uu.seUppsala University Publications
Change search
Refine search result
12 1 - 50 of 60
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abouzayed, Ayman
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Yim, Cheng-Bin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Larhed, Mats
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Synthesis and Preclinical Evaluation of Radio-Iodinated GRPR/PSMA Bispecific Heterodimers for the Theranostics Application in Prostate Cancer2019In: Pharmaceutics, ISSN 1999-4923, E-ISSN 1999-4923, Vol. 11, no 7, article id 358Article in journal (Refereed)
    Abstract [en]

    Gastrin-releasing peptide receptor (GRPR) and prostate-specific membrane antigen (PSMA) are overexpressed in most prostate cancers. GRPR expression is higher in early stages while PSMA expression increases with progression. The possibility of targeting both markers with a single theranostics radiotracer could improve patient management. Three GRPR/PSMA-targeting bispecific heterodimers (urea derivative PSMA-617 and bombesin-based antagonist RM26 linked via X-triazolyl-Tyr-PEG2, X = PEG2 (BO530), (CH2)(8) (BO535), none (BO536)) were synthesized by solid-phase peptide synthesis. Peptides were radio-iodinated and evaluated in vitro for binding specificity, cellular retention, and affinity. In vivo specificity for all heterodimers was studied in PC-3 (GRPR-positive) and LNCaP (PSMA-positive) xenografts. [I-125]I-BO530 was evaluated in PC-3pip (GRPR/PSMA-positive) xenografts. Micro single-photon emission computed tomography/computed tomography (microSPECT/CT) scans were acquired. The heterodimers were radiolabeled with high radiochemical yields, bound specifically to both targets, and demonstrated high degree of activity retention in PC-3pip cells. Only [I-125]I-BO530 demonstrated in vivo specificity to both targets. A biodistribution study of [I-125]I-BO530 in PC-3pip xenografted mice showed high tumor activity uptake (30%-35%ID/g at 3 h post injection (pi)). Activity uptake in tumors was stable and exceeded all other organs 24 h pi. Activity uptake decreased only two-fold 72 h pi. The GRPR/PSMA-targeting heterodimer [I-125]I-BO530 is a promising agent for theranostics application in prostate cancer.

  • 2.
    Adeyemi, Ahmed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Wetzel, Alexander
    AstraZeneca, Dept Med Chem, Cardiovasc Renal & Metab IMED Biotech Unit, Pepparedsleden 1, S-43183 Molndal, Sweden.
    Bergman, Joakim
    AstraZeneca, Dept Med Chem, Cardiovasc Renal & Metab IMED Biotech Unit, Pepparedsleden 1, S-43183 Molndal, Sweden.
    Brånalt, Jonas
    AstraZeneca, Dept Med Chem, Cardiovasc Renal & Metab IMED Biotech Unit, Pepparedsleden 1, S-43183 Molndal, Sweden.
    Larhed, Mats
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Regio- and Stereoselective Synthesis of Spirooxindoles via Mizoroki-Heck Coupling of Aryl Iodides2019In: Synlett: Accounts and Rapid Communications in Synthetic Organic Chemistry, ISSN 0936-5214, E-ISSN 1437-2096, Vol. 30, no 1, p. 82-88Article in journal (Refereed)
    Abstract [en]

    A method for highly regio- and stereoselective intramolecular Mizoroki-Heck 5- exo cyclization of aryl iodides to the corresponding spirooxindoles has been developed. Electron-rich and electron-deficient aryl iodide precursors were selectively ring-closed with high stereoselectivity and good yields. The double-bond position in the cyclopentene ring was controlled by careful choice of reaction conditions. These rare spiro compounds were further functionalized to rigidified unnatural amino acid derivatives by a subsequent gas-free Pd(0)-catalyzed alkoxycarbonylation, followed by selective O - and N -deprotections.

  • 3.
    Alhuseinalkhudhur, Ali
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Frejd, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Kinetic Analysis of the HER2-binding ABY-025 Affibody Using Dynamic PET in Patients with Metastatic Breast Cancer2018In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, p. S457-S457Article in journal (Other academic)
  • 4.
    Bjerketorp, Joakim
    et al.
    Swedish Univ Agr Sci, Uppsala, Sweden.
    Levenfors, Jolanta J
    Swedish Univ Agr Sci, Uppsala, Sweden.
    Sahlberg, Christer
    Swedish Univ Agr Sci, Uppsala, Sweden.
    Nord, Christina L
    Swedish Univ Agr Sci, Uppsala, Sweden; Medivir AB, Huddinge, Sweden.
    Andersson, Pierre F
    Swedish Univ Agr Sci, Uppsala, Sweden.
    Guss, Bengt
    Swedish Univ Agr Sci, Uppsala, Sweden.
    Öberg, Bo
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry. Ultupharma AB, Uppsala, Sweden.
    Broberg, Anders
    Swedish Univ Agr Sci, Uppsala, Sweden.
    Antibacterial 3,6-Disubstituted 4-Hydroxy-5,6-dihydro-2H-pyran-2-ones from Serratia plymuthica MF371-22017In: Journal of natural products (Print), ISSN 0163-3864, E-ISSN 1520-6025, Vol. 80, no 11, p. 2997-3002Article in journal (Refereed)
    Abstract [en]

    Bioassay-guided fractionation of culture extracts of Serratia plymuthica strain MF371-2 resulted in the isolation of two new antibacterial compounds with potent activity against Gram-positive bacteria, including Staphylococcus aureus LMG 15975 (MRSA). A spectroscopic investigation, in combination with synthesis, enabled the characterization of the compounds as 3-butyryl-4-hydroxy-6-heptyl-5,6-dihydro2H-pyran-2-one (plymuthipyranone A, 1) and 3-butyry1-4-hydroxy-6-nony1-5,6-dihydro-2H-pyran-2-one (plymuthipyranone B, 2). The MIC values for 1 and 2 against S. aureus LMG 15975 were determined to be 1-2 mu g mL(-1) and 0.8 mu g mL(-1), respectively. Compound 2 was found to have potent activity against many strains of S. aureus, including several mupirocin-resistant strains, other species of Staphylococcus, and vancomycin-resistant enterococci. Compound 2 was slightly cytotoxic for human cells, with CC50 values between 4.7 and 40 mu g mL(-1), but the CC50/MIC ratio was >= 10 for many tested combinations of human cells and bacteria, suggesting its possible use as an antibacterial agent. Several analogues were synthesized with different alkyl groups in the 3- and 6-positions (6-13), and their biological properties were evaluated. It was concluded that the activity of the compounds increased with the lengths of the alkyl and acyl substituents.

  • 5. Chiotis, K
    et al.
    Saint-Aubert, L
    Rodriguez-Vieitez, E
    Leuzy, A
    Almkvist, O
    Savitcheva, I
    Jonasson, My
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Wall, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Nordberg, A
    Longitudinal changes of tau PET imaging in relation to hypometabolism in prodromal and Alzheimer's disease dementia2018In: Molecular Psychiatry, ISSN 1359-4184, E-ISSN 1476-5578, Vol. 23, no 7, p. 1666-1673Article in journal (Refereed)
    Abstract [en]

    The development of tau-specific positron emission tomography (PET) tracers allows imaging in vivo the regional load of tau pathology in Alzheimer's disease (AD) and other tauopathies. Eighteen patients with baseline investigations enroled in a 17-month follow-up study, including 16 with AD (10 had mild cognitive impairment and a positive amyloid PET scan, that is, prodromal AD, and six had AD dementia) and two with corticobasal syndrome. All patients underwent PET scans with [(18)F]THK5317 (tau deposition) and [(18)F]FDG (glucose metabolism) at baseline and follow-up, neuropsychological assessment at baseline and follow-up and a scan with [(11)C]PIB (amyloid-β deposition) at baseline only. At a group level, patients with AD (prodromal or dementia) showed unchanged [(18)F]THK5317 retention over time, in contrast to significant decreases in [(18)F]FDG uptake in temporoparietal areas. The pattern of changes in [(18)F]THK5317 retention was heterogeneous across all patients, with qualitative differences both between the two AD groups (prodromal and dementia) and among individual patients. High [(18)F]THK5317 retention was significantly associated over time with low episodic memory encoding scores, while low [(18)F]FDG uptake was significantly associated over time with both low global cognition and episodic memory encoding scores. Both patients with corticobasal syndrome had a negative [(11)C]PIB scan, high [(18)F]THK5317 retention with a different regional distribution from that in AD, and a homogeneous pattern of increased [(18)F]THK5317 retention in the basal ganglia over time. These findings highlight the heterogeneous propagation of tau pathology among patients with symptomatic AD, in contrast to the homogeneous changes seen in glucose metabolism, which better tracked clinical progression.Molecular Psychiatry advance online publication, 16 May 2017; doi:10.1038/mp.2017.108.

  • 6.
    Chow, Shiao Y.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Odell, Luke R.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Eriksson, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Low-Pressure Radical 11C-Aminocarbonylation of Alkyl Iodides through Thermal Initiation2017In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, Vol. 2017, no 8, p. 1236-1236Article in journal (Refereed)
  • 7.
    Coenen, Heinz H.
    et al.
    Res Ctr Julich, Julich, Germany.
    Gee, Antony D.
    Kings Coll London, London, England.
    Adam, Michael
    TRIUMF, Vancouver, BC, Canada.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Cutler, Cathy S.
    Brookhaven Natl Lab, Upton, NY 11973 USA.
    Fujibayashi, Yasuhisa
    Keio Univ, Tokyo, Japan.
    Jeong, Jae Min
    Seoul Natl Univ, Seoul, South Korea.
    Mach, Robert H.
    Univ Penn, Philadelphia, PA 19104 USA.
    Mindt, Thomas L.
    Univ Vienna, Vienna, Austria.
    Pike, Victor W.
    NIMH, Bethesda, MD 20892 USA.
    Windhorst, Albert D.
    Vrije Univ Amsterdam Med Ctr, Amsterdam, Netherlands.
    International Consensus Radiochemistry Nomenclature Guidelines2018In: Radiochimica Acta, ISSN 0033-8230, E-ISSN 2193-3405, Vol. 106, no 7, p. 623-625Article in journal (Other academic)
  • 8.
    Coenen, Heinz H.
    et al.
    Forschungszentrum Julich, Julich, Germany..
    Gee, Antony D.
    Kings Coll London, London, England..
    Adam, Michael
    TRIUMF, Vancouver, BC, Canada..
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Cutler, Cathy S.
    Brookhaven Natl Lab, Upton, NY 11973 USA..
    Fujibayashi, Yasuhisa
    Keio Univ, Tokyo, Japan..
    Jeong, Jae Min
    Seoul Natl Univ, Seoul, South Korea..
    Mach, Robert H.
    Univ Penn, Philadelphia, PA 19104 USA..
    Mindt, Thomas L.
    Ludwig Boltzmann Inst Appl Diagnost, Vienna, Austria..
    Pike, Victor W.
    NIMH, Bethesda, MD 20892 USA..
    Windhorst, Albert D.
    Vrije Univ Amsterdam Med Ctr, Amsterdam, Netherlands..
    Letter to the Editor: International Consensus Radiochemistry Nomenclature Guidelines2018In: Current Radiopharmaceuticals, ISSN 1874-4710, E-ISSN 1874-4729, Vol. 11, no 1, p. 73-75Article in journal (Other academic)
  • 9.
    Coenen, Heinz H.
    et al.
    Res Ctr Julich, Julich, Germany.
    Gee, Antony D.
    Kings Coll London, London, England.
    Adam, Michael
    TRIUMF, Vancouver, BC, Canada.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Cutler, Cathy S.
    Brookhaven Natl Lab, Upton, NY USA.
    Fujibayashi, Yasuhisa
    Keio Univ, Tokyo, Japan.
    Jeong, Jae Min
    Seoul Natl Univ, Seoul, South Korea.
    Mach, Robert H.
    Univ Penn, Philadelphia, PA USA.
    Mindt, Thomas L.
    Ludwig Boltzmann Inst Appl Diagnost, Vienna, Austria.
    Pike, Victor W.
    NIMH, Bethesda, MD USA.
    Windhorst, Albert D.
    Vrije Univ Amsterdam, Med Ctr, Amsterdam, Netherlands.
    Open letter to journal editors on: international consensus radiochemistry nomenclature guidelines2018In: American Journal of Nuclear Medicine and Molecular Imaging, ISSN 2160-8407, Vol. 8, no 1, p. 70-72Article in journal (Other academic)
  • 10.
    Coenen, Heinz H.
    et al.
    Res Ctr Julich, Julich, Germany.
    Gee, Antony D.
    Kings Coll London, London, England.
    Adam, Michael
    TRIUMF, Vancouver, BC, Canada.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Cutler, Cathy S.
    Brookhaven Natl Lab, Upton, NY USA.
    Fujibayashi, Yasuhisa
    Keio Univ, Tokyo, Japan.
    Jeong, Jae Min
    Seoul Natl Univ, Seoul, South Korea.
    Mach, Robert H.
    Univ Penn, Philadelphia, PA USA.
    Mindt, Thomas L.
    Ludwig Boltzmann Inst Appl Diagnost, Vienna, Austria.
    Pike, Victor W.
    NIMH, Bethesda, MD USA.
    Windhorst, Albert D.
    Vrije Univ Amsterdam Med Ctr, Amsterdam, Netherlands.
    Open letter to journal editors on: International Consensus Radiochemistry Nomenclature Guidelines2018In: Nuclear medicine communications, ISSN 0143-3636, E-ISSN 1473-5628, Vol. 39, no 3, p. 193-195Article in journal (Other academic)
  • 11.
    Coenen, Heinz H.
    et al.
    Res Ctr Jülich, Jülich, Germany.
    Gee, Antony D.
    Kings Coll London, London, England..
    Adam, Michael
    TRIUMF, Vancouver, BC, Canada.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Cutler, Cathy S.
    Brookhaven Natl Lab, Upton, NY USA.
    Fujibayashi, Yasuhisa
    Keio Univ, Tokyo, Japan.
    Jeong, Jae Min
    Seoul Natl Univ, Seoul, South Korea.
    Mach, Robert H.
    Univ Penn, Philadelphia, PA USA.
    Mindt, Thomas L.
    Ludwig Boltzmann Inst Appl Diagnost, Vienna, Austria.
    Pike, Victor W.
    NIMH, Bethesda, MD USA.
    Windhorst, Albert D.
    Vrije Univ Amsterdam Med Ctr, Amsterdam, Netherlands.
    Open letter to journal editors on: International Consensus Radiochemistry Nomenclature Guidelines2018In: Annals of Nuclear Medicine, ISSN 0914-7187, E-ISSN 1864-6433, Vol. 32, no 3, p. 236-238Article in journal (Other academic)
  • 12.
    Coenen, Heinz H.
    et al.
    Res Ctr Julich, Julich, Germany.
    Gee, Antony D.
    Kings Coll London, London, England.
    Adam, Michael
    TRIUMF, Vancouver, BC, Canada.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Cutler, Cathy S.
    Brookhaven Natl Lab, Upton, NY, USA.
    Fujibayashi, Yasuhisa
    Keio Univ, Tokyo, Japan.
    Jeong, Jae Min
    Seoul Natl Univ, Seoul, South Korea.
    Mach, Robert H.
    Univ Penn, Philadelphia, PA, USA.
    Mindt, Thomas L.
    Ludwig Boltzmann Inst Appl Diagnost, Vienna, Austria.
    Pike, Victor W.
    NIMH, Bethesda, MD, USA.
    Windhorst, Albert D.
    Vrije Univ Amsterdam, Med Ctr, Amsterdam, Netherlands.
    Open letter to journal editors on: international consensus radiochemistry nomenclature guidelines2018In: Journal of Radioanalytical and Nuclear Chemistry, ISSN 0236-5731, E-ISSN 1588-2780, Vol. 315, no 3, p. 443-445Article in journal (Other academic)
  • 13.
    Coenen, Heinz H.
    et al.
    Res Ctr Julich, Julich, Germany..
    Gee, Antony D.
    Kings Coll London, London, England..
    Adam, Michael
    TRIUMF, Vancouver, BC, Canada..
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Cutler, Cathy S.
    Brookhaven Natl Lab, Upton, NY 11973 USA..
    Fujibayashi, Yasuhisa
    Keio Univ, Tokyo, Japan..
    Jeong, Jae Min
    Seoul Natl Univ, Seoul, South Korea..
    Mach, Robert H.
    Univ Penn, Philadelphia, PA 19104 USA..
    Mindt, Thomas L.
    Ludwig Boltzmann Inst Appl Diagnost, Vienna, Austria..
    Pike, Victor W.
    NIMH, Bethesda, MD 20892 USA..
    Windhorst, Albert D.
    Vrije Univ Amsterdam Med Ctr, Amsterdam, Netherlands..
    Open letter to journal editors on: International consensus radiochemistry nomenclature guidelines2018In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 61, no 4, p. 402-404Article in journal (Other academic)
  • 14.
    Coenen, Heinz H.
    et al.
    Res Ctr Julich, Julich, Germany.
    Gee, Antony D.
    Kings Coll London, London, England.
    Adam, Michael
    TRIUMF, Vancouver, BC, Canada.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Cutler, Cathy S.
    Brookhaven Natl Lab, Upton, NY 11973 USA.
    Fujibayashi, Yasuhisa
    Keio Univ, Tokyo, Japan.
    Jeong, Jae Min
    Seoul Natl Univ, Seoul, South Korea.
    Mach, Robert H.
    Univ Penn, Philadelphia, PA 19104 USA.
    Mindt, Thomas L.
    Univ Vienna, Vienna, Austria.
    Pike, Victor W.
    NIMH, Bethesda, MD 20892 USA.
    Windhorst, Albert D.
    Vrije Univ Amsterdam Med Ctr, Amsterdam, Netherlands.
    Open letter to journal editors on: International Consensus Radiochemistry Nomenclature Guidelines2019In: CLINICAL AND TRANSLATIONAL IMAGING, ISSN 2281-5872, Vol. 7, no 1, p. 61-63Article in journal (Other academic)
  • 15.
    Coenen, Heinz H.
    et al.
    Res Ctr Julich, Julich, Germany.
    Gee, Antony D.
    Kings Coll London, London, England.
    Adam, Michael
    TRIUMF, Vancouver, BC, Canada.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Cutler, Cathy S.
    Brookhaven Natl Lab, Upton, NY 11973 USA.
    Fujibayashi, Yasuhisa
    Keio Univ, Tokyo, Japan.
    Jeong, Jae Min
    Seoul Natl Univ, Seoul, South Korea.
    Mach, Robert H.
    Univ Penn, Philadelphia, PA 19104 USA.
    Mindt, Thomas L.
    Univ Vienna, Vienna, Austria.
    Pike, Victor W.
    NIMH, Bethesda, MD 20892 USA.
    Windhorst, Albert D.
    Vrije Univ Amsterdam, Med Ctr, Amsterdam, Netherlands.
    Status of the 'consensus nomenclature rules in radiopharmaceutical sciences' initiative2019In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 71, p. 19-22Article in journal (Other academic)
  • 16.
    Coenena, Heinz H.
    et al.
    Forschungszentrum Julich, Julich, Germany.
    Gee, Antony D.
    Kings Coll London, London, England.
    Adam, Michael
    TRIUMF, Vancouver, BC, Canada.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Cutler, Cathy S.
    Brookhaven Natl Lab, Upton, NY USA.
    Fujibayashi, Yasuhisa
    Keio Univ, Tokyo, Japan.
    Jeong, Jae Min
    Seoul Natl Univ, Seoul, South Korea.
    Mach, Robert H.
    Univ Penn, Philadelphia, PA USA.
    Mindt, Thomas L.
    Univ Vienna, Vienna, Austria.
    Pike, Victor W.
    NIH, Bldg 10, Bethesda, MD USA.
    Windhorst, Albert D.
    Vrije Univ Amsterdam, Med Ctr, Amsterdam, Netherlands.
    International Consensus Radiochemistry Nomenclature Guidelines2018In: Nuclearmedizin, ISSN 0029-5566, Vol. 57, no 1, p. 40-41Article in journal (Refereed)
  • 17.
    Elgland, Mathias
    et al.
    Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Fyrner, Timmy
    Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden.
    Konradsson, Peter
    Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Nilsson, Peter
    Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden.
    Synthesis of beta-configured clickable [18F]FDGs as novel 18F-fluoroglycosylation tools for PET in vivo imaging2017In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal (Other academic)
  • 18.
    Eriksson, Jonas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Fang, Xiaotian T.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Hultqvist, Greta
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Olberg, D. E.
    Univ Oslo, Dept Pharm, Oslo, Norway.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Lannfelt, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Sehlin, Dag
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Syvänen, Stina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    [F-18]Tetrazine-trans-cyclooctene mediated labelling of antibodies for PET imaging of amyloid-beta2018In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, p. S643-S643Article in journal (Other academic)
  • 19.
    Eriksson, Jonas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Roy, Tamal
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Sawadjoon, Supaporn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Bachmann, Kim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Sköld, Christian
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Weis, Jan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Selvaraju, Ram
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Hematology and Immunology.
    Eriksson, Olof
    Uppsala University, Science for Life Laboratory, SciLifeLab.
    Synthesis and initial preclinical evaluation of the CRTH2 antagonist [C-11] MK-72462019In: Journal of Labelled Compounds and Pharmaceuticals, WILEY 111 RIVER ST, HOBOKEN 07030-5774, NJ USA , 2019, Vol. 62, p. S544-S545Conference paper (Refereed)
  • 20.
    Eriksson, Jonas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Roy, Tamal
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Sawadjoon, Supaporn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Bachmann, Kim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Sköld, Christian
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Larhed, Mats
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Weis, Jan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Selvaraju, Ramkumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Odell, Luke R.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Synthesis and preclinical evaluation of the CRTH2 antagonist [11C]MK-7246 as a novel PET tracer and potential surrogate marker for pancreatic beta-cell mass2019In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 71, p. 1-10Article in journal (Refereed)
    Abstract [en]

    Introduction: MK-7246 is a potent and selective antagonist for chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). Within the pancreas CRTH2 is selectively expressed in pancreatic β-cells where it is believed to play a role in insulin release. Reduction in β-cell mass and insufficient insulin secretion in response to elevated blood glucose levels is a hallmark for type 1 and type 2 diabetes. Reported here is the synthesis of [11C]MK-7246 and initial preclinical evaluation towards CRTH2 imaging. The aim is to develop a method to quantify β-cell mass with PET and facilitate non-invasive studies of disease progression in individuals with type 2 diabetes.

    Methods: The precursor N-desmethyl-O-methyl MK-7246 was synthesized in seven steps and subjected to methylation with [11C]methyl iodide followed by hydrolysis to obtain [11C]MK-7246 labelled in the N-methyl position. Preclinical evaluation included in vitro radiography and immune-staining performed in human pancreatic biopsies. Biodistribution studies were performed in rat by PET-MRI and in pig by PET-CT imaging. The specific tracer uptake was examined in pig by scanning before and after administration of MK-7246 (1 mg/kg). Predicted dosimetry of [11C]MK-7246 in human males was estimated based on the biodistribution in rat.

    Results: [11C]MK-7246 was obtained with activities sufficient for the current investigations (270±120 MBq) and a radiochemical purity of 93±2%. The tracer displayed focal binding in areas with insulin positive islet of Langerhans in human pancreas sections. Baseline uptake in pig was significantly reduced in CRTH2-rich areas after administration of MK-7246; pancreas (66% reduction) and spleen (88% reduction). [11C]MK-7246 exhibited a safe human predicted dosimetry profile as extrapolated from the rat biodistribution data.

    Conclusions: Initial preclinical in vitro and in vivo evaluation of [11C]MK-7246 show binding and biodistribution properties suitable for PET imaging of CRTH2. Further studies are warranted to assess its potential in β-cell mass imaging and CRTH2 drug development.

  • 21.
    Eriksson, Olof
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Selvaraju, Ram Kumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Species differences in pancreatic binding of DO3A-VS-Cys40-Exendin42017In: Acta Diabetologica, ISSN 0940-5429, E-ISSN 1432-5233, Vol. 54, no 11, p. 1039-1045Article in journal (Refereed)
    Abstract [en]

    AIMS: Radiolabeled Exendin-4 has been proposed as suitable imaging marker for pancreatic beta cell mass quantification mediated by Glucagon-like peptide-1 receptor (GLP-1R). However, noticeable species variations in basal pancreatic uptake as well as uptake reduction degree due to selective beta cell ablation were observed.

    METHODS: -Exendin4 Positron Emission Tomography (PET) in the same species. In vitro, ex vivo, and in vivo data formed the basis for calculating the theoretical in vivo contribution of each pancreatic compartment.

    RESULTS: -Exendin4.

    CONCLUSIONS: IPR as well as the exocrine GLP-1R density is the main determinants of the species variability in pancreatic uptake. Thus, the IPR in human is an important factor for assessing the potential of GLP-1R as an imaging biomarker for pancreatic beta cells.

  • 22.
    Eriksson, Oskar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Coagulation and inflammation science. Uppsala University, Science for Life Laboratory, SciLifeLab. Antaros Med AB, Uppsala, Sweden.
    Bossart, M.
    Sanofi Aventis, Frankfurt, Germany..
    Haack, T.
    Sanofi Aventis, Frankfurt, Germany..
    Laitinen, I.
    Sanofi Aventis, Frankfurt, Germany..
    Larsen, P.
    Sanofi Aventis, Frankfurt, Germany..
    Plettenburg, O.
    Helmholtz Zentrum, Munich, Germany..
    Johansson, L.
    Antaros Med AB, Molndal, Sweden..
    Pierrou, S.
    Antaros Med AB, Molndal, Sweden..
    Wagner, M.
    Sanofi Aventis, Frankfurt, Germany..
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry. Uppsala PET Ctr, Uppsala, Sweden..
    First-in-class PET tracer for the glucagon receptor2017In: Diabetologia, ISSN 0012-186X, E-ISSN 1432-0428, Vol. 60, p. S400-S400Article in journal (Other academic)
  • 23.
    Fani, Melpomeni
    et al.
    Division of Radiopharmaceutical Chemistry, University Hospital of Basel, 4031 Basel, Switzerland.
    Peitl, Petra Kolenc
    Department of Nuclear Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Current Status of Radiopharmaceuticals for the Theranostics of Neuroendocrine Neoplasms2017In: Pharmaceuticals, ISSN 1424-8247, E-ISSN 1424-8247, Vol. 10, no 1, article id E30Article, review/survey (Refereed)
    Abstract [en]

    Nuclear medicine plays a pivotal role in the management of patients affected by neuroendocrine neoplasms (NENs). Radiolabeled somatostatin receptor analogs are by far the most advanced radiopharmaceuticals for diagnosis and therapy (radiotheranostics) of NENs. Their clinical success emerged receptor-targeted radiolabeled peptides as an important class of radiopharmaceuticals and it paved the way for the investigation of other radioligand-receptor systems. Besides the somatostatin receptors (sstr), other receptors have also been linked to NENs and quite a number of potential radiolabeled peptides have been derived from them. The Glucagon-Like Peptide-1 Receptor (GLP-1R) is highly expressed in benign insulinomas, the Cholecystokinin 2 (CCK2)/Gastrin receptor is expressed in different NENs, in particular medullary thyroid cancer, and the Glucose-dependent Insulinotropic Polypeptide (GIP) receptor was found to be expressed in gastrointestinal and bronchial NENs, where interestingly, it is present in most of the sstr-negative and GLP-1R-negative NENs. Also in the field of sstr targeting new discoveries brought into light an alternative approach with the use of radiolabeled somatostatin receptor antagonists, instead of the clinically used agonists. The purpose of this review is to present the current status and the most innovative strategies for the diagnosis and treatment (theranostics) of neuroendocrine neoplasms using a cadre of radiolabeled regulatory peptides targeting their receptors.

  • 24.
    Gonzalez, Miguel A. Cortes
    et al.
    Stockholm Univ, Dept Organ Chem, SE-10691 Stockholm, Sweden.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Gomez, Antonio Bermejo
    Stockholm Univ, Dept Organ Chem, SE-10691 Stockholm, Sweden;Karolinska Inst, AstraZeneca PET Ctr, SE-17176 Stockholm, Sweden.
    Meyer, Denise N.
    Stockholm Univ, Dept Organ Chem, SE-10691 Stockholm, Sweden.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Schou, Magnus
    Karolinska Inst, AstraZeneca PET Ctr, SE-17176 Stockholm, Sweden.
    Szabo, Kalman J.
    Stockholm Univ, Dept Organ Chem, SE-10691 Stockholm, Sweden.
    [18F]fluoro-benziodoxole: a no-carrier-added electrophilic fluorinating reagent. Rapid, simple radiosynthesis, purification and application for fluorine-18 labelling2018In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, no 34, p. 4286-4289Article in journal (Refereed)
    Abstract [en]

    Operationally simple radiosynthesis and purification of [F-18]fluoro-benziodoxole was developed starting from a cyclotron produced [F-18]F- precursor, [F-18]TBAF, and tosyl-benziodoxole. The synthetic utility of [F-18]fluoro-benziodoxole was demonstrated by electrophilic fluorocyclization of o-styrilamides proceeding with high RCC (typically 50-90%) and high molar activity (up to 396 GBq mol(-1)).

  • 25. Heurling, Kerstin
    et al.
    Ashton, Nicholas J
    Leuzy, Antoine
    Zimmer, Eduardo R
    Blennow, Kaj
    Zetterberg, Henrik
    Eriksson, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Schöll, Michael
    Synaptic vesicle protein 2A as a potential biomarker in synaptopathies2019In: Molecular and Cellular Probes, ISSN 1044-7431, E-ISSN 1095-9327, Vol. 97, p. 34-42Article in journal (Refereed)
    Abstract [en]

    Measuring synaptic density in vivo using positron emission tomography (PET) imaging-based biomarkers targeting the synaptic vesicle protein 2A (SV2A) has received much attention recently due to its potential research and clinical applications in synaptopathies, including neurodegenerative and psychiatric diseases. Fluid-based biomarkers in proteinopathies have previously been suggested to provide information on pathology and disease status that is complementary to PET-based measures, and the same can be hypothesized with respect to SV2A. This review provides an overview of the current state of SV2A PET imaging as a biomarker of synaptic density, the potential role of fluid-based biomarkers for SV2A, and related future perspectives.

  • 26.
    Hulsart Billström, Gry
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Orthopaedics.
    Selvaraju, Ramkumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Asplund, Veronika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Bergman, Kristoffer
    TERMIRA, Stockholm, Sweden.
    Marsell, Richard
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Orthopaedics.
    Larsson, Sune
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Orthopaedics.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Non-invasive tri-modal visualisation via PET/SPECT/μCT of recombinant human bone morphogenetic protein-2 retention and associated bone regeneration: A proof of concept2018In: Journal of Controlled Release, ISSN 0168-3659, E-ISSN 1873-4995, Vol. 285, p. 178-186Article in journal (Refereed)
    Abstract [en]

    Bone morphogenetic proteins (BMP's) are vital for bone and cartilage formation, where bone morphogenetic protein-2 (BMP-2) is acknowledged as a growth factor in osteoblast differentiation. However, uncontrolled delivery may result in adverse clinical effects. In this study we investigated the possibility for longitudinal and non-invasive monitoring of implanted [125I]BMP-2 retention and its relation to ossification at the site of implantation. A unilateral critically sized femoral defect was produced in the left limb of rats while the right femur was retained intact as a paired reference control. The defect was filled with a hyaluronan hydrogel with 25% hydroxyapatite alone (carrier control; n = 2) or combined with a mixture of [125I]BMP-2 (150 μg/ml; n = 4). Bone formation was monitored using micro computed tomography (μCT) scans at 1, 3, 5, 7, 9 and 12 weeks. The retention of [125I]BMP-2 was assessed with single photon emission computed tomography (SPECT), and the bone healing process was followed with sodium fluoride (Na18F) using positron emission tomography (PET) at day 3 and at week 2, 4, and 6. A rapid burst release of [125I]BMP-2 was detected via SPECT. This was followed by a progressive increase in uptake levels of [18F]fluoride depicted by PET imaging that was confirmed as bone formation via μCT. We propose that this functional, non-invasive imaging method allows tri-modal visualisation of the release of BMP-2 and the following in vivo response. We suggest that the potential of this novel technique could be considered for preclinical evaluation of novel smart materials on bone regeneration.

  • 27.
    Isaksson, Rebecka
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Ligands of the Angiotensin II Type 2 Receptor: Exploring structure and function of the AT2R ligand C382019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The renin-angiotensin-aldosterone-system (RAAS) control blood-pressure regulation, exerted by the main effector peptide angiotensin II (AngII) binding the angiotensin II type 1 receptor (AT1R). While hypertension is the most known disease caused by over-activity in RAAS, several proteins in the system exhibit protective functions.

    One of these protective proteins is the GPCR angiotensin II type 2 receptor (AT2R). After decades of research its biological role remain to be fully elucidated, exemplified by the two AT2R ligands currently in clinical trials; agonist C21 for treatment of idiopathic pulmonary fibrosis, and antagonist EMA401 for treatment of peripheral neuropathic pain. Making a minor structural change in C21 shifted the pharmacological profile, generating the regioisomer antagonist C38. The renewed interest in AT2R antagonists as potential drugs to treat neuropathic pain make continued studies of antagonist C38 highly interesting. 

    The aim of this thesis was to continue exploring the structure-activity relationship of antagonist C38 by investigating three chemical motifs to identify compounds with better drug-like properties. Developing a new chemical method, transesterification of sulfonyl carbamates, allowed quick modification of one of the motifs. Reducing the length of the sulfonyl carbamate chain significantly increased metabolic stability in liver microsomes without losing affinity for AT2R. Using a model substrate, the transesterification reaction was applied in a microwave heated continuous-flow system.

    Adding small substituents to the central phenyl ring generated a second library of ligands with retained affinity, but with no observed increase in metabolic stability. Docking studies with this library and a recently presented crystal structure of AT2R, resulted in a proposed binding mode of C38. Replacing the imidazole head group with bicyclic amides slightly improved affinity. While metabolic stability improved compared to previously published amide analogs, the bicyclic ligands were inferior to C38. Developing an assay based on RAW264.7 macrophages allowed a new evaluation of the functional activity exhibited by C38. In contrast to previous research, C21 and C38 both display agonistic functional activity in the macrophage assay.

    In summary, the work presented in this thesis expand the structure-activity relationship of C38 and its pharmacological profile. Two new ligands were identified that could serve as tools in murine models of neuropathic pain.

    List of papers
    1. Rapid and straightforward transesterification of sulfonyl carbamates
    Open this publication in new window or tab >>Rapid and straightforward transesterification of sulfonyl carbamates
    2016 (English)In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 57, no 13, p. 1476-1478Article in journal (Refereed) Published
    Abstract [en]

    A fast and convenient method for the alkoxy exchange of sulfonyl carbamates by simply heating in a chosen alkyl alcohol is described. No catalysts or additives are required. Microwave heating at 100-120 degrees C for 20-60 min resulted in good to excellent yields (53-93%) of alkyl (arylsulfonyl)carbamates where the alkyl part originates from the alcohol solvent. The developed protocol was applied to the synthesis of an angiotensin II type 2 receptor (AT2R) ligand.

    Keywords
    Sulfonyl carbamates, O-alkyl exchange, Transesterification, Carboxylic acid bioisosteres, AT2R ligand
    National Category
    Organic Chemistry
    Identifiers
    urn:nbn:se:uu:diva-294300 (URN)10.1016/j.tetlet.2016.02.071 (DOI)000372690800018 ()
    Funder
    EU, FP7, Seventh Framework Programme, REGPOT-CT-2013-316149-InnovaBalt
    Available from: 2016-05-19 Created: 2016-05-18 Last updated: 2019-04-04Bibliographically approved
    2. Microwave Promoted Transcarbamylation Reaction of Sulfonylcarbamates under Continuous-Flow Conditions
    Open this publication in new window or tab >>Microwave Promoted Transcarbamylation Reaction of Sulfonylcarbamates under Continuous-Flow Conditions
    Show others...
    2016 (English)In: Organic Process Research & Development, ISSN 1083-6160, E-ISSN 1520-586X, Vol. 20, no 2, p. 440-445Article in journal (Refereed) Published
    Abstract [en]

    Successful conditions for the transcarbamylation/transesterification reaction of sulfonylcarbamates with alcohols by microwave heating under continuous flow conditions were developed. After optimization of the processes, two series of O-alkylsulfonylcarbamates were obtained in high yields and purities using microwave transparent borosilicate tube reactors. In order to also illustrate the usefulness of the protocol in a medicinal chemistry context, the methodology was used for the synthesis of three angiotensin II type 2 receptor ligands.

    National Category
    Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy) Pharmaceutical Sciences
    Identifiers
    urn:nbn:se:uu:diva-282387 (URN)10.1021/acs.oprd.5b00323 (DOI)000370767600033 ()
    Funder
    EU, FP7, Seventh Framework Programme, REGPOT-CT-2013-316149-InnovaBalt
    Available from: 2016-04-05 Created: 2016-04-05 Last updated: 2019-04-04Bibliographically approved
    3. A convenient transesterification method for synthesis of AT2 receptor ligands with improved stability in human liver microsomes
    Open this publication in new window or tab >>A convenient transesterification method for synthesis of AT2 receptor ligands with improved stability in human liver microsomes
    Show others...
    2018 (English)In: Bioorganic & Medicinal Chemistry Letters, ISSN 0960-894X, E-ISSN 1090-2120, Vol. 28, no 3, p. 519-522Article in journal (Refereed) Published
    Abstract [en]

    A series of AT2R ligands have been synthesized applying a quick, simple, and safetransesterification-type reaction whereby the sulfonyl carbamate alkyl tail ofthe selective AT2R antagonist C38 was varied. Furthermore, a limited number ofcompounds where acyl sulfonamides and sulfonyl ureas served as carboxylic acidbioisosteres were synthesized and evaluated. By reducing the size of the alkylchain of the sulfonyl carbamates, ligands 7a and 7b were identified withsignificantly improved in vitro metabolic stability in both human and mouse livermicrosomes as compared to C38 while retaining the AT2R binding affinity andAT2R/AT1R selectivity. Eight of the compounds synthesized exhibit an improvedstability in human microsomes as compared to C38.

    Place, publisher, year, edition, pages
    Elsevier, 2018
    Keywords
    AT(2)R antagonists, Angiotensin II type 2 receptor antagonists, Liver microsomes, Sulfonyl carbamates, Transesterification
    National Category
    Organic Chemistry Medicinal Chemistry
    Identifiers
    urn:nbn:se:uu:diva-343592 (URN)10.1016/j.bmcl.2017.11.042 (DOI)000424285600053 ()29279275 (PubMedID)
    Funder
    Science for Life Laboratory - a national resource center for high-throughput molecular bioscience
    Available from: 2018-02-28 Created: 2018-02-28 Last updated: 2019-04-04Bibliographically approved
    4. A Series of Analogues to the AT2R Prototype Antagonist C38 Allow Fine Tuning of the Previously Reported Antagonist Binding Mode
    Open this publication in new window or tab >>A Series of Analogues to the AT2R Prototype Antagonist C38 Allow Fine Tuning of the Previously Reported Antagonist Binding Mode
    Show others...
    2019 (English)In: ChemistryOpen, ISSN 2191-1363, Vol. 8, no 1, p. 114-125Article in journal (Refereed) Published
    Abstract [en]

    We here report on our continued studies of ligands binding tothe promising drug target angiotensin II type 2 receptor (AT2R). Two series of compounds were synthesized and investigated. The first series explored the effects of adding small substituents to the phenyl ring of the known selective nonpeptide AT2R antagonist C38, generating small but significant shifts in AT2R affinity. One compound in the first series was equipotent to C38 and showed similar kinetic solubility, and stability in both human and mouse liver microsomes. The second series was comprised of new bicyclic derivatives, amongst which one ligand exhibited a five-fold improved affinity to AT2R ascompared to C38. The majority of the compounds in the second series, including the most potent ligand, were inferior to C38 with regard to stability in both human and mouse microsomes. In contrast to our previously reported findings, ligands with shorter carbamate alkyl chains only demonstrated slightly improved stability in microsomes. Based on data presented herein, a more adequate, tentative model of the binding modes of ligand analogues to the prototype AT2R antagonist C38 is proposed, as deduced from docking redefined by molecular dynamic simulations.

    National Category
    Organic Chemistry Medicinal Chemistry
    Identifiers
    urn:nbn:se:uu:diva-377050 (URN)10.1002/open.201800282 (DOI)000457433000017 ()30697513 (PubMedID)
    Funder
    Swedish National Infrastructure for Computing (SNIC)Swedish Research Council
    Available from: 2019-02-13 Created: 2019-02-13 Last updated: 2019-04-04Bibliographically approved
    5. Direct Stimulation of Angiotensin II Type 2 Receptor Reduce Nitric Oxide Production in Lipopolysaccharide Treated RAW264.7 Mouse Macrophages
    Open this publication in new window or tab >>Direct Stimulation of Angiotensin II Type 2 Receptor Reduce Nitric Oxide Production in Lipopolysaccharide Treated RAW264.7 Mouse Macrophages
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Keywords
    Renin-angiotensin-aldosterone system, AT2R, AT1R, bio-assay, ligand functionality, antagonist, agonist, nitrite, inducible nitric oxide synthase
    National Category
    Other Biological Topics
    Research subject
    Medicinal Chemistry
    Identifiers
    urn:nbn:se:uu:diva-381097 (URN)
    Available from: 2019-04-04 Created: 2019-04-04 Last updated: 2019-04-04
  • 28.
    Isaksson, Rebecka
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Casselbrant, Anna
    Department of Gastrosurgical Research and Education, Sahlgrenska Academy.
    Elebring, Erik
    Department of Gastrosurgical Research and Education, Sahlgrenska Academy.
    Hallberg, Mathias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Larhed, Mats
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Lars, Fändriks
    Department of Gastrosurgical Research and Education, Sahlgrenska Academy.
    Direct Stimulation of Angiotensin II Type 2 Receptor Reduce Nitric Oxide Production in Lipopolysaccharide Treated RAW264.7 Mouse MacrophagesManuscript (preprint) (Other academic)
  • 29.
    Isaksson, Rebecka
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Lindman, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Wannberg, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Sallander, Jessica
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics.
    Backlund, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Baraldi, Dhaniel
    Department of Pharmacology, Monash University.
    Widdop, Robert
    Department of Pharmacology, Monash University.
    Hallberg, Mathias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Åqvist, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics.
    Gutierrez de Teran, Hugo
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics.
    Gising, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    A Series of Analogues to the AT2R Prototype Antagonist C38 Allow Fine Tuning of the Previously Reported Antagonist Binding Mode2019In: ChemistryOpen, ISSN 2191-1363, Vol. 8, no 1, p. 114-125Article in journal (Refereed)
    Abstract [en]

    We here report on our continued studies of ligands binding tothe promising drug target angiotensin II type 2 receptor (AT2R). Two series of compounds were synthesized and investigated. The first series explored the effects of adding small substituents to the phenyl ring of the known selective nonpeptide AT2R antagonist C38, generating small but significant shifts in AT2R affinity. One compound in the first series was equipotent to C38 and showed similar kinetic solubility, and stability in both human and mouse liver microsomes. The second series was comprised of new bicyclic derivatives, amongst which one ligand exhibited a five-fold improved affinity to AT2R ascompared to C38. The majority of the compounds in the second series, including the most potent ligand, were inferior to C38 with regard to stability in both human and mouse microsomes. In contrast to our previously reported findings, ligands with shorter carbamate alkyl chains only demonstrated slightly improved stability in microsomes. Based on data presented herein, a more adequate, tentative model of the binding modes of ligand analogues to the prototype AT2R antagonist C38 is proposed, as deduced from docking redefined by molecular dynamic simulations.

  • 30.
    Jonasson, My
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Wall, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Chiotis, Konstantinos
    Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.
    Leuzy, Antoine
    Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.
    Eriksson, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Nordberg, Agneta
    Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Optimal timing of tau pathology imaging and automatic extraction of a reference region using dynamic [18F]THK5317 PETManuscript (preprint) (Other academic)
  • 31.
    Kero, Tanja
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sorensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Wilking, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Carlson, Kristina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Vedin, Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cardiology.
    Rosengren, Sara
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Wikstrom, Gerhard
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cardiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Quantification of (11)C-PIB kinetics in cardiac amyloidosis2018In: Journal of Nuclear Cardiology, ISSN 1071-3581, EISSN 1532-6551Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The purpose of this work was to determine the optimal tracer kinetic model of (11)C-PIB and to validate the use of the simplified methods retention index (RI) and standardized uptake value (SUV) for quantification of cardiac (11)C-PIB uptake in amyloidosis. METHODS AND RESULTS: Single-tissue, reversible and irreversible two-tissue models were fitted to data from seven cardiac amyloidosis patients who underwent (11)C-PIB PET scans and arterial blood sampling for measurement of blood radioactivity and metabolites. The irreversible two-tissue model (2Tirr) best described cardiac (11)C-PIB uptake. RI and SUV showed high correlation with the rate of irreversible binding (Ki) from the 2Tirr model (r(2 )=0.95 and r(2 )=0.94). Retrospective data from 10 amyloidosis patients and 5 healthy controls were analyzed using RI, SUV, as well as compartment modelling with a population-average metabolite correction. All measures were higher in amyloidosis patients than in healthy controls (p=.001), but with an overlap between groups for Ki. CONCLUSION: An irreversible two-tissue model best describes the (11)C-PIB uptake in cardiac amyloidosis. RI and SUV correlate well with Ki from the 2Tirr model. RI and SUV discriminate better between amyloidosis patients and controls than Ki based on population-average metabolite correction.

  • 32.
    Källsten, Malin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Recipharm OT Chem AB, Uppsala, Sweden.
    Hartmann, Rafael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Artemenko, Konstantin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Bergström Lind, Sara
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Lehmann, Fredrik
    Recipharm OT Chem AB, Uppsala, Sweden.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Qualitative analysis of antibody-drug conjugates (ADCs): an experimental comparison of analytical techniques of cysteine-linked ADCs.2018In: The Analyst, ISSN 0003-2654, E-ISSN 1364-5528, Vol. 143, no 22, p. 5487-5496Article in journal (Refereed)
    Abstract [en]

    Antibody-drug conjugates (ADCs) are an emerging type of biotherapeutics that utilize multiple tissue-specific antibodies combined with a range of linker designs to enable the transportation and selective release of cytotoxic drugs in close proximity to tumours. Consisting of antibodies conjugated to small drug molecules through a variety of linkers, ADCs are chemically complex analytes. Here we present a unique experimental comparison of four techniques for ADC analysis: hydrophobic interaction chromatography (HIC-UV/Vis), reversed phase liquid chromatography mass spectrometry (RPLC-MS), using either a QToF or an Orbitrap analyser, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Four different ADCs consisting of Trastuzumab, monomethyl auristatin E (MMAE) and a peptidic linker moiety differing in their respective stoichiometric ratios in regard to drug-to-antibody ratio (DAR) were used for the comparison. We found that the determined DAR from all techniques was comparable, while the accuracy of the molecular weights for the conjugated light and heavy chain differed more extensively. This indicates that the choice of a mass analyser is more crucial for determining the accurate weights of the light and heavy chains than to evaluate the DAR of a given batch. However, ambiguous DAR assignment in HIC-UV/Vis or bias for either the light or heavy chain fragments in the mass spectrometry-based techniques can influence the obtained average DAR value and the use of complementary techniques is advisable. Out of the four techniques evaluated, HIC-UV/Vis and MALDI required less time to obtain an average DAR value and would therefore be good for initial screenings in the early stages of the discovery phase of new ADCs.

  • 33.
    Källsten, Malin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Recipharm OT Chem AB, Virdings Alle 32b, S-75450 Uppsala, Sweden.
    Pijnappel, Matthijs
    Recipharm OT Chem AB, Virdings Alle 32b, S-75450 Uppsala, Sweden.
    Hartmann, Rafael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Lehmann, Fredrik
    Oncopeptides AB, Luntmakargatan 46, SE-11137 Stockholm, Sweden.
    Kovac, Lucia
    Recipharm OT Chem AB, Virdings Alle 32b, S-75450 Uppsala, Sweden.
    Lind, Sara
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Application of triple quadrupole mass spectrometry for the characterization of antibody-drug conjugates2019In: Analytical and Bioanalytical Chemistry, ISSN 1618-2642, E-ISSN 1618-2650, Vol. 411, no 12, p. 2569-2576Article in journal (Refereed)
    Abstract [en]

    Antibody-drug conjugates (ADCs) are an inherently heterogeneous class of biotherapeutics, the development of which requires extensive characterization throughout. During the earliest phases of preclinical development, when synthetic routes towards the desired conjugate are being assessed, the main interest lies in the determination of the average drug-to-antibody ratio (DAR) of a given batch as well as information about different conjugation species. There has been a trend in mass spectrometry (MS)-based characterization of ADCs towards the use of high-resolving mass spectrometry for many of these analyses. Considering the high cost for such an instrument, the evaluation of cheaper and more accessible alternatives is highly motivated. We have therefore tested the applicability of a quadrupole mass analyzer for the aforementioned characterizations. Eight ADCs consisting of trastuzumab and varying stoichiometries of Mc-Val-Cit-PABC-monomethyl auristatin E conjugated to native cysteines were synthesized and served as test analytes. The average DAR value and molecular weights (Mw) of all detected chains from the quadrupole mass analyzer showed surprisingly high agreement with results obtained from a time-of-flight (TOF) mass analyzer and hydrophobic interaction chromatography (HIC)-derived values for all investigated ADC batches. Acquired Mw were within 80ppm of TOF-derived values, and DAR was on average within 0.32 DAR units of HIC-derived values. Quadrupole mass spectrometers therefore represent a viable alternative for the characterization of ADC in early-stage development.

  • 34.
    Ladds, Marcus J. G. W.
    et al.
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden.;Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SciLifeLab, Tomtebodavagen 23, SE-17121 Stockholm, Sweden..
    van Leeuwen, Ingeborg M. M.
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden..
    Drummond, Catherine J.
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden..
    Chu, Su
    Comprehens Canc Ctr, Div Hematol & Oncol, 1720 2nd Ave South,NP2540, Birmingham, AL 35294 USA..
    Healy, Alan R.
    Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland.;Univ St Andrews, Biomed Sci Res Complex, St Andrews KY16 9ST, Fife, Scotland.;EaStCHEM, St Andrews KY16 9ST, Fife, Scotland..
    Popova, Gergana
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden..
    Fernandez, Andres Pastor
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden..
    Mollick, Tanzina
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden.;Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SciLifeLab, Tomtebodavagen 23, SE-17121 Stockholm, Sweden..
    Darekar, Suhas
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden.;Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SciLifeLab, Tomtebodavagen 23, SE-17121 Stockholm, Sweden..
    Sedimbi, Saikiran K.
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden..
    Nekulova, Marta
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden.;Masaryk Mem Canc Inst, RECAMO, Zluty Kopec 7, Brno 65653, Czech Republic..
    Sachweh, Marijke C. C.
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden..
    Campbell, Johanna
    Univ Dundee, Ctr Oncol & Mol Med, Ninewells Hosp & Med Sch, Dundee DD1 9SY, Tayside, Scotland..
    Higgins, Maureen
    Univ Dundee, Ctr Oncol & Mol Med, Ninewells Hosp & Med Sch, Dundee DD1 9SY, Tayside, Scotland..
    Tuck, Chloe
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden..
    Popa, Mihaela
    Univ Bergen, Dept Clin Sci, Hematol Sect, Ctr Canc Biomarkers,CCBIO, N-5021 Bergen, Norway..
    Safont, Mireia Mayoral
    Univ Bergen, Dept Clin Sci, Hematol Sect, Ctr Canc Biomarkers,CCBIO, N-5021 Bergen, Norway..
    Gelebart, Pascal
    Univ Bergen, Dept Clin Sci, Hematol Sect, Ctr Canc Biomarkers,CCBIO, N-5021 Bergen, Norway..
    Fandalyuk, Zinayida
    Univ Bergen, Dept Clin Sci, Hematol Sect, Ctr Canc Biomarkers,CCBIO, N-5021 Bergen, Norway..
    Thompson, Alastair M.
    Univ Texas MD Anderson Canc Ctr, Dept Breast Surg Oncol, Holcombe Blvd, Houston, TX 77030 USA..
    Svensson, Richard
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Gustavsson, Anna-Lena
    Karolinska Inst, Dept Med Biochem & Biophys, Div Translat Med & Chem Biol, Chem Biol Consortium Sweden,Sci Life Lab, SE-17121 Stockholm, Sweden..
    Johansson, Lars
    Karolinska Inst, Dept Med Biochem & Biophys, Div Translat Med & Chem Biol, Chem Biol Consortium Sweden,Sci Life Lab, SE-17121 Stockholm, Sweden..
    Farnegardh, Katarina
    Sci Life Lab, Drug Discovery & Dev Platform, Tomtebodavagen 23, SE-17121 Solna, Sweden..
    Yngve, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Saleh, Aljona
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Haraldsson, Martin
    Sci Life Lab, Drug Discovery & Dev Platform, Tomtebodavagen 23, SE-17121 Solna, Sweden..
    D'Hollander, Agathe C. A.
    Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland.;Univ St Andrews, Biomed Sci Res Complex, St Andrews KY16 9ST, Fife, Scotland.;EaStCHEM, St Andrews KY16 9ST, Fife, Scotland..
    Franco, Marcela
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden..
    Zhao, Yan
    Newcastle Univ, Northern Inst Canc Res, Newcastle Canc Ctr, Newcastle NE1 7RU, England..
    Hakansson, Maria
    SARomics Biostruct, Medicon Village, SE-22381 Lund, Sweden..
    Walse, Bjorn
    SARomics Biostruct, Medicon Village, SE-22381 Lund, Sweden..
    Larsson, Karin
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden..
    Peat, Emma M.
    Univ Edinburgh, Inst Cell Biol, Wellcome Trust Ctr Cell Biol, Edinburgh EH9 3JR, Midlothian, Scotland..
    Pelechano, Vicent
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SciLifeLab, Tomtebodavagen 23, SE-17121 Stockholm, Sweden..
    Lunec, John
    Newcastle Univ, Northern Inst Canc Res, Newcastle Canc Ctr, Newcastle NE1 7RU, England..
    Vojtesek, Borivoj
    Masaryk Mem Canc Inst, RECAMO, Zluty Kopec 7, Brno 65653, Czech Republic..
    Carmena, Mar
    Univ Edinburgh, Inst Cell Biol, Wellcome Trust Ctr Cell Biol, Edinburgh EH9 3JR, Midlothian, Scotland..
    Earnshaw, William C.
    Univ Edinburgh, Inst Cell Biol, Wellcome Trust Ctr Cell Biol, Edinburgh EH9 3JR, Midlothian, Scotland..
    McCarthy, Anna R.
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden..
    Westwood, Nicholas J.
    Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland.;Univ St Andrews, Biomed Sci Res Complex, St Andrews KY16 9ST, Fife, Scotland.;EaStCHEM, St Andrews KY16 9ST, Fife, Scotland..
    Arsenian-Henriksson, Marie
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden..
    Lane, David P.
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden.;Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SciLifeLab, Tomtebodavagen 23, SE-17121 Stockholm, Sweden..
    Bhatia, Ravi
    Comprehens Canc Ctr, Div Hematol & Oncol, 1720 2nd Ave South,NP2540, Birmingham, AL 35294 USA..
    McCormack, Emmet
    Univ Bergen, Dept Clin Sci, Hematol Sect, Ctr Canc Biomarkers,CCBIO, N-5021 Bergen, Norway.;Haukeland Hosp, Haematol Sect, Dept Med, Bergen, Norway..
    Lain, Sonia
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SE-17177 Stockholm, Sweden.;Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, SciLifeLab, Tomtebodavagen 23, SE-17121 Stockholm, Sweden..
    A DHODH inhibitor increases p53 synthesis and enhances tumor cell killing by p53 degradation blockage2018In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, article id 1107Article in journal (Refereed)
    Abstract [en]

    The development of non-genotoxic therapies that activate wild-type p53 in tumors is of great interest since the discovery of p53 as a tumor suppressor. Here we report the identification of over 100 small-molecules activating p53 in cells. We elucidate the mechanism of action of a chiral tetrahydroindazole (HZ00), and through target deconvolution, we deduce that its active enantiomer (R)-HZ00, inhibits dihydroorotate dehydrogenase (DHODH). The chiral specificity of HZ05, a more potent analog, is revealed by the crystal structure of the (R)-HZ05/DHODH complex. Twelve other DHODH inhibitor chemotypes are detailed among the p53 activators, which identifies DHODH as a frequent target for structurally diverse compounds. We observe that HZ compounds accumulate cancer cells in S-phase, increase p53 synthesis, and synergize with an inhibitor of p53 degradation to reduce tumor growth in vivo. We, therefore, propose a strategy to promote cancer cell killing by p53 instead of its reversible cell cycle arresting effect.

  • 35.
    Lindström, Elin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Trampal, Carlos
    Lindsjö, Lars
    Ilan, Ezgi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden .
    Danfors, Torsten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. PET Centre, Uppsala University Hospital, Uppsala, Sweden.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden .
    Evaluation of penalized likelihood estimation reconstruction on a digital time-of-flight PET/CT scanner for 18F-FDG whole-body examinations2018In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 59, no 7, p. 1152-1158Article in journal (Refereed)
    Abstract [en]

    The resolution and quantitative accuracy of PET are highly influenced by the reconstruction method. Penalized-likelihood estimation algorithms allow for fully convergent iterative reconstruction, generating a higher image contrast than ordered-subsets expectation maximization (OSEM) while limiting noise. In this study, a type of penalized reconstruction known as block-sequential regularized expectation maximization (BSREM) was compared with time-of-flight OSEM (TOF OSEM). Various strengths of noise penalization factor β were tested along with various acquisition durations and transaxial fields of view (FOVs) with the aim of evaluating the performance and clinical use of BSREM for 18F-FDG PET/CT, both quantitatively and in a qualitative visual evaluation. Methods: Eleven clinical whole-body 18F-FDG PET/CT examinations acquired on a digital TOF PET/CT scanner were included. The data were reconstructed using BSREM with point-spread function recovery and β-factors of 133, 267, 400, and 533—and using TOF OSEM with point-spread function—for various acquisition times per bed position and various FOVs. Noise level, signal-to-noise ratio (SNR), signal-to-background ratio (SBR), and SUV were analyzed. A masked evaluation of visual image quality, rating several aspects, was performed by 2 nuclear medicine physicians to complement the analysis. Results: The lowest levels of noise were reached with the highest β-factor, resulting in the highest SNR, which in turn resulted in the lowest SBR. A β-factor of 400 gave noise equivalent to TOF OSEM but produced a significant increase in SUVmax (11%), SNR (22%), and SBR (12%). BSREM with a β-factor of 533 at a decreased acquisition duration (2 min/bed position) was comparable to TOF OSEM at a full acquisition duration (3 min/bed position). Reconstructed FOV had an impact on BSREM outcome measures; SNR increased and SBR decreased when FOV was shifted from 70 to 50 cm. The evaluation of visual image quality resulted in similar scores for reconstructions, although a β-factor of 400 obtained the highest mean whereas a β-factor of 267 was ranked best in overall image quality, contrast, sharpness, and tumor detectability. Conclusion: In comparison with TOF OSEM, penalized BSREM reconstruction resulted in an increased tumor SUVmax and an improved SNR and SBR at a matched level of noise. BSREM allowed for a shorter acquisition than TOF OSEM, with equal image quality.

  • 36.
    Lindström, Elin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Facu