Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
Refine search result
12 1 - 50 of 52
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bericat Vadell, Robert
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Sekar, Pandiaraj
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Patehebieke, Yeersen
    Univ Gothenburg, Dept Chem & Mol Biol, Kemivagen 10, S-41258 Gothenburg, Sweden..
    Zou, Xianshao
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Kaul, Nidhi
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Broqvist, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Lindblad, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Condensed Matter Physics of Energy Materials.
    Arkhypchuk, Anna I.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Synthetic Molecular Chemistry.
    Walletin, Carl-Johan
    Univ Gothenburg, Dept Chem & Mol Biol, Kemivagen 10, S-41258 Gothenburg, Sweden..
    Sá, Jacinto
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Polish Acad Sci, Inst Phys Chem, Marcina Kasprzaka 44-52, PL-01224 Warsaw, Poland..
    Single-electron transfer reactions on surface-modified gold plasmons2023In: Materials Today Chemistry, E-ISSN 2468-5194, Vol. 34, article id 101783Article in journal (Refereed)
    Abstract [en]

    Photoredox catalysis's relevance in organic synthesis research and innovation will increase in the coming decades. However, the processes rely almost exclusively on expensive noble metal complexes, most notably iridium complexes, to absorb light and transfer a single charge to a substrate or a catalyst to initiate cascade transformations. Light-triggered plasmon resonances generate a non-Fermi-Dirac energy distribution with many hot carriers that decay in similar to 1 ps. Their ultrafast relaxation makes performing single electron transfer (SET) transformations challenging. Herein, a novel photosystem is proposed based on surface-modified gold nanoparticles (aka plasmon "molecularization"), which improved charge separation and, more importantly, enabled SET reactions, expanding the portfolio of photocatalysts available for photoredox catalysis. The photosystem was made into an electrode, permitting its use in photoelectrochemical arrangements that leverage electro- and photo-chemical approaches' benefits and chemical engineering solutions, helping the synthetic chemistry efforts towards greener synthesis and synthesis of more complex structures on a scale.

    Download full text (pdf)
    fulltext
  • 2.
    Bylin, Johan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Spode, Lennart
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Scheicher, Ralph H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Pálsson, Gunnar K.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    The influence of hydrogen on the electronic structure in transition metallic glassesManuscript (preprint) (Other academic)
    Abstract [en]

    We investigate the influence of hydrogen on the electronic structure of a binary transition metallic glass of V80Zr20. We examine the hybridization between the hydrogen and metal atoms with the aid of hard x-ray photoelectron spectroscopy. Combined with ab initio density functional theory, we are able to show and predict the formation of s-d hybridized energy states. With optical transmission and resistivity measurements, we investigate the emergent electronic properties formed out of those altered energy states, and together with the theoretical calculations of the frequency-dependent conductivity tensor, we qualitatively support the observed strong wavelength-dependency of the hydrogen-induced changes on the optical absorption and a positive parabolic change in resistivity with hydrogen concentration. 

  • 3.
    Casillas-Trujillo, Luis
    et al.
    Linköping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linköping, Sweden..
    Osinger, Barbara
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Karlsson, Dennis
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Abrikosov, Alexei I.
    Linköping Univ, Dept Sci & Technol, SE-58183 Norrköping, Sweden..
    Fritze, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    von Fieandt, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Alling, Björn
    Linköping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linköping, Sweden..
    Hotz, Ingrid
    Linköping Univ, Dept Sci & Technol, SE-58183 Norrköping, Sweden..
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Abrikosov, Igor A.
    Linköping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linköping, Sweden.;Natl Univ Sci & Technol MISIS, Mat Modelling & Dev Lab, Moscow 119049, Russia..
    Lewin, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Experimental and theoretical evidence of charge transfer in multi-component alloys: how chemical interactions reduce atomic size mismatch2021In: Materials Chemistry Frontiers, E-ISSN 2052-1537, Vol. 5, no 15, p. 5746-5759Article in journal (Refereed)
    Abstract [en]

    Ab initio simulations of a multi-component alloy using density functional theory (DFT) were combined with experiments on thin films of the same material using X-ray photoelectron spectroscopy (XPS) to study the connection between the electronic and atomic structures of multi-component alloys. The DFT simulations were performed on an equimolar HfNbTiVZr multi-component alloy. Structure and charge transfer were evaluated using relaxed, non-relaxed, as well as elemental reference structures. The use of a fixed sphere size model allowed quantification of charge transfer, and separation into different contributions. The charge transfer was generally found to follow electronegativity trends and results in a reduced size mismatch between the elements, and thus causes a considerable reduction of the lattice distortions compared to a traditional assumption based on tabulated atomic radii. A calculation of the average deviation from the average radius (i.e. the so-called δ-parameter) based on the atomic Voronoi volumes gave a reduction of δ from ca. 6% (using the volumes in elemental reference phases) to ca. 2% (using the volumes in the relaxed multi-component alloy phase). The reliability of the theoretical results was confirmed by XPS measurements of a Hf22Nb19Ti18V19Zr21 thin film deposited by sputter deposition. The experimentally observed core level binding energy shifts (CLS), as well as peak broadening due to a range of chemical surroundings, for each element showed good agreement with the calculated DFT values. The single solid solution phase of the sample was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) including energy dispersive spectroscopy (EDS) with nm-resolution. These observations show that the HfNbTiVZr solid solution phase is non-ideal, and that chemical bonding plays an important part in the structure formation, and presumably also in the properties. Our conclusions should be transferable to other multi-component alloy systems, as well as some other multi-component material systems, and open up interesting possibilities for the design of material properties via the electronic structure and controlled charge transfer between selected metallic elements in the materials.

    Download full text (pdf)
    fulltext
  • 4.
    Couto, Rafael C.
    et al.
    Royal Inst Technol, Sch Chem Biotechnol & Hlth, Dept Theoret Chem & Biol, SE-10691 Stockholm, Sweden.;Stockholm Univ, Albanova Univ Ctr, Dept Phys, SE-10691 Stockholm, Sweden..
    Hua, Weijie
    Nanjing Univ Sci & Technol, Sch Sci, Dept Appl Phys, MIIT Key Lab Semicond Microstruct & Quantum Sensi, Nanjing 210094, Peoples R China..
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Lund Univ, Dept Phys, Box 118, S-22100 Lund, Sweden.;Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindliche Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Kjellsson, Ludvig
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany..
    Sorensen, Stacey L.
    Lund Univ, Dept Phys, Box 118, S-22100 Lund, Sweden..
    Kubin, Markus
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindliche Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Bülow, Christine
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindliche Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Timm, Martin
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindliche Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Zamudio-Bayer, Vicente
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindliche Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany..
    von Issendorff, Bernd
    Albert Ludwigs Univ Freiburg, Phys Inst, Hermann Herder Str 3, D-79104 Freiburg, Germany..
    Söderström, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics.
    Lau, J. Tobias
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindliche Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany.;Albert Ludwigs Univ Freiburg, Phys Inst, Hermann Herder Str 3, D-79104 Freiburg, Germany..
    Rubensson, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics.
    Ågren, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Tomsk State Univ, 36 Lenin Ave, Tomsk, Russia..
    Carravetta, Vincenzo
    CNR, IPCF, Via Moruzzi 1, I-56124 Pisa, Italy..
    Breaking inversion symmetry by protonation: experimental and theoretical NEXAFS study of the diazynium ion, N2H+2021In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 23, no 32, p. 17166-17176Article in journal (Refereed)
    Abstract [en]

    As an example of symmetry breaking in NEXAFS spectra of protonated species we present a high resolution NEXAFS spectrum of protonated dinitrogen, the diazynium ion N2H+. By ab initio calculations we show that the spectrum consists of a superposition of two nitrogen 1s absorption spectra, each including a pi* band, and a nitrogen 1s to H+ charge transfer band followed by a weak irregular progression of high energy excitations. Calculations also show that, as an effect of symmetry breaking by protonation, the pi* transitions are separated by 0.23 eV, only slightly exceeding the difference in the corresponding dark (symmetry forbidden) and bright (symmetry allowed) core excitations of neutral N-2. By DFT and calculations and vibrational analysis, the complex pi* excitation band of N2H+ is understood as due to the superposition of the significantly different vibrational progressions of excitations from terminal and central nitrogen atoms, both leading to bent final state geometries. We also show computationally that the electronic structure of the charge transfer excitation smoothly depends on the nitrogen-proton distance and that there is a clear extension of the spectra going from infinity to close nitrogen-proton distance where fine structures show some, although not fully detailed, similarities. An interesting feature of partial localization of the nitrogen core orbitals, with a strong, non-monotonous, variation with nitrogen-proton distance could be highlighted. Specific effects could be unraveled when comparing molecular cation NEXAFS spectra, as represented by recently recorded spectra of N-2(+) and CO+, and spectra of protonated molecules as represented here by the N2H+ ion. Both types containing rich physical effects not represented in NEXAFS of neutral molecules because of the positive charge, whereas protonation also breaks the symmetry. The effect of the protonation on dinitrogen can be separated in charge, which extends the high-energy part of the spectrum, and symmetry-breaking, which is most clearly seen in the low-energy pi* transition.

    Download full text (pdf)
    fulltext
  • 5.
    Couto, Rafael C.
    et al.
    Royal Inst Technol, Dept Theoret Chem & Biol, Sch Chem Biotechnol & Hlth, SE-10691 Stockholm, Sweden.
    Kjellsson, Ludvig
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Ågren, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Royal Inst Technol, Dept Theoret Chem & Biol, Sch Chem Biotechnol & Hlth, SE-10691 Stockholm, Sweden; Tomsk State Univ, 36 Lenin Ave, Tomsk, Russia.
    Carravetta, Vincenzo
    IPCF CNR, Via Moruzzi 1, I-56124 Pisa, Italy.
    Sorensen, Stacey L.
    Lund Univ, Dept Phys, Box 118, S-22100 Lund, Sweden.
    Kubin, Markus
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany.
    Bülow, Christine
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany.
    Timm, Martin
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany.
    Zamudio-Bayer, Vicente
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany.
    von Issendorff, Bernd
    Albert Ludwigs Univ Freiburg, Phys Inst, Hermann Herder Str 3, D-79104 Freiburg, Germany.
    Lau, J. Tobias
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany; Albert Ludwigs Univ Freiburg, Phys Inst, Hermann Herder Str 3, D-79104 Freiburg, Germany.
    Söderström, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Rubensson, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Lund Univ, Dept Phys, Box 118, S-22100 Lund, Sweden; Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany.
    The carbon and oxygen K-edge NEXAFS spectra of CO+2020In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 22, no 28, p. 16215-16223Article in journal (Refereed)
    Abstract [en]

    We present and analyze high resolution near edge X-ray absorption fine structure (NEXAFS) spectra of CO+ at the carbon and oxygen K-edges. The spectra show a wealth of features that appear very differently at the two K-edges. The analysis of these features can be divided into three parts; (i) repopulation transition to the open shell orbital – here the C(1s) or O(1s) to 5σ transition, where the normal core hole state is reached from a different initial state and different interaction than in X-ray photoelectron spectroscopy; (ii) spin coupled split valence bands corresponding to C(1s) or O(1s) to π* transitions; (iii) remainder weak and long progressions towards the double ionization potentials containing a manifold of peaks. These parts, none of which has correspondence in NEXAFS spectra of neutral molecules, are dictated by the localization of the singly occupied 5σ orbital, adding a dimension of chemistry to the ionic NEXAFS technique.

    Download full text (pdf)
    fulltext
  • 6.
    Delcey, Mickaël G.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Lund Univ, Dept Phys, Box 118, SE-22100 Lund, Sweden; Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany.
    Timm, Martin
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany.;Tech Univ Berlin, Inst Opt & Atomare Phys, Hardenbergstr 36, D-10623 Berlin, Germany..
    Bülow, Christine
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany.;Albert Ludwigs Univ Freiburg, Phys Inst, Hermann Herder Str 3, D-79104 Freiburg, Germany..
    Zamudio-Bayer, Vicente
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany..
    von Issendorff, Bernd
    Albert Ludwigs Univ Freiburg, Phys Inst, Hermann Herder Str 3, D-79104 Freiburg, Germany..
    Lau, J. Tobias
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, Albert Einstein Str 15, D-12489 Berlin, Germany.;Albert Ludwigs Univ Freiburg, Phys Inst, Hermann Herder Str 3, D-79104 Freiburg, Germany..
    Lundberg, Marcus
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Soft X-ray signatures of cationic manganese-oxo systems, including a high-spin manganese(v) complex2022In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 24, no 6, p. 3598-3610Article in journal (Refereed)
    Abstract [en]

    Manganese–oxo species catalyze key reactions, including C–H bond activation or dioxygen formation in natural photosynthesis. To better understand relevant reaction intermediates, we characterize electronic states and geometric structures of [MnOn]+ manganese–oxo complexes that represent a wide range of manganese oxidation states. To this end, we apply soft X-ray spectroscopy in a cryogenic ion trap, combined with multiconfigurational wavefunction calculations. We identify [MnO2]+ as a rare high-spin manganese(V) oxo complex with key similarities to six-coordinated manganese(V) oxo systems that are proposed as reaction intermediates in catalytic dioxygen bond formation.

    Download full text (pdf)
    fulltext
  • 7.
    Dey, Ananta
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Silveira, Vitor R.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Bericat Vadell, Robert
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Lindblad, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Condensed Matter Physics of Energy Materials.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Shtender, Vitalii
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Applied Material Science.
    Görlin, Mikaela
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Sá, Jacinto
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Polish Acad Sci, Inst Phys Chem, Marcina Kasprzaka 44-52, PL-01224 Warsaw, Poland.
    Exploiting hot electrons from a plasmon nanohybrid system for the photoelectroreduction of CO22024In: Communications Chemistry, E-ISSN 2399-3669, Vol. 7, no 1, article id 59Article in journal (Refereed)
    Abstract [en]

    Plasmonic materials convert light into hot carriers and heat to mediate catalytic transformation. The participation of hot carriers (photocatalysis) remains a subject of vigorous debate, often argued on the basis that carriers have ultrashort lifetime incompatible with drive photochemical processes. This study utilises plasmon hot electrons directly in the photoelectrocatalytic reduction of CO2 to CO via a Ppasmonic nanohybrid. Through the deliberate construction of a plasmonic nanohybrid system comprising NiO/Au/ReI(phen-NH2)(CO)3Cl (phen-NH2 = 1,10-Phenanthrolin-5-amine) that is unstable above 580 K; it was possible to demonstrate hot electrons are the main culprit in CO2 reduction. The engagement of hot electrons in the catalytic process is derived from many approaches that cover the processes in real-time, from ultrafast charge generation and separation to catalysis occurring on the minute scale. Unbiased in situ FTIR spectroscopy confirmed the stepwise reduction of the catalytic system. This, coupled with the low thermal stability of the ReI(phen-NH2)(CO)3Cl complex, explicitly establishes plasmonic hot carriers as the primary contributors to the process. Therefore, mediating catalytic reactions by plasmon hot carriers is feasible and holds promise for further exploration. Plasmonic nanohybrid systems can leverage plasmon’s unique photophysics and capabilities because they expedite the carrier’s lifetime.

    Download full text (pdf)
    FULLTEXT01
  • 8.
    Ellis, Hanna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Kaufmann Eriksson, Susanna
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Feldt, Sandra
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Gabrielsson, Erik
    KTH, Organisk kemi.
    Lohse, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Sun, Licheng
    KTH, Organisk kemi.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Boschloo, Gerrit
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Hagfeldt, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Linker Unit Modification of Triphenylamine-based Organic Dyes for Efficient Cobalt Mediated Dye-Sensitized Solar Cells2013In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 41, p. 21029-21036Article in journal (Refereed)
    Abstract [en]

    Linker unit modification of donor-linker-acceptor-based organic dyes was investigated with respect to the spectral and physicochemical properties of the dyes. The spectral response for a series of triphenylamine (TPA)-based organic dyes, called LEG1-4, was shifted into the red wavelength region, and the extinction coefficient of the dyes was increased by introducing different substituted dithiophene units on the pi-conjugated linker. The photovoltaic performance of dye-sensitized solar cells (DSCs) incorporating the different dyes in combination with cobalt-based electrolytes was found to be dependent on dye binding. The binding morphology of the dyes on the TiO2 was studied using photoelectron spectroscopy, which demonstrated that the introduction of alkyl chains and different substituents on the dithiophene linker unit resulted in a larger tilt angle of the dyes with respect to the normal of the TiO2-surface, and thereby a lower surface coverage. The good photovoltaic performance for cobalt electrolyte-based DSCs found here and by other groups using TPA-based organic dyes with a cyclopentadithiophene linker unit substituted with alkyl chains was mainly attributed to the extended spectral response of the dye, whereas the larger tilt angle of the dye with respect to the TiO2-surface resulted in less efficient packing of the dye molecules and enhanced recombination between electrons in TiO2 and Co(III) species in the electrolyte.

  • 9.
    Eriksson K., Susanna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Josefsson, Ida
    Ellis, Hanna
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Amat, Anna
    Pastore, Mariachiara
    Oscarsson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Eriksson, Anna I. K.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Johansson, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Boschloo, Gerrit
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Hagfeldt, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Fantacci, Simona
    Odelius, Michael
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Geometrical and energetical structural changes in organic dyes for dye-sensitized solar cells probed with photoelectron spectroscopy and DFT2016In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 18, no 1, p. 252-260Article in journal (Other academic)
    Abstract [en]

    The effects of alkoxy chain length in triarylamine based donor acceptor organic dyes are investigated with respect to the electronic and molecular surface structures on the performance of solar cells and the electron lifetime. The dyes were investigated when adsorbed on TiO2 in a configuration that can be used for dye sensitized solar cells (DSCs). Specifically, the two dyes D35 and D45 were compared using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. The differences in solar cell characteristics when longer alkoxy chains are introduced in the dye donor unit are attributed to geometrical changes in dye packing while only minor differences were observed in the electronic structure. A higher dye load was observed for D45 on TiO2. However, D35 based solar cells result in higher photocurrent although the dye load is lower. This is explained by different geometrical structures of the dyes on the surface.

  • 10.
    Fernandes, Arthur B.
    et al.
    Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05508000 Sao Paulo, SP, Brazil.
    Pavliuk, Mariia V.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Paun, Cristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Carvalho, Alexandrina C.
    Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05508000 Sao Paulo, SP, Brazil.
    Nomura, Cassiana S.
    Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05508000 Sao Paulo, SP, Brazil.
    Lewin, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Camargo, Pedro H. C.
    Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05508000 Sao Paulo, SP, Brazil;Univ Helsinki, Dept Chem, FI-00014 Helsinki, Finland.
    Sá, Jacinto
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland.
    Bastos, Erick L.
    Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05508000 Sao Paulo, SP, Brazil.
    Recoverable and Reusable Polymer Microbead-Supported Metal Nanocatalysts for Redox Chemical Transformations2020In: ACS APPLIED NANO MATERIALS, ISSN 2574-0970, Vol. 3, no 2, p. 1722-1730Article in journal (Refereed)
    Abstract [en]

    Metal nanoparticles have been widely exploited in catalysis, but their full impact on the environment and human health is still under debate. Here we describe the one-step fabrication of recoverable and reusable polymer microbead-supported metal and metal oxide nanocatalysts for application in batch reactions and flow systems. Au, Ag, and Fe3O4 nanoparticles were prepared directly at the surface of commercial benzylamine-coated spherical polymer beads in water by using low-energy microwave radiation for 5 min. The functionalization of microbead surface with betalamic acid, an antioxidant from plant origin, before irradiation changes the morphology and catalytic properties of the grafted nanoparticles. No leaching of the active phase was observed during the application of these effective and ready-to-use nanocatalysts on the reduction of 4-nitrophenol and oxidation of dihydrorhodamine 123. The supported nanocatalysts were recovered by filtration and/or magnetic separation and reused up to three times without significant drop in catalytic performance. These results can stimulate the controlled and facile synthesis of recoverable microbead-supported magnetic and nonmagnetic nanocatalysts that can be applied under myriad reaction conditions and reused multiple times.

  • 11.
    Fredin, Kristofer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Surface and Interface Science.
    Johansson, Erik M. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Physical Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Surface and Interface Science.
    Schölin, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Surface and Interface Science.
    Plogmaker, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Surface and Interface Science.
    Gabrielsson, Erik
    Sun, Licheng
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Surface and Interface Science.
    Solid state dye-sensitized solar cells prepared by infiltrating a molten hole conductor into a mesoporous film at a temperature below 150 degrees C2011In: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 161, no 21-22, p. 2280-2283Article in journal (Refereed)
    Abstract [en]

    Infiltration of a molten hole conductor in a mesoporous film at an elevated temperature exhibits good wetting performance and the procedure is therefore suitable as part of the preparation method for solid state dye-sensitized solar cells. Herein, we present a system prepared by infiltrating 4-(diethylamino)benzaldehyde-1,1)-diphenyl-hydrazone in its molten form at a temperature below 150 degrees C. The system displays a maximum photon-to-current conversion efficiency of about 35%, a value corresponding to an increase of about 5 times in comparison with a previously published system prepared by infiltrating a molten hole-conductor at a temperature exceeding 250 degrees C. By means of comparing charge transport and recombination with the results measured for a liquid analogue, we conclude that whereas the transport rates are similar, recombination is significantly more rapid in the solid-state device.

  • 12.
    Fritze, Stefan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Hahn, R.
    Institute of Materials Science and Technology, TU Wien, Vienna, Austria.
    Aboulfadl, H.
    Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
    Johansson, Fredrik O.L.
    Division of Applied Physical Chemistry, Department of Chemistry, KTH – Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Institute Methods and Instrumentation for Synchrotron Radiation Research PS-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany; Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Böör, Katalin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lindblad, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Condensed Matter Physics of Energy Materials.
    Berggren, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Condensed Matter Physics of Energy Materials.
    Kühn, D.
    Institute Methods and Instrumentation for Synchrotron Radiation Research PS-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany.
    Leitner, T.
    Institute Methods and Instrumentation for Synchrotron Radiation Research PS-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany.
    Osinger, Barbara
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lewin, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Mayrhofer, P.H.
    Institute of Materials Science and Technology, TU Wien, Vienna, Austria.
    Thuvander, M.
    Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
    Elemental distribution and fracture properties of magnetron sputtered carbon supersaturated tungsten films2024In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 477, article id 130326Article in journal (Refereed)
    Abstract [en]

    The combination of strength and toughness is a major driving force for alloy design of protective coatings, and nanocrystalline tungsten (W)-alloys have shown to be promising candidates for combining strength and toughness. Here we investigate the elemental distribution and the fracture toughness of carbon (C) alloyed W thin films prepared by non-reactive magnetron sputtering. W:C films with up to ~4 at.% C crystallize in a body-centered-cubic structure with a strong 〈hh0〉texture, and no additional carbide phases are observed in the diffraction pattern. Atom probe tomography and X-ray photoelectron spectroscopy confirmed the formation of such a supersaturated solid solution. The pure W film has a hardness ~13 GPa and the W:C films exhibit a peak hardness of ~24 GPa. In-situ micromechanical cantilever bending tests show that the fracture toughness decreases from ~4.5 MPa·m1/2 for the W film to ~3.1 MPa·m1/2 for W:C films. The results show that C can significantly enhance the hardness of W thin films while retaining a high fracture toughness.

    Download full text (pdf)
    fulltext
  • 13.
    Gopakumar, Geethanjali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics.
    Svensson, Pamela
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics.
    Grånäs, Oscar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Brena, Barbara
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Schwob, Lucas
    Deutsch Elektronen Synchrotron DESY, DE-22607 Hamburg, Germany..
    Unger, Isaak
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics.
    Saak, Clara-Magdalena
    Univ Vienna, Dept Phys Chem, A-1090 Vienna, Austria..
    Timm, Martin
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, DE-12489 Berlin, Germany.;Tech Univ Berlin, Inst Opt & Atomare Phys, DE-10623 Berlin, Germany..
    Buelow, Christine
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, DE-12489 Berlin, Germany.;Albert Ludwigs Univ Freiburg, Phys Inst, DE-79104 Freiburg, Germany..
    Kubin, Markus
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, DE-12489 Berlin, Germany..
    Zamudio-Bayer, Vicente
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, DE-12489 Berlin, Germany..
    Lau, J. Tobias
    Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, DE-12489 Berlin, Germany.;Albert Ludwigs Univ Freiburg, Phys Inst, DE-79104 Freiburg, Germany..
    von Issendorff, Bernd
    Albert Ludwigs Univ Freiburg, Phys Inst, DE-79104 Freiburg, Germany..
    Abid, Abdul Rahman
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Univ Oulu, Fac Sci, Nano & Mol Syst Res Unit, Oulu 90570, Finland..
    Lindblad, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Danielsson, Emma
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Koerfer, Ebba
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Caleman, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci, DE-22607 Hamburg, Germany..
    Björneholm, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Helmholtz Zentrum Berlin Mat & Energie, Abt Hochempfindl Rontgenspektroskopie, DE-12489 Berlin, Germany.;Lund Univ, Dept Phys, SE-22100 Lund, Sweden.;Uppsala Univ, Dept Chem, Angstrom Lab, SE-75121 Uppsala, Sweden..
    X-ray Induced Fragmentation of Protonated Cystine2022In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 126, no 9, p. 1496-1503Article in journal (Refereed)
    Abstract [en]

    We demonstrate site-specific X-ray induced fragmentation across the sulfur L-edge of protonated cystine, the dimer of the amino acid cysteine. Ion yield NEXAFS were performed in the gas phase using electrospray ionization (ESI) in combination with an ion trap. The interpretation of the sulfur Ledge NEXAFS spectrum is supported by Restricted Open-Shell Configuration Interaction (ROCIS) calculations. The fragmentation pathway of triply charged cystine ions was modeled by Molecular Dynamics (MD) simulations. We have deduced a possible pathway of fragmentation upon excitation and ionization of S 2p electrons. The disulfide bridge breaks for resonant excitation at lower photon energies but remains intact upon higher energy resonant excitation and upon ionization of S 2p. The larger fragments initially formed subsequently break into smaller fragments.

    Download full text (pdf)
    FULLTEXT01
  • 14.
    Gopakumar, Geethanjali
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics.
    Svensson, Pamela H.W.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics.
    Grånäs, Oscar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Brena, Barbara
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Schwob, L
    Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany.
    Unger, Isaak
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics.
    Saak, Clara-Magdalena
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics.
    Timm, M
    Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, DE-12489 Berlin, Germany; nstitut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, DE-10623 Berlin, Germany.
    Bülow, C
    Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, DE-12489 Berlin, Germany; Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, DE-79104 Freiburg, Germany.
    Kubin, M
    Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, DE-12489 Berlin, Germany.
    Zamudio-Bayer, V
    Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, DE-12489 Berlin, Germany.
    Lau, J-T
    Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, DE-12489 Berlin, Germany; Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, DE-79104 Freiburg, Germany.
    von Issendorff, B
    Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, DE-79104 Freiburg, Germany.
    Abid, Abdul Rahman
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics. Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P. O. Box 3000, Finland.
    Lindblad, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Danielsson, E
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Koerfer, E
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Caleman, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics. Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany.
    Björneholm, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Department of Physics, Lund University, Box 118, SE-22100 Lund, Sweden; Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, DE-12489 Berlin, Germany.
    X-ray Induced Fragmentation of Protonated CystineManuscript (preprint) (Other academic)
    Abstract [en]

    Protein structure determination using high-intensity X-ray sources induces damage in the protein. Disulfide bridges, formed between two cysteine amino acid residues stabilize the protein structure. Owing to the higher absorption cross-section of sulfur for X-ray photons, and a large number of electrons released from sulfur atoms, these disulfide bridges are hot spots for a higher level of noise in structural studies. But it is yet to be understood how exactly the damage occurs through the interaction of the disulfide bridges with photons. Here we study the fragmentation of protonated cystine in the gas phase, which is the dimer of cysteine, by irradiation with X-rays across the sulfur L-edge using an electrospray ionization source (ESI) in combination with an ion trap. This is complemented with the calculation of the sulfur NEXAFS spectrum on the level of Restricted Open-Shell Configuration Interaction (ROCIS) and Density Functional Theory (DFT) calculations for molecular orbital visualization as well as Molecular Dynamics (MD) simulations for the fragmentation of triply charged cystine ions. We have deduced a possible pathway of fragmentation upon excitation and ionization of S 2p electrons by combining the experiments and simulations. The disulfide bridge breaks for resonant excitation at lower energies but remains intact upon higher energy resonant excitation and upon ionization of S 2p. The larger fragments formed subsequently break into smaller fragments. 

  • 15.
    Heintz, Mads C.
    et al.
    Resitec AS Setesdalsveien 110 4617 Kristiansand S Norway.
    Grins, Jekabs
    Department of Materials and Environmental Chemistry Arrhenius Laboratory Stockholm University SE 10691 Stockholm Sweden.
    Jaworski, Aleksander
    Department of Materials and Environmental Chemistry Arrhenius Laboratory Stockholm University SE 10691 Stockholm Sweden.
    Svensson, Gunnar
    Department of Materials and Environmental Chemistry Arrhenius Laboratory Stockholm University SE 10691 Stockholm Sweden.
    Thersleff, Thomas
    Department of Materials and Environmental Chemistry Arrhenius Laboratory Stockholm University SE 10691 Stockholm Sweden.
    Brant, William R.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Naylor, Andrew J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hernández, Guiomar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Photovoltaic Wafering Silicon Kerf Loss as Raw Material: Example of Negative Electrode for Lithium‐Ion Battery2023In: ChemElectroChem, E-ISSN 2196-0216, Vol. 10, no 19, article id e202300331Article in journal (Refereed)
    Abstract [en]

    Silicon powder kerf loss from diamond wire sawing in the photovoltaic wafering industry is a highly appealing source material fo