uu.seUppsala University Publications
Change search
Refine search result
12 1 - 50 of 89
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, L.
    et al.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Ergun, R. E.
    Univ Colorado, LASP, Boulder, CO 80309 USA.;Univ Colorado, APS, Boulder, CO 80309 USA..
    Delory, G. T.
    Univ Calif Berkeley, SSL, Berkeley, CA 94720 USA..
    Eriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Westfall, J.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Reed, H.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    McCauly, J.
    Univ Calif Berkeley, SSL, Berkeley, CA 94720 USA..
    Summers, D.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Meyers, D.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    The Langmuir Probe and Waves (LPW) Instrument for MAVEN2015In: Space Science Reviews, ISSN 0038-6308, E-ISSN 1572-9672, Vol. 195, no 1-4, p. 173-198Article, review/survey (Refereed)
    Abstract [en]

    We describe the sensors, the sensor biasing and control, the signal-processing unit, and the operation of the Langmuir Probe and Waves (LPW) instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. The LPW instrument is designed to measure the electron density and temperature in the ionosphere of Mars and to measure spectral power density of waves (DC-2 MHz) in Mars' ionosphere, including one component of the electric field. Low-frequency plasma waves can heat ions resulting in atmospheric loss. Higher-frequency waves are used to calibrate the density measurement and to study strong plasma processes. The LPW is part of the Particle and Fields (PF) suite on the MAVEN spacecraft. The LPW instrument utilizes two, 40 cm long by 0.635 cm diameter cylindrical sensors with preamplifiers, which can be configured to measure either plasma currents or plasma waves. The sensors are mounted on a pair of meter long stacer booms. The sensors and nearby surfaces are controlled by a Boom Electronics Board (BEB). The Digital Fields Board (DFB) conditions the analog signals, converts the analog signals to digital, processes the digital signals including spectral analysis, and packetizes the data for transmission. The BEB and DFB are located inside of the Particle and Fields Digital Processing Unit (PFDPU).

  • 2.
    Andersson, L.
    et al.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Weber, T. D.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Malaspina, D.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Crary, F.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Ergun, R. E.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Delory, G. T.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Fowler, C. M.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Morooka, M. W.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    McEnulty, T.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Eriksson, Anders. I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Andrews, David. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Horanyi, M.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Collette, A.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Yelle, R.
    Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA..
    Jakosky, B. M.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Dust observations at orbital altitudes surrounding Mars2015In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 350, no 6261, article id aad0398Article in journal (Refereed)
    Abstract [en]

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above similar to 150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of similar to 18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere.

  • 3.
    Andrews, David
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Edberg, Niklas J. T.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Gurnett, D. A.
    Morgan, D.
    Nemec, F.
    Opgenoorth, Hermann J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Control of the topside Martian ionosphere by crustal magnetic fields2015In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, no 4, p. 3042-3058Article in journal (Refereed)
    Abstract [en]

    We present observations from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument onboard Mars Express of the thermal electron plasma density of the Martian ionosphere and investigate the extent to which it is influenced by the presence of Mars's remnant crustal magnetic fields. We use locally measured electron densities, derived when MARSIS is operating in active ionospheric sounding (AIS) mode, covering an altitude range from approximate to 300km to approximate to 1200km. We compare these measured densities to an empirical model of the dayside ionospheric plasma density in this diffusive transport-dominated regime. We show that small spatial-scale departures from the averaged values are strongly correlated with the pattern of the crustal fields. Persistently elevated densities are seen in regions of relatively stronger crustal fields across the whole altitude range. Comparing these results with measurements of the (scalar) magnetic field also obtained by MARSIS/AIS, we characterize the dayside strength of the draped magnetic fields in the same regions. Finally, we provide a revised empirical model of the plasma density in the Martian ionosphere, including parameterizations for both the crustal field-dominated and draping-dominated regimes.

  • 4.
    Andrews, David J.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Andersson, L.
    Lab Atmospher & Space Phys, Boulder, CO USA..
    Delory, G. T.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Ergun, R. E.
    Lab Atmospher & Space Phys, Boulder, CO USA..
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Fowler, C. M.
    Lab Atmospher & Space Phys, Boulder, CO USA..
    McEnulty, T.
    Lab Atmospher & Space Phys, Boulder, CO USA..
    Morooka, M. W.
    Lab Atmospher & Space Phys, Boulder, CO USA..
    Weber, T.
    Lab Atmospher & Space Phys, Boulder, CO USA..
    Jakosky, B. M.
    Lab Atmospher & Space Phys, Boulder, CO USA..
    Ionospheric plasma density variations observed at Mars by MAVEN/LPW2015In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 42, no 21, p. 8862-8869Article in journal (Refereed)
    Abstract [en]

    We report on initial observations made by the Langmuir Probe and Waves relaxation sounding experiment on board the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. These measurements yield the ionospheric thermal plasma density, and we use these data here for an initial survey of its variability. Studying orbit-to-orbit variations, we show that the relative variability of the ionospheric plasma density is lowest at low altitudes near the photochemical peak, steadily increases toward higher altitudes and sharply increases as the spacecraft crosses the terminator and moves into the nightside. Finally, despite the small volume of data currently available, we show that a clear signature of the influence of crustal magnetic fields on the thermal plasma density fluctuations is visible. Such results are consistent with previously reported remote measurements made at higher altitudes, but crucially, here we sample a new span of altitudes between similar to 130 and similar to 300 km using in situ techniques.

  • 5.
    André, Mats
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Li, K.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Outflow of low-energy ions and the solar cycle2015In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, no 2, p. 1072-1085Article in journal (Refereed)
    Abstract [en]

    Magnetospheric ions with energies less than tens of eV originate from the ionosphere. Positive low-energy ions are complicated to detect onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of volts. We use two Cluster spacecraft and study low-energy ions with a technique based on the detection of the wake behind a charged spacecraft in a supersonic ion flow. We find that low-energy ions usually dominate the density and the outward flux in the geomagnetic tail lobes during all parts of the solar cycle. The global outflow is of the order of 10(26) ions/s and often dominates over the outflow at higher energies. The outflow increases by a factor of 2 with increasing solar EUV flux during a solar cycle. This increase is mainly due to the increased density of the outflowing population, while the outflow velocity does not vary much. Thus, the outflow is limited by the available density in the ionospheric source rather than by the energy available in the magnetosphere to increase the velocity.

  • 6.
    André, Mats
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Odelstad, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    Graham, Daniel B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Karlsson, T.
    KTH Royal Inst Technol, Sch Elect Engn, Dept Space & Plasma Phys, Stockholm, Sweden.
    Wieser, G. Stenberg
    Swedish Inst Space Phys, Kiruna, Sweden.
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Norgren, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    Johansson, Fredrik L.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Henri, P.
    Lab Phys & Chim Environm & Espace, Orleans, France.
    Rubin, M.
    Univ Bern, Phys Inst, Bern, Switzerland.
    Richter, I.
    TU Braunschweig, Inst Geophys & Extraterr Phys, Braunschweig, Germany.
    Lower hybrid waves at comet 67P/Churyumov-Gerasimenko2017In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 469, p. S29-S38Article in journal (Refereed)
    Abstract [en]

    We investigate the generation of waves in the lower hybrid frequency range by density gradients in the near plasma environment of comet 67P/Churyumov-Gerasimenko. When the plasma is dominated by water ions from the comet, a situation with magnetized electrons and unmagnetized ions is favourable for the generation of lower hybrid waves. These waves can transfer energy between ions and electrons and reshape the plasma environment of the comet. We consider cometocentric distances out to a few hundred km. We find that when the electron motion is not significantly interrupted by collisions with neutrals, large average gradients within tens of km of the comet, as well as often observed local large density gradients at larger distances, are often likely to be favourable for the generation of lower hybrid waves. Overall, we find that waves in the lower hybrid frequency range are likely to be common in the near plasma environment.

  • 7.
    Broiles, Thomas W.
    et al.
    Southwest Res Inst, Div Space Sci & Engn, 6220 Culebra Rd, San Antonio, TX 78238 USA..
    Burch, J. L.
    Southwest Res Inst, Div Space Sci & Engn, 6220 Culebra Rd, San Antonio, TX 78238 USA..
    Chae, K.
    Southwest Res Inst, Div Space Sci & Engn, 6220 Culebra Rd, San Antonio, TX 78238 USA..
    Clark, G.
    Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA..
    Cravens, T. E.
    Univ Kansas, Dept Phys & Astron, 1450 Jayhawk Blvd, Lawrence, KS 66045 USA..
    Eriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Fuselier, S. A.
    Southwest Res Inst, Div Space Sci & Engn, 6220 Culebra Rd, San Antonio, TX 78238 USA.;Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA..
    Frahm, R. A.
    Southwest Res Inst, Div Space Sci & Engn, 6220 Culebra Rd, San Antonio, TX 78238 USA..
    Gasc, S.
    Univ Bern, Phys Inst, Sidlerstr 5, CH-3012 Bern, Switzerland..
    Goldstein, R.
    Southwest Res Inst, Div Space Sci & Engn, 6220 Culebra Rd, San Antonio, TX 78238 USA..
    Henri, P.
    CNRS, LPC2E, F-45071 Orleans, France..
    Koenders, C.
    Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany..
    Livadiotis, G.
    Southwest Res Inst, Div Space Sci & Engn, 6220 Culebra Rd, San Antonio, TX 78238 USA..
    Mandt, K. E.
    Southwest Res Inst, Div Space Sci & Engn, 6220 Culebra Rd, San Antonio, TX 78238 USA.;Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA..
    Mokashi, P.
    Southwest Res Inst, Div Space Sci & Engn, 6220 Culebra Rd, San Antonio, TX 78238 USA..
    Nemeth, Z.
    Wigner Res Ctr Phys, H-1121 Budapest, Hungary..
    Odelstad, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics. Univ Kansas, Dept Phys & Astron, 1450 Jayhawk Blvd, Lawrence, KS 66045 USA..
    Rubin, M.
    Univ Bern, Phys Inst, Sidlerstr 5, CH-3012 Bern, Switzerland..
    Samara, M.
    Goddard Space Flight Ctr, Heliophys Div, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA..
    Statistical analysis of suprathermal electron drivers at 67P/Churyumov-Gerasimenko2016In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 462, p. S312-S322Article in journal (Refereed)
    Abstract [en]

    We use observations from the Ion and Electron Sensor (IES) on board the Rosetta spacecraft to study the relationship between the cometary suprathermal electrons and the drivers that affect their density and temperature. We fit the IES electron observations with the summation of two kappa distributions, which we characterize as a dense and warm population (similar to 10 cm(-3) and similar to 16 eV) and a rarefied and hot population (similar to 0.01 cm(-3) and similar to 43 eV). The parameters of our fitting technique determine the populations' density, temperature, and invariant kappa index. We focus our analysis on the warm population to determine its origin by comparing the density and temperature with the neutral density and magnetic field strength. We find that the warm electron population is actually two separate sub-populations: electron distributions with temperatures above 8.6 eV and electron distributions with temperatures below 8.6 eV. The two sub-populations have different relationships between their density and temperature. Moreover, the two sub-populations are affected by different drivers. The hotter sub-population temperature is strongly correlated with neutral density, while the cooler sub-population is unaffected by neutral density and is only weakly correlated with magnetic field strength. We suggest that the population with temperatures above 8.6 eV is being heated by lower hybrid waves driven by counterstreaming solar wind protons and newly formed, cometary ions created in localized, dense neutral streams. To the best of our knowledge, this represents the first observations of cometary electrons heated through wave-particle interactions.

  • 8.
    Buchert, Stephan C.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Gill, Reine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Nilsson, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Åhlén, Lennart
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Knudsen, David
    Univ Calgary, Calgary, AB, Canada..
    Burchill, Johnathan
    Univ Calgary, Calgary, AB, Canada..
    Archer, William
    Univ Calgary, Calgary, AB, Canada..
    Kouznetsov, Alexei
    Univ Calgary, Calgary, AB, Canada..
    Stricker, Nico
    ESA ESTEC, Noordwijk, Netherlands..
    Bouridah, Abderrazak
    ESA ESTEC, Noordwijk, Netherlands..
    Bock, Ralph
    ESA ESTEC, Noordwijk, Netherlands..
    Haggstrom, Ingemar
    EISCAT Sci Assoc, Headquarters, Kiruna, Sweden..
    Rietveld, Michael
    EISCAT Sci Assoc, Tromso, Norway..
    Gonzalez, Sixto
    Natl Astron & Ionosphere Ctr, Arecibo, PR USA..
    Aponte, Nestor
    Natl Astron & Ionosphere Ctr, Arecibo, PR USA..
    First results from the Langmuir probes on the Swarm satellites2014In: 2014 XXXITH URSI General Assembly And Scientific Symposium (URSI GASS), 2014Conference paper (Refereed)
  • 9.
    Buchert, Stephan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Zangerl, Franz
    Sust, Manfred
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Opgenoorth, Hermann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    SWARM observations of equatorial electron densities and topside GPS track losses2015In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 42, no 7, p. 2088-2092Article in journal (Refereed)
    Abstract [en]

    The SWARM satellites have both upward looking GPS receivers and Langmuir probes. The receivers repeatedly lost track of the L1 band signal in January-February 2014 at postsunset hours, when SWARM was at nearly 500km altitude. This indicates that the signal was disturbed by ionospheric irregularities at this height and above. The track losses occurred right at density gradients associated with equatorial plasma bubbles and predominantly where the measured background density was highest. The signal showed strong phase scintillations rather than in amplitude, indicating that SWARM might be in the near field of an ionospheric phase screen. Density biteouts, depletions between steep gradients, were up to almost 3 orders of magnitude deep in the background of a more shallow trough centered at the magnetic equator. Comparison between satellites shows that the biteout structure strongly varied in longitude over approximate to 100km and has in north-south steep walls.

  • 10.
    Deca, Jan
    et al.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA.;NASA, SSERVI, Inst Modeling Plasma Atmospheres & Cosm Dus, Moffett Field, CA 94035 USA..
    Divin, Andrey
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. St Petersburg State Univ, Phys Dept, St Petersburg 198504, Russia.
    Henri, Pierre
    CNRS, LPC2E, F-45071 Orleans, France..
    Eriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Markidis, Stefano
    KTH Royal Inst Technol, S-10044 Stockholm, Sweden..
    Olshevsky, Vyacheslav
    Katholieke Univ Leuven, Ctr Math Plasma Astrophys CmPA, B-3001 Leuven, Belgium..
    Horányi, Mihály
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA.;NASA, SSERVI, Inst Modeling Plasma Atmospheres & Cosm Dus, Moffett Field, CA 94035 USA..
    Electron and Ion Dynamics of the Solar Wind Interaction with a Weakly Outgassing Comet2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 118, no 20, article id 205101Article in journal (Refereed)
    Abstract [en]

    Using a 3D fully kinetic approach, we disentangle and explain the ion and electron dynamics of the solar wind interaction with a weakly outgassing comet. We show that, to first order, the dynamical interaction is representative of a four-fluid coupled system. We self-consistently simulate and identify the origin of the warm and suprathermal electron distributions observed by ESA's Rosetta mission to comet 67P/Churyumov-Gerasimenko and conclude that a detailed kinetic treatment of the electron dynamics is critical to fully capture the complex physics of mass-loading plasmas.

  • 11.
    Deca, Jan
    et al.
    Univ Colorado, LASP, Boulder, CO 80303 USA;NASA, Inst Modeling Plasma Atmospheres & Cosm Dust, SSERVI, Moffett Field, CA 94035 USA.
    Henri, Pierre
    CNRS, LPC2E, F-45071 Orleans, France;Univ Cote dAzur, Observ Cote dAzur, CNRS, Lab Lagrange, Nice, France.
    Divin, Andrey
    St Petersburg State Univ, Phys Dept, St Petersburg 198504, Russia.
    Eriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Galand, Marina
    Imperial Coll London, Dept Phys, London SW7 2AZ, England.
    Beth, Arnaud
    Imperial Coll London, Dept Phys, London SW7 2AZ, England.
    Ostaszewski, Katharina
    Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys IGeP, D-38106 Braunschweig, Germany.
    Horanyi, Mihaly
    Univ Colorado, LASP, Boulder, CO 80303 USA;NASA, Inst Modeling Plasma Atmospheres & Cosm Dust, SSERVI, Moffett Field, CA 94035 USA;Univ Colorado, Dept Phys, Boulder, CO 80309 USA.
    Building a Weakly Outgassing Comet from a Generalized Ohm's Law2019In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 123, no 5, article id 055101Article in journal (Refereed)
    Abstract [en]

    When a weakly outgassing comet is sufficiently close to the Sun, the formation of an ionized coma results in solar wind mass loading and magnetic field draping around its nucleus. Using a 3D fully kinetic approach, we distill the components of a generalized Ohm's law and the effective electron equation of state directly from the self-consistently simulated electron dynamics and identify the driving physics in the various regions of the cometary plasma environment. Using the example of space plasmas, in particular multispecies cometary plasmas, we show how the description for the complex kinetic electron dynamics can be simplified through a simple effective closure, and identify where an isotropic single-electron fluid Ohm's law approximation can be used, and where it fails.

  • 12.
    Edberg, Niklas J. T.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Alho, M.
    Aalto Univ, Sch Elect Engn, Dept Radio Sci & Engn, POB 13000, FI-00076 Aalto, Finland..
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Andrews, David J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Behar, E.
    Swedish Inst Space Phys, Box 812, SE-98128 Kiruna, Sweden..
    Burch, J. L.
    Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA..
    Carr, C. M.
    Imperial Coll London, Exhibit Rd, London SW7 2AZ, England..
    Cupido, E.
    Imperial Coll London, Exhibit Rd, London SW7 2AZ, England..
    Engelhardt, Ilka. A. D.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Glassmeier, K. -H
    Goetz, C.
    TU Braunschweig, Inst Geophys & Extraterr Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany..
    Goldstein, R.
    Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA..
    Henri, P.
    Lab Phys & Chim Environm & Espace, F-45071 Orleans 2, France..
    Johansson, Fredrik L.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Koenders, C.
    TU Braunschweig, Inst Geophys & Extraterr Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany..
    Mandt, K.
    Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA.;Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA..
    Moestl, C.
    Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria..
    Nilsson, H.
    Swedish Inst Space Phys, Box 812, SE-98128 Kiruna, Sweden..
    Odelstad, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Richter, I.
    TU Braunschweig, Inst Geophys & Extraterr Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany..
    Wedlund, C. Simon
    Univ Oslo, Dept Phys, Box 1048 Blindern, N-0316 Oslo, Norway..
    Wieser, G. Stenberg
    Swedish Inst Space Phys, Box 812, SE-98128 Kiruna, Sweden..
    Szego, K.
    Wigner Res Ctr Phys, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary..
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Volwerk, M.
    Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria..
    CME impact on comet 67P/Churyumov-Gerasimenko2016In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 462, p. S45-S56Article in journal (Refereed)
    Abstract [en]

    We present Rosetta observations from comet 67P/Churyumov-Gerasimenko during the impact of a coronal mass ejection (CME). The CME impacted on 2015 Oct 5-6, when Rosetta was about 800 km from the comet nucleus, and 1.4 au from the Sun. Upon impact, the plasma environment is compressed to the level that solar wind ions, not seen a few days earlier when at 1500 km, now reach Rosetta. In response to the compression, the flux of suprathermal electrons increases by a factor of 5-10 and the background magnetic field strength increases by a factor of similar to 2.5. The plasma density increases by a factor of 10 and reaches 600 cm(-3), due to increased particle impact ionization, charge exchange and the adiabatic compression of the plasma environment. We also observe unprecedentedly large magnetic field spikes at 800 km, reaching above 200 nT, which are interpreted as magnetic flux ropes. We suggest that these could possibly be formed by magnetic reconnection processes in the coma as the magnetic field across the CME changes polarity, or as a consequence of strong shears causing Kelvin-Helmholtz instabilities in the plasma flow. Due to the limited orbit of Rosetta, we are not able to observe if a tail disconnection occurs during the CME impact, which could be expected based on previous remote observations of other CME-comet interactions.

  • 13.
    Edberg, Niklas J. T.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Odelstad, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Henri, P.
    Lebreton, J. -P
    Gasc, S.
    Rubin, M.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Gill, Reine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Johansson, Erik P. G.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Johansson, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Carr, C. M.
    Cupido, E.
    Glassmeier, K. -H
    Goldstein, R.
    Koenders, C.
    Mandt, K.
    Nemeth, Z.
    Nilsson, H.
    Richter, I.
    Wieser, G. Stenberg
    Szego, K.
    Volwerk, M.
    Spatial distribution of low-energy plasma around comet 67P/CG from Rosetta measurements2015In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 42, no 11, p. 4263-4269Article in journal (Refereed)
    Abstract [en]

    We use measurements from the Rosetta plasma consortium Langmuir probe and mutual impedance probe to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e., the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be approximate to 1-210(-6), at a cometocentric distance of 10km and at 3.1AU from the Sun. A clear 6.2h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisionless plasma within 260km from the nucleus falls off with radial distance as approximate to 1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet.

  • 14.
    Edberg, Niklas J. T.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Odelstad, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Andrews, D. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Johansson, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Burch, J. L.
    SW Res Inst, San Antonio, TX USA..
    Carr, C. M.
    Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, London, England..
    Cupido, E.
    Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, London, England..
    Glassmeier, K. -H
    Goldstein, R.
    SW Res Inst, San Antonio, TX USA..
    Halekas, J. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Henri, P.
    Lab Phys & Chim Environm & Espace, Orleans, France..
    Koenders, C.
    TU Braunschweig, Inst Geophys & Extraterr Phys, Braunschweig, Germany..
    Mandt, K.
    SW Res Inst, San Antonio, TX USA..
    Mokashi, P.
    SW Res Inst, San Antonio, TX USA..
    Nemeth, Z.
    Wigner Res Ctr Phys, Budapest, Hungary..
    Nilsson, H.
    Swedish Inst Space Phys, S-98128 Kiruna, Sweden..
    Ramstad, R.
    Swedish Inst Space Phys, S-98128 Kiruna, Sweden..
    Richter, I.
    TU Braunschweig, Inst Geophys & Extraterr Phys, Braunschweig, Germany..
    Wieser, G. Stenberg
    Swedish Inst Space Phys, S-98128 Kiruna, Sweden..
    Solar wind interaction with comet 67P: Impacts of corotating interaction regions2016In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, no 2, p. 949-965Article in journal (Refereed)
    Abstract [en]

    We present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1-2.7AU from the Sun and the neutral outgassing rate approximate to 10(25)-10(26)s(-1), the CIRs significantly influence the cometary plasma environment at altitudes down to 10-30km. The ionospheric low-energy (approximate to 5eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below -20V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (approximate to 10-100eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2-5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events.

  • 15.
    Edberg, Niklas J. T.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Johansson, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Goetz, Charlotte
    Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, Braunschweig, Germany.
    Nilsson, Hans
    Swedish Inst Space Phys, POB 812, SE-98128 Kiruna, Sweden;Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Rymdcampus 1, SE-98128 Kiruna, Sweden.
    Gilet, Nicolas
    CNRS, LPC2E, Orleans, France.
    Henri, Pierre
    CNRS, LPC2E, Orleans, France.
    The Convective Electric Field Influence on the Cold Plasma and Diamagnetic Cavity of Comet 67P2019In: Astronomical Journal, ISSN 0004-6256, E-ISSN 1538-3881, Vol. 158, no 2, article id 71Article in journal (Refereed)
    Abstract [en]

    We studied the distribution of cold electrons (<1 eV) around comet 67P/Churyumov-Gerasimenko with respect to the solar wind convective electric field direction. The cold plasma was measured by the Langmuir Probe instrument and the direction of the convective electric field E-conv = -nu x B was determined from magnetic field (B) measurements inside the coma combined with an assumption of a purely radial solar wind velocity nu. We found that the cold plasma is twice as likely to be observed when the convective electric field at Rosetta's position is directed toward the nucleus (in the -E(conv )hemisphere) compared to when it is away from the nucleus (in the +E-conv hemisphere). Similarly, the diamagnetic cavity, in which previous studies have shown that cold plasma is always present, was also found to be observed twice as often when in the -E-conv hemisphere, linking its existence circumstantially to the presence of cold electrons. The results are consistent with hybrid and Hall magnetohydrodynamic simulations as well as measurements of the ion distribution around the diamagnetic cavity.

  • 16.
    Engelhardt, Ilka. A. D.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Valliéres, X.
    Rubin, M.
    Gilet, N.
    Henri, P.
    Cold electrons at comet 67P/Churyumov-Gerasimenko2018In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, article id A51Article in journal (Refereed)
    Abstract [en]

    Context. The electron temperature of the plasma is one important aspect of the environment. Electrons created by photoionization or impact ionization of atmospheric gas have energies ∼10 eV. In an active comet coma the gas density is high enough for rapid cooling of the electron gas to the neutral gas temperature (few hundred kelvin). How cooling evolves in less active comets has not been studied before.

    Aims. To investigate how electron cooling varied as comet 67P/Churyumov-Gerasimenko changed its activity by three orders of magnitude during the Rosetta mission.

    Methods. We use in-situ data from Rosetta plasma and neutral gas sensors. By combining Langmuir probe bias voltage sweeps and Mutual Impedance Probe measurements we determine when cold electrons form at least 25% of the total electron density. We compare the results to what is expected from simple models of electron cooling, using the observed neutral gas density as input.

    Results. We demonstrate that the slope of the Langmuir probe sweep can be used as a proxy for cold electron presence. We show statistics of cold electron observations over the 2 year mission period. We find cold electrons at lower activity than expected by a simple model based on free radial expansion and continuous loss of electron energy. Cold electrons are seen mainly when the gas density indicates an exobase may have formed.

    Conclusions. Collisional cooling of electrons following a radial outward path is not sufficient for explaining the observations. We suggest the ambipolar electric field is important for the observed cooling. This field keeps electrons in the inner coma for much longer time, giving them time to dissipate energy by collisions with the neutrals. We conclude there is need of better models to describe the plasma environment of comets, including at least two populations of electrons and the ambipolar field.

  • 17.
    Engelhardt, Ilka. A. D.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Stenberg Wieser, G.
    Goetz, C.
    Rubin, M.
    Henri, P.
    Nilsson, H.
    Odelstad, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    Hajra, R.
    Valliéres, X.
    Plasma Density Structures at Comet 67P/Churyumov-Gerasimenko2018In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 477, no 1, p. 1296-1307Article in journal (Refereed)
    Abstract [en]

    We present Rosetta RPC case study from four events at various radial distance, phase angle and local time from autumn 2015, just after perihelion of comet 67P/Churyumov-Gerasimenko. Pulse like (high amplitude, up to minutes in time) signatures are seen with several RPC instruments in the plasma density (LAP, MIP), ion energy and flux (ICA) as well as magnetic field intensity (MAG). Furthermore the cometocentric distance relative to the electron exobase is seen to be a good organizing parameter for the measured plasma variations. The closer Rosetta is to this boundary, the more pulses are measured. This is consistent with the pulses being filaments of plasma originating from the diamagnetic cavity boundary as predicted by simulations. 

  • 18.
    Engelhardt, Ilka. A. D.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    Wahlund, Jan -Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Andrews, David J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders. I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Ye, S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Kurth, W. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Gurnett, D. A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Morooka, M. W.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Farrell, W. M.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Dougherty, M. K.
    Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England..
    Plasma regions, charged dust and field-aligned currents near Enceladus2015In: Planetary and Space Science, ISSN 0032-0633, E-ISSN 1873-5088, Vol. 117, p. 453-469Article in journal (Refereed)
    Abstract [en]

    We use data from several instruments on board Cassini to determine the characteristics of the plasma and dust regions around Saturn's moon Enceladus. For this we utilize the Langmuir probe and the electric antenna connected to the wideband receiver of the radio and plasma wave science (RPWS) instrument package as well as the magnetometer (MAG). We show that there are several distinct plasma and dust regions around Enceladus. Specifically they are the plume filled with neutral gas, plasma, and charged dust, with a distinct edge boundary region. Here we present observations of a new distinct plasma region, being a dust trail on the downstream side. This is seen both as a difference in ion and electron densities, indicating the presence of charged dust, and directly from the signals created on RPWS antennas by the dust impacts on the spacecraft. Furthermore, we show a very good scaling of these two independent dust density measurement methods over four orders of magnitude in dust density, thereby for the first time cross-validating them. To establish equilibrium with the surrounding plasma the dust becomes negatively charged by attracting free electrons. The dust distribution follows a simple power law and the smallest dust particles in the dust trail region are found to be 10 nm in size as well as in the edge region around the plume. Inside the plume the presence of even smaller particles of about 1 nm is inferred. From the magnetic field measurements we infer strong field-aligned currents at the geometrical edge of Enceladus.

  • 19.
    Engwall, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Cully, Christopher M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Puhl-Quinn, Pamela
    Space Science Center, University of New Hampshire, Durham, New Hampshire 03824-3525, USA.
    Vaith, Hans
    Space Science Center, University of New Hampshire, Durham, New Hampshire 03824-3525, USA.
    Torbert, Roy
    Space Science Center, University of New Hampshire, Durham, New Hampshire 03824-3525, USA.
    Survey of cold ionospheric outflows in the magnetotail2009In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 27, no 8, p. 3185-3201Article in journal (Refereed)
    Abstract [en]

    Low-energy ions escape from the ionosphere and constitute a large part of the magnetospheric content, especially in the geomagnetic tail lobes. However, they are normally invisible to spacecraft measurements, since the potential of a sunlit spacecraft in a tenuous plasma in many cases exceeds the energy-per-charge of the ions, and little is therefore known about their outflow properties far from the Earth. Here we present an extensive statistical study of cold ion outflows (0-60 eV) in the geomagnetic tail at geocentric distances from 5 to 19 R-E using the Cluster spacecraft during the period from 2001 to 2005. Our results were obtained by a new method, relying on the detection of a wake behind the spacecraft. We show that the cold ions dominate in both flux and density in large regions of the magnetosphere. Most of the cold ions are found to escape from the Earth, which improves previous estimates of the global outflow. The local outflow in the magnetotail corresponds to a global outflow of the order of 10(26) ions s(-1). The size of the outflow depends on different solar and magnetic activity levels.

  • 20.
    Ergun, R. E.
    et al.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Andersson, L. A.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Fowler, C. M.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Woodson, A. K.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Weber, T. D.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Delory, G. T.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Andrews, David J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    McEnulty, T.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Morooka, M. W.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Stewart, A. I. F.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Mahaffy, P. R.
    NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Code 699, Greenbelt, MD USA..
    Jakosky, B. M.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Enhanced O-2(+) loss at Mars due to an ambipolar electric field from electron heating2016In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, no 5, p. 4668-4678Article in journal (Refereed)
    Abstract [en]