Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Cano-Cebrian, Maria-Jose
    et al.
    Univ Valencia, Dept Pharm Pharmaceut Technol & Parasitol, Burjassot 46100, Spain.;Uppsala Univ, Dept Pharmaceut Biosci Translat Drug Discovery &, S-75236 Uppsala, Sweden..
    Dahlgren, David
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Kullenberg, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Peters, Karsten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Olander, Tobias
    Uppsala Univ, Dept Pharmaceut Biosci Translat Drug Discovery &, S-75236 Uppsala, Sweden..
    Sjöblom, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Lennernäs, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Drug Design and Discovery. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Chemotherapeutics Combined with Luminal Irritants: Effects on Small-Intestinal Mannitol Permeability and Villus Length in Rats2022In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 23, no 3, article id 1021Article in journal (Refereed)
    Abstract [en]

    Chemotherapy causes intestinal mucositis, which includes villous atrophy and altered mucosal barrier function. However, there is an uncertainty regarding how the reduced small-intestinal surface area affects the mucosal permeability of the small marker probe mannitol (MW 188), and how the mucosa responds to luminal irritants after chemotherapy. The aims in this study were to determine (i) the relationship between chemotherapy-induced villus atrophy and the intestinal permeability of mannitol and (ii) how the mucosa regulate this permeability in response to luminal ethanol and sodium dodecyl sulfate (SDS). This was investigated by treating rats with a single intraperitoneal dose of doxorubicin, irinotecan, or 5-fluorouracil. After 72 h, jejunum was single-pass perfused and mannitol permeability determined at baseline and after 15 min luminal exposure to 15% ethanol or 5 mg/mL SDS. Tissue samples for morphological analyses were sampled from the perfused segment. All three chemotherapeutics caused a similar 30% reduction in villus length. Mannitol permeability increased with irinotecan (1.3-fold) and 5-fluorouracil (2.5-fold) and was reduced with doxorubicin (0.5-fold), suggesting that it is not epithelial surface area alone that regulates intestinal permeability to mannitol. There was no additional increase in mannitol permeability induced by luminal ethanol or SDS in the chemotherapy-treated rats compared to controls, which may be related to the relatively high basal permeability of mannitol compared to other common low-permeability probes. We therefore suggest that future studies should focus on elucidating the complex interplay between chemotherapy in combination with luminal irritants on the intestinal permeability of other probes.

    Download full text (pdf)
    FULLTEXT01
  • 2.
    Dahlgren, David
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Cano-Cebrian, Maria-Jose
    Univ Valencia, Dept Pharm Pharmaceut Technol & Parasitol, Valencia 46010, Spain..
    Hellström, Per M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Gastroenterology/Hepatology.
    Wanders, Alkwin
    Aalborg Univ Hosp, Dept Pathol, DK-9100 Aalborg, Denmark..
    Sjöblom, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Lennernäs, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Prevention of Rat Intestinal Injury with a Drug Combination of Melatonin and Misoprostol2020In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 21, no 18, article id 6771Article in journal (Refereed)
    Abstract [en]

    A healthy intestinal barrier prevents uptake of allergens and toxins, whereas intestinal permeability increases following chemotherapy and in many gastrointestinal and systemic diseases and disorders. Currently, there are no approved drugs that target and repair the intestinal epithelial barrier while there is a medical need for such treatment in gastrointestinal and related conditions. The objective of this single-pass intestinal perfusion study in rats was to investigate the preventive cytoprotective effect of three mucosal protective drugs-melatonin, misoprostol, and teduglutide-with different mechanisms of action on an acute jejunal injury induced by exposing the intestine for 15 min to the anionic surfactant, sodium dodecyl sulfate (SDS). The effect was evaluated by monitoring intestinal clearance of Cr-51-labeled ethylenediaminetetraacetate and intestinal histology before, during, and after luminal exposure to SDS. Our results showed that separate pharmacological pretreatments with luminal misoprostol and melatonin reduced acute SDS-induced intestinal injury by 47% and 58%, respectively, while their use in combination abolished this injury. This data supports further development of drug combinations for oral treatments of conditions and disorders related to a dysregulated or compromised mucosal epithelial barrier.

    Download full text (pdf)
    FULLTEXT01
  • 3.
    Dahlgren, David
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Cano-Cebrian, Maria-Jose
    Univ Valencia, Dept Pharm & Pharmaceut Technol & Parasitol, Valencia 46010, Spain..
    Olander, Tobias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Hedeland, Mikael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry. Natl Vet Inst SVA, Dept Chem Environm & Feed Hyg, S-75189 Uppsala, Sweden..
    Sjöblom, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Lennernäs, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Regional Intestinal Drug Permeability and Effects of Permeation Enhancers in Rat2020In: Pharmaceutics, E-ISSN 1999-4923, Vol. 12, no 3, article id 242Article in journal (Refereed)
    Abstract [en]

    Sufficient colonic absorption is necessary for all systemically acting drugs in dosage forms that release the drug in the large intestine. Preclinically, colonic absorption is often investigated using the rat single-pass intestinal perfusion model. This model can determine intestinal permeability based on luminal drug disappearance, as well as the effect of permeation enhancers on drug permeability. However, it is uncertain how accurate the rat single-pass intestinal perfusion model predicts regional intestinal permeability and absorption in human. There is also a shortage of systematic in vivo investigations of the direct effect of permeation enhancers in the small and large intestine. In this rat single-pass intestinal perfusion study, the jejunal and colonic permeability of two low permeability drugs (atenolol and enalaprilat) and two high-permeability ones (ketoprofen and metoprolol) was determined based on plasma appearance. These values were compared to already available corresponding human data from a study conducted in our lab. The colonic effect of four permeation enhancers-sodium dodecyl sulfate, chitosan, ethylenediaminetetraacetic acid (EDTA), and caprate-on drug permeability and transport of chromium EDTA (an established clinical marker for intestinal barrier integrity) was determined. There was no difference in jejunal and colonic permeability determined from plasma appearance data of any of the four model drugs. This questions the validity of the rat single-pass intestinal perfusion model for predicting human regional intestinal permeability. It was also shown that the effect of permeation enhancers on drug permeability in the colon was similar to previously reported data from the rat jejunum, whereas the transport of chromium EDTA was significantly higher (p < 0.05) in the colon than in jejunum. Therefore, the use of permeation enhancers for increasing colonic drug permeability has greater risks than potential medical rewards, as indicated by the higher permeation of chromium EDTA compared to the drugs.

    Download full text (pdf)
    FULLTEXT01
  • 4.
    Dahlgren, David
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Olander, Tobias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Sjöblom, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Hedeland, Mikael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry. Natl Vet Inst SVA, Dept Chem Environm & Feed Hyg, S-75189 Uppsala, Sweden..
    Lennernäs, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Effect of paracellular permeation enhancers on intestinal permeability of two peptide drugs, enalaprilat and hexarelin, in rats2021In: Acta Pharmaceutica Sinica B, ISSN 2211-3835, E-ISSN 2211-3843, Vol. 11, no 6, p. 1667-1675Article in journal (Refereed)
    Abstract [en]

    Transcellular permeation enhancers are known to increase the intestinal permeability of enalaprilat, a 349 Da peptide, but not hexarelin (887 Da). The primary aim of this paper was to investigate if paracellular permeability enhancers affected the intestinal permeation of the two peptides. This was investigated using the rat single-pass intestinal perfusion model with concomitant blood sampling. These luminal compositions included two paracellular permeation enhancers, chitosan (5 mg/mL) and ethylenediaminetetraacetate (EDTA, 1 and 5 mg/mL), as well as low luminal tonicity (100 mOsm) with or without lidocaine. Effects were evaluated by the change in lumen-to-blood permeability of hexarelin and enalaprilat, and the blood-to-lumen clearance of (51)chromium-labeled EDTA (CLCr-EDTA), a clinical marker for mucosal barrier integrity. The two paracellular permeation enhancers increased the mucosal permeability of both peptide drugs to a similar extent. The data in this study suggests that the potential for paracellular permeability enhancers to increase intestinal absorption of hydrophilic peptides with low molecular mass is greater than for those with transcellular mechanism-of-action. Further, the mucosal blood-to-lumen flux of Cr-51-EDTA was increased by the two paracellular permeation enhancers and by luminal hypotonicity. In contrast, luminal hypotonicity did not affect the lumen-to-blood transport of enalaprilat and hexarelin. This suggests that hypotonicity affects paracellular solute transport primarily in the mucosal crypt region, as this area is protected from luminal contents by a constant water flow from the crypts.

    Download full text (pdf)
    fulltext
  • 5.
    Dahlgren, David
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Roos, Carl
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Peters, Karsten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Lundqvist, A.
    AstraZeneca R&D, Gothenburg, Sweden.
    Tannergren, C.
    AstraZeneca R&D, Gothenburg, Sweden.
    Sjögren, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Sjöblom, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Lennernäs, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Evaluation of drug permeability calculation based on luminal disappearance and plasma appearance in the rat single-pass intestinal perfusion model2019In: European journal of pharmaceutics and biopharmaceutics, ISSN 0939-6411, E-ISSN 1873-3441, Vol. 142, p. 31-37Article in journal (Refereed)
    Abstract [en]

    The rat single-pass intestinal perfusion (SPIP) model is commonly used to investigate gastrointestinal physiology and membrane drug transport. The SPIP model can be used with the intestinal segment inside or outside the abdomen. The rats can also be treated with parecoxib, a selective cycloxygenase-2 inhibitor that has been shown to affect some intestinal functions following abdominal surgery, such as motility, epithelial permeability, fluid flux and ion transport. However, the impact of extra-abdominal placement of the intestinal segment in combination with parecoxib on intestinal drug transport has not been investigated. There is also uncertainty how well intestinal permeability determinations based on luminal drug disappearance and plasma appearance correlate in the rat SPIP model. The main objective of this rat in vivo study was to investigate the effect of intra- vs. extra abdominal SPIP, with and without, pretreatment with parecoxib. The effect was evaluated by determining the difference in blood-to-lumen Cr-51-EDTA clearance, lumen-to-blood permeability of a cassette-dose of four model compounds (atenolol, enalaprilat, ketoprofen, and metoprolol), and water flux. The second objective was to compare the jejunal permeability values of the model drugs when determined based on luminal disappearance or plasma appearance. The study showed that the placement of the perfused jejunal segment, or the treatment with parecoxib, had minimal effects on membrane permeability and water flux. It was also shown that intestinal permeability of low permeability compounds should be determined on the basis of data from plasma appearance rather than lumina] disappearance. If permeability is calculated on the basis of luminal disappearance, it should preferably include negative values to increase the accuracy in the determinations.

  • 6.
    Dahlgren, David
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Sjöblom, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Hedeland, Mikael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry. Natl Vet Inst SVA, S-75189 Uppsala, Sweden..
    Lennernäs, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    The In Vivo Effect of Transcellular Permeation Enhancers on the Intestinal Permeability of Two Peptide Drugs Enalaprilat and Hexarelin2020In: Pharmaceutics, E-ISSN 1999-4923, Vol. 12, no 2, article id 99Article in journal (Refereed)
    Abstract [en]

    Permeation enhancers like sodium dodecyl sulfate (SDS) and caprate increase the intestinal permeability of small model peptide compounds, such as enalaprilat (349 Da). However, their effects remain to be investigated for larger low-permeability peptide drugs, such as hexarelin (887 Da). The objective of this single-pass perfusion study in rat was to investigate the effect of SDS at 5 mg/mL and of caprate administered at different luminal concentrations (5, 10, and 20 mg/mL) and pH (6.5 and 7.4). The small intestinal permeability of enalaprilat increased by 8- and 9-fold with SDS at 5 mg/mL and with caprate at 10 and 20 mg/mL but only at pH 7.4, where the free dissolved caprate concentration is higher than at pH 6.5 (5 vs. 2 mg/mL). Neither SDS nor caprate at any of the investigated luminal concentrations enhanced absorption of the larger peptide hexarelin. These results show that caprate requires doses above its saturation concentration (a reservoir suspension) to enhance absorption, most likely because dissolved caprate itself is rapidly absorbed. The absent effect on hexarelin may partly explain why the use of permeation enhancers for enabling oral peptide delivery has largely failed to evolve from in vitro evaluations into approved oral products. It is obvious that more innovative and effective drug delivery strategies are needed for this class of drugs.

    Download full text (pdf)
    FULLTEXT01
  • 7.
    Dahlgren, David
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Sjöblom, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Lennernäs, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Intestinal absorption-modifying excipients: A current update on preclinical in vivo evaluations2019In: European journal of pharmaceutics and biopharmaceutics, ISSN 0939-6411, E-ISSN 1873-3441, Vol. 142, p. 411-420Article in journal (Refereed)
    Abstract [en]

    Pharmaceutical excipients in drug products are defined as pharmacologically inactive and are integral constituents of all types of oral dosage forms. However, some excipients may increase drug absorption by interacting with the mucosal membrane. If the strategy is to use an excipient with a potential to affect the processes determining the rate and/or extent of the intestinal drug absorption, it is defined as an absorption-modifying excipients (AME). These pharmaceutical excipients may act as AMEs, depending on the amounts applied, and accordingly influence bioequivalence assessment of innovative and generic drug products, as well as enable oral delivery of peptides and oligonucleotides. This review discusses the mechanisms by which AMEs increase drug absorption, and especially permeation step. The focus is on the most recent data regarding how AMEs can be evaluated in preclinical models, with an emphasis on in situ and in vivo intestinal absorption models. The in vivo predictive value of these models is reviewed for five factors of clinical relevance for the intestinal absorption performance: (a) effect and response rate of AMEs, (b) mucosal exposure time and intestinal transit of AMEs, (c) intraluminal AME dilution and prandial state, (d) mucosa] recovery and safety, and (e) variability in the effects of the AMEs. We argue that any preclinical investigations of AMEs that fail to consider these processes will ultimately be of limited clinical value and add little to our understanding of how excipients affect intestinal drug absorption.

  • 8.
    Peters, Karsten
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Dahlgren, David
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Drug Design and Discovery. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Egerszegi, Peter Pal
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Lennernäs, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Drug Design and Discovery. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Sjöblom, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Protective Effects of Melatonin and Misoprostol against Experimentally Induced Increases in Intestinal Permeability in Rats2022In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 23, no 6, article id 2912Article in journal (Refereed)
    Abstract [en]

    Intestinal mucosal barrier dysfunction caused by disease and/or chemotherapy lacks an effective treatment, which highlights a strong medical need. Our group has previously demonstrated the potential of melatonin and misoprostol to treat increases in intestinal mucosal permeability induced by 15-min luminal exposure to a surfactant, sodium dodecyl sulfate (SDS). However, it is not known which luminal melatonin and misoprostol concentrations are effective, and whether they are effective for a longer SDS exposure time. The objective of this single-pass intestinal perfusion study in rats was to investigate the concentration-dependent effect of melatonin and misoprostol on an increase in intestinal permeability induced by 60-min luminal SDS exposure. The cytoprotective effect was investigated by evaluating the intestinal clearance of Cr-51-labeled EDTA in response to luminal SDS as well as a histological evaluation of the exposed tissue. Melatonin at both 10 and 100 mu M reduced SDS-induced increase in permeability by 50%. Misoprostol at 1 and 10 mu M reduced the permeability by 50 and 75%, respectively. Combination of the two drugs at their respective highest concentrations had no additive protective effect. These in vivo results support further investigations of melatonin and misoprostol for oral treatments of a dysfunctional intestinal barrier.

    Download full text (pdf)
    FULLTEXT01
  • 9.
    Peters, Karsten
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Dahlgren, David
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Lennernäs, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Sjöblom, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Melatonin-Activated Receptor Signaling Pathways Mediate Protective Effects on Surfactant-Induced Increase in Jejunal Mucosal Permeability in Rats2021In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 22, no 19, article id 10762Article in journal (Refereed)
    Abstract [en]

    A well-functional intestinal mucosal barrier can be compromised as a result of various diseases, chemotherapy, radiation, and chemical exposures including surfactants. Currently, there are no approved drugs targeting a dysfunctional intestinal barrier, which emphasizes a significant medical need. One candidate drug reported to regulate intestinal mucosal permeability is melatonin. However, it is still unclear if its effect is primarily receptor mediated or antioxidative, and if it is associated with enteric neural pathways. The aim of this rat intestinal perfusion study was to investigate the mechanisms of melatonin and nicotinic acetylcholine receptors on the increase in intestinal mucosal clearance of Cr-51-labeled ethylenediaminetetraacetate induced by 15 min luminal exposure to the anionic surfactant, sodium dodecyl sulfate. Our results show that melatonin abolished the surfactant-induced increase in intestinal permeability and that this effect was inhibited by luzindole, a melatonin receptor antagonist. In addition, mecamylamine, an antagonist of nicotinic acetylcholine receptors, reduced the surfactant-induced increase in mucosal permeability, using a signaling pathway not influenced by melatonin receptor activation. In conclusion, our results support melatonin as a potentially potent candidate for the oral treatment of a compromised intestinal mucosal barrier, and that its protective effect is primarily receptor-mediated.

    Download full text (pdf)
    FULLTEXT01
  • 10.
    Roos, Carl
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Dahlgren, David
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Sjögren, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Sjöblom, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Hedeland, Mikael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry. Natl Vet Inst SVA, Dept Chem Environm & Feed Hyg, S-75189 Uppsala, Sweden.
    Lennernäs, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Effects of absorption-modifying excipients on jejunal drug absorption in simulated fasted and fed luminal conditions2019In: European journal of pharmaceutics and biopharmaceutics, ISSN 0939-6411, E-ISSN 1873-3441, Vol. 142, p. 387-395Article in journal (Refereed)
    Abstract [en]

    Oral administration of drug products is the preferred administration route. In recent decades there has been an increase in drug candidates with low solubility and/or low permeability. To increase the possibility of oral administration for the poorly permeating drugs, the use of absorption modifying excipients (AMEs) has been proposed. These types of AMEs may also affect the regulatory assessment of a novel drug delivery system if they affect the absorption of a drug from any of the four BCS classes. The effects of AMEs have previously been investigated in various animal models, including the single-pass intestinal perfusion (SPIP) in rats. To further improve the biorelevance and the in vivo predictiveness of the SPIP model, four compounds (atenolol, enalaprilat, ketoprofen, metoprolol) were perfused in fasted or fed state simulated intestinal fluid (FaSSIF or FeSSIF) together with the AMEs N-acetyl-cysteine, caprate, or sodium dodecyl sulfate. For the highly soluble and poorly permeating compounds enalaprilat and atenolol (BCS class III), the flux was increased the most by the addition of SDS in both FaSSIF and FeSSIF. For ketoprofen (BCS class II), the flux decreased in the presence of all AMEs in at least one of the perfusion media. The flux of metoprolol (BCS class I) was not affected by any of the excipients in none of simulated prandial states. The changes in magnitude in the absorption of the compounds were in general smaller in FeSSIF than in FaSSIF. This may be explained by a reduced free concentration AMEs in FeSSIF. Further, the results in FeSSIF were similar to those from intrajejunal bolus administration in rat in a previous study. This suggests that the biorelevance of the SPIP method may be increased when investigating the effects of AMEs, by the addition of intraluminal constituents representative to fasted and/or fed state to the inlet perfusate.

  • 11.
    Sedin, John
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Dahlgren, David
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Sjöblom, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Nylander, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    The Impact of alpha-Adrenoceptors in the Regulation of the Hypotonicity-Induced Increase in Duodenal Mucosal Permeability In Vivo2021In: Pharmaceutics, E-ISSN 1999-4923, Vol. 13, no 12, article id 2096Article in journal (Refereed)
    Abstract [en]

    The duodenal mucosa is regularly exposed to a low osmolality, and recent experiments suggest that hypotonicity increases mucosal permeability in an osmolality-dependent manner. The aim was to examine whether the sympathetic nervous system, via action on alpha-adrenoceptors, affects the hypotonicity-induced increase in duodenal mucosal permeability. The duodenum of anaesthetised rats was perfused in vivo with a 50 mM NaCl solution in the presence of adrenergic alpha-adrenoceptor drugs. Studied were the effects on mucosal permeability (blood-to-lumen clearance of Cr-51-EDTA), arterial blood pressure, luminal alkalinisation, transepithelial fluid flux, and motility. Hypotonicity induced a six-fold increase in mucosal permeability, a response that was reversible and repeatable. The alpha(2)-adrenoceptor agonist clonidine abolished the hypotonicity-induced increase in mucosal permeability, reduced arterial blood pressure, inhibited duodenal motility, and decreased luminal alkalinisation. The alpha(2)-adrenoceptor antagonists, yohimbine and idazoxan, prevented the inhibitory effect of clonidine on the hypotonicity-induced increase in mucosal permeability. The alpha(1)-agonist phenylephrine or the alpha(1)-antagonist prazosin elicited their predicted effect on blood pressure but did not affect the hypotonicity-induced increase in mucosal permeability. None of the alpha(1)- or alpha(2)-adrenoceptor drugs changed the hypotonicity-induced net fluid absorption. In conclusion, stimulation of the adrenergic alpha(2)-adrenoceptor prevents the hypotonicity-induced increase in mucosal permeability, suggesting that the sympathetic nervous system has the capability to regulate duodenal mucosal permeability.

    Download full text (pdf)
    fulltext
  • 12.
    Seidler, Ursula
    et al.
    Hannover Med Sch, Dept Gastroenterol Hepatol & Endocrinol, Hannover, Germany.
    Nylander, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Sjöblom, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Sjöblom/Nylander: Gastrointestinal Physiology.
    Birnir, Bryndis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Birnir: Molecular Physiology and Neuroscience.
    Herzig, Karl-Heinz
    Univ Oulu, Res Unit Biomed, MRC, Univ Hosp, Oulu, Finland;Univ Oulu, Bioctr Oulu, MRC, Univ Hosp, Oulu, Finland;Poznan Univ Med Sci, Dept Gastroenterol & Metab, Poznan, Poland.
    Gunnar Flemström's legacy in intestinal bicarbonate secretion: A homage to Gunnar Flemström and his work in intestinal bicarbonate secretion2019In: Acta Physiologica, ISSN 1748-1708, E-ISSN 1748-1716, Vol. 227, no 4, article id e13321Article in journal (Other academic)
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf