uu.seUppsala University Publications
Change search
Refine search result
12 1 - 50 of 60
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Augustine, Robin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Dielectric characterization of osteosarcoma cells in the 2-50 GHz range for microwave hyperthermia2013Conference paper (Refereed)
  • 2.
    Cai, Yixiao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Pujari-Palmer, Shiuli
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Gururaj, Satwik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Fu, Le
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Chen, Song
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Engqvist, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Karlsson Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Xia, Wei
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Utilization of Translucent Hydroxyapatite Nano-Ceramics as a Bio-Window Material2016In: Nano Advances, Vol. 1, p. 45-49Article in journal (Refereed)
    Abstract [en]

    Bioceramic materials are importantlyused in the field ofhard tissue engineering. The direct detection of cell response is almost impossible for mostof bioceramics due to theiropaqueness. Thus,the live tracking of cell behavior cannot be performedon these ceramics. In this study, we proposea strategy thatdirect observation of cell growth through hydroxyapatite (HA)ceramics can be realized by employing a translucent hydroxyapatite (tHA) nano-ceramic. We obtained MC3T3 preosteoblast cells and cultured them in the presence of tHA for up to 7 days. The results show that MC3T3cells were able to be seen through the tHA. In addition, live fluorescent staining confirmed that the MC3T3 cells were viable throughout the culture time period. The findings reveal the as-fabricated tHA nano-ceramics can bepotentialas a bio-window material for cell adhesion and proliferation.

  • 3.
    Carlsson, Elin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Orthopaedics. Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Mestres, Gemma
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Treerattrakoon, Kiatnida
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Orthopaedics.
    Lopez, Alejandro
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Karlsson Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Larsson, Sune
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Orthopaedics.
    Persson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    In vitro and in vivo response to low-modulus PMMA-based bone cement2015In: BioMed Research International, ISSN 2314-6133, E-ISSN 2314-6141, article id 594284Article in journal (Refereed)
    Abstract [en]

    The high stiffness of acrylic bone cements has been hypothesized to contribute to the increased number of fractures encountered after vertebroplasty, which has led to the development of low-modulus cements. However, there is no data available on the in vivo biocompatibility of any low-modulus cement. In this study, the in vitro cytotoxicity and in vivo biocompatibility of two types of low-modulus acrylic cements, one modified with castor oil and one with linoleic acid, were evaluated using human osteoblast-like cells and a rodent model, respectively. While the in vitro cytotoxicity appeared somewhat affected by the castor oil and linoleic acid additions, no difference could be found in the in vivo response to these cements in comparison to the base, commercially available cement, in terms of histology and flow cytometry analysis of the presence of immune cells. Furthermore, the in vivo radiopacity of the cements appeared unaltered. While these results are promising, the mechanical behavior of these cements in vivo remains to be investigated.

  • 4.
    Chen, Song
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Pujari-Palmer, Shiuli
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Rubino, Stefano
    Univ Oslo, Dept Phys, Oslo, Norway; Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada.
    Westlund, Viktoria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Engqvist, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Xia, Wei
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Highly repeatable synthesis of nHA with high aspect ratio2015In: Materials letters (General ed.), ISSN 0167-577X, E-ISSN 1873-4979, Vol. 159, p. 163-167Article in journal (Refereed)
  • 5.
    Ferraz, Natalia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Hoess, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Thormann, Annika
    Heilmann, Andreas
    Shen, Jinhui
    Tang, Liping
    Karlsson Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Role of Alumina Nanoporosity in Acute Cell Response2011In: Journal of Nanoscience and Nanotechnology, ISSN 1533-4880, E-ISSN 1533-4899, Vol. 11, no 8, p. 6698-6704Article in journal (Refereed)
    Abstract [en]

    This work studied the effect of nanoporous alumina in acute cellular response in an in vivo model. Nanoporous alumina membranes, with pore size diameters of 20 and 200 nm, were fabricated by anodic oxidation of aluminium. The membranes were thereafter characterized in terms of pore size distribution and chemical composition. To evaluate acute inflammatory response, the membranes were implanted in the peritoneal cavity of mice. Cell recruitment to the implant site was determined by fluorescence activated cell sorting (FACS) analysis. Cell adhesion to material surfaces was studied in terms of cell number, type, and morphology using scanning electron microscopy (SEM) and immunocytochemical staining followed by fluorescence microscopy. The fabricated nanoporous alumina membranes were found to have narrow pore size distribution. The in vivo study showed that 200 nm alumina membranes induced stronger inflammatory response than 20 nm membranes. This was reflected by the number of implant-associated phagocytes and the number of cells recruited to the implantation site. Since both pore-size membranes possess similar chemical composition, we believe that the observed difference in cell recruitment and adhesion is an effect of the material nanotopography. Our results suggest that nanotopography can be used to subtly control the recruitment and adherence of phagocytic cells during the acute inflammatory response to alumina membranes.

  • 6.
    Ferraz, Natalia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Surface Biotechnology.
    Hong, Jaan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Karlsson Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Surface Biotechnology.
    Procoagulant behavior and platelet microparticle generation on nanoporous alumina2010In: Journal of biomaterials applications, ISSN 0885-3282, E-ISSN 1530-8022, Vol. 24, no 8, p. 675-692Article in journal (Refereed)
    Abstract [en]

    In the present work, we have investigated platelet microparticle(PMP) generation in whole blood after contact with nanoporous alumina.Alumina membranes with pore sizes of 20 and 200nm in diameter were incubated with whole blood and the number of PMP in the fluid phase was determined by flow cytometry. The role of the complement system in PMP generation was investigated using an analog of the potent complement inhibitor compstatin. Moreover, the procoagulant activity of the two pore size membranes were compared by measuring thrombin formation. Results indicated that PMP were not present in the fluid phase after whole blood contact with either of the alumina membranes. However, scanning electron microscope micrographs clearly showed the presence of PMP clusters on the 200nm pore size alumina, while PMP were practically absent on the 20nm membrane. We probed no influence of complement activation in PMP generation and adhesion and we hypothesize that other specific material-related protein–platelet interactions are taking place. A clear difference in procoagulant activity between the membranes could also be seen, 20nm alumina showed 100% higher procoagulant activity than 200nm membrane. By combining surface evaluation and flow cytometry analyses of the fluid phase, we are able to conclude that 200nm pore size alumina promotes PMP generation and adhesion while the 20nm membrane does not appreciably cause any release or adhesion of PMP, thus indicating a direct connection between PMP generation and nanoporosity.

  • 7.
    Ferraz, Natalia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Surface Biotechnology.
    Hong, Jaan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Santin, Matteo
    School of Pharmacy & Biomolecualr Sciences, University of Brighton.
    Karlsson Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Surface Biotechnology.
    Nanoporosity of alumina surfaces induces different patterns of activation in adhering monocytes/macrophages2010In: International Journal of Biomaterials, ISSN 1687-8787, E-ISSN 1687-8795, Vol. 2010, p. 402715-Article in journal (Refereed)
    Abstract [en]

    The present study shows that alumina nanotopography affects monocyte/macrophage behaviour. Human mononuclear cells cultured on alumina membranes with pore diameters of 20 and 200 nm were evaluated in terms of cell adhesion, viability, morphology and release of pro-inflammatory cytokines. After 24 hours, cell adhesion was assessed by means of light microscopy and cell viability by measuring LDH release. The inflammatory response was evaluated by quantifying interleukin-1ß and tumour necrosis factor-α. Finally, scanning electron microscopy was used to study cell morphology. Results showed pronounced differences in cell number, morphology and cytokine release depending on the nanoporosity. Few but highly activated cells were found on the 200 nm porous alumina, while relatively larger number of cells was found on the 20 nm porous surface. However, despite their larger number, the cells adhering on the 20 nm surface exhibited reduced pro-inflammatory activity. It can be speculated that the difference in surface topography may lead to distinct protein adsorption patterns and therefore to different degree of cell activation. The data of this paper emphasize the role played by the material nanotexture in dictating cell responses and implies that nanotopography could be exploited for controlling the inflammatory response to implants.

  • 8.
    Forsgren, Johan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Hoess, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Maria, Strømme
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Engqvist, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    A Soluble Strontium Carbonate Implant Coating for Local and Targeted Cell Stimulation2011In: MRS Spring Meeeting 2011, 2011Conference paper (Refereed)
  • 9.
    Grandfield, Kathryn
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Pujari, Shiuli
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Engqvist, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Xia, Wei
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Effect of Calcium and Strontium on Mesoporous Titania Coatings for Implant Applications2013In: Journal of Biomaterials and Nanobiotechnology, ISSN 2158-7027, E-ISSN 2158-7043, Vol. 4, no 2, p. 107-113Article in journal (Refereed)
    Abstract [en]

    ncreasing interest in the role of ions such as calcium and strontium in bone formation has called for the investigation of multifunctional ion-doped implant coatings. Mesoporous titania coatings incorporating calcium or strontium enabled a unique pore morphology and potential for drug delivery. Coatings were produced on titanium by an evaporation induced self-assembly method with the addition of calcium or strontium to the sol causing a shift in morphology from a hexagonally-packed to a worm-like porous network. Pore sizes ranged from 3.8 - 5 nm and coatings exhibited high surface areas between 181 - 215.5 m2/g, as measured by N2adsorption-desorption. Coatings were loaded with 1 mg/ml Cephalothin, and showed sustained release of the antibiotic over one week in vitro. Cell studies confirmed that the ion addition had no toxic effect on human-like osteoblastic SaOS-2 cells. The results of this study suggest the potential for mesoporous coatings with calcium or strontium incorporation for direct bone-interfacing and combined drug delivery implant applications.

  • 10.
    Grandfield, Kathryn
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Pujari, Shiuli
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Engqvist, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Xia, Wei
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Mesoporous titania implant coatings with and without calcium and strontium ion incorporation2012Conference paper (Refereed)
  • 11.
    Hoess, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Ferraz, Natalia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Thormann, Annika
    Fraunhofer Institute for Mechanics of Materials IWMH, Halle, Germany.
    Heilmann, Andreas
    Fraunhofer Institute for Mechanics of Materials IWMH, Halle, Germany.
    Shen, Jinhui
    Department of Bioengineering, The University of Texas at Arlington, Texas, USA.
    Tang, Liping
    Department of Bioengineering, The University of Texas at Arlington, Texas, USA.
    Karlsson Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    In Vivo Acute Inflammatory Response to Nanoporous Alumina2011In: 24th European Conference on Biomaterials, Dublin, September 04-08, 2011., 2011Conference paper (Refereed)
  • 12.
    Hoess, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    López, Alejandro
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Engqvist, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Persson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Comparison of a quasi-dynamic and a static extraction method for the cytotoxic evaluation of acrylic bone cements2016In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 62, p. 274-282Article in journal (Refereed)
    Abstract [en]

    In this study, two different extraction approaches were compared in order to evaluate the cytotoxicity of 7 different acrylic bone cements, mainly developed for spinal applications, to osteoblastic cells. Firstly, a static extraction was carried out continuously over 24 h, a method widely used in literature. Secondly, a quasi-dynamic extraction method that allowed the investigation of time-dependent cytotoxic effects of curing acrylic bone cements to cells was introduced. In both cases the extraction of the cements was started at a very early stage of the polymerization process to simulate the conditions during clinical application. Data obtained by the quasi-dynamic extraction method suggest that the cytotoxicity of the setting materials mainly originates from the release of toxic components during the first hour of the polymerization reaction. It was also shown that a static extraction over 24 h generally represents this initial stage of the curing process. Furthermore, compared to the static extraction, time dependent cytotoxicity profiles could be detected using the quasi-dynamic extraction method. Specifically, a modification of commercial Osteopal (R) V with castor oil as a plasticizer as well as a customized cement formulation showed clear differences in cytotoxic behavior compared to the other materials during the setting process. In addition, it was observed that unreacted monomer released from the castor oil modified cement was not the main component affecting the toxicity of the material extracts. The quasi-dynamic extraction method is a useful tool to get deeper insight into the cytotoxic potential of curing acrylic bone cements under relevant biological conditions, allowing systematic optimization of materials under development.

  • 13.
    Janson, Oscar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Gururaj, Satwik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Pujari-Palmer, Shiuli
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Karlsson Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Engqvist, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Welch, Ken
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Titanium surface modification to enhance antibacterial and bioactive properties while retaining biocompatibility2019In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 96, p. 272-279Article in journal (Refereed)
    Abstract [en]

    Bacterial infections associated with metal implants are severe problems affecting a considerable amount of people with dental or orthopedic implants. This study aims to examine the antibacterial effect of a Titanium-peroxy gel layer on the modified surface of commercially pure titanium grade 2. Variations in a multi-step surface modification procedure were tested to determine the best combination that provided an antibacterial effect while enhancing bioactivity without compromising biocompatibility. Soaking the surfaces in 30 wt% hydrogen peroxide held at 80 °C provided antibacterial activity while subsequent surface treatments in concentrated sodium and calcium hydroxide solutions were preformed to enhance bioactivity. Staphylococcus epidermidis was used to determine the antibacterial effect through both direct contact and biofilm inhibition tests while human dermal fibroblast cells and MC3T3 pre osteoblast cells were utilized to test biocompatibility. The greatest antibacterial effect was observed with only hydrogen peroxide treatment, but the resulting surface was neither bioactive nor biocompatible. It was found that subsequent surface treatments with sodium hydroxide followed by calcium hydroxide provided a bioactive surface that was also biocompatible. Additionally, a final treatment with autoclaving showed positive effects with regards to enhanced bioactivity. This multi-step surface modification procedure offers a promising, non-antibiotic, solution for combatting infections associated with biomedical implants.

  • 14.
    Kovacs, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Lu, Xi
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Meszaros, Livia S.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Andres, Julien
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Borbas, K. Eszter
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Photophysics of Coumarin and Carbostyril-Sensitized Luminescent Lanthanide Complexes: Implications for Complex Design in Multiplex Detection2017In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 139, no 16, p. 5756-5767Article in journal (Refereed)
    Abstract [en]

    Luminescent lanthanide (Ln(III)) complexes with coumarin or carbostyril antennae were synthesized and their photophysical properties evaluated using steady-state and time-resolved UV-vis spectroscopy. Ligands bearing distant hydroxycoumarin-derived antennae attached through triazole linkers were modest sensitizers for Eu(III) and Tb(III), whereas ligands with 7-amidocarbostyrils directly linked to the coordination site could reach good quantum yields for multiple Ln(III), including the visible emitters Sm(III) and Dy(III), and the near-infrared emitters Nd(III) and Yb(III). The highest lanthanide-centered luminescence quantum yields were 35% (Tb), 7.9% (Eu), 0.67% (Dy), and 0.18% (Sm). Antennae providing similar luminescence intensities with 2-4 Ln-emitters were identified. Photoredox quenching of the carbostyril antenna excited states was observed for all Eu(III)-complexes and should be sensitizing in the case of Yb(III); the scope of the process extends to Ln(III) for which it has not been seen previously, specifically Dy(III) and Sm(III). The proposed process is supported by photophysical and electrochemical data. A FRET-type mechanism was identified in architectures with both distant and close antennae for all of the Lns. This mechanism seems to be the only sensitizing one at long distance and probably contributes to the sensitization at shorter distances along with the triplet pathway. The complexes were nontoxic to either bacterial or mammalian cells. Complexes of an ester-functionalized ligand were taken up by bacteria in a concentration-dependent manner. Our results suggest that the effects of FRET and photoredox quenching should be taken into consideration when designing luminescent Ln complexes. These results also establish these Ln(III)-complexes for multiplex detection beyond the available two-color systems.

  • 15.
    Kumar, Shailesh
    et al.
    IISER Bhopal.
    Yan, Jiajie
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Poon, Jia-fei
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Singh, Vijay P
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Lu, Xi
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Ott, Marjam Karlsson
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Engman, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Kumar, Sangit
    IISER Bhopal.
    Multifunctional Antioxidants: Regenerable Radical-Trapping and Hydroperoxide-Decomposing Ebselenols2016In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 55, no 11, p. 3729-3733Article in journal (Refereed)
    Abstract [en]

    Regenerable, multifunctional ebselenol antioxidants were prepared that could quench peroxyl radicals more efficiently than -tocopherol. These compounds act as better mimics of the glutathione peroxidase enzymes than ebselen. Production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in human mononuclear cells was considerably decreased upon exposure to the organoselenium compounds. At a concentration of 25m, the ebselenol derivatives showed minimal toxicity in pre-osteoblast MC3T3cells.

  • 16. Lee, Bryan
    et al.
    Samantha, Ho
    Gemma, Mestres
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Marjam, Karlsson Ott
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Philip, Koshy
    Kathryn, Grandfield
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Dual-Topography Electric Discharge Machining of Titanium to Improve Biocompatibility2016In: Surface and Coatings Technology, ISSN 0257-8972, Vol. 296, p. 149-156Article in journal (Refereed)
    Abstract [en]

    Surface modifications of titanium are widespread in an effort to improve the osseointegration capabilities of the metal for orthopaedic and dental applications. Here, electrical discharge machining (EDM) was used to create modified, notably, dual-topography surfaces on titanium. By swapping conventional copper electrodes for a titanium electrode and water dielectric, modified surfaces free of trace element contaminants were produced. Three surfaces were produced by varying the peak currents at 10 A, 29 A and a uniquely hierarchical multi current combination of 29 A followed by 2.4 A. The physicochemical properties of these surfaces were analyzed by scanning electron microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), and Auger Spectroscopy. These revealed the topography of the modified surfaces and a titanium oxide layer that was markedly thicker on the EDM samples compared to controls. In vitro cell testing was carried out with osteoblast-like MC3T3-E1 cells. Cell differentiation was increased in all EDM modified surfaces compared to controls and early differentiation was promoted on the dual-topography surface. The present study suggests the promise of dual-topography surfaces created using EDM for implant applications.

  • 17.
    Lindahl, Carl
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Pujari-Palmer, Shiuli
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Hoess, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Engqvist, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Xia, Wei
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    The influence of Sr content in calcium phosphate coatings2015In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 53, p. 322-330Article in journal (Refereed)
    Abstract [en]

    In this study calcium phosphate coatings with different amounts of strontium.(Sr) were prepared using a biomineralization method. The incorporation of Sr changed the composition and morphology of coatings from plate-like to sphere-like morphology. Dissolution testing indicated that the solubility of the coatings increased with increased Sr concentration. Evaluation of extracts (with Sr concentrations ranging from 0 to 237 mu g/mL) from the HA, 0.06Sr, 0.6Sr, and 12Sr coatings during in vitro cell cultures showed that Sr incorporation into coatings significantly enhanced the ALP activity in comparison to cells treated with control and HA eluted media. These findings show that calcium phosphate coatings could promote osteogenic differentiation even in a low amount of strontium. (C) 2015 Elsevier B.V. All rights reserved.

  • 18.
    Lopez, Alejandro
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Mestres, Gemma
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Karlsson Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Engqvist, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Ferguson, SJ
    Helgason, B
    Persson, Cecilia
    Mechanical and in vitro evaluation of low-modulus bone cement - Osteopal®V modified with linoleic acid2012Conference paper (Refereed)
  • 19. Lu, Xi
    et al.
    Mestres, Gemma
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Effati, Pedram
    Pal Singh, V
    Poon, JF
    Engman, Lars
    Karlsson Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Novel selenium- and tellurium-based antioxidants as modulators of inflammatory response2015Conference paper (Refereed)
  • 20.
    Lu, Xi
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Mestres, Gemma
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Effati, Pedram
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Singh, VP
    Poon, J
    Karlsson Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Novel selenium- and tellurium-based antioxidants as modulators of inflammatory response2015In: European Cells and Materials, ISSN 1473-2262, E-ISSN 1473-2262, Vol. 29, no Supp.1, p. 33-33Article in journal (Refereed)
  • 21.
    Lu, Xi
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Mestres, Gemma
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Singh, Vijay Pal
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry.
    Effati, Pedram
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Poon, Jia-Fei
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry.
    Engman, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry.
    Marjam, Karlsson Ott
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Selenium- and tellurium-based antioxidants for modulating inflammation and effects on osteoblastic activity2017In: Antioxidants, E-ISSN 2076-3921, Vol. 6, no 13, p. 1-13Article in journal (Refereed)
    Abstract [en]

    Increased oxidative stress plays a significant role in the etiology of bone diseases. Heightened levels of H2O2 disrupt bone homeostasis, leading to greater bone resorption than bone formation. Organochalcogen compounds could act as free radical trapping agents or glutathione peroxidase mimetics, reducing oxidative stress in inflammatory diseases. In this report, we synthesized and screened a library of organoselenium and organotellurium compounds for hydrogen peroxide scavenging activity, using macrophagic cell lines RAW264.7 and THP-1, as well as human mono- and poly-nuclear cells. These cells were stimulated to release H2O2, using phorbol 12-myristate 13-acetate, with and without organochalogens. Released H2O2 was then measured using a chemiluminescent assay over a period of 2 h. The screening identified an organoselenium compound which scavenged H2O2 more effectively than the vitamin E analog, Trolox. We also found that this organoselenium compound protected MC3T3 cells against H2O2 -induced toxicity, whereas Trolox did not. The organoselenium compound exhibited no cytotoxicity to the cells and had no deleterious effects on cell proliferation, viability, or alkaline phosphatase activity. The rapidity of H2O2 scavenging and protection suggests that the mechanism of protection is due to the direct scavenging of extracellular H2O2. This compound is a promising modulators of inflammation and could potentially treat diseases involving high levels of oxidative stress.

  • 22.
    López, Alejandro
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Hoess, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Fathali, Hoda
    Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Engqvist, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Persson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Acrylic bone cement modified with oligo (trimethylene carbonate)2012In: 5th Annual Meeting of the Scandinavian Society for Biomaterials, Uppsala Sweden, May 8-9, 2012, 2012Conference paper (Refereed)
  • 23.
    López, Alejandro
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Hoess, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Thersleff, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Engqvist, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Persson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Low-modulus PMMA bone cement modified with castor oil2011In: Bio-medical materials and engineering, ISSN 0959-2989, E-ISSN 1878-3619, Vol. 21, no 5-6, p. 323-332Article in journal (Refereed)
    Abstract [en]

    Some of the current clinical and biomechanical data suggest that vertebroplasty causes the development of adjacent vertebral fractures shortly after augmentation. These findings have been attributed to high injection volumes as well as high Young’s moduli of PMMA bone cements compared to that of the osteoporotic cancellous bone. The aim of this study was to evaluate the use of castor oil as a plasticizer for PMMA bone cements. The Young’s modulus, yield strength, maximum polymerization temperature, doughing time, setting time and the complex viscosity curves during curing, were determined. The cytotoxicity of the materials extracts was assessed on cells of an osteoblast-like cell line. The addition of up to 12 wt% castor oil decreased yield strength from 88 to 15 MPa, Young’s modulus from 1500 to 446 MPa and maximum polymerization temperature from 41.3 to 25.6◦C, without affecting the setting time. However, castor oil seemed to interfere with the polymerization reaction, giving a negative effect on cell viability in a worst-case scenario.

  • 24.
    López, Alejandro
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Mestres, Gemma
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Karlsson Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Engqvist, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Ferguson, Stephen J
    Swiss Federal Institute of Technology.
    Helgason, Benedikt
    Swiss Federal Institute of Technology.
    Persson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Mechanical and in vitro evaluation of low-modulus bone cement - Osteopal®V modified with linoleic acid2013In: European Cells and Materials, ISSN 1473-2262, E-ISSN 1473-2262Article in journal (Refereed)
  • 25.
    López, Alejandro
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Mestres, Gemma
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Karlsson Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Engqvist, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Ferguson, Stephen J.
    ETH Zurich.
    Persson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Helgason, Benedikt
    ETH Zurich.
    Compressive mechanical properties and cytocompatibility of bone-compliant, linoleic acid-modified bone cement in a bovine model2014In: Journal of The Mechanical Behavior of Biomedical Materials, ISSN 1751-6161, E-ISSN 1878-0180, Vol. 32, p. 245-256Article in journal (Refereed)
    Abstract [en]

    Adjacent vertebral fractures are a common complication experienced by osteoporosis patients shortly after vertebroplasty. Whether these fractures are due to the bone cement properties, the cement filling characteristics or to the natural course of the disease is still unclear. However, some data suggests that such fractures might occur because of an imbalance in the load distribution due to a mismatch between the elastic modulus (E) of the bone-cement composite, and that of the vertebral cancellous bone. In this study, the properties of bone-compliant linoleic acid-modified bone cements were assessed using a bovine vertebroplasty model. Two groups of specimens (cement-only and bone-cement composites), and four subgroups comprising bone cements with elastic moduli in the range of 870-3500 MPa were tested to failure in uniaxial compression. In addition, monomer release as well as ti