uu.seUppsala University Publications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Garlisi, Corrado
    et al.
    Khalifa Univ Sci & Technol, Dept Chem Engn, Masdar Inst, POB 54224, Abu Dhabi, U Arab Emirates..
    Szlachetko, Jakub
    Jan Kochanowski Univ Humanities & Sci, Inst Phys, Kielce, Poland.;Polish Acad Sci, Inst Phys Chem, Warsaw, Poland..
    Aubry, Cyril
    Khalifa Univ Sci & Technol, Dept Mech Engn, Masdar Inst, POB 54224, Abu Dhabi, U Arab Emirates..
    Fernandes, Daniel L. A.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Hattori, Yocefu
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Paun, Cristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Pavliuk, Mariia V.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Rajput, Nitul S.
    Khalifa Univ Sci & Technol, Dept Mech Engn, Masdar Inst, POB 54224, Abu Dhabi, U Arab Emirates..
    Lewin, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Sá, Jacinto
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Polish Acad Sci, Inst Phys Chem, Warsaw, Poland.
    Palmisano, Giovanni
    Khalifa Univ Sci & Technol, Dept Chem Engn, Masdar Inst, POB 54224, Abu Dhabi, U Arab Emirates..
    N-TiO2/Cu-TiO2 double-layer films: Impact of stacking order on photocatalytic properties2017In: Journal of Catalysis, ISSN 0021-9517, E-ISSN 1090-2694, Vol. 353, p. 116-122Article in journal (Refereed)
    Abstract [en]

    In this work, we report for the first time a unique configuration of N-doped and Cu-doped TiO2 bilayer. The activity of TiO2 was improved by combining Cu- and N-doping in a layered thin-film structure. The impact of the stacking order was studied, pointing out how the best arrangement is by far the one with Cu-TiO2 as the top layer. The results reveal a unique and simple way to enhance the photocatalytic response of TiO2 in the visible domain.

  • 2.
    Hattori, Yocefu
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Abdellah, Mohamed
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. South Valley Univ, Qena Fac Sci, Dept Chem, Qena 83523, Egypt.
    Meng, Jie
    Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark.
    Zheng, Kaibo
    Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark;Lund Univ, Chem Phys & NanoLund, Box 124, S-22100 Lund, Sweden.
    Sá, Jacinto
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland.
    Simultaneous Hot Electron and Hole Injection upon Excitation of Gold Surface Plasmon2019In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 10, no 11, p. 3140-3146Article in journal (Refereed)
    Abstract [en]

    We have successfully investigated the simultaneous injection of hot electrons and holes upon excitation of gold localized surface plasmon resonance (LSPR). The studies were performed on all-solid-state plasmonic system composed of titanium dioxide (TiO2)/poly(3,4-ethylenedioxythiophene) :poly(styrenesulfonic acid) (PEDOT:PSS) p-n junctions with gold nanoparticles (Au NPs). The study revealed that both charge carriers are transferred within 200 fs to the respective charge acceptors, exhibiting a free carrier transport behavior. We also confirmed that the transfer of charge carriers are accompanied by change in the initial relaxation dynamics of Au NPs.

  • 3.
    Hattori, Yocefu
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Abdellah, Mohamed
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. South Valley Univ, Qena Fac Sci, Dept Chem, Qena 83523, Egypt.
    Rocha, Igor
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Pavliuk, Mariia V.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Fernandes, Daniel L. A.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Sá, Jacinto
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland.
    Light-induced ultrafast proton-coupled electron transfer responsible for H-2 evolution on silver plasmonics2018In: Materials Today, ISSN 1369-7021, E-ISSN 1873-4103, Vol. 21, no 6, p. 590-593Article in journal (Refereed)
    Abstract [en]

    Light-driven proton-coupled electron transfer (PCET) reactions on nanoplasmonics would bring temporal control of their reactive pathways, in particular, prolong their charge separation state. Using a silver nano-hybrid plasmonic structure, we observed that optical excitation of Ag-localized surface plasmon instigated electron injection into TiO2 conduction band and oxidation of isopropanol alcoholic functionality. Femtosecond transient infrared absorption studies show that electron transfer from Ag to TiO2 occurs in ca. 650 fs, while IPA molecules near the Ag surface undergo an ultrafast bidirectional PCET step within 400 fs. Our work demonstrates that ultrafast PCET reaction plays a determinant role in prolonging charge separation state, providing an innovative strategy for visible-light photocatalysis with plasmonic nanostructures.

  • 4.
    Pavliuk, Mariia V.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Alvarez, Sol Gutierrez
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Hattori, Yocefu
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Messing, Maria E.
    Lund Univ, Solid State Phys & NanoLund, Box 118, S-22100 Lund, Sweden.
    Czapla-Masztafiak, Joanna
    Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland.
    Szlachetko, Jakub
    Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland;Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland.
    Silva, Jose Luis
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Araujo, Carlos Moyses
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Fernandes, Daniel L. A.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Lu, Li
    Kiely, Christopher J.
    Lehigh Univ, Dept Mat Sci & Engn, 5 East Packer Ave, Bethlehem, PA 18015 USA.
    Abdellah, Mohamed
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. South Valley Univ, Qena Fac Sci, Dept Chem, Qena 83523, Egypt.
    Nordlander, Peter
    Rice Univ, Dept Phys, 6100 South Main St, Houston, TX 77251 USA.
    Sá, Jacinto
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland.
    Hydrated Electron Generation by Excitation of Copper Localized Surface Plasmon Resonance2019In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 10, no 8, p. 1743-1749Article in journal (Refereed)
    Abstract [en]

    Hydrated electrons are important in radiation chemistry and charge transfer reactions, with applications that include chemical damage of DNA, catalysis, and signaling. Conventionally, hydrated electrons are produced by pulsed radiolysis, sonolysis, two-ultraviolet-photon laser excitation of liquid water, or photodetachment of suitable electron donors. Here we report a method for the generation of hydrated electrons via single-visible-photon excitation of localized surface plasmon resonances (LSPRs) of supported sub-3 nm copper nanoparticles in contact with water. Only excitations at the LSPR maximum resulted in the formation of hydrated electrons, suggesting that plasmon excitation plays a crucial role in promoting electron transfer from the nanoparticle into the solution. The reactivity of the hydrated electrons was confirmed via proton reduction and concomitant H-2 evolution in the presence of a Ru/TiO2 catalyst.

  • 5.
    Pavliuk, Mariia V.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Fernandes, Arthur B.
    Univ Sao Paulo, Inst Chem, Dept Fundamental Chem, BR-05508000 Sao Paulo, Brazil.
    Abdellah, Mohamed
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström. South Valley Univ, Qena Fac Sci, Dept Chem, Qena 83523, Egypt.
    Fernandes, Daniel L. A.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Machado, Caroline O.
    Univ Sao Paulo, Inst Chem, Dept Fundamental Chem, BR-05508000 Sao Paulo, Brazil.
    Rocha, Igor
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Hattori, Yocefu
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Paun, Cristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Bastos, Erick L.
    Univ Sao Paulo, Inst Chem, Dept Fundamental Chem, BR-05508000 Sao Paulo, Brazil.
    Sá, Jacinto
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland.
    Nano-hybrid plasmonic photocatalyst for hydrogen production at 20% efficiency2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 8670Article in journal (Refereed)
    Abstract [en]

    The efficient conversion of light energy into chemical energy is key for sustainable human development. Several photocatalytic systems based on photovoltaic electrolysis have been used to produce hydrogen via water reduction. However, in such devices, light harvesting and proton reduction are carried separately, showing quantum efficiency of about 10–12%. Here, we report a nano-hybrid photocatalytic assembly that enables concomitant reductive hydrogen production and pollutant oxidation with solar-to-fuel efficiencies up to 20%. The modular architecture of this plasmonic material allows the fine-tuning of its photocatalytic properties by simple manipulation of a reduced number of basic components.

  • 6.
    Pavliuk, Mariia V.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Gutiérrez Álvarez, Sol
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Hattori, Yocefu
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Messing, Maria E.
    Czapla-Masztafiak, J.
    Szlachetko, J.
    Silva, Jose Luis
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Araujo, Carlos Moyses
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Fernandes, Daniel L. A.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Lu, L.
    Kiely, C.J.
    Abdellah, Mohamed
    Nordlander, Peter
    Sá, Jacinto
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Hydrated Electron Generation by Excitation of Localized Surface Plasmons in Copper NanoparticlesIn: Science Advances, E-ISSN 2375-2548Article in journal (Refereed)
  • 7.
    Rocha, Igor
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. CAPES Foundation, Ministry of Education of Brazil, Brasília DF 70040-020, Brazil.
    Hattori, Yocefu
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Mirna, Diniz
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Mihranyan, Albert
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Lindh, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Spectroscopic and physicochemical characterization of sulfonated Cladophora cellulose beads2018In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 34, no 37, p. 11121-11125Article in journal (Refereed)
    Abstract [en]

    The work presents a full physicochemical characterization of sulfonated cellulose beads prepared from Cladophora nanocellulose intended for use in biological systems. 2,3-Dialdehyde cellulose (DAC) beads were sulfonated, and transformation of up to 50% of the aldehyde groups was achieved, resulting in highly charged and porous materials compared to the compact surface of the DAC beads. The porosity could be tailored by adjusting the degree of sulfonation, and a subsequent reduction of the aldehyde groups to hydroxyl groups maintained the bead structure without considerable alteration of the surface properties. The thermal stability of the DAC beads was significantly increased with the sulfonation and reduction reactions. Raman spectroscopy also showed to be a useful technique for the characterization of sulfonated cellulose materials.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf