uu.seUppsala University Publications
Change search
Refine search result
1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Liu, Hao
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Ding, Haozhong
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Edqvist, Per-Henrik D
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Gräslund, Torbjorn
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Affibody-derived drug conjugates: Potent cytotoxic molecules for treatment of HER2 over-expressing tumors2018In: Journal of Controlled Release, ISSN 0168-3659, E-ISSN 1873-4995, Vol. 288, p. 84-95Article in journal (Refereed)
    Abstract [en]

    Patients with HER2-positive tumors often suffer resistance to therapy, warranting development of novel treatment modalities. Affibody molecules are small affinity proteins which can be engineered to bind to desired targets. They have in recent years been found to allow precise targeting of cancer specific molecular signatures such as the HER2 receptor. In this study, we have investigated the potential of an affibody molecule targeting HER2, Z(HER2:2891), conjugated with the cytotoxic maytansine derivate MC-DM1, for targeted cancer therapy. Z(HER2:2891) was expressed as a monomer (Z(HER2:2891)), dimer ((Z(HER2:2891)) 2) and dimer with an albumin binding domain (ABD) for half-life extension ((Z(HER2:2891)) 2-ABD). All proteins had a unique C-terminal cysteine that could be used for efficient and site-specific conjugation with MC-DM1. The resulting affibody drug conjugates were potent cytotoxic molecules for human cells over-expressing HER2, with sub-nanomolar IC50-values similar to trastuzumab emtansine, and did not affect cells with low HER2 expression. A biodistribution study of a radiolabeled version of (Z(HER2:2891))(2)-ABD-MC-DM1, showed that it was taken up by the tumor. The major site of off-target uptake was the kidneys and to some extent the liver. (Z(HER2:2891)) 2-ABD-MC-DM1 was found to have a half-life in circulation of 14 h. The compound was tolerated well by mice at 8.5 mg/kg and was shown to extend survival of mice bearing HER2 over-expressing tumors. The findings in this study show that affibody molecules are a promising class of engineered affinity proteins to specifically deliver small molecular drugs to cancer cells and that such conjugates are potential candidates for clinical evaluation on HER2-overexpressing cancers.

  • 2.
    Eriksson, Olof
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Johnström, Peter
    Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
    Cselenyi, Zsolt
    Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
    Jahan, Mahabuba
    Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.
    Selvaraju, Ram kumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Jensen-Waern, Marianne
    Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Takano, Akihiro
    Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.
    Sörhede Winzell, Maria
    AstraZeneca R&D, Mölndal, Sweden.
    Halldin, Christer
    6Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
    Skrtic, Stanko
    Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden .
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    In Vivo Visualization of beta-Cells by Targeting of GPR442018In: Diabetes, ISSN 0012-1797, E-ISSN 1939-327X, Vol. 67, no 2, p. 182-192Article in journal (Refereed)
    Abstract [en]

    GPR44 expression has recently been described as highly beta-cell selective in the human pancreas and constitutes a tentative surrogate imaging biomarker in diabetes. A radiolabeled small-molecule GPR44 antagonist, [C-11]AZ12204657, was evaluated for visualization of beta-cells in pigs and non-human primates by positron emission tomography as well as in immunodeficient mice transplanted with human islets under the kidney capsule. In vitro autoradiography of human and animal pancreatic sections from subjects without and with diabetes, in combination with insulin staining, was performed to assess beta-cell selectivity of the radiotracer. Proof of principle of in vivo targeting of human islets by [C-11]AZ12204657 was shown in the immunodeficient mouse transplantation model. Furthermore, [C-11]AZ12204657 bound by a GPR44-mediated mechanism in pancreatic sections from humans and pigs without diabetes, but not those with diabetes. In vivo [C-11]AZ12204657 bound specifically to GPR44 in pancreas and spleen and could be competed away dose-dependently in nondiabetic pigs and nonhuman primates. [C-11]AZ12204657 is a first-in-class surrogate imaging biomarker for pancreatic beta-cells by targeting the protein GPR44.

  • 3.
    Eriksson, Olof
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Selvaraju, Ram Kumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Species differences in pancreatic binding of DO3A-VS-Cys40-Exendin42017In: Acta Diabetologica, ISSN 0940-5429, E-ISSN 1432-5233, Vol. 54, no 11, p. 1039-1045Article in journal (Refereed)
    Abstract [en]

    AIMS: Radiolabeled Exendin-4 has been proposed as suitable imaging marker for pancreatic beta cell mass quantification mediated by Glucagon-like peptide-1 receptor (GLP-1R). However, noticeable species variations in basal pancreatic uptake as well as uptake reduction degree due to selective beta cell ablation were observed.

    METHODS: -Exendin4 Positron Emission Tomography (PET) in the same species. In vitro, ex vivo, and in vivo data formed the basis for calculating the theoretical in vivo contribution of each pancreatic compartment.

    RESULTS: -Exendin4.

    CONCLUSIONS: IPR as well as the exocrine GLP-1R density is the main determinants of the species variability in pancreatic uptake. Thus, the IPR in human is an important factor for assessing the potential of GLP-1R as an imaging biomarker for pancreatic beta cells.

  • 4.
    Honarvar, Hadis
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Calce, Enrica
    CNR, Inst Biostruct & Bioimaging, Naples, Italy..
    Doti, Nunzianna
    CNR, Inst Biostruct & Bioimaging, Naples, Italy..
    Langella, Emma
    CNR, Inst Biostruct & Bioimaging, Naples, Italy..
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    D'Amato, Valentina
    Univ Naples Federico II, Dept Clin Med & Surg, Naples, Italy..
    Bianco, Roberto
    Univ Naples Federico II, Dept Clin Med & Surg, Naples, Italy..
    Saviano, Michele
    CNR, Inst Crystallog, Bari, Italy..
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    De Luca, Stefania
    CNR, Inst Biostruct & Bioimaging, Naples, Italy..
    Evaluation of HER2-specific peptide ligand for its employment as radiolabeled imaging probe2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 2998Article in journal (Refereed)
    Abstract [en]

    HER2 transmembrane receptor is an important target in immunotherapy treatment of breast and gastroesophageal cancer. Molecular imaging of HER2 expression may provide essential prognostic and predictive information concerning disseminated cancer and aid in selection of an optimal therapy. Radiolabeled low molecular weight peptide ligands are particularly attractive as probes for molecular imaging, since they reach and bind to the target and clear from non-target organs and blood stream faster than bulky antibodies. In this study, we evaluated a potential HER2-imaging probe, an A9 nonapeptide, derived from the trastuzumab-Fab portion. Its cellular uptake was investigated by mass spectrometry analysis of the cytoplasmic cellular extracts. Moreover, based on in-silico modeling, DTPA chelator was conjugated to N-terminus of A9. In-111-labeled A9 demonstrated nanomolar affinity to HER2-expressing BT474 cells and favorable biodistribution profile in NMRI mice. This study suggests that the peptide A9 represents a good lead candidate for development of molecular probe, to be used for imaging purposes and for the delivery of cytotoxic agents.

  • 5. Krasniqi, Ahmet
    et al.
    D'Huyvetter, Matthias
    Devoogdt, Nick
    Frejd, Fredrik Y.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Affibody AB, Solna, Sweden.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Keyaerts, Marleen
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Same-day imaging using small proteins: Clinical experience and translational prospects in oncology.2018In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 59, no 6, p. 885-891Article in journal (Refereed)
    Abstract [en]

    Imaging of expression of therapeutic targets may enable patients' stratification for targeted treatments. The use of small radiolabeled probes based on the heavy-chain variable region of heavy-chain-only immunoglobulins or non-immunoglobulin scaffolds permits rapid localization of radiotracers in tumors and rapid clearance from normal tissues. This makes high-contrast imaging possible on the day of injection. This mini-review focuses on small proteins for radionuclide-based imaging that would allow same-day imaging, with the emphasis on clinical applications and promising preclinical developments within the field of oncology.

  • 6.
    Lahesmaa, Minna
    et al.
    Univ Turku, Turku PET Ctr, Turku, Finland;Turku Univ Hosp, Turku PET Ctr, Turku, Finland.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Abo Akad Univ, Turku PET Ctr, Turku, Finland.
    Gnad, Thorsten
    Univ Bonn, Inst Pharmacol & Toxicol, Bonn, Germany.
    Oikonen, Vesa
    Univ Turku, Turku PET Ctr, Turku, Finland.
    Bucci, Marco
    Univ Turku, Turku PET Ctr, Turku, Finland.
    Hirvonen, Jussi
    Univ Turku, Turku PET Ctr, Turku, Finland;Univ Turku, Dept Radiol, Turku, Finland.
    Koskensalo, Kalle
    Univ Turku, Turku PET Ctr, Turku, Finland;Turku Univ Hosp, Turku PET Ctr, Turku, Finland.
    Teuho, Jarmo
    Turku Univ Hosp, Turku PET Ctr, Turku, Finland.
    Niemi, Tarja
    Turku Univ Hosp, Dept Plast & Gen Surg, Turku, Finland.
    Taittonen, Markku
    Turku Univ Hosp, Dept Anesthesiol, Turku, Finland.
    Lahdenpohja, Salla
    Univ Turku, Turku PET Ctr, Turku, Finland.
    Din, Mueez U.
    Univ Turku, Turku PET Ctr, Turku, Finland.
    Haaparanta-Solin, Merja
    Univ Turku, Turku PET Ctr, Turku, Finland;Univ Turku, Med Res Labs, Turku, Finland.
    Pfeifer, Alexander
    Univ Bonn, Inst Pharmacol & Toxicol, Bonn, Germany.
    Virtanen, Kirsi A.
    Univ Turku, Turku PET Ctr, Turku, Finland;Turku Univ Hosp, Turku PET Ctr, Turku, Finland.
    Nuutila, Pirjo
    Univ Turku, Turku PET Ctr, Turku, Finland;Turku Univ Hosp, Dept Endocrinol, Turku, Finland.
    Cannabinoid Type 1 Receptors Are Upregulated During Acute Activation of Brown Adipose Tissue2018In: Diabetes, ISSN 0012-1797, E-ISSN 1939-327X, Vol. 67, no 7, p. 1226-1236Article in journal (Refereed)
    Abstract [en]

    Activating brown adipose tissue (BAT) could provide a potential approach for the treatment of obesity and metabolic disease in humans. Obesity is associated with upregulation of the endocannabinoid system, and blocking the cannabinoid type 1 receptor (CB1R) has been shown to cause weight loss and to decrease cardiometabolic risk factors. These effects may be mediated partly via increased BAT metabolism, since there is evidence that CB1R antagonism activates BAT in rodents. To investigate the significance of CB1R in BAT function, we quantified the density of CB1R in human and rodent BAT using the positron emission tomography radioligand [F-18]FMPEP-d(2) and measured BAT activation in parallel with the glucose analog [F-18]fluorodeoxyglucose. Activation by cold exposure markedly increased CB1R density and glucose uptake in the BAT of lean men. Similarly, 3-receptor agonism increased CB1R density in the BAT of rats. In contrast, overweight men with reduced BAT activity exhibited decreased CB1R in BAT, reflecting impaired endocannabinoid regulation. Image-guided biopsies confirmed CB1R mRNA expression in human BAT. Furthermore, CB1R blockade increased glucose uptake and lipolysis of brown adipocytes. Our results highlight that CB1Rs are significant for human BAT activity, and the CB1Rs provide a novel therapeutic target for BAT activation in humans.

  • 7.
    Lindbo, Sarah
    et al.
    School of Engineering in Chemistry, Biotechnology and Health (CBH), Division of Protein Science, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Oroujeni, Maryam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Hober, Sophia
    School of Engineering in Chemistry, Biotechnology and Health (CBH), Division of Protein Science, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Optimized Molecular Design of ADAPT-Based HER2-Imaging Probes Labeled with 111In and 68Ga2018In: Molecular Pharmaceutics, ISSN 1543-8384, E-ISSN 1543-8392, Vol. 15, no 7, p. 2674-2683Article in journal (Refereed)
    Abstract [en]

    Radionuclide molecular imaging is a promising tool for visualization of cancer associated molecular abnormalities in vivo and stratification of patients for specific therapies. ADAPT is a new type of small engineered proteins based on the scaffold of an albumin binding domain of protein G. ADAPTs have been utilized to select and develop high affinity binders to different proteinaceous targets. ADAPT6 binds to human epidermal growth factor 2 (HER2) with low nanomolar affinity and can be used for its in vivo visualization. Molecular design of 111In-labeled anti-HER2 ADAPT has been optimized in several earlier studies. In this study, we made a direct comparison of two of the most promising variants, having either a DEAVDANS or a (HE)3DANS sequence at the N-terminus, conjugated with a maleimido derivative of DOTA to a GSSC amino acids sequence at the C-terminus. The variants (designated DOTA-C59-DEAVDANS-ADAPT6-GSSC and DOTA-C61-(HE)3DANS-ADAPT6-GSSC) were stably labeled with 111In for SPECT and 68Ga for PET. Biodistribution of labeled ADAPT variants was evaluated in nude mice bearing human tumor xenografts with different levels of HER2 expression. Both variants enabled clear discrimination between tumors with high and low levels of HER2 expression. 111In-labeled ADAPT6 derivatives provided higher tumor-to-organ ratios compared to 68Ga-labeled counterparts. The best performing variant was DOTA-C61-(HE)3DANS-ADAPT6-GSSC, which provided tumor-to-blood ratios of 208 ± 36 and 109 ± 17 at 3 h for 111In and 68Ga labels, respectively.

  • 8.
    Mitran, Bogdan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Güler, Rezan
    KTH Royal Inst Technol, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, Stockholm, Sweden.
    Roche, Francis P.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology.
    Lindström, Elin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Selvaraju, Ramkumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Fleetwood, Filippa
    KTH Royal Inst Technol, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, Stockholm, Sweden.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Claesson-Welsh, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology.
    Ståhl, Stefan
    KTH Royal Inst Technol, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Löfblom, John
    KTH Royal Inst Technol, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, Stockholm, Sweden.
    Radionuclide imaging of VEGFR2 in glioma vasculature using biparatopic affibody conjugate: proof-of-principle in a murine model2018In: Theranostics, ISSN 1838-7640, E-ISSN 1838-7640, Vol. 8, no 16, p. 4462-4476Article in journal (Refereed)
    Abstract [en]

    Vascular endothelial growth factor receptor-2 (VEGFR2) is a key mediator of angiogenesis and therefore a promising therapeutic target in malignancies including glioblastoma multiforme (GBM). Molecular imaging of VEGFR2 expression may enable patient stratification for antiangiogenic therapy. The goal of the current study was to evaluate the capacity of the novel anti-VEGFR2 biparatopic affibody conjugate (Z(VEGFR2)-Bp(2)) for in vivo visualization of VEGFR2 expression in GBM.

    Methods: Z(VEGFR2)-Bp(2) coupled to a NODAGA chelator was generated and radiolabeled with indium-111. The VEGFR2-expressing murine endothelial cell line MS1 was used to evaluate in vitro binding specificity and affinity, cellular processing and targeting specificity in mice. Further tumor targeting was studied in vivo in GL261 glioblastoma orthotopic tumors. Experimental imaging was performed.

    Results: [In-111]In-NODAGA-Z(VEGFR2)-Bp(2) bound specifically to VEGFR2 (K-D=33 +/- 18 pM). VEGFR2-mediated accumulation was observed in liver, spleen and lungs. The tumor-to-organ ratios 2 h post injection for mice bearing MS1 tumors were approximately 11 for blood, 15 for muscles and 78 for brain. Intracranial GL261 glioblastoma was visualized using SPECT/CT. The activity uptake in tumors was significantly higher than in normal brain tissue. The tumor-to-cerebellum ratios after injection of 4 mu g [In-111]In-NODAGA-Z(VEGFR2)-Bp(2) were significantly higher than the ratios observed for the 40 mu g injected dose and for the non-VEGFR2 binding size-matched conjugate, demonstrating target specificity. Microautoradiography of cryosectioned CNS tissue was in good agreement with the SPECT/CT images.

    Conclusion: The anti-VEGFR2 affibody conjugate [In-111]In-NODAGA-Z(VEGFR2)-Bp(2) specifically targeted VEGFR2 in vivo and visualized its expression in a murine GBM orthotopic model. Tumor-to-blood ratios for [In-111]In-NODAGA-Z(VEGFR2)-Bp(2) were higher compared to other VEGFR2 imaging probes. [In-111]In-NODAGA-Z(VEGFR2)-Bp(2) appears to be a promising probe for in vivo noninvasive visualization of tumor angiogenesis in glioblastoma.

  • 9.
    Monazzam, Azita
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Lau, Joey
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Li, Su-Chen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Razmara, Masoud
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Skogseid, Britt
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Increased Expression of GLP-1R in Proliferating Islets of Men1 Mice is Detectable by [Ga-68]Ga-DO3A-VS-Cys(40)- Exendin-4/PET2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 748Article in journal (Refereed)
    Abstract [en]

    Multiple endocrine neoplasia type 1 (MEN1) is an endocrine tumor syndrome caused by heterozygous mutations in the MEN1 tumor suppressor gene. The MEN1 pancreas of the adolescent gene carrier frequently contain diffusely spread pre-neoplasias and microadenomas, progressing to macroscopic and potentially malignant pancreatic neuroendocrine tumors (P-NET), which represents the major death cause in MEN1. The unveiling of the molecular mechanism of P-NET which is not currently understood fully to allow the optimization of diagnostics and treatment. Glucagon-like peptide 1 (GLP-1) pathway is essential in islet regeneration, i.e. inhibition of β-cell apoptosis and enhancement of β-cell proliferation, yet involvement of GLP-1 in MEN1 related P-NET has not yet been demonstrated. The objective of this work was to investigate if normal sized islets of Men1 heterozygous mice have increased Glucagon-like peptide-1 receptor (GLP-1R) expression compared to wild type islets, and if this increase is detectable in vivo with positron emission tomography (PET) using [68Ga]Ga-DO3A-VS-Cys40-Exendin-4 (68Ga-Exendin-4). 68Ga-Exendin-4 showed potential for early lesion detection in MEN1 pancreas due to increased GLP1R expression.

  • 10.
    Orlova, Anna
    et al.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Bass, Tarek Z.
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Leitao, Charles Dahlsson
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Atterby, Christina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Gudmundsdotter, Lindvi
    Affibody AB, Solna, Sweden.
    Frejd, Fredrik Y.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Affibody AB, Solna, Sweden.
    Löfhlom, John
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Ståhl, Stefan
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Evaluation of the Therapeutic Potential of a HER3-Binding Affibody Construct TAM-HER3 in Comparison with a Monoclonal Antibody, Seribantumab2018In: Molecular Pharmaceutics, ISSN 1543-8384, E-ISSN 1543-8392, Vol. 15, no 8, p. 3394-3403Article in journal (Refereed)
    Abstract [en]

    Human epidermal growth factor receptor type 3 (HER3) is recognized to be involved in resistance to HER targeting therapies. A number of HER3-targeting monoclonal antibodies are under clinical investigation as potential cancer therapeutics. Smaller high-affinity scaffold proteins are attractive non-Fc containing alternatives to antibodies. A previous study indicated that anti-HER3 affibody molecules could delay the growth of xenografted HER3-positive tumors. Here, we designed a second-generation HER3-targeting construct (TAM-HER3), containing two HER3-specific affibody molecules bridged by an albumin-binding domain (ABD) for extension of blood circulation. Receptor blocking activity was demonstrated in vitro. In mice bearing BxPC-3 xenografts, the therapeutic efficacy of TAM-HER3 was compared to the HER3-specific monoclonal antibody seribantumab (MM-121). TAM-HER3 inhibited heregulin-induced phosphorylation in a panel of HER3-expressing cancer cells and was found to be equally as potent as seribantumab in terms of therapeutic efficacy in vivo and with a similar safety profile. Median survival times were 60 days for TAM-HER3, 54 days for seribantumab, and 41 days for the control group. No pathological changes were observed in cytopathological examination. The multimeric HER3-binding affibody molecule in fusion to ABD seems promising for further evaluation as candidate therapeutics for treatment of HER3-overexpressing tumors.

  • 11.
    Oroujeni, Maryam
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Andersson, Ken G.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Steinhardt, Xenia
    KTH Royal Inst Technol, Dept Prot Sci, Stockholm, Sweden..
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Löfblom, John
    KTH Royal Inst Technol, Dept Prot Sci, Stockholm, Sweden..
    Influence of composition of cysteine-containing peptide-based chelators on biodistribution of 99mTc-labeled anti-EGFR affibody molecules2018In: Amino Acids, ISSN 0939-4451, E-ISSN 1438-2199, Vol. 50, no 8, p. 981-994Article in journal (Refereed)
    Abstract [en]

    Epidermal growth factor receptor (EGFR) is overexpressed in a number of cancers and is the molecular target for several anti-cancer therapeutics. Radionuclide molecular imaging of EGFR expression should enable personalization of anti-cancer treatment. Affibody molecule is a promising type of high-affinity imaging probes based on a non-immunoglobulin scaffold. A series of derivatives of the anti-EGFR affibody molecule ZEGFR:2377, having peptide-based cysteine-containing chelators for conjugation of Tc-99m, was designed and evaluated. It was found that glutamate-containing chelators Gly-Gly-Glu-Cys (GGEC), Gly-Glu-Glu-Cys (GEEC) and Glu-Glu-Glu-Cys (EEEC) provide the best labeling stability. The glutamate containing conjugates bound to EGFR-expressing cells specifically and with high affinity. Specific targeting of EGFR-expressing xenografts in mice was demonstrated. The number of glutamate residues in the chelator had strong influence on biodistribution of radiolabeled affibody molecules. Increase of glutamate content was associated with lower uptake in normal tissues. The Tc-99m-labeled variant containing the EEEC chelator provided the highest tumor-to-organ ratios. In conclusion, optimizing the composition of peptide-based chelators enhances contrast of imaging of EGFR-expression using affibody molecules.

  • 12.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Affibody Molecules for HER3-targeted Theranostics of Malignant Tumours2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The HER3 receptor plays a strong role in disease progression and resistance to therapies in several cancer types. Due to its endogenous expression and low overexpression in malignant tumours, it is a particularly challenging target. The primary aim of this thesis project was to develop, evaluate and characterize affibody molecules for theranostic applications in HER3-expressing malignant tumours.

    Paper I investigated the in vivo targeting properties and therapeutic efficacy of a bivalent affibody construct fused with an albumin binding domain, ZHER3-ABD-ZHER3. This construct could slow down the growth of HER3-expressing tumour xenografts without causing health problems or side effects in mice.

    Paper II compared the in vitro and in vivo properties of two HER3-targeting affibody molecules (Z08698 and Z08699) to select an imaging probe for HER3 diagnostics. While the two constructs had similar properties, Z08698 demonstrated better blood clearance and better radioactivity retention in tumours.

    Paper III and IV present the development of a HER3 imaging probe for PET using gallium and cobalt isotopes. We demonstrated that imaging of HER3 expression could be obtained as soon as 3 h pi using gallium-68. Additionally, we demonstrated that affibody molecules labelled with a neutral cobalt-NOTA complex had a lower radioactivity uptake in the liver than molecules radiolabelled with a positive gallium-NOTA complex. Imaging contrast increased over time. As the dose of the injected protein increased, the activity uptake in normal organs decreased, whereas the tumour uptake remained the same, which improved the imaging contrast and allowed discrimination between xenografts with high and low HER3 expression. This modification did not influence tumour activity uptake.

    Paper V presents the HER3-targeting affibody molecule trimer as a tool to block hepatic uptake in order to increase the imaging contrast in the liver. The trimer demonstrated its ability to bind to endogenous receptors in the liver, which decreased the hepatic uptake of the radiolabelled monomer. This phenomenon enabled the monomer to pass the liver barrier, which increased tumour radioactivity uptake and improved imaging contrast.

    List of papers
    1. In vivo evaluation of a novel format of a bivalent HER3-targeting and albumin- binding therapeutic affibody construct
    Open this publication in new window or tab >>In vivo evaluation of a novel format of a bivalent HER3-targeting and albumin- binding therapeutic affibody construct
    Show others...
    2017 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 43118Article in journal (Refereed) Published
    Abstract [en]

    Overexpression of human epidermal growth factor receptor 3 (HER3) is involved in resistance to several therapies for malignant tumours. Currently, several anti-HER3 monoclonal antibodies are under clinical development. We introduce an alternative approach to HER3-targeted therapy based on engineered scaffold proteins, i.e. affibody molecules. We designed a small construct (22.5 kDa, denoted 3A3), consisting of two high-affinity anti-HER3 affibody molecules flanking an albumin-binding domain ABD, which was introduced for prolonged residence in circulation. In vitro, 3A3 efficiently inhibited growth of HER3-expressing BxPC-3 cells. Biodistribution in mice was measured using 3A3 that was site-specifically labelled with In-111 via a DOTA chelator. The residence time of In-111-DOTA-3A3 in blood was extended when compared with the monomeric affibody molecule. In-111-DOTA-3A3 accumulated specifically in HER3-expressing BxPC-3 xenografts in mice. However, In-111-DOTA-3A3 cleared more rapidly from blood than a size-matched control construct In-111-DOTA-TAT, most likely due to sequestering of 3A3 by mErbB3, the murine counterpart of HER3. Repeated dosing and increase of injected protein dose decreased uptake of In-111-DOTA-3A3 in mErbB3-expressing tissues. Encouragingly, growth of BxPC-3 xenografts in mice was delayed in an experimental (pilot-scale) therapy study using 3A3. We conclude that the 3A3 affibody format seems promising for treatment of HER3-overexpressing tumours.

    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:uu:diva-318958 (URN)10.1038/srep43118 (DOI)000394748000001 ()28230065 (PubMedID)
    Funder
    Swedish Cancer Society, CAN2013-586, CAN 2016/463, CAN2014-474, CAN2015/350Swedish Research Council, Swedish Research Council 621-2012-5236, 2015-02509, 2015-02353VINNOVA, 2016-04060
    Available from: 2017-03-30 Created: 2017-03-30 Last updated: 2018-09-20Bibliographically approved
    2. Comparative evaluation of 111In-labeled NOTA‑conjugated affibody molecules for visualization of HER3 expression in malignant tumors
    Open this publication in new window or tab >>Comparative evaluation of 111In-labeled NOTA‑conjugated affibody molecules for visualization of HER3 expression in malignant tumors
    Show others...
    2015 (English)In: Oncology Reports, ISSN 1021-335X, E-ISSN 1791-2431, Vol. 34, no 2, p. 1042-1048Article in journal (Refereed) Published
    Abstract [en]

    Expression of human epidermal growth factor receptor type 3 (HER3) in malignant tumors has been associated with resistance to a variety of anticancer therapies. Several anti-HER3 monoclonal antibodies are currently under pre-clinical and clinical development aiming to overcome HER3-mediated resistance. Radionuclide molecular imaging of HER3 expression may improve treatment by allowing the selection of suitable patients for HER3-targeted therapy. Affibody molecules are a class of small (7 kDa) high-affinity targeting proteins with appreciable potential as molecular imaging probes. In a recent study, we selected affibody molecules with affinity to HER3 at a low picomolar range. The aim of the present study was to develop an anti-HER3 affibody molecule suitable for labeling with radiometals. The HEHEHE-Z08698-NOTA and HEHEHE-Z08699-NOTA HER3-specific affibody molecules were labeled with indium-111 (In-111) and assessed in vitro and in vivo for imaging properties using single photon emission computed tomography (SPECT). Labeling of HEHEHE-Z08698-NOTA and HEHEHE-Z08699-NOTA with In-111 provided stable conjugates. In vitro cell tests demonstrated specific binding of the two conjugates to HER3-expressing BT-474 breast carcinoma cells. In mice bearing BT-474 xenografts, the tumor uptake of the two conjugates was receptor-specific. Direct in vivo comparison of In-111-HEHEHE-Z08698-NOTA and In-111-HEHEHE-Z08699-NOTA demonstrated that the two conjugates provided equal radioactivity uptake in tumors, although the tumor-to-blood ratio was improved for In-111-HEHEHE-Z08698-NOTA [12 +/- 3 vs. 8 +/- 1,4 h post injection (p.i)] due to more efficient blood clearance. In-111-HEHEHE-Z08698-NOTA is a promising candidate for imaging of HER3-expression in malignant tumors using SPECT. Results of the present study indicate that this conjugate could be used for patient stratification for anti-HER3 therapy.

    Keywords
    NOTA, indium-111, affibody molecules, HER3, molecular imaging
    National Category
    Cancer and Oncology
    Identifiers
    urn:nbn:se:uu:diva-260279 (URN)10.3892/or.2015.4046 (DOI)000357965600060 ()26059265 (PubMedID)
    Funder
    Swedish Cancer SocietySwedish Research Council
    Available from: 2015-08-21 Created: 2015-08-18 Last updated: 2018-09-20Bibliographically approved
    3. Affibody-mediated PET imaging of HER3 expression in malignant tumours
    Open this publication in new window or tab >>Affibody-mediated PET imaging of HER3 expression in malignant tumours
    Show others...
    2015 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, article id 15226Article in journal (Refereed) Published
    Abstract [en]

    Human epidermal growth factor receptor 3 (HER3) is involved in the progression of various cancers and in resistance to therapies targeting the HER family. In vivo imaging of HER3 expression would enable patient stratification for anti-HER3 immunotherapy. Key challenges with HER3-targeting are the relatively low expression in HER3-positive tumours and HER3 expression in normal tissues. The use of positron-emission tomography (PET) provides advantages of high resolution, sensitivity and quantification accuracy compared to SPECT. Affibody molecules, imaging probes based on a non-immunoglobulin scaffold, provide high imaging contrast shortly after injection. The aim of this study was to evaluate feasibility of PET imaging of HER3 expression using Ga-68-labeled affibody molecules. The anti-HER3 affibody molecule HEHEHE-Z08698-NOTA was successfully labelled with Ga-68 with high yield, purity and stability. The agent bound specifically to HER3-expressing cancer cells in vitro and in vivo. At 3 h pi, uptake of Ga-68-HEHEHE-Z08698-NOTA was significantly higher in xenografts with high HER3 expression (BT474, BxPC-3) than in xenografts with low HER3 expression (A431). In xenografts with high expression, tumour-to-blood ratios were >20, tumour-to-muscle >15, and tumour-to-bone >7. HER3-positive xenografts were visualised using microPET 3 h pi. In conclusion, PET imaging of HER3 expression is feasible using Ga-68-HEHEHE-Z08698-NOTA shortly after administration.

    National Category
    Medical Image Processing Cancer and Oncology
    Identifiers
    urn:nbn:se:uu:diva-266695 (URN)10.1038/srep15226 (DOI)000362985400001 ()26477646 (PubMedID)
    Funder
    Swedish Cancer SocietySwedish Research Council
    Available from: 2015-11-12 Created: 2015-11-10 Last updated: 2018-09-20Bibliographically approved
    4. Evaluation of radiocobalt-labelled affibody molecule for imaging of human epidermal growth factor receptor 3 expression
    Open this publication in new window or tab >>Evaluation of radiocobalt-labelled affibody molecule for imaging of human epidermal growth factor receptor 3 expression
    Show others...
    2017 (English)In: International Journal of Oncology, ISSN 1019-6439, Vol. 51, no 6, p. 1765-1774Article in journal (Refereed) Published
    Abstract [en]

    The human epidermal growth factor receptor 3 (HER3) is involved in the development of cancer resistance towards tyrosine kinase-targeted therapies. Several HER3‑targeting therapeutics are currently under clinical evaluation. Non-invasive imaging of HER3 expression could improve patient management. Affibody molecules are small engineered scaffold proteins demonstrating superior properties as targeting probes for molecular imaging compared with monoclonal antibodies. Feasibility of in vivo HER3 imaging using affibody molecules has been previously demonstrated. Preclinical studies have shown that the contrast when imaging using anti-HER3 affibody molecules can be improved over time. We aim to develop an agent for PET imaging of HER3 expression using the long-lived positron-emitting radionuclide cobalt-55 (55Co) (T1/2=17.5 h). A long-lived cobalt isotope 57Co was used as a surrogate for 55Co in this study. The anti-HER3 affibody molecule HEHEHE-ZHER3-NOTA was labelled with radiocobalt with high yield, purity and stability. Biodistribution of 57Co-HEHEHE-ZHER3-NOTA was measured in mice bearing DU145 (prostate carcinoma) and LS174T (colorectal carcinoma) xenografts at 3 and 24 h post injection (p.i.). Tumour-to-blood ratios significantly increased between 3 and 24 h p.i. (p<0.05). At 24 h p.i., tumour-to-blood ratios were 6 for DU145 and 8 for LS174T xenografts, respectively. HER3‑expressing xenografts were clearly visualized in a preclinical imaging setting already 3 h p.i., and contrast further improved at 24 h p.i. In conclusion, the radiocobalt-labelled anti-HER3 affibody molecule, HEHEHE-ZHER3-NOTA, is a promising tracer for imaging of HER3 expression in tumours.

    Keywords
    HER3, affibody, PET imaging, Cobalt-55/57, NOTA-chelator
    National Category
    Radiology, Nuclear Medicine and Medical Imaging
    Identifiers
    urn:nbn:se:uu:diva-343404 (URN)10.3892/ijo.2017.4152 (DOI)000416685600014 ()
    Funder
    Knut and Alice Wallenberg FoundationSwedish Cancer Society, CAN2014/474Swedish Research Council, 2015-02509Swedish Research Council, 2015-02353Swedish Research Council, 2012-05236Swedish Cancer Society, CAN2015/350Swedish Cancer Society, CAN2016/463VINNOVA, 2016-04060
    Available from: 2018-02-27 Created: 2018-02-27 Last updated: 2018-09-20Bibliographically approved
    5. Improved contrast of affibody-mediated imaging of HER3 expression through co-injection of affibody trimer for in vivo blocking of hepatic uptake
    Open this publication in new window or tab >>Improved contrast of affibody-mediated imaging of HER3 expression through co-injection of affibody trimer for in vivo blocking of hepatic uptake
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Keywords
    HER3, affibody molecule, molecular imaging, imaging contrast
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:uu:diva-360288 (URN)
    Available from: 2018-09-12 Created: 2018-09-12 Last updated: 2018-09-20
  • 13.
    Rosestedt, Maria
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Andersson, Ken G
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Löfblom, John
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Ståhl, Stefan
    Evaluation of radiocobalt-labelled affibody molecule for imaging of human epidermal growth factor receptor 3 expression2017In: International Journal of Oncology, ISSN 1019-6439, Vol. 51, no 6, p. 1765-1774Article in journal (Refereed)
    Abstract [en]

    The human epidermal growth factor receptor 3 (HER3) is involved in the development of cancer resistance towards tyrosine kinase-targeted therapies. Several HER3‑targeting therapeutics are currently under clinical evaluation. Non-invasive imaging of HER3 expression could improve patient management. Affibody molecules are small engineered scaffold proteins demonstrating superior properties as targeting probes for molecular imaging compared with monoclonal antibodies. Feasibility of in vivo HER3 imaging using affibody molecules has been previously demonstrated. Preclinical studies have shown that the contrast when imaging using anti-HER3 affibody molecules can be improved over time. We aim to develop an agent for PET imaging of HER3 expression using the long-lived positron-emitting radionuclide cobalt-55 (55Co) (T1/2=17.5 h). A long-lived cobalt isotope 57Co was used as a surrogate for 55Co in this study. The anti-HER3 affibody molecule HEHEHE-ZHER3-NOTA was labelled with radiocobalt with high yield, purity and stability. Biodistribution of 57Co-HEHEHE-ZHER3-NOTA was measured in mice bearing DU145 (prostate carcinoma) and LS174T (colorectal carcinoma) xenografts at 3 and 24 h post injection (p.i.). Tumour-to-blood ratios significantly increased between 3 and 24 h p.i. (p<0.05). At 24 h p.i., tumour-to-blood ratios were 6 for DU145 and 8 for LS174T xenografts, respectively. HER3‑expressing xenografts were clearly visualized in a preclinical imaging setting already 3 h p.i., and contrast further improved at 24 h p.i. In conclusion, the radiocobalt-labelled anti-HER3 affibody molecule, HEHEHE-ZHER3-NOTA, is a promising tracer for imaging of HER3 expression in tumours.

  • 14.
    Summer, D
    et al.
    Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Oroujeni, Maryam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Andersson, K. G.
    Division of Protein Technology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Löfblom, J.n
    Division of Protein Technology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Decristoforo, C
    Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
    PP15 89Zr-Siderophore-Affibody conjugates for imaging EGFR expression2018In: EJNMMI Research, ISSN 2191-219X, E-ISSN 2191-219X, Vol. 8, no S1, article id 5Article in journal (Other academic)
    Abstract [en]

    Aim: Zirconium-89 has gained great interest for PET, when imaging at late time points is required. Desferrioxamine B (DFO), is mostly used for this radionuclide as bifunctional chelator (BFC) and we recently reported on fusarinine C (FSC) with similar zirconium-89 complexing properties but potentially higher stability related to its cyclic structure. This study reports on the comparison of FSC and DFO as BFCs for 89Zr labelling of the affibody ZEGFR:2377 targeting Epidermal Growth Factor Receptors (EGFR).

    Methods: FSC-ZEGFR:2377 and DFO-ZEGFR:2377 were evaluated regarding labeling, in vitro stability, specificity, cell uptake, receptor affinity, biodistribution and microPET-CT imaging.

    Results: Both conjugates showed increased labelling yields at elevated temperature (85°C). Both conjugates revealed remarkable specificity, affinity and slow cell-line dependent internalisation. Labeling at 85°C showed comparable results in A431 tumor xenografted mice with minor differences regarding blood clearance, tumor and liver uptake but clear improvement as compared to 89Zr-DFO-ZEGFR:2377, labeled at room temperature, which was confirmed by MicroPET-CT imaging.

    Conclusion: We were able to show that FSC is a suitable alternative to DFO for labeling of biomolecules with zirconium-89. Furthermore our findings indicate that 89Zr- labeling of DFO conjugates at higher temperature reduces off-chelate binding leading to significantly improved tumor-to-organ ratios and therefore enhancing image contrast.

  • 15.
    Tolmachev, Vladimir
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Grönroos, Tove J
    Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland; Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland.
    Yim, Cheng-Bin
    Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Åbo Akademi University, Turku, Finland.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Yue, Ying
    Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    Grimm, Sebastian
    Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    Rajander, Johan
    Turku PET Centre, Åbo Akademi University, Turku, Finland.
    Perols, Anna
    Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    Haaparanta-Solin, Merja
    Turku PET Centre, University of Turku, Turku, Finland; Department of Chemistry, University of Turku, Turku, Finland.
    Solin, Olof
    Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Åbo Akademi University, Turku, Finland; Department of Chemistry, University of Turku, Turku, Finland.
    Ferdani, Riccardo
    Washington University, St. Louis, MO, USA.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Anderson, Carolyn J
    Departments of Medicine, Radiology, Bioengineering and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15203, USA.
    Karlström, Amelie Eriksson
    Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    Molecular design of radiocopper-labelled Affibody molecules2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, no 1, article id 6542Article in journal (Refereed)
    Abstract [en]

    Cu-CB-TE2A-GEEE-ZHER2:342 was 16 ± 6%ID/g and tumor-to-blood ratio was 181 ± 52. In conclusion, a combination of the cross-bridged CB-TE2A chelator and Gly-Glu-Glu-Glu spacer is preferable for radiocopper labelling of Affibody molecules and, possibly, other scaffold proteins having high renal re-absorption.

  • 16.
    Vorobyeva, Anzhelika
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Bragina, Olga
    Russian Acad Sci, Canc Res Inst, Nucl Med Dept, Tomsk Natl Res Med Ctr, Tomsk, Russia.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Shulga, Alexey
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia.
    Proshkina, Galina
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia.
    Chernov, Vladimir
    Russian Acad Sci, Canc Res Inst, Nucl Med Dept, Tomsk Natl Res Med Ctr, Tomsk, Russia;Natl Res Tomsk Polytech Univ, Tomsk, Russia.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Deyev, Sergey
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia;Natl Res Tomsk Polytech Univ, Tomsk, Russia;Natl Res Nucl Univ MEPhI, Bionanophoton Lab, Inst Engn Phys Biomed PhysBio, Moscow, Russia.
    Comparative Evaluation of Radioiodine and Technetium-Labeled DARPin 9_29 for Radionuclide Molecular Imaging of HER2 Expression in Malignant Tumors2018In: Contrast Media & Molecular Imaging, ISSN 1555-4309, E-ISSN 1555-4317, article id 6930425Article in journal (Refereed)
    Abstract [en]

    High expression of human epidermal growth factor receptor 2 (HER2) in breast and gastroesophageal carcinomas is a predictive biomarker for treatment using HER2-targeted therapeutics (antibodies trastuzumab and pertuzumab, antibody-drug conjugate trastuzumab DM1, and tyrosine kinase inhibitor lapatinib). Radionuclide molecular imaging of HER2 expression might permit stratification of patients for HER2-targeting therapies. In this study, we evaluated a new HER2-imaging probe based on the designed ankyrin repeat protein (DARPin) 9_29. DARPin 9_29 was labeled with iodine-125 by direct radioiodination and with [Tc-99m] Tc(CO)(3) using the C-terminal hexahistidine tag. DARPin 9_29 preserved high specificity and affinity of binding to HER2-expressing cells after labeling. Uptake of [I-125] I-DARPin 9_29 and [Tc-99m] Tc(CO)(3)-DARPin 9_29 in HER2-positive SKOV-3 xenografts in mice at 6 h after injection was 3.4 +/- 0.7 % ID/g and 2.9 +/- 0.7 % ID/g, respectively. This was significantly (p < 0.00005) higher than the uptake of the same probes in HER2-negative Ramos lymphoma xenografts, 0.22 +/- 0.09 % ID/g and 0.30 +/- 0.05 % ID/g, respectively. Retention of [I-125] I-DARPin 9_29 in the lung, liver, spleen, and kidneys was appreciably lower compared with [Tc-99m] Tc(CO)(3)-DARPin 9_29, which resulted in significantly (p < 0.05) higher tumor-to-organ ratios. The biodistribution data were confirmed by SPECT/CT imaging. In conclusion, radioiodine is a preferable label for DARPin 9_29.

  • 17.
    Vorobyeva, Anzhelika
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Westerlund, Kristina
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Rinne, Sara
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Imaging Ctr, Uppsala, Sweden.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala Univ, Sci Life Lab, Uppsala, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Karlström, Amelie Eriksson
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Development of an optimal imaging strategy for selection of patients for affibody-based PNA-mediated radionuclide therapy2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 9643Article in journal (Refereed)
    Abstract [en]

    Affibody molecules are engineered scaffold proteins, which demonstrated excellent binding to selected tumor-associated molecular abnormalities in vivo and highly sensitive and specific radionuclide imaging of Her2-expressing tumors in clinics. Recently, we have shown that peptide nucleic acid (PNA)-mediated affibody-based pretargeted radionuclide therapy using beta-emitting radionuclide Lu-177 extended significantly survival of mice bearing human Her2-expressing tumor xenografts. In this study, we evaluated two approaches to use positron emission tomography (PET) for stratification of patients for affibody-based pretargeting therapy. The primary targeting probe Z(HER2:342)SR-HP1 and the secondary probe HP2 (both conjugated with DOTA chelator) were labeled with the positron-emitting radionuclide Ga. Biodistribution of both probes was measured in BALB/C nu/nu mice bearing either SKOV-3 xenografts with high Her2 expression or DU-145 xenografts with low Her2 expression. (68)GaHP2 was evaluated in the pretargeting setting. Tumor uptake of both probes was compared with the uptake of pretargeted Lu-177-HP2. The uptake of both Ga-68-Z(HER2:342)SR-HP1 and Ga-68-HP2 depended on Her2-expression level providing clear discrimination of between tumors with high and low Her2 expression. Tumor uptake of Ga-68-HP2 correlated better with the uptake of Lu-177-HP2 than the uptake of Ga-68 Z(HER2:342) SR-HP1. The use of Ga-68-HP2 as a theranostics counterpart would be preferable approach for clinical translation.

  • 18.
    Westerlund, Kristina
    et al.
    KTH Royal Inst Technol, Dept Prot Sci, Stockholm, Sweden..
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Konijnenberg, Mark
    Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands..
    Oroujeni, Maryam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Atterby, Christina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    de Jong, Marion
    Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands..
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mattsson, Johanna S. M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Micke, Patrick
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Eriksson Karlström, Amelie
    KTH Royal Inst Technol, Dept Prot Sci, Stockholm, Sweden..
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Radionuclide Therapy of HER2-Expressing Human Xenografts Using Affibody-Based Peptide Nucleic Acid-Mediated Pretargeting: In Vivo Proof of Principle2018In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 59, no 7, p. 1092-1098Article in journal (Refereed)
    Abstract [en]

    Affibody molecules are small proteins engineered using a nonanti-body scaffold. Radiolabeled Affibody molecules are excellent imaging probes, but their application to radionuclide therapy has been prevented by high renal reabsorption. The aim of this study was to test the hypothesis that Affibody-based peptide nucleic acid (PNA)-mediated pretargeted therapy of human epidermal growth factor receptor 2 (HER2)-expressing cancer extends survival without accompanying renal toxicity.

    Methods: A HER2-targeting Affibody molecule ligated with an AGTCGTGATGTAGTC PNA hybridization probe (Z(HER2:342)-SR-HP1) was used as the primary pretargeting agent. A complementary AGTCGTGATGTAGTC PNA conjugated to the chelator DOTA and labeled with the radionuclide Lu-177 (Lu-177-HP2) was used as the secondary agent. The influence of different factors on pretargeting was investigated. Experimental radionuclide therapy in mice bearing SKOV-3 xenografts was performed in 6 cycles separated by 7 d.

    Results: Optimal tumor targeting was achieved when 16 MBq/3.5 mu g (0.65 nmol) of Lu-177-HP2 was injected 16 h after injection of 100 mu g (7.7 nmol) of Z(HER2:342)-SR-HP1. The calculated absorbed dose to tumors was 1,075 mGy/MBq, whereas the absorbed dose to kidneys was 206 mGy/MBq and the absorbed dose to blood (surrogate of bone marrow) was 4 mGy/MBq. Survival of mice was significantly longer (P < 0.05) in the treatment group (66 d) than in the control groups treated with the same amount of Z(HER2:342)-SR-HP1 only (37 d), the same amount and activity of Lu-177-HP2 only (32 d), or phosphate-buffered saline (37 d).

    Conclusion: The studied pretargeting system can deliver an absorbed dose to tumors appreciably exceeding absorbed doses to critical organs, making Affibody-based PNA-mediated pretargeted radionuclide therapy highly attractive.

1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf