uu.seUppsala University Publications
Change search
Refine search result
1234567 1 - 50 of 365
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aaboud, M.
    et al.
    Bergeaas Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander K
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Jet reconstruction and performance using particle flow with the ATLAS Detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, article id 466Article in journal (Refereed)
    Abstract [en]

    This paper describes the implementation and performance of a particle flow algorithm applied to 20.2 fb(-1) of ATLAS data from 8 TeV proton-proton collisions in Run 1 of the LHC. The algorithm removes calorimeter energy deposits due to charged hadrons from consideration during jet reconstruction, instead using measurements of their momenta from the inner tracker. This improves the accuracy of the charged-hadron measurement, while retaining the calorimeter measurements of neutral-particle energies. The paper places emphasis on how this is achieved, while minimising double-counting of charged-hadron signals between the inner tracker and calorimeter. The performance of particle flow jets, formed from the ensemble of signals from the calorimeter and the inner tracker, is compared to that of jets reconstructed from calorimeter energy deposits alone, demonstrating improvements in resolution and pile-up stability.

  • 2. Aaboud, M.
    et al.
    Bergeaas Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gardin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for charged Higgs bosons produced in association with a top quark and decaying via H± → τν using pp collision data recorded at √s = 13 TeV by the ATLAS detector2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 759, p. 555-574Article in journal (Refereed)
    Abstract [en]

    Charged Higgs bosons produced in association with a single top quark and decaying via H ± → τ ν are searched for with the \{ATLAS\} experiment at the LHC, using proton–proton collision data at s = 13   TeV corresponding to an integrated luminosity of 3.2   fb − 1 . The final state is characterised by the presence of a hadronic τ decay and missing transverse momentum, as well as a hadronically decaying top quark, resulting in the absence of high-transverse-momentum electrons and muons. The data are found to be consistent with the expected background from Standard Model processes. A statistical analysis leads to 95% confidence-level upper limits on the production cross section times branching fraction, σ ( p p → [ b ] t H ± ) × \{BR\} ( H ± → τ ν ) , between 1.9 pb and 15 fb, for charged Higgs boson masses ranging from 200 to 2000 GeV. The exclusion limits for this search surpass those obtained with the proton–proton collision data recorded at s = 8   TeV. 

  • 3. Aaboud, M.
    et al.
    Bergeaas Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gardin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the Inelastic Proton-Proton Cross Section at root s=13 TeV with the ATLAS Detector at the LHC2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, no 18, article id 182002Article in journal (Refereed)
    Abstract [en]

    This Letter presents a measurement of the inelastic proton-proton cross section using 60 mu b(-1) of pp collisions at a center-of-mass energy root s of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.07 <vertical bar eta vertical bar < 3.86) of the detector. A cross section of 68.1 +/- 1.4 mb is measured in the fiducial region. xi = M-X(2) > s > 10(-6), where M-X is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this xi range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with M-X > 13 GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1 +/- 2.9 mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.

  • 4. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of charged-particle distributions sensitive to the underlying event in root s=13 TeV proton-proton collisions with the ATLAS detector at the LHC2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 3, article id 157Article in journal (Refereed)
    Abstract [en]

    We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV, in low-luminosity Large Hadron Collider fills corresponding to an integrated luminosity of 1.6 nb−1. The distributions were constructed using charged particles with absolute pseudorapidity less than 2.5 and with transverse momentum greater than 500 MeV, in events with at least one such charged particle with transverse momentum above 1 GeV. These distributions characterise the angular distribution of energy and particle flows with respect to the charged particle with highest transverse momentum, as a function of both that momentum and of charged-particle multiplicity. The results have been corrected for detector effects and are compared to the predictions of various Monte Carlo event generators, experimentally establishing the level of underlying-event activity at LHC Run 2 energies and providing inputs for the development of event generator modelling. The current models in use for UE modelling typically describe this data to 5% accuracy, compared with data uncertainties of less than 1%.

  • 5.
    Aaboud, M.
    et al.
    Université Mohamed Premier, Faculté des Sciences; LPTPM, Oujda.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    DESY, Hamburg and Zeuthen.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva.
    Search for supersymmetry in final states with two same-sign or three leptons and jets using 36 fb−1 of √s=13 TeV pp collision data with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 9, article id 084Article in journal (Refereed)
    Abstract [en]

    A search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons (e or μ), or at least three isolated leptons, is presented. The analysis relies on the identification of b-jets and high missing transverse momentum to achieve good sensitivity. A data sample of proton-proton collisions at √s=13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to a total integrated luminosity of 36.1 fb−1, is used for the search. No significant excess over the Standard Model prediction is observed. The results are interpreted in several simplified supersymmetric models featuring R-parity conservation or R-parity violation, extending the exclusion limits from previous searches. In models considering gluino pair production, gluino masses are excluded up to 1.87 TeV at 95% confidence level. When bottom squarks are pair-produced and decay to a chargino and a top quark, models with bottom squark masses below 700 GeV and light neutralinos are excluded at 95% confidence level. In addition, model-independent limits are set on a possible contribution of new phenomena to the signal region yields.

  • 6.
    Aaboud, M.
    et al.
    Université Mohamed Premier, Faculté des Sciences; LPTPM, Oujda.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Maddocks, H.J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander K
    DESY, Hamburg and Zeuthen.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva.
    Studies of Z gamma production in association with a high-mass dijet system in pp collisions at root s=8 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 107Article in journal (Refereed)
    Abstract [en]

    The production of a Z boson and a photon in association with a high-mass dijet system is studied using 20.2 fb(-1) of proton-proton collision data at a centre-of-mass energy of root s = 8TeV recorded with the ATLAS detector in 2012 at the Large Hadron Collider. Final states with a photon and a Z boson decaying into a pair of either electrons, muons, or neutrinos are analysed. Electroweak and total pp -> Z gamma jj cross-sections are extracted in two fiducial regions with different sensitivities to electroweak production processes. Quartic couplings of vector bosons are studied in regions of phase space with an enhanced contribution from pure electroweak production, sensitive to vector-boson scattering processes VV -> Z gamma. No deviations from Standard Model predictions are observed and constraints are placed on anomalous couplings parameterized by higher-dimensional operators using effective field theory.

  • 7. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of inclusive and differential cross sections in the H -> ZZ* -> 4l decay channel in pp collisions at root s=13 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, article id 132Article in journal (Refereed)
    Abstract [en]

    Inclusive and differential fiducial cross sections of Higgs boson production in proton-proton collisions are measured in the H -> Z Z* -> 4l decay channel. The proton-proton collision data were produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb(-1). The inclusive fiducial cross section in the H -> Z Z* -> 4l decay channel is measured to be 3.62 +/- 0.50 (stat) (+0.25)(-0.20) (sys) fb, in agreement with the Standard Model prediction of 2.91 +/- 0.13 fb. The cross section is also extrapolated to the total phase space including all Standard Model Higgs boson decays. Several differential fiducial cross sections are measured for observables sensitive to the Higgs boson production and decay, including kinematic distributions of jets produced in association with the Higgs boson. Good agreement is found between data and Standard Model predictions. The results are used to put constraints on anomalous Higgs boson interactions with Standard Model particles, using the pseudo-observable extension to the kappa-framework.

  • 8. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for top quark decays t -> qH,with H -> gamma gamma, in root s=13 TeV pp collisions using the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 10, article id 129Article in journal (Refereed)
    Abstract [en]

    This article presents a search for flavour-changing neutral currents in the decay of a top quark into an up-type (q = c; u) quark and a Higgs boson, where the Higgs boson decays into two photons. The proton-proton collision data set analysed amounts to 36.1 fb(-1) at root s = 13TeV collected by the ATLAS experiment at the LHC. Top quark pair events are searched for, where one top quark decays into qH and the other decays into bW. Both the hadronic and leptonic decay modes of the W boson are used. No significant excess is observed and an upper limit is set on the t -> cH branching ratio of 2 : 2 x 10(-3) at the 95% confidence level, while the expected limit in the absence of signal is 1 : 6 x 10(-3). The corresponding limit on the tcH coupling is 0.090 at the 95% confidence level. The observed upper limit on the t -> uH branching ratio is 2 : 4 x 10(-3).

  • 9. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, M.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, M.U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, P.H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of WW/WZ -> lvqq ' production with the hadronically decaying boson reconstructed as one or two jets in pp collisions at root s=8 TeV with ATLAS, and constraints on anomalous gauge couplings2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 8, article id 563Article in journal (Refereed)
    Abstract [en]

    This paper presents a study of the production of WW or WZ boson pairs, with one W boson decaying to ev or mu v and one W or Z boson decaying hadronically. The analysis uses 20.2 fb(-1) of root s = 8 TeV pp collision data, collected by the ATLAS detector at the Large Hadron Collider. Crosssections for WW/WZ production are measured in high-p(T) fiducial regions defined close to the experimental event selection. The cross-section is measured for the case where the hadronically decaying boson is reconstructed as two resolved jets, and the case where it is reconstructed as a single jet. The transverse momentum distribution of the hadronically decaying boson is used to search for new physics. Observations are consistent with the Standard Model predictions, and 95% confidence intervals are calculated for parameters describing anomalous triple gauge-boson couplings.

  • 10. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, M.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, M.U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, P.H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for the Dimuon Decay of the Higgs Boson in pp Collisions at root s=13 TeV with the ATLAS Detector2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 5, article id 051802Article in journal (Refereed)
    Abstract [en]

    A search for the dimuon decay of the Higgs boson was performed using data corresponding to an integrated luminosity of 36.1 fb(-1) collected with the ATLAS detector in pp collisions at root s = 13 TeV at the Large Hadron Collider. No significant excess is observed above the expected background. The observed (expected) upper limit on the cross section times branching ratio is 3.0 (3.1) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125 GeV. When combined with the pp collision data at root s = 7 TeV and root s = 8 TeV, the observed (expected) upper limit is 2.8 (2.9) times the Standard Model prediction.

  • 11.
    Aaboud, M.
    et al.
    Université Mohamed Premier, Faculté des Sciences; LPTPM, Oujda.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    University of Belgrade, Institute of Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Université Grenoble-Alpes, Laboratoire de Physique Subatomique et de Cosmologie.
    Maddocks, H.J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander K
    DESY, Hamburg and Zeuthen.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    University of Washington, Department of Physics.
    Zwalinski, L.
    CERN, Geneva.
    Measurement of top quark pair differential cross sections in the dilepton channel in pp collisions at √s=7 and 8 TeV with ATLAS2016In: PHYSICAL REVIEW D, ISSN 2470-0010, Vol. 94, no 9, article id 092003Article in journal (Refereed)
    Abstract [en]

    Measurements of normalized differential cross sections of top quark pair (t¯t) production are presented as a function of the mass, the transverse momentum and the rapidity of the t¯t system in proton-proton collisions at center-of-mass energies of √s=7 and 8 TeV. The data set corresponds to an integrated luminosity of 4.6  fb−1 at 7 TeV and 20.2  fb−1 at 8 TeV, recorded with the ATLAS detector at the Large Hadron Collider. Events with top quark pair signatures are selected in the dilepton final state, requiring exactly two charged leptons and at least two jets with at least one of the jets identified as likely to contain a b hadron. The measured distributions are corrected for detector effects and selection efficiency to cross sections at the parton level. The differential cross sections are compared with different Monte Carlo generators and theoretical calculations of t¯t production. The results are consistent with the majority of predictions in a wide kinematic range.

  • 12. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander K
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC2017In: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 13, no 9, p. 852-858Article in journal (Refereed)
    Abstract [en]

    Light-by-light scattering (gamma gamma -> gamma gamma) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead ions. Using 480 mu b(-1) of lead-lead collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, here we report evidence for light-by-light scattering. A total of 13 candidate events were observed with an expected background of 2.6 +/- 0.7 events. After background subtraction and analysis corrections, the fiducial cross-section of the process Pb + Pb (gamma gamma) -> Pb-(center dot) + Pb-(center dot) gamma gamma, for photon transverse energy E-T > 3 GeV, photon absolute pseudorapidity vertical bar eta vertical bar < 2.4, diphoton invariant mass greater than 6 GeV, diphoton transverse momentum lower than 2 GeV and diphoton acoplanarity below 0.01, is measured to be 70 +/- 24 (stat.) +/- 17 (syst.) nb, which is in agreement with the standard model predictions.

  • 13. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of jet fragmentation in Pb plus Pb and pp collisions at root s(NN)=2.76 TeV with the ATLAS detector at the LHC2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 6, article id 379Article in journal (Refereed)
    Abstract [en]

    The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb(-1) of Pb+Pb data and 4.0 pb(-1) of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluate the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. No significant dependence of modifications on jet p(T) and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.

  • 14. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of lepton differential distributions and the topquark mass in tt¯ production in pp collisions at √s = 8TeV with the ATLAS detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, article id 804Article in journal (Refereed)
    Abstract [en]

    This paper presents single lepton and dilepton kinematic distributions measured in dileptonic tt¯ events produced in 20.2fb−1 of s√=8 TeV pp collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge eμ pair and one or two b-tagged jets. The cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of mpolet=173.2±0.9±0.8±1.2 GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.

  • 15. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of multi-particle azimuthal correlations in pp, p plus Pb and low-multiplicity Pb plus Pb collisions with the ATLAS detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 6, article id 428Article in journal (Refereed)
    Abstract [en]

    Multi-particle cumulants and corresponding Fourier harmonics are measured for azimuthal angle distributions of charged particles in pp collisions at root S = 5.02 and 13 TeV and in p + Pb collisions at root S-NN = 5.02 TeV, and compared to the results obtained for low-multiplicity Pb + Pb collisions at root S-NN = 2.76 TeV. These measurements aim to assess the collective nature of particle production. The measurements of multi-particle cumulants confirm the evidence for collective phenomena in p + Pb and low-multiplicity Pb + Pb collisions. On the other hand, the pp results for four-particle cumulants do not demonstrate collective behaviour, indicating that they may be biased by contributions from non-flow correlations. A comparison of multi-particle cumulants and derived Fourier harmonics across different collision systems is presented as a function of the charged-particle multiplicity. For a given multiplicity, the measured Fourier harmonics are largest in Pb + Pb, smaller in p + Pb and smallest in pp collisions. The pp results show no dependence on the collision energy, nor on the multiplicity.

  • 16. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Dark Matter Produced in Association with a Higgs Boson Decaying to b¯b Using 36  fb−1 of pp Collisions at √s=13  TeV with the ATLAS Detector2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 18, article id 181804Article in journal (Refereed)
    Abstract [en]

    Several extensions of the standard model predict associated production of dark-matter particles with a Higgs boson. Such processes are searched for in final states with missing transverse momentum and a Higgs boson decaying to a b¯b pair with the ATLAS detector using 36.1  fb−1 of pp collisions at a center-of-mass energy of 13 TeV at the LHC. The observed data are in agreement with the standard model predictions and limits are placed on the associated production of dark-matter particles and a Higgs boson.

  • 17. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Heavy Higgs Bosons A/H Decaying to a Top Quark Pair in pp Collisions at root s=8 TeV with the ATLAS Detector2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 19, article id 191803Article in journal (Refereed)
    Abstract [en]

    A search for heavy pseudoscalar (A) and scalar (H) Higgs bosons decaying into a top quark pair (t (t) over bar) has been performed with 20.3 fb(-1) of proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider at a center-of-mass energy root s = 8 TeV. Interference effects between the signal process and standard model t (t) over bar production, which are expected to distort the signal shape from a single peak to a peak-dip structure, are taken into account. No significant deviation from the standard model prediction is observed in the t (t) over bar invariant mass spectrum in final states with an electron or muon, large missing transverse momentum, and at least four jets. The results are interpreted within the context of a type-II two-Higgs-doublet model. Exclusion limits on the signal strength are derived as a function of the mass m(A/H) and the ratio of the vacuum expectation values of the two Higgs fields, tan beta, for m(A/H) > 500 GeV.

  • 18. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for new high-mass phenomena in the dilepton final state using 36 fb−1 of proton-proton collision data at √s=13 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 10, article id 182Article in journal (Refereed)
    Abstract [en]

    A search is conducted for new resonant and non-resonant high-mass phenomena in dielectron and dimuon final states. The search uses 36.1 fb−1 of proton-proton collision data, collected at s=13" role="presentation">s√=13 TeV by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the Standard Model prediction is observed. Upper limits at 95% credibility level are set on the cross-section times branching ratio for resonances decaying into dileptons, which are converted to lower limits on the resonance mass, up to 4.1 TeV for the E6-motivated Z χ . Lower limits on the qqℓℓ contact interaction scale are set between 2.4 TeV and 40 TeV, depending on the model.

  • 19. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Scien