uu.seUppsala University Publications
Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hast, Anders
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Cullhed, Per
    Uppsala University, University Library.
    Vats, Ekta
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Abrate, Matteo
    Making large collections of handwritten material easily accessible and searchable2019In: Digital Libraries: Supporting Open Science, Springer, 2019, p. 18-28Conference paper (Refereed)
  • 2.
    Hast, Anders
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Lind, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Vats, Ekta
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Embedded Prototype Subspace Classification: A subspace learning framework2019In: Computer Analysis of Images and Patterns, Springer, 2019Conference paper (Refereed)
  • 3.
    Hast, Anders
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Lind, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Vats, Ekta
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Subspace Learning and Classification2019In: Proc. 3rd Swedish Symposium on Deep Learning, 2019Conference paper (Other academic)
  • 4.
    Hast, Anders
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Mårtensson, Lasse
    Vats, Ekta
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Heil, Raphaela
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Creating an Atlas over Handwritten Script Signs2019In: Digital Humanities in the Nordic Countries, 2019Conference paper (Refereed)
  • 5.
    Hast, Anders
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Vats, Ekta
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Radial line Fourier descriptor for historical handwritten text representation2018In: Proc. 26th International Conference on Computer Graphics: Visualization and Computer Vision, 2018Conference paper (Other academic)
    Abstract [en]

    Automatic recognition of historical handwritten manuscripts is a daunting task due to paper degradation over time. Recognition-free retrieval or word spotting is popularly used for information retrieval and digitization of the historical handwritten documents. However, the performance of word spotting algorithms depends heavily on feature detection and representation methods. Although there exist popular feature descriptors such as Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), the invariant properties of these descriptors amplify the noise in the degraded document images, rendering them more sensitive to noise and complex characteristics of historical manuscripts. Therefore, an efficient and relaxed feature descriptor is required as handwritten words across different documents are indeed similar, but not identical. This paper introduces a Radial Line Fourier (RLF) descriptor for handwritten word representation, with a short feature vector of 32 dimensions. A segmentation-free and training-free handwritten word spotting method is studied herein that relies on the proposed RLF descriptor, takes into account different keypoint representations and uses a simple preconditioner-based feature matching algorithm. The effectiveness of the RLF descriptor for segmentation-free handwritten word spotting is empirically evaluated on well-known historical handwritten datasets using standard evaluation measures.

  • 6.
    Heil, Raphaela
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction.
    Vats, Ekta
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Hast, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Exploring the Applicability of Capsule Networks for WordSpotting in Historical Handwritten Manuscripts2018Conference paper (Other academic)
  • 7.
    Heil, Raphaela
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Vats, Ekta
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Hast, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Word Spotting in Historical Handwritten Manuscripts using Capsule Networks2018Conference paper (Other academic)
    Abstract [en]

    Word spotting is popularly used for digitisation and transcription of historical handwritten documents. Recently, deep learning based methods have dominated the current state-of-the-art in learning-based word spotting. However, deep learning architectures such as Convolutional Neural Networks (CNNs) require a large amount of training data, and suffer from translation invariance. Capsule Networks (CapsNet) have been recently introduced as a data-efficient alternative to CNNs. This work explores the applicability of CapsNets for segmentation-based word spotting, and is the first such effort in the Handwritten Text Recognition (HTR) community to the best of authors' knowledge. The effectiveness of CapsNets will be empirically evaluated on well-known historical handwritten datasets using standard evaluation measures. The impact of varying amounts of training data on the recognition performance will be investigated, along with a comparison with the state-of-the-art methods.

  • 8. Mårtensson, Lasse
    et al.
    Vats, Ekta
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Hast, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Fornés, Alicia
    In search of the scribe: Letter spotting as a tool for identifying scribes in large handwritten text corpora2019In: Human IT, ISSN 1402-1501, E-ISSN 1402-151X, Vol. 14, no 2, p. 95-120Article in journal (Refereed)
  • 9.
    Vats, Ekta
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Hast, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    On-the-fly historical handwritten text annotation2017In: Proc. 14th IAPR International Conference on Document Analysis and Recognition, IEEE, 2017, p. 10-14Conference paper (Refereed)
  • 10.
    Vats, Ekta
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Hast, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Fornés, Alicia
    Training-Free and Segmentation-Free Word Spotting using Feature Matching and Query Expansion2019In: Proc. 15th International Conference on Document Analysis and Recognition, 2019Conference paper (Refereed)
  • 11.
    Vats, Ekta
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Hast, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Mårtensson, Lasse
    Extracting script features from a large corpus of handwritten documents2018In: Digital Humanities in the Nordic Countries: Book of Abstracts, 2018Conference paper (Refereed)
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf