations. Literature studies along with interviews and analysis have been carried out in order to identify possible methods and also to rank them according to feasibility. 4 main methods have been identified of which 2 are considered the most feasible in the short term. The other 2 might prove useful when their maturity level is strengthened. It is concluded from the study that the identified methods can be used in order to enhance RASTEP.

  • 31.
    Alhassan, Erwin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Nuclear data uncertainty propagation for a lead-cooled fast reactor: Combining TMC with criticality benchmarks for improved accuracy2014Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    For the successful deployment of advanced nuclear systems and for optimization of current reactor designs, high quality and accurate nuclear data are required. Before nuclear data can be used in applications, they are first evaluated, benchmarked against integral experiments and then converted into formats usable for applications. The evaluation process in the past was usually done by using differential experimental data which was then complimented with nuclear model calculations. This trend is fast changing because of increase in computational power and tremendous improvements in nuclear reaction theories over the last decade. Since these model codes are not perfect, they are usually validated against a large set of experimental data. However, since these experiments are themselves not exact, the calculated quantities of model codes such as cross sections, angular distributions etc., contain uncertainties. A major source of uncertainty being the input parameters to these model codes. Since nuclear data are used in reactor transport codes asinput for simulations, the output of transport codes ultimately contain uncertainties due to these data. Quantifying these uncertainties is therefore important for reactor safety assessment and also for deciding where additional efforts could be taken to reduce further, these uncertainties.

    Until recently, these uncertainties were mostly propagated using the generalized perturbation theory. With the increase in computational power however, more exact methods based on Monte Carlo are now possible. In the Nuclear Research and Consultancy Group (NRG), Petten, the Netherlands, a new method called ’Total Monte carlo (TMC)’ has been developed for nuclear data evaluation and uncertainty propagation. An advantage of this approach is that, it eliminates the use of covariances and the assumption of linearity that is used in the perturbation approach.

    In this work, we have applied the TMC methodology for assessing the impact of nuclear data uncertainties on reactor macroscopic parameters of the European Lead Cooled Training Reactor (ELECTRA). ELECTRA has been proposed within the GEN-IV initiative within Sweden. As part of the work, the uncertainties of plutonium isotopes and americium within the fuel, uncertainties of the lead isotopes within the coolant and some structural materials of importance have been investigated at the beginning of life. For the actinides, large uncertainties were observed in the k-eff due to Pu-238, 239, 240 nuclear data while for the lead coolant, the uncertainty in the k-eff for all the lead isotopes except for Pb-204 were large with significant contribution coming from Pb-208. The dominant contributions to the uncertainty in the k-eff came from uncertainties in the resonance parameters for Pb-208.

    Also, before the final product of an evaluation is released, evaluated data are tested against a large set of integral benchmark experiments. Since these benchmarks differ in geometry, type, material composition and neutron spectrum, their selection for specific applications is normally tedious and not straight forward. As a further objective in this thesis, methodologies for benchmark selection based the TMC method have been developed. This method has also been applied for nuclear data uncertainty reduction using integral benchmarks. From the results obtained, it was observed that by including criticality benchmark experiment information using a binary accept/reject method, a 40% and 20% reduction in nuclear data uncertainty in the k-eff was achieved for Pu-239 and Pu-240 respectively for ELECTRA.

    List of papers
    1. Combining Total Monte Carlo and Benchmarks for Nuclear Data Uncertainty Propagation on a Lead Fast Reactor's Safety Parameters
    Open this publication in new window or tab >>Combining Total Monte Carlo and Benchmarks for Nuclear Data Uncertainty Propagation on a Lead Fast Reactor's Safety Parameters