uu.seUppsala University Publications
Change search
Refine search result
1234 1 - 50 of 186
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aarnio, Mikko
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Ängeby-Möller, Kristina
    Gordh, Torsten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Evaluation of  PET tracers [11C]D-deprenyl, [11C]L-dideuteriumdeprenyl and [18F]FDG for Visualization of Acute Inflammation in a Rat Model of Pain - Preliminary Findings.Manuscript (preprint) (Other academic)
    Abstract [en]

    Purpose: Positron emission tomography with the radioligand [11C]D-deprenyl has shown an increased signal at the location of pain in patients with ankle sprains, rheumatoid arthritis and chronic whiplash injury, but the mechanism of this tracer uptake and its exact binding site in inflammation or tissue injury is still unclear. The aim of this study was to further evaluate [11C]D-deprenyl´s usefulness as a marker of acute inflammation.

    Methods: An animal PET/CT study was performed three days after the induction of a rat model of inflammatory or surgical pain. Fourteen adult male Sprague-Dawley rats and three tracers [11C]D-deprenyl, [11C]L-dideuterumdeprenyl and [18F]fluorodeoxyglucose were used.

    Results: No [11C]D-deprenyl accumulation was seen in a rat model of musculoskeletal pain. In the rat model of inflammatory pain all three ligands were shown to visualize the inflamed ankle joint with much lower uptake in the control ankle joint. The uptake was largest with [11C]D-deprenyl and [11C]L- dideuteriumdeprenyl, where approximately 1 % of the injected dose could be found in the affected ankle joint during the first minutes, whereas the uptake of [18F]FDG was approximately 0.5 % of the injected dose. However, the ratio of uptake of the injected ankle joint versus the control ankle joint was much higher for [18F]FDG (around 10 fold increase) than for the two deprenyl enantiomers (2 – 3 fold increase). The uptake pattern of [11C]D-deprenyl and [11C]L-dideuteriumdeprenyl did not show signs of specific binding or irreversible trapping.

    Conclusions: Contrary to our expectations, of the three tracers only [18F]FDG may be used as markers of peripheral inflammation in a rat model of inflammatory pain. However, as a high site-specificity is required, [11C]D-deprenyl and [11C]L-dideyteriumdeprenyl deserve further exploration regarding sensitivity, specificity and uptake mechanisms in human pain syndromes.

  • 2.
    Aarnio, Mikko
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Linnman, Clas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Fredrikson, Mats
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Lampa, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Gordh, Torsten
    Whiplash injuries associated with experienced pain and disability can be visualized with [11C]-D-deprenyl PET/CTManuscript (preprint) (Other academic)
    Abstract [en]

    The understanding of etiological mechanisms of whiplash associated disorder is still inadequate. Objective visualization and quantification of peripheral musculoskeletal injury and possible painful inflammation in whiplash associated disorder would facilitate diagnosis, strengthen patients’ subjective pain reports and aid clinical decisions eventually leading to better treatments. In the current study, we further evaluated the potential to use [11C]D-deprenyl PET/CT to visualize inflammation after whiplash injury. Sixteen patients with whiplash injury grade II were recruited at the emergency department and underwent [11C]D-deprenyl PET/CT in the acute phase and at 6 months after injury. Subjective pain levels, self rated neck disability and active cervical range of motion were recorded at each imaging session. Results showed that the molecular aspects of inflammation and possible tissue injuries after acute whiplash injury could be visualized, objectively quantified and followed over time with [11C]-D-deprenyl PET/CT. An altered [11C]D-deprenyl uptake in the cervical bone structures and facet joints was associated with subjective pain levels and self rated disability during both imaging occasions. These findings may contribute to a better understanding of affected peripheral structures in whiplash injury and strengthens the idea that PET/CT detectable organic lesions in peripheral tissue may be relevant for the development of persistent pain and disability in whiplash injury.

    Perspective: This article presents a novel way of objectively visualizing possible structural damage and inflammation that cause pain and disability in whiplash injury. This PET method can bring an advance in pain research and eventually would facilitate the clinical management of patients in pain.

  • 3.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Andersson, Karl
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Eek, Annemarie
    Boerman, Otto
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    In Vivo and In Vitro Studies on Renal Uptake of Radiolabeled Affibody Molecules for Imaging of HER2 Expression in Tumors2013In: Cancer Biotherapy and Radiopharmaceuticals, ISSN 1084-9785, E-ISSN 1557-8852, Vol. 28, no 3, p. 187-195Article in journal (Refereed)
    Abstract [en]

    Affibody molecules (6-7 kDa) are a new class of small robust three-helical scaffold proteins. Radiolabeled subnanomolar anti-HER2 affibody Z(HER2:342) was developed for imaging of HER2 expression in tumors, and a clinical study has demonstrated that the In-111- and Ga-68-labeled affibody molecules can efficiently detect HER2 expressing metastases in breast cancer patients. However, a significant renal accumulation of radioactivity after systemic injection of a radiolabeled anti-HER2 affibody conjugate is observed. The aim of this study was to investigate the mechanism of renal reabsorption of anti-HER2 affibody at the molecular level. Renal accumulation of radiolabeled anti-HER2 affibody molecules was studied in a murine model and in vitro using opossum-derived proximal tubule (OK) cells. It was found that kidney reabsorption of affibody molecule was not driven by megalin/cubilin. Amino acids in the target-binding side of affibody molecule were involved in binding to OK cells. On OK cells, two types of receptors for anti-HER2 affibody molecule were found: K-D1 = 0.8 nM, B-max1 = 71,500 and K-D2 = 9.2 nM, B-max2 = 367,000. The results of the present study indicate that affibody molecule and other scaffold-based targeting proteins with a relatively low kidney uptake can be selected using in vitro studies with tubular kidney cells.

  • 4.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Wållberg, Helena
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Strand, Joanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Medical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Löfblom, John
    Larsson, Erik
    Strand, Sven-Erik
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Ståhl, Stefan
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    188Re-ZHER2:V2, a promising affibody-based targeting agent against HER2-expressing tumors: preclinical assessment2014In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 55, no 11, p. 1842-1848Article in journal (Refereed)
    Abstract [en]

    Affibody molecules are small (7 kDa) nonimmunoglobulin scaffold proteins with favorable tumor-targeting properties. Studies concerning the influence of chelators on biodistribution of 99mTc-labeled Affibody molecules demonstrated that the variant with a C-terminal glycyl-glycyl-glycyl-cysteine peptide–based chelator (designated ZHER2:V2) has the best biodistribution profile in vivo and the lowest renal retention of radioactivity. The aim of this study was to evaluate 188Re-ZHER2:V2 as a potential candidate for radionuclide therapy of human epidermal growth factor receptor type 2 (HER2)–expressing tumors.

    Methods:

    ZHER2:V2 was labeled with 188Re using a gluconate-containing kit. Targeting of HER2-overexpressing SKOV-3 ovarian carcinoma xenografts in nude mice was studied for a dosimetry assessment.

    Results:

    Binding of 188Re-ZHER2:V2 to living SKOV-3 cells was demonstrated to be specific, with an affinity of 6.4 ± 0.4 pM. The biodistribution study showed a rapid blood clearance (1.4 ± 0.1 percentage injected activity per gram [%ID/g] at 1 h after injection). The tumor uptake was 14 ± 2, 12 ± 2, 5 ± 2, and 1.8 ± 0.5 %IA/g at 1, 4, 24, and 48 h after injection, respectively. The in vivo targeting of HER2-expressing xenografts was specific. Already at 4 h after injection, tumor uptake exceeded kidney uptake (2.1 ± 0.2 %IA/g). Scintillation-camera imaging showed that tumor xenografts were the only sites with prominent accumulation of radioactivity at 4 h after injection. Based on the biokinetics, a dosimetry evaluation for humans suggests that 188Re-ZHER2:V2 would provide an absorbed dose to tumor of 79 Gy without exceeding absorbed doses of 23 Gy to kidneys and 2 Gy to bone marrow. This indicates that future human radiotherapy studies may be feasible.

    Conclusion:

    188Re-ZHER2:V2 can deliver high absorbed doses to tumors without exceeding kidney and bone marrow toxicity limits.

  • 5.
    Andersson, Camilla
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Wassberg, Cecilia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Johansson, Silvia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Wikehult, Björn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Education in Nursing.
    18F-Fluorid-PET-CT: Patient expectations and experiences2013In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 40, no Suppl. 2, p. S510-S510Article in journal (Other academic)
  • 6.
    Andersson, Camilla
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Wassberg, Cecilia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Johansson, Silvia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Wikehult, Björn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Education in Nursing.
    Patient expectations and experiences of 18F-FDG-PET-CT: A need for improvement2012In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 39, no S2, p. S207-S207Article in journal (Other academic)
  • 7. Andersson, Jesper L
    et al.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Valind, Sven
    A method for coregistration of PET and MR brain images1995In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 36, no 7, p. 1307-1315Article in journal (Refereed)
    Abstract [en]

    Combining MRI morphological data with functional PET data offers significant advantages in research as well as in many clinical situations. Automatic methods are needed, however, to coregister the data from the two modalities.

    METHODS:

    Simulated PET images were created by simple and automatic segmentation of MR images followed by the assignment of different uptake values to various tissue types. The simulated PET images were registered to actual PET images using a pixel-by-pixel, PET-PET registration method. The transformation matrix was then applied to the MR images. The method was used to register MRI data to PET transmission scans and emission scans obtained with FDG, nomifensine and raclopride. Validation was performed by comparing the results to those obtained by matching internal points manually defined in both volumes.

    RESULTS:

    Emission and transmission PET images were successfully registered to MR data. Comparison to the manual method indicated a registration accuracy on the order of 1-2 mm in each direction. No difference in accuracy between the different tracers was found. The error sensitivity for the method's assumptions seemed to be sufficiently low to allow complete automation of the method.

    CONCLUSION:

    We present a rapid, robust and fully automated method to register PET and MR brain images with sufficient accuracy for most clinical applications.

  • 8. Andersson, Ken G.
    et al.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Malm, Magdalena
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lofblom, John
    Stahl, Stefan
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Comparative evaluation of 111In-labeled NOTA‑conjugated affibody molecules for visualization of HER3 expression in malignant tumors2015In: Oncology Reports, ISSN 1021-335X, E-ISSN 1791-2431, Vol. 34, no 2, p. 1042-1048Article in journal (Refereed)
    Abstract [en]

    Expression of human epidermal growth factor receptor type 3 (HER3) in malignant tumors has been associated with resistance to a variety of anticancer therapies. Several anti-HER3 monoclonal antibodies are currently under pre-clinical and clinical development aiming to overcome HER3-mediated resistance. Radionuclide molecular imaging of HER3 expression may improve treatment by allowing the selection of suitable patients for HER3-targeted therapy. Affibody molecules are a class of small (7 kDa) high-affinity targeting proteins with appreciable potential as molecular imaging probes. In a recent study, we selected affibody molecules with affinity to HER3 at a low picomolar range. The aim of the present study was to develop an anti-HER3 affibody molecule suitable for labeling with radiometals. The HEHEHE-Z08698-NOTA and HEHEHE-Z08699-NOTA HER3-specific affibody molecules were labeled with indium-111 (In-111) and assessed in vitro and in vivo for imaging properties using single photon emission computed tomography (SPECT). Labeling of HEHEHE-Z08698-NOTA and HEHEHE-Z08699-NOTA with In-111 provided stable conjugates. In vitro cell tests demonstrated specific binding of the two conjugates to HER3-expressing BT-474 breast carcinoma cells. In mice bearing BT-474 xenografts, the tumor uptake of the two conjugates was receptor-specific. Direct in vivo comparison of In-111-HEHEHE-Z08698-NOTA and In-111-HEHEHE-Z08699-NOTA demonstrated that the two conjugates provided equal radioactivity uptake in tumors, although the tumor-to-blood ratio was improved for In-111-HEHEHE-Z08698-NOTA [12 +/- 3 vs. 8 +/- 1,4 h post injection (p.i)] due to more efficient blood clearance. In-111-HEHEHE-Z08698-NOTA is a promising candidate for imaging of HER3-expression in malignant tumors using SPECT. Results of the present study indicate that this conjugate could be used for patient stratification for anti-HER3 therapy.

  • 9.
    Antoni, Gunnar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Axelsson, Jan
    Carlson, Kristina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Lindsjö, Lars
    Kero, Tanja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Granstam, Sven-Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Rosengren, Sara
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Vedin, Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center.
    Wassberg, Cecilia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Wikström, Gerhard
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cardiology.
    Westermark, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    In Vivo Visualization of Amyloid Deposits in the Heart with 11C-PIB and PET2013In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 54, no 2, p. 213-220Article in journal (Refereed)
    Abstract [en]

    Cardiac amyloidosis is a differential diagnosis in heart failure and is associated with high mortality. There is currently no noninvasive imaging test available for specific diagnosis. N-[methyl-11C]2-(4′-methylamino-phenyl)-6-hydroxybenzothiazole (11C-PIB) PET is used in the evaluation of brain amyloidosis. We evaluated the potential use of 11C-PIB PET in systemic amyloidosis affecting the heart.

    Methods:

    Patients (n = 10) diagnosed with systemic amyloidosis—including heart involvement of either monoclonal immunoglobulin light-chain (AL) or transthyretin (ATTR) type—and healthy volunteers (n = 5) were investigated with PET/CT using 11C-PIB to study cardiac amyloid deposits and with 11C-acetate to measure myocardial blood flow to study the impact of global and regional perfusion on PIB retention.

    Results:

    Myocardial 11C-PIB uptake was visually evident in all patients 15–25 min after injection and was not seen in any volunteer. A significant difference in 11C-PIB retention in the heart between patients and healthy controls was found. The data indicate that myocardial amyloid deposits in patients diagnosed with systemic amyloidosis could be visualized with 11C-PIB. No correlation between 11C-PIB retention index and myocardial blood flow as measured with 11C-acetate was found on the global level, whereas a positive correlation on the segmental level was seen in a single patient.

    Conclusion:

    11C-PIB and PET could be a method to study systemic amyloidosis of type AL and ATTR affecting the heart and should be investigated further both as a diagnostic tool and as a noninvasive method for treatment follow-up.

  • 10. Antoni, Gunnar
    et al.
    Omura, H
    Bergström, Mats
    Furuya, Y
    Moulder, R
    Roberto, A
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Watanabe, Y
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Synthesis of l-2,4-Diamino[4-11C]butyric acid and its use in some In vitro and In vivo tumour models1997In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 24, no 6, p. 595-601Article in journal (Refereed)
    Abstract [en]

    l-2,4-Diamino[4-11C]butyric acid (DAB) was synthesized by an enzyme catalysed carrier added (0.1 μmol KCN) reaction of hydrogen [11C]cyanide with O-acetyl-l-serine followed by reduction. l-[11C]DAB was obtained with a radiochemical purity higher than 96% and with a decay corrected radiochemical yield of 30–40% within a 32 min reaction time. The enantiomeric excess was 98%. The uptake of l-[11C]DAB was investigated in multicellular aggregates of six different cell lines and animal tumour models. l-[11C]DAB is potentially useful for the assessment of pharmacokinetics of l-DAB in vivo for part of its evaluation as an antitumoural agent, although its use for diagnostic purposes seems limited.

  • 11.
    Antoni, Gunnar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Selvaraju, Ramkumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Borg, Beatrice
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Asplund, Veronika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    5-Fluoro-[beta-C-11]-L-tryptophan is a functional analogue of 5-hydroxy-[beta-C-11]-L-tryptophan in vitro but not in vivo2013In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 56, no S1, p. S367-S367Article in journal (Other academic)
  • 12. Antoni, Gunnar
    et al.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Molecular Imaging of Transporters with Positron Emission Tomography2009In: Transporters as Targets for Drugs, Berlin: Springer, 2009, Vol. 4, p. 155-186Chapter in book (Refereed)
    Abstract [en]

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug–Pgp interactions, although [11C]verapamil and [18F]fluoropaclitaxel are probably restricted to use in studies of the blood–brain barrier. The vesicular monoamine transporter 2 (VMAT2) is another interesting target for diagnostic imaging and [11C]DTBZ is a promising tracer. The noninvasive imaging of transporter density as a function of disease progression or availability following interaction with blocking drugs is highlighted, including the impact on both development of new therapies and the process of developing new drugs. Although CNS-related work focusing on psychiatric disorders is the main focus of this review, other applications of PET ligands, such as diagnosis of cancer, diabetes research, and drug interactions with efflux systems, are also discussed. The use of PET especially in terms of tracer development is briefly described. Finally, it can be concluded that there is an urgent need for new, selective radioligands for the study of the transporter systems in the human brain using PET.

  • 13.
    Antonodimitrakis, Pantelis
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Wassberg, Cecilia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Gerovasileiou, Spyridon
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Back, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology.
    Hallgren, Roger
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Olsen, Björn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Infectious Diseases.
    Fulminant hemophagocytic lymphohistiocytosis secondary to a reactivated EBV infection: A case report2013In: Upsala Journal of Medical Sciences, ISSN 0300-9734, E-ISSN 2000-1967, Vol. 118, no 1, p. 42-45Article in journal (Refereed)
    Abstract [en]

    Hemophagocytic lymphohistiocytosis (HLH) is an aggressive inflammatory syndrome that results from inappropriate activation of the immune system. HLH has a high mortality if not treated. We describe a case of a fulminant HLH, associated with a reactivation of an EBV infection. The patient responded well to steroid treatment.

  • 14.
    Appel, Lieuwe
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Bergström, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Lassen, Jorgen Buus
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Tesofensine, a novel triple monoamine re-uptake inhibitor with anti-obesity effects: Dopamine transporter occupancy as measured by PET2014In: European Neuropsychopharmacology, ISSN 0924-977X, E-ISSN 1873-7862, Vol. 24, no 2, p. 251-261Article in journal (Refereed)
    Abstract [en]

    Tesofensine (TE) is a novel triple monoannine re-uptake inhibitor inducing a potent inhibition of the re-uptake process in the synaptic cleft of the neurotransmitters dopamine, norepinephrine, and serotonin. In recent preclinical and clinical evaluations TE showed a robust anti-obesity effect, but the specific mechanism of this triple monoamine re-uptake inhibitor still needs to be further elucidated. This positron emission tomography (PET) study, using [C-11]beta CIT-FE, aimed to assess the degree of the dopamine transporter (DAT) occupancy, at constant TE plasma levels, following different oral, multiple doses of TE during totally 8-12 days. In addition, the relationships between DAT occupancy and TE plasma concentrations, or doses, were investigated to enable assessment of DAT occupancies in subsequent clinical trials. The results demonstrated that TE induced a dose-dependent blockade of DAT following multiple doses of 0.125-1 mg TE at anticipated steady-state conditions. The mean striatal DAT occupancy varied dose-dependently between 18% and 77%. A signnoid E-max model well described the relationship between striatal DAT occupancy and TE plasma concentrations or doses. It was estimated that the maximum achievable DAT occupancy was about 80% and that half of this effect was accomplished by approximately 0.25 mg TE and a plasma drug concentration of 4 ng/ml. The results indicated an important mechanism of action of TE on DAT. Further, these results suggest that the previously reported dose-dependent weight loss, in TE treated subjects, was in part mediated by an up-regulation of dopaminergic pathways due to enhanced amounts of synaptic dopamine after blockade of DAT.

  • 15.
    Appel, Lieuwe
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Geffen, Yona
    Heurling, Kerstin
    Eriksson, Catarina
    Antoni, Gunnar
    Kapur, Shitij
    BL-1020, a novel antipsychotic candidate with GABA-enhancing effects: D2 receptor occupancy study in humans2009In: European Neuropsychopharmacology, ISSN 0924-977X, E-ISSN 1873-7862, Vol. 19, no 12, p. 841-850Article in journal (Refereed)
    Abstract [en]

    BL-1020 is a potentially novel antipsychotic, which comprises the typical antipsychotic perphenazine linked by an ester bound to gamma-aminobutyric acid (GABA), intending a simultaneous dopamine-2 (D(2)) receptor blockade and GABA facilitation in the brain. This positron emission tomography (PET) study, using [(11)C]raclopride, assessed the extent and duration of D(2) receptor occupancy (D(2) RO) and safety for single doses of BL-1020 in healthy male subjects. Overall, this study did not raise any safety concern. Single doses of 16-32 mg BL-1020 caused a dose dependent striatal D(2) RO. The 32 mg dose of BL-1020 resulted in an average D(2) RO of 44% at 4-6 h post dosing (pd), which declined to 33% at 24 h pd. Equimolar doses of BL-1020 and perphenazine resulted in similar D(2) RO at 24 h pd. Pharmacokinetic-pharmacodynamic analysis predicted that oral once daily administration of 32 mg BL-1020 would result in D(2) ROs ranging from 52 to 66% at a steady state.

  • 16.
    Appel, Lieuwe
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Jonasson, My
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Danfors, Torsten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Nyholm, Dag
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Askmark, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Use of C-11-PE2I PET in Differential Diagnosis of Parkinsonian Disorders2015In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 56, no 2, p. 234-242Article in journal (Refereed)
    Abstract [en]

    In idiopathic Parkinson disease and atypical parkinsonian disorders, central dopaminergic and overall brain functional activity are altered to different degrees, causing difficulties in achieving an unambiguous clinical diagnosis. A dual examination using I-123-FP-CIT (I-123-N-omega-fluoropropyl- 2 beta-carbomethoxy-3 beta-(4-iodophenyl) nortropane, or I-123-ioflupane) SPECT and F-18-FDG PET provides complementary information on dopamine transporter (DAT) availability and overall brain functional activity, respectively. Parametric images based on a single, dynamic C-11-PE2I (N-(3-iodoprop-2E-enyl)-2 beta-carbomethoxy-3 beta-(4-methyl-phenyl) nortropane) scan potentially supply both DAT availability (nondisplaceable binding potential [BPND]) and relative cerebral blood flow (relative delivery [R-1]) at voxel level. This study aimed to evaluate the validity of C-11-PE2I PET against the dual-modality approach using I-123-FP-CIT SPECT and F-18-FDG PET.

    Methods: Sixteen patients with parkinsonian disorders had a dual examination with F-18-FDG PET and I-123-FP-CIT SPECT following clinical routines and additionally an experimental C-11-PE2I PET scan. Parametric BPND and R-1 images were generated using receptor parametric mapping with the cerebellum as a reference. T1-weighted MR imaging was used for automated definition of volumes of interest (VOI). The DAT VOIs included the basal ganglia, whereas the overall brain functional activity was examined using VOIs across the brain. BPND and R-1 values were compared with normalized I-123-FP-CIT and F-18-FDG uptake values, respectively, using Pearson correlations and regression analyses. In addition, 2 masked interpreters evaluated the images visually, in both the routine and the experimental datasets, for comparison of patient diagnoses.

    Results: Parametric C-11-PE2I BPND and R-1 images showed high consistency with I-123-FP-CIT SPECT and F-18-FDG PET images. Correlations between C-11-PE2I BPND and I-123-FP-CIT uptake ratios were 0.97 and 0.76 in the putamen and caudate nucleus, respectively. Regional C-11-PE2I R-1 values were moderately to highly correlated with normalized F-18-FDG values (range, 0.61-0.94). Visual assessment of DAT availability showed a high consistency between C-11-PE2I BPND and I-123-FP-CIT images, whereas the consistency was somewhat lower for appraisal of overall brain functional activity using I-123-FP-CIT and F-18-FDG images. Substantial differences were found between clinical diagnosis and both neuro-imaging diagnoses.

    Conclusion: A single, dynamic C-11-PE2I PET investigation is a powerful alternative to a dual examination with I-123-FP-CIT SPECT and F-18-FDG PET for differential diagnosis of parkinsonian disorders. A large-scale patient study is, however, needed to further investigate distinct pathologic patterns in overall brain functional activity for various parkinsonian disorders.

  • 17. Bahce, Idris
    et al.
    Smit, Egbert F
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    van der Veldt, Astrid A M
    Yaqub, Maqsood
    Windhorst, Albert D
    Schuit, Robert C
    Thunnissen, Erik
    Heideman, Daniëlle A M
    Postmus, Pieter E
    Lammertsma, Adriaan A
    Hendrikse, N Harry
    Development of [11C]erlotinib Positron Emission Tomography for In Vivo Evaluation of EGF Receptor Mutational Status2013In: Clinical Cancer Research, ISSN 1078-0432, E-ISSN 1557-3265, Vol. 19, no 1, p. 183-193Article in journal (Refereed)
    Abstract [en]

    PURPOSE: To evaluate whether, in patients with non-small cell lung carcinoma (NSCLC), tumor uptake of [(11)C]erlotinib can be quantified and imaged using positron emission tomography and to assess whether the level of tracer uptake corresponds with the presence of activating tumor EGF receptor (EGFR) mutations.EXPERIMENTAL DESIGN: Ten patients with NSCLCs, five with an EGFR exon 19 deletion, and five without were scanned twice (test retest) on the same day with an interval of at least 4 hours. Each scanning procedure included a low-dose computed tomographic scan, a 10-minute dynamic [(15)O]H(2)O scan, and a 1-hour dynamic [(11)C]erlotinib scan. Data were analyzed using full tracer kinetic modeling. EGFR expression was evaluated using immunohistochemistry.RESULTS: The quantitative measure of [(11)C]erlotinib uptake, that is, volume of distribution (V(T)), was significantly higher in tumors with activating mutations, that is, all with exon 19 deletions (median V(T), 1.76; range, 1.25-2.93), than in those without activating mutations (median V(T), 1.06; range, 0.67-1.22) for both test and retest data (P = 0.014 and P = 0.009, respectively). Good reproducibility of [(11)C]erlotinib V(T) was seen (intraclass correlation coefficient = 0.88). Intergroup differences in [(11)C]erlotinib uptake were not correlated with EGFR expression levels, nor tumor blood flow.CONCLUSION: [(11)C]erlotinib V(T) was significantly higher in NSCLCs tumors with EGFR exon 19 deletions.

  • 18. Bergman, O.
    et al.
    Åhs, Fredrik
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Furmark, Tomas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Appel, Lieuwe
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Linnman, Claes
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Faria, Vanda
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Bani, M.
    Pich, E. M.
    Bettica, P.
    Henningsson, S.
    Manuck, S. B.
    Ferrell, R. E.
    Nikolova, Y. S.
    Hariri, A. R.
    Fredrikson, Mats
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Westberg, L.
    Eriksson, E.
    Association between amygdala reactivity and a dopamine transporter gene polymorphism2014In: Translational Psychiatry, ISSN 2158-3188, E-ISSN 2158-3188, Vol. 4, p. e420-Article in journal (Refereed)
    Abstract [en]

    Essential for detection of relevant external stimuli and for fear processing, the amygdala is under modulatory influence of dopamine (DA). The DA transporter (DAT) is of fundamental importance for the regulation of DA transmission by mediating reuptake inactivation of extracellular DA. This study examined if a common functional variable number tandem repeat polymorphism in the 3' untranslated region of the DAT gene (SLC6A3) influences amygdala function during the processing of aversive emotional stimuli. Amygdala reactivity was examined by comparing regional cerebral blood flow, measured with positron emission tomography and [O-15] water, during exposure to angry and neutral faces, respectively, in a Swedish sample comprising 32 patients with social anxiety disorder and 17 healthy volunteers. In a separate US sample, comprising 85 healthy volunteers studied with blood oxygen level-dependent functional magnetic resonance imaging, amygdala reactivity was assessed by comparing the activity during exposure to threatening faces and neutral geometric shapes, respectively. In both the Swedish and the US sample, 9-repeat carriers displayed higher amygdala reactivity than 10-repeat homozygotes. The results suggest that this polymorphism contributes to individual variability in amygdala reactivity.

  • 19. Bergström, Mats
    et al.
    Juhlin, Claes
    Bonasera, Tomas A
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Rastad, Jonas
    Åkerström, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Endocrine Surgery.
    Långström, Bengt
    PET imaging of adrenal cortical tumors with the 11beta-hydroxylase tracer 11C-metomidate2000In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 41, no 2, p. 275-282Article in journal (Refereed)
    Abstract [en]

    The purpose of the study was to evaluate PET with the tracer 11C-metomidate as a method to identify adrenal cortical lesions.

    METHODS:

    PET with 11C-metomidate was performed in 15 patients with unilateral adrenal mass confirmed by CT. All patients subsequently underwent surgery, except 2 who underwent biopsy only. The lesions were histopathologically examined and diagnosed as adrenal cortical adenoma (n = 6; 3 nonfunctioning), adrenocortical carcinoma (n = 2), and nodular hyperplasia (n = 1). The remaining were noncortical lesions, including 1 pheochromocytoma, 1 myelolipoma, 2 adrenal cysts, and 2 metastases.

    RESULTS:

    All cortical lesions were easily identified because of exceedingly high uptake of 11C-metomidate, whereas the noncortical lesions showed very low uptake. High uptake was also seen in normal adrenal glands and in the stomach. The uptake was intermediate in the liver and low in other abdominal organs. Images obtained immediately after tracer injection displayed high uptake in the renal cortex and spleen. The tracer uptake in the cortical lesions increased throughout the examination. For quantitative evaluation of tracer binding in individual lesions, a model with the splenic radioactivity concentration assigned to represent nonspecific uptake was applied. Values derived with this method, however, did show the same specificity as the simpler standardized uptake value concept, with similar difference observed for cortical versus noncortical lesions.

    CONCLUSION:

    PET with 11C-metomidate has the potential to be an attractive method for the characterization of adrenal masses with the ability to discriminate lesions of adrenal cortical origin from noncortical lesions.

  • 20.
    Bergström, Mats
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Khan, Tanweera Shaheena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Juhlin, Claes
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Bonasera, T.A.
    Fasth, K.-J.
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    PET with [11C]-Metomidate for the Visualization of Adrenocortical Tumors and Discrimination from Other Lesions1999In: Clinical Positron Imaging, ISSN 1095-0397, E-ISSN 1878-5751, Vol. 2, no 6, p. 339-Article in journal (Refereed)
    Abstract [en]

    Purpose:

    The purpose of the study was to evaluate the potential role of PET with the adrenocortical-specific tracer 11C-metomidate in the characterization of incidentally found adrenal cortical lesions and in adrenocortical carcinomas.

    Methods:

    PET with 11C-metomidate was performed in 15 patients with unilateral adrenal mass confirmed by CT (incidentalomas) and in 9 additional patients with adrenocortical cancer. All incidentalomas subsequently underwent surgery, except 2 subjected to biopsy only. These lesions were histopathologically examined and diagnosed as adrenal cortical adenoma (n = 6; 3 nonfunctioning), adrenocortical carcinoma (n = 2) and nodular hyperplasia (n = 1). The remaining were non-cortical lesions including 1 pheochromocytoma, 1 myelolipoma, 2 adrenal cysts, and 2 metastases.

    Results:

    All lesions, except 1, with an adrenocortical origin were easily identified due to exceedingly high uptake of 11C-metomidate, whereas the non-cortical lesions showed very low uptake. The 1 false negative was a cancer that at surgery was found to be extensively necrotic. High uptake was also seen in normal adrenal glands. The tracer uptake kinetics indicated trapping of the tracer in the cortical lesions. For quantitative evaluation of tracer binding in individual lesions, the simple SUV concept was found to be equally accurate as more elaborate kinetic analyses.

    Conclusion:

    The patients presented and altogether over 40 PET investigations have demonstrated 11C-metomidate to be an attractive tracer for the characterization of adrenal masses with the ability to discriminate lesions of adrenal cortical origin from non-cortical lesions. Additionally the method allows the assessment of metastases from adrenocortical cancers, and the very high contrast has allowed partial whole-body examinations.

  • 21.
    Berntsson, Shala Ghaderi
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Falk, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Savitcheva, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Godau, Andrea
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Zetterling, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurosurgery.
    Hesselager, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurosurgery.
    Alafuzoff, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Larsson, Elna-Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Smits, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Perfusion and diffusion MRI combined with (11)C-methionine PET in the preoperative evaluation of suspected adult low-grade gliomas2013In: Journal of Neuro-Oncology, ISSN 0167-594X, E-ISSN 1573-7373, Vol. 114, no 2, p. 241-249Article in journal (Refereed)
    Abstract [en]

    Perfusion and diffusion magnetic resonance imaging (pMRI, dMRI) are valuable diagnostic tools for assessing brain tumors in the clinical setting. The aim of this study was to determine the correlation of pMRI and dMRI with (11)C-methionine positron emission tomography (MET PET) in suspected low-grade gliomas (LGG) prior to surgery. Twenty-four adults with suspected LGG were enrolled in an observational study and examined by MET PET, pMRI and dMRI. Histological tumor diagnosis was confirmed in 23/24 patients (18 gliomas grade II, 5 gliomas grade III). The maximum relative cerebral blood volume (rCBVmax) and the minimum mean diffusivity (MDmin) were measured in tumor areas with highest MET uptake (hotspot) on PET by using automated co-registration of MRI and PET scans. A clearly defined hotspot on PET was present in all 23 tumors. Regions with rCBVmax corresponded with hotspot regions in all tumors, regions with MDmin corresponded with hotspot regions in 20/23 tumors. The correlation between rCBVmax (r = 0.19, P = 0.38) and MDmin (r = -0.41, P = 0.053) with MET uptake in the hotspot was not statistically significant. Taken into account the difficulties of measuring perfusion abnormalities in non-enhancing gliomas, this study demonstrates that co-registered MET PET and pMRI facilitates the identification of regions with rCBVmax. Furthermore, the lack of a clear positive correlation between tumor metabolism in terms of MET uptake and tumor vascularity measured as rCBVmax suggests that combined pMRI/PET provides complementary baseline imaging data in these tumors.

  • 22.
    Beshara, Soheir
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Chemistry.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Långström, Bengt
    PET Centre, University Hospital, Uppsala, Sweden.
    Antoni, Gunnar
    PET Centre, University Hospital, Uppsala, Sweden.
    Danielsson, Bo G.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Internal Medicine.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Pharmacokinetics and red cell utilization of 52Fe/59Fe-labelled iron polymaltose in anaemic patients using positron emission tomography2003In: British Journal of Haematology, ISSN 0007-1048, E-ISSN 1365-2141, Vol. 120, no 5, p. 853-859Article in journal (Other academic)
    Abstract [en]

    Parenteral iron-polysaccharide complexes are increasingly applied. The pharmacokinetics of iron sucrose have been assessed by our group using positron emission tomography (PET). A single intravenous injection of 100 mg iron as iron (III) hydroxide-polymaltose complex, labelled with a tracer in the form of 52Fe/59Fe, was similarly assessed in six patients using PET for about 8 h. Red cell utilization was followed for 4 weeks. Iron polymaltose was similarly distributed to the liver, spleen and bone marrow. However, a larger proportion of this complex was rapidly distributed to the bone marrow. The shorter equilibration phase for the liver, about 25 min, indicates the minimal role of the liver for direct distribution. Splenic uptake also reflected the reticuloendothelial handling of this complex. Red cell utilization ranged from 61% to 99%. Despite the relatively higher uptake by the bone marrow, there was no saturation of marrow transport systems at this dose level. In conclusion, high red cell utilization of iron polymaltose occurred in anaemic patients. The major portion of the injected dose was rapidly distributed to the bone marrow. In addition, the reticuloendothelial uptake of this complex may reflect the safety of polysaccharide complexes. Non-saturation of transport systems to the bone marrow indicated the presence of a large interstitial transport pool, which might possibly be transferrin.

  • 23.
    Blom, Elisabeth
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Muhammad, Taj
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Ding, Chenmin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Nair, Manoj
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Ga-68-Labeling of RGD peptides and biodistribution2012In: International Journal of Clinical and Experimental Medicine, ISSN 1940-5901, E-ISSN 1940-5901, Vol. 5, no 2, p. 165-172Article in journal (Refereed)
    Abstract [en]

    Several peptides comprising Arg-Gly-Asp (RGD) domain and macrocyclic chelator were labeled with Ga-68 for the imaging of angiogenesis. The analogues varied in peptide constitution, linker and chelator type. The labeling efficiency did not vary with the peptide constitution and linker type, but depended on the chelator type. Four of the compounds containing 2,2', 2 '', 2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl) tetraacetic acid (DOTA) chelator were labeled at 90 +/- 5 degrees C using conventional or microwave heating reaching 90% of Ga-68 incorporation after 5 and 2 min respectively, when the concentration of the precursor was 2.5 mu M. The compound having 2,2', 2 ''-(1,4,7-triazonane1,4,7-triyl)triacetic acid (NOTA) as the chelator could be labeled at room temperature within 5 min using 2.5 mu M peptide precursor. Two of the compounds contained a poly (ethylene glycol) (PEG) linker to the chelator. The biodistribution of the analogues was studied in male rats.

  • 24.
    Borges, João Batista
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Ulin, Johan
    Maripuu, Enn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Widström, Charles
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Hedenstierna, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Ventilation Distribution Studies Comparing Technegas and "Gallgas" Using (GaCl3)-Ga-68 as the Label2011In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 52, no 2, p. 206-209Article in journal (Refereed)
    Abstract [en]

    Ventilation distribution can be assessed by SPECT with Technegas. This study was undertaken in piglets with different degrees of ventilation inhomogeneity to compare PET using Ga-68-labeled pseudogas or "Gallgas" with Technegas. Methods: Twelve piglets were studied in 3 groups: control, lobar obstruction, and diffuse airway obstruction. Two more piglets were assessed for lung volume (functional residual capacity). Results: In controls, SPECT and PET images showed an even distribution of radioactivity. With lobar obstruction, the absence of ventilation of the obstructed lobe was visible with both techniques. In diffuse airway obstruction, SPECT images showed an even distribution of radioactivity, and PET images showed more varied radioactivity over the lung. Conclusion: PET provides detailed ventilation distribution images and a better appreciation of ventilation heterogeneity. Gallgas with PET is a promising new diagnostic tool for the assessment of ventilation distribution.

  • 25.
    Bulenga, T. N.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Selvaraju, Ram Kumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Asplund, Veronika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Dosimetry of 68Ga and 177Lu labeled Exendin4-impact on feasibility of repeated PET imaging and radiotherapy2014In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 41, no S2, p. S293-S293, article id OP607Article in journal (Other academic)
  • 26. Caroli, A.
    et al.
    Prestia, A.
    Galluzzi, S.
    Ferrari, C.
    van der Flier, W. M.
    Ossenkoppele, R.
    Van Berckel, B.
    Barkhof, F.
    Teunissen, C. E.
    Wall, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Carter, S. F.
    Scholl, M.
    Choo, I. H.
    Grimmer, T.
    Nordberg, A.
    Scheltens, P.
    Drzezga, A.
    Frisoni, G. B.
    Mild cognitive impairment with suspected non AD pathology (SNAP): prediction of progression to dementia2014In: Journal of Neurology, ISSN 0340-5354, E-ISSN 1432-1459, Vol. 261, no S1, p. S14-S14, article id OS1103Article in journal (Other academic)
  • 27. Caroli, A.
    et al.
    Prestia, A.
    Galluzzi, S.
    Ferrari, C.
    van der Flier, W. M.
    Ossenkoppele, R.
    Van Berckel, B.
    Barkhof, F.
    Teunissen, C. E.
    Wall, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Carter, S. F.
    Scholl, M.
    Choo, I. H.
    Grimmer, T.
    Nordberg, A.
    Scheltens, P.
    Drzezga, A.
    Frisoni, G. B.
    Mild cognitive impairment with suspected non AD pathology (SNAP): prediction of progression to dementia2014In: European Journal of Neurology, ISSN 1351-5101, E-ISSN 1468-1331, Vol. 21, p. 19-19Article in journal (Other academic)
  • 28. Caroli, Anna
    et al.
    Prestia, Annapaola
    Galluzzi, Samantha
    Ferrari, Clarissa
    van der Flier, Wiesje M.
    Ossenkoppele, Rik
    Van Berckel, Bart
    Barkhof, Frederik
    Teunissen, Charlotte
    Wall, Anders E.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Carter, Stephen F.
    Schoell, Michael
    Choo, Il Han
    Grimmer, Timo
    Redolfi, Alberto
    Nordberg, Agneta
    Scheltens, Philip
    Drzezga, Alexander
    Frisoni, Giovanni B.
    Mild cognitive impairment with suspected nonamyloid pathology (SNAP) Prediction of progression2015In: Neurology, ISSN 0028-3878, E-ISSN 1526-632X, Vol. 84, no 5, p. 508-515Article in journal (Refereed)
    Abstract [en]

    Objectives:The aim of this study was to investigate predictors of progressive cognitive deterioration in patients with suspected non-Alzheimer disease pathology (SNAP) and mild cognitive impairment (MCI).Methods:We measured markers of amyloid pathology (CSF -amyloid 42) and neurodegeneration (hippocampal volume on MRI and cortical metabolism on [F-18]-fluorodeoxyglucose-PET) in 201 patients with MCI clinically followed for up to 6 years to detect progressive cognitive deterioration. We categorized patients with MCI as A+/A- and N+/N- based on presence/absence of amyloid pathology and neurodegeneration. SNAPs were A-N+ cases.Results:The proportion of progressors was 11% (8/41), 34% (14/41), 56% (19/34), and 71% (60/85) in A-N-, A+N-, SNAP, and A+N+, respectively; the proportion of APOE epsilon 4 carriers was 29%, 70%, 31%, and 71%, respectively, with the SNAP group featuring a significantly different proportion than both A+N- and A+N+ groups (p 0.005). Hypometabolism in SNAP patients was comparable to A+N+ patients (p = 0.154), while hippocampal atrophy was more severe in SNAP patients (p = 0.002). Compared with A-N-, SNAP and A+N+ patients had significant risk of progressive cognitive deterioration (hazard ratio = 2.7 and 3.8, p = 0.016 and p < 0.001), while A+N- patients did not (hazard ratio = 1.13, p = 0.771). In A+N- and A+N+ groups, none of the biomarkers predicted time to progression. In the SNAP group, lower time to progression was correlated with greater hypometabolism (r = 0.42, p = 0.073).Conclusions:Our findings support the notion that patients with SNAP MCI feature a specific risk progression profile.

  • 29. Choo, Il Han
    et al.
    Ni, Ruiqing
    Scholl, Michael
    Wall, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Almkvist, Ove
    Nordberg, Agneta
    Combination of F-18-FDG PET and Cerebrospinal Fluid Biomarkers as a Better Predictor of the Progression to Alzheimer's Disease in Mild Cognitive Impairment Patients2013In: Journal of Alzheimer's Disease, ISSN 1387-2877, E-ISSN 1875-8908, Vol. 33, no 4, p. 929-939Article in journal (Refereed)
    Abstract [en]

    The biomarker-based new diagnostic criteria have been proposed for Alzheimer's disease (AD) spectrum. However, any biomarker alone has not been known to have satisfactory AD predictability. We explored the best combination model with baseline demography, neuropsychology, F-18-fluorodeoxyglucose positron emission tomography (FDG-PET), cerebrospinal fluid (CSF) biomarkers, and apolipoprotein E (APOE) genotype evaluation to predict progression to AD in mild cognitive impairment (MCI) patients. Alongitudinal clinical follow-up (mean, 44 months; range, 1.6-161.7 months) of MCI patients was done. Among 83 MCI patients, 26 progressed to AD (MCI-AD) and 51 did not deteriorate (MCI-Stable). We applied that univariate and multivariate logistic regression analyses, and multistep model selection for AD predictors including biomarkers. In univariate logistic analysis, we selected age, Rey Auditory Verbal Retention Test, parietal glucose metabolic rate, CSF total tau, and presence or not of at least one APOE epsilon 4 allele as predictors. Through multivariate stepwise logistic analysis and model selection, we found the combination of parietal glucose metabolic rate and total tau representing the best model for AD prediction. In conclusion, our findings highlight that the combination of regional glucose metabolic assessment by PET and CSF biomarkers evaluation can significantly improve AD predictive diagnostic accuracy of each respective method.

  • 30. Danad, I.
    et al.
    Raijmakers, P. G.
    Appelman, Y. E.
    Harms, H. J.
    De Haan, S.
    Van Den Oever, M. L. P.
    Heymans, M. W.
    Tulevski, I. I.
    Van Kuijk, C.
    Hoekstra, O. S.
    Lammertsma, A. A.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Van Rossum, A. C.
    Knaapen, P.
    Hybrid imaging using quantitative H2 15O PET and CT-based coronary angiography for the detection of coronary artery disease2013In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 54, no 1, p. 55-63Article in journal (Refereed)
    Abstract [en]

    Hybrid imaging using PET in conjunction with CT-based coronary angiography (PET/CTCA) enables near-simultaneous quantification of myocardial blood flow (MBF) and anatomical evaluation of coronary arteries. CTCA is an excellent imaging modality to rule out obstructive coronary artery disease (CAD), but functional assessment is warranted in the presence of a CTCA-observed stenosis because the specificity of CTCA is relatively low. Quantitative H 2 15O PET/CTCA may yield complementary information and enhance diagnostic accuracy. The purpose of this study was to evaluate the diagnostic accuracy of quantitative H2 15O PET/CTCA in a clinical cohort of patients with suspected CAD who underwent both cardiac H 2 15O PET/CTCA and invasive coronary angiography (ICA). In addition, this study aimed to evaluate and compare the accuracy of hyperemic MBF versus coronary flow reserve (CFR). Methods: Patients (n = 120; mean age ± SD, 61 ± 10 y; 77 men and 43 women) with a predominantly intermediate pretest likelihood for CAD underwent both quantitative H 2 15O PET/CTCA and ICA. A ≥50% stenosis at ICA or a fractional flow reserve ≤ 0.80 was considered significant. Results: Obstructive CAD was diagnosed in 49 of 120 patients (41%). The diagnostic accuracy of hyperemic MBF was significantly higher than CFR (80% vs. 68%, respectively, P = 0.02), with optimal cutoff values of 1.86 mL/min/g and 2.30, respectively. On a per-patient basis, the sensitivity, specificity, negative predictive value, and positive predictive value of CTCA were 100%, 34%, 100%, and 51%, respectively, as compared with 76%, 83%, 83%, and 76%, respectively, for quantitative hyperemic MBF PET. Quantitative H2 15O PET/CTCA reduced the number of false-positive CTCA studies from 47 to 6, although 12 of 49 true-positive CTCAs were incorrectly reclassified as false-negative hybrid scans on the basis of (presumably) sufficient hyperemic MBF. Compared with CTCA (61%) or H2 15O PET (80%) alone (both P &lt; 0.05), the hybrid approach significantly improved diagnostic accuracy (85%). Conclusion: The diagnostic accuracy of quantitative H 2 15O PET/CTCA is superior to either H2 15O PET or CTCA alone for the detection of clinically significant CAD. Hyperemic MBF was more accurate than CFR, implying that a single measurement of MBF in diagnostic protocols may suffice.

  • 31. Danad, I.
    et al.
    Raijmakers, P. G.
    Appelman, Y. E.
    Harms, H. J.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Tulevski, I. I.
    Hoekstra, O. S.
    Lammertsma, A. A.
    Van Rossum, A. C.
    Knaapen, P.
    Diagnostic accuracy of quantitative H215O PET measurements of hyperemic myocardial blood flow versus coronary flow reserve for the detection of obstructive coronary artery disease2012In: European Heart Journal, ISSN 0195-668X, E-ISSN 1522-9645, Vol. 33, no Suppl 1, p. 1019-1019Article in journal (Other academic)
  • 32. Danad, I.
    et al.
    Raijmakers, P. G.
    Appelman, Y. E.
    Harms, H. J.
    Van Kuijk, C.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Lammertsma, A. A.
    Tulevski, I. I.
    Van Rossum, A. C.
    Knaapen, P.
    Diagnostic accuracy of hybrid quantitative H215O PET/CT imaging for the detection of coronary artery disease2012In: European Heart Journal, ISSN 0195-668X, E-ISSN 1522-9645, Vol. 33, no Suppl 1, p. 1018-1018Article in journal (Other academic)
  • 33. Danad, I.
    et al.
    Raijmakers, P. G.
    Harms, H. J.
    Heymans, M. W.
    Van Royen, N.
    Lammetsma, A. A.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Van Rossum, A. C.
    Knaapen, P.
    Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: a H215O PET study2013In: European Heart Journal, ISSN 0195-668X, E-ISSN 1522-9645, Vol. 34, no S1, p. 170-170Article in journal (Other academic)
  • 34. Danad, I.
    et al.
    Raijmakers, P. G.
    Kamali, P.
    Harms, H.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Smulders, Y.
    Tulevski, I. I.
    Lammertsma, A. A.
    Van Rossum, A. C.
    Knaapen, P.
    Carotid artery intima media thickness, but not coronary artery calcium, predicts coronary vascular resistance in patients evaluated for coronary artery disease2012In: European Heart Journal, ISSN 0195-668X, E-ISSN 1522-9645, Vol. 33, no Suppl 1, p. 1018-1018Article in journal (Other academic)
  • 35. Danad, Ibrahim
    et al.
    Raijmakers, Pieter G.
    Harms, Hendrik J.
    Heymans, Martijn W.
    van Royen, Niels
    Lammertsma, Adriaan A.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    van Rossum, Albert C.
    Knaapen, Paul
    The Relationship Between Anatomical and Functional Coronary Artery Disease Severity and Transmural Myocardial Blood Flow Distribution2013In: Circulation, ISSN 0009-7322, E-ISSN 1524-4539, Vol. 128, no 22Article in journal (Other academic)
  • 36. Danad, Ibrahim
    et al.
    Raijmakers, Pieter G.
    Harms, Hendrik J.
    Heymans, Martijn W.
    van Royen, Niels
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Boellaard, Ronald
    van Rossum, Albert C.
    Lammertsma, Adriaan A.
    Knaapen, Paul
    Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: a [O-15]H2O PET study2014In: European Heart Journal, ISSN 0195-668X, E-ISSN 1522-9645, Vol. 35, no 31, p. 2094-U149Article in journal (Refereed)
    Abstract [en]

    Background Myocardial ischaemia occurs principally in the subendocardial layer, whereas conventional myocardial perfusion imaging provides no information on the transmural myocardial blood flow (MBF) distribution. Subendocardial perfusion measurements and quantification of the transmural perfusion gradient (TPG) could be more sensitive and specific for the detection of coronary artery disease (CAD). The current study aimed to determine the impact of lesion severity as assessed by the fractional flow reserve (FFR) on subendocardial perfusion and the TPG using [O-15]H2O positron emission tomography (PET) imaging in patients evaluated for CAD. Methods and results Sixty-six patients with anginal chest pain were prospectively enrolled and underwent [O-15] H2O myocardial perfusion PET imaging. Subsequently, invasive coronary angiography was performed and FFR obtained in all coronary arteries irrespective of the PET imaging results. Thirty (45%) patients were diagnosed with significant CAD(i.e. FFR <= 0.80), whereas on a per vessel analysis (n = 198), 53 (27%) displayed a positive FFR. Transmural hyperaemic MBF decreased significantly from 3.09 +/- 1.16 to 1.67 +/- 0.57 mL min(-1) g(-1) (P < 0.001) in non-ischaemic and ischaemic myocardium, respectively. The TPG decreased during hyperaemia when compared with baseline (1.20 +/- 0.14 vs. 0.94 +/- 0.17, P < 0.001), and was lower in arteries with a positive FFR (0.97 +/- 0.16 vs. 0.88 +/- 0.18, P < 0.01). ATPG threshold of 0.94 yielded an accuracy to detect CAD of 59%, which was inferior to transmural MBF with an optimal cutoff of 2.20 mL min(-1) g(-1) and an accuracy of 85% (P < 0.001). Diagnostic accuracy of subendocardial perfusion measurements was comparable with transmural MBF (83 vs. 85%, respectively, P = NS). Conclusion Cardiac [O-15]H2O PET imaging is able to distinguish subendocardial from subepicardial perfusion in the myocardium of normal dimensions. Hyperaemic TPG is significantly lower in ischaemic myocardium. This technique can potentially be employed to study subendocardial perfusion impairment in more detail. However, the diagnostic accuracy of subendocardial hyperaemic perfusion and TPG appears to be limited compared with quantitative transmural MBF, warranting further study.

  • 37. Danad, Ibrahim
    et al.
    Raijmakers, Pieter G.
    Harms, Hendrik J.
    van Kuijk, Cornelis
    van Royen, Niels
    Diamant, Michaela
    Lammertsma, Adriaan A.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    van Rossum, Albert C.
    Knaapen, Paul
    Effect of cardiac hybrid O-15-water PET/CT imaging on downstream referral for invasive coronary angiography and revascularization rate2014In: European Heart Journal Cardiovascular Imaging, ISSN 2047-2404, E-ISSN 2047-2412, Vol. 15, no 2, p. 170-179Article in journal (Refereed)
    Abstract [en]

    This study evaluates the impact of hybrid imaging on referral for invasive coronary angiography (ICA) and revascularization rates. A total of 375 patients underwent hybrid O-15-water positron emission tomography (PET)/computed tomography (CT)-based coronary angiography (CTCA) imaging for the evaluation of coronary artery disease (CAD). Downstream treatment strategy within a 60-day period after hybrid PET/CTCA imaging for ICA referral and revascularization was assessed. CTCA examinations were classified as showing no (obstructive) CAD, equivocal (borderline test result), or obstructive CAD, while the PET perfusion images were classified into normal or abnormal. On the basis of CTCA imaging, 182 (49) patients displayed no (obstructive) CAD. Only 10 (5) patients who showed no (obstructive) CAD on CTCA were referred for ICA, which were all negative. An equivocal CT study was observed in 80 (21) patients, among whom 56 (70) showed normal myocardial perfusion imaging (MPI), resulting in referral rates for ICA of 18 for normal MPI and 71 for abnormal MPI, respectively. No revascularizations were performed in the presence of normal MPI, while 59 of those with abnormal MPI were revascularized. CTCA indentified obstructive CAD in 113 (30) patients accompanied in 59 (52) patients with abnormal MPI. Referral rate for ICA was 57 for normal MPI and 88 for those with abnormal MPI, resulting in revascularization rates of 26 and 72, respectively. Hybrid O-15-water PET/CTCA imaging impacts clinical decision-making with regard to referral for ICA and revascularization procedures. Particularly, in the presence of an equivocal or abnormal CTCA, MPI could guide in the decision to refer for ICA and revascularization.

  • 38. Danad, Ibrahim
    et al.
    Raijmakers, Pieter G.
    Kamali, Parisa
    Harms, Hendrik J.
    de Haan, Stefan
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    van Kuijk, Cornelis
    Hoekstra, Otto S.
    Lammertsma, Adriaan A.
    Smulders, Yvo M.
    Heymans, Martijn W.
    Tulevski, Igor I.
    van Rossum, Albert C.
    Knaapen, Paul
    Carotid artery intima-media thickness, but not coronary artery calcium, predicts coronary vascular resistance in patients evaluated for coronary artery disease2012In: European Heart Journal: Cardiovascular Imaging, ISSN 2047-2404, Vol. 13, no 4, p. 317-323Article in journal (Refereed)
    Abstract [en]

    Aims There is growing evidence that coronary artery disease (CAD) affects not only the conduit epicardial coronary arteries, but also the microvascular coronary bed. Moreover, coronary microvascular dysfunction (CMVD) often precedes the stage of clinically overt epicardial CAD. Coronary artery calcium (CAC) and carotid intima-media thickness (C-IMT) measured with computed tomography (CT) and ultrasound, respectively, are among the available techniques to non-invasively assess atherosclerotic burden. An increased CAC score and C-IMT have also been associated with CMVD. It is therefore of interest to explore and compare the potential of CAC against C-IMT to predict minimal coronary vascular resistance (CVR). Methods and results We evaluated 120 patients (mean age 56 +/- 9 years, 58 men) without a documented history of CAD in whom and results obstructive CAD was excluded. All patients underwent C-IMT measurements, CAC scoring, and vasodilator stress O-15-water positron emission tomography (PET)/CT, during which the coronary flow reserve (CFR) and minimal CVR were analysed. Minimal CVR increased significantly with increasing tertiles of C-IMT (22 +/- 6, 27 +/- 11, and 28 +/- 9 mmHg mL(-1) min(-1) g(-1), P < 0.01), whereas the CFR was comparable across all C-IMT groups (P = 0.50). Minimal CVR increased significantly with an increase in CAC score (23 +/- 9, 27 +/- 8, 32 +/- 10, and 32 +/- 7 mmHg mL(-1) min(-1) g(-1). P < 0.01), whereas the CFR did not show a significant decrease with higher CAC scores (P = 0.18). Multivariable regression analysis revealed that C-IMT (P = 0.03), but not CAC, was independently associated with minimal CVR. Conclusion C-IMT, but not CAC score, independently predicts minimal CVR in patients with multiple cardiovascular risk factors and suspected of CAD.

  • 39. Danad, Ibrahim
    et al.
    Uusitalo, Valtteri
    Kero, Tanja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Saraste, Antti
    Raijmakers, Pieter G.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Lammertsma, Adriaan A.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Heymans, Martijn W.
    Kajander, Sami A.
    Pietilae, Mikko
    James, Stefan K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cardiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Knaapen, Paul
    Knuuti, Juhani
    Quantitative Assessment of Myocardial Perfusion in the Detection of Significant Coronary Artery Disease Cutoff Values and Diagnostic Accuracy of Quantitative [O-15]H2O PET Imaging2014In: Journal of the American College of Cardiology, ISSN 0735-1097, E-ISSN 1558-3597, Vol. 64, no 14, p. 1464-1475Article in journal (Refereed)
    Abstract [en]

    BACKGROUND Recent studies have demonstrated improved diagnostic accuracy for detecting coronary artery disease (CAD) when myocardial blood flow (MBF) is quantified in absolute terms, but there are no uniformly accepted cutoff values for hemodynamically significant CAD. OBJECTIVES The goal of this study was to determine cutoff values for absolute MBF and to evaluate the diagnostic accuracy of quantitative [O-15]H2O positron emission tomography (PET). METHODS A total of 330 patients underwent both quantitative [O-15]H2O PET imaging and invasive coronary angiography in conjunction with fractional flow reserve measurements. A stenosis >90% and/or fractional flow reserve <= 0.80 was considered obstructive; a stenosis <30% and/or fractional flow reserve >0.80 was nonobstructive. RESULTS Hemodynamically significant CAD was diagnosed in 116 (41%) of 281 patients who fulfilled study criteria for CAD. Resting perfusion was 1.00 +/- 0.25 and 0.92 +/- 0.23 ml/min/g in regions supplied by nonstenotic and significantly stenosed vessels, respectively (p < 0.001). During stress, perfusion increased to 3.26 +/- 1.04 ml/min/g and 1.73 +/- 0.67 ml/min/g, respectively (p < 0.001). The optimal cutoff values were 2.3 and 2.5 for hyperemic MBF and myocardial flow reserve, respectively. For MBF, these cutoff values showed a sensitivity, specificity, and accuracy for detecting significant CAD of 89%, 84%, and 86%, respectively, at a per-patient level and 87%, 85%, and 85% at a per-vessel level. The corresponding myocardial flow reserve values were 86%, 72%, and 78% (per patient) and 80%, 82%, and 81% (per vessel). Age and sex significantly affected diagnostic accuracy of quantitative PET. CONCLUSIONS Quantitative MBF measurements with the use of [O-15]H2O PET provided high diagnostic performance, but both sex and age should be taken into account.

  • 40.
    Danfors, Torsten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    11C Molecular Imaging in Focal Epilepsy2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Epilepsy is a common neurological disease affecting 6 million people in Europe. Early prevention and accurate diagnosis and treatment are of importance to obtain seizure freedom. In this thesis new applications of carbon-11-labelled tracers in PET and autoradiographic studies were explored in focal epilepsy.

    Patients with low-grade gliomas often experience epileptic seizures. A retrospective PET-study assessing seizure activity, metabolic rate measured with 11C-methionine and other known prognostic factors was performed in patients with glioma. No correlation was found between seizure activity and uptake of methionine. The presence and termination of early seizures was a favourable prognostic factor.

    Activation of the neurokinin-1 (NK1) receptor by substance P (SP) induces epileptic activity. PET with the NK1 receptor antagonist GR205171 was performed in patients with temporal lobe epilepsy (TLE) and healthy controls. In TLE patients an increased NK1 receptor availability was found in both hemispheres, most pronounced in anterior cingulate gyrus ipsilateral to seizure onset. A positive correlation between NK1 receptors and seizure frequency was observed in ipsilateral medial structures consistent with an intrinsic network using the NK1-SP receptor system for transmission of seizure activity.

    The uptake of 18F-fluoro-deoxy-glucose (FDG) is related to cerebral blood flow (CBF). Previously, methods to estimate blood flow from dynamic PET data have been described. A retrospective study was conducted in 15 patients undergoing epilepsy surgery investigation, including PET with 11C-FDG and 11C-Flumazenil (FMZ). The dynamic FMZ dataset and pharmacokinetic modeling with a multilinear reference tissue model were used to determine images of relative CBF. Agreement between data of FDG and CBF was analyzed showing a close association between interictal brain metabolism and relative CBF.

    Epilepsy often occurs after traumatic brain injuries. Changes in glia and inhibitory neuronal cells contribute to the chain of events leading to seizures. Autoradiography with 11C-PK11195, 11C-L-deprenyl and 11C-Flumazenil in an animal model of posttraumatic epilepsy studied the temporal and spatial distribution of microglia, astrocytes and GABAergic neurons. Results showed an instant increase in microglial activity that subsequently normalized, a late formation of astrogliosis and an instant and prolonged decease in GABA binding. The model can be used to visualize pathophysiological events during the epileptogenesis.

    List of papers
    1. Epileptic seizures and survival in early disease of grade 2 gliomas
    Open this publication in new window or tab >>Epileptic seizures and survival in early disease of grade 2 gliomas
    2009 (English)In: European Journal of Neurology, ISSN 1351-5101, E-ISSN 1468-1331, Vol. 16, no 7, p. 823-831Article in journal (Refereed) Published
    Abstract [en]

    Background and purpose

    The aims of this study were (i) to determine the correlation between seizure activity and the metabolic rate of the tumour measured by 11Cmethionine PET (MET PET) in patients with grade 2 gliomas, and (ii) to assess the prognostic impact of early seizure manifestations on patient survival.

    Methods

    In this retrospective review, early seizure manifestations were studied in 101 patients with supratentorial grade 2 gliomas subjected to MET PET as part of the pretreatment tumour investigation. Seizure manifestations as a variable was then used in multivariate survival analyses, together with established prognostic factors for this patient group.

    Results

    Of all 101 cases, 88 patients had seizures at tumour presentation. Fortyseven were seizure free at the early stage of the disease, whereas 54 had recurrent seizures. Patients with seizures at tumour presentation had a more favourable outcome before and after (P = 0.006) adjustment for conventional prognostic factors. However, for those who continued to have seizures early in the disease, the outcome was worse (P = 0.003). We found no significant correlation between MET PET and the seizure manifestations of the patients.

    Conclusion

    The presence and termination of early seizure manifestations may be favourable prognostic factors in patients with low-grade gliomas.

     

    Keywords
    11C methionine positron emission tomography, epileptic seizures, low-grade glioma, survival
    National Category
    Neurology
    Research subject
    Neurology
    Identifiers
    urn:nbn:se:uu:diva-105434 (URN)10.1111/j.1468-1331.2009.02599.x (DOI)000266637000012 ()
    Available from: 2009-06-03 Created: 2009-06-03 Last updated: 2017-12-13Bibliographically approved
    2. Increased neurokinin-1 receptor availability in temporal lobe epilepsy: A positron emission tomography study using [(11)C]GR205171
    Open this publication in new window or tab >>Increased neurokinin-1 receptor availability in temporal lobe epilepsy: A positron emission tomography study using [(11)C]GR205171
    Show others...
    2011 (English)In: Epilepsy Research, ISSN 0920-1211, E-ISSN 1872-6844, Vol. 97, no 1-2, p. 183-189Article in journal (Refereed) Published
    Abstract [en]

    PURPOSE: Activation of the neurokinin-1 (NK1) receptor by neuropeptide substance P (SP) induces and maintains epileptic activity in various experimental models of epilepsy. The primary objective of this study was to investigate whether neurobiological changes linked to NK1-SP receptor system are associated with hyperexcitability in patients with temporal lobe epilepsy (TLE). A secondary objective was to investigate the relationship between seizure frequency and NK1 receptor availability.

    METHODS: A positron emission tomography study was conducted with the selective NK1 receptor antagonist [(11)C]GR205171 in nine patients with TLE and 18 healthy control participants. Parametric PET images were generated using the Patlak graphical method, with cerebellum as reference region. Data analyses including group comparisons were performed using statistical parametric mapping.

    RESULTS: Patients with TLE showed increased NK1 receptor availability in both hemispheres with the most pronounced increase in anterior cingulate gyrus ipsilateral to seizure onset. A positive correlation between NK1 receptor availability and seizure frequency was observed in the medial temporal lobe and in the lentiform nucleus ipsilateral to the seizure onset.

    CONCLUSION: Our results suggest that there is an intrinsic network using the NK1-SP receptor system for synaptic transmission and epileptiform activity in TLE.

    Keywords
    Epilepsy, PET, NK1, Substance P, TLE
    National Category
    Neurology
    Research subject
    Neurology
    Identifiers
    urn:nbn:se:uu:diva-159946 (URN)10.1016/j.eplepsyres.2011.08.006 (DOI)00297873800021 ()21925840 (PubMedID)
    Available from: 2011-10-12 Created: 2011-10-12 Last updated: 2017-12-08Bibliographically approved
    3. Relative Cerbral Blood Flow Measurement using dynamic Flumazenil-PET may Replace Fluorodeoxyglucose-PET in Epilepsy Surgical Investigations
    Open this publication in new window or tab >>Relative Cerbral Blood Flow Measurement using dynamic Flumazenil-PET may Replace Fluorodeoxyglucose-PET in Epilepsy Surgical Investigations
    2012 (English)Article in journal (Other academic) Submitted
    National Category
    Neurosciences Other Basic Medicine
    Research subject
    Neurology
    Identifiers
    urn:nbn:se:uu:diva-180846 (URN)
    Available from: 2012-09-11 Created: 2012-09-11 Last updated: 2018-01-12Bibliographically approved
    4. 11C-autoradiographic studies of dynamic changes in glial cells and benzodiazepine receptor binding in a model of posttraumatic epilepsy
    Open this publication in new window or tab >>11C-autoradiographic studies of dynamic changes in glial cells and benzodiazepine receptor binding in a model of posttraumatic epilepsy