uu.seUppsala University Publications
Change search
Refine search result
1234567 1 - 50 of 379
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aho-Mantila, L.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET2017In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, no 3, article id 035003Article in journal (Refereed)
    Abstract [en]

    The divertor solutions obtained with the plasma edge modelling tool SOLPS5.0 are discussed. The code results are benchmarked against carefully analysed L-mode discharges at various density levels with and without impurity seeding in the full-metal tokamaks ASDEX Upgrade and JET. The role of the cross-field drifts and currents in the solutions is analysed in detail, and the improvements achieved by fully activating the drift and current terms in view of matching the experimental signals are addressed. The persisting discrepancies are also discussed.

  • 2.
    Aiba, N.
    et al.
    Natl Inst Quantum & Radiol Sci & Technol, Rokkasho, Aomori, Japan.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Natl Ctr Nucl Res, Otwock, Poland.
    Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas2018In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 60, no 1, article id 014032Article in journal (Refereed)
    Abstract [en]

    The stability with respect to a peeling-ballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift (omega(*i)), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and omega(*i) effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in omega(*i). The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and w*i effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA.

  • 3. Aiba, N.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Numerical analysis of ELM stability with rotation and ion diamagnetic drift effects in JET2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 12, article id 126001Article in journal (Refereed)
    Abstract [en]

    Stability to the type-I edge localized mode (ELM) in JET plasmas was investigated numerically by analyzing the stability to a peeling-ballooning mode with the effects of plasma rotation and ion diamagnetic drift. The numerical analysis was performed by solving the extended Frieman-Rotenberg equation with the MINERVA-DI code. To take into account these effects in the stability analysis self-consistently, the procedure of JET equilibrium reconstruction was updated to include the profiles of ion temperature and toroidal rotation, which are determined based on the measurement data in experiments. With the new procedure and MINERVA-DI, it was identified that the stability analysis including the rotation effect can explain the ELM trigger condition in JET with ITER like wall (JET-ILW), though the stability in JET with carbon wall (JET-C) is hardly affected by rotation. The key difference is that the rotation shear in JET-ILW plasmas analyzed in this study is larger than that in JET-C ones, the shear which enhances the dynamic pressure destabilizing a peeling-ballooning mode. In addition, the increase of the toroidal mode number of the unstable MHD mode determining the ELM trigger condition is also important when the plasma density is high in JET-ILW. Though such modes with high toroidal mode number are strongly stabilized by the ion diamagnetic drift effect, it was found that plasma rotation can sometimes overcome this stabilizing effect and destabilizes the peeling-ballooning modes in JET-ILW.

  • 4.
    Andersson Sunden, E.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sangaroon, Siriyaporn
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Wodniak, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Developments of time-of-flight and proton recoil neutron spectrometry techniques in view of a possible JET DT campaign and for ITER2011In: 38th EPS Conference on Plasma Physics 2011 (EPS 2011): Europhysics Conference Abstracts, 2011, p. 329-332Conference paper (Refereed)
  • 5.
    Andersson Sundén, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ballabio, Luigi
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gatu Johnson, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorini, Giuseppe
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ognissanto, Flora
    Ronchi, Emanuele
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Tardocchi, Marco
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Evaluation of neutron spectrometer techniques for ITER using synthetic data2013In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 701, p. 17p. 62-71Article in journal (Refereed)
    Abstract [en]

    A neutron spectrometer at ITER is expected to provide estimates of plasma parameters such as ion temperature, Ti, fuel ion ratio, nt/nd, and Qthermal/Qtot, with 10-20% precision at a time resolution, Δt, of at least 100 ms. The present paper describes a method for evaluating different neutron spectroscopy techniques based on their instrumental response functions and synthetic measurement data. We include five different neutron spectrometric techniques with realistic response functions, based on simulations and measurements where available. The techniques are magnetic proton recoil, thin-foil proton recoil, gamma discriminating organic scintillator, diamond and time-of-flight. The reference position and line of sight of a high resolution neutron spectrometer on ITER are used in the study. ITER plasma conditions are simulated for realistic operating scenarios. The ITER conditions evaluated are beam and radio frequency heated and thermal deuterium-tritium plasmas. Results are given for each technique in terms of the estimated time resolution at which the parameter determination can be made within the required precision (here 10% for Ti and the relative intensities of NB and RF emission components). It is shown that under the assumptions made, the thin-foil techniques out-perform the other spectroscopy techniques in practically all measurement situations. For thermal conditions, the range of achieved Δt in the determination of Ti varies in time scales from ms (for the magnetic and thin-foil proton recoil) to s (for gamma discriminating organic scintillator).

  • 6. Angioni, C.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 2, article id 022009Article in journal (Refereed)
    Abstract [en]

    In tokamaks, the role of turbulent transport of heavy impurities, relative to that of neoclassical transport, increases with increasing size of the plasma, as clarified by means of general scalings, which use the ITER standard scenario parameters as reference, and by actual results from a selection of discharges from ASDEX Upgrade and JET. This motivates the theoretical investigation of the properties of the turbulent convection of heavy impurities by nonlinear gyrokinetic simulations in the experimentally relevant conditions of comparable ion and electron heat fluxes. These conditions also correspond to an intermediate regime between dominant ion temperature gradient turbulence and trapped electron mode turbulence. At moderate plasma toroidal rotation, the turbulent convection of heavy impurities, computed with nonlinear gyrokinetic simulations, is found to be directed outward, in contrast to that obtained by quasi-linear calculations based on the most unstable linear mode, which is directed inward. In this mixed turbulence regime, with comparable electron and ion heat fluxes, the nonlinear results of the impurity transport can be explained by the coexistence of both ion temperature gradient and trapped electron modes in the turbulent state, both contributing to the turbulent convection and diffusion of the impurity. The impact of toroidal rotation on the turbulent convection is also clarified.

  • 7. Angioni, C.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, F.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, N.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, M.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Dependence of the turbulent particle flux on hydrogen isotopes induced by collisionality2018In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 25, no 8, article id 082517Article in journal (Refereed)
    Abstract [en]

    The impact of the change of the mass of hydrogen isotopes on the turbulent particle flux is studied. The trapped electron component of the turbulent particle convection induced by collisionality, which is outward in ion temperature gradient turbulence, increases with decreasing thermal velocity of the isotope. Thereby, the lighter is the isotope, the stronger is the turbulent pinch, and the larger is the predicted density gradient at the null of the particle flux. The passing particle component of the flux increases with decreasing mass of the isotope and can also affect the predicted density gradient. This effect is however subdominant for usual core plasma parameters. The analytical results are confirmed by means of both quasi-linear and nonlinear gyrokinetic simulations, and an estimate of the difference in local density gradient produced by this effect as a function of collisionality has been obtained for typical plasma parameters at mid-radius. Analysis of currently available experimental data from the JET and the ASDEX Upgrade tokamaks does not show any clear and general evidence of inconsistency with this theoretically predicted effect outside the errorbars and also allows the identification of cases providing weak evidence of qualitative consistency.

  • 8.
    Appel, L. C.
    et al.
    CCFE, Culham Science Centre, Abingdon, Oxfordshire, UK.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Natl Ctr Nucl Res, Otwock, Poland.
    Equilibrium reconstruction in an iron core tokamak using a deterministic magnetisation model2018In: Computer Physics Communications, ISSN 0010-4655, E-ISSN 1879-2944, Vol. 223, p. 1-17Article in journal (Refereed)
    Abstract [en]

    In many tokamaks ferromagnetic material, usually referred to as an iron-core, is present in order to improve the magnetic coupling between the solenoid and the plasma. The presence of the iron core in proximity to the plasma changes the magnetic topology with consequent effects on the magnetic field structure and the plasma boundary. This paper considers the problem of obtaining the free-boundary plasma equilibrium solution in the presence of ferromagnetic material based on measured constraints. The current approach employs, a model described by O'Brien et al. (1992) in which the magnetisation currents at the iron-air boundary are represented by a set of free parameters and appropriate boundary conditions are enforced via a set of quasi-measurements on the material boundary. This can lead to the possibility of overfitting the data and hiding underlying issues with the measured signals. Although the model typically achieves good fits to measured magnetic signals there are significant discrepancies in the inferred magnetic topology compared with other plasma diagnostic measurements that are independent of the magnetic field. An alternative approach for equilibrium reconstruction in iron-core tokamaks, termed the deterministic magnetisation model is developed and implemented in EFIT++. The iron is represented by a boundary current with the gradients in the magnetisation dipole state generating macroscopic internal magnetisation currents. A model for the boundary magnetisation currents at the iron-air interface is developed using B-Splines enabling continuity to arbitrary order; internal magnetisation currents are allocated to triangulated regions within the iron, and a method to enable adaptive refinement is implemented. The deterministic model has been validated by comparing it with a synthetic 2-D electromagnetic model of JET. It is established that the maximum field discrepancy is less than 1.5 mT throughout the vacuum region enclosing the plasma. The discrepancies of simulated magnetic probe signals are accurate to within 1% for signals with absolute magnitude greater than 100 mT; in all other cases agreement is to within 1 mT. The effect of neglecting the internal magnetisation currents increases the maximum discrepancy in the vacuum region to >20 mT, resulting in errors of 5%-10% in the simulated probe signals. The fact that the previous model neglects the internal magnetisation currents (and also has additional free parameters when fitting the measured data) makes it unsuitable for analysing data in the absence of plasma current. The discrepancy of the poloidal magnetic flux within the vacuum vessel is to within 0.1 Wb. Finally the deterministic model is applied to an equilibrium force-balance solution of a JET discharge using experimental data. It is shown that the discrepancies of the outboard separatrix position, and the outer strike-point position inferred from Thomson Scattering and Infrared camera data are much improved beyond the routine equilibrium reconstruction, whereas the discrepancy of the inner strike-point position is similar. (C) 2017 Published by Elsevier B.V.

  • 9. Baron-Wiechec, A.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, F.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, N.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Uppsala University, The Svedberg Laboratory.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, M.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Thermal desorption spectrometry of beryllium plasma facing tiles exposed in the JET tokamak2018In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 133, p. 135-141Article in journal (Refereed)
    Abstract [en]

    The phenomena of retention and de-trapping of deuterium (D) and tritium (T) in plasma facing components (PFC) and supporting structures must be understood in order to limit or control total T inventory in larger future fusion devices such as ITER, DEMO and commercial machines. The goal of this paper is to present details of the thermal desorption spectrometry (TDS) system applied in total fuel retention assessment of PFC at the Joint European Torus (JET). Examples of TDS results from beryllium (Be) wall tile samples exposed to JET plasma in PFC configuration mirroring the planned ITER PFC is shown for the first time. The method for quantifying D by comparison of results from a sample of known D content was confirmed acceptable. The D inventory calculations obtained from Ion Beam Analysis (IBA) and TDS agree well within an error associated with the extrapolation from very few data points to a large surface area.

  • 10. Basiuk, V.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth: effects on transport coefficients2017In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, no 12, article id 125012Article in journal (Refereed)
    Abstract [en]

    The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.

  • 11. Batistoni, P.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Technical preparations for the in-vessel 14 MeV neutron calibration at JET2017In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 117, p. 107-114Article in journal (Refereed)
    Abstract [en]

    The power output of fusion devices is measured from their neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods that have been prepared to perform a new in situ 14 MeV neutron calibration at JET in view of the new DT campaign planned at JET in the next years. The target accuracy of this calibration is 10% as required for ITER, where a precise neutron yield measurement is important, e.g., for tritium accountancy. In this paper, the constraints and early decisions which defined the main calibration approach are discussed, e.g., the choice of 14 MeV neutron source and the deployment method. The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are also discussed. The existing JET remote-handling system will be used to deploy the neutron source inside the JET vessel. For this purpose, compatible tooling and systems necessary to ensure safe and efficient deployment have been developed. The scientific programme of the preparatory phase is devoted to fully characterizing the selected 14 MeV neutron generator to be used as the calibrating source, obtain a better understanding of the limitations of the calibration, optimise the measurements and other provisions, and to provide corrections for perturbing factors (e.g., anisotropy of the neutron generator, neutron energy spectrum dependence on emission angle). Much of this work has been based on an extensive programme of Monte-Carlo calculations which provide support and guidance in developing the calibration strategy. i3/4 (C) 2017 EURATOM. 

  • 12. Batistoni, P.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, F.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, N.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Uppsala University, The Svedberg Laboratory.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, M.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    OVERVIEW OF NEUTRON MEASUREMENTS IN JET FUSION DEVICE2018In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 180, no 1-4, p. 102-108Article in journal (Refereed)
    Abstract [en]

    The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation.

  • 13. Batistoni, P.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    14 MeV calibration of JET neutron detectors-phase 1: calibration and characterization of the neutron source2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 2, article id UNSP 026012Article in journal (Refereed)
    Abstract [en]

    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is +/- 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4 pi sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within +/- 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.

  • 14. Beal, J.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Deposition in the inner and outer corners of the JET divertor with carbon wall and metallic ITER-like wall2016In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T167, article id 014052Article in journal (Refereed)
    Abstract [en]

    Rotating collectors and quartz microbalances (QMBs) are used in JET to provide time-dependent measurements of erosion and deposition. Rotation of collector discs behind apertures allows recording of the long term evolution of deposition. QMBs measure mass change via the frequency deviations of vibrating quartz crystals. These diagnostics are used to investigate erosion/deposition during JET-C carbon operation and JET-ILW (ITER-like wall) beryllium/tungsten operation. A simple geometrical model utilising experimental data is used to model the time-dependent collector deposition profiles, demonstrating good qualitative agreement with experimental results. Overall, the JET-ILW collector deposition is reduced by an order of magnitude relative to JET-C, with beryllium replacing carbon as the dominant deposit. However, contrary to JET-C, in JET-ILW there is more deposition on the outer collector than the inner. This reversal of deposition asymmetry is investigated using an analysis of QMB data and is attributed to the different chemical properties of carbon and beryllium.

  • 15. Bernert, M.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, N.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET2017In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 12, p. 111-118Article in journal (Refereed)
    Abstract [en]

    Future fusion reactors require a safe, steady state divertor operation. A possible solution for the power exhaust challenge is the detached divertor operation in scenarios with high radiated power fractions. The radiation can be increased by seeding impurities, such as N for dominant scrape-off-layer radiation, Ne or Ar for SOL and pedestal radiation and Kr for dominant core radiation. Recent experiments on two of the all-metal tokamaks, ASDEX Upgrade (AUG) and JET, demonstrate operation with high radiated power fractions and a fully-detached divertor by N, Ne or Kr seeding with a conventional divertor in a vertical target geometry. For both devices similar observations can be made. In the scenarios with the highest radiated power fraction, the dominant radiation originates from the confined region, in the case of N and Ne seeding concentrated in a region close to the X-point. Applying these seed impurities for highly radiative scenarios impacts local plasma parameters and alters the impurity transport in the pedestal region. Thus, plasma confinement and stability can be affected. A proper understanding of the effects by these impurities is required in order to predict the applicability of such scenarios for future devices. (C) 2017 Elsevier Ltd.

  • 16.
    Biel, W.
    et al.
    Forschungszentrum Julich, Inst Energie & Klimaforschurg, Julich, Germany;Univ Ghent, Dept Appl Phys, Ghent, Belgium.
    Albanese, R.
    Univ Napoli Federico II, Consorzio CREATE, Naples, Italy.
    Ambrosino, R.
    Univ Napoli Parthenope, Consorzio CREATE, Naples, Italy.
    Ariola, M.
    Univ Napoli Parthenope, Consorzio CREATE, Naples, Italy.
    Berkel, M. , V
    Bolshakova, I
    Magnet Sensor Lab, Lvov, Ukraine.
    Brunner, K. J.
    Max Planck Inst Plasma Phys, Greifswald, Germany.
    Cavazzana, R.
    Univ Padua, Ist Nazl Fis Nucl, ENEA, Consorzio RFX,CNR, Padua, Italy.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dinklage, A.
    Max Planck Inst Plasma Phys, Greifswald, Germany.
    Duran, I
    Czech Acad Sci, Inst Plasma Phys, Prague, Czech Republic.
    Dux, R.
    Max Planck Inst Plasma Phys, Garching, Germany.
    Eade, T.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Entler, S.
    Czech Acad Sci, Inst Plasma Phys, Prague, Czech Republic.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Fable, E.
    Max Planck Inst Plasma Phys, Garching, Germany.
    Farina, D.
    CNR, IFP, Milan, Italy.
    Figini, L.
    CNR, IFP, Milan, Italy.
    Finotti, C.
    Univ Padua, Ist Nazl Fis Nucl, ENEA, Consorzio RFX,CNR, Padua, Italy.
    Franke, Th
    Max Planck Inst Plasma Phys, Garching, Germany;EUROfus Power Plant Phys & Technol PPPT Dept, Garching, Germany.
    Giacomelli, L.
    CNR, IFP, Milan, Italy.
    Giannone, L.
    Max Planck Inst Plasma Phys, Garching, Germany.
    Gonzalez, W.
    Forschungszentrum Julich, Inst Energie & Klimaforschurg, Julich, Germany.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hron, M.
    Czech Acad Sci, Inst Plasma Phys, Prague, Czech Republic.
    Janky, F.
    Max Planck Inst Plasma Phys, Garching, Germany.
    Kallenbach, A.
    Max Planck Inst Plasma Phys, Garching, Germany.
    Kogoj, J.
    Cosylab, Ljubljana, Slovenia.
    Koenig, R.
    Max Planck Inst Plasma Phys, Greifswald, Germany.
    Kudlacek, O.
    Max Planck Inst Plasma Phys, Garching, Germany.
    Luis, R.
    Univ Lisbon, Inst Plasmas & Fusao Nucl, IST, Lisbon, Portugal.
    Malaquias, A.
    Univ Lisbon, Inst Plasmas & Fusao Nucl, IST, Lisbon, Portugal.
    Marchuk, O.
    Forschungszentrum Julich, Inst Energie & Klimaforschurg, Julich, Germany.
    Marchiori, G.
    Univ Padua, Ist Nazl Fis Nucl, ENEA, Consorzio RFX,CNR, Padua, Italy.
    Mattei, M.
    Univ Campania Luigi Vanvitelli, Consorzio CREATE, Caserta, Italy.
    Maviglia, F.
    Univ Napoli Federico II, Consorzio CREATE, Naples, Italy;EUROfus Power Plant Phys & Technol PPPT Dept, Garching, Germany.
    De Masi, G.
    Univ Padua, Ist Nazl Fis Nucl, ENEA, Consorzio RFX,CNR, Padua, Italy.
    Mazon, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France.
    Meister, H.
    Max Planck Inst Plasma Phys, Garching, Germany.
    Meyer, K.
    Cosylab, Ljubljana, Slovenia.
    Micheletti, D.
    CNR, IFP, Milan, Italy.
    Nowak, S.
    CNR, IFP, Milan, Italy.
    Piron, Ch
    Univ Padua, Ist Nazl Fis Nucl, ENEA, Consorzio RFX,CNR, Padua, Italy.
    Pironti, A.
    Univ Napoli Federico II, Consorzio CREATE, Naples, Italy.
    Rispoli, N.
    CNR, IFP, Milan, Italy.
    Rohde, V
    Max Planck Inst Plasma Phys, Garching, Germany.
    Sergienko, G.
    Forschungszentrum Julich, Inst Energie & Klimaforschurg, Julich, Germany.
    El Shawish, S.
    Jozef Stefan Inst, Ljubljana, Slovenia.
    Siccinio, M.
    Max Planck Inst Plasma Phys, Garching, Germany;EUROfus Power Plant Phys & Technol PPPT Dept, Garching, Germany.
    Silva, A.
    Univ Lisbon, Inst Plasmas & Fusao Nucl, IST, Lisbon, Portugal.
    da Silva, F.
    Univ Lisbon, Inst Plasmas & Fusao Nucl, IST, Lisbon, Portugal.
    Sozzi, C.
    CNR, IFP, Milan, Italy.
    Tardocchi, M.
    CNR, IFP, Milan, Italy.
    Tokar, M.
    Forschungszentrum Julich, Inst Energie & Klimaforschurg, Julich, Germany.
    Treutterer, W.
    Max Planck Inst Plasma Phys, Garching, Germany.
    Zohm, H.
    Max Planck Inst Plasma Phys, Garching, Germany.
    Diagnostics for plasma control -: From ITER to DEMO2019In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 146, no A, p. 465-472Article in journal (Refereed)
    Abstract [en]

    The plasma diagnostic and control (D&C) system for a future tokamak demonstration fusion reactor (DEMO) will have to provide reliable operation near technical and physics limits, while its front-end components will be subject to strong adverse effects within the nuclear and high temperature plasma environment. The ongoing developments for the ITER D&C system represent an important starting point for progressing towards DEMO. Requirements for detailed exploration of physics are however pushing the ITER diagnostic design towards using sophisticated methods and aiming for large spatial coverage and high signal intensities, so that many front-end components have to be mounted in forward positions. In many cases this results in a rapid aging of diagnostic components, so that additional measures like protection shutters, plasma based mirror cleaning or modular approaches for frequent maintenance and exchange are being developed. Under the even stronger fluences of plasma particles, neutron/gamma and radiation loads on DEMO, durable and reliable signals for plasma control can only be obtained by selecting diagnostic methods with regard to their robustness, and retracting vulnerable front-end components into protected locations. Based on this approach, an initial DEMO D&C concept is presented, which covers all major control issues by signals to be derived from at least two different diagnostic methods (risk mitigation).

  • 17.
    Binda, Federico
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Nocente, Massimo
    Cazzaniga, Carlo
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Analysis of the fast ion tails observed in the NE213pulse height specta measured during third harmonicradio-frequency heating experiments at JETManuscript (preprint) (Other academic)
    Abstract [en]

    In this paper we investigate the possibility of using a NE213 liquid scintillator as aneutron spectrometer to diagnose the fast ion tails produced in experiments with 3rd harmonicradio-frequency heating.We discuss mainly the instrumental effects that need to be considered and corrected for in orderto obtain a good agreement between measured data and models: gain drift, pile-up, impact of theassumption of a standard proton light yield function. We also address problems related to thepresence of triton burn-up events in the spectrum.The expected ion distribution is obtained from a simple 1D Fokker-Planck model. The parametersof the model are estimated using the data collected by the TOFOR neutron spectrometer.The agreement between the data and the model is good and it is possible to make a clear distinctionbetween discharges that had different electron densities and thus different cut-off energies. Wecan conclude that NE213 scintillators can provide useful spectroscopic information for this kind ofexperiments.

  • 18. Bisoffi, Andrea
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technolo