uu.seUppsala universitets publikationer
Ändra sökning
Avgränsa sökresultatet
1234 1 - 50 av 179
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Adams, Christopher
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper.
    Kjeldsen, Frank
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Jonfysik.
    Patriksson, Alexandra
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    van Der Spoel, David
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Gräslund, Astrid
    Papadopolous, Evangelos
    Zubarev, Roman
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Probing Solution-Phase and Gas-Phase Structures of Trp-cage Cations by Chiral Substitution and Spectroscopic Techniques2006Ingår i: International Journal of Mass Spectrometry, ISSN 1387-3806, E-ISSN 1873-2798, Vol. 253, nr 3, s. 263-273Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The relevance of gas-phase protein structure to its solution structure is of the utmost importance in studying biomolecules by mass spectrometry. D-Amino acid substitutions within a minimal protein. Trp-cage. were used to correlate solution-phase properties as measured by circular dichroism with solution/gas-phase conformational features of protein cations probed via charge state distribution (CSD) in electrospray ionization. and gas-phase features revealed by tandem mass spectrometry (MS/MS). The gas-phase features were additionally supported by force-field molecular dynamics simulations. CD data showed that almost any single-residue D-substitution destroys the most prominent CD feature of the "native" all-L isomer, alpha-helicity. CSD was able to qualitatively assess the degree of compactness of solution-phase molecular structures. CSD results were consistent with the all-L form being the most compact in solution among all studied stereoisomers except for the D-Asn(1) isomer. D-substitutions of the aromatic Y(3), W(6) and Q(5) residues generated the largest deviations in CSD data among single amino acid substitutions. consistent with the critical role of these residues in Trp-cage stability. Electron capture dissociation of the stereoisomer dications gave an indication that some gas-phase structural features of Trp-cage are similar to those in solution. This result is supported by MDS data oil five of the studied stereoisomer dications in the gas-phase. The MDS-derived minimum-energy structures possessed more extensive hydrogen bonding than the solution-phase structure of the native form, deviating from the latter by 3-4 angstrom and were not 'inside-out' compared to native structures. MDS data could be correlated with CD data and even with ECD results. which aided in providing a long-range structural constraint for MDS. The overall conclusion is the general resemblance, despite the difference on the detailed level, of the preferred structures in both phases for the mini protein Trp-cage.

  • 2. Allen, Andrew J.
    et al.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Kaysser-Pyzalla, Anke R.
    Beyond the International Year of Crystallography2015Ingår i: Journal of applied crystallography, ISSN 0021-8898, E-ISSN 1600-5767, Vol. 48, nr P1, s. 1-2Artikel i tidskrift (Övrigt vetenskapligt)
  • 3.
    Allen, Andrew J.
    et al.
    NIST, Mat Measurement Sci Div Gaithersburg, MD USA.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik. AS CR, European Extreme Light Infrastruct, Inst Phys, Prague, Czech Republic..
    McIntyre, Garry J.
    Australian Nucl Sci & Technol Org, New Illawarra Rd, Lucas Heights, NSW, Australia.
    Journal of Applied Crystallography: the first 50 years and beyond2018Ingår i: Journal of applied crystallography, ISSN 0021-8898, E-ISSN 1600-5767, Vol. 51, nr Part: 2, s. 233-234Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    The Editors of Journal of Applied Crystallography mark the journal's 50th anniversary.

  • 4.
    Andreasson, Jakob
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Iwan, Bianca Stella
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Andrejczuk, A.
    Abreu, E.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Bergh, M.
    Caleman, Carl
    Nelson, A. J.
    Bajt, S.
    Chalupsky, J.
    Chapman, H. N.
    Faeustlin, R. R.
    Hajkova, V.
    Heimann, P. A.
    Hjörvarsson, Björgvin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    Juha, L.
    Klinger, D.
    Krzywinski, J.
    Nagler, B.
    Pålsson, Gunnar Karl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    Singer, W.
    Seibert, Marvin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Sobicrajski, R.
    Tolcikis, S.
    Tschentscher, T.
    Vinko, S. M.
    Lee, R. W.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft-x-ray laser2011Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, ISSN 1539-3755, E-ISSN 1550-2376, Vol. 83, nr 1, s. 016403-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Studies of materials under extreme conditions have relevance to a broad area of research, including planetary physics, fusion research, materials science, and structural biology with x-ray lasers. We study such extreme conditions and experimentally probe the interaction between ultrashort soft x-ray pulses and solid targets (metals and their deuterides) at the FLASH free-electron laser where power densities exceeding 1017 W/cm2 were reached. Time-of-flight ion spectrometry and crater analysis were used to characterize the interaction. The results show the onset of saturation in the ablation process at power densities above 1016 W/cm2. This effect can be linked to a transiently induced x-ray transparency in the solid by the femtosecond x-ray pulse at high power densities. The measured kinetic energies of protons and deuterons ejected from the surface reach several keV and concur with predictions from plasma-expansion models. Simulations of the interactions were performed with a nonlocal thermodynamic equilibrium code with radiation transfer. These calculations return critical depths similar to the observed crater depths and capture the transient surface transparency at higher power densities.

  • 5.
    Andreasson, Jakob
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Martin, Andrew V.
    Liang, Meng
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Aquila, Andrew
    Wang, Fenglin
    Iwan, Bianca
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Svenda, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Ekeberg, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hantke, Max
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Bielecki, Johan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Rolles, Daniel
    Rudenko, Artem
    Foucar, Lutz
    Hartmann, Robert
    Erk, Benjamin
    Rudek, Benedikt
    Chapman, Henry N.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Barty, Anton
    Automated identification and classification of single particle serial femtosecond X-ray diffraction data2014Ingår i: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 22, nr 3, s. 2497-2510Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The first hard X-ray laser, the Linac Coherent Light Source (LCLS), produces 120 shots per second. Particles injected into the X-ray beam are hit randomly and in unknown orientations by the extremely intense X-ray pulses, where the femtosecond-duration X-ray pulses diffract from the sample before the particle structure is significantly changed even though the sample is ultimately destroyed by the deposited X-ray energy. Single particle X-ray diffraction experiments generate data at the FEL repetition rate, resulting in more than 400,000 detector readouts in an hour, the data stream during an experiment contains blank frames mixed with hits on single particles, clusters and contaminants. The diffraction signal is generally weak and it is superimposed on a low but continually fluctuating background signal, originating from photon noise in the beam line and electronic noise from the detector. Meanwhile, explosion of the sample creates fragments with a characteristic signature. Here, we describe methods based on rapid image analysis combined with ion Time-of-Flight (ToF) spectroscopy of the fragments to achieve an efficient, automated and unsupervised sorting of diffraction data. The studies described here form a basis for the development of real-time frame rejection methods, e. g. for the European XFEL, which is expected to produce 100 million pulses per hour. (C)2014 Optical Society of America

  • 6.
    Andreasson, Jakob
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Iwan, Bianca
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hantke, Max
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Rath, Asawari
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Ekeberg, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Maia, Filipe R. N. C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Barty, Anton
    Chapman, Henry N.
    Bielecki, Johan
    Abergel, C.
    Seltzer, V.
    Claverie, J.-M.
    Svenda, M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Time of Flight Mass Spectrometry to Monitor Sample Expansion in Flash Diffraction Studies on Single Virus ParticlesManuskript (preprint) (Övrigt vetenskapligt)
  • 7. Aquila, A.
    et al.
    Barty, A.
    Bostedt, C.
    Boutet, S.
    Carini, G.
    dePonte, D.
    Drell, P.
    Doniach, S.
    Downing, K. H.
    Earnest, T.
    Elmlund, H.
    Elser, V.
    Gühr, M.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hastings, J.
    Hau-Riege, S. P.
    Huang, Z.
    Lattman, E. E.
    Maia, F. R. N. C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Marchesini, S.
    Ourmazd, A.
    Pellegrini, C.
    Santra, R.
    Schlichting, I.
    Schroer, C.
    Spence, J. C. H.
    Vartanyants, I. A.
    Wakatsuki, S.
    Weis, W. I.
    Williams, G. J.
    The linac coherent light source single particle imaging road map2015Ingår i: Structural Dynamics, Vol. 2, nr 4, artikel-id 041701Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imag-ing of individual particles in a single shot. Early experiments at the Linac CoherentLight Source (LCLS) have led to rapid progress in the field and, so far, coherentdiffractive images have been recorded from biological specimens, aerosols, andquantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLSheld a workshop to discuss the scientific and technical challenges for reaching theultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap towardreaching atomic resolution, 3D imaging at free-electron laser sources.

  • 8. Aquila, Andrew
    et al.
    Hunter, Mark S.
    Doak, R. Bruce
    Kirian, Richard A.
    Fromme, Petra
    White, Thomas A.
    Andreasson, Jakob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Arnlund, David
    Bajt, Saša
    Barends, Thomas R. M.
    Barthelmess, Miriam
    Bogan, Michael J.
    Bostedt, Christoph
    Bottin, Hervé
    Bozek, John D.
    Caleman, Carl
    Coppola, Nicola
    Davidsson, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    DePonte, Daniel P.
    Elser, Veit
    Epp, Sascha W.
    Erk, Benjamin
    Fleckenstein, Holger
    Foucar, Lutz
    Frank, Matthias
    Fromme, Raimund
    Graafsma, Heinz
    Grotjohann, Ingo
    Gumprecht, Lars
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hampton, Christina Y.
    Hartmann, Andreas
    Hartmann, Robert
    Hau-Riege, Stefan
    Hauser, Günter
    Hirsemann, Helmut
    Holl, Peter
    Holton, James M.
    Hömke, André
    Johansson, Linda
    Kimmel, Nils
    Kassemeyer, Stephan
    Krasniqi, Faton
    Kühnel, Kai-Uwe
    Liang, Mengning
    Lomb, Lukas
    Malmerberg, Erik
    Marchesini, Stefano
    Martin, Andrew V.
    Maia, Filipe R.N.C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Messerschmidt, Marc
    Nass, Karol
    Reich, Christian
    Neutze, Richard
    Rolles, Daniel
    Rudek, Benedikt
    Rudenko, Artem
    Schlichting, Ilme
    Schmidt, Carlo
    Schmidt, Kevin E.
    Schulz, Joachim
    Seibert, M. Marvin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Soltau, Heike
    Shoeman, Robert L.
    Sierra, Raymond
    Starodub, Dmitri
    Stellato, Francesco
    Stern, Stephan
    Strüder, Lothar
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Ullrich, Joachim
    Wang, Xiaoyu
    Williams, Garth J.
    Weidenspointner, Georg
    Weierstall, Uwe
    Wunderer, Cornelia
    Barty, Anton
    Spence, John C. H.
    Chapman, Henry N.
    Time-resolved protein nanocrystallography using an X-ray free-electron laser2012Ingår i: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 20, nr 3, s. 2706-2716Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.

  • 9. Bajt, Sasa
    et al.
    Chapman, Henry N
    Spiller, Eberhard A
    Alameda, Jennifer B
    Woods, Bruce W
    Frank, Matthias
    Bogan, Michael J
    Barty, Anton
    Boutet, Sebastien
    Marchesini, Stefano
    Hau-Riege, Stefan P
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Shapiro, David
    Camera for coherent diffractive imaging and holography with a soft-x-ray free-electron laser2008Ingår i: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 47, nr 10, s. 1673-1683Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We describe a camera to record coherent scattering patterns with a soft-x-ray free-electron laser (FEL). The camera consists of a laterally graded multilayer mirror, which reflects the diffraction pattern onto a CCD detector. The mirror acts as a bandpass filter for both the wavelength and the angle, which isolates the desired scattering pattern from nonsample scattering or incoherent emission from the sample. The mirror also solves the particular problem of the extreme intensity of the FEL pulses, which are focused to greater than 10(14) W/cm2. The strong undiffracted pulse passes through a hole in the mirror and propagates onto a beam dump at a distance behind the instrument rather than interacting with a beam stop placed near the CCD. The camera concept is extendable for the full range of the fundamental wavelength of the free electron laser in Hamburg (FLASH) FEL (i.e., between 6 and 60 nm) and into the water window. We have fabricated and tested various multilayer mirrors for wavelengths of 32, 16, 13.5, and 4.5 nm. At the shorter wavelengths mirror roughness must be minimized to reduce scattering from the mirror. We have recorded over 30,000 diffraction patterns at the FLASH FEL with no observable mirror damage or degradation of performance.

  • 10. Barty, Anton
    et al.
    Caleman, Carl
    Aquila, Andrew
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Lomb, Lukas
    White, Thomas A.
    Andreasson, Jakob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Arnlund, David
    Bajt, Sasa
    Barends, Thomas R. M.
    Barthelmess, Miriam
    Bogan, Michael J.
    Bostedt, Christoph
    Bozek, John D.
    Coffee, Ryan
    Coppola, Nicola
    Davidsson, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    DePonte, Daniel P.
    Doak, R. Bruce
    Ekeberg, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Elser, Veit
    Epp, Sascha W.
    Erk, Benjamin
    Fleckenstein, Holger
    Foucar, Lutz
    Fromme, Petra
    Graafsma, Heinz
    Gumprecht, Lars
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hampton, Christina Y.
    Hartmann, Robert
    Hartmann, Andreas
    Hauser, Guenter
    Hirsemann, Helmut
    Holl, Peter
    Hunter, Mark S.
    Johansson, Linda
    Kassemeyer, Stephan
    Kimmel, Nils
    Kirian, Richard A.
    Liang, Mengning
    Maia, Filipe R. N. C.
    Malmerberg, Erik
    Marchesini, Stefano
    Martin, Andrew V.
    Nass, Karol
    Neutze, Richard
    Reich, Christian
    Rolles, Daniel
    Rudek, Benedikt
    Rudenko, Artem
    Scott, Howard
    Schlichting, Ilme
    Schulz, Joachim
    Seibert, M. Marvin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Shoeman, Robert L.
    Sierra, Raymond G.
    Soltau, Heike
    Spence, John C. H.
    Stellato, Francesco
    Stern, Stephan
    Strueder, Lothar
    Ullrich, Joachim
    Wang, X.
    Weidenspointner, Georg
    Weierstall, Uwe
    Wunderer, Cornelia B.
    Chapman, Henry N.
    Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements2012Ingår i: Nature Photonics, ISSN 1749-4885, E-ISSN 1749-4893, Vol. 6, nr 1, s. 35-40Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis(1). For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information(1-4). Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology(5) should enable structural determination from submicrometre protein crystals with atomic resolution.

  • 11. Barty, Anton
    et al.
    Kirian, Richard A.
    Maia, Filipe R. N. C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hantke, Max
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Yoon, Chun Hong
    White, Thomas A.
    Chapman, Henry
    Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data2014Ingår i: Journal of applied crystallography, ISSN 0021-8898, E-ISSN 1600-5767, Vol. 47, s. 1118-1131Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The emerging technique of serial X-ray diffraction, in which diffraction data are collected from samples flowing across a pulsed X-ray source at repetition rates of 100 Hz or higher, has necessitated the development of new software in order to handle the large data volumes produced. Sorting of data according to different criteria and rapid filtering of events to retain only diffraction patterns of interest results in significant reductions in data volume, thereby simplifying subsequent data analysis and management tasks. Meanwhile the generation of reduced data in the form of virtual powder patterns, radial stacks, histograms and other meta data creates data set summaries for analysis and overall experiment evaluation. Rapid data reduction early in the analysis pipeline is proving to be an essential first step in serial imaging experiments, prompting the authors to make the tool described in this article available to the general community. Originally developed for experiments at X-ray free-electron lasers, the software is based on a modular facility-independent library to promote portability between different experiments and is available under version 3 or later of the GNU General Public License.

  • 12.
    Behzadi, Hadi
    et al.
    Teheran.
    Esrafili, Mehdi D
    Teheran.
    van der Spoel, David
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hadipour, Nasser L
    Teheran.
    Parsafar, Gholamabbas
    Teheran.
    A theoretical study of repeating sequence in HRP II: a combination of molecular dynamics simulations and (17)O quadrupole coupling tensors2008Ingår i: Biophysical Chemistry, ISSN 0301-4622, E-ISSN 1873-4200, Vol. 137, nr 2-3, s. 76-80Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Histidine rich protein II derived peptide (HRP II 169-182) was investigated by molecular dynamics, MD, simulation and (17)O electric field gradient, EFG, tensor calculations. MD simulation was performed in water at 300 K with alpha-helix initial structure. It was found that peptide loses its initial alpha-helix structure rapidly and is converted to random coil and bent secondary structures. To understand how peptide structure affects EFG tensors, initial structure and final conformations resulting from MD simulations were used to calculate (17)O EFG tensors of backbone carbonyl oxygens. Calculations were performed using B3LYP method and 6-31+G basis set. Calculated (17)O EFG tensors were used to evaluate quadrupole coupling constants, QCC, and asymmetry parameters, eta(Q). Difference between the calculated QCC and eta(Q) values revealed how hydrogen-bonding interactions affect EFG tensors at the sites of each oxygen nucleus.

  • 13.
    Bergh, Magnus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Huldt, Gösta
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Maia, Filipe R. N. C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction2008Ingår i: Quarterly reviews of biophysics (Print), ISSN 0033-5835, E-ISSN 1469-8994, Vol. 41, nr 3-4, s. 181-204Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Detailed structural investigations on living cells are problematic because existing structural methods cannot reach high resolutions on non-reproducible objects. Illumination with an ultrashort and extremely bright X-ray pulse can outrun key damage processes over a very short period. This can be exploited to extend the diffraction signal to the highest possible resolution in flash diffraction experiments. Here we present an analysis or the interaction of a very intense and very short X-ray pulse with a living cell, using a non-equilibrium population kinetics plasma code with radiation transfer. Each element in the evolving plasma is modeled by numerous states to monitor changes in the atomic populations as a function of pulse length, wavelength, and fluence. The model treats photoionization, impact ionization, Auger decay, recombination, and inverse bremsstrahlung by solving rate equations in a self-consistent manner and describes hydrodynamic expansion through the ion sound speed, The results show that subnanometer resolutions could be reached on micron-sized cells in a diffraction-limited geometry at wavelengths between 0.75 and 1.5 nm and at fluences of 10(11)-10(12) photonS mu M (2) in less than 10 fs. Subnanometer resolutions could also be achieved with harder X-rays at higher fluences. We discuss experimental and computational strategies to obtain depth information about the object in flash diffraction experiments.

  • 14.
    Bergh, Magnus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hau-Riege, S. P.
    Scott, H. A.
    Interaction of Ultrashort X-ray Pulses with B4C, SiC and Si2008Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, ISSN 1063-651X, E-ISSN 1095-3787, Vol. 77, nr 2, s. 026404-1-026404-8Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The interaction of 32.5 and 6 nm ultrashort x-ray pulses with the solid materials B4C, SiC, and Si is simulated with a nonlocal thermodynamic equilibrium radiation transfer code. We study the ionization dynamics as a function of depth in the material and modifications of the opacity during irradiation, and estimate the crater depth. Furthermore, we compare the estimated crater depth with experimental data, for fluences up to 2.2 J/cm(2). Our results show that, at 32.5 nm irradiation, the opacity changes by less than a factor of 2 for B4C and Si and by a factor of 3 for SiC, for fluences up to 200 J/cm(2). At a laser wavelength of 6 nm, the model predicts a dramatic decrease in opacity due to the weak inverse bremsstrahlung, increasing the crater depth for high fluences.

  • 15.
    Bergh, Magnus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    van der Spoel, David
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Model for the Dynamics of a Water Cluster in an X-ray Free Electron Laser Beam2004Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, ISSN 1539-3755, E-ISSN 1550-2376, Vol. 70, nr 5:1, s. 051904-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A microscopic sample placed into a focused x-ray free electron laser beam will explode due to strong ionization on a femtosecond time scale. The dynamics of this Coulomb explosion has been modeled by Neutze et al. [Nature (London) 406, 752 (2000)] for a protein, using computer simulations. The results suggest that by using ultrashort exposures, structural information may be collected before the sample is destroyed due to radiation damage. In this paper a method is presented to include the effect of screening by free electrons in the sample in a molecular dynamics simulation. The electrons are approximated by a classical gas, and the electron distribution is calculated iteratively from the Poisson-Boltzmann equation. Test simulations of water clusters reveal the details of the explosion dynamics, as well as the evolution of the free electron gas during the beam exposure. We find that inclusion of the electron gas in the model slows down the Coulomb explosion. The hydrogen atoms leave the sample faster than the oxygen atoms, leading to a double layer of positive ions. A considerable electron density is located between these two layers. The fact that the hydrogens are found to explode much faster than the oxygens means that the diffracting part of the sample stays intact somewhat longer than the sample as a whole.

  • 16.
    Beyerlein, Kenneth
    et al.
    Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany.
    Jönsson, Olof
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Alonso-Mori, Roberto
    SLAC National Accelerator Laboratory, USA.
    Aquila, Andrew
    SLAC National Accelerator Laboratory, USA.
    Bajt, Sasa
    Photon Science, DESY, Hamburg, Germany.
    Barty, Anton
    Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany.
    Bean, Richard
    Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany.
    Koglin, Jason E.
    SLAC National Accelerator Laboratory, USA.
    Messerschmidt, Marc
    SLAC National Accelerator Laboratory, USA.
    Ragazzon, Davide
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Soklaras, Dimosthenis
    SLAC National Accelerator Laboratory, USA.
    Williams, Garth J.
    SLAC National Accelerator Laboratory, USA.
    Hau-Riege, Stefan
    Lawrence Livermore National Laboratory, USA.
    Boutet, Sebastien
    SLAC National Accelerator Laboratory, USA.
    Chapman, Henry N.
    Center for Free-Electron Laser Science,Deutsches Elektronen-Synchrotron, Hamburg, Germany; Department of Physics, University of Hamburg, Hamburg, Germany; Centre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany .
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Caleman, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik. Center for Free-Electron Laser Science,Deutsches Elektronen-Synchrotron, Hamburg, Germany.
    Ultrafast non-thermal heating of water initiated by an X-ray laser2018Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 115, nr 22, s. 5652-5657Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    X-ray Free-Electron Lasers have opened the door to a new era in structural biology, enabling imaging of biomolecules and dynamics that were impossible to access with conventional methods. A vast majority of imaging experiments, including Serial Femtosecond Crystallography, use a liquid jet to deliver the sample into the interaction region. We have observed structural changes in the carrying water during X-ray exposure, showing how it transforms from the liquid phase to a plasma. This ultrafast phase transition observed in water provides evidence that any biological structure exposed to these X-ray pulses is destroyed during the X-ray exposure.The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 106 J/cm2. These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.

    Publikationen är tillgänglig i fulltext från 2018-10-17 08:00
  • 17.
    Bielecki, Johan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Parker, Stewart F.
    Ekanayake, Dharshani
    Rahman, Seikh M. H.
    Borjesson, Lars
    Karlsson, Maths
    Short-range structure of the brownmillerite-type oxide Ba2In2O5 and its hydrated proton-conducting form BaInO3H2014Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 2, nr 40, s. 16915-16924Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The vibrational spectra and short-range structure of the brownmillerite-type oxide Ba2In2O6 and its hydrated form BaInO3H, are investigated by means of Raman, infrared, and inelastic neutron scattering spectroscopies together with density functional theory calculations. For Ba2In2O6, which may be described as an oxygen deficient perovskite structure with alternating layers of InO6 octahedra and InO4 tetrahedra, the results affirm a short-range structure of Icmm symmetry, which is characterized by random orientation of successive layers of InO4 tetrahedra. For the hydrated, proton conducting, form, BaInO3H, the results suggest that the short-range structure is more complicated than the P4/mbm symmetry that has been proposed previously on the basis of neutron diffraction, but rather suggest a proton configuration close to the lowest energy structure predicted by Martinez et al. [J.-R. Martinez, C. E. Moen, S. Stoelen, N. L. Allan, J. Solid State Chem., 180, 3388, (2007)]. An intense Raman active vibration at 150 cm(-1) is identified as a unique fingerprint of this proton configuration.

  • 18.
    Bielecki, Johan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik. Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden..
    Parker, Stewart F.
    Rutherford Appleton Lab, STFC, ISIS Facil, Didcot OX11 0QX, Oxon, England..
    Mazzei, Laura
    Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden..
    Börjesson, Lars
    Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden..
    Karlsson, Maths
    Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden..
    Structure and dehydration mechanism of the proton conducting oxide Ba2In2O5(H2O)(x)2016Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, nr 4, s. 1224-1232Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The structure and dehydration mechanism of the proton conducting oxide Ba2In2O5(H2O)(x) are investigated by means of variable temperature (20-600 degrees C) Raman spectroscopy together with thermal gravimetric analysis and inelastic neutron scattering. At room temperature, Ba2In2O5(H2O)(x) is found to be fully hydrated (x = 1) and to have a perovskite-like structure, which dehydrates gradually with increasing temperature and at around 600 degrees C the material is essentially dehydrated (x approximate to 0.2). The dehydrated material exhibits a brownmillerite structure, which is featured by alternating layers of InO6 octahedra and InO4 tetrahedra. The transition from a perovskite-like to a brownmillerite-like structure upon increasing temperature occurs through the formation of an intermediate phase at ca. 370 degrees C, corresponding to a hydration degree of approximately 50%. The structure of the intermediate phase is similar to the structure of the dehydrated material, but with the difference that it exhibits a non-centrosymmetric distortion of the InO6 octahedra that is not present in the dehydrated material. The dehydration process upon heating is a two-stage mechanism; for temperatures below the hydrated-to-intermediate phase transition, dehydration is characterized by a homogenous release of protons over the entire oxide lattice, whereas above the transition a preferential desorption of protons originating in the nominally tetrahedral layers is observed. Furthermore, our spectroscopic results point towards the co-existence of two structural phases, which relate to the two lowest-energy proton configurations in the material. The relative contributions of the two proton configurations depend on how the sample is hydrated.

  • 19.
    Bielecki, Johan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Rata, A. D.
    Borjesson, L.
    Femtosecond optical reflectivity measurements of lattice-mediated spin repulsions in photoexcited LaCoO3 thin films2014Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 89, nr 3, s. 035129-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present results on the temperature dependence of ultrafast electron and lattice dynamics, measured with pump-probe transient reflectivity experiments, of an epitaxially grown LaCoO3 thin film under tensile strain. Probing spin-polarized transitions into the antibonding e(g) band provides a measure of the low-spin fraction, both as a function of temperature and time after photoexcitation. It is observed that femtosecond laser pulses destabilize the constant low-spin fraction (similar to 63%-64%) in equilibrium into a thermally activated state, driven by a subpicosecond change in spin gap Delta. From the time evolution of the low-spin fraction, it is possible to disentangle the thermal and lattice contributions to the spin state. A lattice mediated spin repulsion, identified as the governing factor determining the equilibrium spin state in thin-film LaCoO3, is observed. These results suggests that time-resolved spectroscopy is a sensitive probe of the spin state in LaCoO3 thin films, with the potential to bring forward quantitative insight into the complicated interplay between structure and spin state in LaCoO3.

  • 20. Bogan, M. J.
    et al.
    Boutet, S.
    Barty, A.
    Benner, W. H.
    Frank, M.
    Lomb, L.
    Shoeman, R.
    Starodub, D.
    Seibert, Marvin M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hau-Riege, S. P.
    Woods, B.
    Decorwin-Martin, P.
    Bajt, S.
    Schulz, J.
    Rohner, U.
    Iwan, Bianca
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Marchesini, S.
    Schlichting, I.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Chapman, H. N.
    Single-shot femtosecond x-ray diffraction from randomly oriented ellipsoidal nanoparticles2010Ingår i: Physical Review Special Topics. Accelerators and Beams, ISSN 1098-4402, E-ISSN 1098-4402, Vol. 13, nr 9, s. 094701-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Coherent diffractive imaging of single particles using the single-shot "diffract and destroy" approach with an x-ray free electron laser (FEL) was recently demonstrated. A high-resolution low-noise coherent diffraction pattern, representative of the object before it turns into a plasma and explodes, results from the interaction of the FEL with the particle. Iterative phase retrieval algorithms are used to reconstruct two-dimensional projection images of the object from the recorded intensities alone. Here we describe the first single-shot diffraction data set that mimics the data proposed for obtaining 3D structure from identical particles. Ellipsoidal iron oxide nanoparticles (250 nm x 50 nm) were aerosolized and injected through an aerodynamic lens stack into a soft x-ray FEL. Particle orientation was not controlled with this injection method. We observed that, at the instant the x-ray pulse interacts with the particle, a snapshot of the particle's orientation is encoded in the diffraction pattern. The results give credence to one of the technical concepts of imaging individual nanometer and subnanometer-sized objects such as single molecules or larger clusters of molecules using hard x-ray FELs and will be used to help develop robust algorithms for determining particle orientations and 3D structure.

  • 21. Bogan, Michael J
    et al.
    Benner, W Henry
    Boutet, Sébastien
    Rohner, Urs
    Frank, Matthias
    Barty, Anton
    Seibert, M Marvin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Maia, Filipe
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Marchesini, Stefano
    Bajt, Sasa
    Woods, Bruce
    Riot, Vincent
    Hau-Riege, Stefan P
    Svenda, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Marklund, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Spiller, Eberhard
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Chapman, Henry N
    Single particle X-ray diffractive imaging2008Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 8, nr 1, s. 310-6Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at suboptical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

  • 22. Bogan, Michael J.
    et al.
    Boutet, Sebastien
    Chapman, Henry N.
    Marchesini, Stefano
    Barty, Anton
    Benner, W. Henry
    Rohner, Urs
    Frank, Matthias
    Hau-Riege, Stefan P.
    Bajt, Sasa
    Woods, Bruce
    Seibert, M. Marvin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Iwan, Bianca
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Schulz, Joachim
    Aerosol Imaging with a Soft X-Ray Free Electron Laser2010Ingår i: Aerosol Science and Technology, ISSN 0278-6826, E-ISSN 1521-7388, Vol. 44, nr 3, s. I-VIArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft x-ray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7–32 nm x-rays with 1012 photons per pulse. The high brightness, short wavelength, and high repetition rate (> 500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatial- and time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

  • 23. Boutet, Sébastien
    et al.
    Lomb, Lukas
    Williams, Garth J
    Barends, Thomas R M
    Aquila, Andrew
    Doak, R Bruce
    Weierstall, Uwe
    DePonte, Daniel P
    Steinbrener, Jan
    Shoeman, Robert L
    Messerschmidt, Marc
    Barty, Anton
    White, Thomas A
    Kassemeyer, Stephan
    Kirian, Richard A
    Seibert, M Marvin
    Montanez, Paul A
    Kenney, Chris
    Herbst, Ryan
    Hart, Philip
    Pines, Jack
    Haller, Gunther
    Gruner, Sol M
    Philipp, Hugh T
    Tate, Mark W
    Hromalik, Marianne
    Koerner, Lucas J
    van Bakel, Niels
    Morse, John
    Ghonsalves, Wilfred
    Arnlund, David
    Bogan, Michael J
    Caleman, Carl
    Fromme, Raimund
    Hampton, Christina Y
    Hunter, Mark S
    Johansson, Linda C
    Katona, Gergely
    Kupitz, Christopher
    Liang, Mengning
    Martin, Andrew V
    Nass, Karol
    Redecke, Lars
    Stellato, Francesco
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Wang, Dingjie
    Zatsepin, Nadia A
    Schafer, Donald
    Defever, James
    Neutze, Richard
    Fromme, Petra
    Spence, John C H
    Chapman, Henry N
    Schlichting, Ilme
    High-resolution protein structure determination by serial femtosecond crystallography2012Ingår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 337, nr 6092, s. 362-364Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.

  • 24. Braun, Tatjana
    et al.
    Orlova, Albina
    Valegård, Karin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Lindas, Ann-Christin
    Schroeder, Gunnar F.
    Egelman, Edward H.
    Archaeal actin from a hyperthermophile forms a single-stranded filament2015Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 112, nr 30, s. 9340-9345Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The prokaryotic origins of the actin cytoskeleton have been firmly established, but it has become clear that the bacterial actins form a wide variety of different filaments, different both from each other and from eukaryotic F-actin. We have used electron cryomicroscopy (cryo-EM) to examine the filaments formed by the protein crenactin (a crenarchaeal actin) from Pyrobaculum calidifontis, an organism that grows optimally at 90 degrees C. Although this protein only has similar to 20% sequence identity with eukaryotic actin, phylogenetic analyses have placed it much closer to eukaryotic actin than any of the bacterial homologs. It has been assumed that the crenactin filament is double-stranded, like F-actin, in part because it would be hard to imagine how a single-stranded filament would be stable at such high temperatures. We show that not only is the crenactin filament single-stranded, but that it is remarkably similar to each of the two strands in F-actin. A large insertion in the crenactin sequence would prevent the formation of an F-actin-like double-stranded filament. Further, analysis of two existing crystal structures reveals six different subunit-subunit interfaces that are filament-like, but each is different from the others in terms of significant rotations. This variability in the subunit-subunit interface, seen at atomic resolution in crystals, can explain the large variability in the crenactin filaments observed by cryo-EM and helps to explain the variability in twist that has been observed for eukaryotic actin filaments.

  • 25. Broeker, N. K.
    et al.
    Gohlke, U.
    Müller, J. J.
    Uetrecht, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Heinemann, U.
    Seckler, R.
    Barbirz, S.
    Single amino acid exchange in bacteriophage HK620 tailspike protein results in thousand-fold increase of its oligosaccharide affinity2013Ingår i: Glycobiology, ISSN 0959-6658, E-ISSN 1460-2423, Vol. 23, nr 1, s. 59-68Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Bacteriophage HK620 recognizes and cleaves the O-antigen polysaccharide of Escherichia coli serogroup O18A1 with its tailspike protein (TSP). HK620TSP binds hexasaccharide fragments with low affinity, but single amino acid exchanges generated a set of high-affinity mutants with submicromolar dissociation constants. Isothermal titration calorimetry showed that only small amounts of heat were released upon complex formation via a large number of direct and solvent-mediated hydrogen bonds between carbohydrate and protein. At room temperature, association was both enthalpy- and entropy-driven emphasizing major solvent rearrangements upon complex formation. Crystal structure analysis showed identical protein and sugar conformers in the TSP complexes regardless of their hexasaccharide affinity. Only in one case, a TSP mutant bound a different hexasaccharide conformer. The extended sugar binding site could be dissected in two regions: first, a hydrophobic pocket at the reducing end with minor affinity contributions. Access to this site could be blocked by a single aspartate to asparagine exchange without major loss in hexasaccharide affinity. Second, a region where the specific exchange of glutamate for glutamine created a site for an additional water molecule. Side-chain rearrangements upon sugar binding led to desolvation and additional hydrogen bonding which define this region of the binding site as the high-affinity scaffold.

  • 26.
    Caleman, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Towards Single Molecule Imaging - Understanding Structural Transitions Using Ultrafast X-ray Sources and Computer Simulations2007Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    X-ray lasers bring us into a new world in photon science by delivering extraordinarily intense beams of x-rays in very short bursts that can be more than ten billion times brighter than pulses from other x-ray sources. These lasers find applications in sciences ranging from astrophysics to structural biology, and could allow us to obtain images of single macromolecules when these are injected into the x-ray beam.

    A macromolecule injected into vacuum in a microdroplet will be affected by evaporation and by the dynamics of the carrier liquid before being hit by the x-ray pulse. Simulations of neutral and charged water droplets were performed to predict structural changes and changes of temperature due to evaporation. The results are discussed in the aspect of single molecule imaging.

    Further studies show ionization caused by the intense x-ray radiation. These simulations reveal the development of secondary electron cascades in water. Other studies show the development of these cascades in KI and CsI where experimental data exist. The results are in agreement with observation, and show the temporal, spatial and energetic evolution of secondary electron cascades in the sample.

    X-ray diffraction is sensitive to structural changes on the length scale of chemical bonds. Using a short infrared pump pulse to trigger structural changes, and a short x-ray pulse for probing it, these changes can be studied with a temporal resolution similar to the pulse lengths. Time resolved diffraction experiments were performed on a phase transition during resolidification of a non-thermally molten InSb crystal. The experiment reveals the dynamics of crystal regrowth.

    Computer simulations were performed on the infrared laser-induced melting of bulk ice, giving a comprehension of the dynamics and the wavelength dependence of melting. These studies form a basis for planning experiments with x-ray lasers.

    Delarbeten
    1. Auger electron cascades in water and ice
    Öppna denna publikation i ny flik eller fönster >>Auger electron cascades in water and ice
    2004 (Engelska)Ingår i: Chemical Physics, ISSN 0301-0104, E-ISSN 1873-4421, Vol. 299, s. 277-283Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Secondary electron cascades can induce significant ionisation in condensed matter due to electron–atom collisions. This is of interest in the context of diffraction and imaging using X-rays, where radiation damage is the main limiting factor for achieving high resolution data. Here we present new results on electron-induced damage on liquid water and ice, from the simulation of Auger electron cascades. We have compared our theoretical estimations to the available experimental data on elastic and inelastic electron–molecule interactions for water and found the theoretical results for elastic cross-sections to be in very good agreement with experiment. As a result of the cascade we find that the average number of secondary electrons after 100 fs in ice is about 25, slightly higher than in water, where it is about 20. The difference in damage between ice and water is discussed in the context of sample handling for biomolecular systems.

    Nationell ämneskategori
    Naturvetenskap
    Identifikatorer
    urn:nbn:se:uu:diva-95959 (URN)10.1016/j.chemphys.2003.10.011 (DOI)2004 (PubMedID)
    Tillgänglig från: 2007-05-16 Skapad: 2007-05-16 Senast uppdaterad: 2017-12-14Bibliografiskt granskad
    2. Studies if resolidification of non-thermally molten InSb using time-resolved X-ray diffraction
    Öppna denna publikation i ny flik eller fönster >>Studies if resolidification of non-thermally molten InSb using time-resolved X-ray diffraction
    Visa övriga...
    2005 Ingår i: Applied Physics A, Vol. 81, s. 893-900Artikel i tidskrift (Refereegranskat) Published
    Identifikatorer
    urn:nbn:se:uu:diva-95960 (URN)
    Tillgänglig från: 2007-05-16 Skapad: 2007-05-16 Senast uppdaterad: 2016-04-12Bibliografiskt granskad
    3. Temperature and structural changes of water in vacuum due to evaporation
    Öppna denna publikation i ny flik eller fönster >>Temperature and structural changes of water in vacuum due to evaporation
    2006 Ingår i: Journal of Chemical Physics, Vol. 125, s. 154508-Artikel i tidskrift (Refereegranskat) Published
    Identifikatorer
    urn:nbn:se:uu:diva-95961 (URN)
    Tillgänglig från: 2007-05-16 Skapad: 2007-05-16Bibliografiskt granskad
    4. Picosecond Melting of Ice by an Infrared Laser Pulse
    Öppna denna publikation i ny flik eller fönster >>Picosecond Melting of Ice by an Infrared Laser Pulse
    2008 (Engelska)Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 47, nr 8, s. 1417-1420Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Cold as ice: Molecular dynamics simulation provides snapshots of a melting ice crystal (see picture). The laser pulse heats up the system, and the energy is absorbed in the OH bonds. After a few picoseconds, the energy is transferred to rotational and translational energy, causing the crystal to melt. The melting starts as a nucleation process, and even long after the first melting is initialized, pockets of crystalline structures can be found.

    Nyckelord
    Computer Simulation, Crystallization, Ice, Infrared Rays, Kinetics, Lasers, Models; Molecular, Molecular Conformation, Phase Transition/*radiation effects, Temperature, Time Factors
    Nationell ämneskategori
    Biologiska vetenskaper
    Identifikatorer
    urn:nbn:se:uu:diva-95962 (URN)10.1002/anie.200703987 (DOI)000253345700010 ()18176920 (PubMedID)
    Tillgänglig från: 2007-05-16 Skapad: 2007-05-16 Senast uppdaterad: 2017-12-14Bibliografiskt granskad
    5. Secondary Electron Cascade Dynamics in KI and CsI
    Öppna denna publikation i ny flik eller fönster >>Secondary Electron Cascade Dynamics in KI and CsI
    2007 (Engelska)Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 111, nr 46, s. 17442-17447Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    We present a study of the characteristics of secondary electron cascades in two photocathode materials, KI and CsI. To do so, we have employed a model that enables us to explicitly follow the electron trajectories once the dielectric properties have been derived semiempirically from the energy loss function. Furthermore, we introduce a modification to the model by which the energy loss function is calculated in a first-principle manner using the GW approximation for the self-energy of the electrons. We find good agreement between the two approaches. Our results show comparable saturation times and secondary electron yields for the cascades in the two materials, and a narrower electron energy distribution (51%) for KI compared to that for CsI.

    Nationell ämneskategori
    Fysik
    Identifikatorer
    urn:nbn:se:uu:diva-102110 (URN)10.1021/jp0736692 (DOI)000251024500041 ()
    Tillgänglig från: 2009-05-06 Skapad: 2009-05-05 Senast uppdaterad: 2017-12-13Bibliografiskt granskad
    6. Evaporation from water clusters containing singly charged ions
    Öppna denna publikation i ny flik eller fönster >>Evaporation from water clusters containing singly charged ions
    2007 (Engelska)Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 9, nr 37, s. 5105-5111Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Molecular dynamics simulations were used to study the evaporation from water clusterscontaining either ClÀ, H2PO4À, Na+ or NH4+ ions. The simulations ranged between 10 and500 ns, and were performed in vacuum starting at 275 K. A number of different models were usedincluding polarizable models. The clusters contain 216 or 512 molecules, 0, 4 or 8 of which wereions. The ions with hydrogen bonding properties do not affect evaporation, even though thephosphate ions have a pronounced ion–ion structure and tend to be inside the cluster whereasammonium shows little ion–ion structure and has a distribution within the cluster similar to thatof the water molecules. Since the individual ion–water interactions are much stronger in the caseof Na+–water and ClÀ–water clusters, evaporation is somewhat slower for clusters containingthese ions. It seems therefore that the main determinant of the evaporation rate in ion–waterclusters is the strength of the interaction. Fission of droplets that contain more ions than allowedaccording to the Rayleigh limit seems to occur more rapidly in clusters containing ammoniumand sodium ions.

    Nyckelord
    Sodium ion, Droplet, Aqueous solution, Distribution, Ammonium ion, Structure, Phosphates, Hydrogen bond, Models, Simulation, Molecular dynamics method, Ions, Water, Evaporation
    Nationell ämneskategori
    Biologiska vetenskaper
    Identifikatorer
    urn:nbn:se:uu:diva-95964 (URN)10.1039/b706243e (DOI)000249564300005 ()17878986 [ (PubMedID)
    Tillgänglig från: 2007-05-16 Skapad: 2007-05-16 Senast uppdaterad: 2017-12-14Bibliografiskt granskad
  • 27. Caleman, Carl
    et al.
    Bergh, Magnus
    Scott, Howard A.
    Spence, John C. H.
    Chapman, Henry N.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Simulations of radiation damage in biomolecular nanocrystals induced by femtosecond X-ray pulses2011Ingår i: Journal of Modern Optics, ISSN 0950-0340, E-ISSN 1362-3044, Vol. 58, nr 16, s. 1486-1497Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Linac Coherent Light Source (LCLS) is the first X-ray free electron laser to achieve lasing at subnanometer wavelengths (6 angstrom). LCLS is poised to reach even shorter wavelengths (1.5 angstrom) and thus holds the promise of single molecular imaging at atomic resolution. The initial operation at a photon energy of 2 keV provides the possibility to perform the first experiments on damage to biological particles, and to assess the limitations to coherent imaging of biological samples, which are directly relevant at atomic resolution. In this paper we theoretically investigate the damage formation and detection possibilities for a biological crystal, by employing and comparing two different damage models with complementary strengths. Molecular dynamics provides a discrete approach which investigates structural details at the atomic level by tracking all atoms in the real space. Our continuum model is based on a non-local thermodynamics equilibrium code with atomic kinetics and radiation transfer and can treat hydrodynamic expansion of the entire system. The latter approach captures the essential features of atomic displacements, without taking into account structural information and intrinsic atomic movements. This proves to be a powerful computational tool for many samples, including biological crystals, which will be studied with X-ray free electron lasers.

  • 28. Caleman, Carl
    et al.
    Huldt, Gösta
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Maia, Filipe R. N. C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Ortiz, Carlos
    Parak, Fritz G.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    van der Spoel, David
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Beräknings- och systembiologi.
    Chapman, Henry N.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    On the Feasibility of Nanocrystal Imaging Using Intense and Ultrashort X-ray Pulses2011Ingår i: ACS Nano, ISSN 1936-0851, Vol. 5, nr 1, s. 139-146Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecule of interest in the crystal. X-ray lasers offer an additional opportunity for limiting damage by out-running damage processes with ultrashort and very intense X-ray pulses Such pulses may allow the imaging of single molecules, clusters; Or nanoparticles: Coherent flash Imaging Will also open up new avenues for structural studies on nano- and microcrystalline substances. This paper addresses the theoretical potentials and limitations of nanocrystallography with extremely intense coherent X-ray pulses. We use urea nanocrystals as a model for generic biological substances and simulate the primary and secondary ionization dynamics in the crystalline sample. The results establish conditions for ultrafast single shot nanocrystallography diffraction experiments as a function of X-ray fluence, pulse duration, and the size of nanocrystals. Nanocrystallography using ultrafast X-ray pulses has the potential to open up a new route in protein crystallography to solve atomic structures of many systems that remain Inaccessible using conventional X-ray sources.

  • 29.
    Caleman, Carl
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Huldt, Gösta
    Ortiz, Carlos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap, Materialteori.
    Maia, Filipe R. N. C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Marklund, Erik G.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Parak, Fritz G.
    van der Spool, David
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Nanocrystal imaging using intense and ultrashort X-ray pulsesManuskript (preprint) (Övrig (populärvetenskap, debatt, mm))
    Abstract [en]

    Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecule of interest in the crystal. X-ray lasers offer an additional opportunity for limiting damage by out-running damage processes with ultrashort and very intense X-ray pulses. Such pulses may allow the imaging of single molecules, clusters or nanoparticles, but coherent flash imaging will also open up new avenues for structural studies on nano- and micro-crystalline substances. This paper addresses the potentials and limitations of nanocrystallography with extremely intense coherent X-ray pulses. We use urea nanocrystals as a model for generic biological substances, and simulate the primary and secondary ionization dynamics in the crystalline sample. The results establish conditions for diffraction experiments as a function of X-ray fluence, pulse duration, and the size of nanocrystals.

  • 30.
    Caleman, Carl
    et al.
    Physik Department E17, Technische Universität München.
    Ortiz, Carlos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap, Materialteori.
    Marklund, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Bultmark, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap, Materialteori.
    Gabrysch, Markus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära.
    Parak, F. G.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Klintenberg, Mattias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap, Materialteori.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Radiation damage in biological material: electronic properties and electron impact ionization in urea2009Ingår i: Europhysics letters, ISSN 0295-5075, E-ISSN 1286-4854, Vol. 85, nr 1, s. 18005-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Radiation damage is an unavoidable process when performing structural investigations of biological macromolecules with X-rays. In crystallography this process can be limited through damage distribution in a crystal, while for single molecular imaging it can be outrun by employing short intense pulses. Secondary electron generation is crucial during damage formation and we present a study of urea, as model for biomaterial. From first principles we calculate the band structure and energy loss function, and subsequently the inelastic electron cross-section in urea. Using Molecular Dynamics simulations, we quantify the damage and study the magnitude and spatial extent of the electron cloud coming from an incident electron, as well as the dependence with initial energy.

  • 31.
    Caleman, Carl
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Martin, Andrew V.
    Jönsson, H. Olof
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Aquila, Andrew
    Barty, Anton
    Scott, Howard A.
    White, Thomas A.
    Chapman, Henry N.
    Ultrafast self-gating Bragg diffraction of exploding nanocrystals in an X-ray laser2015Ingår i: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 23, nr 2, s. 1213-1231Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In structural determination of crystalline proteins using intense femtosecond X-ray lasers, damage processes lead to loss of structural coherence during the exposure. We use a nonthermal description for the damage dynamics to calculate the ultrafast ionization and the subsequent atomic displacement. These effects degrade the Bragg diffraction on femtosecond time scales and gate the ultrafast imaging. This process is intensity and resolution dependent. At high intensities the signal is gated by the ionization affecting low resolution information first. At lower intensities, atomic displacement dominates the loss of coherence affecting high-resolution information. We find that pulse length is not a limiting factor as long as there is a high enough X-ray flux to measure a diffracted signal.

  • 32.
    Caleman, Carl
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Tîmneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Martin, A. V.
    White, T. A.
    Scott, H. A.
    Barty, A.
    Aquila, A.
    Chapman, H. N.
    Modeling of XFEL induced ionization and atomic displacement in protein nanocrystals2012Ingår i: Proceedings of SPIE: The International Society for Optical Engineering, 2012, s. 85040H-Konferensbidrag (Refereegranskat)
    Abstract [en]

    X-ray free-electron lasers enable high-resolution imaging of biological materials by using short enough pulses to outrun many of the effects of radiation damage. Experiments conducted at the LCLS have obtained diffraction data from single particles and protein nanocrystals at doses to the sample over 3 GGy. The details of the interaction of the X-ray FEL pulse with the sample determine the limits of this new paradigm for imaging. Recent studies suggest that in the case of crystalline samples, such as protein nanocrystals, the atomic displacements and loss of bound electrons in the crystal (due to the high X- ray intensity) has the effect of gating the diffraction signal, and hence making the experiment less radiation sensitive. Only the incident photon intensity in the first part of the pulse, before the Bragg diffraction has died out, is relevant to acquiring signal and the rest of the pulse will mainly contribute to a diffuse background. In this work we use a plasma based non-local thermodynamic equilibrium code to explore the displacement and the ionization of a protein nanocrystal at various X-ray wavelengths and intensities.

  • 33.
    Caleman, Carl
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Teknisk-naturvetenskapliga fakulteten, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    van der Spoel, David
    Temperature and structural changes of water in vacuum due to evaporation2006Ingår i: Journal of Chemical Physics, Vol. 125, s. 154508-Artikel i tidskrift (Refereegranskat)
  • 34.
    Carlsson, Gunilla H.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hasse, Dirk
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Cardinale, Francesca
    Univ Turin, Dept Agr Forestry & Food Sci, Largo Paolo Braccini 2, I-10095 Grugliasco 2, Italy.
    Prandi, Cristina
    Univ Turin, Dept Chem, Via P Giuria 7, I-10125 Turin, Italy.
    Andersson, Inger
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    The elusive ligand complexes of the DWARF14 strigolactone receptor2018Ingår i: Journal of Experimental Botany, ISSN 0022-0957, E-ISSN 1460-2431, Vol. 69, nr 9, s. 2345-2354Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Strigolactones, a group of terpenoid lactones, control many aspects of plant growth and development, but the active forms of these plant hormones and their mode of action at the molecular level are still unknown. The strigolactone protein receptor is unusual because it has been shown to cleave the hormone and supposedly forms a covalent bond with the cleaved hormone fragment. This interaction is suggested to induce a conformational change in the receptor that primes it for subsequent interaction with partners in the signalling pathway. Substantial efforts have been invested into describing the interaction of synthetic strigolactone analogues with the receptor, resulting in a number of crystal structures. This investigation combines a re-evaluation of models in the Protein Data Bank with a search for new conditions that may permit the capture of a receptor-ligand complex. While weak difference density is frequently observed in the binding cavity, possibly due to a low-occupancy compound, the models often contain features not supported by the X-ray data. Thus, at this stage, we do not believe that any detailed deductions about the nature, conformation, or binding mode of the ligand can be made with any confidence.

  • 35. Chalupsky, J.
    et al.
    Juha, L.
    Kuba, J.
    Cihelka, J.
    Hajkova, V.
    Koptyaev, S.
    Krasa, J.
    Velyhan, A.
    Bergh, Magnus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Caleman, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Bionta, R. M.
    Chapman, H.
    Hau-Riege, S. P.
    London, R. A.
    Jurek, M.
    Krzywinski, J.
    Nietubyc, R.