uu.seUppsala University Publications
Change search
Refine search result
12345 1 - 50 of 202
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abadpour, Shadab
    et al.
    Oslo Univ Hosp, Sect Transplant Surg, Oslo, Norway.;Oslo Univ Hosp, Inst Surg Res, Oslo, Norway.;Univ Oslo, Inst Clin Med, Oslo, Norway..
    Göpel, Sven O.
    AstraZeneca R&D Gothenburg, Dept CVMD Biosci, Gothenburg, Sweden..
    Schive, Simen W.
    Oslo Univ Hosp, Sect Transplant Surg, Oslo, Norway.;Oslo Univ Hosp, Inst Surg Res, Oslo, Norway.;Univ Oslo, Inst Clin Med, Oslo, Norway..
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Foss, Aksel
    Oslo Univ Hosp, Sect Transplant Surg, Oslo, Norway.;Oslo Univ Hosp, Inst Surg Res, Oslo, Norway.;Univ Oslo, Inst Clin Med, Oslo, Norway..
    Scholz, Hanne
    Oslo Univ Hosp, Sect Transplant Surg, Oslo, Norway.;Oslo Univ Hosp, Inst Surg Res, Oslo, Norway.;Univ Oslo, Inst Clin Med, Oslo, Norway..
    Glial cell-line derived neurotrophic factor protects human islets from nutrient deprivation and endoplasmic reticulum stress induced apoptosis2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 1575Article in journal (Refereed)
    Abstract [en]

    One of the key limitations to successful human islet transplantation is loss of islets due to stress responses pre- and post-transplantation. Nutrient deprivation and ER stress have been identified as important mechanisms leading to apoptosis. Glial Cell-line Derived Neurotrophic Factor (GDNF) has recently been found to promote islet survival after isolation. However, whether GDNF could rescue human islets from nutrient deprivation and ER stress-mediated apoptosis is unknown. Herein, by mimicking those conditions in vitro, we have shown that GDNF significantly improved glucose stimulated insulin secretion, reduced apoptosis and proinsulin: insulin ratio in nutrient deprived human islets. Furthermore, GDNF alleviated thapsigargin-induced ER stress evidenced by reduced expressions of IRE1 alpha and BiP and consequently apoptosis. Importantly, this was associated with an increase in phosphorylation of PI3K/AKT and GSK3B signaling pathway. Transplantation of ER stressed human islets pre- treated with GDNF under kidney capsule of diabetic mice resulted in reduced expressions of IRE1 alpha and BiP in human islet grafts with improved grafts function shown by higher levels of human C-peptide post-transplantation. We suggest that GDNF has protective and anti-apoptotic effects on nutrient deprived and ER stress activated human islets and could play a significant role in rescuing human islets from stress responses.

  • 2.
    Abadpour, Shadab
    et al.
    Oslo University Hospital, Oslo, Norway.
    Halvorsen, Bente
    Oslo University Hospital, Oslo, Norway.
    Sahraoui, Afaf
    University of Oslo, Oslo, Norway.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Aukrust, Pål
    Oslo University Hospital, Oslo, Norway.
    Scholz, Hanne
    Oslo University Hospital, Oslo, Norway.
    Interleukin-22 reverses human islet dysfunction and apoptosis triggered by hyperglycemia and LIGHT2018In: Journal of Molecular Endocrinology, ISSN 0952-5041, E-ISSN 1479-6813, Vol. 60, no 3, p. 171-183Article in journal (Refereed)
    Abstract [en]

    Interleukin (IL)-22 has recently been suggested as an anti-inflammatory cytokine that could protect the islet cells from inflammation- and glucose-induced toxicity. We have previously shown that the tumor necrosis factor family member, LIGHT can impair human islet function at least partly via pro-apoptotic effects. Herein, we aimed to investigate the protective role of IL-22 on human islets exposed to the combination of hyperglycemia and LIGHT. First, we found up-regulation of LIGHT receptors (LTβR and HVEM) in engrafted human islets exposed to hyperglycemia (>11 mM) for 17 days post transplantation by using a double islet transplantation mouse model as well as in human islets cultured with high glucose (HG) (20mM glucose) + LIGHT in vitro and this latter effect was attenuated by IL-22. The effect of HG + LIGHT impairing glucose stimulated insulin secretion was reversed by IL-22. The harmful effect of HG + LIGHT on human islet function seemed to involve enhanced endoplasmic reticulum stress evidenced by up-regulation of p-IRE1α and BiP, elevated secretion of pro-inflammatory cytokines (IL-6, IL-8, IP-10 and MCP-1) and the pro-coagulant mediator tissue factor (TF) release and apoptosis in human islets, whereas all these effects were at least partly reversed by IL-22. Our findings suggest that IL-22 could counteract the harmful effects of LIGHT/hyperglycemia on human islet cells and potentially support the strong protective effect of IL-22 on impaired islet function and survival.

  • 3.
    Anagandula, Mahesh
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Richardson, Sarah J.
    University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, UK.
    Oberste, M. Steven
    Centers for Disease Control and Prevention, Atlanta, Georgia.
    Sioofy-Khojine, Amir-Babak
    School of Medicine, University of Tampere, Tampere, Finland.
    Hyoty, Heikki
    School of Medicine, University of Tampere, Tampere, Finland ,Fimlab Ltd, Pirkanmaa Hospital District, Finland.
    Morgan, Noel G.
    University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, UK.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Frisk, Gun
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Infection of Human Islets of Langerhans With Two Strains of Coxsackie B Virus Serotype 1: Assessment of Virus Replication, Degree of Cell Death and Induction of Genes Involved in the Innate Immunity Pathway2014In: Journal of Medical Virology, ISSN 0146-6615, E-ISSN 1096-9071, Vol. 86, no 8, p. 1402-1411Article in journal (Refereed)
    Abstract [en]

    Type 1 diabetes mellitus is believed to be triggered, in part, by one or more environmental factors and human enteroviruses (HEVs) are among the candidates. Therefore, this study has examined whether two strains of HEV may differentially affect the induction of genes involved in pathways leading to the synthesis of islet hormones, chemokines and cytokines in isolated, highly purified, human islets. Isolated, purified human pancreatic islets were infected with strains of Coxsackievirus B1. Viral replication and the degree of CPE/islet dissociation were monitored. The expression of insulin, glucagon, CXCL10, TLR3, IF1H1, CCL5, OAS-1, IFN beta, and DDX58 was analyzed. Both strains replicated in islets but only one of strain caused rapid islet dissociation/CPE. Expression of the insulin gene was reduced during infection of islets with either viral strain but the gene encoding glucagon was unaffected. All genes analyzed which are involved in viral sensing and the development of innate immunity were induced by Coxsackie B viruses, with the notable exception of TLR3. There was no qualitative difference in the expression pattern between each strain but the magnitude of the response varied between donors. The lack of virus induced expression of TLR3, together with the differential regulation of IF1H1, OAS1 and IFN beta, (each of which has polymorphic variants influence the predisposition to type 1 diabetes), that might result in defective clearance of virus from islet cells. The reduced expression of the insulin gene and the unaffected expression of the gene encoding glucagon by Coxsackie B1 infection is consistent with the preferential beta-cell tropism of the virus.

  • 4.
    Asif, Sana
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Sedigh, Amir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Nordström, Johan
    Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden.
    Brandhorst, Heide
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Jorns, Carl
    Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden.
    Lorant, Tomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Larsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Magnusson, Peetra U.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Nowak, Greg
    Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden.
    Theisinger, Sonja
    Novaliq GmbH, Heidelberg, Germany.
    Hoeger, Simone
    Department of Nephrology, Endocrinology and Rheumatology, University Medical Center Mannheim, Mannheim, Germany.
    Wennberg, Lars
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Oxygen-charged HTK-F6H8 emulsion reduces ischemia: reperfusion injury in kidneys from brain-dead pigs2012In: Journal of Surgical Research, ISSN 0022-4804, E-ISSN 1095-8673, Vol. 178, no 2, p. 959-967Article in journal (Refereed)
    Abstract [en]

    Background:

    Prolonged cold ischemia is frequently associated with a greater risk of delayed graft function and enhanced graft failure. We hypothesized that media, combining a high oxygen-dissolving capacity with specific qualities of organ preservation solutions, would be more efficient in reducing immediate ischemia-reperfusion injury from organs stored long term compared with standard preservation media.

    Methods:

    Kidneys retrieved from brain-dead pigs were flushed using either cold histidine-tryptophan-ketoglutarate (HTK) or oxygen-precharged emulsion composed of 75% HTK and 25% perfluorohexyloctane. After 18 h of cold ischemia the kidneys were transplanted into allogeneic recipients and assessed for adenosine triphosphate content, morphology, and expression of genes related to hypoxia, environmental stress, inflammation, and apoptosis.

    Results:

    Compared with HTK-flushed kidneys, organs preserved using oxygen-precharged HTK-perfluorohexyloctane emulsion had increased elevated adenosine triphosphate content and a significantly lower gene expression of hypoxia inducible factor-1 alpha, vascular endothelial growth factor, interleukin-1 alpha, tumor necrosis factor-alpha, interferon-alpha, JNK-1, p38, cytochrome-c, Bax, caspase-8, and caspase-3 at all time points assessed. In contrast, the mRNA expression of Bcl-2 was significantly increased.

    Conclusions:

    The present study has demonstrated that in brain-dead pigs the perfusion of kidneys with oxygen-precharged HTK-perfluorohexyloctane emulsion results in significantly reduced inflammation, hypoxic injury, and apoptosis and cellular integrity and energy content are well maintained. Histologic examination revealed less tubular, vascular, and glomerular changes in the emulsion-perfused tissue compared with the HTK-perfused counterparts. The concept of perfusing organs with oxygen-precharged emulsion based on organ preservation media represents an efficient alternative for improved organ preservation.

  • 5. Banerjee, Meenal
    et al.
    Virtanen, Ismo
    Palgi, Jaan
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Otonkoski, Timo
    Proliferation and plasticity of human beta cells on physiologically occurring laminin isoforms2012In: Molecular and Cellular Endocrinology, ISSN 0303-7207, E-ISSN 1872-8057, Vol. 355, no 1, p. 78-86Article in journal (Refereed)
    Abstract [en]

    We have previously characterized the molecular composition of human islet basement membranes and shown that human beta cells bind to laminin 511 (LM511) through integrin alpha 3 beta 1 and Lutheran glycoprotein. We have now investigated the impact of physical contact between cultured human beta cells and the laminin isoforms occurring in their natural niche. Human islet preparations derived from 15 donors were used, beta cells and duct cells were purified by magnetic sorting. Overall beta-cell proliferation was low or undetectable. However, in many experiments the only proliferating beta cells were detected in contact with the laminin isoforms that are found in the human islets in vivo (511 and 411). Purified ductal and beta cells underwent epithelial-mesenchymal transition (EMT). LM511 partially blocked this dedifferentiation of purified beta cells, and did not affect purified duct cells. Interactions with the surrounding basement membrane are important for the growth and function of human beta cells. However, only a very limited level of beta-cell proliferation can be induced by exogenous factors. LM511 may be a useful substrate for human beta-cell maintenance in vitro.

  • 6.
    Bartlett, Stephen T.
    et al.
    Univ Maryland, Sch Med, Dept Surg, Baltimore, MD 21201 USA..
    Markmann, James F.
    Massachusetts Gen Hosp, Div Transplantat, Boston, MA 02114 USA..
    Johnson, Paul
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Univ Oxford, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Hering, Bernhard J.
    Univ Minnesota, Dept Surg, Schulze Diabet Inst, Box 242 UMHC, Minneapolis, MN 55455 USA..
    Scharp, David
    Prodo Labs LLC, Irvine, CA USA.;Scharp Lacy Res Inst, Irvine, CA USA..
    Kay, Thomas W. H.
    St Vincents Hosp, St Vincents Inst Med Res, Dept Med, Fitzroy, Vic 3065, Australia.;Univ Melbourne, Melbourne, Vic 3010, Australia..
    Bromberg, Jonathan
    Massachusetts Gen Hosp, Div Transplantat, Boston, MA 02114 USA..
    Odorico, Jon S.
    Univ Wisconsin, Dept Surg, Sch Med & Publ Hlth, Div Transplantat, Madison, WI USA..
    Weir, Gordon C.
    Joslin Diabet Ctr, Boston, MA 02215 USA.;Harvard Univ, Sch Med, Boston, MA USA..
    Bridges, Nancy
    NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA..
    Kandaswamy, Raja
    Univ Minnesota, Dept Surg, Schulze Diabet Inst, Box 242 UMHC, Minneapolis, MN 55455 USA..
    Stock, Peter
    Univ San Francisco, Med Ctr, Div Transplantat, San Francisco, CA 94117 USA..
    Friend, Peter
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Univ Oxford, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Gotoh, Mitsukazu
    Fukushima Med Univ, Dept Surg, Fukushima, Japan..
    Cooper, David K. C.
    Univ Pittsburgh, Thomas E Starzl Transplantat Inst, Pittsburgh, PA USA..
    Park, Chung-Gyu
    Seoul Natl Univ, Coll Med, Dept Biomed Sci, Xenotransplantat Res Ctr,Dept Microbiol & Immunol, Seoul, South Korea..
    O'Connell, Phillip
    Univ Sydney, Westmead Hosp, Westmead Millennium Inst, Ctr Transplant & Renal Res, Westmead, NSW 2145, Australia..
    Stabler, Cherie
    Univ Miami, Sch Med, Diabet Res Inst, Coral Gables, FL 33124 USA..
    Matsumoto, Shinichi
    Natl Ctr Global Hlth & Med, Tokyo, Japan.;Otsuka Pharmaceut Factory Inc, Naruto, Japan..
    Ludwig, Barbara
    Tech Univ Dresden, Dept Med 3, D-01062 Dresden, Germany.;Tech Univ Dresden, Univ Clin Carl Gustav Carus, Helmholtz Ctr, Paul Langerhans Inst Dresden, Dresden, Germany.;DZD German Ctr Diabet Res, Dresden, Germany..
    Choudhary, Pratik
    Kings Coll London, Weston Educ Ctr, Diabet Res Grp, London WC2R 2LS, England..
    Kovatchev, Boris
    Univ Virginia, Ctr Diabet Technol, Charlottesville, VA USA..
    Rickels, Michael R.
    Univ Penn, Dept Med, Perelman Sch Med, Div Endocrinol Diabet & Metab, Philadelphia, PA 19104 USA..
    Sykes, Megan
    Coulmbia Univ, Med Ctr, Columbia Ctr Translat Immunol, New York, NY USA..
    Wood, Kathryn
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Univ Oxford, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Kraemer, Kristy
    NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA..
    Hwa, Albert
    Juvenile Diabet Res Fdn, New York, NY USA..
    Stanley, Edward
    Murdoch Childrens Res Inst, Parkville, Vic, Australia.;Monash Univ, Melbourne, Vic 3004, Australia..
    Ricordi, Camillo
    Univ Miami, Sch Med, Diabet Res Inst, Coral Gables, FL 33124 USA..
    Zimmerman, Mark
    BetaLogics, Raritan, NJ USA..
    Greenstein, Julia
    Juvenile Diabet Res Fdn, Discovery Res, New York, NY USA..
    Montanya, Eduard
    Univ Barcelona, Hosp Univ Bellvitge, CIBERDEM, Bellvitge Biomed Res Inst IDIBELL, Barcelona, Spain..
    Otonkoski, Timo
    Univ Helsinki, Childrens Hosp, Helsinki, Finland.;Univ Helsinki, Biomedicum Stem Cell Ctr, Helsinki, Finland..
    Report from IPITA-TTS Opinion Leaders Meeting on the Future of beta-Cell Replacement2016In: Transplantation, ISSN 0041-1337, E-ISSN 1534-6080, Vol. 100, p. S1-S44Article in journal (Refereed)
  • 7. Bennet, W
    et al.
    Björkland, Anna
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Sundberg, B
    Brandhorst, D
    Brendel, MD
    Richards, A
    White, DJ
    Nilsson, Bo
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Groth, CG
    Korsgren, Olle
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Expression of complement regulatory proteins on islets of Langerhans: a comparison between human islet and islets isolated from normal and hDAF transgenic pigs.2001In: Transplantation, Vol. 27, p. 312-Article in journal (Refereed)
  • 8. Bennet, W
    et al.
    Wundberg, B
    Elgue, Graciela
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Larsson, Rolf
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Korsgren, Olle
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Nilsson, Bo
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    A new in vitro model for the study of pig-to human vascular hyperacute rejection.2001In: Xentotransplantation, Vol. 8, p. 176-Article in journal (Refereed)
  • 9.
    Berg, Anna-Karin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Olsson, Annika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Frisk, Gun
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Antiviral Treatment of Coxsackie B Virus Infection in Human Pancreatic Islets2007In: Antiviral Research, ISSN 0166-3542, E-ISSN 1872-9096, Vol. 74, no 1, p. 65-71Article in journal (Refereed)
    Abstract [en]

    Enterovirus infections of the pancreatic islets are believed to trigger or precipitate the near total destruction of β-cells that constitutes type 1 diabetes (T1D). This study investigated the ability of an anti-picornaviral compound, pleconaril, to block the replication of two β-cell tropic Coxsackie B4 virus (CBV-4) strains in isolated human islets. The two strains, VD2921 and V89 4557, with demonstrated abilities to cause non-lytic persistence or lytic infection, respectively, in islets, represented two different potential mechanisms behind virus-induced T1D. The virus replication in the islets was studied with and without addition of pleconaril. In addition, islet morphology was studied every day. To test the effects of pleconaril and/or DMSO on the β-cells’ insulin secretion, glucose perifusions were performed on treated and untreated islets. Virus titrations showed a clear reduction of the replication of both strains after pleconaril treatment. The VD2921 strain was inhibited to undetectable levels. The V89 4557 strain, however, showed an initial reduction of titers but virus titers then increased despite the addition of a second dose of pleconaril. This incomplete inhibition of viral replication suggested the existence of a resistant subtype within this strain. Pleconaril treatment reduced the β-cells’ insulin secretion in response to glucose stimulation in some experiments and induced slight morphological changes to the islets compared to untreated controls. In summary, pleconaril reduced the replication of the two β-cell tropic CBV-4 strains in human islets. However, genetic differences between these strains influenced the effectiveness of pleconaril treatment. This stresses the importance of using multiple viral strains in antiviral tests.

  • 10.
    Berglund, David
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Karlsson, Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Biglarnia, Ali-Reza
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Lorant, Tomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Tufveson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Carlsson, Björn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Obtaining regulatory T cells from uraemic patients awaiting kidney transplantation for use in clinical trials2013In: Clinical and Experimental Immunology, ISSN 0009-9104, E-ISSN 1365-2249, Vol. 173, no 2, p. 310-322Article in journal (Refereed)
    Abstract [en]

    Adoptive transfer of regulatory T cells (Tregs) has been proposed for use as a cellular therapy to induce transplantation tolerance. Preclinical data are encouraging, and clinical trials with Treg therapy are anticipated. In this study, we investigate different strategies for the isolation and expansion of CD4+CD25highCD127low Tregs from uraemic patients. We use allogeneic dendritic cells (DCs) as feeder cells for the expansion and compare Treg preparations isolated by either fluorescence activated cell sorting (FACS) or magnetic activated cell sorting (MACS) that have been expanded subsequently with either mature or tolerogenic DCs. Expanded Treg preparations have been characterized by their purity, cytokine production and in-vitro suppressive ability. The results show that Treg preparations can be isolated from uraemic patients by both FACS and MACS. Also, the type of feeder cells used in the expansion affects both the purity and the functional properties of the Treg preparations. In particular, FACS-sorted Treg preparations expanded with mature DCs secrete more interleukin (IL)-10 and granzyme B than FACS-sorted Treg preparations expanded with tolerogenic DCs. This is a direct comparison between different isolation techniques and expansion protocols with Tregs from uraemic patients that may guide future efforts to produce clinical-grade Tregs for use in kidney transplantation.

  • 11.
    Berglund, David
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Karlsson, Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Palanisamy, Senthilkumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Carlsson, Björn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Imaging the in vivo fate of human T cells following transplantation in immunoincompetent mice - Implications for clinical cell therapy trials2013In: Transplant Immunology, ISSN 0966-3274, E-ISSN 1878-5492, Vol. 29, no 1-4, p. 105-108Article in journal (Refereed)
    Abstract [en]

    Many forms of adoptive T cell therapy are on the verge of being translated to the clinic. To gain further insight in their immunomodulating functions and to optimize future clinical trials it is essential to develop techniques to study their homing capacity. CD4+ T cells were labeled using [In-111]oxine, and the radioactive uptake was determined in vitro before intravenous injection in immunodeficient mice. In vivo biodistribution of [In-111] oxine-labeled cells or tracer alone was subsequently measured by mu SPECT/CT and organ distribution. CD4+ T cells incorporated [In-111]oxine with higher labeling yield using Ringer-Acetate compared to 0.9% NaCl. Cellular viability after labeling with [In-111]oxine was not compromised using less than 0.4 MBq/million cells. After intravenous infusion CD4+ T cells preferentially homed to the liver (p < 0.01) and spleen (p < 0.05). This study presents a protocol for labeling of T cells by [In-111]oxine with preserved viability and in vivo tracking by SPECT for up to 8 days, which can easily be translated to clinical cell therapy trials. 

  • 12.
    Berglund, David
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Lorant, Tomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Schneider, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Tufveson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Carlsson, Björn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Isolation, expansion and functional assessment of CD4+CD25+FoxP3+ regulatory T cells and Tr1 cells from uremic patients awaiting kidney transplantation2012In: Transplant Immunology, ISSN 0966-3274, E-ISSN 1878-5492, Vol. 26, no 1, p. 27-33Article in journal (Refereed)
    Abstract [en]

    Background: The immunosuppressive properties of regulatory T cells have emerged as an attractive tool for the development of immunotherapies in various disease contexts, e.g. to treat transplantation induced immune reactions. This paper focuses on the process of obtaining and functionally characterizing CD4+CD25+FoxP3+ regulatory T cells and Tr1 cells from uremic patients awaiting kidney transplantation.

    Methods: From October 2010 to March 2011 uremic patients awaiting living donor kidney transplantation, and their corresponding kidney donors, were enrolled in the study. A total of seven pairs were included. Isolation of CD4+CD25+FoxP3+ regulatory T cells was performed by magnetic activated cell sorting of peripheral blood mononuclear cells obtained from the uremic patients. Donor specific Tr1 cells were differentiated by repetitive stimulation of immature CD4+ T cells with immature dendritic cells, with the T cells coming from the future kidney recipients and the dendritic cells from the corresponding kidney donors. Cells were then expanded and functionally characterized by the one-way mixed leukocyte reaction and assessment of IL-10 production. Phenotypic analysis was performed by flow cytometry.

    Results: The fraction of CD4+CD25+FoxP3+ regulatory T cells after expansion varied from 39.1 to 50.4% and the cells retained their ability to substantially suppress the mixed leukocyte reaction in all but one patient (3.8–19.2% of the baseline stimulated leukocyte activity, p<0.05). Tr1 cells were successfully differentiated from all but one patient and produced high levels of IL-10 when stimulated with immature dendritic cells (1,275–11,038% of the baseline IL-10 secretion, pb0.05).

    Conclusion: It is practically feasible to obtain and subsequently expand CD4+CD25+FoxP3+ regulatory T cells and Tr1 cells from uremic patients without loss of function as assessed by in vitro analyses. This forms a base for adoptive regulatory T cell therapy in the setting of living donor kidney transplantation.

  • 13.
    Biglarnia, Ali-Reza
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Bennet, William
    Nilsson, Thomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Larsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Magnusson, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Yamamoto, Shinji
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Lorant, Tomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Sedigh, Amir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    von Zur-Mühlen, Bengt
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Bäckman, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Tufveson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Utilization of Small Pediatric Donors Including Infants for Pancreas and Kidney Transplantation: Exemplification of the Surgical Technique and the Surveillance2014In: Annals of Surgery, ISSN 0003-4932, E-ISSN 1528-1140, Vol. 260, no 2, p. e5-7Article in journal (Refereed)
  • 14.
    Brandhorst, Daniel
    et al.
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Churchill Hosp, OCDEM, Oxford, England..
    Parnaud, Geraldine
    Geneva Univ Hosp, Dept Surg, Cell Isolat & Transplantat Ctr, Geneva, Switzerland..
    Friberg, Andrew
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Lavallard, Vanessa
    Geneva Univ Hosp, Dept Surg, Cell Isolat & Transplantat Ctr, Geneva, Switzerland..
    Demuylder-Mischler, Sandrine
    Geneva Univ Hosp, Dept Surg, Cell Isolat & Transplantat Ctr, Geneva, Switzerland..
    Hughes, Stephen
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Churchill Hosp, OCDEM, Oxford, England..
    Saphoerster, Julia
    SERVA Electrophoresis GmbH, Uetersen, Germany..
    Kurfuerst, Manfred
    SERVA Electrophoresis GmbH, Uetersen, Germany..
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Berney, Thierry
    Geneva Univ Hosp, Dept Surg, Cell Isolat & Transplantat Ctr, Geneva, Switzerland..
    Johnson, Paul R. V.
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Churchill Hosp, OCDEM, Oxford, England..
    Multicenter Assessment of Animal-free Collagenase AF-1 for Human Islet Isolation2017In: Cell Transplantation, ISSN 0963-6897, E-ISSN 1555-3892, Vol. 26, no 10, p. 1688-1693Article in journal (Refereed)
    Abstract [en]

    Animal-free (AF) SERVA Collagenase AF-1 and Neutral Protease (NP) AF GMP Grade have recently become available for human islet isolation. This report describes the initial experiences of 3 different islet transplant centers. Thirty-four human pancreases were digested using 1 vial of the 6 different lots of Collagenase AF-1 (2,000-2,583 PZ-U/vial) supplemented with 4 different lots of NP AF in a range of 50 to 160 DMC-U per pancreas. Isolation, culture, and quality assessment were performed using standard techniques as previously described. All data are presented as mean +/- standard error of the mean (SEM). Variability of pancreas weight was associated with a wide range of collagenase and NP activities, ranging from 12.7 to 46.6 PZ-U/g (26.0 +/- 1.5 PZ-U/g) and 0.4 to 3.0 DMC-U/g (1.5 +/- 0.1 DMC-U/g), respectively. Postpurification islet yield was 296,494 +/- 33,620 islet equivalents (IEQ) equivalent to 3,274 +/- 450 IEQ/g with a purity of 55.9% +/- 3.2%. Quality assessment performed after 2 to 4 d of culture demonstrated a viability of 88.1% +/- 1.5% and a stimulation index of 3.7 +/- 0.7. Eighteen of the 34 preparations were transplanted into type 1 diabetic patients equivalent to a transplantation rate of 52.9%. Six preparations, which were infused into patients as first transplant, could be analyzed and increased the fasting C-peptide level from 0.11 +/- 0.08 pretransplant to 1.23 +/- 0.24 and 2.27 +/- 0.31 ng/mL 3 and 6 mo posttransplant (P < 0.05), respectively. Insulin requirements were simultaneously reduced at the same time from 39.2 +/- 3.8 IU/d before transplantation to 10.8 +/- 4.1 and 4.0 +/- 2.3 IU/d, after 3 and 6 mo posttransplant (P < 0.05), respectively. This study demonstrates the efficiency of AF SERVA Collagenase AF-1 and NP AF for clinical islet isolation and transplantation. The new plant-based production process makes these products a safe new option for the islet field.

  • 15.
    Brandhorst, H.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Iken, M.
    Scott, W. E. , I I I
    Papas, K. K.
    Theisinger, B.
    Johnson, P. R.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Brandhorst, D.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Quality of Isolated Pig Islets Is Improved Using Perfluorohexyloctane for Pancreas Storage in a Split Lobe Model2013In: Cell Transplantation, ISSN 0963-6897, E-ISSN 1555-3892, Vol. 22, no 8, p. 1477-1483Article in journal (Refereed)
    Abstract [en]

    Pancreas transportation between donor center and islet production facility is frequently associated with prolonged ischemia impairing islet isolation and transplantation outcomes. It is foreseeable that shipment of pig pancreases from distant centralized biosecure breeding facilities to institutes that have a long-term experience in porcine islet isolation is essentially required in future clinical islet xenotransplantation. Previously, we demonstrated that perfluorohexyloctan (F6H8) is significantly more efficient to protect rat and human pancreata from ischemically induced damage compared to perfluorodecalin (PFD). To evaluate the effect of F6H8 on long-term stored pig pancreases in a prospective study, we utilized the split lobe model to minimize donor variability. Retrieved pancreases were dissected into the connecting and splenic lobe, intraductally flushed with UW solution and immersed alternately in either preoxygenated F6H8 or PFD for 8-10 h. Prior to pancreas digestion, the intrapancreatic pO(2) and the ratio of ATP-to-inorganic phosphate was compared utilizing P-31-NMR spectroscopy. Isolated islets were cultured for 2-3 days at 37 degrees C and subjected to quality assessment. Pancreatic lobes stored in preoxygenated F6H8 had a significantly higher intrapancreatic pO(2) compared to pancreata in oxygen-precharged PFD (10.11 +/- 3.87 vs. 1.64 +/- 1.13 mmHg, p < 0.05). This correlated with a higher ATP-to-inorganic phosphate ratio (0.30 +/- 0.04 vs. 0.14 +/- 0.01). No effect was observed concerning yield and purity of freshly isolated islets. Nevertheless, a significantly improved glucose-stimulated insulin response, increased viability and postculture survival (57.2 +/- 5.7 vs. 39.3 +/- 6.4%, p < 0.01) was measured in islets isolated from F6H8-preserved pancreata. The present data suggest that F6H8 does not increase islet yield but improves quality of pig islets isolated after prolonged cold ischemia.

  • 16.
    Brandhorst, Heide
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Asif, Sana
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Andersson, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Moench, Johanna
    Serva Electrophoresis GmbH, Uetersen, Germany..
    Friedrich, Olaf
    Nordmark Arzneimittel GmbH & Co KG, Uetersen, Germany..
    Raemsch-Guenther, Nicole
    Serva Electrophoresis GmbH, Uetersen, Germany..
    Raemsch, Christian
    Nordmark Arzneimittel GmbH & Co KG, Uetersen, Germany..
    Steffens, Melanie
    Serva Electrophoresis GmbH, Uetersen, Germany..
    Lambrecht, Joerg
    Nordmark Arzneimittel GmbH & Co KG, Uetersen, Germany..
    Schraeder, Thomas
    Nordmark Arzneimittel GmbH & Co KG, Uetersen, Germany..
    Kurfuerst, Manfred
    Nordmark Arzneimittel GmbH & Co KG, Uetersen, Germany..
    Andersson, Helene H.
    Univ Hosp, Dept Nephrol & Transplantat, Malmo, Sweden..
    Felldin, Marie
    Univ Hosp, Dept Transplantat, Gothenburg, Sweden..
    Foss, Aksel
    Univ Oslo, Rikshosp, Oslo Univ Hosp, Div Surg,Sect Transplantat, N-0027 Oslo, Norway..
    Salmela, Kaija
    Univ Helsinki, Surg Hosp, Div Transplantat, Helsinki, Finland..
    Tibell, Annika
    Karolinska Inst, Div Transplantat Surg, CLINTEC, Stockholm, Sweden..
    Tufveson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    The Effect of Truncated Collagenase Class I Isomers on Human Islet Isolation Outcome2010In: Transplantation, ISSN 0041-1337, E-ISSN 1534-6080, Vol. 90, no 3, p. 334-335Article in journal (Refereed)
  • 17.
    Brandhorst, Heide
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Asif, Sana
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Andersson, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Theisinger, Bastian
    Andersson, Helene H
    Felldin, Maria
    Foss, Aksel
    Salmela, Kaija
    Tibell, Annika
    Tufveson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    A new oxygen carrier for improved long-term storage of human pancreata before islet isolation2010In: Transplantation, ISSN 0041-1337, E-ISSN 1534-6080, Vol. 89, no 2, p. 155-60Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Pancreas oxygenation during cold storage has been established in islet isolation and transplantation to prevent ischemic tissue damage using perfluorodecalin (PFD) as hyperoxygen carrier. However, studies in humans and pigs provided conflicting results about the efficiency of PFD for pancreas oxygenation. The aim of this study was to compare PFD with a newly developed oxygen carrier composed of perfluorohexyloctane and polydimethylsiloxane 5 (F6H8S5) for long-term storage of human pancreata.

    METHODS: After 24-hr storage in preoxygenated PFD or F6H8S5, pancreata were processed using Liberase HI for pancreas dissociation and a Ficoll gradient for islet purification. Islet quality assessment was performed measuring glucose-stimulated insulin release, viability, islet ATP content, and posttransplant function in diabetic nude mice.

    RESULTS: Compared with PFD, F6H8S5 significantly increased the intrapancreatic partial oxygen pressure and islet ATP content. This corresponded to an increase of islet yield, recovery after culture, glucose stimulation index, viability, and improved graft function in diabetic nude mice.

    CONCLUSIONS: The present findings indicate clearly that F6H8S5 improves isolation outcome after prolonged ischemia compared with PFD. This observation seems to be related to the significant lipophilicity and almost pancreas-specific density of F6H8S5. Moreover, these characteristics facilitate pancreas shipment without using custom-made transport vessels as required for PFD.

  • 18.
    Brandhorst, Heide
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Univ Oxford, Nuffield Dept Surg Sci, Oxford, England;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.
    Johnson, Paul R.
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England;Oxford NIHR Biomed Res Ctr, Oxford, England.
    Moench, Johanna
    Nordmark Arzneimittel, Uetersen, Germany.
    Kurfuerst, Manfred
    Nordmark Arzneimittel, Uetersen, Germany.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Univ Oxford, Nuffield Dept Surg Sci, Oxford, England;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.
    Comparison of Clostripain and Neutral Protease as Supplementary Enzymes for Human Islet Isolation2019In: Cell Transplantation, ISSN 0963-6897, E-ISSN 1555-3892, Vol. 28, no 2, p. 176-184Article in journal (Refereed)
    Abstract [en]

    Although human islet transplantation has been established as valid and safe treatment for patients with type 1 diabetes, the utilization rates of human pancreases for clinical islet transplantation are still limited and substantially determined by the quality and composition of collagenase blends. While function and integrity of collagenase has been extensively investigated, information is still lacking about the most suitable supplementary neutral proteases. The present study compared islet isolation outcome after pancreas digestion by means of collagenase used alone or supplemented with either neutral protease (NP), clostripain (CP), or both proteases. Decent amounts of islet equivalents (IEQ) were isolated using collagenase alone (3090 +/- 550 IEQ/g), or in combination with NP (2340 +/- 450 IEQ/g) or CP (2740 +/- 280 IEQ/g). Nevertheless, the proportion of undigested tissue was higher after using collagenase alone (21.1 +/- 1.1%, P < 0.05) compared with addition of NP (13.3 +/- 2.2%) or CP plus NP (13.7 +/- 2.6%). Likewise, the percentage of embedded islets was highest using collagenase only (13 +/- 2%) and lowest adding NP plus CP (4 +/- 1%, P < 0.01). The latter combination resulted in lowest post-culture overall survival (42.7 +/- 3.9%), while highest survival was observed after supplementation with CP (74.5 +/- 4.8%, P < 0.01). An insulin response toward glucose challenge was present in all experimental groups, but the stimulation index was significantly decreased using collagenase plus NP (2.0 +/- 0.12) compared with supplementation with CP (3.16 +/- 0.4, P < 0.001). This study demonstrates for the first time that it is possible to isolate significant numbers of human islets combining collagenase only with CP. The supplementation with CP is an effective means to substantially reduce NP activity, which significantly decreases survival and viability after culture. This will facilitate the manufacturing of enzyme blends with less harmful characteristics.

  • 19.
    Brandhorst, Heide
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Johnson, Paul R. V.
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Oxford NIHR Biomed Res Ctr, Oxford, England..
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Quantifying the Effects of Different Neutral Proteases on Human Islet Integrity2017In: Cell Transplantation, ISSN 0963-6897, E-ISSN 1555-3892, Vol. 26, no 11, p. 1733-1741Article in journal (Refereed)
    Abstract [en]

    Efficient islet release from the pancreas requires the combination of collagenase, neutral protease (cNP), or thermolysin (TL). Recently, it has been shown that clostripain (CP) may also contribute to efficient islet release from the human pancreas. The aim of this study was to evaluate the impact of these proteases on human islet integrity in a prospective approach. Islets were isolated from the pancreas of 10 brain-dead human organ donors. Purified islets were precultured for 3 to 4 d at 37 degrees C to ensure that preparations were cleared of predamaged islets, and only integral islets were subjected to 90 min of incubation at 37 degrees C in Hank's balanced salt solution supplemented with cNP, TL, or CP. The protease concentrations were calculated for a pancreas of 100 g trimmed weight utilizing 120 dimethyl-casein units of cNP, 70,000 caseinase units of TL, or 200 benzoyl-Larginine- ethyl-ester units of CP (1x). These activities were then increased both 5 x and 10 x. After subsequent 24-h culture in enzyme-free culture medium, treated islets were assessed and normalized to sham-treated controls. Compared with controls and CP, islet yield was significantly reduced by using the 5 x activity of cNP and TL, inducing also fragmentation and DNA release. Viability significantly decreased not until adding the 1 x activity of cNP, 5 x activity of TL, or 10 x activity of CP. Although mitochondrial function was significantly lowered by 1 x cNP and 5 x TL, CP did not affect mitochondria at any concentration. cNP-and TL-incubated islets significantly lost intracellular insulin already at 1 x activity, while the 10 x activity of CP had to be added to observe a similar effect. cNP and TL have a similar toxic potency regarding islet integrity. CP also induces adverse effects on islets, but the toxic threshold is generally higher. We hypothesize that CP can serve as supplementary protease to minimize cNP or TL activity for efficient pancreas digestion.

  • 20.
    Brandhorst, Heide
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Kurfuerst, Manfred
    Serva Electrophoresis GmbH, Uetersen, Germany..
    Johnson, Paul R.
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Oxford NIHR Biomed Res Ctr, Oxford, England..
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Comparison of Neutral Proteases and Collagenase Class I as Essential Enzymes for Human Islet Isolation2016In: TRANSPLANTATION DIRECT, ISSN 2373-8731, Vol. 2, no 1, article id e47Article in journal (Refereed)
    Abstract [en]

    Background. Efficient islet isolation requires synergistic interaction between collagenase class I (CI) and class II (CII). The CI degradation alters the ratio between CI and CII and is responsible for batch-to-batch variations. This study compares the role of neutral protease (NP) plus clostripain (CP) with CI as essential enzymes for human islet isolation.

    Methods. Human islets were isolated using 4 different enzyme mixtures composed of CII plus either intact (CI-115) or degraded CI (CI-100). Blends were administered either with or without NP/CP. Purified islets were cultured for 3 to 4 days before islet quality assessment.

    Results. Whereas using intact CI-115 without NP/CP did not significantly reduce islet yield (3429 +/- 631 vs 3087 +/- 970 islet equivalent/g, nonsignificant), administration of degraded CI-100 without NP/CP decreased islet yield from 3501 +/- 580 to 1312 +/- 244 islet equivalent/g (P < 0.01), doubled the amount of undigested tissue from 11.8 +/- 1.6 to 24.4 +/- 1.2% (P < 0.01) and triplicated the percentage of trapped islets from 7.7 +/- 2.8 to 22.5 +/- 3.6% (P < 0.05). Islet yield did not vary between supplemented CI-115 and CI-100, but was increased using CI-115 when NP/CP was omitted (P < 0.05). A trend toward higher viability and increased secretory insulin response was noted in both CI-100 and CI-115 when NP/CP was not added.

    Conclusions. This study suggests that NP/CP can compensate reduced CI activity. Future attempts to optimize enzyme blends should consider the possibility to increase the proportion of collagenase CI to reduce the need for potentially harmful NPs.

  • 21.
    Brandhorst, Heide
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Raemsch-Guenther, Nicole
    Raemsch, Christian
    Friedrich, Olaf
    Huettler, Silke
    Kurfuerst, Manfred
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    The ratio between collagenase class I and class II influences the efficient islet release from the rat pancreas2008In: Transplantation, ISSN 0041-1337, E-ISSN 1534-6080, Vol. 85, no 3, p. 456-61Article in journal (Refereed)