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Abstract
Björnson, K. 2016. Topological band theory and Majorana fermions. With focus on self-
consistent lattice models. Digital Comprehensive Summaries of Uppsala Dissertations from
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One of the most central concepts in condensed matter physics is the electronic band structure.
Although band theory was established more than 80 years ago, recent developments have led
to new insights that are formulated in the framework of topological band theory. In this thesis
a subset of topological band theory is presented, with particular focus on topological supercon-
ductors and accompanying Majorana fermions. While simple models are used to introduce basic
concepts, a physically more realistic model is also studied intensely in the papers. Through self-
consistent tight-binding calculations it is confirmed that Majorana fermions appear in vortex
cores and at wire end points when the superconductor is in the topologically non-trivial phase.
Many other properties such as the topological invariant, experimental signatures in the local
density of states and spectral function, unconventional and odd-frequency pairing, the precense
of spin-polarized currents and spin-polarization of the Majorana fermions, and a local π-phase
shift in the order parameter at magnetic impurities are also investigated.
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1. Introduction

The application of topology to physics has a long history, with early roots
in work connected to hydrodynamics and aether theory, through the work of
Helmholtz, Thomson, Maxwell, and Tait [1]. Topology has since then found
applications in fields such as the study of defects in both condensed matter
systems [2, 3] and cosmological models [4], the study of Fermi surfaces in
superfluids [5], and in various applications of topological field theories [6, 7].

With the discovery and subsequent theoretical explanation of the quantum
Hall effect, yet another application of topology entered the stage [8–10]. Quan-
tum Hall systems are especially interesting, because they host quantized edge
currents, so precisely quantized that they among other things have been pro-
posed as a foundation for a resistance standard [11]. As a tool for calculations,
the first Chern (or TKNN) number, which until then had been important in par-
ticle physics [6], became useful also for condensed matter systems. It became
clear that the Chern number, which can be calculated from the samples bulk
properties, is directly related to the number of edge channels [10].

Work generalizing the quantum Hall effect eventually culminated with the
prediction and subsequent experimental discovery of topological insulators
[12–19]. Topological insulators are materials that are insulating in the bulk,
but like the quantum Hall state have robust edge states [20–22]. This eventu-
ally sparked a wave of proposals for the closely related concept of topological
superconductors, which in recent years have attracted a considerable interest
because it is predicted that they host Majorana fermions [23–31].

Majorana fermions are particles that arise as solutions to an alternative rela-
tivistic equation to the ordinary Dirac equation [32]. No fundamental particles
have so far been confirmed to be Majorana fermions, but it is predicted that
quasi-particles formally analogous to their high energy siblings can arise in
superconductors [33]. The Majorana fermions are of interest in themselves for
purely fundamental reasons, but also from a practical point of view. Namely,
Majorana fermions have been proposed as building blocks of so called topo-
logical quantum computers [34].

While early investigations into topological superconductors was based on
highly exotic material properties, recent research have indicated that they can
be engineered from building blocks that are comparatively ubiquitous in na-
ture. In partiular, they can be constructed out of materials or combination of
materials exhibiting s-wave superconductivity, magnetism, and Rashba spin-
orbit interaction. It has been predicted that this kind of setup can hostMajorana
fermions in superconductor vortex cores and on wire end points [25–30, 35–
37]. In this Thesis, which is an extension of an earlier Licentiate Thesis, the
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necessary background in topology, topological band theory, and superconduc-
tivity that is needed to understand these kind of systems is presented in Chapter
2-4. An introduction to topological superconductivity and the system itself is
given in Chapter 5. Further, in Chapter 6-8 some related method development
is outlined, while research results presented in Paper I-VII are summarized in
Chapter 9.
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2. Differential geometry, topology, and fiber
bundles

Traditional phases of matter are classified based on their symmetries and or-
der parameters, using Landau’s theory of phase transitions [38]. In contrast,
topological insulators and superconductors are classified based on topology:
a material can be in a topologically trivial or non-trivial phase [20, 21], but
what does this mean? For the system we are interested in, the short answer is
that it is described by a Hamiltonian that is associated with a non-trivial Chern
number. However, the Chern number is an abstract concept, and the statement
makes little sense without a proper background in the theory of fiber bundles.
In this chapter, we therefore give a short introduction to differential geometry,
topology, and fiber bundles, which leads to the definition of the Chern number
in the form that is useful to us. A thorough treatment is beyond the scope of this
thesis and the aim is therefore not to give a rigorous treatment here. Rather,
the focus is at covering enough material to provide a conceptual understand-
ing of the main ideas, and for additional information we refer to the references
[6, 39–45].

2.1 Differential geometry
2.1.1 Manifold and tangent space
Differential geometry is a topic in mathematics concerned with the description
of manifolds such as for example lines, surfaces, and volumes using calcu-
lus. In particular, Riemannian geometry generalizes the concepts of Euclidean
geometry, allowing for a systematic study of geometries other than the tra-
ditionally flat one. As an example, we consider the sphere. Embedded in
three-dimensional Euclidean space, it can be parametrized as

r =(x, y, z) = (r sin(θ) cos(ϕ), r sin(θ) sin(ϕ), r cos(θ)) . (2.1)

To each point of the sphere, it is further possible to associate a tangent plane,
which is spanned by the vectors

∂r
∂θ

=(r cos(θ) cos(ϕ), r cos(θ) sin(ϕ),−r sin(θ)) , (2.2)

∂r
∂ϕ

=(−r sin(θ) sin(ϕ), r sin(θ) cos(ϕ), 0) . (2.3)
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Figure 2.1. In differential geometry, it is important to consider both the manifold and
its tangent planes. The manifold is the space parametrized by coordinates, in this case
the sphere which is parametrized by the coordinates (θ, ϕ). The tangent spaces are on
the other hand Euclidean spaces that are tangent to the manifold. There is one tangent
space associated with each point of the manifold, and each tangent space is the space
in which tangent vectors based at that point take values.

Two such planes are visualized in Fig. 2.1. Note that this means that we are
not only considering the sphere, but also an infinite number of tangent planes:
one tangent plane for each point on the sphere. This construction is not ex-
plicitly needed in Euclidean geometry, as all tangent planes are parallel1. The
base space and tangent space can therefore be thought of as being the same.
However, in differential geometry it is important to differentiate between the
base space manifold and the tangent spaces. Points in the manifold live in the
base space, while vectors live in that particular tangent space that is attached
to the manifold at the point where the vector has its base. The manifold can
in general have any dimension and shape, but the tangent spaces are always
Euclidean spaces with the same number of dimensions as the manifold.

2.1.2 Metric and connection
In Euclidean geometry, it is possible to move from one point in the manifold
to another along a vector. Since the vectors no longer lie within the manifold
itself in Riemannian geometry, it may seem like this possibility is lost once
more general spaces are considered. However, we note that vectors can be
considered to lie within the manifold as long as they are infinitesimal. The
reason is that the component perpendicular to the manifold goes to zero as
the square of the infinitesimal length, while the parallel component only goes
to zero linearly. It is therefore still possible to move from one point in the
manifold to another following tangent vectors, as long as we take a series of

1 Think for example of a two-dimensional plane, all tangent vectors lie inside that same plane.
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infinitesimal steps along the surface. Each step moves us to a nearby point, at
which a new tangent vector in the tangent space attached to that point leads us
on to the next point. It is in fact even possible to follow a vector that is not
infinitesimal. To do so we just need to take infinitesimal steps, carrying the
arrow with us, at each step recalibrating the arrow, so that it moves into the
tangent space at the new point at which we currently stand.

For a clarifying analogy, imagine a sign here on Earth pointing to a city
500 km away. If taken literally, this arrow points into the stratosphere, as the
earth curves away under our feet. However, we may carry the arrow with us,
walking in its direction and making sure that we do not twist the arrow in the
plane of the ground, but tiliting it to make it always stay horisontal. 500km
later we would reach the city. This movement and recalibration of the arrow
corresponds to moving the tangent vector from one tangent space into another.
It is an example of what is called parallel transport, a concept that we will come
back to shortly.

We have seen that we can move from one point to another in the manifold
by following infinitesimal tangent vectors. It is therefore clear that the length
of these vectors are of interest to us, if we want to measure distances in the
manifold. Therefore consider an infinitesimal vector at some coordinate (θ, ϕ),
which is associated with a change (dθ, dϕ) in the coordinates on the sphere2

dx =r (cos(θ) cos(ϕ)dθ − sin(θ) sin(ϕ)dϕ) , (2.4)
dy =r (cos(θ) sin(ϕ)dθ + sin(θ) cos(ϕ)dϕ) , (2.5)
dz =− r sin(θ)dθ. (2.6)

The length of this vector is given by√
dx2 + dy2 + dz2 =

√
gθθdθ2 + (gθϕ + gϕθ) dθdϕ+ gϕϕdϕ2, (2.7)

where gθθ = r2, gθϕ = gϕθ = 0 and gϕϕ = r2 sin2(θ), and gµν is known as a
metric tensor. The purpose of the metric tensor is to enable us to write down
quadratic forms in the manifold coordinates, which allows us to calculate the
square of (infinitesimal) distances on the manifold. This is a generalization
of how the Pythagorean theorem allows us to write down a quadratic form for
the square of the Cartesian coordinates in Euclidean geometry. In fact, when
using Cartesian coordinates to describe the Euclidean plane, the metric tensor
is given by g(E)

xx = g
(E)
yy = 1, g

(E)
xy = g

(E)
yx = 0.

The metric tensor is in itself a very important construct in differential geom-
etry, allowing us to measure distances, take scalar products, and many other
things. However, for our purposes there is one property that is of foremost
interest. To explain this we return to the discussion above about parallel trans-
port, where we imagined transporting a vector along a path. As the vector is

2 These are obtained from the total differentials of the form dx = ∂x
∂θ

dθ + ∂x
∂ϕ

dϕ.
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moved, it is continuously re-calibrated, such that it loses the component that is
perpendicular to the surface. Through this process, the vector remains inside
the respective tangent space at each new point along the path. It turns out that
the metric contains enough information to uniquely relate any vector in the tan-
gent space at one point, to the correct tangent vector at a point infinitesimally
close. That is, there exists a construct called a connection, which can be com-
puted from the metric, and which facilitates parallel transport. When given any
tangent vector and a direction in which to move, the connection tells us which
tangent vector corresponds to it in the tangent space at the nearby point. Note
that such a construct takes two vectors and gives back one. The first vector is
the vector that is to be parallel transported, while the second is a vector that
tells us in which direction to transport it. The vector it gives back is that vector
in the nearby tangent space, which according to the choice of connection is
parallel to the original vector. When the manifold is embedded in a higher di-
mensional manifold, such as for the sphere embedded in the three-dimensional
Euclidean space, the tangent vector obtained through the connection coincides
with the tangent vector obtained by ”move-and-tilt”. However, the connec-
tion eliminates the requirement of an embedding manifold, and allows for the
concept of parallel transport to be generalized further.

Technically, the connection is in fact only almost what was described above.
It turns out that it is useful to divide the object described above into two com-
ponents, the identity and the connection. The identity will simply transform
a vector with components (x, y) at (θ, ϕ) to the vector with the same compo-
nents at the nearby point. What the connection does is to provide a correction
that takes into account that the underlying coordinate system is not necessarily
built up of parallel lines. In general, when the connection is constructed from
a particular metric, it is known as a Levi-Civita connection, and is given by3
[6, 46]

Γλµν =
1

2
gλρ (∂νgρµ + ∂µgρν − ∂ρgµν) . (2.8)

Here the Einstein convention is assumed, where summation over indices ap-
pearing both in the super- and subscripts is implied. Just like the metric can
be taken as the starting point for a geometry, without the requirement of an
embedding space, it is also possible to take the connection itself as a starting
point for a geometry. A geometry therefore does not necessarily have to have
a metric as long as a connection is given, something that will be used to gener-
alize the geometrical concept from Riemannian geometry to fiber bundles later
in this chapter.

A simple way to understand why parallel transport may imply the change in
vector components follows from imagining the ordinary Euclidean plane with
polar coordinates (r, θ). Consider the two long blue arrows based at (3, 0) and
3 Strictly speaking, the Levi-Cevita connection in fact only follows as the unique choice of
connection once metricity and zero torsion is assumed [6].
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r̂

θ̂

(2,0)

(0,-2)

r̂

θ̂

Figure 2.2. Two parallel vectors (long blue arrows) based at the points (3, 0) and (3, π2 )
in polar coordinates (r, θ). Although the two vectors are parallel, their components
differ, because the tangent spaces (short red vectors) at the two points are rotated by
π
2 relative to each other. The components of the two vectors are (2, 0)T and (0,−2)T ,
respectively, where subscript T means that the coordinates are in the tangent spaces,
as opposed to the manifold coordinates (r, θ).

(3, π2 ) in Fig. 2.2. Although the two vectors are parallel, they do not have the
same coordinates in the tangent spaces spanned by r̂ and θ̂, because the two
tangent planes are rotated by π/2 relative to each other. The tangent space
coordinates therefore clearly have to change under parallel transport.

We can now formulate what is known as a covariant derivative

IλνDµ =Iλν∂µ + Γλµν , (2.9)

where Iλν is the identity matrix. Imagine applying this to a vector field of par-
allel vectors, in the sense of parallel transport just defined. We see that the first
partial derivative may give a finite contribution, due to parallel vectors having
different coordinates at different points on the manifold. What the connection
does is to correct for this contribution, making the covariant derivative zero for
parallel vectors. The covariant derivative is therefore in a sense closer to our
usual notion of derivative than the partial derivative. If we consider what we
call parallel vectors to be equal to each other, the covariant derivative preserves
the notion that the derivative is zero whenever things do not change.

2.1.3 Curvature
Having understood the connection, we nowmove on to describe another closely
related construct; the curvature. First consider parallel transport on the two
surfaces in Fig. 2.3. In both cases a vector is moved along a path that finally
returns the vector to its original position. For the parabolic plane, which is bent
but not curved according to the terminology of differential geometry, the vec-
tor returns parallel to the original vector. However, when the vector is carried

21



Figure 2.3. Parallel transport of a vector on a sphere and a parabolic plane. The
sphere is curved, and the vector is therefore rotated as it is transported along the path.
In contrast, the parabolic plane is only bent, not curved, and the vector always point in
the same direction when it is returned to its original position. Note in particular, that
for the sphere the vector has to be continuously re-calibrated when it is transported
along the equator, in order to remain a tangent vector to the sphere.

along the path on the sphere, which is curved, the vector returns at an angle
to its original direction. We emphasize that the parabolic plane is possible to
arrive at by simply bending a plane, while the surface of the sphere only can
be formed from a plane by stretching and compressing it. The parabolic plane
is therefore intrinsically equivalent to the Euclidean plane, it is only embedded
differently in three-dimensional space. In contrast, the sphere is intrinsically
different from a Euclidean plane and its metric appears deformed when com-
pared to the Euclidean plane. As defined in differential geometry, curvature
therefore has to do with the non-preservation of direction of a vector when it
is parallel transported around a closed path.

If we now restrict ourselves to an infinitesimal loop, we can derive an ex-
pression for how much the vector changes as it is transported around it. For
simplicity we restrict ourselves to loops in the planes spanned by the basis vec-
tors. In particular, we chose arbitrary basis indices µ and ν and denote these
with square brackets [µ] and [ν] to indicate that these corresponds to specific
directions rather than indices to be summed over. In Fig. 2.4, such a loop is
depicted. To the first order in δ[ν] = |dx[ν]|, where dx[ν] is the infinitesimal
vector along ν, the change in connection between nearby paths is given by
Γλ[µ]ρ(x+ dx[ν]) = Γλ[µ]ρ(x) + δ[ν]∂[ν]Γ

λ
[µ]ρ(x).

4 Further, we define

T λ[±µ]ρ(x) = Iλρ ∓ δ[µ]Γ
λ
[µ]ρ(x), (2.10)

where Iλρ is the identity. It is clear that T λ[±µ]ρ(x) facilitates parallel transport
from x to x ± dx[µ]. The same construction applies also for µ ↔ ν. The
parallel transport of a vector around the loop displayed in Fig. 2.4 requires

4 Note that no summation is implied for the index ν, which appear twice in the subscripts. The
same is true for all indices that appear twice in the subscripts in this section.
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μ

ν

Γ μ
λ
ρ(x)

Γλ ρ(x+dx )

Γ μ
λ
ρ(x+dx )

Γλ ρ(x) νν
μ

ν

δ

δ

ν

μ

Figure 2.4. Parallel transport around a closed loop of side lengths δµ and δν . Along
each of the four paths, the parallel transport is determined by the connection along that
path. When a vector is parallel transported back and forth along a single path, the end
result is the same as the initial vector. However, when the vector is parallel transported
along a loop, the returning vector can have a different direction. If this is the case, we
call the contained area element curved.

four successive translations, which now can be written as

T λ[−µ]σ1
(x)T σ1

[−ν]σ2
(x+ dx[µ])T

σ2

[+µ]σ3
(x+ dx[ν])T

σ3

[+ν]ρ(x), (2.11)

Expanding to first order in δ[µ] and δ[ν], and subtracting the identity, we find
that the change in the vector is given by the area element δ[µ]δ[ν] multiplied by
the Riemann curvature tensor5[6, 42]

Rλρµν =∂µΓ
λ
νρ − ∂νΓ

λ
µρ + ΓλµσΓ

σ
νρ − ΓλνσΓ

σ
µρ. (2.12)

The form of the Riemann curvature tensor can now be understood in the follow-
ing way. To form a loop, two vectors that specify the plane in which the loop
exists are needed, and these two vectors act on the µ and ν indices. Further, a
vector to parallel transport is needed, which requires a third index ρ. Finally,
the curvature, just like the connection, returns the change in coordinates of the
returning vector, which is indexed by λ.

To arrive at the change of a vector for any finite loop, it is now in line with
Stokes theorem possible to divide a surface element terminated by a loop into
infinitesimal surface elements. The total change is then obtained by integrating
over all these individual loops. This hints at why the integral over a curvature
will turn out to be of interest next.
5 We have here dropped the square brackets on the µ and ν indices because we initially allowed
these to correspondt to arbitrarily chosen basis vectors. However, we note that strictly speaking
we have here only shown that the Riemann curvature tensor is relevant for closed loops inside
the planes spanned by the basis vectors, while more generally it is in fact the relevant quantity
for any loop.
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2.1.4 Gaussian curvature
We finallymention theGaussian curvature by noting that in the two-dimensional
case the two vectors that specify the plane in which the parallel transport is car-
ried out are superfluous. It can be shown that in two dimensions it is enough
to parametrize the curvature by a single scalar, and that the Riemann curvature
tensor can be written as [39]

Rρσµν =Ggρλ (gλµgνσ − gλνgµσ) , (2.13)

where

G =
1

2
gσνRρσρν . (2.14)

G is called the Gaussian curvature, and when integrated over the whole surface
of a sphere, it turns out that the result is [43]∫

GdS = 4π. (2.15)

Moreover, the right hand side of the integral remains unchanged under any
continuous deformation of the sphere’s shape [43]. This will turn out to be a
property of interest to us in the next section on topology.

2.2 Topology
2.2.1 Continuous deformations and topological equivalence

classes
Topology is a field of mathematics concerned with the classification of objects
into classes, such that objects are considered equivalent if they can be contin-
uously deformed into each other [45]. The standard example is the coffee cup
and the donut. Although these two objects at first may look very different,
they can be continuously deformed into each other, as is indicated in Fig 2.5.
In contrast, the bun has a different topology than the donut and coffee cup.
Only after cutting a hole in the bun, which is a discontinuous process, can the
bun be continuously deformed into the other objects. All donuts, coffee cups,
and other objects that can be continuously deformed into each other are said
to belong to the same equivalence class. In topology we are only interested in
these equivalence classes, rather than the objects themselves.

2.2.2 Topological invariant
From a topological point of view, there are only two different objects in Fig.
2.5: the object with a hole, and the object without a hole. It is in fact the
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Figure 2.5. A coffee cup, a pink and a brown donut can all be continuously deformed
into each other and are therefore topologically equivalent. This stands in contrast to
the bun, which only becomes topologically equivalent to the others once a hole is cut
in it.

case that all three-dimensional objects with a single hole can be continuously
deformed into a coffee cup or a donut. In the same way all objects without
a hole can be continuously deformed into the bun. These are special cases of
a more general statement that any object6 with N holes can be continuously
deformed into any other object withN holes [47]. What we have encountered
is an example of a topological invariant: a quantity that stays the same under
continuous deformations and which can only change when we do something
as drastic as cutting a hole in the bun.

2.2.3 Equivalence classes dependent on the embedding space
So far, we have only considered the objects themselves, implicitly assuming
that they are embedded in an ordinary three-dimensional space. However, in
general the topological classes will not only depend on the objects, but also on
the spaces they are embedded in. This is demonstrated in Fig 2.6. The right-
most donut belongs to a different equivalence class, because it is threaded by
a string, which prevents it from being continuously deformed into the other
two. We can in this case think of the embedding space as consisting of ordi-
nary three-dimensional space minus the points along the string. The number of
holes is in this case still a topological invariant, as it stays the same under con-
tinuous deformations of the objects, and two objects that belong to the same
class still necessarily have the same invariant. However, it is no longer guar-

6 We here implicitly assume objects with a boundaryless connected and orientable surface.
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Figure 2.6. Although all three donuts give rise to the same topological invariant (num-
ber of holes), the rightmost donut belongs to a different equivalence class, because the
thread prevents it from being continuously deformed into any of the other two donuts.

anteed that two objects with the same topological invariant belong to the same
equivalence class. This is a general feature of topological invariants, they are
often necessary but not sufficient indicators of two objects’ topological equiv-
alence [42].

2.2.4 Topological invariant as an integral over a curvature
Having understood what a topological invariant is, we consider a second ex-
ample. In the previous section on differential geometry, we mentioned that the
integral of the Gaussian curvature over the sphere remained invariant under
continuous deformations of the sphere. In fact, it turns out that for any surface
without borders, the integral is related to the number of holes h through the
Euler characteristic [43]

χ =
1

2π

∫
GdS =(2− 2h) . (2.16)

This expression is useful, because it allows us to calculate the topological in-
variant, without having to rely on our ability to identify the number of holes
from inspection.

Although it may seem simpler to count holes in a two-dimensional surface,
the integral expression demonstrates a more generally applicable way of defin-
ing topological invariants. In this case, we calculate the topological invariant
by taking the integral of the Gaussian curvature over the surface. In general it is
common for a topological invariant to be calculated as an integral of some cur-
vature over some manifold. This is part of a more general framework, where a
topological index, which is a special type of topological invariant, is related to
an integral over a characteristic class. The characteristic class is in turn derived
from a curvature [6]. In this case the index is the Euler characteristic, while
the characteristic class is the Gaussian curvature. In the same sense, what will
be of interest to us is another topological index, the first Chern number and
its relation to the first Chern class. The first Chern class will turn out to be
directly related to a curvature on what is known as a complex fiber bundle and
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integrating this over the manifold we arrive at the first Chern number. How-
ever, before we can continue with a description of the first Chern number, we
need to understand the concept of a fiber bundle.

2.3 Fiber bundles
2.3.1 Base space and fiber
A fiber bundle is a generalization of the differential manifold. In particular, we
remember from Section 2.1 that a tangent space is attached at each point of the
manifold. In the language of fiber bundles, the manifold together with the set
of all tangent spaces form a fiber bundle, with the manifold as base space and
the tangent space as fiber. However, in contrast to the differential manifolds,
where the fiber always is a Euclidean tangent space of the same dimension as
the base manifold, fiber bundles are allowed to have any type of space as fiber.

Although this may sound abstract at first, a few examples can convince us
that we are used to working with many types of fiber bundles in physics. Con-
sider for example the temperature of a surface. The surface can be parametrized
using two coordinates x and y, while the temperature T takes values in a third
dimension. In this case, the base space can be taken to be the two-dimensional
surface, while the fiber is the one-dimensional temperature space. A sec-
ond familiar example is the quantum mechanical wave function. The three-
dimensional space (or four-dimensional space-time) forms the base space, while
the fiber is a one-dimensional complex space. More generally, if the wave
function is anN -component spinor, such as in relativistic quantum mechanics
where N = 4, the fiber instead is a four-dimensional complex vector space.
All of these are examples of fiber bundles, since they share the defining feature
that they consist of a base manifold to which some other space is attached at
each point.

2.3.2 Connections on fiber bundles
In Riemannian geometry, the tangent spaces contain vectors that, among other
things, can point us in directions within the manifold base space. Through a
discussion about the embedding space, this lead us to introduce the metric and
connection between different tangent spaces, or in the language of fiber bun-
dles: connection between nearby fibers. We then learned that the embedding
space is not needed at all. As long as a metric is defined on the manifold, the
connection and curvature follows from the metric.

The situation is different on a fiber bundle. As we know, the fiber is not
necessarily a tangent space, which means that there does not necessarily ex-
ist a metric on the manifold. In fact, when it comes to fiber bundles, we are
often not foremost interested in the base manifold, or distances on that mani-
fold. Instead we are often interested in the behavior of the fibers themselves.
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Consider the case of the temperature of the surface, or the wave function in
the examples above. Even though we may in these cases measure the distance
between points in the surface or space, we are often mainly interested in the
temperature or wave function that takes values in the fibers.

For the reasons just mentioned, we often start with a connection defined on
the manifold, rather than a metric. This connection tells us how to ”parallel
transport” values in the fiber to nearby fibers. This may at first seem like a
strange statement, because what does it mean to parallel transport something
that does not necessarily have a clear geometrical interpretation. Again, a few
examples can help us understand what we mean by parallel transport in this
more general sense. For this purpose the example of the temperature of the
surface is not the most enlightening, as the most likely way we would like to
define parallel transport in this case is too trivial to teach us anything.

As a first example, let us instead consider a one-dimensional manifold that
represents time. At each point of this one-dimensional manifold, we attach a
one-dimensional real fiber, which can be used to indicate the median income
that particular year. This is demonstrated in Fig. 2.7, where a hypothetical
median income has been plotted. Now, it is not particularly useful to directly
compare values from different fibers, because the income one year cannot be
sensibly compared to an income another year, if we do not also know the in-
flation rate in between those two years. To compare two incomes, we have to
transport either of them from one year’s fiber, to the other year’s fiber, along
lines that correctly adjust for inflation. The correct connection, which sensi-
bly determines parallel transport between fibers, should therefore in this case
be determined by the inflation. Here, we have for simplicity assumed a con-
stant inflation rate, and in Fig. 2.7 indicated two possible choices of parallel
transport: one relevant which follows the inflation, and one irrelevant which
preserves the value across fibers.

Continuing with the same example, we note that the most sensible definition
of a constant income is not an income that has the same value in each fiber.
Rather, it is more reasonable to consider an income that follows one of the
exponential lines in Fig. 2.7 to be constant. Let f(t) = I0e

at be a function
that describes an income over the years, with a being the annual percentual
increase in income. It is clear that the derivative that correctly identifies I0ebt
as a constant income, where b is the inflation rate, is the covariant derivative

Dt = ∂t − b. (2.17)

That is, the covariant derivative is zero for the constant income. We note how
this parallels our discussion of covariant derivative in Section 2.1.2, with −b
as the connection.

A second example of parallel transport in a fiber bundle, which will be more
closely related to our application of it, comes from quantum mechanics itself.
Here, the fiber is the complex line on which the wave function takes values.
From quantum mechanics we are used to the idea that the global phase is irrel-
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Figure 2.7. To compare earnings from different years, a direct comparison of the
income is irrelevant. A more relevant comparison is obtained if we instead parallel
transport the income along lines determined by the inflation and then compare them
once they are on the same fiber. In this case, the most reasonable connection therefore
is determined by the inflation rate. Here, a constant inflation rate has been assumed,
giving simple exponential curves along which parallel transport occurs.
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evant and that we are free to set this phase to whatever we want. For example,
any plane wave can therefore be written as

Ψ(k, x) = Ceik·x, (2.18)

whereC can be any complex number satisfying |C|2 = 1 (we here ignore other
normalization factors). In gauge theory, this freedom is promoted to each point
in space, such that C becomes a function of the coordinate x [42]. This phase
is accompanied by a corresponding change in the expression for the derivative

Ceik·x →eik·x−iα(x), (2.19)
∂µ →∂µ + i∂µα(x). (2.20)

Through this construction, it is still possible to pick down factors of kµ from
the exponent by applying the derivative to the wave function, as we are used
to doing in introductory quantum mechanics

(∂µ + i∂µα(x)) eik·x−iα(x) =ikµeik·x−iα(x). (2.21)

To understand what this has to do with connections and parallel transport,
we now consider the fiber bundle before we introduced the local gauge trans-
form. In this case, it is reasonable to consider elements in different fibers to
be the same if they have the same value. Just like the value of an income one
year ought to be compared with the value of an income another year, if it was
not for inflation. That is, the function we call constant in this case is most rea-
sonably Ψ(0, x) = C. However, just like it is most reasonable to consider the
inflation adjusted function f(t) = ebt constant, it is most reasonable to con-
sider Ψ(0, x) = Ce−iα(x) as the constant function once we introduce the local
gauge transformation. This is ensured through the definition of the covariant
derivative

Dµ = ∂µ + i∂µα(x). (2.22)

The corresponding connection in this case therefore is iAµ(x) = i∂µα(x).
Before moving on, we end this section by noting that b has zero indices,

while iAµ(k) has a single index. The Levi-Cevita connection in Eq. (2.8),
however, has three indices. In general, a connection should indeed have three
indices; one corresponding to the direction we move in, and two correspond-
ing to the object we transport and its change, respectively. However, a one-
dimensional object is transported in both of the examples above, making the
two later indices superfluous. In the inflation example, we in addition only
transport along one dimension, which also makes the third index superfluous.

2.3.3 Curvature on fiber bundles
Having seen how the connection can be generalized to fiber bundles, we are
now ready to see how this leads to a generalized concept of curvature. To do
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so, we continue our discussion using the quantum mechanical wave function
as example. First, we note that in this example we consider the base mani-
fold to be the three-dimensional space, or alternatively the four-dimensional
Minkovski space, which are flat in the sense of Riemannian geometry. It is
therefore clear that the curvature will have nothing to do with the curvature of
the underlying base manifold. Instead, we adopt the point of view expressed
in Section 2.1.3, that curvature has to do with the failure of a value in the fiber
to come back to itself when it is parallel transported around a loop.

In the example involving the quantum mechanical wave function in Section
2.3.2, we arrived at a connection of the form iAµ(x) = i∂µα(x). This par-
ticular connection, however, is flat. We can see this by picking an arbitrary
value V for the wave function at an arbitrary point x(0). If we now move
along some path x(t) for t ∈ [0, 1], it is clear that with respect to the covari-
ant derivative in Eq. (2.22), the value is kept constant if it takes on the value
V ei(α(x(0))−α(x(t))) at each point along the path.7 If this path starts and ends at
the same point x(0) = x(1), we return to the same value V for any possible
path, just like the vector remains unchanged when transported around a path
on the bent plane in Fig. 2.3.

There is a simple reason for why the connection above leads to the conclu-
sion that all values remain unchanged when transported around a closed loop.
This is due to the fact that it is possible to define a global function e−iα(x),
which is constant with respect to the covariant derivative in Eq. (2.22). This,
in turn, is a result of the connection being defined as iAµ(x) = i∂µα(x). It
is, however, possible to consider other connections, which cannot be written
as a gradient of a scalar function α(x). Once we consider these more general
connections, parallel transport can result in arbitrary changes in the phase as
a value is carried around a closed loop. With the use of Stokes theorem,8 the
phase picked up when transported around such a loop can be calculated as∫

S
FdS, (2.23)

where S is an area element with the loop as boundary, and

Fµν = ∂µAν − ∂νAµ. (2.24)

Physically, we recognize Eq. (2.23) as the phase picked up by a particle en-
circling a magnetic flux. We also note the structural similarity between Eq.
(2.24) and the Riemann curvature in Eq. (2.12), which reinforces our notion
of Fµν as a kind of curvature.9 Finally, Eq. (2.23) looks suspiciously familiar

7 To see this, write the covariant derivative along the path as D
Dt

= ∂xµ

∂t
Dµ, such that

D
Dt

(V ei(α(x(0))−α(x(t)))) = ∂xµ

∂t
Dµ(V e−iα(x))|x=x(t) = 0

8 ∮
∂S

Aµdx
µ =

∫
S
(∂µAν − ∂νAµ) dS

µν , where ∂S is the loop around which parallel trans-
port is carried out.
9 Note that the reason this curvature has only two indices, rather than four as in the Riemann
curvature, is a result of the fiber it acts on being one-dimensional. The two other indices are
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to us. In Section 2.2.4 we learned that the integral of the Gaussian curvature
over the manifold is related to the Euler characteristic and the number of holes
in the manifold through Eq. (2.16). This hints at the possibility that also an
integral such as Eq. (2.23) can have topological meaning when S is taken to
be the whole manifold. We will indeed see an example of this when we come
to the Chern number.

2.3.4 Topological structure of fiber bundles
We have seen that in differential geometry the fibers are tangent planes, and
vectors inside these tangent planes are directions in the base space manifold.
It is therefore not surprising that the connection, which is a construct acting on
the fiber rather than the manifold, still tells us something about the manifold it-
self. Especially, we learned in Section 2.2.4 that the integral over the Gaussian
curvature, which followed from the connection, can tell us something about the
topology of any two-dimensional compact surface. However, when it comes
to general fiber bundles, there is no obvious relation between the base space
and the fiber. Therefore, for a moment assuming that we still will be able to
use the connection, curvature, and especially the integral over the curvature, to
determine topological properties of our fiber bundles, a question arises: what,
if not the base space itself, can it be that has a topological structure?

To answer this question, we once again use a simple example to demonstrate
a more general phenomenon. This time we assume the base space to be a line
segment, which can be closed to form a circle. However, before closing the
circle we attach yet another line segment, say [−1, 1], to each point of the first
line, such that we arrive at a two dimensional strip. It is important to note that
although the two dimensions are similar to each other, there is an important
conceptual difference between them: we view one dimension as a base space
manifold, and the other as a fiber. Further, we assume the trivial connection
on the strip, which parallel transports one value in one fiber to the same value
in the nearby fiber.

We now proceed to glue the base space together into a circle. When doing
so, we need to identify not only the two end points of the base space with
each other. We also need to identify each value in the fiber at one end point
with a corresponding value in the fiber at the other end point. There are two
qualitatively different ways to make this identification: in one case we glue
them together by assuming that the connection transfers a value x at one end
point to the value x in the fiber at the other end. Alternatively, we can choose
to instead connect x in one fiber to −x in the other. The difference between
these two choices is demonstrated in Fig. 2.8. It is clear that in both cases the
base space, the circle, is the same. The topological distinction is therefore not

therefore superfluous, as they only would take on a single value anyway. The two terms each
containing two factors of the connection can be verified to disappear for the same reason.
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Figure 2.8. A normal strip and a Möbius strip. Both can be seen as a fiber bundle,
having a circle as base space, and a line segment as fiber. Although the two fiber
bundles are constructed from the same buildning blocks, they have different topology
as a result of their fibers being twisted differently around the base space.

clear until we consider the whole fiber bundle. In the first case the fiber bundle
is an ordinary circular strip, while the second one is aMöbius strip. This stands
in contrast to our experience from differential geometry, where the topology
has to do with the base space manifold alone, not the whole fiber bundle which
consists of manifold plus tangent spaces.

We note the close relation between connection, topology, and parallel trans-
port in this example. First of all, the connection at the end points is responsible
for determining the topology of the whole fiber bundle, by either making it a
normal strip or a Möbius strip. Secondly, if we perform parallel transport of
x once around the base space, the result is x for the normal strip, while it is
−x for the Möbius strip. This example may seem artificial, and the division of
the space into base space and fiber space may only seem to complicate things.
However, it allows us to see a general phenomenon. Namely, having specified
the base space and fiber, the fiber bundles constructed from these can still dif-
fer in topology. It is only once the connection is defined between all nearby
fibers that the final structure of the fiber bundle is determined.

2.4 Complex vector spaces and the Chern number
We have by now covered enough background to introduce the fiber bundle
and topological invariant that will be of interest to us. In particular, we are
concerned with fiber bundles constructed from a base manifold together with
a complex n-dimensional vector space as fiber. In the previous section we
learned that the base manifold and fiber in themselves do not determine the
topology of the fiber bundle. It is therefore possible to imagine that a specific
choice of base manifold and a complex vector space can lead to many different
topologies. This is indeed the case, and one way to classify these are through
the use of Chern classes, Chern characters and Chern numbers [6, 42]. This
framework is rather general, and we will therefore here limit ourselves to the
case that will be of interest to us later.
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2.4.1 Manifold, fiber, and a Hermitian matrix
We will be interested in Hamiltonians defined on the two-dimensional square
shaped Brillouin zone and therefore choose the torus shaped Brillouin zone as
base manifold. Further, as fiber we use the n-dimensional complex state vector
space. Finally, we will here only describe the first Chern number in the form
that is useful to us.

The fact that a Hermitian matrix, the Hamiltonian, is defined at each point
of the manifold suggests that there is more structure to this problem than is
implied by the manifold and fiber alone. This is indeed the case, and we will
see, through explicit construction of a connection, that the existence of a Her-
mitian matrix suggests a natural definition for the connection. We note that the
existence of a Hermitian matrix in no way forces us to choose this particular
connection, rather it simply gives us a natural option for how to define one.
However, once we do so, the matrix will determine the topology of the fiber
bundle, and the topology of the fiber bundle will in turn contain information
about the matrix.

2.4.2 Defining a connection, the Berry connection
Let H(kx, ky) be a Hermitian matrix, which we for the moment assume to be
non-degenerate and to have dimension n × n. Because H is Hermitian, we
know that it can be diagonalized, and the assumption thatH is non-degenerate
allows us to define an ordered set of n eigenvectors |Ψ(λ)(kx, ky)⟩ at each
point (kx, ky). Here λ is the index that enumerates the eigenstates, and the
ordering is chosen to be in terms of increasing eigenvalue. So far, there is no
relation whatsoever imposed between eigenvectors at different points (kx, ky).
However, it is natural to define parallel transport as the process whereby an
eigenvector in one fiber is transported into the eigenvector in the nearby fiber
which has the same index λ.

We now remember that the connection can be seen as that quantity which
makes the covariant derivative zero through the relation

Dµ|Ψλ⟩ =
(
∂µ + iAρµλ

)
|Ψλ⟩ = 0. (2.25)

However, as we have decided that parallel transport should occur only between
states with the same label λ, Aρµλ has to be diagonal in λ and ρ. We denote
the non-zero elements by A(λ)

µ ≡ Aλµλ, where λ now is a label rather than an
index to sum over.10 This simplifies the equation to n copies of(

∂µ + iA(λ)
µ

)
|Ψ(λ)⟩ = 0. (2.26)

10Likewise, there is no summation implied in the right-hand side of the expressionA(λ)
µ ≡ Aλ

µλ.
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Multiplying this from the left by ⟨Ψ(λ)|, we arrive at

A(λ)
µ ⟨Ψ(λ)|Ψ(λ)⟩ =i⟨Ψ(λ)|∂µΨ(ρ)⟩, (2.27)

where in physics A(λ)
µ is known as the Berry connection [48]. We further note

that if we also require the eigenvectors to be normalized, then ⟨Ψ(λ)|∂µΨ(λ)⟩
is necessarily imaginary, and the above definition of the Berry connection be-
comes equivalent to

A(λ)
µ =− Im

(
⟨Ψ(λ)|∂µΨ(λ)⟩

)
. (2.28)

2.4.3 Berry curvature and the Chern number
Having defined a connection on the manifold, we now note that this connection
is a special case of the connection for the quantum mechanical wave function
in Sections 2.3.2 and 2.3.3. The only difference is that the base space now
is the two-dimensional Brillouin zone instead of real space. Moreover, it is
possible that the connection defined through Eq. (2.28) cannot be written as
a gradient of a global scalar function α(k) [48]. Parallel transport around a
closed loop can therefore give rise to the same kind of shift in phase as was
discussed in Section 2.3.3. We arrive at the conclusion, that in line with Eq.
(2.24), the appropriate definition of the curvature is

F (λ)
µν = ∂µA

(λ)
ν − ∂νA

(λ)
µ . (2.29)

This is known as the Berry curvature [22], and for a finite loop S the acquired
(Berry) phase is, in line with Eq. (2.23), given by∫

S
F (λ)
µν dS. (2.30)

If the Berry curvature is multiplied by i/2π, it also becomes the simplest
example of what is known as the first Chern class. Namely, the first Chern
class of a fiber bundle with a one-dimensional complex fiber [6]. When this
additional factor is carried over into Eq. (2.30), and S is taken to be the whole
manifold, the resulting number is known as the first Chern number for the
manifold and is a topological invariant for the fiber bundle [6].

Wemay now ask: what are the deformations under which the Chern number
remains invariant? To answer this question, we revisit one of the assumptions
wemade earlier in this section, namely that the Hamiltonian is non-degenerate.
The Chern number is in general invariant under continuous deformations ofH ,
or alternatively |Ψ(λ)⟩, whichever we prefer to think about. However, whenH
becomes degenerate at some point, our construction of parallel transport breaks
down. The reason is that it becomes ambiguous which state to parallel trans-
port to, as it is impossible to order the states according to their eigenvalue.
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We can therefore conclude that the Chern number is a topological invariant
that is invariant under continuous deformations of H , as long as H remains
non-degenerate. However, a continuous deformation that takes H from one
non-degenerate state to another non-degenerate state by crossing through a de-
generate state, has the possibility of changing both the topological structure of
the fiber bundle and the Chern numbers calculated on it. At a transition point
where the topological invariant changes, H therefore has to have a degener-
acy. This observation will be tremendously useful to us in the next chapter on
topological band theory and underpins the whole concept of topological band
theory in the form that it is encountered in this thesis.11

2.4.4 Geometrical meaning
Before finishing this section, we also say a few words about the fiber bundle
itself, in order to try to give a picture of what the different topological equiva-
lence classes mean. Unfortunately, it is quite difficult to form a mental picture
of this, unlike for the donut and the bun. The example of the normal strip and
the Möbius strip in Section 2.3.4 does, however, provide a good starting point
for a mental caricature. There, the base space manifold is a line that is joined
into a circle, and the two different strips arise from different ways of identify-
ing the fibers at the endpoint when the circle is formed. In the case we have
considered here, the base space is a torus, which is a square with opposite sides
identified. On top of this manifold an n-dimensional complex vector space is
attached to each point as fiber. When we now perform the identification of the
sides of the square to form the torus, the complex vector spaces along the edges
also have to be identified. The process therefore involves gluing together the
edges of a fiber bundle, with two manifold dimensions and n-complex fiber di-
mensions (2 + 2n-real dimensions). This is understandably hard to visualize,
but mathematically the identification is determined by the connection, which
is derived from the matrix H .

Consider now the eigenvectors that form a basis for the fiber at each point
of the manifold. Whenever H is non-degenerate, we can think of this basis
as rigid in the sense that the directions of the eigenvectors are fixed if they
are to remain eigenvectors. Continuous deformations ofH , which do not take
it through a degeneracy, therefore continuously rotate this basis in such a way
that the whole fiber bundle is continuously deformed. However, when a degen-
eracy occurs, the basis becomes floppy at the degeneracy point in the sense that
at least two basis vectors can be continuously rotated into each other, without
violating that the basis remains an eigenbasis. It is therefore possible to re-glue

11 We note that it does not underpin the whole field of topological band theory in general though,
as the topological invariant may be some other invariant than the Chern number for systems not
considered here. However, also for other types of topological invariants, the main ideas are the
same.
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the fiber bundle in a different way whenever H acquires a degeneracy point,
which explains why the topological structure can change when this happens.
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3. Topological band theory

In the previous chapter, we introduced some of the most important mathemat-
ical structures in the fields of topology and fiber bundles. In this chapter, we
will see the physical implications of these concepts. The presentation has two
purposes: the first is to introduce topological band theory in a way that is possi-
ble to follow with little prior knowledge of the subject. The only requirements
should be familiarity with the free electron model and band structures, as well
as a basic understanding of relativistic quantum mechanics. The connection
to topology at the end of the chapter also builds on the material presented in
the previous chapter. The second purpose of this chapter is to introduce an
appropriate terminology, which will be particularly useful for eventually gen-
eralizing these concepts to the treatment of topological superconductors and
Majorana fermions. The reader is in particular referred to the following sources
for further reading [5, 20–22].

3.1 Hybridization and band theory
3.1.1 Nearly free electron model
We begin by reminding ourselves about hybridization through a simple exam-
ple. Two energy levels split by an energy difference of 2Ẽ, and coupled by an
interaction of strength Λ, can be described by the Hamiltonian

H =

[
Ẽ Λ

Λ∗ −Ẽ

]
. (3.1)

Diagonalizing this, we find that the energies are given byE = ±
√

|Λ|2 + Ẽ2.
That is, a coupling between the two states hybridizes them, and pushes their
energy apart from each other. When the energy split 2Ẽ is small, the hybridiza-
tion is strong, and is in the limit of complete degeneracy (Ẽ = 0) pushing apart
the two levels by 2|Λ|. On the other hand, when Ẽ is large, the hybridization
energy is negligible. This means that any coupling that occurs between quan-
tum mechanical energy levels will tend to split them, and especially so for
degenerate ones.

This simple observation has major implications in condensed matter theory,
where band gaps often arise for exactly this reason. In the nearly free electron
model for example, energy levels are initially assumed to have a k2-dispersion.
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Figure 3.1. In the nearly free electron model, the starting point is a single infinite
parabolic band. By dividing k-space into Brillouin zones and translating all branches
of the similarly divided band into the first Brillouin zone, a series of overlapping bands
are stacked on top of each other. Introducing a periodic potential, which couples verti-
cally aligned energy levels, gaps open up at degeneracy points. The result is multiple
bands, separated by gaps, which to a first approximation have a parabolic dispersion
around the points where gaps have opened up. A horizontal dashed Fermi level line
has been inserted to demonstrate that such band splittings can give rise to an effective
low energy theory in the left blue box. Such theories are to second order described
by two parabolas that bend away in opposite directions and are separated by a gap.
Finally, two such parabolas can be made to overlap by introducing a Zeeman term, as
seen in the second blue box.

Due to the periodicity of the lattice, k-points separated by reciprocal lattice
vectors couple to each other, and split the bands around the Brillouin zone
boundary and the Γ-point (k = 0). Such splitting gives rise to bands that
assume parabolic shapes around the split point, with parabolas bending both
upward and downward. See the first three steps in Fig. 3.1. [49, 50]

3.1.2 Parabolic bands
Most problems in condensed matter physics cannot be solved exactly. Rather,
we often need to attack it through a series of approximations, step by step
adding more terms to the Hamiltonian, to incrementally capture more details.
It is therefore not an uncommon scenario to in one step have arrived at a dis-
persion relation, which to a first approximation can be seen as two parabolas,
each bending in opposite direction and being separated by a band gap 2M . At
the next level of approximation it is then also possible that these two bands
couple to each other by yet another term. Such a system is described by the
Hamiltonian in Eq. (3.1), if we replace Ẽ → M + |k|2. The energy is in this
case given by

E =±
√

|Λ|2 + (M + |k|2)2. (3.2)

In the fourth step in Fig. 3.1, we see how the addition of a Zeeman term to the
nearly free electron model can result in a low energy theory of this form. M
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is in this case related to the original band gap in step three, and the strength of
the Zeeman term. A coupling Λ would further be provided through any term
that can connect the two spin species to each other. This is, however, only an
example of how to arrive at such a theory. To keep the discussion general,
we will from here on only assume that we for some reason have two parabolic
bands with the dispersion relation in Eq. (3.2). The underlying physical rea-
son for the existence of such bands will be left open for specification in each
particular physical realization of interest.

3.1.3 Band inversion and Rashba interaction
In the example above, we considered the coupling Λ to be the same at all k-
points. Often this simplification is not true, and in some cases, such as for the
Rashba spin-orbit interaction, the coupling is even guaranteed to be exactly
zero at some points. The Rashba spin-orbit interaction is a term that can be
derived from relativistic quantum mechanics, which arise as a spinful particle
move through a uniaxial electric potential, and has the form [51]

HRashba =α (σ × k)z =
[

0 α(ky + ikx)
α(ky − ikx) 0

]
. (3.3)

Now assuming a two-dimensional band structure, such that |k|2 = k2x+k
2
y , we

see that a Rashba-like coupling between two bands bending away from each
other can be described by setting Λ = α(ky + ikx). This means that Eq. (3.1)
and (3.2) become

H =

[
M + k2x + k2y α(ky + ikx)
α(ky − ikx) −M − k2x − k2y

]
, (3.4)

E =±
√
α2(k2x + k2y) + (M + k2x + k2y)

2. (3.5)

In Fig. 3.2, this dispersion relation has been plotted along one direction in k-
space for differentM . We first note that for the red curves, which correspond
to the Rashba coupling being turned off, the bands go from a non-overlapping
to an overlapping regime asM is tuned from positive to negative. This we call
going from a normal band order to an inverted band order.1

Once the Rashba term is turned on, the band structure withM > 0 remains
fairly unchanged, due to the fact that the coupling term acts on states already
separated by a sizeable energy. However, in the inverted regimeM < 0 the
situation is very different. There, the Rashba term can couple the states that
originally were degenerate and reopen a gap in the previously gapless spec-
trum. Finally, we note that in the intermediate case M = 0, the two bands

1 Note that band inversion refers to the energy of the point k = 0 with no kinetic energy. That
is, the bands are called inverted if the potential energies have crossed each other.

40



Figure 3.2. Band structure given by the dispersion relation in Eq. (3.5), plotted along
the line ky = 0. From left to rightM > 0, M = 0, andM < 0. (Red dotted) Two
parabolic bands progressing from normal to inverted band order. (Black) Same as red,
but with an additional Rashba like coupling α ̸= 0 between the two bands. AtM = 0,
the Rashba term fails to split the two bands, because the coupling strength is exactly
zero at k = 0.

touch at k = 0, but the Rashba term is unable to open up a gap because it
is zero at this point. In this special case, the band structure therefore remains
gapless, even when the coupling between the two bands is turned on.

3.2 Dirac cone and negative mass gap
Let us now study the special intermediate caseM = 0 closer. In this case the
dispersion relation reduces to

EM=0 = ±
√
α2(k2x + k2y) + (k2x + k2y)

2 ≈ ±
√
α2(k2x + k2y) = ±α|k|.

(3.6)

In the second step, it is assumed that we are only interested in points close to
k = 0, where the two bands meet. There, the dispersion relation is linear in k,
which means that close to k = 0, the bands form a cone. This is known as a
Dirac cone, which can be understood by studying the case also for a small but
finiteM . Let us for simplicity assume that |M | ≪ α2

2 , as this means that the
gap is still smallest at k = 0. We can then once again approximate the bands
around k = 0 to obtain

E ≈±
√
M2 + α̃2(k2x + k2y), (3.7)

where α̃2 = α2 + 2M ≈ α2. Comparing this to the relativistic dispersion
relation satisfied by Dirac fermions2 [52, 53]

ERel = ±
√
m2 + |k|2, (3.8)

wherem is the particle mass, it is possible to make a formal analogy between
the two dispersion relations. For the sake of the analogy, we also assume that

2 Natural units assumed, where c = 1.
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the Fermi level is situated in the middle of the gap (at the crossing point when
M = 0). Then the holes in the valence band and the electrons in the conduction
band become analogous to the positrons and electrons in the Dirac equation
[52, 53]. This is the reason why the dispersion relation in Eq. (3.7) is called
a Dirac spectrum, and why the special case at M = 0 is called a Dirac cone
[54]. Now, becauseM plays the role of a mass, we also refer to the gap as a
positive or a negative mass gap, depending on the sign ofM .

3.3 Bulk-boundary correspondence
In the previous section, we saw how fine-tuning ofM can result in a spectrum
with a cone structure around k = 0. Now, it is hard to imagine that such fine
tuning can actually occur in a realistic material. Especially once we consider
that in realistic materials different types of impurities and dislocations can in-
troduce coupling parameters into the problem that are hard to control. There
is, however, an alternative to fine-tuning by which we can be guaranteed to
obtain a Dirac cone, but the price we have to pay is one dimension.

To understand what is meant by this, we imagine a material that on one side
has been tuned deep into theM > 0 regime, while the other side is tuned deep
into theM < 0 regime. This requires no fine-tuning as we are not interested
in the exact value of M . We even allow for M to vary inside the regions,
as long as it does not change sign, rendering impurities and dislocations that
introduce couplings of size smaller than the gap irrelevant. As we move from
one side of the sample to the other, somewhere along this path there needs to
be an interface on whichM changes sign. Along this interface, we therefore
expect to once again have a gapless Dirac cone. This cone will, however, have
one dimension less than the cone in the previously imagined fine tuned bulk,
as the interface has one dimension less than the bulk. A schematic picture of
this argument can be seen in Fig. 3.3.

In the argument above, we have considered a single material, which for
some reason can be tuned into regimes with different sign of the mass gap.
While it is possible to imagine that this can be achieved in reality, by e.g.
doping the two sides differently, we can simplify the setup further. Assume
therefore that we keep turning up M on the positive mass gap side. Eventu-
ally the gap will be so big that there is no possibility to excite a particle at all.
This state is very similar to a vacuum, where an enormous amount of energy
is required to excite (create) a particle. We can therefore replace the positive
mass gap material by the vacuum in the argument above [20]. It follows that a
material with a negative mass gap, which is surrounded by vacuum, is guaran-
teed to have gapless edge states on its boundary. On the other hand, a material
that is in the positive mass gap regime does not need to have gapless bound-
ary modes. The reason is that there is no need for a change of sign of M as
we go from a small positive M inside the material to a large one in the vac-

42



0

M

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

0 20 40 60 80 100
−8

−6

−4

−2

0

2

4

6

8

x

0 20 40 60 80 100
−10

−8

−6

−4

−2

0

2

4

6

8

10

Positive M Negative M

Interface

Figure 3.3. Two different sides of a material are tuned deep into the M > 0 and
M < 0 regimes, respectively. Somewhere in between these two sides an interface
must exist whereM crosses through zero. At this interface, the spectrum is expected
to regain the form of a Dirac cone, although the cone now exists in one dimension less
compared to the bulk.

uum outside. This is an example of the bulk-boundary correspondence [20]:
a parameter in the bulk, in this case the sign ofM , which only changes as the
bulk passes through a band closing, can tell us something about the boundary
of the system. In this case, gapless edge states are guaranteed to exist on the
boundary, if the mass gap in the bulk is negative.

3.4 Edge states
3.4.1 Localization of a half Dirac cone per edge
The above discussion is qualitatively correct. However, we note that the argu-
ment implicitly assumes that it is possible to talk about real space and momen-
tum space at the same time. This is no problem as long asM varies slowly in
space,3 but in reality we expect interfaces to be abrupt regions of size no more
than a few lattice constants. A little more detailed analysis is therefore needed
to justify the above discussion also in this case.

To do so, we assume an interface at y = 0, separating the two regions y < 0
and y > 0, for which the mass gap is given byM(y) = Msgn(y). Focusing
on the low energy part of the Hamiltonian in Eq. (3.4), where k2x, k2y → 0, and

3 WhenM varies slowly in space, we can divide space into cubes small enough thatM can be
considered constant inside each volume element, but large enough that we can treat the region
with a Fourier series with k-point spacing close enough to be considered continuous.
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performing an inverse Fourier transform along the y-direction, we arrive at

H =

[
M(y) iα(kx − ∂y)

−iα(kx + ∂y) −M(y)

]
. (3.9)

Separating the Hamiltonian as H = Hx +Hy, we see that the equation in the
x-direction has a vanishing mass gap

Hx =

[
0 iαkx

−iαkx 0

]
. (3.10)

However, a solution to this Hamiltonian needs to simultaneously be an eigen-
state of

Hy =

[
M(y) −iα∂y
−iα∂y −M(y)

]
, (3.11)

in order to be an eigenstate of the total Hamiltonian. Moreover, in order for the
total dispersion relation to be given byHx, it is important that the energy con-
tribution fromHy is zero. Therefore, we further require the eigenstate to be an
eigenstate with zero energy contribution from the partial eigenvalue problem
Hy|Ψ⟩ = 0. Such a solution is indeed provided by [20, 21]

|Ψ(−)
kx

⟩ = 1√
2

[
1
i

]
e−

∫ y

0

M(y′)
α

dy′ . (3.12)

To understand this eigenstate, we note that the integral in the exponent is a
positive number. This is so, because if y > 0 we integrate forward with a
positive integrand, while if y < 0 the integration is backwards over a negative
integrand. The exponent is therefore decaying away from the interface, which
means that the state is bound to the surface. Applying this state to Hx, we
also see that the dispersion relation is E(kx) = −αkx, which is one half of a
Dirac cone. We further note that it is useful to think of the division of H into
two pieces as a division of the energy into dispersive and localization energy.
The dispersive energy is contributed by Hx, while the localization energy is
provided by Hy. The edge states are therefore states that cost zero energy to
localize on the edge.

Now consider the eigenstate

|Ψ(+)
kx

⟩ = 1√
2

[
1
−i

]
e
∫ y

0

M(y′)
α

dy′ , (3.13)

which at first seems to be a valid eigenstate as well, with dispersion relation
E(kx) = αkx. This is the second half of the Dirac cone. However, this is
in fact not a physically valid eigenstate, because the exponent here is increas-
ing away from the interface. It becomes infinitely large inside the material.
This means that as we squeeze the width over which the transition in M(y)
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Figure 3.4. Edge state dispersion along the x-axis for an infinite strip. (Left) The
right and left moving branches are exponentially localized on different edges of the
infinite strip. (Center) The infinite strip in real space. The edge channels propagate
current in opposite directions along the upper and lower edge. (Right) Total dispersion
relation. Two bulk bands with mass gapM are shown in grey, while the right and left
moving edge states together form a Dirac cone. The two branches of the Dirac cone
are localized at opposite edges of the strip.

is occurring, only that branch of the Dirac cone that has negative slope sur-
vives. Alternatively, we can say that only one of the two branches can satisfy
a boundary condition that localizes it on the interface. The other solution is,
however, physically meaningful if we instead take M(y) → M(−y). This
means that the other branch will localize on an edge, where the change in mass
gap happens in the opposite direction. If we therefore instead defineM(y) by

M(y) =

{
−M −Y < y < Y
M otherwise , (3.14)

the first branch becomes localized at y = Y , while the second branch localizes
at y = −Y . See Fig. 3.4 for a conceptual picture.

3.4.2 HgTe quantum wells
Returning to the case M(y) = Msgn(y) and a single edge, we have seen
that the spin that propagates along the edge with dispersion E(kx) = −αkx
is 1√

2

[
1 i

]T . Had the Hamiltonian, however, been given by H∗(−k),
we would have arrived at the same conclusion with the dispersion relation
E(kx) = αkx and spin state

[
1 −i

]T . This is for example the case for
some topological insulators, where the first model predicting that aHgTe-CdTe
quantumwell is a two-dimensional topological insulator involves both of these
two Hamiltonians.

In the model of HgTe, the Rashba like coupling is acting on a pseudo-spin,
while the two spin-species are described by the two Hamiltonians H(k) and
H∗(−k) [14]. H(k) andH∗(−k) are therefore both two-by-twomatrices writ-
ten in a pseudo-spin basis. It is clear that the Hamiltonian that describes the
total system therefore can be formulated through the use of the four-by-four
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block-diagonal matrix

H(k) =
[
H(k) 0
0 H∗(−k)

]
. (3.15)

Here each block gives rise to its own edge state, and because of the different
dispersion relations E(kx) = −αkx and E(kx) = αkx for the two blocks, the
two edge states are counter propagating. Further, because each block describes
a different spin-species, the two branches propagates different types of spins.
In topological insulators the edge states therefore consists of two counter prop-
agating channels of opposite spin, so called helical edge states.

3.4.3 Robustness of the edge states
Having seen how the bulk Hamiltonian is related to the dispersion on the edge,
we now turn to a more detailed discussion of impurities. For this purpose we
assume that the bulk is in the negative mass gap regime, such that the bulk-
boundary correspondence predicts gapless edge states to exist. We already
mentioned above that impurities in the bulk are of little importance, as long as
they are small enough to not change the sign of the mass gap. But what about
impurities close to, or at, the boundary? We will here see that it is possible
to classify these into irrelevant and relevant impurities. Irrelevant impurities
are those impurities that just like impurities in the bulk does not destroy the
gapless edge spectrum. Relevant impurities are on the other hand those that
possibly can open up a gap on the edge.

We begin with the trivially irrelevant impurities, which perturb the diagonal
entries of the Hamiltonian. As they only affect the diagonal entries, we can
think of these impurities as local disturbances of the mass gap parameter. In
the bulk we already know that such impurities are irrelevant, because the mass
gap is large there. However, close to the edge the mass gap becomes small, and
the impurity can therefore locally deform the mass parameter into the opposite
regime. In spite of this, these impurities are unable to destroy the existence
of gapless edge states. The reason is that although they locally can deform the
mass gap parameter, they do not change the fact that themass gap has to change
sign somewhere in between the bulk and the vacuum. All these impurities can
do is therefore to deform the shape of the interface, not remove it [21].

Next, for simplicitly we assume that the interface is along the x-direction,
such that the Hamiltonian along the edge is given by Eq. (3.10). As we know
that diagonal entries are irrelevant, we now try to open up a gap by hybridiz-
ing states through the use of off-diagonal elements. It is however impossi-
ble to couple states in this Hamiltonian, because although it appears to have
Kramer’s degenerate pairs at kx and −kx, we learned above that only one of
these branches localizes on the interface. Further, we know that the absence of
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degenerate states means negligible hybridization.4 It therefore seems like all
impurities are irrelevant.

We now note, however, that the topological insulator mentioned in the sec-
tion above in fact consisted of two copies of the Hamiltonian considered so far.
Each copy gives rise to its own branch, which is both counter propagating and
has opposite spin relative to the other branch. This means that the argument
in the previous paragraph falls apart for this system. There are now Kramer’s
degenerate pairs at kx and −kx, which indeed can couple to each other. The
coupling only needs to couple up spins to down spins, and an impurity that
introduces a properly aligned time reversal symmetry breaking Zeeman term
therefore suffices in this case [21]. Relevant impurities are therefore a reality,
but they do need to satisfy certain conditions, making many of the impurities
we usually need to care about irrelevant to the edge states.

3.5 Lattice model
So far we have mentioned the Brillouin zone, but have not made explicit use of
it. Rather, we have considered the problem using a continuum model, where
k in principle can take values in the whole real plane. Here we reformulate
the problem to a lattice model, by making the replacement kµ → sin(kµ) and
k2µ → 1− cos(kµ). The Hamiltonian in Eq. (3.4) then becomes

H =

[
dz dx − idy

dx + idy −dz

]
, (3.16)

where

dx =α sin(kx), (3.17)
dy =α sin(ky), (3.18)
dz =M + 2− cos(kx)− cos(ky). (3.19)

For small k, we see that the continuum Hamiltonian in Eq. (3.4) is recovered.
The difference is in the behavior at large k. In the continuum model the bands
go of to infinity, while in the lattice model the bands flatten out again around
the Brillouin zone boundaries. As can be seen in Fig. 3.5, the band structure
is essentially the same as that for the continuum model, as long asM ≳ −1.
However, while in the continuum model the two α = 0 bands overlap for all
M < 0, the situation is different in the lattice model. AtM = −4, the band
structure once again pass into a regime of non-overlapping bands, and it turns

4 It is indeed possible to consider couplings between nearby k-points as a possible way around
this argument. In order to couple points that are close to each other within the Brillouin zone,
however, requires a scattering potential that has a periodicity that is orders of magnitude larger
than the lattice constant.

47



M = 1 M = 0 M = -1 M = -3 M = -4 M = -5

Figure 3.5. The dispersion relation along ky = 0which follows from the lattice model
in Eq. (3.16) for six values ofM . ForM ≳ −1 the dispersion relation is qualitatively
similar to the dispersion relation for the continuummodel shown in Fig. 3.2. However,
forM < −4, the two (red) α = 0 bands become non-overlapping again. This results
in only the regime −4 < M < 0 being guaranteed to host gapless edge states. This
stands in contrast to the continuum model for which the regime with gapless states are
M < 0.

out that now also the limit M → −∞ is similar to the vacuum [22]. This
means that the only regime in which we now are guaranteed to have gapless
edge states is when −4 < M < 0.

3.6 Topological invariant
The reader may by now have noted a few suggestive similarities between this
and the previous chapter. First of all, we note the importance the sign of the
mass gap has played so far. This is clearly a quantity that is invariant under
continuous changes of M , but which changes discontinuously at M = 0. In
this sense it is a topological invariant, which distinguishes between two equiv-
alence classes of band structures; the band structures with positive and nega-
tive mass gap, respectively. The equivalence of cutting a hole in the bun here
occurs when the two bands meet atM = 0.

Second, we note that the lattice Hamiltonian is a Hermitian matrix defined
on a two-dimensional torus, and the eigenvectors of this Hamiltonian takes
values in a complex vector space. We can therefore think of the problem as a
two-dimensional compact manifold, with a two-dimensional complex vector
space attached to each point as a fiber. The Brillouin zone and complex vector
space together form a fiber bundle. We also remember from Section 2.4, that
when a non-degenerate Hermitian matrix is defined on the base manifold, it
is possible to define a connection that facilitates parallel transport on the fiber
bundle. This in turn defines a topology of the fiber bundle. The requirement in
Section 2.4.2 that the matrix is non-degenerate corresponds to the requirement
that the two bands in our model above do not touch. Further, the index λ used
to order eigenvectors according to their eigenvalues corresponds to the band
index.

The notes above suggest that the first Chern number might be a relevant
topological invariant for the band structures studied so far, and this is indeed
the case. Moreover, it can be shown that the first Chern number in Eq. (2.30)
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for the lower band, which results from carrying out the integral over the whole
plane in the continuum case, is directly related to the sign of the mass gap
through [22]

I(−) =
1

2π

∫
F (−)
µν dkxdky =

sgn(M)

2
. (3.20)

Here (−) is the band index λ of the lower band. Note the striking similarity
between this expression and the Euler characteristic in Eq. (2.16). There we
saw that the Euler characteristic can be expressed either as an integral of the
Gaussian curvature over the whole manifold, or as an algebraic expression
involving the number of holes. That is, there is a simple relation between the
Gaussian curvature, and the number of holes. In the same way we here see
that the first Chern number, expressed as an integral of the Berry curvature,
is directly related to the sign of the mass gap. So far the sign of the mass gap
has been possible to extract manually from the model, by identifying the two
parabolas and see if they overlap or not. However, in general the Hamiltonian
and band structure is not as clean as the model considered so far. The first
Chern number therefore has an advantage, because it is possible to calculate for
a more general Hamiltonian. The integral expression provides a general way
for calculating topological invariants that can tell us something about the edge
states. This is an example of the framework of topological indices mentioned
in Section 2.2.4, whereby the curvature is not only related to the index, but also
to the modes bound to the manifold’s boundary [6].

The power of the first Chern number becomes even clearer once we real-
ize that the analytical expression for the connection is not required. As was
originally shown for the quantum Hall system, the first Chern number can be
calculated for any band λ using the alternative expression [10, 22, 48]

I(λ) =− 1

2π

∫
dkxdkyIm

∑
ρ̸=λ

ϵij
⟨Ψ(λ)|∂kiH|Ψ(ρ)⟩⟨Ψ(ρ)|∂kjH|Ψ(λ)⟩

(E(ρ) − E(λ))2

 .

(3.21)

The advantage of this expression is that it uses the Hamiltonian directly, in-
stead of going through the construction of the connection. It is also insensitive
to the choice of gauge for the eigenstates [22]. This lends itself for numerical
calculations, because numerically eigenstates at different (kx, ky) are calcu-
lated independently of each other. This leads to an independent, potentially
random and discontinuous gauge, making the derivative |∂kiΨ(λ)⟩ in Eq. (2.28)
difficult to handle.

Let us now consider the lattice model instead. In this case the relation
between the first Chern number and the mass gap parameter turns out to be
slightly modified from that in Eq. (3.20). In the two regimes M > 0 and
M < −4, the first Chern number is zero, indicating that these are trivial phases
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without gapless edge states. In the overlapping regime −4 < M < 0, how-
ever, the first Chern number takes on two different values depending on ifM
is larger or smaller than−2. For−2 < M < 0 the Chern number is−1, while
it is 1 for −4 < M < −2 [22]. First of all, this means that both of the two
later regimes, as expected, are non-trivial. Second, because the Chern number
changes atM = −2, we can conclude that the Hamiltonian need to be degen-
erate at this point. We can indeed confirm this by diagonalizing Eq. (3.16) for
M = −2, to obtain the dispersion relation

EM=−2 = ±
√

2(1 + cos(kx) cos(ky)). (3.22)

There are clearly degeneracies at both (0, π) and (π, 0). This demonstrates
how knowledge about the first Chern number can lead to conclusions about
the dispersion relation, which are not entirely obvious from Eq. (3.16).

3.7 On the generalization to n-by-n Hamiltonians
We have seen that the combination of a band hybridizing term that is zero at
certain points in the Brillouin zone, together with a mass gap parameter that
can change sign, can have important implications for the boundary spectrum
of a system. We have also seen that the first Chern number can be used as a
tool for determining these properties from the bulk Hamiltonian. The demon-
stration of this has here been carried out in the special case of a two-by-two
Hamiltonian. However, from Section 2.4 in the previous chapter, we know
that the first Chern number can be defined also for band structures involving
more than two bands. We can therefore expect similar features to occur also in
more general cases, and indeed, we will later see that this is the case when we
apply these ideas to what is called a topological superconductor. In fact, we
have already touched upon an example of a four-by-four case, the topological
insulator that was mentioned in Section 3.4. We saw that in this case we do
not get a single, but two counter propagating helical edge states.

3.8 A note on Z2 classification
Although the properties of the model of HgTe are related to a Chern number,
we note that this model is not a perfect example of a system with a non-trivial
Chern number. In Section 2.4 we defined the Chern number for each band,
using that H is a non-degenerate matrix. The model for HgTe in Eq. (3.15)
is on the other hand degenerate. This means that although the two-by-two
submatrices of the HgTe Hamiltonian have well defined Chern numbers, it is
not clear how to define Chern numbers for the whole Hamiltonian. In spite of
this, it turns out that even in the presence of degeneracies, it is possible to define
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a related topological invariant. The only requirement is that no band crosses
the Fermi level, and the invariant is the sum of the Chern numbers of all bands
below the Fermi level [20]. However, the Chern numbers for the two different
blocks in Eq. (3.15) are related by a minus sign. Their sum will therefore
always be zero, and such an invariant is therefore not of much use. This is the
case for any Hamiltonian with time reversal symmetry [20]. The difference
between the Chern number for the occupied bands, however, is also useful as
long as the matrix is block diagonal, and can be used as a topological invariant
for the whole system. Dividing this by two, and only considering whether the
result is even or odd, this becomes another topological invariant known as aZ2

invariant [20, 55]. This construction, however, is only possible as long as the
Hamiltonian is block diagonal as in Eq. (3.15), while the Z2 invariant can be
defined more generally [55]. In general, there are therefore Hamiltonians with
topologically non-trivial behavior, which are not possible to classify using a
Chern number. However, in this thesis we restrict our treatment to those that
can, which in particular requires time-reversal symmetry breaking.
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4. Superconductivity

In the two previous chapters, we have learned about topology and how it can be
applied to band theory to make robust predictions about materials edges from
their bulk properties. We now switch gear and introduce superconductivity,
which will prepare us for a discussion of topological superconductors in the
next chapter.

Superconductivity is in its simplest formulation a phenomenon whereby,
at low temperatures, an ordinary conductor suddenly becomes a perfect con-
ductor that conducts electricity without resistance. Superconducting materials
would therefore be ideal for power lines, electronics, andmany electric devices
where resistance gives rise to unwanted energy losses, if it were not for the low
temperatures required. In contrast, it is not wanted in a traditional light bulb,
which relies on resistance for heating the wire that shines at high temperatures.
These implications are at least on a conceptual level accessible to anyone with
even the most rudimentary understanding of the technology our society is built
on.

As deceptively simple as the consequences of superconductivity may seem,
as complicated can it be to understand what the theory that explains its causes
actually means. Many aspects of the theory that underpins our understanding
of superconductivity are notoriously inaccessible to anyone who encounters
the field for the first time. Being a fundamentally quantum mechanical phe-
nomenon, it is no surprise that intuition of the underlying physics often is hard
won. Explanations that try to shine light on the underlying physics often suffer
from being either superficial or impenetrably technical, or both.

We will not pretend to do better here, but will in what follows attempt at
giving a coherent introduction to those concepts in superconductivity that are
important for understanding the mean-field Bogoliubov-de Gennes treatment
of the subject. In particular, this introduction is written with the intention of
introducing a terminology, which in combination with that introduced in the
previous chapters, makes it possible to understand the subject of topological
superconductors and Majorana fermions. At points the presentation therefore
advocates a point of view that semanticallymay appear slightly unconventional
compared to other introductions to superconductivity. For further reading on
superconductivity in general, we refer to the references [56–59].

4.1 BCS theory
Although superconductivity as a phenomenon has been known since 1911,
when it was first observed by Heike Kamerlingh Onnes [60], the explanation
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of its microscopic origin had to wait until 1957, when Bardeen, Cooper, and
Schrieffer (BCS) formulated the first truly successful microscopic theory [56].
Known as BCS theory, it has been tremendously successful at describing a
large class of superconductors today known as conventional superconductors.
In addition, many of its concepts continue to be important building blocks also
in theories for the so far less understood unconventional superconductors [61].

4.1.1 Cooper pairs and the BCS Hamiltonian
To begin with, conventional superconductivity is a result of a many body in-
teraction between electrons and the lattice [56]. Just like in the nearly free
electron model, we can for simplicity imagine electrons in a homogeneous
background. The background is assumed to successfully screen out the inter-
actions, such that the resulting quasi-particles, which we will call electrons,
can be treated just as normal electrons described by the Hamiltonian

H =
∑
kσσ′

Hσσ′(k)c†kσckσ′ . (4.1)

Here the Hamiltonian has been written down using the language of second
quantization, where c†kσ and ckσ are creation and annihilation operators, re-
spectively, for the state with wave vector k and spin σ.

Now we introduce the lattice. First of all a static lattice of course scat-
ters single particle states, modulates their wave function, and gives rise to a
change in the single particle dispersion relation Hσσ′(k). In reality it is also
the positive ions of the lattice that are responsible for screening out the inter-
action between the electrons. If we therefore allow for dynamic changes in
the lattice, it becomes possible for one electron to deform the lattice through
its Coulomb interaction with the positive ions. This deformation in turn leads
to a change in interaction between the lattice and the other electrons, which
is possible to see as an effective interaction between the electron causing the
deformation and the one reacting to it. Lattice deformations away from equi-
librium are known as phonons, and if we forget about the underlying lattice, we
can think of the effective interaction as a phonon mediated interaction directly
between the electrons. Introducing the coupling parameter Vkσk′σ′k′′σ′′k′′′σ′′′ ,
which describes the induced two-electron scattering amplitudes, the system
can be modeled with the Hamiltonian

H =
∑
kσσ′

Hσσ′(k)c†kσckσ′ +
∑

Vkσk′σ′k′′σ′′k′′′σ′′′c†kσc
†
k′σ′ck′′σ′′ck′′′σ′′′ . (4.2)

Cooper now considered the case of two electrons of opposite momentum
and spin. He showed that no matter how small the interaction Vkσk′σ′k′′σ′′k′′′σ′′′

is, as long as it is attractive, it will lead to the formation of bound pairs of
particles, so called Cooper pairs [62]. Being bound, it takes a finite amount of
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energy to break them apart. This effectively prohibits additional perturbative
terms added to Eq. (4.2) from inducing single particle scattering, and electrons
therefore only scatter in pairs through the potential Vkσk′σ′k′′σ′′k′′′σ′′′ . It is this
protection from single particle scattering that is responsible for the resistance
free flow in superconductors, as the simultaneous scattering of two electrons
in a Cooper pair results in no net change in charge carrier momentum.

Drawing on Coopers observation that electrons can form bound pairs, BCS
then imagined a ground state formed from virtual Cooper pairs consisting of
electrons of oposite spin and momentum [56]. The only interaction terms that
are important in the Hamiltonian are then Vk↑−k↓−k′↓k′↑ ≡ Vkk′ . They further
assumed1 that these elements can be approximated by Vkk′ = −V , where an
explicit minus sign has been introduced to indicate that the interaction is at-
tractive [56, 62]. With this background we can now understand why the BCS
Hamiltonian that finally proved successful at describing superconductivity is
[56]

H =
∑
kσσ′

Hσσ′(k)c†kσckσ′ − V
∑
kk′

c†k↑c
†
−k↓c−k′↓ck′↑. (4.3)

4.1.2 The BCS wave function
Having understood the rational behind the BCS Hamiltonian in Eq. (4.3), we
introduce the wave function that describes the ground state. To arrive at this
state, we note that we expect the electrons to pair up in virtual Cooper pairs.
We therefore write down the most general wave function where all electrons
are paired with opposite momentum and spin. This is given by the quantum
mechanical superposition [56]

|Ψ⟩ =
∑

g(ki1 , ...,kin)c
†
ki1↑

c†−ki1↓
...c†kin↑

c†−kin↓
|0⟩, (4.4)

where |0⟩ is the vacuum and i1, ..., in runs over all combinations of 2n-particle
states. However, the number of coefficients g(ki1 , ...,kin) in this expression is
tremendous, and BCS therefore retreated to the use of the wave function [56]

|ΨBCS⟩ =
∏
k

(
uk + vkc

†
k↑c

†
−k↓

)
|0⟩. (4.5)

It is clear that |uk|2 and |vk|2 are probabilities that the Cooper pair k ↑ −k ↓
is unoccupied and occupied, respectively. As the pair is either unoccupied or
occupied, it is also clear that |uk|2 + |vk|2 = 1.

We make two notes about the assumptions that go into the BCS wave func-
tion. First of all, when expanded, it is seen that the number of particles is not

1 This corresponds to assuming that the interaction is isotropic. The assumption is motivated by
the observation that conventional superconductivity is universal over a large class of materials,
and therefore should not depend on the specific symmetries of any particular material [56].
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well defined, which stands in contrast to the wave function in Eq. (4.4). BCS
originally treated the wave function in Eq. (4.5) as a precursor to the physical
wave function, which they considered to be the projection of the BCS wave
function onto the space of 2n-particle wave functions [56]. Second, we note
that even if we project out the states with n Cooper pairs, the resulting wave
function can only describe those states that have coefficients of the form

g(ki1 , ...,kin) =
∏
k∈K

uk
∏
k′∈K′

vk′ , (4.6)

where K ∩ K′ = ∅, and K′ = {ki1 , ...,kin}. Although there is no guarantee
that this is the case, the justification for this treatment lies in the success of
the theory. There is also a second way of interpreting the BCS wave function
in Eq. (4.5), which avoids the technicality of projecting out states with fixed
particle numbers. In this interpretation it is noted that the BCS wave function
is sharply peaked about the correct number of particles, and that it can be seen
as corresponding to a grand canonical ensemble of states [59].

4.2 Bogoliubov-de Gennes formalism2

4.2.1 Mean field treatment
It is now possible to use variational calculus to solve for the coefficients in the
wave function, as BCS originally did [56]. However, an approach that is more
suitable for calculations is provided by the Bogoliubov-de Gennes mean field
formulation [58, 59, 63, 64]. To arrive at this we recall that the BCS wave
function according to one interpretation can be seen as representing a grand
canonical ensemble. It is therefore possible to take macroscopic expectation
values of the form

Fkσσ′ =⟨c−kσckσ′⟩, (4.7)

and expect these to be non-zero. The reasonwhy this can be non-zero is that the
BCSwave function is a superposition of states with different number of Cooper
pairs. The removal of a pair does therefore not kill the expectation value. This
corresponds to the statement that superconductivity is a phenomenon whereby
a macroscopic number of electrons condenses into a superconducting state
filled with a macroscopic number of Cooper pairs. The removal of a single
such pair from the condensate should not affect the physics considerably. We
will come back with more details on this in Section 4.3.

2 Part of the discussion in Section 4.2 and 4.3 runs in parallel with the discussion in the section
”Particle-hole symmetry” in Paper III.
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Let us apply this idea to the BCS Hamiltonian in Eq. (4.3), but assume for
generality that the interaction term is of the form

Hint =−
∑

kk′σσ′

Vkk′σσ′c†kσ′c
†
−kσc−k′σck′σ′ . (4.8)

We can then formally rewrite the interaction term as

Hint =−
∑

kk′σσ′

Vkk′σσ′(F ∗
kσσ′ + c†kσ′c

†
−kσ − F ∗

kσσ′)(Fk′σσ′ + c−k′σck′σ′ − Fk′σσ′).

(4.9)

Now considerFkσσ′ to be amean field approximation for c−kσckσ′ , and assume
that the variation around the mean value is small. It is then possible to expand
the expression above, and discard terms that are quadratic in c−kσckσ′ −Fkσσ′ ,
to arrive at

Hint =−
∑

kk′σσ′

Vkk′σσ′

(
Fk′σσ′c†kσ′c

†
−kσ + F ∗

kσσ′c−k′σck′σ′ − F ∗
kσσ′Fk′σσ′

)
.

(4.10)

Noting that F ∗
kσσ′Fk′σσ′ only will give a constant shift to the energy, we can

discard this term to finally arrive at the mean field Hamiltonian

HMF =
∑
kσσ′

Hσσ′(k)c†kσckσ′ +
∑
kσσ′

(
∆kσσ′c†kσ′c

†
−kσ +∆∗

kσσ′c−kσckσ′

)
.

(4.11)

Here we have defined the superconducting order parameter

∆kσσ′ ≡ −
∑
k′

Vkk′σσ′Fk′σσ′ . (4.12)

The way Fkσσ′ is defined through Eq. (4.7), we can think of it as the proba-
bility that we are able to remove a Cooper pair in the state | − kσkσ′⟩ from
the condensate. That is, the probability that this particular Cooper pair ex-
ists. Multiplying by the interaction strength, and summing over all k-states the
pair can be in, we see that ∆kσσ′ is related to the energy gained through the
formation of such a pair.3

3 Beware that this argument is a little bit oversimplified. Strictly speaking, Fkσσ′ is a probability
that a pair can be removed, while the state still remains in the ground state. It is further seen
from Eq. (4.11) that ∆kσσ′ appears as the strength of a source term for Cooper pairs in the
state k ↑ −k ↓. The order parameter ∆kσσ′ is therefore an average over the number of states
that scatter into this pair state, ignoring which state these pairs originated from. Such scattering
does lower the energy, and is therefore related to the binding energy. This is why we say that
∆kσσ′ is related to the binding energy, rather than being a binding energy. Further, scattering
of a Cooper pair can only occur if there are available states to scatter into. Only if we deal
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4.2.2 Nambu spinors
Through the introduction of∆kσσ′ , we have succeeded at reducing the Hamil-
tonian to a quadratic form. We know that quadratic Hamiltonians are compar-
atively easy to solve, because they can be diagonalized using a single particle
basis. However, this is only true when the operators appears in pairs of one
creation operator and one annihilation operator. In the Bogoliubov-de Gennes
mean field Hamiltonian in Eq. (4.11), creation operators pair up with creation
operators, and likewise for annihilation operators. This means that an ordi-
nary single particle treatment is still not possible. It is, however, possible to
diagonalize the Hamiltonian using what is known as a Nambu spinor basis

(ck↑, ck↓, c
†
−k↑, c

†
−k↓). (4.13)

Doing so, the problem can be written as [61]

H(k) =
[

H(k) ∆k
−∆∗

−k −HT (−k)

]
, (4.14)

where H(k) and ∆k are two-by-two matrices with components Hσσ′(k) and
∆kσσ′ , respectively.4 The eigenvectors of this matrix will further be written as

|γ(E)
k ⟩ =

[
u
(E)
k↑ u

(E)
k↓ v

(E)
k↑ v

(E)
k↓

]T
≡
[
u(E)
k v(E)

k

]T
, (4.15)

where E is the eigenvalue of the state.
Although the use of the Nambu spinor basis is helpful for diagonalizing

the Hamiltonian, it does come with an additional consequence. The use of
a basis consisting of both creation and annihilation operators, means that the
apparent degrees of freedom are doubled. More specifically, the number of
eigenstates are twice the number of single particle states. However, the number
of physical degrees of freedom should of course not change just because of
a change of formalism, as should be particularly clear from considering the
non-superconducting case ∆k = 0. It turns out that although the number of
eigenstates is doubled, there is a correspondence between each state at E, to
a corresponding one at −E [58]. To see this, consider writing the equation

with fractionally occupied states, as is the case close to the Fermi level for a superconductor,
the scattering is allowed to reduce the energy. Consider therefore also two degenerate Cooper
pair states with momentum (k,−k) and (k′,−k′), respectively, which are shared by a single
Cooper pair. The interaction term hybridizes these two states and pushes one up in energy and
one down in energy, this results in a reduction in the energy for the electron pair that goes into
the lower energy state. However, if the two states are both fully occupied there is no energy
gain as the gain in the lower level is cancelled by the loss in the higher level.
4 To connect to Eq. (4.11) write

∑
k C

†H(k)C, where C† = [ c†k↑ c†k↓ c−k↑ c−k↓ ],
perform the matrix multiplication, and permute the operators into appropriate position. The
result is Eq. (4.11) up to an additional constant factor that can be ignored, and a relative factor
2 that can be absorbed by rescaling the parameters in the problem.

57



H(k)|γ(E)
k ⟩ = E|γ(E)

k ⟩ as

H(k)u(E)
k +∆kv

(E)
k =Eu(E)

k , (4.16)

−∆∗
−ku

(E)
k −HT (−k)v(E)

k =Ev(E)
k . (4.17)

Compare this to the complex conjugate of the expression forH(−k)|γ(−E)
−k ⟩ =

−E|γ(−E)
−k ⟩

HT (−k)u(−E)∗
−k +∆∗

−kv
(−E)∗
−k =− Eu(−E)∗

−k , (4.18)

−∆ku
(−E)∗
−k −H(k)v(−E)∗

−k =− Ev(−E)∗
−k . (4.19)

On inspection we see that these are the same set of equations, meaning that if[
uk vk

]T is an eigenstate of H(k) with eigenvalue E, then it is related to
the eigenstate ofH(−k) with energy −E through[

u(E)
k
v(E)
k

]
=

[
v(−E)∗
−k
u(−E)∗
−k

]
. (4.20)

This is not reflective of an ordinary symmetry that can be broken by a physical
perturbation, but rather is a fundamental consequence of using the Nambu-
basis. It results in a particle-hole symmetry in the formalism that we will refer
to as a BdG-type particle-hole symmetry, to distinguish it from other types of
particle-hole symmetries that can be broken.

4.2.3 Reducing the number of degrees of freedom
For the original BCS case whereHσσ′(k) is diagonal and equal for both spins,
say H(k) ≡ H↑↑(k) = H↓↓(k), and ∆k = i∆σy [61], the Hamiltonian can
further be decoupled into two two-by-two matrices of the form

H±(k) =
[
H(k) ±∆
±∆∗ −H(k)

]
, (4.21)

now written in the two bases

(ck↑, c
†
−k↓)+,

(ck↓, c
†
−k↑)−. (4.22)

As far as the energy spectrum is concerned, the two problems in Eq. (4.21) are
the same,5 and it is therefore enough to consider the positive sign problem, for

5 This can be seen by considering the characteristic equation, which in both cases reads 0 =
det(H±(k)− E) = E2 −H2(k)− |∆|2.
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which we write the eigenvectors as

|Ψ⟩ =

[
u
(E)
k↑
v
(E)
k↓

]
+

. (4.23)

The positive and negative energy eigenstates further have to satisfy[
u
(E)
k↑
v
(E)
k↓

]
+

=

[
v
(−E)∗
k↓

−u(−E)∗
k↑

]
+

, (4.24)

in order to be orthogonal to each other. A similar relation obviously also hold
for the negative sign basis where ↑ and ↓ are interchanged.

By only considering the positive sign problem in the ordinary BCS prob-
lem, the number of eigenstates is halved, and the artificial doubling of degrees
of freedom is thereby avoided. This specific choice of reduction of degrees
of freedom is particularly useful for finding the quasi-particle energies, as it
involves solving a single two-by-two matrix. It is therefore commonly used in
treatments of ordinary BCS superconductivity. There is, however, freedom in
how to perform the reduction to the correct number of degrees of freedom, and
a different choice will turn out to be conceptually useful.

Using Eq. (4.20), it is possible to relate the negative eigenstate solution for
the positive sign problem, to the positive eigenvalue solution for the negative
sign problem. We can therefore consider only positive solutions, at the expense
of having to consider both the positive and negative sign problem. This is ap-
pealing, because the eigenstates are closely related to creation and annihilation
operators for quasi-particles known as Bogoliubov quasi-particles [58, 61].
Such quasi-particles are excitations on top of the ground state, and therefore
have positive energy [58]. In particular, the use of only positive energy eigen-
states has the benefit of being generally applicable for any problem of the four-
by-four form in Eq. (4.14). We will later also see that the alternative choice of
only considering negative eigenstates is useful when considering ground state
properties. Additionally, putting the dividing line between positive and neg-
ative energy states, rather than between different blocks of the Hamiltonian
(which may or may not exist), has the benefit of eventually enabling a very
general treatment of Majorana fermions, and we therefore strongly advocate
this approach here.

4.2.4 Bogoliubov quasi-particle operators6
To make the link to standard notation for the ordinary BCS problem explicit
[58, 59], and to eventually be able to describe the connection to the BCS wave
6 This section is particularly hard to read due to the explicit use of multiple notations for both
bases and vector component labels. The reader is therefore advised to read the paragraph with
pen and paper, and consult Fig. 4.1.
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T T

T T

-

- +

+

Figure 4.1. In the ordinary BCS problem, which can be treated with a two-by-two
matrix, it is common to consider only the positive sign problem in Eq. (4.21), and
to consider the states at ±E to correspond to independent excitations. However, Eq.
(4.20) relates positive and negative energy eigenstates along the diagonal blue arrows.
That is, it is a relation between positive and negative energy eigenstates for different
two-by-two Hamiltonians. This gives us freedom to choose to work with for example
only the positive energy eigenstates of the whole problem, rather than to work with the
positive and negative energy eigenstates of the positive sign problem only. We here
advocate the former approach. We also note that the coefficients of the eigenstates at
positive and negative energy for H+ or H− are related along the red vertical arrows
through Eq. (4.24). This is however not a relation between equivalent states, but rather
between orthogonal eigenvectors.

function and its excitations, let the negative energy eigenstate for H+(k) be
denoted by [vk uk]

T
+.7 In the full four-by-four basis in Eq. (4.13), this state

can also be written as [vk 0 0 uk]
T . Using Eq. (4.24), the positive energy

eigenstate forH+(k) is then seen to be given by [u∗k − v∗k]T+. Similarly, using
the four-by-four basis expression together with Eq. (4.20), the positive energy
eigenstate for H−(−k) is seen to be given by [0 u∗k v∗k 0]T , which in the
two-by-two basis is [u∗k v∗k]

T
−. The positive energy eigenstates forH+(k) and

H−(−k) can therefore in this notation be written as

|Ψ+(k)⟩ =
[
u∗k −v∗k

]T
+
,

|Ψ−(−k)⟩ =
[
u∗k v∗k

]T
− . (4.25)

Through the negative sign analogue of Eq. (4.24), the negative energy eigen-
state forH−(−k) is in the same way given by [vk − uk]

T
−. See Fig. 4.1 for a

depiction of the relation between the coefficients of the different eigenstates.
We emphasize that the coefficients in this notation, and the coefficients in the

7 The labels for the components may seem arbitrary but have been chosen with hindsight. The
justification for this particular choice has to do with the particular form the Bogoliubov quasi-
particle states acquire, and their relation to the coefficients in the BCS wave function. In partic-
ular, the usage of the same symbols as in Eq. (4.5) will be justified in Section 4.3.2.
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notation given by Eq. (4.23), are related through8

uk = v
(−E)
k↓ = u

(E)∗
k↑ = −v(−E)

−k↑ = u
(E)∗
−k↓ ,

vk = u
(−E)
k↑ = −v(E)∗

k↓ = u
(−E)
−k↓ = v

(E)∗
−k↑ . (4.26)

Explicitly writing the positive energy eigenstates in Eq. (4.25) using the
operator basis in Eq. (4.22), these define operators9

γ†k↑ ≡u
∗
kc

†
k↑ − v∗kc−k↓,

γ†−k↓ ≡u
∗
kc

†
−k↓ + v∗kck↑. (4.27)

These are creation operators for the Bogoliubov quasi-particlesmentioned above
[58, 59]. We note that the choice of uk and vk as symbols for the components
of the eigenstates is suggestive of them being related to the components of
the BCS wave function in Eq. (4.5), for which the same symbols have been
used. This is indeed the case, and we will in the next section demonstrate why
this is true for the ordinary BCS case. We will also see in the next section how
the Bogoliubov quasi-particle operators create excitations on top of the ground
state, but for the moment we simply assume that this is the case. Further, we
note that the negative energy eigenstates [vk uk]+ and [vk − uk]−, similarly
as above define operators

γ̃†k↑ ≡vkc
†
k↑ + ukc−k↓ = γ−k↓,

γ̃†−k↓ ≡vkc
†
k↓ − ukc−k↑ = γk↑. (4.28)

In the rightmost equalities, we used that the middle expressions are seen to be
Hermitian conjugates of the expressions in Eq. (4.27). It is therefore clear that
it is formally possible to consider the creation of a quasi-particle above E = 0
to be the same as the annihilation of the corresponding state below E = 0,
and vice versa. This is another manifestation of the doubling of the degrees of
freedom and the BdG-type particle-hole symmetry mentioned above: both the
creation and annihilation operators are explicitly encoded in the eigenstates.
For an ordinary Hamiltonian, only the creation operator is explicitly encoded

8 These relations follow from writing down the four eigenstates using both notations, and identi-
fying coefficients. With the notation from Eq. (4.24) used on the right hand side of the equality
sign, the four eigenstates read

[vk uk]
T
+ = [u

(−E)
k↑ v

(−E)
k↓ ]T+ [u∗

k − v∗k ]
T
+ = [u

(E)
k↑ v

(E)
k↓ ]T+

[vk − uk]
T
− = [u

(−E)
−k↓ v

(−E)
−k↑ ]T− [u∗

k v∗k ]
T
− = [u

(E)
−k↓ v

(E)
−k↑]

T
−

9 Note that this is written using the conjugate transpose of the basis in Eq. (4.22), because the
eigenvectors are column vectors.
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in the eigenstates, while the annihilation operator is obtained as the Hermitian
conjugate of the eigenstates.10

Generally the positive energy eigenstates for the four-by-four Hamiltonian
defines quasi-particle operators

γ
(E)†
k =u

(E)
k↑ c

†
k↑ + u

(E)
k↓ c

†
k↓ + v

(E)
k↑ c−k↑ + v

(E)
k↓ c−k↓, (4.29)

which through Eq. (4.20) are related to quasi-particle operators below E = 0
according to

γ
(E)†
k =γ

(−E)
−k . (4.30)

This relation will turn out to be particularly useful when we turn to a discussion
about Majorana fermions in Chapter 5.

4.3 The particle-hole picture
4.3.1 Addition and removal of Cooper pairs
Let us now pause for a moment to interpret what the Bogoliubov-de Gennes
formulation, and eigenstates associated with the Nambu spinors mean. To con-
struct the BCSwave function, we assumed that it is reasonable to treat the prob-
lem by only having an approximate knowledge of the number of Cooper pairs
in the system. The rationale is that superconductivity arise as a macroscopic
number of Cooper pairs form. The removal of a single pair should therefore
not make the macroscopic state qualitatively different [33]. This allows us to
assume that it is possible to define an order parameter∆kσσ′ , which character-
izes the ground state, and is related to the number of Cooper pairs. The reason
why the uncertainty in the number of particles in the BCS wave function is
important for ∆kσσ′ to exist, is due to the fact that the expectation value in
Eq. (4.7) is identically zero for a ground state with a fixed particle number.
However, in reality the number of particles is of course conserved as long as
we ignore interactions with the environment. We also strongly suspect that
interactions with the environment should not be a prerequisite for supercon-
ductivity. At the same time, if∆kσσ′ is related to the number of Cooper pairs,
then it clearly ought to exist in a state that is formed from a fixed number of
Cooper pairs. It therefore seems as if we need to find a way to reconcile these
conflicting ideas.

10 We note that mathematically it is possible to say that the creation operators for the eigenstates
of an ordinary single-particle Hamiltonian corresponds to the right eigenvectors of the Hamil-
tonian, while the annihilation operators correspond to the left eigenvectors. In particular, the
creation and annihilation operators can be considered basis vectors for the column and row vec-
tors, respectively, according to the identification c†k↑ = [ 1 0 ]T , ck↓ = [ 0 1 ], and so
forth. However, in Nambu space both c†kσ and ckσ corresponds to basis vectors for both the row
and column vectors.
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One way to interpret the BCS wave function is to think of the fixed particle
number state |ϕ+ pair⟩ with a Cooper pair added to the fixed particle number
state |ϕ⟩ as the same state as |ϕ⟩. As argued above, as far as the other particles
in the condensate are concerned, their state should not be affected to any rel-
evant extent by such addition or removal of a pair. This argument means that
we in principle could calculate ∆kσσ′ also using a physical (particle number
conserving) wave function such as Eq. (4.4). To do so would only require a
modification of the process whereby a scalar product between states such as
|ϕ+ pair⟩ and |ϕ⟩ is taken, in such a way as to accordingly give finite results,
as long as the two states only differ in number of Cooper pairs. As we will see
below, the BCS wave function can be seen as a technical construct that allows
for exactly this.

4.3.2 Quasi-particle excitations and the BCS ground state
We now demonstrate how the technical details of the discussion above work
out in practice for the ordinary BCS case, described by Eq. (4.21). In addition,
this will help us understand the claim in Section 4.2.4, that the Bogoliubov
quasi-particles are excitations from the ground state. Consider therefore the
Bogoliubov quasi-particle operators γk↑ and γ−k↓ introduced in Eq. (4.27).
When acting on the ground state, these operators both create and destroy par-
ticles. Formally they appear as a mixture of particles and holes. Assume now
that the coefficients in the BCS wave function in Eq. (4.5) indeed are the same
as the coefficients in γk↑, as hinted at in Section 4.2.2. We will soon see why
this assumption is correct. Applying the γk↑-operator to the BCS wave func-
tion we obtain

γk↑|ΨBCS⟩ =0, (4.31)

γ†k↑|ΨBCS⟩ =c†k↑|Ψ
k
BCS⟩, (4.32)

γk↑γ
†
k↑|ΨBCS⟩ =|ΨBCS⟩. (4.33)

Here

|Ψk
BCS⟩ =

∏
k′ ̸=k

(
uk′ + vk′c†k′↑c

†
−k′↓

)
|0⟩, (4.34)

is the BCS wave function with the Cooper pair k ↑ −k ↓ removed. Corre-
sponding relations can be obtained for γ−k↓ by replacing k ↑ by −k ↓ in all
expressions above.

What did just happen? Apparently γk↑ kills the ground state, while in con-
trast γ†k↑ removes one Cooper pair by leaving a single unpaired electron behind.
Even more intriguingly γk↑ is able to recreate the original ground state after a
Cooper pair is replaced by a stray particle. Beginning with the state γ†k↑|ΨBCS⟩
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we see that, compared to the ground state, this is an excited state. This is clear,
because if the ground state prefers to have a certain number of Cooper pairs,
then removing one of these pairs and replacing it with a single particle clearly
is an excitation. Further, γk↑ is annihilating that same excitation. However, if
the excitation is not there it kills the ground state. This is analogous to how or-
dinary creation and annihilation operators act on the vacuum. We therefore see
that the states that arise from the Bogoliubov-de Gennes Hamiltonian describe
the relevant quasi-particles that occur on top of the underlying superconduct-
ing ”vacuum”. This also demonstrates that the coefficients in the BCS wave
function indeed are related to the coefficients of the excitations as assumed,
because by this choice the ground state becomes the state that has no excita-
tions.

Although this clearly shows that the Bogoliubov quasi-particles created by
γ†k↑ are no stranger than ordinary particles, the calculation above at first seems
a little odd. How is it that when we apply an operator that simultaneously
removes and adds particles, we end up with a state as simple as that with a
single stray particle on top of a condensate of Cooper pairs? To understand this
we examine the situation a bit closer. If we before we apply the quasi-particle
operators to the state imagine that wewere to expand it, we know that wewould
end up with a superposition of states with different particle numbers. When the
quasi-particle operator γ†k↑ in Eq. (4.27) now act on this state, it results in the
removal of a single electron in the state−k ↓ from those basis states that have
a Cooper pair in the state k ↑ −k ↓. However, to those basis states that do not
have anyCooper pair in that particular state, an electron is instead simply added
in the state k ↑. This means that there is a transfer of states both up and down
in particles numbers, but all these states afterwards have in common that they
have a single unpaired particle in the state k ↑. The BCS wave function can
therefore simply be seen as a technical construct. It allows the exact number
of Cooper pairs to be irrelevant in calculations, at the same time as it gives the
same physical picture as a fixed particle number wave function. In reality we
know that the actual physical ground state is of the form in Eq. (4.4), and that
it can be projected out of the BCS wave function [56]. But, because we are not
interested in the ground state wave function itself as much as we are interested
in quantities like∆kσσ′ and the excitations, the BCS wave function can for all
practical purposes itself be considered to be the ground state. Similarly, we
note that although the Bogoliubov quasi-particle operators formally appear as
mixtures of electrons and holes, it is a bit misleading to think of the excitations
they create as mixtures of electrons and holes. The excitations they create
are clearly unpaired electrons, not a superposition of electrons and holes. The
operators should therefore rather be understood to, in conspiracy with the BCS
wave function, simplify the mathematics.
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4.3.3 The explicit BCS wave function is superfluous
We are now ready to demonstrate that the explicit construction of the BCS
wave function is not required. However, before arriving at this conclusion, we
start by assuming that we have been given the correct ground state in the form
of the BCS wave function. We then proceed to calculate the pair function Fk↑↓
using Eq. (4.7), which results in

Fk↓↑ =⟨ΨBCS |c−k↓ck↑|ΨBCS⟩ = ⟨Ψk
BCS |u∗kvk|Ψk

BCS⟩ = u∗kvk. (4.35)

Here we have limited ourselves to Fk↓↑, because this is the only pair-function
that is relevant for ordinary BCS theory, which was considered above. The
equation tells us that there is a very simple relation between the pair function
and the coefficients of the Bogoliubov-de Gennes eigenstates. This shows that
the knowledge of the Nambu spinor coefficients is enough to allow us to side
step the BCS wave function when calculating quantities such as the pair func-
tion and order parameter ∆kσσ′ . As we will see in the next section, this has
important implications for the general case where the matrix is four-by-four,
and for which no explicit wave function is provided.

4.3.4 The Bogoliubov-de Gennes band structure
As mentioned in Section 4.2.3, and demonstrated in Section 4.3.2, it is ben-
eficial to consider the positive eigenstates as encoding creation operators for
excitations. In Section 4.3.2 we also saw that the corresponding annihilation
operators, which are related to the creation operators encoded in the negative
energy eigenstates through Eq. (4.30), kills the ground state. The negative
eigenstates can therefore be considered as corresponding to occupied quasi-
particle states in the ground state. This is very similar to how ordinary ground
states consist of band structures with all states below the Fermi level occupied,
and all above unoccupied.11

There are two important differences between a normal band structure and
the Bogoliubov-de Gennes band structure. First, the Fermi level will always sit
at E = 0. Of course the Fermi level of the BCS Hamiltonian in Eq. (4.3) can
vary, but the chemical potential enters in the dispersion relationHσσ′(k). This
means that the effect of a shift in Fermi energy modifies the band structure,
which follows from the Bogoliubov-de Gennes Hamiltonian in Eq. (4.21),
rather than shift the line that divides occupied and unoccupied states from each

11 This conclusions may seem trivial. However, the truth is that the Bogoliubov-
transformation [57–59] as it is usually done obscures some of these simple facts. For example,
it is common to calculate ground state properties for a superconductor by summing over both
positive and negative eigenstates with a strangely looking occupation factor of 2n(E)−1, rather
than just the Fermi-Dirac distribution n(E) as is the case for an ordinary band structure. This
discussion has been carried out for T = 0, but for finite temperatures the result is to receive the
familiar occupation factor n(E) rather than 2n(E)− 1.
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other. We can say that the chemical potential sets the Fermi level for the normal
state described byHσσ′(k), whileE in the quasi-particle Hamiltonian refers to
energies relative to the Fermi level. Second, we note that in an ordinary band
structure particle and hole excitations can occur independently of each other.
However, we know from Eq. (4.30), that in the Bogoliubov-de Gennes band
structure the deoccupation of a level below E = 0 necessarily comes together
with the occupation of a corresponding state above E = 0.

To take advantage of this physically intuitive picture, we use Eq. (4.26) to
express the pair function in Eq. (4.35) as

Fk↓↑ =⟨c−k↓ck↑⟩ = v
(−E)∗
k↓ u

(−E)
k↑ . (4.36)

Further, |uk|2 and |vk|2 are defined as the probabilities that the pair k ↑ −k ↓
is unoccupied and occupied, respectively. This means that it also is the proba-
bility that the state k ↑ is unoccupied and occupied, respectively. It is therefore
clear that the coefficients |u(−E)

k↑ |2 = |vk|2 and |v(−E)
k↓ |2 = |uk|2 have the same

meaning. In particular, the expression for the pair function above aquires the
form of an ordinary expectation value, where ck↑ acts as an annihilation oper-
ator to the right, extracting the probability amplitude for that state being oc-
cupied. Similarly, c−k↓ acts as a creation operator to the left, extracting the
probability amplitude for that the state is unoccupied. This observation allows
us to generalize the expression for the pair function to

Fkσσ′ = ⟨c−kσckσ′⟩ =
∑
Eλ<0

v
(λ)∗
kσ u

(λ)
kσ′ . (4.37)

Here the sum is over all states below E = 0, to take into account that the
probability to find the particle is the sum over the probability to find it in any
given band λ. We emphasise that Eq. (4.37) allows us to calculate the pair
function in the absence of an explicit BCS like wave function, which we do
not have in the general case.

4.4 Superconducting mass gap and superflow
By nowwe know how to interpret the Bogoliubov-de Gennes Hamiltonian and
its eigenstates, but what are the energies of the excitations? To answer this
we have to diagonalize the Bogoliubov-de Gennes Hamiltonian. We will later
have to do so for a general four-by-four matrix, but here we restrict ourselves to
the ordinary two-by-two BCS Hamiltonian in order to demonstrate the concept
of a superconducting mass gap. A comparison between Eq. (4.21) and Eq.
(3.1) reveals that we have already solved this problem, with the result

E = ±
√

|∆|2 +H2(k). (4.38)
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It is clear that the dispersion relation always has an energy gap around E =
0. Further, because all states below E = 0 are occupied, while all above
are empty, the superconductor is in many ways similar to a band insulator.
However, the superconductor is not an insulator, quite the opposite.

To understand in what sense superconductors are similar to insulators, and
in what sense they differ, we perform a Galilean boost of the electrons. If this
were to happen in a vacuum, Galilean invariance would guarantee this motion
to continue indefinitely. That is, we would have a constant current that does
not die off. However, this argument also holds for electrons that are not in a
superconducting state. The difference between the two fluids becomes clear
when we admit that in reality the electrons in a conductor are moving within
a lattice. The lattice is still in the lab frame, and this breaks the Galilean in-
variance, because although kinetic energy of unidirectional motion is relative,
friction forces make the lab frame the preferred coordinate system in which to
minimize the free energy. The non-moving electron fluid therefore becomes
the energetically favorable condition.

A normal fluid eventually falls back into the low energy state, because
scattering against impurities continuously redistributes the momentum. This
is where a superconductor is different. Because the electrons are bound to
each other inside the superconducting condensate, scattering of single parti-
cles would need to break up Cooper pairs. This costs energy and therefore the
individual particles become insensitive to scattering. Impurities can attempt to
scatter particles, but the condensate ensures that the particles remain in the su-
perflow.12 The only way to change the flow in the superconductor is therefore
to act on the condensate as a whole with a macroscopic force [56]. This is what
happens when an external electromagnetic field acts on a macroscopic piece
of the superconductor. We see that the superconductor is like an insulator in
the sense that it costs a large amount of energy to create an excitation out of
the ground state. The superconductor is, however, different from the insulator
in that the superconducting ground state itself can be superflowing.

12 Considering that the attractive electron-electron interaction is mediated by phonons, it appears
to me that the appropriate explanation for what actually happens is the following. A particle, say
k ↑, can in fact scatter against an impurity into a state q ↑. However, this impurity is fixed to the
lattice, and sets up a phonon of momentum k− q in order to conserve momentum. The phonon
is then absorbed by the electron in the state −k ↓, which accordingly is scattered into the state
−q ↓. The result is that scattering do occur, but only through process that do not leakmomentum
(and energy) into the environment, and therefore preserves the momentum of the condensate as
a whole. To ensure that momentum and energy is not leaked into the environment, the phonons
should not be able to propagate freely in the material. This is exactly the case for the phonons
that mediates the electron-electron interaction, as they are virtual phonons [65]. That is, they
are modes that decays exponentially because they do not carry enough energy to support free
propagation.
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4.5 Self-consistent method
We have seen in Section 4.3.2 that γ(λ)†k = γ

(−λ)
−k , for Eλ > 0, is an operator

that creates excitations from the ground state. We also learned in Section 4.3.4
that the coefficients u(λ)kσ and v(λ)kσ for Eλ < 0 determine the ground state. In
particular, the coefficients can be used to calculate the pair function Fkσσ′ and
order parameter∆kσσ′ , through Eqs. (4.37) and (4.12), respectively. The order
parameter in turn determines the Bogoliubov-de Gennes Hamiltonian, from
which the eigenstates γ(λ)†k follows. This suggests that it is possible to self-
consistently determine the ground state. That is, for any given Hσσ′(k) and
pair potential Vkk′σσ′ , it should be possible to determine its superconducting
ground state if we can find a ∆Trial such that

∆Trial
?
=∆BdG ≡ −

∑
k′

Vkk′σσ′Fk′σσ′ = −
∑

k′,Eλ<0

Vkk′σσ′v
(λ)∗
k′σ u

(λ)
k′σ′ . (4.39)

Here ∆Trial is the order parameter which determines the Hamiltonian, while
∆BdG follows from the eigenstates of the Hamiltonian. The kσσ′-indices are
here implicit for the∆-symbols.

The equation above describes the self-consistency condition, but also gives a
recipe for how to arrive at a self-consistent solution. By repeating the sequence

∆n
Trial → H(k) → ∆n

BdG ≡ ∆n+1
Trial , (4.40)

using some reasonable initial∆0
Trial, and in each step perform the self-consistency

test

||∆n
Trial −∆n

BdG|| < ϵ, (4.41)

we can for a given error tolerance ϵ eventually arrive at a self-consistent result.
Here ||∆|| denotes some appropriate norm on the space of order parameters,
such as for example ||∆|| = maxkσσ′ |∆kσσ′ |. Although the procedure usually
is very stable, it is important to be aware that such a self-consistent procedure
can lead to many different solutions, corresponding to different local minima
in the free energy. In fact, we will in what follows be interested in solutions
corresponding to both global and local minima in the form of homogenous bulk
and vortex solutions, respectively.

4.6 Real space formulation
4.6.1 Transformed expressions
We have so far worked in momentum space, but it will be particularly im-
portant for us to be able to work in real space. Further, we will mainly need
to consider the real space expression for the ordinary BCS case in Eq. (4.3).
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More specifically, we will consider the case where Vkk′ = −V , and for which
it suffices to consider the single matrix elements Fk = Fk↓↑ = −Fk↑↓ and
∆ = ∆k↓↑ = −∆k↑↓ of the pair function and order parameter, respectively.
To arrive at the real space formulation, we expand the operators in the previous
expressions in their real space basis, and perform the sums over momentum.
The result for the single particle term is dependent on the form of Hσσ′(k),
and we therefore leave this for later. However, the interaction term in the
Bogoliubov-de Gennes Hamiltonian, the order parameter, and the pair func-
tion, in Eq. (4.7, 4.11, 4.12) becomes

Hint =
∑
x

(
∆c†x↑c

†
x↓ +∆∗cx↓cx↑

)
,

∆ =− V
∑
x
Fx,

Fx =⟨cx↓cx↑⟩. (4.42)

Once we have these expressions, the same doubling of degrees of freedom and
introduction of Nambu spinors can be done as in momentum space. In real
space the single particle part of the Bogoliubov-de Gennes Hamiltonian will
however not be diagonal. This means that instead of a set of decoupled four-
by-four matrices, we will need to write down a matrix of dimension 2× 2×n,
where n is the number of sites on the lattice under consideration. The first
factor of two comes from having two spins at each site, while the second factor
of two is due to the artificial doubling of the number of degrees of freedom.

We also note that while the present derivation was performed in the homo-
geneous case, and ∆ comes out as a sum over all space, we will in real space
calculations promote∆ to a space dependent variable∆x. This is done by as-
suming the order parameter to be local in the sense that ∆x = −(V /N)Fx →
−V Fx, where the number of lattice sites N is absorbed by the pair potential.
The expression for the order parameter above will thereby be interpreted as
saying that the average of the order parameter over all sites is the same as the
order parameter at any particular site when the system is homogeneous. We
can alternatively say that this corresponds to the assumption that the pair pot-
netial is completely local in space.

4.6.2 Superflow in real space
Consider now aGalilean boostk → k+q

2 on all the eigenstates of the Bogoliubov-
de Gennes Hamiltonian. Further, assume that the boost is small enough that
|u(λ)k+ q

2
σ
| ≈ |u(λ)kσ |. Then the only effect is that the components of the eigenstates

that go into the calculation in Eq. (4.37) are multiplied by a factor13 eiq·x/2.

13 Note that the the vkσ components are multiplied by a factor e−iq·x/2, because these are asso-
ciated with the operator c†−kσ , rather than ckσ . In particular, the boost should be understood to
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This results in the pair function being multiplied by an overall factor of eiq·x,
and this carries over into the real space expressions for the pair function in Eq.
(4.42) and to the local order parameter ∆x, as there is no summation over q.
This means that when the ground state experiences a superflow with q

2 flow
per particle, the order parameter becomes position dependent and is given by

∆x = ∆eiq·x. (4.43)

We therefore see that a supercurrent is associated with a change of phase in the
order parameter. It is also clear that the momentum per Cooper pair at x can
be obtained from the order parameter through the expression

qµ = Im
(
∆∗

x∂µ∆x

|∆x|2

)
. (4.44)

4.6.3 Vortices and associated equivalence classes
The expression in Eq. (4.44) for the Cooper pair momentum looks very much
like the connections we saw in the previous two chapters. This suggests that
there may be topological properties associated with it, and there are indeed.
However, instead of applying the connection above in order to classify differ-
ent equivalence classes, we here use more physical arguments to understand
what the objects of these topological equivalence classes are.

From a physical point of view, we can in general expect that the superflow
instead of being homogeneous as above, varies from point to point in space.
This means that it is possible to imagine a superflow that gives rise to an order
parameter of the form

∆x =∆(ρ, z)einθ, (4.45)

where (ρ, θ, z) are the ordinary cylindrical coordinates, and n is some integer.
This is clearly a superflow that is circulating around x = 0, and corresponds
to a vortex in a superconductor [66]. Using Eq. (4.44) we also see that the
superflow is getting quicker and quicker the closer to ρ = 0 we are. As we ap-
proach the center of the vortex, the superflow becomes infinite, which clearly
is not a physical possibility. However, this type of flow is possible if we at the
same time assume that the superconductivity vanishes at the center, such that
∆(ρ, z) → 0 as ρ→ 0. In a sense a vortex can therefore be seen as a possible
configuration of the order parameter in a superconductor that has a hole drilled
in it.

We now note that the requirement that n is an integer is important. If it were
to be any other real number, the order parameter would have to make a discon-
tinuous jump somewhere around the vortex. This would make the derivative as

mean −k → −k + q
2
for the lower block of the Hamiltonian, because after a boost electrons

with momentum k+ q
2
are paired with electrons with momentum −k+ q

2
.
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well as superflow infinite across this jump, which is unphysical. It is therefore
clear that it is impossible to continuously transform a vortex with some n, into
a vortex with a different n. It is, however, possible to continuously deform a
vortex with some n, to some other configuration of the order parameter which
also winds n times around ρ = 0. The set of vortices having the form given
above can therefore from a topological point of view be seen as a representa-
tion of all possible single vortex configurations. In this sense a vortex is an
example of a topological excitation [3, 5].

Because ∆x is a complex number defined over real space, we can think
of the problem as a fiber bundle with a three-dimensional base manifold and
a complex fiber. However, a closer look at Eq. (4.44) reveals that it is ill-
defined at ρ = 0. A simpler picture therefore emerge if we instead take the
view expressed above, that a vortex is a configuration of the order parameter
in a superconductor with a hole drilled in it. Each node in the order parameter
is responsible for drilling another hole. The topological equivalence classes14
that arise from a given number of holes are then represented by the vortex
configurations that winds n1, ..., ni times around hole 1 to i. This is an exam-
ple of how not only the object (the connection or order parameter), but also
the embedding space (the fiber bundle), is responsible for what the possible
equivalence classes are. This is similar to the case of the threaded donut in
Fig. 2.6.

4.7 Unconventional superconductivity
In this chapter we have introduced a general formalism for treating supercon-
ductors. However, we have several times limited our discussion to special
cases. For example, when discussing superflow in Section 4.4, the discussion
was limited to the ordinary BCS problem in the form of a two-by-two matrix.
In this case it is implied that only∆k↓↑ = −∆k↑↓ and Fk↓↑ = −Fk↑↓ are non-
zero. Similarly, when discussing the real space formulation in Section 4.6.1,
which was performed for a full four-by-four matrix, the discussion was still
limited to the same conditions on the order parameter and pair function. The
superconductors considered in these special cases are known as conventional
s-wave superconductors. To understand why, and to introduce the notion of
unconventional superconductivity, such as p-wave superconductivity, we take
a closer look at the pair function.

Using the fermionic commutation relations, we see that the pair function
satisfies the relation

Fkσσ′ = ⟨c−kσckσ′⟩ = −⟨ckσ′c−kσ⟩ = −F−kσ′σ. (4.46)

14 This is assuming that the vortex lines themselves do not form knots. In that case one can
imagine many more configurations.
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This tells us that the pair function is odd under the simultaneous reversal of
momentum and interchange of spin indices. We may, however, also ask how
the pair function transforms under the individual actions of either reversing
the momentum or interchanging the spin indices. For example, in the cases
where we assumed Fk↑↓ = −Fk↓↑, it is clear that the pair function is odd under
interchange of spin. We now write the pair function for a given k on the matrix
form

Fk ≡
[
Fk↑↑ Fk↑↓
Fk↓↑ Fk↓↓

]
≡ Fk0σ0 + Fkxσx + Fkyσy + Fkzσz, (4.47)

where σi are the three Pauli matrices and the identity. In the last step we used
that any complex two-by-two matrix can be written as a sum of the Pauli ma-
trices and the identity, with complex coefficients Fki. It is clear that these
coefficients are given by

Fk0 =
1

2
⟨c−k↑ck↑ + c−k↓ck↓⟩,

Fkx =
1

2
⟨c−k↑ck↓ + c−k↓ck↑⟩,

Fky =
i

2
⟨c−k↑ck↓ − c−k↓ck↑⟩,

Fkz =
1

2
⟨c−k↑ck↑ − c−k↓ck↓⟩. (4.48)

Here Fk0, Fkx and Fkz are said to be coefficients that describe triplet Cooper
pairing, because they are derived from operators that act on the triplet spin
space, which is spanned by | ↑↑⟩, | ↓↓⟩ and (| ↑↓⟩+ | ↓↑⟩) /

√
2. In contrast,

Fky describes spin singlet pairing, because it is derived from an operator that
acts on the singlet spin space spanned by (| ↑↓⟩ − | ↓↑⟩) /

√
2. It is therefore

possible to classify superconductors into spin singlet and spin triplet supercon-
ductors, depending on which coefficients that are non-zero [61].

To further investigate the properties of the singlet and triplet superconduc-
tors, we note that the interchange of spin indices corresponds to taking the
transpose of Fk, which results in

FTk = Fk0σ0 + Fkxσx − Fkyσy + Fkzσz. (4.49)

The spin singlet coefficient is therefore odd under the interchange of spin,
while the triplet coefficients are even. However, because Eq. (4.46) can be
written as

Fk = −FT−k, (4.50)

it is clear that all coefficients are odd when both k is reversed, and spins are
interchanged. In order for the total oddness to be preserved, this leads to the
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conclusion that as a function of k, the singlet pair function must be even, while
the triplet pair functions must be odd.

Expanding the Fki coefficients in the basis of spherical harmonics, they can
further be written as

Fki =
∑
nlm

cinlmjn(|k|)Ylm(θ, φ). (4.51)

Here jn(|k|) are the radially dependent parts of the expansion, while Ylm(θ, φ)
are the spherical harmonics. The parameters |k|, θ andφ are the spherical coor-
dinates of k. Now spherical harmonics are even or odd under parity depending
onwhether l is even or odd [67]. It is therefore clear that the single pair function
Fky only contains terms with even l. Following the terminology from atomic
physics, the singlet pair function is said to be s, d, g, ...-wave. Similarly, the
triplet pair functions Fk0, Fkx, and Fkz , only contains terms with odd l, and are
therefore labelled p, f, h, ...-wave.

The same properties are inherited by the order parameter, which is calcu-
lated from the pair function. However, it is common to express the order pa-
rameter using a slightly different notation [61]

∆k = i (ψ(k) + d(k) · σ)σy, (4.52)

where iψ(k)σy is the singlet component, d(k) is a complex vector, and σ is a
vector of Pauli matrices. Having the same properties as the pair function, it is
clear that also ψ(k) and d(k) can be expanded as

ψ(k) =
∑
nlm

cψnlmjn(|k|)Ylm(θ, φ), (4.53)

di(k) =
∑
nlm

cinlmjn(|k|)Ylm(θ, φ), (4.54)

where ψ(k) consists of terms with even l only, and the components of d(k)
consists of terms with odd l only.

4.8 Superconductivity in two dimensions
In this thesis we are mainly concerned with superconductivity in two dimen-
sions. While reality of course always have three spatial dimensions, two-
dimensional effective models can arise in many ways. For the systems we
consider there are two main routes for motivating such a model. First, such
a model can be motivated when studying the surface of a three-dimensional
bulk superconductor. In this case the effective two-dimensional model arise by
projecting out the part of the Hamiltonian that describes the motion along the
surface. The perpendicular component is assumed to be possible to integrate
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out, and that this at most give rise to a renormalization of the model parame-
ters for the remaining Hamiltonian. Second, it is also possible to consider two
dimensional structures that are not superconducting in themselves, but which
are in contact with a superconducting substrate. A superconductor has a certain
superconducting coherence length, which is the length scale over which a su-
perconductor transitions from superconducting to non-superconducting [59].
When a material is placed in contact with a superconductor, it is therefore pos-
sible that superconductivity is not destroyed at the interface, but instead leaks
into the nearby material [68]. As far as the model we consider is concerned,
both of these motivations are valid. Our results are therefore independent of
which particular experimental realization that is most promising.

Finally, we mention that when the system is two-dimensional the coordinate
θ in Eq. (4.53) becomes fixed at θ = π

2 , and only the variable φ becomes
relevant. For any fixed θ, the spherical harmonics satisfy

Ylm(θ, φ) ∼ eimφ, (4.55)

and with a slight abuse of notation we correspondingly consider states with
m = 0, 1, 2, ... to be s, p, d, ...-wave superconductors, respectively.
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5. Topological superconductivity

In the previous chapter we introduced the Bogoliubov-de Gennes formalism
for superconductors, and saw that this leads to a band picture of supercon-
ductivity. We also saw that this band structure is formally similar to a band
insulator. This suggests that the topological band theory in Chapter 3 is appli-
cable also to superconductors. Moreover, we saw in the previous chapter that
a vortex can be seen as a topological excitation in real space. In this chapter
we will see how the interplay between these real and momentum space topolo-
gies can give rise to what is known as localized Majorana fermions in vortex
cores. We will also see that such Majorana fermions can appear at endpoints
of one-dimensional wires. However, we will also see that the term Majorana
fermion is slightly misleading. Majorana non-Abelion may in fact may be a
more appropriate name.

5.1 Majorana fermion
In Section 3.2 we noted the structural similarities between the dispersion rela-
tion associated with a small or vanishing mass gap, and the relativistic disper-
sion relation that follows from the Dirac equation. This led to a formal analogy
between the electron and hole excitations in condensed matter, and the elec-
tron and positron excitations that are solutions to the Dirac equation. In 1937,
the Italian physicist Ettore Majorana proposed an alternative equation for rel-
ativistic particles, for which particles are their own antiparticles [32, 33, 69].
That is, the process that creates a particle is the same as that which annihi-
lates it, γ† = γ. This is reminiscent of the relations between the Bogoliubov
quasi-particles, where Eq. (4.30) reads

γ
(E)†
k =γ

(−E)
−k . (5.1)

The analogy is however not complete, because although this means that the
creation of one state is the same as the annihilation of another, it is not the
same state that is created and annihilated. The relation above only states that
the occupation of a state above E = 0 is accompanied by a deoccupation of a
state below E = 0.

Before moving on with the analogy, we note here that Eq. (5.1) is de-
rived using the four-by-four matrix formulation of the Bogoliubov-de Gennes
Hamiltonian in Section 4.2.2. We stress that the relation does not hold be-
tween the positive and negative eigenstates in the ordinary BCS Hamiltonian,
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when, as is customary, this problem is formulated using only the positive sign
problem in Eq. (4.21). In this case Eq. (5.1) relates eigenstates in the two
problems with different sign to each other, as indicated in Fig. 4.1. This pos-
sible source of confusion is one reason for why it has been argued that it is
beneficial to always treat the full four-by-four problem, and to consider only
positive eigenstates as corresponding to excitations. We will therefore here
always start from the complete four-by-four formulation.

Although Eq. (5.1) does not in itself imply aMajorana relation, it is possible
to get one step closer by imagining a Dirac cone in the energy spectrum. In
this case E = 0 at k = 0, and the relation γ(0)†0 = γ

(0)
0 follows.1 Moreover,

because of the bulk-boundary correspondence presented in Sections 3.3 and
3.4, single or multiple branches of Dirac cones can be expected to occur on
edges of two-dimensional superconductors. It is only required that the super-
conductor is described by a Hamiltonian that gives rise to a non-trivial Chern
number. However, because the Bogoliubov-de Gennes Hamiltonian in general
is a four-by-four matrix, it is possible to arrive at a similar situation to that of
the topological insulator described in Section 3.4. That is, the two operators
are on two different helical branches, and that there is still a hidden band index
that separates the two operators. This is not too surprising, as it is possible that
the two superscripts in the relation γ(0)†0 = γ

(0)
0 only appear to be the same

because E = −E.
With this background we understand that a non-degenerate zero energy state

is a sure sign of a Majorana fermion, because there are then no possible hidden
indices. However, at first this seems hopeless to achieve, because we know
from Section 4.2.2 that Bogoliubov quasi-particles necessarily come in pairs.
The relation between positive and negative energy states is a consequence of
the artificial doubling of degrees of freedom, which guarantees each state to
have a corresponding partner. In particular, any state with energy E = 0
therefore has to have a partner with energy E = 0. In spite of this it turns out
that it is possible to separate these pairs in space, and it is therefore possible
to have locally non-degenerate zero energy states. We will see how below,
but before continuing with this analysis we pause to say a few words about the
current status of the field.

1 In general the Dirac point does not need to be located at k = 0, but can be at any high symmetry
point in the Brillouin zone. However, as long as there is a single Dirac cone in the system, it
needs to be at a high symmetry point where k is identified with −k through a reciprocal lattice
vector. We therefore use k = 0 as a short hand notation for indicating a high symmetry point,
for which k and−k refers to the same wave vector. Alternatively, k can be considered to be the
momentum relative to the high symmetry point.
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5.2 Theoretical proposals and experimental progress
Several ways to achieve locally non-degenerate zero energy modes have been
proposed. Early proposals include vortices in superfluid Helium and spinless
superconductors, fractional vortices in fractional quantum Hall states and p-
wave superconductors, and at the end points of one-dimensional spinless p-
wave superconductors [34, 70, 71]. Not all of these are superconductors, but
a common feature of most of them is the use of some type of superfluid state.
Particularly, we note the occurrence of spinless and p-wave superconductors
in this list, which we will describe in more detail below. None of the above
proposals have, however, had any experimental success so far.

Given the difficulty to physically realize any of the above proposals, it is
encouraging that a new wave of proposals have followed the discovery of
topological insulators. Beginning with the proposal by Fu and Kane to realize
effectively spinless superconductors on the surface of a topological insulator
[23], a string of other proposals followed suit. Most notably, the first pos-
sible signatures of Majorana fermions were reported in 2012, in InSb wires
placed on top of an s-wave superconductor [31]. This particular setup is based
on several proposals of using the proximity effect to induce s-wave supercon-
ductivity into semiconductors with strong Rashba spin-orbit interaction, and
further apply a magnetic field to make them effectively spinless [25–28]. The
merit of this approach lies in the types of materials that are used to build them.
With s-wave superconductors and semiconductors both being materials with
a long history of experimental and even industrial progress, this approach has
opened up a credible way of experimentally accessing the Majorana physics.
More recent experiments have also indicated that ferromagnetic impurities on
top of an s-wave superconductor also can provide a promising route toward
engineering Majorana fermions.[35–37] In this case the surface is treated as
an effectively two-dimensional superconductor, with Rashba spin-orbit inter-
action arising from inversion symmetry breaking at the surface, while the mag-
netic impurities provide a Zeeman term. Because both systems involve super-
conductivity, Rashba spin-orbit interaction, and magnetism, they can both be
described by the same model Hamiltonian. From the theoretical point of view
presented in this thesis, there is therefore little need for distinguishing between
the two systems. The model Hamiltonian that forms the basis for the result part
of this thesis can therefore equally well be thought to describe one or the other
experimental realization.

5.3 Spinless p-wave superconductor
5.3.1 p-wave superconductor
Although we will be interested in a different setup eventually, it is instructive
to consider the spinless p-wave superconductor mentioned above. By doing so
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we can understand what is meant by spinless, why it leads to the possible exis-
tence ofMajorana fermions, as well as prepare for a treatment of the systemwe
eventually will consider. In particular, we consider p-wave superconductivity
in a two-dimensional system. We therefore remind ourselves from Section 4.8,
that in a two-dimensional system, we mean by p-wave superconductivity that
the order parameter varies as

∆k ∼ e−iφ, (5.2)

where φ is the polar angle of the wave vector k = (|k| cos(φ), |k| sin(φ)).
There is still freedom in the radial behavior of the order parameter, but for
concreteness we choose an order parameter that varies as

∆k ∼ kx − iky. (5.3)

Further, from Section 4.7 we know that p-wave pairing can only happen in
the triplet pairing state. The order parameter therefore has to be described by
one, or several, of the components of d(k) in Eq. (4.52). We choose d(k) =
(0,∆(kx − iky), 0), such that

∆k =

[
∆(ky + ikx) 0

0 ∆(ky + iky)

]
, (5.4)

where the parameter∆ has been introduced as a parameter through which the
strength of the superconductivity can be tuned. Towrite down the Bogoliubov-
de Gennes Hamiltonian, we also need to specify the normal state dispersion
relation Hσσ′(k). For this we choose

H(k) =
[
k2 − µ+ Vz 0

0 k2 − µ− Vz

]
, (5.5)

which describes two ordinary parabolic dispersion relations, with a tunable
chemical potential µ, and a Zeeman field Vz that can split the two bands. The
Bogoliubov-de Gennes Hamiltonian in Eq. (4.14) is then given by

H =


k2 − µ+ Vz 0 ∆(ky + ikx) 0

0 k2 − µ− Vz 0 ∆(ky + ikx)
∆(ky − ikx) 0 −k2 + µ− Vz 0

0 ∆(ky − ikx) 0 −k2 + µ+ Vz

 .
(5.6)

Using the two bases

(ck↑, c
†
−k↑), (5.7)

(ck↓, c
†
−k↓), (5.8)
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Figure 5.1. The p-wave superconductor described by Eq. (5.6) can be divided into two
subblocksH+ andH−, described by Eq. (5.9). Further, Eq. (4.20) relates eigenstates
along the blue arrows. The relations are between states described by the same sub-
matrix, and any non-degenerate zero energy mode for any of the matrices is therefore
related to itself. This stands in contrast to the situation for the ordinary BCS Hamilto-
nian depicted in Fig. 4.1, where the relation is between states in different submatrices,
and therefore is guaranteed to not be related to itself through Eq. (5.1).

the total Hamiltonian can further be split into two independent Hamiltonians
of the form

H±(k) =
[
k2 − µ± Vz ∆(ky + ikx)
∆(ky − ikx) −k2 + µ∓ Vz

]
. (5.9)

Here the plus and minus sign refers to the problem using the up and down spin
basis, respectively. This is similar to how the ordinary BCS problem splits in
two different problems, but there is one very important difference. Equation
(4.20) relates components associated with up spin, to other components asso-
ciated with up spin, and likewise for down spins. Any singly degenerate zero
energy state for any of the two sub matrices will therefore satisfy the Majorana
condition γ† = γ, because in this case the relation is between states described
by the same submatrix. See Fig. 5.1.

5.3.2 Spinless p-wave superconductor
Before continuing with an analysis of possible zero energy states, we reduce
the Hamiltonian to an effectively spinless form. To do so we let the chemical
potential and Zeeman term be tuned together such that Vz +µ≪ −|∆|, while
vz = µ−Vz remains a small parameter. The down spin problem with negative
sign in Eq. (5.9) is then dominated by the diagonal term, and there are no
states close to E = 0 at all. The down spins therefore have become irrelevant,
and it is possible to view the problem as an effectively spinless problem. Of
course the electrons have not lost their spins, but there is only one spin species
left to consider that is relevant: the up spins. Spinless should therefore not be

79



misinterpreted to mean that the particles have no spin, but rather that there only
is a single relevant spin index.2

5.3.3 Edge states
The Hamiltonian that describes the remaining up spin in Eq. (5.9) is now given
by

H+(k) =
[
vz + k2x + k2y ∆(ky + ikx)
∆(ky − ikx) −vz − k2x − k2y

]
. (5.10)

A glance at Eq. (3.4) reveals that, with the identification vz = M and ∆ =
α, the two Hamiltonians are the same. Formally the p-wave order parameter
plays the role of a Rashba term, while vz is a mass gap. It was there shown
that this Hamiltonian has a non-zero Chern number associated with it when
vz < 0. Further, the edge states of an infinite strip were considered there. It
was shown that along each edge, the Hamiltonian gives rise to a single branch
in the dispersion relation which cuts through E = 0. Because a single branch
cuts through zero, it follows that the state at E = 0 is a Majorana fermion. Its
partner is localized at the other edge.

5.3.4 Edges with finite length3

It seems as if Majorana fermions are bound to appear at the edge of a two-
dimensional spinless p-wave superconductor. There is a complication though,
because in reality there are no infinite edges, only finite edges that form closed
loops. If the infinite strip in Fig. 3.4 is cut so that it has edges on each four
sides, all edges are joined into one single edge. Now the fact that there is
one branch on each edge before the edges are joined into one, does not imply
that there are two branches on the joined edge. From Section 3.4 we remember
that the branches on each side of the infinite strip are counter propagating, they
therefore propagate in the same direction around the interior. That is, the two
branches join into a single clockwise or counter-clockwise propagating branch
when the edges are joined. Still, we expect each state to have a partner, but how
is this possible if globally there is just a single branch that cuts through zero
on a single edge? The answer is that although the branch cuts through zero,
the edge now has a finite length, and its spectrum is therefore quantized. This
means that the branch is not cutting through E = 0 continuously, and there
is in fact no state at E = 0 [72]. Instead, there are two states just above and
below zero that are each others partner. See Fig. 5.2 for a conceptual picture.

2 More generally the spin index can also refer to a pseudo-spin.
3 Part of the discussion in this section runs in parallel with the discussion in the section ”Majorana
spin-polarization and block edge currents” in Paper V.
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Figure 5.2. When the infinite strip in Fig. 3.4 is cut off, a single edge is formed. The
two branches on the opposite sides of the infinite strip join into a single branch on the
single edge. Further, the finite length of the edge leads to a discrete energy spectrum.
The result is that the branch that cuts through zero does not have a mode with exactly
E = 0, and there is therefore no Majorana fermion in the system.

Figure 5.3. (Left) Similar to the situation in Fig. 5.2, but with two edges. Each edge
hosts a discretized edge mode branch, but there is no Majorana fermion at E = 0.
(Right) A magnetic flux is threaded through the center of the disk, or a supercurrent
is circulating around it. The discretized spectrum is shifted, such that two Majorana
fermions occur at E = 0. The two Majorana fermions are located at the inner and the
outer edge, respectively.

In spite of the additional problem that arise because of finitely sized edges,
it turns out that this problem can be cured. This can be done by drilling a hole
into the superconductor, and threading a magnetic flux through the hole. In
this way one E = 0 state is localized on the inner and outer edge respectively.
We do not go into details about this here, but instead refer the reader to [72].
We note, however, that this is equivalent to inserting a vortex into the system.
A single vortex in a two-dimensional superconductor therefore gives rise to a
Majorana fermion localized at the vortex core, and its partner is localized at
the edge of the sample. See Fig. 5.3 for a conceptual picture.

Before moving on we also note that the model described here can be turned
into a one-dimensional problem, by ignoring the dimension along the infinite
strip, say kx. The model then reduces to the continuum version of Kitaev’s
one-dimensional spinless p-wave superconducting wire [34]. This is of partic-
ular interest, because Kitaev’s one-dimensional spinless p-wave superconduc-
tor is an archetypal model, to which the proposals for one-dimensional wires
in Section 5.2 are closely related. Kitaev’s one-dimensional wire can there-
fore be seen as the infinite strip with momentum restricted to kx = 0 along the
strip. It is therefore clear that although the Chern number cannot be used to
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Figure 5.4. By making the restriction kx = 0, the two-dimensional spinless p-wave
superconducting infinite strip, can be thought of as a one-dimensional wire along the
y-direction. In particular, there are two Majorana fermions at opposite edges of the
infinite strip, at kx = 0, which becomes Majorana fermions at opposite ends of the
one-dimensional wire. Through this construction, Kitaev’s spinless p-wave supercon-
ducting wire can be arrived at from a two-dimensional system, which can be classified
using a Chern number.

classify the one-dimensional bulk of Kitaev’s model,4 the occurrence of Ma-
jorana fermions at the wire’s end points is related to a Chern number. That
is, the Chern number of the two-dimensional problem from which the one-
dimensional model is derived from through dimensional reduction. See Fig.
5.4 for a conceptual picture.

5.4 s-wave superconductor, with Rashba spin-orbit
interaction and ferromagnetism

5.4.1 Motivation
The p-wave superconductor described in the previous section captures all the
essential details of the type of topological superconductor that we are focused
on in the results part. From a theoretical point of view it is therefore an ideal
system, because concepts can be easily demonstrated. However, it suffer from
the serious drawback that it is hard to realize experimentally. For this reason
the model that we consider in the results part, as mentioned in Section 5.2,
instead involves conventional s-wave superconducivity [24, 25, 29, 30].

We saw in the previous section that p-wave superconductivity is responsi-
ble for providing a Rashba like term in the Hamiltonian in Eq. (5.9). When
moving to an s-wave superconductor, the Rashba-like behavior therefore has
to come from some other term, and in the setup described here the Rashba
interaction itself is used. Apart from s-wave superconductivity and a Rashba
term there is, however, no difference in what goes into the construction of
the Hamiltonian, as compared to the p-wave superconductor above. We will
therefore need s-wave superconductivity, Rashba spin-orbit interaction, and
4 The first Chern number is trivially zero for the one-dimensional case due to the fact that a one-
dimensional manifold cannot be curved. That is, there are to few spatial degrees of freedom for
any curvature, such as the Berry curvature in Eq. (2.29), to have a non-zero component.
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a Zeeman term in the Hamiltonian, in addition to the ordinary kinetic energy
and chemical potential. None of these properties are exotic on their own. It is
therefore reasonable to expect that given the readily available amount of ma-
terials that exhibits one or several of these effects, it is possible to engineer
effectively two-dimensional structures in which all of the effects coexist. As
was mentioned in Section 5.2, experimental progress has already been made in
this direction. The one-dimensional wire mentioned there is the dimensionally
reduced version of the two-dimensional setup. In the same way as Kitaev’s
model is the dimensionally reduced version of the two-dimensional spinless
p-wave superconductor.

5.4.2 Tight-binding model Hamiltonian
Having introduced the system, it is time to specify the model. First of all we
will work in a two-dimensional tight-binding model on a square lattice. All
three phenomena will be assumed to exist within this layer. Because we work
in a tight-binding model, kinetic terms are given by kx → sin(kx) and k2x →
1−cos(kx). Using this together with our knowledge of the form of the Rashba
spin-orbit interaction from Eq. (3.3), we can conclude that the single particle
dispersion relation is [30]

H0(k) =ϵ(k)− Vzσz − L0(k) · σ, (5.11)
ϵ(k) =− 2t (cos(kx) + cos(ky))− µ, (5.12)

L0(k) =α(sin(ky),− sin(kx), 0). (5.13)

Here Vz is the strength of the Zeeman term, t is a nearest neighbor hopping pa-
rameter, µ the chemical potential, and α the strength of the Rashba spin-orbit
interaction. Working in relative units we set t = 1 and µ ≈ ±4t. Including su-
perconductivity and applying the Nambu spinor formalism from Section 4.2.2,
we end up with a Hamiltonian in k-space of the form

H =

[
H0(k) i∆σy
−i∆∗σy −HT

0 (−k)

]
. (5.14)

From Section 4.6.1 we know that the interaction term in an s-wave super-
conductor in real space takes the form

Hint =
∑
x

(
∆xc

†
x↑c

†
x↓ +∆∗

xcx↓cx↑

)
, (5.15)

∆x =− V ⟨cx↓cx↑⟩, (5.16)

where V is the strength of the superconducting pair potential. In particular,
we have included the possibility for ∆x to vary in space. As we have seen in
Section 4.6.3 this allows us to study vortices, and it also allows for the self-
consistent solution to relax to different values at different points in the lattice,
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which is important around edges and impurities. In fact, we also allow for the
Zeeman term to be both position dependent and to point in other directions than
along the z-axis in some of our works. This allows for ferromagnetic structures
such as point impurities or one-dimensional wires embedded in a larger two-
dimensional superconductor to be studied. However, here we restrict ourselves
to the simpler case of a uniform Zeeman term along the z-direction. Finally,
Fourier transforming also the single particle part of the Hamiltonian we arrive
at

H0 =Hkin +HVz
+HSO, (5.17)

Hkin =− t
∑
⟨i,j⟩σ

c†iσcjσ − µ
∑
iσ

c†iσciσ, (5.18)

HVz
=− Vz

∑
iσσ′

(σz)σσ′c†iσciσ′ , (5.19)

HSO =− α

2

∑
ib

(
eiθbc†i+b↓ci↑ + H.C.

)
. (5.20)

Here b is a vector along the nearest neighbor bonds, and θb its polar coordinate.

5.4.3 Band structure
Drawing from our experience with two-by-two Hamiltonians in Chapter 3, we
begin with an investigation of the bulk band structure. By diagonalizing the
Hamiltonian in Eq. (5.14) we arrive at the dispersion relation

E(k) =±
√
A(k)± 2

√
B(k), (5.21)

A(k) =ϵ2(k) + |L(k)|2 + |∆|2 + V 2
z , (5.22)

B(k) =ϵ2(k)|L(k)|2 + (|∆|2 + ϵ2(k))V 2
z . (5.23)

This is clearly a more complicated band structure than the two overlapping
parabolas studied in Chapter 3. Nevertheless, it is possible to identify some
similarities in their structure. We see that both |∆|2 and V 2

z are reminiscent
of the mass gap parameters encountered earlier. Although, it is not entirely
clear to what extent they play this role in this case. Moreover, the appearance
of ±2

√
B(k) seems to complicate things further. A closer look at ±2

√
B(k)

reveals that if V 2
z becomes sufficiently large, and the plus sign is chosen inside

the square root, then the Zeeman term dominates the dispersion relation. In the
limit V 2

z → ∞, two of the bands described by Eq. (5.21) therefore are split
of from the low energy spectrum around E = 0. This leads to an effectively
spinless system. However, choosing the negative sign, it is not clear what the
increase or decrease of any of the parameters does to the band structure around
E = 0.
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Figure 5.5. Band structure for the model described by Eq. (5.14), for the parameters
t = 1, µ = 4, α = 2,∆ = 1. From left to right Vz = ∆

2 ,∆,
3∆
2 . Note that for Vz = ∆,

a Dirac cone appears. On the right hand side the red and green bands are sufficiently
split off to make the band structure appear ”spinless”. The band structure has been
plotted in the slightly unusual choice of Brillouin zone [0, 2π] × [0, 2π], as the Dirac
cone here occurs at (π, π). However, the picture is similarly centered around (0, 0) if
µ = −4 is chosen instead. Grey plane indicates the Fermi Level.

To get a better idea of the problem, we now plot the band structure for care-
fully selected parameters. In Fig. 5.5, the four bands are plotted for three
different strengths of the Zeeman term. We indeed see that the system ex-
hibits both gapped regimes, as well as a dispersion relation with a Dirac cone,
depending on the choice of parameters. Moreover, we see how the top and
bottom bands are split off more and more as Vz is increased.

We have now seen both the band structure and the analytical expression for
the dispersion relation. However, from inspection of these it is hard to say
which parameters lead to a gapped spectrum continuously connected to the
vacuum, and which lead to one that needs to go through a gap closing. This is
where the Chern number becomes important, because it allows the topological
properties to be extracted also in this less obvious case. If the Chern number
is non-trivial, we know from Chapter 3 that the gap needs to close at the edge
where the bulk meets the vacuum. We will not go into details here, but instead
just mention that the Chern number has been calculated for all possible param-
eters [30]. If we restrict ourselves to the case with t = 1, µ = ±4, which is
the regime in which we model our systems,5 then the condition for being in the
topologically non-trivial phase is

|∆| < |Vz| <
√

|µ|2 + |∆|2. (5.24)

5 In a semiconductor the Fermi level is near the band edge. µ = ±4t puts the Fermi level close
to the band edge, as can be seen from Eq. (5.12). It is, however, not exactly at the band edge
because other terms, most notably the Zeeman term, further shifts the band structure both up and
down depending on spin. In the case of an ordinary bulk superconductor, the chemical potential
is on the other hand sitting in the middle of the band. However, also in this case a chemical
potential sitting at the band edge can be motivated at the surface, because at the surface the
work function [73] pushes the bands away from the Fermi level, thereby creating a layer close
to the surface where this is true.
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For other values of |Vz|, the system is in a phase trivially connected to the
vacuum. From this relation, and our knowledge about the Chern number from
Section 2.4, it is clear why the band structure in Fig. 5.5 has a Dirac cone at
Vz = ∆. It is at this point that the system passes between the two phases, and
we now know that it is the rightmost band structure, where Vz = 3∆

2 , that is
topologically disconnected from the vacuum.

5.4.4 Vortices, Majorana fermions, and degenerate ground states
Having seen that theHamiltonian has a topologically non-trivial phase, we now
turn to the Majorana fermions. In analogy with the p-wave superconductor
described in Section 5.3, we expect to find Majorana fermions localized at
vortex cores. This has analytically been proven to be the case also in this
system [25, 30]. The geometry described in Section 5.3.4 is a disk with a hole
in, through which a magnetic flux is threaded. The Majorana fermion can
therefore be seen as residing on the edge that surrounds the hole. Making the
edge very small, it is clear that quantization effects along the edge will make
the spectrum there highly discretized. A Majorana fermion at a vortex core
can therefore be expected to correspond to an energy level that has a certain
excitation gap to the next higher energy state. This means that the ground state
of a system with such a Majorana state can be gapped and degenerate. With
gappedwe heremean both the spectrum in the bulk, and locally at theMajorana
state. This is in contrast to the infinite strip, where the bulk is gapped, but a
continuous branch cuts throughE = 0 at the edge, such that the edge is gapless.
To understand why the ground state is degenerate we have to consider not only
the vortex core, but the whole system. We note, however, that although the
discussion below is carried out for a vortex, it is generally valid for any pair of
Majorana fermions.

In this chapter we have mainly been concerned with locally non-degenerate
solutions to the Bogoliubov-de Gennes Hamiltonian. However, globally we
know that each such quasi-particle has a partner with the same energy. Con-
sider now the two Majorana states γo and γi, on the outer and inner edge of
the system. As Majorana fermions they satisfy γ†o = γo and γ†i = γi. Further,
because they both have the same energy E = 0, it is equaly valid to form two
rotated eigenstates by taking the linear combinations

λ1 =
1√
2
(γo + iγi) , (5.25)

λ2 =
1√
2
(γo − iγi) . (5.26)
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These are eigenstates partly localized at the inner and outer edges. It is also
clear that these operators satisfy

λ†1 =
1√
2

(
γ†o − iγ†i

)
=

1√
2
(γo − iγi) = λ2, (5.27)

λ†2 =
1√
2

(
γ†o + iγ†i

)
=

1√
2
(γo + iγi) = λ1. (5.28)

That is, occupying the state associatedwithλ1, goes together with deoccupying
the state associated with λ2, and vice versa. Further, because γo and γi are
Majorana fermions, we know that they can be written as γo = (co + c†o)/

√
2

and γi = (ci + c†i )/
√
2, for some electron operators co and ci localized on

the outer and inner edge, respectively.6 It follows that λ1 and λ2 also can be
written as

λ1 =
1√
2

(
η1 + η†2

)
, (5.29)

λ2 =
1√
2

(
η2 + η†1

)
, (5.30)

where η1 = (co + ici)/
√
2 and η2 = (co − ici)/

√
2. Now, η1 and η2 corre-

sponds to two different delocalized electron modes. It is therefore clear that
λ†1 = λ2 is an operator that creates a particle in state η1, while simultaneously
destroying one in η2, while λ†2 = λ1 has the opposite effect.

In Section 4.3.2 we expressed the view that the Bogoliubov operators has to
be understood in connection with the BCS wave function as a technical con-
struct that simplifies the mathematics. Further, the Bogoliubov operators, in
spite of appearing as amixture of electron and hole, actually creates an ordinary
unpaired electron as an excitation on top of the superconducting condensate.
The physical reality therefore seems to me to be the following. The ground
state is indifferent to whether the state η1 or η2 is occupied, as long as one and
only one of them is so. The λ operators can therefore be seen to reshuffle elec-
trons between the two states. The true meaning of a pair of Majorana fermions
can therefore be traced back to two ordinary one electron states, which both
are partly localized at two different places in space. These two states are frac-
tionally occupied in the sense that only one of the states is occupied at a time.
The Majorana fermion picture therefore arise when we choose to look at the
problem in a local basis.7 Moreover, because the ground state is indifferent to
which of the two states that is occupied, the ground state is degenerate. Al-
though this means that the Majorana fermion is somewhat of an artefact of
6 This follows from the fact that we know that γo and γi are localized on the edges, and that
they satisfies the Majorana condition γ† = γ.
7 Strictly speaking it is not related to looking at it in a local basis, but rather to looking at it in
the basis where γo = γ†

o and γi = γ†
i , rather than the basis in which λ1 = λ†

2. However, this is
equivalent to the local basis in all situation of interest to us.
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looking at the problem in a local basis, it is not irrelevant. Kitaev’s argument
is that the non-local nature of the Majorana fermions make them insensitive to
local perturbations. The state can only be perturbed through non-local pertur-
bations that act on two Majorana fermions as an ordinary electron, or equiv-
alently, which make the two Majorana fermions interact [34]. According to
the view expressed here, such an interaction would mean that the electron is
reshuffled among the two available states.

5.5 Non-Abelian statistics and quantum computation
Having understood that Majorana fermions indeed can occur in condensed
matter systems, we end this chapter with a few words about why Majorana
fermions are interesting. The interest can mainly be divided into two cate-
gories. First, Majorana fermions are interesting from a fundamental point of
view. As mentioned at the beginning of this chapter, Majorana proposed his
equation for fundamental particles. However, no fundamental particles have
so far been confirmed to actually be Majorana fermions. Although the Majo-
rana fermions we study here are not fundamental particles, it is still pushing the
boundaries of our basic understanding of quantum mechanics. To understand
the second reason for why Majorana fermions are of interest, we first need a
brief introduction to the field of quantum computation. The presentation here
will only cover the minimal amount necessary for understanding the basic idea.
For a more thorough introduction to the topic, the reader is referred to [74–76].

5.5.1 Quantum computation
Aquantum computer is a proposed computer architecture that utilizes the expo-
nentially large Hilbert space that is required to describe quantum mechanical
systems, to effectively perform computational tasks not feasible on ordinary
computers. In an ordinary computer, information is stored in terms of ones
and zeros called bits, and computations are performed through logic opera-
tions on these bits. Let for this reason [00100110] be a state of a binary 8-bit
register. An ordinary digital computer carries out computations on this reg-
ister through successive applications of logic gates. Therefore, let us denote
the ordinary NOT gate by N , and assume for simplicity an architecture that
can perform one instruction per clock cycle. We can then as an example write
down the process of double negation NN of the register as

NN [00100110] → N [11011001] → [00100110], (5.31)

where each arrow indicates the passing of one clock-cycle. To perform cal-
culations on multiple data sets, it is further required that data is sequentially
loaded into the register and then executed upon. Say for example that we want
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to negate [00000000], [00000001] and [00000010]. Letting an arrow followed
by a new line indicate loading a new number into the register, this calculation
can in line with the customary fetch-execute cycle be written as

N [00000000] → [11111111] →
N [00000001] → [11111110] →
N [00000010] → [11111101]. (5.32)

It is clear that the number of operations, or number of arrows, grows linearly
with the amount of data. It is however possible to speed up the calculation by
increasing the register size. By doubling the number of bits in the register, two
calculations can be performed in parallel, and twice the amount of computa-
tions can be performed in the same time. We say that the computational power
grows linearly with the size of the system.

Consider now any quantum system that has two possible states, and label
these states 0 and 1, respectively, and call this system a qubit. A typical state
for a collection of eight qubits can then be written as |00100110⟩, which resem-
bles the ordinary 8-bit digital register. There is one very important difference
though. A quantum state for a collection of quantum mechanical qubits can be
in a superposition such as

|Ψ⟩ = a|00000000⟩+ b|00000001⟩+ c|00000010⟩. (5.33)

A quantum mechanical NOT gate N can then be applied to this state in a sin-
gle cycle, making it possible to perform the triple negation above in a single
instruction

N |Ψ⟩ → a|11111111⟩+ b|11111110⟩+ c|11111101⟩. (5.34)

Further, the total number of states |Ψ⟩ can be in a superposition of is 28. In
principle it is therefore possible to perform 28 instructions in a single cycle
on a quantum computer that implements such a scheme. In general a system
consisting ofN qubits can be in a superposition of 2N states, and can therefore
be used to carry out up to 2N instructions per cycle. The number of possible
calculations grows exponentially with the system size. Flipping ones and zeros
is, however, not the only computational task that can be performed on quantum
states. The coefficients a, b and c in the example above are complex numbers,
and it turns out that it is also important in quantum computation to have detailed
control of these [75].

Although the above arguments makes quantum computing look tremen-
dously attractive, in practice there are many obstacles to a working quantum
computer. First of all quantum mechanics implies that if we try to read out any
single one of the results of N |Ψ⟩, the wave function will collapse onto a sin-
gle state. This means that although an exponential number of calculations can
be performed at once, if a naive readout process is chosen, then only a single
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of those results will be available to us. In spite of this, algorithms exists that
are able to utilize the exponential power of quantum computers, should they
become available [76]. A problem more relevant to us is, however, the prob-
lem of decoherence [74, 76]. Decoherence is the process whereby a quantum
mechanical system loses phase coherence due to interaction with the environ-
ment. This is a serious problem for the implementation of quantum computers,
and the main obstacle for scaling up quantum computers from any more than
a few qubits. The main motivation behind the idea of topological quantum
computing is exactly to get around the problem of decoherence.

5.5.2 Topological quantum computation
We are now ready to understand the second and more practical reason for why
Majorana fermions are of interest. Kitaev in 2001 proposed the use of Ma-
jorana modes at the end points of superconducting wires, to robustly encode
quantum information in a way that protects it from decoherence [34]. How-
ever, that the Majorana fermions are located at the endpoints of wires is irrel-
evant, and for example Majorana fermions located at vortex cores can be used
for the same purpose. In particular, the delocalized nature of the underlying
electron, as well as the observation in Section 5.4.4 that Majorana fermions in
vortex cores have an excitation gap is important. These properties are true also
forMajorana fermions at wire end points. According to Kitaev’s argument, the
delocalized nature of the underlying electron prevents it from being perturbed
by local interactions. At the same time the energy gap is important because it
also prevents the individual Majorana fermions from being locally excited, as
well as other low lying excitations from interfering with theMajorana fermions
during meassurements [77].

It has also been shown that under the interchange of two vortices, say clock-
wise, the Majorana fermions at vortex i and j transform according to8 [78]

γi → γj , (5.35)
γj → −γi. (5.36)

Interchanging the two vortices once more, we complete a full revolution of
the vortices around each other, resulting in both γ’s having acquired a minus
sign. This is an example of the anyonic statistics that fermions can have under
interchange in two dimensions [79]. However, it turns out that the transfor-
mation is not only anyonic. Under the interchange of multiple vortices, so
called braiding, the signs acquired will depend on the order of interchange.
The statistics is therefore non-Abelian [78]. We can trace this behavior back
to the Majorana operators. We know from the previous sections that Majorana
8Here i and j labels the position of the vortex rather than the vortex itself. This is why the
operators change index, as they continuously are brought from point i to j following along with
the vortices.
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fermions are local parts of a delocalized electron. As vortices are braided, half
electrons will move around each other, and the statistics for this turns out to be
non-Abelian. The non-Abelian statistics can further be utilized for topological
quantum computation, as it provides a way through which the signs in front of
the different basis states can be manipulated. Majorana fermions do therefore
not only present a way for decoherence free storage of quantum information,
but also a way to perform computational operations on that information [78].
Finally, we mention that a scheme for braiding Majorana fermions situated at
the endpoints of one-dimensional wires also has been proposed [80].
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Part III:
Method development





6. Tight-Binding ToolKit (TBTK)

While the theoretical background in the previous part is described in analytical
terms, most of the results in this thesis rely heavily on numerical calculations.
As a result, a numerical library for solving general bilinear Hamiltonians has
evolved in parallel with the results detailed in the Results Part and Papers. At
the time of writing, the library consists of more than 15,000 lines of code,1
is available for download online,2 and can solve general bilinear models us-
ing either wave function or Green’s function methods. We here give a basic
introduction to the library, with the purpose of conveying the core design phi-
losophy. This is done through a discussion of the main features, together with
code snippets that demonstrate the workflow. For clarity we point out that
these code snippets are not standalone programs ready to be compiled. For
such examples we instead refer to the templates that come packed together
with the library. Another useful resource for a deeper understanding of the
library is the application programming interface (API).3

6.1 Modelling
6.1.1 Bilinear Hamiltonian and physical indices
TBTK is designed with the purpose of modelling and solving arbitrary bilinear
Hamiltonians, which can be written as

H =
∑
ij

aijc
†
i cj. (6.1)

1 The main part of the library, which is used for calculations, is written in c++11. Part of
the library is also parallelized using CUDA (http://www.nvidia.com/object/cuda_
home_new.html) to run on one or multiple GPUs, but can be installed to run also on ma-
chines without a GPU. Further, Lapack (http://www.netlib.org/lapack/) and Blas
(http://www.netlib.org/blas/) need to be installed on the computer, while a local
copy of HDF5 (https://www.hdfgroup.org/HDF5/) is downloaded and compiled as
part of the installation procedure. Basic plotting scripts for common physical quantities are also
provided and are implemented using python. While the code has been tested on PC with Linux
(Ubuntu) and Mac, and with a few different compiler combinations, most extensive testing have
been done using Scientific Linux release 6.7, gcc 4.9, and NVCC 7.0. Most importantly, a gcc
compiler supporting c++11 has to be used.
2 http://dafer45.github.io/TBTK/
3 http://dafer45.github.io/TBTK/doc/html/index.html
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Here i and j are arbitrary indices, and an important feature of TBTK is the way
in which it allows the user to model complex systems using physical indices.

To understand how TBTK handles indices, we make the following distinc-
tion between physical and Hilbert space indices. A physical index is an index
such as (x, y, s), where x and y are spatial coordinates, and s is a spin index.
For simplicity, assume that x and y are indices on a square lattice with size
SIZE_X×SIZE_Y. In order to write the Hamiltonian on a matrix form, the
physical indices have to be converted into one-dimensional Hilbert space in-
dices, which e.g. can take the form h = 2×SIZE_Y×x+2×y+s. However,
the exact form of themapping is dependent on the system of interest. Explicitly
handling the Hilbert space indices is a nuisance when modeling a system, and
obscures the physics in the code. To solve this TBTK allows the user to always
work with physical indices, converting these on the fly to Hilbert space indices
in the underlying algorithms that are more naturally expressed in Hilbert space
indices.4

In addition to taking the burden off the user from having to handle Hilbert
space indices, TBTK simultaneously allows for multiple physical indexing
schemes to be employed in a single model. Let us for example consider a
system consisting of a three-dimensional cubic lattice, connected to a two-
dimensional hexagonal lattice through a one-dimensional molecule. Further,
assume that that the three-dimensional bulk requires an additional orbital in-
dex, while the hexagonal sheet requires a sublattice index. The three subsys-
tems are then naturally described using the three indexing schemes (x, y, z, o, s),
(x, y, l, s), and (x, s), respectively, where x, y, and z are spatial coordinates,
while o, l, and s are orbit, sublattice, and spin indices, respectively. We note
that although for example x is used in all three indexing schemes, there is no re-
lation between the x’s in the different schemes, and they can all have different
ranges. TBTK allows for such different indexing schemes to be employed by
simply prepending the indices by yet another subsystem index.5 In fact, TBTK
neither requires that a particular subindex take on every value in a range. It is
therefore perfectly valid to exclude a site in the middle of a lattice to model
a vacancy. The Hilbert space that is constructed by TBTK will only map to
indices actually included in the model, and will therefore ensure that a minimal
Hamiltonian always is constructed.

4 Technically one of the corner stones of TBTK is a custom Tree class called TreeNode that acts
both as storage for the hopping amplitudes aij and a dictionary between physical and Hilbert
space indices. Due to its tree structure, it allows for both hopping amplitudes to be retrieved,
and indices to be converted, with minimal performance penalties independently of the size of the
Hilbert space. The tree structure also has the additional benefit of naturally enabling multiple
indexing schemes to be used in a single model.
5 In general, if two indices differ in value for a particular subindex, then the structure of the
subindices to the right of that subindex can differ in structure. Indices that separates structurally
different components of a system should therefore be put as far to the left as possible.

96



6.1.2 Modeling superconductivity
The Hamiltonian in Eq. (6.1) is a completely general bilinear Hamiltonian, and
as such can describe any single particle (non-interacting) problemwith discrete
indices. As TBTK is constructed to model and solve any such problem,6 this
means that any non-interacting system with discrete indices can be modelled
and solved. Moreover, in Section 4.2.2 we noted that, in spite of being in-
teracting, the Bogoliubov-de Gennes mean field treatment reduced also the
superconducting problem to a bilinear form. However, in contrast to Eq. (6.1),
the superconducting problem also has annihilation operators to the left, and
creation operators to the right. This is easily solved by letting the spin index
run over four values instead of two. That is, by interpreting the Hamiltonian
in terms of a Nambu-basis, where the two first components correspond to spin
up and spin down electrons, while the last two correspond to their hole counter
parts.

6.1.3 Example
For a basic demonstration of how to use the TBTK library to setup a model,
we consider the Hamiltonian

H =− t
∑
⟨ij⟩σ

c†iσcjσ − µ
∑
iσ

c†iσciσ, (6.2)

where i and j are indices on a two-dimensional lattice of size 20 × 20, σ is a
spin-index, t = 1, and µ = −2. The model is created using

//Lattice size
const int SIZE_X = 20;
const int SIZE_Y = 20;

//Parameters
complex<double> t = 1.0;
complex<double> mu = -2.0;

//Create model and add hopping amplitudes
Model model;
for(int x = 0; x < SIZE_X; x++){
for(int y = 0; y < SIZE_Y; y++){
for(int s = 0; s < 2; s++){
//Add hopping amplitudes corresponding to chemical
//potential
model.addHA(
HoppingAmplitude(
-mu,

6 Within the limitations of available computational resources, currently tractable problems are
those that have a Hilbert space size of up to around 104 for the wave function method (diago-
nalization), and 106 for the Green’s function method.
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{x, y, s},
{x, y, s}

)
);

//Add hopping amplitudes corresponding to t
if(x+1 < SIZE_X)
model.addHAAndHC(
HoppingAmplitude(
-t,
{(x+1)%SIZE_X, y, s},
{x, y, s}

)
);

if(y+1 < SIZE_Y)
model.addHAAndHC(
HoppingAmplitude(
-t,
{x, (y+1)%SIZE_Y, s},
{x, y, s}

)
);

}
}

}

//Construct Hilbert space
model.construct();

The code starts by listing the relevant parameters. Then a Model7 is created
and the indices of the model are looped over. Inside the loop body, the first
line adds a HoppingAmplitude to the Model, which should be understood to
correspond to the diagonal matrix elements aii = −µ. Next, the HoppingAm-
plitudes corresponding to aij = −t are added, and in particular the function
’addHAAndHC’ is used to simultaneously add the HoppingAmplitude and its
Hermitian conjugate. The if-statements guard against the addition of a Hop-
pingAmplitude at the very end of the lattice, and thereby implements open
boundary conditions. However, if the if-statements are commented out, the
code is prepared to result in periodic boundary conditions, as the modulo sign
(%) clamps the indices to the range [0,SIZE_X− 1] and [0,SIZE_Y− 1], re-
spectively. Finally, in the last line a Hilbert space basis is constructed by cre-
ating a one-to-one mapping between the physical indices fed into the Model,
and a monotonously increasing natural number. The Model is now ready to be
solved.

7 We use upper case letters to refer to the classes and objects in the code, to distinguish them
from the same words without such a specific technical meaning. In particular, in this sentence
’Model’ refers to the object model in the code, while the subsequent use of the word ’model’
refers to the mathematical model in a broader sense.

98



6.1.4 Additional information
The Model is not only a container of the Hamiltonian, but all model related in-
formation. As such it is also possible to set the temperature, chemical potential,
and statistics of the model using

//Set temperature
model.setTemperature(293);

//Set chemical potential
model.setChemicalPotential(-1);

//Set statistics
model.setStatistics(Model::Statistics::BoseEinstein);

These parameters are used in the property extractors described in Section 6.2.2.
By default they are set to 0, 0, and ’Model::Statistics::FermiDirac’, respec-
tively. We note that if the chemical potential is set in this way, it should not
be included in the Hamiltonian.

6.2 Solving
6.2.1 Solvers
As mentioned in the introduction to this Chapter, TBTK can be used to solve
Models using either wave function methods, or Green’s function methods.
This is accomplished through the use of different solvers, and currently TBTK
has two types of solvers: a DiagonalizationSolver, and a ChebyshevSolver.
The former diagonalizes the Hamiltonian and thereby results in a solution to
the problem in terms of eigenvectors and eigenvalues. That is, it calculates
the wave functions Ψn(i) and energies En, respectively. The second method
calculates the Green’s function Gij(E) using a Chebyshev expansion, where
the Chebyshev expansion itself is described in more detail in Chapter 7.

As a complete knowledge of either the wave function and energies, or the
Green’s function, is enough to determine all properties of a model, only one
method is needed in principle. However, computationally as well as conceptu-
ally the two methods have different strengths and therefore complement each
other. One of the main advantages of the ChebyshevSolver is that it can han-
dle much larger problems, because for many quantities the computation time
scales as O(n) with the size n of the Hilbert space. In contrast, the compu-
tation time for the DiagonalizationSolver always scales as O(n3). In return,
the DiagonalizationSolver for example gives direct access to the wavefunction,
which can provide valuable physical insight into the problem.

To set up and run a DiagonalizationSolver, the following code is used
DiagonalizationSolver dSolver;
dSolver.setModel(&model);
dSolver.run();
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Similarly, a ChebyshevSolver is setup using
ChebyshevSolver cSolver;
cSolver.setModel(&model);
cSolver.setScaleFactor(SCALE_FACTOR);

The first two lines which setup the solvers are conceptually identical. This is
intentional, with the purpose of making it as simple as possible to switch be-
tween the use of different solvers. In spite of this, the DiagonalizationSolver
and ChebyshevSolver are different and require somewhat different workflows
when handled directly. Most notably, due to the inner workings of the algo-
rithms, the DiagonalizationSolver needs to diagonalize the whole problem be-
fore properties can be calculated, while the ChebyshevSolver calculates prop-
erties on the fly. This is reflected in the call to ’dSolver.run()’ above, which
diagonalizes the problem and puts it into a state where it is ready to be used to
extract properties.8 In contrast, the ChebyshevSolver is in this state immedi-
ately after the Model has been set and only a scale factor needs to be set. The
reason why a scale factor is needed is explained in Chapter 7.

6.2.2 Property extractors
In the previous section we saw that solvers are set up in a very similar way,
but also learned that they require different workflows. To further alleviate this
problem, and to provide methods for extracting standard properties from the
model, TBTK provides property extractors. These are the preferred objects
to use for extracting any properties, and direct use of the solvers is therefore
discouraged. A property extractor for a DiagonalizationSolver is created using

DPropertyExtractor pe(&dSolver);

Similarly, a property extractor for a ChebyshevSolver is created using
CPropertyExtractor pe(
&cSolver,
NUM_COEFFICIENTS,
ENERGY_RESOLUTION,
false,
false,
true,
LOWER_LIMIT,
UPPER_LIMIT

);

We note that although both property extractors wrap a solver, they require dif-
ferent sets of parameters. This is reflective of the fundamental differences that
exist between the solvers. A basic understanding of the methods the solvers

8 The reason the method is called ’run()’ rather than ’diagonalize()’ is that it actually will run
a full self-consistent loop if the DiagonalizationSolver and model is appropriately configured
before the call. For further details on this we refer to the templates in the TBTK package.
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are based on is therefore needed to successfully set up the property extractors.
However, once the property extractors are set up, the rest works the same.
Diagonalization should be a well-known method, and we therefore give no
further explanation here. The two parameters that follow the cSolver will be-
come clear in Chapter 7, while the two last parameters are the energies be-
tween which the relevant Green’s functions are calculated. The three Boolean
options have to do with specifying whether or not specific parts of the calcu-
lation should be done on a GPU or not, and whether to use a lookup table to
speed up calculations. For more information about these we refer to the API.

Having wrapped the solvers in property extractors, we can now extract a
number of different properties using

//Calculate density
Property::Density *density = pe.calculateDensity(
{IDX_X, IDX_Y, IDX_SUM_ALL},
{SIZE_X, SIZE_Y, 2}

);

//Calculate magnetization
Property::Magnetization *mag = pe.calculateMagnetization(
{IDX_X, IDX_Y, IDX_SPIN},
{SIZE_X, SIZE_Y, 2}

);

//Calculate spin-polarized local density of states (LDOS)
Property::SpinPolarizedLDOS *spLdos =
pe.calculateSpinPolarizedLDOS(
{IDX_X, SIZE_Y/2, IDX_SPIN},
{SIZE_X, 1, 2},
LOWER_LIMIT,
UPPER_LIMIT,
RESOLUTION

);

We do not go into details about the arguments or format of the return values
here, but rather list the commands with the purpose of demonstrating the work-
flow. The interested reader is referred to the API and the templates for more
details.

In addition to the common properties, there are some properties that for
practical reasons only can be extracted from one or the other of the solvers.
The DPropertyExtractor can extract the following additional properties

//Calculate density of states (DOS)
Property::DOS *dos = pe.calculateDOS(
LOWER_LIMIT,
UPPER_LIMIT,
RESOLUTION

);

//Get eigenvalue for state n
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double E = pe.getEigenValue(n);

//Get all eigenvalues
double *allE = pe.getEigenValues();

//Get amplitude for index {x, y, s} and eigenstate n
complex<double> amplitude = pe.getAmplitude(
n,
{x, y, s}

);

In contrast, the CPropertyExtractor can extract arbitrary two operator expecta-
tion values and the Green’s function

//Calculate <c_{i}^{\dagger}c_{j}>, where i = (x, y, s)
//and j = (x+1, y, s)
complex<double> expectationValue =
pe.calculateExpectationValue(
{x, y, s},
{x+1, y, s}

);

//Calculate G_{ij}(E), where i = (x,y,s) and j = (x+1,y,s)
complex<double> *g = pe.calculateGreensFunction(
{x, y, s},
{x+1, y, s},
TYPE

);

where

TYPE ∈


ChebyshevSolver::GreensFunctionType::Retarded
ChebyshevSolver::GreensFunctionType::Advanced
ChebyshevSolver::GreensFunctionType::Principal

ChebyshevSolver::GreensFunctionType::NonPrincipal

 .

More information about these different types of Green’s functions is provided
in Chapter 7.

6.3 File writer and plotting scripts
While we have given no detailed description of the format of the data returned
by the property extractors here, we mentioned that it is returned in a format
that is standardized across TBTK. What this means is that not only do the
property extractors output the information in a common format, but also other
parts of the code understand it. Namely, the FileWriter and plotting scripts.
Data extracted by a property extractor can therefore be written immediately to
file, and then be plotted with the predefined plotting scripts. Here we give an
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example of how this is done, and refer the reader to the API and templates for
further information and examples.

Before writing values to file, it is good practice to set the filename9 and clear
any possible copy of the file from the working directory. This is preferably
done once at the start of the program using

FileWriter::setFileName("MyResults.h5");
FileWriter::clear();

We note the use of the file extension .h5, which is a standardized scientific file
format used by TBTK.10 As such, the data can be imported into most numerical
programming environments for post-processing and plotting, e.g. MATLAB,
Mathematica, Python, or Julia. To write the DOS calculated above, we can
now pass it to the FileWriter using

FileWriter::writeDOS(dos);

Having written the DOS to file, it is now possible to plot the data from the
terminal using

python ${TBTK_dir}/TBTK/view/python/plotDOS.py MyResults.h5 0.1

In this case the last parameter is a smoothing parameter giving the delta peaks
in the DOS a Gaussian broadening with σ = 0.1.

6.4 Unit handler
The discussion has so far been carried out in arbitrary units. However, TBTK
provides a UnitHandler to simplify the connection to experimentally relevant
units. The UnitHandler is based on a principle similar to the SI unit system,11
where a distinction is made between base units and derived units. However,
while the choice of base units have considerable overlap, they are not identical.
Rather, the choice of base units has been made in order to be more relevant to
quantum mechanical calculations. Moreover, unlike the SI system, the base
unit for e.g. length is not required to be m, but rather a number of different
units such asm,mm, nm, and Å can serve as base unit. For a complete list of
available base units we refer to the API, and here only mention that the quan-
tities for which base units are defined are temperature, time, length, energy,
charge, and count.12 The default base units are Kelvin (K), seconds (s), meter
(m), electron volt (eV ), Coulomb (C), and pieces (pcs). The quantities for
which there exist special support in terms of derived units are currently mass
and magnetism, e.g. kilogram (kg) and Tesla (T ), respectively. However, we
will not go into details about the use of derived units here.

9 The default filename is TBTKResults.h5
10 https://www.hdfgroup.org/HDF5/
11 http://physics.nist.gov/Pubs/SP330/sp330.pdf
12 Count refers to numerical quantities measured in pcs ormol.
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In addition to base units and derived units, the UnitHandler also supports
the use of natural units, which are in one-to-one correspondence with the base
units. The purpose of these is to allow for simple numbers such as t = 1 to be
used in calculations, even if the hopping parameter actually is say 274.19meV .
All function calls in the library should be understood in terms of natural units,
except for the calls that set the natural units themselves. Further, TBTKwill on
the fly convert these values to base units whenever they need to be multiplied
by physical constants, such as for example when evaluating the Fermi-Dirac
distribution 1/(e(E−µ)/kT + 1).

The UnitHandler is preferably initialized at the very start of the program,
for example by specifying that the energy base unit is meV through the call

UnitHandler::setEnergyUnit(UnitHandler::EnergyUnit::meV);

The natural energy scale can then be set to 274.19meV through the subsequent
call

UnitHandler::setEnergyScale(274.19);

Similar pairs of calls can be made for the five remaining quantities. Although
it is good practice to specify the base and natural units explicitly like this, we
note that it is often not needed because most of them are irrelevant in basic cal-
culations. The units that most commonly need to be specified are temperature
and energy, because they enter into the Fermi-Dirac distribution and become
important at non-zero temperatures.
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7. Chebyshev expansion

In the previous chapter we mentioned that both wave function and Green’s
functionmethods are implemented in TBTK through theDiagonalizationSolver
and ChebyshevSolver. While diagonalization can be considered a standard
procedure and requires little explanation, the Chebyshev expansion of theGreen’s
function cannot. In this chapter we therefore give an introduction to the Cheby-
shev expansion, deriving it from the Fourier expansion, and applying it to the
Green’s function. The result is an expression that can be used to recursively
calculate the expansion coefficients of the Chebyshev expansion in a way that
requires only sparse matrix-vector multiplications. Further, GPUs are specifi-
cally designed with the purpose of handling matrix operations, and this is ex-
ploited in TBTK. This is one of the reasons why the ChebyshevSolver is able to
handle models with comparatively large Hilbert spaces. For more background
on the Chebyshev expansion and its applications to the Green’s function, we
refer to the references [81–83].

We note that because this chapter is mainly concerned with the derivation of
the Chebyshev expansion, which is a purelymathematical concept, it is notably
more technical than the other chapters. For the reader that simplywants a rough
understanding of what we mean by a Chebyshev expansion of the Green’s
function in the previous chapters, we therefore mention that it is a function
expansion of the form

Gij(E) =
2i√

s2 − E2

∞∑
m=0

b
(m)
ij

1 + δ0m
cos(m acos(E/s)). (7.1)

Here cos(m acos(E/s)) in fact also can be i sin(m acos(E/s)) or e±im acos(E/s),
depending on which particular Green’s function that is expanded. Further, the
ChebyshevSolver is executed in two steps, where the first calculates the expan-
sion coefficients b(m)

ij , and the second evaluates the expression for the Green’s
function above for a given number of energy values.

7.1 Expanding a function
7.1.1 Fourier expansion in disguise
We begin by deriving the Chebyshev transform and Chebyshev expansion
from the corresponding Fourier cosine transform and Fourier cosine expansion.
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We will see that given a function f(x) defined on the interval x ∈ [−1, 1], the
Chebyshev transform (expansion) in x can be thought of as the Fourier cosine
transform (expansion) of f̃(θ) = f(acos(θ)), in the variable θ. This leads to
a set of Chebyshev basis functions Tm(x) = cos(m acos(x)), in correspon-
dence with the Fourier basis functions cos(mθ). Further, we show that Tm(x)
are polynomials of degreem, and that they satisfy a recursion relation.

Inmore detailTm(x) are called Chebyshev polynomials of the first kind, and
we refer to the corresponding Chebyshev transform (expansion) as the Cheby-
shev transform (expansion) of the first kind. It is also shown that a closely
related set of basis functions Um(x) known as Chebyshev polynomials of the
second kind can be obtained starting from the Fourier sine transform (expan-
sion) of g̃(θ) = sin(θ)f̃(θ). The corresponding Chebyshev transform (expan-
sion) is here referred to as the Chebyshev transform (expansion) of the second
kind.

Finally, it is shown that a third hybrid version of the Chebyshev transform
(expansion) of the first and second kind leads to what we here refer to as a
Chebyshev transform (expansion) of the alternative kind. In particular, it is this
transform (expansion) that is applied to the Green’s function in Section 7.2.

7.1.2 First kind
Chebyshev transform of the first kind
Consider the Fourier cosine transform of the symmetric function f̃(θ)

am =
1

π

∫ π

−π
f̃(θ) cos(mθ)dθ =

2

π

∫ 0

−π
f̃(θ) cos(mθ)dθ. (7.2)

Next perform the change of variables θ = acos(x), such that

am =
2

π

∫ 1

−1
f̃(acos(x)) cos(m acos(x))

dx

− sin(acos(x))
. (7.3)

Now noting that sin(acos(x)) is negative on the interval θ ∈ [−π, 0], we can
write − sin(acos(x)) =

√
1− cos2(acos(x)) =

√
1− x2. Further, defining

f(x) = f̃(acos(x)), we arrive at

am =
2

π

∫ 1

−1

f(x)√
1− x2

cos(m acos(x))dx. (7.4)

This is known as a Chebyshev transform of f(x). Because f̃(θ) can be an
arbitrary function on the interval θ ∈ [−π, 0], also f(x) can be an arbitrary
function on the interval x ∈ [−1, 1].1 The functions

Tm(x) = cos(m acos(x)) (7.5)

are known as Chebyshev polynomials of the first kind.
1 L2-integrability assumed.
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Chebyshev polynomials of the first kind
To see that Tm(x) really are polynomials, we note that form = 0, 1 we have

T0(x) =1,

T1(x) =x. (7.6)

Further, it is shown in Eq. (12.1) in the Appendix that form > 1

Tm(x) = 2xTm−1(x)− Tm−2(x). (7.7)

Together with the initial expressions in Eq. (7.6), this shows that every Tm(x)
indeed is a polynomial of degreem.

Chebyshev expansion of the first kind
Knowing that am are the Fourier coefficients of f̃(θ), we can expand it as a
Fourier cosine series

f̃(θ) =

∞∑
m=0

am
1 + δ0m

cos(mθ). (7.8)

From this it follows by variable substitution that

f(x) =

∞∑
m=0

am
1 + δ0m

Tm(x), (7.9)

which is the corresponding Chebyshev expansion of f(x).

7.1.3 Second kind
Chebyshev transform of the second kind
We next consider the function

g̃(θ) = sin(θ)f̃(θ). (7.10)

Knowing that am are the Fourier coefficients of f̃(θ), we can write

g̃(θ) =

∞∑
m=0

am cos(mθ) sin(θ). (7.11)

Next, the coefficients of the Fourier sine transform of g̃(θ) can be written as

bn =
1

π

∫ π

−π

∞∑
m=0

am cos(mθ) sin(θ) sin(nθ)dθ, (7.12)
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where b0 is trivially zero, because g̃(θ) is anti-symmetric, and we therefore
restrict our attention to n > 0 below. Now using that

sin((m+ 1)θ) = cos(mθ) sin(θ) + sin(mθ) cos(θ), (7.13)

we have

bn =
1

π

∫ π

−π

∞∑
m=0

am (sin((m+ 1)θ)− sin(mθ) cos(θ)) sin(nθ)dθ

=an−1 −
1

π

∞∑
m=0

am

∫ π

−π
sin(mθ) sin(nθ) cos(θ)dθ. (7.14)

We now want to show that the integrals in the second term are identically zero.
For this reason we split the integral in two, one part on the interval θ ∈ [−π, 0],
and one part on the interval θ ∈ [0, π]. Next we perform a change of variable
θ → θ − π on the second interval, resulting in the expression∫ π

−π
sin(mθ) sin(nθ) cos(θ)dθ

=

∫ 0

−π

(
1− (−1)m+n

)
sin(mθ) sin(nθ) cos(θ)dθ (7.15)

We now split the integral again onto the intervals θ ∈ [−π,−π/2] and θ ∈
[−π/2, 0], and perform the change of variable θ → −θ − π on the second
interval. This results in∫ 0

−π

(
1− (−1)m+n

)
sin(mθ) sin(nθ) cos(θ)dθ (7.16)

=
(
1− (−1)m+n

) (
1 + (−1)m+n

) ∫ −π/2

−π
sin(mθ) sin(nθ) cos(θ)dθ.

Becausem and n are integers, either the first or second parenthesis is zero. It
follows from Eq. (7.14) that the relation

bn = an−1 (7.17)

holds between the Fourier cosine transform of f̃(θ), and the Fourier sine trans-
form of g̃(θ).

Having derived a relation between am−1 and bm, we now look at Eq. (7.12),
which also can be written as

am =
1

π

∫ π

−π
g̃(θ) sin((m+ 1)θ)dθ =

2

π

∫ 0

−π
g̃(θ) sin((m+ 1)θ)dθ, (7.18)
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where in the last step the antisymmetry of g̃(θ) and sin((m + 1)θ) have been
used. Changing to the coordinatesx = cos(θ) and denoting g(x) = g̃(acos(x)) =
sin(acos(x))f(x), we have

am =− 2

π

∫ 1

−1
sin(acos(x))f(x)

sin((m+ 1)acos(x))
sin(acos(x))

dx

=
2

π

∫ 1

−1

√
1− x2f(x)

sin((m+ 1)acos(x))
sin(acos(x))

dx. (7.19)

This expression is known as a Chebyshev transform of the second kind, where
the functions

Um(x) =
sin((m+ 1)acos(x))

sin(acos(x))
(7.20)

are known as Chebyshev polynomials of the second kind. Notably, it is pos-
sible to calculate the Chebyshev (and Fourier) coefficients with either of the
two methods

am =
2

π

∫ 1

−1

f(x)√
1− x2

Tm(x)dx =
2

π

∫ 1

−1

√
1− x2f(x)Um(x)dx. (7.21)

Chebyshev polynomials of the second kind
Showing that the Chebyshev polynomials of the second kind really are poly-
nomials proceeds similarly as for the Chebyshev polynomial of the first kind
by noting that form = 0 andm = 1 we have

U0(x) =1,

U1(x) =2x, (7.22)

where the second equation follows from sin(2θ) = 2 cos(θ) sin(θ). By a sim-
ilar repeated application of the trigonometric identities as in (12.1), it is also
possible to arrive at the recursive relation

Um(x) =2xUm−1(x)− Um−2(x), (7.23)

form > 1. Therefore, also themth Chebyshev polynomial of the second kind
is a polynomial ofmth order.

Chebyshev expansion of the second kind
From the fact that bm = am−1 are the expansion coefficients of g̃(θ) =
sin(θ)f̃(θ), it follows that the corresponding Fourier sine expansion of g̃(θ)
leads to

f̃(θ) =
1

sin(θ)

∞∑
m=1

bm sin(mθ) =
∞∑
m=0

am
sin((m+ 1)θ)

sin(θ)
. (7.24)
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By a variable substitution it therefore follows that

f(x) =

∞∑
m=0

amUm(x), (7.25)

which is known as a Chebyshev expansion of the second kind of f(x).

7.1.4 Alternative kind
In close connection to the Chebyshev expansion of the first and second kind,
we will for the Green’s function utilize the closely related hybrid expansion

f(x) =
2

π
√
1− x2

∞∑
m=0

µm
1 + δ0m

Tm(x). (7.26)

Consider therefore the expression∫ 1

−1
f(x)Tn(x)dx =

2

π

∫ 1

−1

∞∑
m=0

µm
1 + δ0m

Tm(x)
Tn(x)√
1− x2

dx = µn, (7.27)

where the last equality follows from the fact that this is a Chebyshev transform
of the first kind of the Chebyshev expansion of the first kind. The expression

µn =

∫ 1

−1
f(x)Tn(x)dx, (7.28)

therefore is the corresponding alternative Chebyshev transform.

7.2 Expanding the Green’s function
7.2.1 Analytic and matrix forms
Wenow derive the Chebyshev transform (expansion) of the alternative kind for
the Green’s function, which we from now on simply will refer to as the Cheby-
shev transform (expansion). This is done by first deriving the retarded and ad-
vanced Green’s functions GRij (E) and GAij (E) in an analytical form, which in
turn are split into a ”principal” and a ”non-principal” Green’s functionGPij (E)

and GNPij (E). Next, a Chebyshev transform is performed on GNPij (E), fol-
lowed by the corresponding Chebyshev expansion. This leads to an expansion
of the ”non-principal” Green’s function in terms of cos(m acos(x)) basis func-
tions. It is then shown that the ”principal” Green’s function is obtained by
simply replacing these basis functions by i sin(m acos(θ)).

The retarded and advanced Green’s functions are in turn obtained as super-
positions of the ”principal” and ”non-principal” Green’s functions. We also
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explain that while the retarded and advanced Green’s functions are standard
expressions, it is actually the ”non-principal” Green’s function that is of fore-
most interest. In analytical calculations the non-principal part is often indi-
rectly isolated by performing one of several tricks from complex analysis, such
as integration from −∞ to ∞, integration along a contour, or in special cases
by taking the imaginary part of the Green’s function. However, here we work
with the non-principal part immediately.

The first derivation of the Chebyshev transform (expansion) relies on the
analytical expression for the Green’s function being known. However, this is
not the case in actual calculations as they are performed in TBTK, where only
the Hamiltonian is known. For this reason a method for obtaining the Cheby-
shev expansion coefficients for the Green’s function from the Hamiltonian is
derived in the final part. In particular, this leads to an algorithm for finding the
expansion coefficients that utilizes the recursive nature of the Chebyshev poly-
nomials, such that higher order expansion coefficients are obtained through
repeated matrix multiplications. It is this algorithm that is particularly suited
for GPUs.

7.2.2 Retarded, advanced, principal, and non-principal Green’s
functions

The retarded Green’s function can be written as [84]

GRij (t) =− iθ(t)
∑
n

⟨Ψ(n)
i |Ψ(n)

j ⟩∗e−iEnt. (7.29)

Moreover, introducing a standard convergence factor iϵ in the energy,2 where
ϵ is an infinitesimal positive number, and performing a Fourier transform, we
find the Green’s function in the energy domain

GRij (E) =− i
∑
n

⟨Ψ(n)
i |Ψ(n)

j ⟩∗
∫ ∞

0
ei(E−En+iϵ)tdt =

∑
n

⟨Ψ(n)
i |Ψ(n)

j ⟩∗

E −EN + iϵ
.

(7.30)

2 This can be motivated by the fact that the integral is carried out from 0 to ∞. If ϵ is small
enough, it will only modulate the integrand far into the future, where it exponentially suppresses
the integrand in order to make the integral converge. As physics close enough to t = 0 (around
the time of interest) should not be affected by what is happening in the very far future, a modula-
tion of the integrand that only is non-negligible in the very far future should not affect the result.
In fact, if it did, our model would be very shaky to start with, because we would never be able to
put a reasonable confidence into that our model actually corresponds to the experimental reality.
For such confidence to exist in any model it has to allow for small but uncontrollable fluctua-
tions locally in time, and large uncertainties in the very distant future and past. A corresponding
convergence factor −iϵ is similarly motivated for the advanced Green’s function.
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Taking the limit ϵ→ 0+ we have

GRij (E) =
∑
n

⟨Ψ(n)
i |Ψ(n)

j ⟩∗
(

1

E − En
− iπδ(E −En)

)
. (7.31)

A similar derivation also leads to the advanced Green’s function

GAij (E) =
∑
n

⟨Ψ(n)
i |Ψ(n)

j ⟩∗
(

1

E − En
+ iπδ(E − En)

)
. (7.32)

We can now define a ”principal” and a ”non-principal” Green’s function as

GPij (E) =
∑
n

⟨Ψ(n)
i |Ψ(n)

j ⟩∗ 1

E − En
,

GNPij (E) =iπ
∑
n

⟨Ψ(n)
i |Ψ(n)

j ⟩∗δ(E − En), (7.33)

such that the retarded and advanced Green’s functions can be decomposed as

GRij (E) =GPij (E)−GNPij (E),

GAij (E) =GPij (E) +GNPij (E). (7.34)

In Section 7.2.1 we claimed that the ”non-principal” Green’s function is of
primary interest. To understand why, we note that we intentionally started
from the Green’s function defined in the time domain, because in our point of
view this is the Green’s function that carries primary physical meaning. It is
directly related to the propagation of particles from site j to i during the time
interval t. The Green’s function in the energy domain is in our view more of
a mathematical convenience, and in particular we note that we had to intro-
duce a convergence factor to actually arrive at it. Taking this view we should
therefore be primarily interested in what happens to the retarded and advanced
Green’s functions as we perform the inverse Fourier transform to move them
back into the time domain. In particular, we focus on the zero-time Green’s
function, as this is the Green’s function of interest for most physical quantities.
Because the inverse Fourier transform involves an integration from−∞ to∞,
and the additional Fourier factor e−iEt = 1 for t = 0, the contribution from
the ”principal” part drops out. This is why we say that the non-principal part
is of primary interest.

To further substantiate this claim we note that two other commonly em-
ployed techniques have exactly the same outcome. First, integration around a
contour, although in this case isolating the principal part through residue calcu-
lus, has the same effect as integrating the non-principal part along the segment
of the real axis that is contained by the contour.3 The principal part therefore
3 This argument breaks down when the poles are located away from the real axis. However, we
are only consideringHamiltonians that in principle can be diagonalized, giving rise to eigenstates
with infinite life time.
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serves an important mathematical purpose when contour techniques are em-
ployed, but it can be replaced by integration along the real energy axis when
the principal and non-principal parts of the Green’s function can be separated.
Finally, we note that the commonly employed method of taking the imaginary
part of the Green’s function, such as when for example calculating the local
density of states using

ρ(i, E) = − 1

π
Im (Gii(E)) (7.35)

is yet another method for isolating the non-principal part. However, this is only
guaranteed to work for diagonal entries of the Green’s function as the factors
⟨Ψ(n)

i |Ψ(n)
j ⟩∗ can have imaginary components otherwise. Altogether this mo-

tivates why it in TBTK is possible to, in addition to calculate the retarded and
advanced Green’s functions, also calculate the ”principal” and ”non-principal”
Green’s functions. In particular, the ”non-principal” Green’s function is ide-
ally suited for numerical integration.

7.2.3 Chebyshev expansion
For the moment we assume that the eigenstates of the system satisfy En ∈
[−1, 1], and perform a Chebyshev transform of the non-principal Green’s func-
tion

a
(m)
ij =

∫ 1

−1
GNPij (E)Tm(E)dE = iπ

∑
n

⟨Ψ(n)
i |Ψ(n)

j ⟩∗Tm(En) =
∑
n

a
(nm)
ij ,

(7.36)

where

a
(nm)
ij =iπ

∫ 1

−1
⟨Ψ(n)

i |Ψ(n)
j ⟩∗δ(E − En)Tm(E)dE. (7.37)

It follows that the Chebyshev expansion is given by

GNPij (E) =
2

π
√
1− E2

∞∑
m=0

a
(m)
ij

1 + δ0m
cos(m acos(E)), (7.38)

which also can be written as

GNPij (E) =
∑
n

g
(n)NP
ij (7.39)

where

g
(n)NP
ij (E) =

2

π
√
1− E2

∞∑
m=0

a
(nm)
ij

1 + δ0m
cos(m acos(E)). (7.40)
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Noting that a(nm)
ij is the Chebyshev transform of iπ⟨Ψ(n)

i |Ψ(n)
j ⟩∗δ(E−En), it

follows that g(n)NPij is the corresponding Chebyshev expansion. In particular,
we can write

g
(n)NP
ij (E) =iπ⟨Ψ(n)

i |Ψ(n)
j ⟩∗δ(E −En)

=iπ⟨Ψ(n)
i |Ψ(n)

j ⟩∗
∑
m

2a
(nm)
ij

iπ2⟨Ψ(n)
i |Ψ(n)

j ⟩∗(1 + δ0m)

cos(m acos(E))√
1− E2

.

(7.41)

Noting that the delta-function is real, we can now rewrite this factor as

δ(E − En) =Re

( ∞∑
m=0

2a
(nm)
ij

iπ2⟨Ψ(n)
i |Ψ(n)

j ⟩∗(1 + δ0m)

e±im acos(E)

√
1− E2

)

=Re

( ∞∑
m=0

2a
(nm)
ij

iπ2⟨Ψ(n)
i |Ψ(n)

j ⟩∗(1 + δ0m)

E±m
√
1− E2

)
, (7.42)

where the arbitrariness of the sign is a result of the real part of the expression
inside the parenthesis being independent of the choice made. Written in this
form the delta-function can be viewed as the real part of a holomorphic function
resulting from analytic continuation in E. Further, knowing that the real part
has a single delta-peak at En, it can be concluded that the expression also can
be written as

δ(E −En) = Re
(

i

E − En ± iϵ

)
. (7.43)

Having seen that the result of replacing cos(m acos(E)) by eim acos(E) is to
change

δ(E −En) →
i

E − En + iϵ
, (7.44)

and thereby including the principal part, we understand that the principal Green’s
function can be obtained through the expansion

GPij (E) =
2i

π
√
1− E2

∞∑
m=0

a
(m)
ij

1 + δ0m
sin(m acos(E)). (7.45)

We have thereby derived the Chebyshev expansion of both the ”principal” and
”non-principal” Green’s functions, which through Eq. (7.34) also allows us to
calculate the retarded and advanced Green’s functions.
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7.2.4 Matrix form
We have so far considered the Chebyshev transform of the Green’s function
when it is expressed as an ordinary function. We next consider the problem in
matrix form. In particular, we consider expressions of the form

−iθ(t)u†e−iHtv, (7.46)

where u and v are vectors with entries ui and vi, respectively, and H is the
Hamiltonian. First of all, being Hermitian,H can be written on the form

UEU−1, (7.47)

whereE is a diagonal matrix with diagonal entriesEjj = Ej , and U is unitary
with entriesUij . In particular, the ith column ofU is the ith eigenvector |Ψ(n)⟩
of the Hamiltonian. The exponent can now be written as a power series

e−iHt =
∑
m

(−it)m

m!
Hm = U

( ∞∑
m=0

(−it)m

m!
Em

)
U−1, (7.48)

where we have used that

Hm =(UEU−1)m = UEU−1(UEU−1)m−2UEU−1 = UEmU−1. (7.49)

Using this we can write

u†e−iHtv =
∑
j

(∑
i

u∗iUij

)( ∞∑
m=0

(−it)m

m!
Emj

)(∑
i

U∗
ijvi

)

=
∑
j

(∑
i

u∗iUij

)
e−iEjt

(∑
i

U∗
ijvi

)
=
∑
j

⟨Uj(u)|Uj(v)⟩e−iEjt, (7.50)

where we have used the notation |Uj(v)⟩ = (U−1v)j . In particular, if vi is a
vector with the only non-zero entry in row i, corresponding to the index i, then
|Un(vi)⟩ = |Ψ(n)∗

i ⟩ and

−iθ(t)u†i e
−iHtvj =− iθ(t)

∑
n

⟨Ψ(n)
i |Ψ(n)

j ⟩∗e−iEnt. (7.51)

We note that this is the same expression as Eq. (7.29). The Chebyshev trans-
form of the corresponding ”non-principal” Green’s function can therefore be
written as

a
(m)
ij =iπ

∑
n

⟨Ψ(n)
i |Ψ(n)

j ⟩∗Tm(En) = iπu†iUTm(E)U−1vj, (7.52)
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where in the first equality we have used Eq. (7.36), while in the second equality
we have used the definition of ui, vi, U , and that E is diagonal. Now, because
Tm(E) is a polynomial, and once more using that for each monomial of degree
d we have UEdU−1 = Hd, we can also write

a
(m)
ij =iπu†i Tm(H)vj. (7.53)

Having arrived at this form we can now define

|j(0)i ⟩ = vj, (7.54)

and use the recursive properties of the Chebyshev polynomials to arrive at

a
(m)
ij = iπ⟨j(0)i |Tm(H)|j(0)j ⟩, (7.55)

where

|j(1)i ⟩ =H|j(0)j ⟩,

|j(m)
i ⟩ =2H|j(m−1)

j ⟩ − |j(m−2)
j ⟩. (7.56)

These expressions define a recursive matrix-vector multiplication method for
finding the Chebyshev expansion coefficients, and form the basis of the Cheby-
shevSolver.

7.3 Implementation details
For numerical reasons it is useful to reorganize the terms in the Chebyshev
transform and expansion slightly, and we chose to define the Chebyshev trans-
form as

bij =⟨j(0)i |Tm(H)|j(0)j ⟩, (7.57)

where

|j(0)i ⟩ =vi,

|j(1)i ⟩ =H|j(0)j ⟩,

|j(m)
i ⟩ =2H|j(m−1)

j ⟩ − |j(m−2)
j ⟩. (7.58)

We also note that so far we have assumed that the energy spectrum is clamped
to the interval [−1, 1], because the Chebyshev transform is only defined on this
interval. However, any Hamiltonian with a bounded spectrum can be rescaled
as H̃ = H/s, resulting in the same rescaling Ẽ = E/s for the energies. Ap-
plying thesemodifications, it can be verified that the corresponding Chebyshev
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expansion is

GNPij (E) =

∞∑
m=0

b̃
(m)
ij lm(E),

lm(E) =
2i√

s2 − E2(1 + δ0m)
cos(m acos(E/s)), (7.59)

where b̃(m)
ij indicates that H̃ has been used to calculate the Chebyshev coeffi-

cients.
We are now ready to better understand some of the parameters that go into

the creation of the ChebyshevSolver and CPropertyExtractor in Section 6.2.
Namely,

SCALE_FACTOR
NUM_COEFFICIENTS
ENERGY_RESOLUTION

The scale factor is of course s, and should be chosen by the user to ensure that
the energy spectrum is bounded by [−1, 1]. Further, the number of coefficients
refers to how many expansion coefficients that should be used in the expan-
sion, while the energy resolution determines the number of points at which the
Green’s function (and all derived quantities) is evaluated. We also mention
that above we have collected all terms except the expansion coefficients into a
quantity lm(E). This quantity is independent of the specific Green’s function
that is evaluated and can therefore be evaluated once, even if multiple Green’s
functions are calculated. This can significantly speed up the evaluation of the
Green’s functions because it reduces the number of mathematical functions
that need to be evaluated. TBTK therefore allows these to be calculated and
stored in a lookup table, and the third Boolean value (sixth parameter) passed to
the CPropertyExtractor indicates whether this should be done or not. Finally,
the two first Boolean values indicates whether the evaluation of Chebyshev
expansion coefficients and the Green’s function, respectively, should be per-
formed on GPU(s).

117



8. Other developments

While TBTK is written to solve general problems, and the results described in
the Results Part are focused at the specifics of topological superconductivity,
we here describe some further method developments that are of intermediate
generality. Because these also are described in the articles we are somewhat
brief here, covering the general ideas rather than the details. In particular, we
describe two developments related to the calculation of superconducting pair
functions and general (potentially spin-polarized) currents.

8.1 Superconducting pair function
8.1.1 Classifying the pair function
In Section 4.7, we described how the superconducting pair function (order pa-
rameter) can be classified as s-, p-, d-wave, and so forth, based on how Fkσσ′

(∆kσσ′) depends on the angular coordinate of k. The classification is in anal-
ogywith the corresponding atomic orbitals, but has as is custom been described
inmomentum space, while the atomic orbitals have their angular dependence in
real space. Here we show that as long as translational invariance is preserved,
the classification can be done in real and momentum space interchangeably.
However, once translational invariance is broken, the momentum space repre-
sentation is less relevant, and the real space expression becomes of foremost
importance. In particular, the real space expression forms the basis for our
analysis of unconventional pair amplitudes in Paper III. Finally, we therefore
describe how we in practice apply these ideas in lattice calculations, as well as
how we extend this to what is known as odd-frequency pair amplitudes.

8.1.2 Spherical harmonics in real and momentum space
To make the connection between the real and momentum space classification
clear, consider the expression

FRrσσ′ = ⟨cR−rσcR+rσ′⟩. (8.1)

This is a completely general real space pair function in that the operators are
free to sit at independent sites. Here we use R to denote a ”center of mass”
coordinate, while ±r are vectors pointing from the ”center of mass” to the
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operator sites. In particular, we note that Fxσσ′ = FR0σσ′ , with R = x, and
whereFxσσ′ is the fully spin-dependent version of Eq. (4.42). The term ”center
of mass” coordinate is motivated by noting that FRrσσ′ contains information
about the correlation between electrons at siteR+r andR−r. It can therefore
be thought of as an electron pair wave function, with R being related to the
propagation of the Cooper pairs center of mass, while r is related to the pairs
motion relative to the center of mass. In particular, this motivates an expansion
of the pair function of the form

FRrσσ′ =
∑
Knlm

aσσ
′

nlm(K,R)jn(|r|)Ylm(θr, φr)e
iK·R, (8.2)

where the R dependence has been expanded in the Fourier basis, and the r de-
pendence have been expanded in the basis of spherical harmonics. Subscripts
on the angular coordinates emphasises that these are the angular coordinates of
r. If we further restrict ourselves to the translationally invariant case, such that
FRrσσ′ = FR′rσσ′ for any R′, implying aσσ′

nlm(K,R) = 0 for every K except
K = 0, it follows that it is enough to consider

F0rσσ′ =
∑
nlm

aσσ
′

nlmjn(|r|)Ylm(θr, φr), (8.3)

where aσσ′

nlm = aσσ
′

nlm(0, 0).
If we now instead perform the expansion for both variables in the Fourier

basis, we have

FRrσσ′ =
∑
pp′

⟨cpσcp′σ′⟩eip·(R−r)eip
′·(R+r) =

∑
Kk

⟨cK−kσcK+kσ′⟩ei2K·Rei2k·r,

(8.4)

where the last equality follows by definingK = (p′+p)/2 and k = (p′−p)/2.
Once again assuming translational invariance, implying ⟨cK−kσcK+kσ′⟩ = 0
for all K except K = 0, we have

F0rσσ′ =
∑
k

⟨c−kσckσ′⟩ei2k·r =
∑
knlm

bσσ
′

nlmjn(|k|)Ylm(θk, φk)e
i2k·r, (8.5)

where in the last equality we have expanded ⟨c−kσckσ′⟩ in spherical harmonics.
If we further use the plane wave expansion [85]

ei2k·r =4π
∑
lm

iljl(2|k||r|)Ylm(θk, φk)Y
∗
lm(θr, φr), (8.6)

the orthogonality condition for the spherical harmonics, and properly identify
the expression with Eq. (8.3), we can write Eq. (8.5) as

F0rσσ′ =
∑
nlm

aσσ
′

nlmjn(|r|)Ylm(θr, φr), (8.7)

119



where aσσ′

nlmjn(|r|) = 4πilbσσ
′

nlm

∑
|k| jn(|k|)jl(2|k||r|).1

Now, Eq. (8.7) is of the same form as Eq. (8.3) and therefore provides a
method for calculating the coefficients in the real space spherical harmonic ba-
sis from the corresponding momentum space basis. In particular, we note that
only those spherical harmonics that occur in the momentum space basis occur
in the real space basis. There is therefore a one-to-one correspondence between
the spherical harmonics in real and momentum space as long as translational
invariance is preserved. This means that as long as translational invariance is
preserved, it is irrelevant whether the classification of the pair function occurs
in real or momentum space.

8.1.3 Breaking translational invariance on a lattice
Once the translational invariance is broken, the momentum space representa-
tion loses much of its power. It is therefore more useful to consider the real
space expression directly. In particular, in Paper III we consider the pair func-
tion in a two-dimensional topological superconductor with a vortex, where the
presence of a vortex and edges breaks the translational invariance. Moreover,
because we perform a lattice calculation in two dimensions, while the spheri-
cal harmonics are basis functions for a continuous three-dimensional space, we
need to find a corresponding discrete two-dimensional analog for performing
the classification.

In Paper III we choose basis functions such that s-wave refers to the case
r = 0, in agreement with the terminology in Section 4.6.1. We also define
an extended s-wave basis function that is a non-zero constant on the nearest
neighbor sites of R. Further, for p-wave we choose basis functions that are
non-zero on the nearest neighbor sites, and that have the characteristic p-wave
dependence e±iφr . Finally, for d-wave we choose basis functions that are non-
zero on the nearest neighbor and next nearest neighbor sites, and that varies as
e±i2φr . These choices correspond to the most localized basis functions that dis-
play full s-, p-, and d-wave characteristics. We note that the choices involves
a simultaneous choice of angular and radial bahavior, which are separated into
Ylm(θr, φr) and jn(|r|), respectively, in the three-dimensional continuum ex-
pression. Having chosen basis functions, we then project the pair function onto
these in order to extract relevant pair amplitudes at different sites in the lattice.
For more details on these calculations we refer the reader to the section ”VII.
Pair amplitudes” in Paper III.

1 We have in this section used the summation symbol to interchangeably denote summation and
integration, depending on if the variables are continuous or discrete. The symbol

∑
|k| should

therefore be understood to be the radial integral, or the corresponding discrete sum.
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8.1.4 Odd-frequency pairing
In Section 4.7 we described how pair functions that are even under intechange
of momentum, such as s- and d-wave, has to be odd in spin (singlet), while
pair functions that are odd in momentum has to be even in spin (triplet). How-
ever, this can be violated if the behavior of the pair function in time is taken
into account [86–91]. The pair functions considered so far have all been with
operators at equal time, and in particular this means that we have been looking
at the components of the pair functions that are even in time, as odd functions
are zero at the point they are odd around. If also the time dependence is taken
into account, the pair function has to be totally odd under the simultaneous
interchange of momentum, spin, and time. In Paper III we also present results
for odd-frequency pairing by taking the time derivative of the pair functions
described above, because odd functions have a non-zero derivative at the point
they are odd around.

8.2 General currents
8.2.1 When spin is not a good quantum number
In Paper IV and V we investigate currents induced around magnetic impurities
at the surface of an s-wave superconductor with Rashba spin-orbit interaction.
Because the combination of magnetic impurities and Rashba spin-orbit inter-
action gives rise to terms in the Hamiltonian involving all spin axes, spin is not
a good quantum number. Moreover, we are interested in spin-polarized cur-
rents that can be polarized along one of several different axes. For this reason
a general method for calculating spin-polarized currents had to be developed
and implemented. Here we describe the main ideas, and refer to Appendix B
in Paper V for details and proofs.

8.2.2 The Heisenberg equation
The calculation of spin-polarized currents is based on the Heisenberg equation
of motion

dρ̂xσ
dt

=
i

ℏ
[H, ρxσ] , (8.8)

where ρ̂xσ = c†xσcxσ is the density operator for σ-spins at site x. In principle,
the right hand side can be expanded and terms responsible for moving σ-spins
in and out of site x can be identified as responsible for generating currents. For
example, terms of the form c†xσcx+bσ and c†x+bσcxσ move spins in and out of
the site x, respectively, along the bond pointing in the direction b, because the
operator pairs remove electrons from the site corresponding to the annihilation
operator and recreates them at the site corresponding to the creation operator.
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The current is then evaluated by taking expectation values of these operators.
This is indeed the basic idea behind our derivation. However, straightforward
evaluation of the commutator produces a wealth of terms when the Hamilto-
nian is complex enough. Moreover, we are interested in arbitrary directions of
the spin σ, which in practice means that the operators with sigma indices are
not necessarily written in the same spin-basis as the Hamiltonian. A general
treatment therefore requires the problem to be addressed with a certain amount
of systematic book keeping.

Without going into the details of the derivation, we now highlight the main
results and notation that is introduced through our derivation. Moreover, we
will see that this results in a natural division of the problem into a two stage
process, where relevant quantities first are calculated in the basis of the Hamil-
tonian, which then are used in the second stage to calculate currents in an arbi-
trary spin-basis. While the first stage is computationally demanding, it is done
without fixing the spin-polarization axis of interest. The second stage can then
quickly be run multiple times for different spin-polarization axes. This can
significantly reduce the time needed to get a complete understanding of the
system.

8.2.3 Sink-source, spin current, and spin-flipping current
When the commutator in Eq. (8.8) is expanded, the resulting expression can
be written as

dρ̂xσ
dt

=Ŝxσ −
∑
b ̸=0

(
Ĵb
xσσ + Ĵb

xσσ̄

)
. (8.9)

Here Ŝxσ is an on-site sink-source term that arise as a result of local spin-flips.
Further, Ĵb

xσσ carries electrons with spin σ from site x along bond b, and is
therefore an ordinary spin-current. Finally, Ĵb

xσσ̄ similarly carries electrons
with spin σ from site x along bond b, but flips the spin to the oposite spin σ̄
in the process. For the purpose of currents, it is the last two terms that are of
interest, but for completeness we treat all three terms.

The actual values of the sink-source term and currents are calculated as the
expectation values of the corresponding operators. In Appendix B of Paper V
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we show that these can be written as

⟨Ŝxσ⟩ =2Re

(∑
κκ′

aσ̄σσσx,σ̄,x,σ b̄
∗
κbκ′⟨c†xκcxκ′⟩H

)
, (8.10)

⟨Ĵb
xσσ⟩ =− 2Re

(
aσσσσx+b,σ,x,σ

∑
κκ′

b∗κbκ′⟨c†x+b,κcxκ′⟩H

)
, (8.11)

⟨Ĵb
xσσ̄⟩ =− 2Re

(
aσ̄σσσx+b,σ̄,x,σ

∑
κκ′

b̄∗κbκ′⟨c†x+b,κcxκ′⟩H

)
. (8.12)

Here the expectation values on the left side refers to the final expressions in
the basis of choice, while the expectation values with subscript H refers to
the expectation values in the basis of the Hamiltonian. Further, the a’s are
coefficients that in turn are calculated as sums and products of the b’s above,
and another set of A coefficients that are evaluated from the Hamiltonian. We
do not go into details here, but instead refer the interested reader to Appendix
B in Paper V. However, the b coefficients are related to the choice of spin-
polarization axis, and are given by

b↑ = cos
(
θ

2

)
, (8.13)

b↓ = sin
(
θ

2

)
e−iφ, (8.14)

where θ andφ are the spherical coordinates of the spin polarization axis relative
to the coordinate system of the Hamiltonian, and ↑ (↓) refers to the spin that is
up (down) with respect to this axis.

8.2.4 Vector current
The two quantities ⟨Ĵb

xσσ⟩ and ⟨Ĵb
xσσ̄⟩ are the spin-polarized and spin-flipping

currents, respectively, along the bond from x to x + b. These are expressed
as scalar quantities defined on the bonds between sites, but in practice we are
interested in the currents as a vector field defined on the sites. For this reason
we also define the current at site x as the directed average of the currents along
the bonds connected to site x as

Jxσσ′ =
1

2

∑
b̸=0

b⟨Ĵb
xσσ′⟩, (8.15)

where σ′ ∈ {σ, σ̄}.

8.2.5 Two stage calculation
As mentioned earlier, the evaluation of the currents is divided into a two stage
process that allows for more efficient numerical evaluation. We can now un-
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derstand how by noting that the expressions in Section 8.2.3 involves three
types of coefficients a, A, and b, and two expectation values ⟨...⟩ and ⟨...⟩H .
We mentioned that the coefficients A and expectation values ⟨...⟩H are calcu-
lated from the Hamiltonian (or in the basis of the Hamiltonian), and these are
therefore calculated in stage one. In particular, the evaluation of the expec-
tation values ⟨...⟩H is a computationally demanding problem. In stage two, a
specific choice is made for the spin axis by specifying the b coefficients, from
which the a coefficients, the expectation values ⟨...⟩, and the vector currents
then follows by comparative computational ease.
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Part IV:
Results





9. Results

As described in Section 5.2, recent theoretical and experimental progress have
indicated that topological superconductivity and accompanyingMajorana fermions
can be engineered through the use of material building blocks exhibiting s-
wave superconductivity, Rashba spin-orbit interaction, and magnetism. Fur-
ther, in Section 5.4.2 we introduced a model Hamiltonian that describes such
a set-up. The exact experimental realization of the model is not specified, and
can therefore be thought of as equally well describing one of several differ-
ent realizations. For example: magnetic impurities deposited at the surface
of an s-wave superconductor with Rashba spin-orbit interaction coming from
surface effects, a semiconductor in contact with a superconductor and a fer-
romagnet, or a similar semiconductor-superconductor heterostructure with the
ferromagnetic layer replaced by an external magnetic field. The results that we
present in Paper I-VII are all in one way or another based on slight variations
of this Hamiltonian. Here we describe these results.

9.1 Model Hamiltonian
While the model Hamiltonian essentially was introduced in Section 5.4.2, we
here write it in its full generality

H =Hkin +HVZ
+HSO +HSC , (9.1)

Hkin =− t
∑
⟨i,j⟩σ

c†iσcjσ − µ
∑
iσ

c†iσciσ, (9.2)

HVZ
=−

∑
iσσ′

[VZ(i)n̂ · σ]σσ′ c
†
iσciσ′ , (9.3)

HSO =α
∑
ib

(
eiθbc†i+b↓ci↑ + H.c.

)
, (9.4)

HSC =
∑
i

(
∆(i)c†i↑c

†
i↓ + H.c.

)
, (9.5)

where t is the hopping amplitude, µ is the chemical potential, VZ the Zeeman
term, α the spin-orbit interaction, b a nearest neighbor bond along the direc-
tion θb, and ∆i the superconducting order parameter. The additional changes
to the Hamiltonian presented in Section 5.4.2 is that the Zeeman term has been
given spatial dependence, and that it now can point in any given direction n̂.
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In Paper I-III we consider the case of a homogeneous Zeeman term pointing
perpendicular to the two-dimensional plane of the lattice. In Paper IV and V,
we consider the case of magnetic impurities in point, line, and block config-
urations. In this case VZ(i) is set to zero everywhere except at the impurity
sites, where it is set to a non-zero constant value. In these papers also the role
of the direction n̂ of the Zeeman term is investigated. Spatial variations of the
Zeeman term are also considered in Paper VI and VII.

The papers also differ in the specific order parameter configuration that is
chosen. In Paper I and III a vortex is studied, which, in line with the discussion
in Section 4.6.3, is modelled by twisting the phase of the order parameter such
that∆(i) = |∆(i)|eiθi , where θi is the polar coordinate of i. In the other papers
no such twist is considered. The order parameter is also in most papers, in line
with the discussion in Section 4.5, calculated self-consistently using

∆(i) =− VSC
∑
Eν<0

v
(ν)∗
i↓ u

(ν)
i↑ , (9.6)

where VSC is the superconducting pair potential in the s-wave singlet channel.

9.2 Main objectives and limitations
Having discussed the model that unifies the results presented in Paper I-VII,
we now turn to the main objectives and limitations of these papers. Many of
our basic results, in particular the existence of Majorana fermions in vortex
cores and at wire endpoints, have already been predicted in analytical contin-
uum calculations using simpler models. A reoccurring theme is therefore to
numerically investigate these phenomena using a more realistic model, which
in particular means solving self-consistently for the order parameter on a lat-
tice. Analytical models are useful for capturing and explaining essential phe-
nomena, but because they often need to be particularly simple to be possible
to solve, it is an important question whether they actually describe a relevant
experimental reality.

We note that while we do aim at coming closer to the experimental reality,
we do not claim to faithfully describe any particular experimental setup. In
our view the two largest discrepancies between an actual system and the mod-
els used is likely to be the lack of a realistic band structure and the usage of
large model parameters. In particular, using a single band model that results
in an energy dispersion of the form E = −2t(cos(kx) + cos(ky)) and the un-
realistically large size of the order parameter |∆| > 0.1t. The first of these
discrepancies has its origin in keeping the model general, not introducing ma-
terial specific parameters. The second is due to numerical limitations, where
more realistic parameter values would require the calculations to be performed
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on larger models.1 We therefore do not claim to parameter wise be close to the
experimental reality, but rather complexity wise: self-consistently relax the
order parameter to obtain a realistic profile, the presence of a lattice, multi-
ple impurities without a particular symmetric arrangement, lower dimensional
topological superconductor structures such as one-dimensional wires embed-
ded in a two-dimensional superconductor, and so forth. Self-consistency also
allows us to phenomenologically study the effect of other model parameters
such as the Zeeman term and Rashba spin-orbit interaction on the order param-
eter. Finally, performing the calculation for multiple parameter values allows
for the robustness of the phenomena to be probed, hinting at their validity also
for more realistic parameter values.

While verifying and testing the limits of results obtained in simplermodels is
one objective, it is far from the only one. For example, in Paper I we map out a
phase diagram that provides important information about the effect of the Zee-
man term and Rashba spin-orbit interaction on the stability of the topologically
non-trivial phase. The phase diagram also provides values that allow for subse-
quent numerical calculations to be performed in a relevant parameter region. In
Paper II, we relate the more abstract classification of the topological phase us-
ing a Chern number to a spin Skyrmion structure in the band structure. This can
be used to directly measure the topological phase using spin-polarized ARPES.
Possible experimental signatures of Majorana fermions in vortex cores, such
as local density of states measurements using scanning tunneling microscopy
and their relation to similar signatures in the spectral function are investigated
in Paper III. Here also the presence of unconventional and odd-frequency pair
functions in vortices with and without Majorana fermions, and in the surround-
ing bulk is investigated. Paper IV and V are concerned with (spin-polarized)
currents induced around magnetic impurities in point, line, and block config-

1 This is due to the number of eigenstates being the same as the size of the Hilbert space. A larger
lattice size leads to a larger Hilbert space, and therefore more eigenstates. Because the energy
spectrum typically is bounded to an interval the size of the band width, the energy resolution
roughly goes as the band width divided by the number of eigenstates. For a reasonable amount
of trust to be put into the results, the calculated quantities therefore should be measured on an
energy scale that is significantly larger than this resolution. Particularly so for collective quanti-
ties such as the order parameter, which arise from the collective behavior of many eigenstates. A
typical size of the Hilbert space for results reported in the Papers that are based on diagonaliza-
tion (I-V and VII) is 6400 and takes 2−3 days to generate self-consistently, while a typical size
used during the iterative research phase is 1600, taking one to a few hours to solve. With a band
width of 8t, this means a smallest energy resolution of 0.00125t and 0.005t, respectively, and
that the energy scale of the order parameter |∆| > 0.1t is at least one to two orders of magnitude
larger than the order of the numerical errors. For diagonalization the execution time cannot be
improved significantly because self-consistent calculations using diagonalization is a problem
with few opportunities for effective parallelization, and real world time and memory constraints
therefore sets a limit to the numerical accuracy. In fact, this is one of the reasons we have shown
interest in also investigating the possibilities of using the Chebyshev expansion of the Green’s
function, as it allows for notably larger model sizes to be considered. However, this is a recent
development, and except for the results presented in Paper VI, we rely on diagonalization.
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urations at the surface of s-wave superconductors with Rashba spin-orbit in-
teraction. These results have a broader focus than being restricted to the topic
of topological superconductivity andMajorana fermions. However, they serve
an important role in understanding the claim that Majorana fermions at the end
points of one-dimensional wires are spin-polarized. Further, in Paper VI we in-
vestigate a network of one-dimensional wires embedded in a two-dimensional
superconductor, showing that Majorana fermions not only appear at wire end
points, but also at junctions between an odd number of wire segments. This
is particularly done with the intention of providing an experimental way of
strengthening (or weakening) the argument that zero energy bias peakes ex-
perimentally found and interpreted as being due to Majorana fermions indeed
are so. Finally, in Paper VII we investigate a phenomenon not directly related
to topological superconductivity, where magnetic impurities can give rise to a
local π-phase shift in the order parameter, with the objective to provide a the-
oretical understanding of its origin. While this summarizes the main objetives
of our work, we next go into some more detail about the main results of these
papers.

9.3 Main results
9.3.1 Paper I
We confirm earlier predictions [25, 29, 30, 77] that Majorana fermions are
supported in vortex cores in the topologically non-trivial phase. We also nu-
merically map out a phase diagram, addressing questions related to the size of
the topologically non-trivial phase as a function of the pair potential, Zeeman
term, and Rashba spin-orbit interaction. In particular, we find that while the
Zeeman term naturally is detrimental to superconductivity, the Rashba spin-
orbit interaction helps their coexistence. This is very important, as the topo-
logically non-trivial phase otherwise would not exist. While the Rashba spin-
orbit interaction originally is included in the model for topological reasons, as
described in Chapter 3 and 5, this is an additional important role it plays that
is not seen in non self-consistent calculations.

In our phase diagram we identify three regions that we label I, II, and III,
that corresponds to the topologically trivial superconducting phase, topologi-
cally non-trivial superconducting phase, and the non-superconducting phase.
In addition, we find a fourth region that we label I’ that is topologically trivial,
but for which vortex cores become ferromagnetic and contain modes with en-
ergy close to zero that are not isolated Majorana fermions. This is important
from an experimental point of view because it explicitly demonstrates that false
positive signatures of isolated Majorana fermions is a very real possibility.

Finally, we also find spectral asymmetries in the model with respect to the
Zeeman term and vortex rotation direction. These are traced back to the in-
terplay between the Zeeman term, Rashba spin-orbit interaction, and vortex
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rotation direction. While the rotation direction sets a direction of motion in the
system, this motion couples to the spin through the Rashba spin-orbit interac-
tion, and the spin is in turn coupled to the Zeeman term. The result is that the
spectrum becomes a function of both the rotation direction and Zeeman term,
and is symmetric only under a simultaneous reversal of both.

9.3.2 Paper II
As mentioned in Section 5.4.3, the topological phases of the model have been
classified using a Chern number [30]. Further, from Section 2.4.4 we know
that the geometrical meaning of the Chern number is related to the twist of a
complex valued fiber bundle. This is admittedly rather abstract, but when the
fiber has two complex dimensions, it is possible to give the Chern number a
more geometrically intuitive interpretation. It is well known that the Chern
number, through an appropriate geometrical mapping, also can be interpreted
as a Skyrmion number [92]. However, in the present model the Chern num-
ber is used to classify a fiber bundle associated with a four-by-four matrix,
which implies that the fiber has four complex dimensions and it is therefore
not immediately clear that a similar construction is possible.

In this paper we show that also for this model it is possible to arrive at a
Skyrmion number classification. In particular, this Skyrmion manifests itself
in the form of a twisted spin structure associated with each band in momentum
space. While the trivial phase have a trivial spin structure in each band, the
non-trivial phase is distinguished by the collection of spins from a single band
close to the Fermi level forming a hedgehog. This provides a potential way to
measure the topological invariant directly using, for example, spin-polarized
ARPES [93]. We also show that the Skyrmion spin structure is beneficial
because it can be generalized to the case of a one-dimensional wire. In this
case the spins are restricted to a great circle, where the non-trivial and trivial
phases are distinguished by whether the collection of all spins twist around
this circle or not. From a conceptual point of view this is very helpful, because
it makes the connection between the physics of the one- and two-dimensional
cases more explicit, an objective that we in a different way also pursue in Paper
V.

9.3.3 Paper III
In Paper III we calculate the local density of states along a line cutting through
a vortex core, and relate the results to signatures of the topological phase in the
spectral function. These results are particularly focused at providing guidance
for experimental investigations of Majorana fermions in vortex cores. The
local density of states can be measured with for example STM/STS, while the
spectral function can be measured with ARPES. We perform a careful analysis
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of the bulk band structure, relating signatures in the the local density of states
and spectral function to the shape of the band structure. In particular, the non-
trivial phase have a Mexican hat shaped bulk band structure, giving rise to two
band edges that can be seen directly in the spectral function, and indirectly
gives rise to signatures also in the local density of states. Most notably, the
Mexican hat shaped band structure can lead to an apparent increase in the band
gap in the vortex core. This is due to that the lower band edge locally collapses
in the vortex core to give rise to Majorana fermions and so called Caroli-de
Gennes-Matricon states [94], while the upper band edge which exists also in
the absence of superconductivity survives. The superconducting gap therefore
collapses as expected, but a straight forward investigation of the local density
of states can give the opposite impression. This and related signatures can
potentially be used to verify that a system is in the non-trivial phase.

Due to claims that Majorana fermions are related to odd-frequency pair-
ing [86–89], and a general interest in unconventional pairing in vortices [95–
99], we also calculate such pair amplitudes based on the principles outlined
in Section 8.1. We find a wealth of unconventional and odd-frequency pair
amplitudes, and in particular analyze how the question of whether they occur
or not can be understood from the total angular momentum of their orbital and
spin component. However, while there is no shortage of odd-frequency pair
amplitudes, we do not find a strong correlation with the onset of the topologi-
cally non-trivial phase and the appearance of Majorana fermions.

9.3.4 Paper IV and V
Both Paper IV and V are concerned with currents around magnetic impuri-
ties on the surface of s-wave superconductors. In Paper IV we show that a
single magnetic impurity gives rise to localized spin-polarized currents in its
vicinity, given that the Rashba spin-orbit interaction is non-zero. This can be
understood as a consequence of the magnetic impurity coupling to the spin of
the electrons, while the Rashba spin-orbit interaction in turn couples the spin
to the momentum and therefore sets up a preferred rotation direction. We note
that this have some similarities with the interplay between the vortex rotation
direction and Zeeman term in Paper I. The focus of Paper IV is to understand
the individual impurities that act as building blocks of topological supercon-
ductors constructed with the help of such impurities. In particular, this means
extending the understanding of magnetic impurities in s-wave superconduc-
tors, building on top of a since long well established understanding of such
impurities in terms of so called Yu-Shiba-Rusinov (YSR) states [100–102].

In paper V amore thorough investigation of the same phenomenon is carried
out for line and block configurations of magnetic impurities. While Paper IV
is aimed at understanding the individual building blocks of a topological su-
perconductor, Paper V instead is concerned with the one- and two-dimensional
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systems themselves. Spin-polarized currents are shown to flow around the two
dimensional block, and their relation to the topologically protected edge states
are described. It is also shown through local density of states calculations that
the Majorana fermions that appear at the end points of one-dimensional wires
are spin-polarized. We explain this in relation to the spin-polarized currents
of the two-dimensional block. In this sense Paper V can be seen as taking
the opposite approach of Paper IV, which focuses on the zero-dimensional
building blocks, explaining the physics of the one-dimensional wire through
dimensional reduction of the topological band theory of the two-dimensional
block.

9.3.5 Paper VI
We show thatMajorana fermions appear not only at end points of one-dimensional
wires, but also at junctions between an odd number of wire segments, while
no Majorana fermions appear at junctions between an even number of seg-
ments. The effect can be understood as a consequence of the fact that Majo-
rana fermions have to come in pairs, and therefore only can annihilate in pairs.
When an odd number of end points is brought together to form a junction, only
an even number of Majorana fermions can be hybridized, leaving an odd num-
ber of Majorana fermions at such junctions. Experimentally this is a valuable
signature that can be probed with for example STM. If the even-odd effect can
be seen, the case for that the zero energy bias peaks are Majorana fermions
is much stronger than current results that have found such peaks only at end
points.

To provide further guidance for experiments, we also show how the results
depend on the model parameters. Most notably, we show how the excitation
gap varies with the Rashba spin-orbit interaction and Zeeman term, providing
further signatures for identifying the topologically non-trivial phase. In addi-
tion, this also tells us how the excitation gap varies with the model parameters.
As mentioned in Section 5.5.2, a large excitation gap is important if the Ma-
jorana fermions are to be used for topological quantum computation. We also
mention that Paper VI is the only paper in which the Chebyshev method have
been used. This is notably manifested in the system size of 400 × 400 lattice
sites that is used in this study, which can be compared to the typical lattice size
of up to 40× 40 in other papers.

9.3.6 Paper VII
This is the paper that has least direct connection to topological superconduc-
tivity. It addresses an old issue related to the YSR states discussed in Paper
IV, where previous studies have found that the local order parameter can ac-
quire a local π-shift at a magnetic impurity [103–106]. We consider a line of
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such impurities and show that the phase shift can be traced back to a certain
type of resonance between the Bogoliubov-de Gennes quasi-particles. While
all occupied states tend to be in phase with each other and the condensate, the
unoccupied states are out of phase. The presence of a magnetic impurity pulls
some of the originally unoccupied states into the condensate, simultaneously
expelling some originally occupied states, locally giving rise to a π-phase shift.
The problem is first considered without a Rashba spin-orbit interaction to ob-
tain a basic understanding of the phenomenon. However, motivated by the
presence of Rashba spin-orbit interaction in topological superconductors, we
also show how the results are modified when it is included.
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10. Summary and outlook

Topological phases of matter is a fascinating and rapidly expanding field of
condensed matter physics. As a theoretical framework it is interesting be-
cause of the many formal analogies that can be drawn between theories for
high energy physics and condensed matter. This means that many theoretical
concepts, previously developed for understanding physics on a more funda-
mental level, now also can be used to understand the quasi-particle excitations
that occur in condensed matter physics. Topological phases of matter therefore
provide an excellent opportunity to leverage decades of research into high en-
ergy physics, to make predictions about physics on the nanometer length scale
and above. In particular, it has the potential to provide immediate impact to
society, through the manufacturing of devices that take advantage of material
properties that are protected by topology.

In the work leading up to this thesis, the focus has been on topological super-
conductors that can be manufactured by combining materials exhibiting super-
conductivity, magnetism, andRashba spin-orbit interaction. These have poten-
tial application in the form of topological quantum computation devices. One
of the core objectives of the papers included in this thesis is to investigate re-
alistic lattice models of topological superconductors, solving self-consistently
for the order parameter. This allows for more complex models to be consid-
ered than more idealized analytical ones. In particular, we address issues re-
lated to the stability of the topologically non-trivial phase, existence of Majo-
rana fermions, measurability of topological invariants, signatures of Majorana
fermions in local density of states and spectral function measurements, and
more. In addition, we also investigate phenomena such as the appearance of
spin-polarized currents and a π-phase shift in the order parameter around mag-
netic impurities. These later results are of broader interest, not strictly related
to topology alone, but is of particular interest for understanding the larger con-
text within which topological superconductivity exists.

While the results are aimed at topological superconductivity and Majorana
fermions, the work have been performed in parallel with the evolution of a nu-
merical library for solving general bilinear Hamiltonians. This has resulted in
a c++ library currently consisting of more than 15,000 lines of code, mostly
written in c++, which is freely available online, and can be used to quickly
setup and solve models of arbitrary complexity. In particular, the library al-
lows for both wave function and single particle Green’s function methods to
be employed for calculating quantities. Several future directions are therefore
possible. First, the library can be built upon by leveraging analytical methods
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in combination with the possibility of calculating single particle Green’s func-
tions on demand, to extend the range of problems that are possible to solve
to include also non-bilinear Hamiltonians. This would allow for many-body
interactions to be taken into account, be it in topological superconductors, or
other systems. A second possible direction is to utilize the ability to easily
setup models of arbitrary complexity to study more complicated lattice struc-
tures or geometries, including systems consisting of multiple subsystem of dif-
ferent dimension, such as a wire that is placed on top of a superconductor rather
than being embedded inside it. However, the generality does not stop at topo-
logical superconductors. Themethods have in particular been constructed with
the intention of also allowing the study of molecules of arbitrary complexity,
molecules in connection with substrates, or lattices with arbitrary shapes, to
name a few.
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11. Topologisk bandteori och
Majoranafermioner (Summary in Swedish)

Det har sedan tidigt 1700-tal varit känt att vissa material leder elektrisk ström
väl, medan andra är mycket dåliga ledare. Många av de material som har god
ledningsförmåga är metaller, i vilka atomerna är regelbundet organiserade i
en periodisk kristallstruktur. Samtidigt är många andra kristalina material my-
cket goda isolatorer, trots att de i sin struktur liknar metallerna. Det dröjde ända
till 1920-talets slut innan den då nyupptäckta kvantmekaniken till slut kunde
tillämpas för att förklara vad som ger upphov till så drastiskt olika elektriska
egenskaper hos dessa i övrigt mycket liknande typer av material. Den resul-
terande teorin kallas för bandteori, och även om inte alla ledare och isolatorers
egenskaper kan förklaras med hjälp av denna teori, så är bandteori ett av de
mest centrala koncepten inom dagens materialfysik.

Det viktigaste begreppet inom bandteori är materialens bandstruktur. Denna
innehåller bland annat information om hur mycket energi som behöver tillföras
elektronerna inuti materialet innan dessa kan bidra till en ström. Om band-
strukturen visar att det är möjligt att sätta fart på elektronerna genom att tillföra
godtyckligt småmängder energi, då ärmaterialet enmetall. Det är dockmöjligt
att det finns en nedre gräns för hur mycket energi som behöver tillföras en elek-
tron för att få denna att bidra till en ström. Om detta är fallet så säger man att
ett bandgap separerar de så kallade valenstillstånd elektronerna normalt är i
(valensband), från de tillstånd som kan bidra till en ström (ledningsband). Om
detta bandgap är stort blir ledningsförmågan mycket dålig och materialet är
en isolator, men om det istället är litet men inte noll så är det en så kallad
halvledare.

Ett tillstånd som i många material uppstår vid låga temperaturer är supraled-
ning. Likt det metalliska tillståndet är supraledare goda ledare, men de har
förvåndande nog också stora likheter med isolatorer. På grund av ofrånkom-
liga orenheter och ljudvågor i metaller upplever dessa motstånd som gör att
strömmar inuti materialet avtar, om inte strömen kontinuerligt drivs på av en
yttre spänning. I motsats till detta är supraledare perfekta ledare som kan be-
vara strömmar som sats igång inuti dem. Detta kan i likhet med isolatorernas
egenskaper förklaras med en typ av bandgap. I en isolator hindrar bandgapet
elektronerna från att bli ledningselektroner. För en supraledare är det istället så
att så snart en ström satts igång, så hindrar supraledarens bandgap elektronerna
från att sluta bidra till denna ström.

Trots att både bandteori och den teorin som förklarar dessa supraledande
effekter varit kända sedan ca 80 och 50 år tillbaka i tiden, så har det nyligen
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upptäckts att bandteorier kan ha så kallade topologiska egenskaper. För vissa
typer av isolatorer innebär detta att trots att materialet egentligen är en isolator
i sitt inre, så leder det strömmar kring sitt yttre. Dessa strömmar har vidare
en väldigt specifik ledningsförmåga, vilken är okänslig för många typer av
orenheter som kan förekomma i materialet.

För supraledare är istället den mest tilltalande konsekvensen av de topol-
ogiska egenskaperna att dessa förutsäger att vissa typer av supraledare ger
upphov till så kallade Majoranafermioner. En Majoranafermion är en i par-
tikelfysik hypotetisk typ av fundamentalpartikel. Det är än så länge oklart
om det verkligen finns fundamentalpartiklar som är Majoranafermioner eller
inte, men i supraledare med de rätta topologiska egenskaperna skulle dessa
kunna uppstå som så kallade kvasipartiklar. Det vill säga, inte som verk-
ligt fundamentala partiklar, men som partikelliknande föremål. Det har vi-
dare förutspåtts att det är möjligt att utnyttja Majoranafermioner för så kallade
topologiska kvantberäkningar. Om det visar sig möjligt att både skapa Majo-
ranafermioner och utnyttja dessa för sådana kvantberäkningar, så skulle detta
kunna leda till en ny typ av dator som är många gånger mer kraftfull än dagens
alla datorer tillsammans.

I de artiklar som ligger till grund för denna avhandling har vi studerat topolo-
giska supraledare. Detta har till stor del gjortsmed hjälp av numeriska beräkningar,
vilka tillåter att mer komplicerade och verklighetstrogna modeller av topol-
ogiska supraledare kan studeras än vad som är möjligt med rent analytiska
metoder. Vi undersöker bl.a. stabiliteten hos de topologiska faserna, hur olika
parametrar påverkar existensen av Majoranafermioner, och hur man experi-
mentellt skulle kunna identifiera dessa. I denna avhandling presenteras bak-
grundsinformation som hjälper till att sätta dessa artiklar i perspektiv, ytterli-
gare detaljer, och en sammanfattning av artiklarnas innehåll. I kapitel 2 intro-
duceras viktiga matematiska begrepp inom differentialgeometri, topologi, och
fiberknippen. Detta används sedan för att introducera topologisk bandteori i
kapitel 3. En introduktion till supraledning ges i kapitel 4, vilken i kombina-
tion med kapitel 3 förbereder för en presentation av topologiska supraledare i
kapitel 5. I kapitel 5 ges också en introduktion till den model som studerats i
artiklarna. Kapitel 6 till 8 beskriver metodutveckling som skett parallellt med
de mer modelspecifika beräkningarna, medan en sammanfattning av resultaten
i artiklarna presenteras i kapitel 9.
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Appendix A.
Chebyshev polynomial

Proof that Tm(x) is a polynomial of degree m
Letting Tm(x) be defined as in Eq. (7.5), and assumingm > 1, we have

Tm(x) =Re
(
ei(m−1)θeiθ

)
= cos((m− 1)θ) cos(θ)− sin((m− 1)θ) sin(θ)

=xTm−1(x)− Im
(
ei(m−2)θeiθ

)
sin(θ)

=xTm−1(x)− (cos((m− 2)θ) sin(θ) + sin((m− 2)θ) cos(θ)) sin(θ)
=xTm−1(x)− cos((m− 2)θ) sin2(θ)− (sin((m− 2)θ) sin(θ)) cos(θ)
=xTm−1(x)− cos((m− 2)θ)

+ (cos((m− 2)θ)) cos(θ)− sin((m− 2)θ) sin(θ)) cos(θ)

=xTm−1(x)− Tm−2(x) + Re
(
ei(m−1)θ

)
x

=2xTm−1(x)− Tm−2(x). (12.1)
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