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Abstract—Deep learning has thus far not been used for
dating of pre-modern handwritten documents. In this paper,
we propose ways of using deep convolutional neural networks
(CNNs) to estimate production dates for such manuscripts. In
our approach, a CNN can either be used directly for estimating
the production date or as a feature learning framework for
other regression techniques. We explore the feature learning
approach using Gaussian Processes regression and Support
Vector Regression.

The evaluation is performed on a unique large dataset of
over 10000 medieval charters from the Swedish collection
Svenskt Diplomatariums huvudkartotek (SDHK). We show
that deep learning is applicable to the task of dating documents
and that the performance is on average comparable to that of
a human expert.

Keywords-Document analysis; Manuscripts; Document dat-
ing; Digital Humanities;

I. INTRODUCTION

In this paper, we will show how deep learning methods
can be used for historical analysis in digital humanities.
All over the world, pre-modern handwritten manuscripts are
being photographed and scanned for cultural heritage pur-
poses on a large scale. Digitization effectively removes the
requirement of physical access for doing research on histor-
ical writings. However, to make research on the full body of
preserved documents possible, computational methods need
to be used (it is simply too large for a human research team).
We present our successful endeavour of using deep learning
techniques, originally developed for computer vision, to
support this exciting new type of research in the humanities.
We have used deep convolutional neural networks (CNN) for
estimating manuscript production dates.

We have also evaluated the advantages of using a CNN for
feature learning. In our earlier work [1], [2], we have showed
that a Gaussian Process (GP), in combination with hand-
crafted ink stroke descriptors, can be used for manuscript
dating. In [3], Support Vector Regression (SVR) with a two
phase estimation refinement have been used in combination
with handcrafted features. In this paper, we evaluate these
regression techniques with novel features learned from a
CNN. This is done by substituting the output layer of the
CNN with a GP or SVR based estimator. We show that the
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Figure 1. Top row: Charters 653 and 21475 from the SDHK database
(section I-A), captured as 4 megapixel colour RGB images. In total, the
database includes 10992 photographed and dated charters. Botton row: The
gray scale version in charter 1962 and a cut out example used as input to
the CNN.

features can be learned, eliminating some of the need for
the time consuming work of handcrafting features suitable
for different periods and scripts.

A concern when using deep neural networks is the amount
of training data required. For most applications using histor-
ical data, labeled (or even digitized) material is hard to come
by. Hence, developing methods with low requirements for
training data is necessary. Our networks were pre-trained
on other image tasks, in part mitigating this problem. We
explore the need for training data by evaluating the networks
performance when given training sets of different sizes
compared to the full set.

A. Dataset: “Svenskt Diplomatariums huvudkartotek”

The database “Svenskt Diplomatariums huvudkartotek™!
(SDHK) is a charter collection at the Swedish National
Archive containing dated charters from medieval Sweden.
We have a used set of almost 11000 charters for training the
learning methods described below. Some example images

Uhttps://sok.riksarkivet.se/SDHK



from the charter collection are shown in figure 1. All used
charters are dated on the day by the original scribe.

The charters contain official communications, explaining
the need for dating them on the day. Most of the charters are
in Swedish (going from old Swedish to a modern grammar)
and a large part in Latin. Most charters are written in
Sweden, while a smaller part is written in the important
political centers of the time (e.g. Rome).

II. METHOD
A. Deep Convolutional Neural Nets

In the last few years, deep convolutional neural networks
have been shown to work very well on computer vision tasks
like image classification [4], [S], object detection [5], [6] and
semantic segmentation [7]. It has in, many cases, replaced
the traditional computer vision methods when it comes to
achieving top performance.

The only previous work using deep learning for document
dating that we are aware of is found in [8] where the
authors worked with modern (i.e. years 1600-1999) printed
text. The date estimation was based on both the image data
and text data extracted using OCR software run on the
document image. Following the common assumption that
deep networks need large amounts of training data, most of
their data was used for training (the test set size was about
1% of the training set size).

For our experiments, we use the popular GoogleNet
architecture from [9]. A model pre-trained on the Imagenet
dataset for 120000 iterations (parameter updates) is used to
initialize the model. Despite the pre-training data being far
from document images, the network learns general image
features that work well for many kinds of images, especially
in the lower layers of the network. We also need to adapt
the model trained on Imagenet, since it has been trained to
classify natural images. We do this by first removing the final
layer from the model and replacing it with a fully connected
layer with a single output neuron for regression. We also
remove the auxiliary classifiers.

The Imagenet dataset consists of RGB images of size
256 x 256 x 3. As a simple method of data augmentation,
GoogleNet is typically trained on 224 x 224 x 3 random
crops of the full images. To be able to use this network,
we need inputs of the same size. We solve this problem
with two simple solutions. For the spatial size problem, we
generate 20 random crops of 256 x 256 x 3 for each letter,
and during training, we randomly crop 224 x 224 x 3 crops
of the full images. For the three-channel problem, we opt for
the simplest solution we can think of, that is to replicate the
input gray scale image in each of the three input channels.

The GoogleNet architecture is based on using a fixed
collection of layers as a module that is called the inception
module. It is a move away from the more traditional way
of thinking about CNNs in terms of individual layers.

Table I
OVERVIEW OF OUR CNN, BASED ON THE GOOGLENET ARCHITECTURE.
FOR MORE DETAILS SEE [9], [10].

layer type kernel size/stride output size
convolution 7T X712 112 x 112 x 64
max pool 3 x 32 56 X 56 x 64
convolution 3 x 3/1 56 X 56 x 192
max pool 3 x 32 28 x 28 x 192
inception(3a) 28 x 28 x 256
inception(3b) 28 x 28 x 320
inception(3c) stride 2 28 X 28 X 576
inception(4a) 14 x 14 x 576
inception(4b) 14 x 14 x 576
inception(4c) 14 x 14 x 576
inception(4d) 14 x 14 x 576
inception(4e) stride 2 14 x 14 x 1024
inception(5a) 7 x7x 1024
inception(5b) 7 X7 x 1024
average pool 7Tx 7N 1x1x1024
fully connected 1

See Table I for a condensed overview of the GoogleNet
architecture.

We do the fine-tuning in four steps. First we initialize
and train the final layer for 7500 iterations, this is done
since gradients of the newly initialized output layer is too
high compared to the pre-trained network so that fine-tuning
all the layers at once would ruin the initial value. Then we
fine-tune the last layer of the inception modules (layer 5)
and onward for 7500 iterations, then the same with layer 4.
Finally, we train inception layers 3 and onward for 50000
iterations. We evaluate our model on the validation set (10%
of the data) every 5000 iterations and our final model for
each train split is the iteration that performed best on the
validation set, on which we evaluated every 5000 iterations
during training. For all experiments we use a mini-batch size
of 16, a weight decay of 0.0002, and we use ADAM [11]
to train the network. We initialize the learning rate of 0.001
and multiply it with 0.1 every 20000 iterations.

During the testing phase, we get one date estimate for
each of the 20 random crops. To merge this into a single
estimate, we take the median of the 20 date estimates. We
find that this works slightly better than taking the mean.
We hypothesize that this is because the random crops can
sometimes only capture background, causing the network to
give a poor date estimate, affecting the mean, but not the
median.

B. Support Vector Regression

As described above, a fully connected layer with one
output (i.e. a linear combination) was used for projecting
the features learned by the CNN onto a time line. In
some applications for deep networks, the last layer have



successfully been switched out and replaced with a Support
Vector Machine (SVM) (e.g. in [12] and [13]). We have
replaced the last layer with a Support Vector Regression
(SVR) to give us the output data on a time line.

Several applications of SVR for dating can be found in
the literature. In [14] and [15], the authors propose a 2
step SVR approach for estimating the age of people. The
authors propose a methodology where they first train the
SVR on all the training data. The estimations given by this
initial model are then used to find a smaller set of training
point around every element in the test set. From this smaller
set, a local SVR is trained and the estimation of the date
in this way refined. The assumption was that in a small
volume of the feature space, the parameters of the best SVR
estimator might differ from the best SVR on the whole
training set. This approach is used in [3] for estimating
the production dates of a dutch charter collection, which
is similar to SDHK. The authors used hand crafted features,
setting their approach apart from ours.

As kernel function for the SVR2, we chose a radial basis
function (RBF). The RBF is shown in equation 1. Note that
this kernel does not have automatic relevance detection as
the kernel for the Gaussian Process in section II-C does.

k(z, ') = exp(— ||z — 2'||°) 1)

For estimating the best pair of the model parameters C'
(penalty of the error term) and -, we used random sampling
in the interval [—23°,230]. We then trained a SVR on a
subset of the training set (10000 randomly picked points) and
evaluated the SVR on the full validation set. As described
in section II-A, in the validation set, multiple elements
belonged to the same charters. Estimations were merged by
taking the median for each charter, giving one final estimate
per charter. The splits for the sets were the same as for the
CNN.

When the best global SVR had been found, a set of
all possible local SVRs (i.e. trained on smaller sets) were
trained. Finally, the test set was evaluated using first the
global SVR and then the set of local SVRs.

C. Gaussian Process Regression

An interesting approach to regression from the Bayesian
Non-parametric family of methods, is the Gaussian Process *
(GP) (see [17]). In [1] and [2], we used a GP to do regression
over a bag-of-features type feature space for manuscript
dating. There, the feature extraction was handcrafted, while
in this paper the CNN did the feature learning. We replaced
the output layer of the CNN with a GP after tuning the
network.

2Qur implementation was based on SciKit-Learn http://scikit-learn.org
3The Gaussian Process regression was performed using the excellent
implementation from [16].

The format for the training set D (of size n) is
that we have pairs of feature vectors and targets D =
{(xi,¥i)),% = 1..n} for the regression task. The regression
is modelled as y = f(x) + € where e is Gaussian noise.
In the parametric case, our regression method would learn
some parameters for f to minimize some loss function (e.g.
MSE). Then f(x), with x from the test set, would be used
for making point estimates for y. In the case of a GP, f
is drawn from a Gaussian Process prior and the training
data is kept and not reduced to some set of parameters.
Marginalising over the parameter space gives us a final
mapping from the feature space to the target space that
maximizes the likelihood of producing each y; and points
x;. The parameters in f, like o or [ in equation 2, are
marginalised giving rise to the name non-parametric. A GP
regression estimates a distribution over transfer functions f.
Hence, the regression output is a distribution over the target
space (in our case, the time line).

The kernel function for the GP , shown in equation 2, was
chosen to be a radial basis function (RBF) with automatic
relevance determination (ARD). Varying the ARD parame-
ters is equivalent to stretching the feature space in which
the regression is performed. In this way, feature weighting
can be performed by optimizing over the likelihood of
the process giving the target values. We also performed
experiments without ARD, letting all /; have the same value.
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A weakness of the standard GP is the computational
and memory complexities. The calculations required for
inference scale as O(n®) and the memory requirement as
O(n?). Due to the data augmentation, our training set was
larger than could be stored in memory on a machine with
16GB of RAM. Inspired by stochastic gradient descent, we
implemented a mini-batch GP regression. In this way, all of
the training data was used at some point during the training.
This made it possible to use the full training data set for
GP regression. However, since only a mini-batch is used
at each iteration, the resulting model can only represent a
lower bound of a model using the full set for inference at
each iteration.

A more sound approach to reducing the memory com-
plexity is the sparse Gaussian process (see [18]). There
are several types of sparse GPs, we chose a formulation
where a number of “inducing points” picked from the
same domain as the training data are used as stand-ins for
the actual training data when performing inference. This
reduces the computational complexity to O(nm?), where m
is the number of inducing points. However, with a memory
complexity of O(nm) and a large training set, our memory
limitations only allowed for small values of m. However,
having the full training set available at every iteration for



inference was a great improvement over our mini-batched
GP. Since n ~ 100000 we let m € {50, 100, 150, 200}.

The inducing points should, as stated above, be sampled
from the same domain as the training data. To achieve this
we used a mini-batch K-Means to cluster the training data,
using the cluster centers as inducing points. This procedure
also concentrates the inducing points in areas where there
is more data in the training set, hopefully imitating it better
than a random sampling.

III. EVALUATION

A. Evaluation Dataset: “Svenskt Diplomatariums huvudkar-
totek” (SDHK)

The images of “Svenskt Diplomatariums Huvudkartotek”
(SDHK) was photographed over a period of 10 years.
The images were originally taken as a way of reproduc-
ing/copying the charters for researchers interested in differ-
ent parts of the collections. As such, the image quality is
lower than if the reproduction was performed today. The
high resolution images have a size of 4 M pixels where a
large part is the black background. For the web images, there
are also jpeg compression. In this paper, we have used the
high resolution gray scale images.

B. Evaluation Metrics

Our main evaluation metric was the mean square error
(MSE). It is shown in equation 3 where I is the image set,
t the target years and f the year estimation function.

Eysp(It) = — Z(f(fl) —t;)? 3

When presenting the estimated production dates to re-
searchers in for example history, the outliers (i.e. for them
the obvious errors) are of higher importance to eliminate
then smaller errors. This is consistent with the performance
of a human estimate that would almost never produce an
extreme outlier (unless intentionally deceived).

We also present percentiles of the absolute errors to give
a more intuitive measure of the error distribution.

C. Results

A common assumption for using deep networks is that
they require large sets of training data. Hence, we started our
evaluation using 60% of the data set for training. To make
sure we were right in this, we then reduced the training data
in steps of 10 percentage points. These results are shown in
the left panel of figure 2. Down to 20% training data the
results, in terms of MSE, were comparable to using more
data. We think this is because the network was pre-trained
on other image tasks before the final tuning for our specific
task. Our evaluations of other regression methods, using the
CNN only for feature learning, are based on the 10% training
set.
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Figure 2. Evaluation results for our modified GoogleNet using 10%
training data. Left: The distribution of estimation errors, Right: Evaluation
results in MSE for some training data sizes. Only at 10% training data does
the results degrade. Hence, we focused on applying other methods on this
training set, using the network only for feature learning.
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Figure 3.  Plot for MSE over training iterations using the mini-bacth
Gaussian Process (GP). Evaluations are on the test set, though the training
was performed only on the training set. The legend shows the varying mini-
batch sizes. A higher batch size gives a better final result. After some time,
the randomness of the training batches seem to prevent better tuning. The
lines are median performance with a colored region showing the min and
max. Note that a GP does not optimize for median MSE (shown here),
but likelihood. They are correlated but nonequivalent. Left: GP with ARD
Right: GP without ARD

As shown in table II, the performance of GoogleNet
(“CNN” in the table) was a lot better than the performance of
AlexNet. Therefore, we stopped our experiments on AlexNet
at 60% training data.

To the left in figure 5, the distributions of estimation errors
for the SVR as output layer are shown. In both histograms, a
large bias can be seen. Bias is expensive in terms of MSE,
but this does not completely explain the high MSE score
(shown in table II). The distribution of errors are also wider
than for other methods.

Refining the estimation using a SVR trained on a smaller
local set did not improve the estimation. As seen in figure
6, the global+local SVR is better at lower errors while only
using the global SVR is better at higher percentiles.

The evaluation results from using the non-sparse mini-
batch GP is shown in figure 3. Using a larger batch when
training gave better results, probably due to more infor-
mation being available at each iteration of the training.
However, after some time the performance leveled out with
a small variance around some limit. The randomness in
what information was represented at each training mini-
batch might be the cause of this.

As stated above, a more statistically sound method for
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Table 11
EVALUATION METRICS FOR SOME OF THE RESULTS.THE METRICS
PRESENTED ARE THE 25th (P25), 50th (P50) AND 75th (P75)
PERCENTILES OF THE ABSOLUTE ERROR TOGETHER WITH THE MEAN
SQUARE ERROR (MSE). THE SIZE OF THE TRAINING SET IS GIVEN AS
PERCENT OF THE FULL SET (I.E. 10992 CHARTERS)

Figure 4. Plot for MSE over training iterations using the Sparse Gaussian
Process (GP). Evaluations are on the test set, though the training was
performed only on the training set. The legend shows the varying inducing
point set size m. Surprisingly, using ARD only gave a slightly better
final result, with a much bigger cost in training. The lines are median
performance with a colored region showing the min and max. Note that a
GP does not optimize for median MSE (shown here) but likelihood, though
correlated they are not equivalent. Left: Sparse GP with ARD Right: Sparse
GP without ARD

Figure 5. Histograms over the estimation errors for SVR and Gaussian Pro-
cess (GP) output layers using 10% training data. Upper Left: Distribution
of estimation errors for the global SVR, Upper middle: GP-MiniBatch
with Automatic relevance determination ARD, layer. Upper right: GP-
MiniBatch without ARD, Lower left: Distribution of the estimation error
for the two phase SVR refinement, Lower middle: Sparse GP with ARD,
Lower right: Sparse GP without ARD

using more training data with restricted resources is a
Sparse GP. The evaluation results from using the sparse
mini-batch GP is shown in figure 4. Convergence is much
faster without ARD but with some penalty in the result.
Increasing the number of inducing points m improved the
results, but showed diminishing returns with higher values
(as computational complexity increased with m?).

In figure 5, the distributions over estimation errors are
shown for all GP variants (ARD, sparseness). Though the
mode of the distributions are narrower for Sparse GPs, the
main difference are in the tails. The much smaller tails of
the Sparse GPs compared to the mini-batch GPs (and also
SVRs) has a great impact on MSE. Also, eliminating outliers
is of great importance to historians.

Finally, the MSE and error percentiles for some repre-
sentative chosen runs are shown in table II. In figure 6,
the corresponding percentiles of absolute error curves are
shown. All methods tried showed very similar results at
lower error percentiles. The main difference seem to be how
larger error were handled. This is supported by that P25 and

Estimator Training P25 P50 P75 | MSE
CNN 10% 5.9 12.7 233 645
SVR RBF global 10% 8.2 179 318 905
SVR RBF global+local 10% 6.7 164 330 | 940
Mini-batch GP (ARD) 10% 5.9 13.0 237 640
Sparse GP (m=200,ARD) 10% 5.1 1.1 20.7 550
CNN 20% 4.6 10.0 185 469
CNN 30% 4.7 103 19.0 494
CNN 40% 4.5 102 19.0 485
CNN 50% 4.4 10.0 185 469
CNN 60% 4.9 10.7  20.1 505
CNN (AlexNet) 60% - - - 840
Comparison from [1] 5% 7.9 183 36.8 | 1389
Comparison from [2] 6% 8 17 30 810
Comparison from [2] T% (+text) 6 12 22 462

100
80| ]
60 | 1
2
c
Q
2
& a0l Sparse GP |
— Sparse GP ARD
— SVR global+local
Minibatch GP
20 — Minibatch GP ARD |]
SVR global
— CNN
00 10 20 30 20 50 60 70 80 90

Absolute error

Figure 6. Evaluation results given in varying percentiles of absolute error.
“CNN* refers to using the full network and all other types given in the
legend are for different output layers, using the CNN for feature learning.
Training set was set to 10% of the full collection.

P50 in table II are very similar but MSE can double (e.g. in
the case of SVR as output layer). Comparing P80 for best
and worst estimators is approximately 15 years, which we
argue is high. Note that the comparisons from [1] and [2] are
produced using a low resolution version of SDHK and hand
crafted features (and in the latter case, transcribed text).

To overcome the problem with outliers in the estimations
we have used ensembles of estimators in earlier work
(see [2]). When the intersection between the sets of outliers
from the estimators was small, the higher errors could
be lowered (see comparisons in table II) by merging the
estimations. For the future it would be very interesting to
look at if the worst 5% of the estimates in this paper, are
the same set for each estimator.



IV. CONCLUSION

In this paper we show that deep convolutional neural
networks can be used for production date estimation for
pre-modern handwriting. We show that a network can be
trained to have a lower error than +20 years for 75% of
the manuscripts. This is comparable (and sometimes even
better) than a human expert.

When using historical sources, the training data is almost
always very limited, we overcome this by using a network
that was pre-trained on a image classification task. Hence,
we show that as little as 10% of the charter collection
“Svenskt Diplomatariums huvudkartotek” (SHDK) is needed
for training the network. The evaluation collection consisted
of 10992 pre-modern charters.

In previous papers on dating pre-modern material, Support
Vector Regression and Gaussian Process Regression have
been used (but with hand crafted features). We show that a
deep convolutional network can be used for feature learning
together with these regression techniques. We are the first to
acknowledge that our neural network approach is simplistic
(minimal adaptation, random image sampling, pre-training
on non-document data), our intention being to show the
strength of deep models with minimal domain specific
adaptation.
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