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Abstract
Englund, E. 2016. Metabolic Engineering of Synechocystis sp. PCC 6803 for Terpenoid
Production. Digital Comprehensive Summaries of Uppsala Dissertations from the
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In the Paris Agreement from 2015, nations agreed to limit the effects of global warming
to well below 2°C. To be able to reach those goals, cheap, abundant and carbon neutral
energy alternatives needs to be developed. The microorganisms that several billion years
ago oxygenated the atmosphere; cyanobacteria, might hold the key for creating those energy
technologies. Due to their capacity for photosynthesis, metabolic engineering of cyanobacteria
can reroute the carbon dioxide they fix from the atmosphere into valuable products, thereby
converting them into solar powered cell factories.

Of the many products bacteria can be engineered to make, the production of terpenoids has
gained increasing attention for their attractive properties as fuels, pharmaceuticals, fragrances
and food additives. In this thesis, I detail the work I have done on engineering the unicellular
cyanobacterium Synechocystis sp. PCC 6803 for terpenoid production. By deleting an enzyme
that converts squalene into hopanoids, we could create a strain that accumulates squalene,
a molecule with uses as a fuel or chemical feedstock. In another study, we integrated two
terpene synthases from the traditional medical plant Coleus forskohlii, into the genome of
Synechocystis. Expression of those genes led to the formation of manoyl oxide, a precursor to
the pharmaceutically active compound forskolin. Production of manoyl oxide in Synechocystis
was further enhanced by engineering in two additional genes from C. forskohlii that boosted
the flux to the product. To learn how to increase the production of squalene, manoyl oxide or
any other terpenoid, we conducted a detailed investigation of each step in the MEP biosynthesis
pathway, which creates the two common building blocks for all terpenoids. Each enzymatic
step in the pathway was overexpressed, and increased flux was assayed by using isoprene as a
reporter and several potential targets for overexpression were identified. The final part of this
thesis details the characterization of native, inducible promoters and ribosomal binding sites in
Synechocystis.
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We can’t change the world unless
we change ourselves.
- The Notorious B.I.G.
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Abbreviations 

Synechocystis  Synechocystis sp. PCC 6803 

E.coli Escherichia coli 
TCA-cycle Tricarboxylic acid cycle 
MEP pathway Methylerythritol-4-phosphate pathway 
MVA pathway Mevalonate pathway 
EYFP Enhanced yellow fluorescent protein 
Pdc Pyruvate decarboxylase 
Dxs 1-deoxy-D-xylulose 5-phosphate synthase 
Idi Isopentenyl diphosphate isomerases 
Shc Squalene hopene cyclase  
Sqs Squalene synthase  
CfTPS Coleus forskohlii terpene synthase 
IspS Isoprene synthase 
RuBisCO Ribulose-1,5-bisphosphate carboxylase/oxygenase 
P450s Cytochrome P450 monooxygenases 
3-PGA 3-phosphoglycerate  
G3P Glyceral-3-aldehyde  
IDP Isopentenyl diphosphate  
DMADP Dimethylallyl diphosphate  
GPP Geranyl diphosphate  
FPP Farnesyl diphosphate  
GGPP Geranylgeranyl diphosphate  
TPP Thiamine diphosphate  
NADPH Nicotinamide adenine dinucleotide phosphate 
ATP Adenosine triphosphate 
IPTG Isopropyl β-D-1-thiogalactopyranoside  
RBS Ribosomal binding site 
BCD Bicistronic design 
5’UTR 5' untranslated region 
SD Standard deviation 
µE µmol photons m-2 s-1 
DCW Dry cell weight 
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Introduction 

The motivation for this work 
The challenges we will be facing as a global community in the coming years 
are many; the failure of climate change mitigation, wars, the fresh water 
supply crisis and energy price shock to name a few [1]. The cause or con-
tributor to those problems is our excessive use of fossil fuels. As the reserves 
of cheap oil become depleted and energy prices go up [2], economic growth 
will decline and hostilities between states will likely increase. Oil scarcity 
also leads to food price increases [3], due to the heavy reliance on fossil fuel 
for machines and fertilizers in our food production, which then leads to polit-
ical instability and civil unrest [4].  

Other than it just simply is running out, the other major problem with our 
use of fossil fuel is the impact it has on climate change. In the latest interna-
tional climate change panel report, human activities were credited as the 
dominating cause of climate change, owing to our release of CO2 from fossil 
fuels [5]. More droughts and heat waves, more intense weather patterns and 
rising sea levels are all predicted consequences with our current rate of emis-
sions [6]. In 2015, the Paris Agreement was ratified by many nations and 
adopted under the United Nations Framework Convention on Climate 
Change, with the stated goal of limiting global warming to well below 2°C. 
But even at the agreed levels of reduction in carbon emissions, some studies 
say the agreement levels are not enough and that global mean temperatures 
will rise past 2°C [7]. 

We need alternatives to the fossil fuels we use today. Their use is not sus-
tainable in regards to them being finite and because of their damage to our 
environment. To replace fossil fuels, we need renewable alternatives that do 
not contribute to the net carbon content in the atmosphere, can be made in 
large quantities cheaply and work with the infrastructure demands on fuels. 
The obvious choice of the source of the energy is the sun, since in one hour, 
the sun light hitting the earth is equivalent to a whole year’s worth of energy 
consumption [8]. And as biologists, we like to focus on nature’s way of cap-
turing sunlight; through photosynthesis.  
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Cyanobacteria and their biotechnological potential 
Cyanobacteria are a diverse group of gram-negative bacteria and the inven-
tors of oxygenic photosynthesis, some 2.3 billion years ago [9]. They have 
played a special role in earth’s history, by being the producers of the oxygen 
that transformed earth’s atmosphere and that we all breathe today. They are 
important for the earth’s ecosystem as primary producers in the oceans, re-
sponsible for 20-30% of overall photosynthetic production  today [10]. Mor-
phologically, they comprise a diverse group of unicellular, filamentous and 
colonial strains and can inhibit most ecological niches, from the frozen tun-
dra to the scorching desert [11]. One of their most important contributions to 
the development of life on earth is in the endosymbiotic relationship they 
formed with eukaryotic organisms, creating a partnership that transcended 
the ages. Inside the slightly bigger cells, the cyanobacteria would morph into 
what is today the chloroplast, thereby creating the origin of all our plants, 
and made life on land possible [12].  

Other than their prominent role in earth’s history and their current im-
portance as primary producers, cyanobacteria are also interesting for their 
potential use as fuel producers. They capture sunlight through two different 
protein complexes called photosystems I and II, splitting water to oxygen, 
electrons and protons. The electrons freed from water splitting are then used 
to fix CO2 from the air, which is the basis for creating all the organic mole-
cules that the cells are made of [9]. By altering the genetic make-up of cya-
nobacteria, we can hijack their light capturing ability and change them to 
store the chemical energy captured in photosynthesis in a form that is useful 
to us. This is the process that human societies have used on our edible crops 
since the beginning of agriculture, selecting the plants with big fruits to cre-
ate genetically distinct strains that store energy from sunlight as chemical 
energy in the form of food. Photosynthesis is also the light capturing process 
we use to make biofuels, where corn and sugar cane is fermented to make 
ethanol by microorganisms [13].  

Using cyanobacteria instead of plants to make valuable compounds such 
as fuels is beneficial for several reasons. Photosynthesis in cyanobacteria is 
several times more efficient than in plants [14], they do not spend energy 
making non-fermentable parts such as stems and roots, they grow year 
round, are easy to genetically engineer and they enable a minimum amount 
of steps from CO2 fixation to end biofuel product, thereby reducing energy 
waste [15]. In fact, based on the product yields from cyanobacteria compared 
with that from the fermentation of plants, fuel production per acre could be 
increased 8-fold [16]. Another key benefit of cyanobacterial based produc-
tion is that they do not need to be grown on arable lands and thereby com-
pete with our food production. In fact, many species naturally grow in salt 
water, allowing for large scale cultivations in desert regions or along the 
coast in seawater, thereby decreasing our use of fresh water and the competi-
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tion between food and fuel production [17]. Also, because many cyanobacte-
ria can fix atmospheric nitrogen, the need for supplemented nutrients and 
fertilizers could be minimal [9].  

One of the most well studied cyanobacteria and the one that has lent its 
name to the title of this thesis is Synechocystis sp. PCC 6803 (Synechocyst-
is). It is a unicellular bacterium that was first isolated from a freshwater pond 
in Oakland, California and has since then become a model organism for cya-
nobacteria and for photosynthetic research [18]. Due to being highly amend-
able for genetic modification, naturally taking up exogenous DNA and in-
corporating it into its chromosome, and by being the first cyanobacterium to 
be sequenced [19], the popularity and wealth of knowledge about it contin-
ues to expand.  

Metabolic engineering 
Metabolic engineering is the rewiring of the cell metabolism to provide the 
ability to create new products or enhance the production of already existing 
ones [20]. Due to evolutionary divergence and variety of different living 
circumstances, there is a large diversity in the cellular metabolisms between 
organisms. Some grow anaerobically and need to make fermentation prod-
ucts to have an electron sink, others deal with grazing insects and need a way 
to defend themselves against them. This plethora of experiences and adapta-
tions has led to the evolution of hundreds of thousands of different natural 
products made, some of which have attractive properties, such as pharmaco-
logical activities [21] or a high energy content [22]. However, extracting the 
intracellular product from the organism is not always feasible, due to the 
often only small quantities produced [23]. In those situations, the enzymes in 
the biosynthesis pathways of that product can be identified using new se-
quencing technologies, and the genes responsible isolated [24]. Then, inser-
tion of DNA encoding those genes into a microbial host, such as a cyanobac-
terium, will transfer the property to make that product. In that way, produc-
tion of the desired compound can be synthesized directly from CO2, sunlight 
and water, in a bacterial host with superior cultivation properties, to titers 
that can be step wise increased by additional engineering until reaching 
commercially viable levels (Fig. 1). Also, metabolic engineering enables 
creating completely new products never before seen in nature, by making 
combinations of enzymes that normally never interact [25], or by making 
changes in the catalytic core of enzymes and thereby altering their function 
[26].  

The early works of metabolic engineering involved trying to increase pro-
duction of antibiotics in fungi. Because no tools for genetic engineering were 
available at the time, they used random mutagenesis and screened for chang-
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es in phenotype. This was at times a very successful approach, improving 
penicillin production in Penicillium chrysogenum by a 10,000-fold. Later 
when genetic engineering became possible, most work focused on express-
ing recombinant protein, and not on modifying metabolisms for product 
formation [20]. Since then, a vast amount of different products have been 
made in microorganisms, such as fuels, pharmaceuticals, food additives, 
fragrances and bulk chemicals [27]. The most commonly used microorgan-
isms for those biotechnological applications are Escherichia coli (E.coli) and 
Saccharomyces cerevisiae (yeast), due to the relative ease with which you 
can redirect their metabolism and because of the many genetic tools availa-
ble [26]. 

 
Fig. 1. The use of cyanobacteria as a production host, with manoyl oxide biosynthe-
sis as an example.  

Examples of metabolic engineering  
The different possible products that can be made by metabolic engineering 
can be divided into high value compounds and low value compounds. High 
value compounds are products such as pharmaceuticals, that have high 
commercial value, while products such as amino acids, vitamins, flavors and 
fragrances are between high and low value, and bulk chemicals such as sol-
vents and transport fuels being examples of low value compounds [28]. Pro-
duction of low value compounds in microorganisms typically require a much 
greater efficiency due to profit margins being lower, and because of compe-
tition from making the same product inexpensively from petroleum [29]. 
Because the cost of the carbohydrate feedstock required for heterotrophic 
organisms such as E.coli or yeast can be more than half of the total produc-
tion cost, CO2 and light “eating“ cyanobacteria are an attractive alternative 
for making low value compounds [30]. Also, the solar-to-product efficiency 
is much higher for cyanobacterial production, 1.5% of solar energy can be 
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stored as a product, while the energy efficiency for heterotrophic production 
for ethanol is around 0.2% [16]. 

The cost to develop a microorganism that make a product in an economi-
cally competitive amount has been estimated to be around 50 million dollars 
and require 6-8 years of development. Even so, many companies are already 
producing compounds that have been developed using metabolic engineer-
ing, examples being the drug precursors artemisinic acid, the biofuels isobu-
tanol and chemical building block 1,3-propanediol [20]. As a technology, 
metabolic engineering shows great future potential and was named as one of 
the top ten emerging technologies of 2016 by the World Economic Forum, 
together with the self-driving car and next generation batteries [31].  

Engineering strategies 
There are many strategies for accumulating a desired product in microorgan-
isms. In the most basic system, only the native production capabilities of the 
microorganism are used and possibly enhanced by special growth condi-
tions, such as sulfur depriving Chlamydomonas reinhardtii to get hydrogen 
production [32]. Another way of enhancing natively producing metabolites 
is by knocking out enzymes whose substrate you want to produce, thereby 
leading to an accumulation in the cells (Paper I) [33]. When the product is 
not natively made in the host, that metabolic ability needs to be introduced. 
Engineering a production capacity sometimes only requiring a single gene 
being expressed [34], while other times requiring a multitude of enzymes, 
such as for the production of opioids where twenty three metabolic steps had 
to be inserted to get the finished product [21].  

The enzymatic properties of the heterologously expressed proteins are 
important to consider. All enzymes exist in several organisms but with dif-
ferent properties. Therefore, finding and using the most efficient enzyme for 
a specific catalytic step can improve production [35]. If there is no enzyme 
that can satisfactory catalyze the reaction with a high enough efficiency, 
making rationally designed mutations to an enzyme can enhance its proper-
ties [36], or even make it favor the reverse reaction [37]. Another way to 
improve the performance of enzymes is by using directed evolution, where 
you set up the conditions so that the organism requires that specific enzymat-
ic step to grow, and then let evolution improve the enzyme for you [38].  

The expression of the inserted pathway is a key parameter and has a large 
impact on final product formation. In some cases, getting as high amount of 
enzyme as possible directly improves production in a linear pattern [39], 
while in other cases, an inducible expression is required to prevent genetic 
instability of the production capabilities (Paper IV) [40]. Modulating and 
fine tuning the expression of individual enzymes in a multi enzyme pathway 
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can also have a big impact on production, by maximizing flux and minimiz-
ing superfluous synthesis of proteins [41].  

Another strategy to increase flux to a desired compound is to overexpress 
the metabolic enzymes that are upstream of the product, to pull in carbon 
flux from the central metabolic reactions [42]. Alternatively, flux can be 
increased by deleting or down-regulating competing pathways that share the 
same substrate as the product, thereby channeling more substrate to that me-
tabolite [43].  

The basic properties of the microbial host can be enhanced through genet-
ic engineering to positively affect production. How efficiently the microor-
ganisms grow from their substrate directly correlates with yield. Therefore, 
increasing the efficiency of carbon fixation in autotrophic organisms is a 
functional strategy [44], or engineering in the capacity to use cheap and 
abundant substrates, such as lignocellulose, can increase the economic via-
bility of a heterotrophic production system [45]. Another enhancement to the 
production strain can be to increase the tolerance of the host to the some-
times toxic product [46]. Also, introducing transporters can prevent intracel-
lular buildup of hydrophobic products, and allow the metabolite to accumu-
late outside the cells to higher levels [47]. 

Several methods have been developed that tries to identify the underlying 
metabolic processes that impact the efficiency of production strains. With 
metabolomics, the abundance of intermediate metabolites is measured and 
potential accumulating bottlenecks can be identified, while in the related 
metabolic flux analysis method, the progress of an isotopically labeled mole-
cule can be tracked which provides data on the flux through each metabolic 
steps [48]. Another way is by using metabolic models, which are increasing 
in quality as they are become more comprehensive and better at predicting 
cellular behavior, allowing non-intuitive targets for up- and downregulation 
to be identified [49].  

Engineering of cyanobacteria  
In a cyanobacterial cell, CO2 is fixed using the enzyme ribulose‑1,5‑
bisphosphate carboxylase/oxygenase (RuBisCO) which generates the prod-
uct 3-phosphoglycerate (3-PGA) [50]. The energy the bacteria needs to build 
up molecules and drive cellular processes comes from the light captured by 
photosystem I and II. Water is split by photosystem II, releasing two elec-
trons which eventually are used to make NADPH, and a proton gradient is 
built up to drive an ATP synthase [9]. The 3-PGA from carbon fixation is 
then the basis for every single carbon containing molecule in the cell, with 
the energy coming from ATP and NADPH generated by the light reactions.  

Usually, low value products that need to be made in large volume to low 
costs are engineered into cyanobacteria, such as fuels, chemical building 
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blocks or food additives, but higher value compound production also occur 
[51]., Because cyanobacteria has a slower growth compared to heterotrophic 
production, rate of productions are slower. Additionally, when growing un-
der light, they do not normally make fermentation products. Therefore, un-
like E.coli and yeast which ferments when grown anaerobically, cyanobacte-
ria do not have a growth condition that is optimized for making reduced 
molecules.   

The capabilities to make many different products have been engineered 
into cyanobacteria, see Fig. 2 for an extensive list. The highest productivity 
and titers have been reached for products such as ethanol [52], 2,3-
butanediol [53] and lactic acid [39], with more than 50% of fixed carbon 
being redirected  towards product formation [54]. What those and similar 
products share is being only a couple of metabolic steps from CO2 fixation, 
where all carbon flux originates from, and having a high intracellular con-
centration of the substrate [55]. Metabolic engineering of products derived 
from pyruvate (ethanol, isobutyraldehyde, 2,3-butanediol) or fructose-6-
phosphate (sucrose, mannitol, glycerol) usually reach g/L titers while prod-
ucts from the terpenoid pathway or ethylene which has a TCA-cycle metabo-
lite as substrate, typically reach mg/L titers [54]. Of course, the abundance of 
substrate is not the only thing that affects product, as recently demonstrated 
with an engineered Synechococcus strain making 1.26 g/L isoprene from the 
terpenoid pathway [35]. Other factors such as the catalytic efficiencies of the 
enzymes [56], whether the product accumulates inside the cell or outside in 
the media  and if the heterogeneous pathway contains a decarboxylation 
step, thereby creating favorable thermodynamic properties [57], all contrib-
ute in various degree to production. Another important factor is how much 
research has been performed to develop the production system for that mole-
cule. The high producing isoprene strain could be engineered after building 
on the work of six previous scientific papers that described generations of 
isoprene producing cyanobacteria, showing the importance of persistency 
and the possibilities of committed metabolic engineering. 

Cyanobacterial production strains are already today being tested in pilot-
scale facilities, by companies such as Algenol, Sapphire Energy and 
Solazyme. Still, there is a long way until large scale cultivations can be eco-
nomically and energy efficient, something that improved strain performances 
and better cultivation and product separation technologies can help realize 
[58].  
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Fig 2. Highest reported production of various chemicals in cyanobacteria. Data 
compiled from [54, 59, 60]. 

Terpenoids 
Terpenoids, or isoprenoids, are a large and structurally diverse class of mol-
ecules with tens of thousands of different known compounds [61]. They play 
vital roles in all living organisms in electron transport chains, cell wall and 
membrane synthesis and stability [62]. The biggest source of terpenoids 
comes from the plant kingdom, where they are involved in growth and de-
velopment, or as secondary metabolites, fending off herbivores and interact-
ing with the environment [63]. This has given some terpenoids properties 
that make them interesting for humans, for uses as fragrances, flavoring, 
colorants, cosmetics and pharmaceuticals. The taste of cinnamon, color of 
tomatoes and scent of eucalyptus are all derived from terpenoid molecules, 
and many can been used as drugs, such as artemisinin, one of the most po-
tent antimalarial drugs available [62].  

All terpenoids are made from the same two five-carbon (C5) precursor 
molecules isopentenyl diphosphate (IDP) and dimethylallyl diphosphate 
(DMADP) (Fig. 3). They are fused together to create longer and longer car-
bon chain length molecules, making first C10 geranyl diphosphate (GPP), 
then C15 farnesyl diphosphate (FPP) and finally C20 geranylgeranyl diphos-
phate (GGPP). Terpenoids are then synthesized from either of those precur-
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sor molecules, gaining their name from how many carbons they contain. 
Diterpenoids are C20, triterpenoids are C30 and so on [64]. The different 
length precursor molecules are then converted into specific terpenoids by 
terpene synthases which create the structure of the compound, such as clos-
ing the molecule to create a ring structure, and then by cytochrome P450 
monooxygenases (P450s) which decorate the molecule through reactions 
such as hydroxylations, epoxidations and deaminations [65]. Together, ter-
pene synthases and P450s can create remarkably complex molecules which 
are difficult to chemically synthesize, partly explaining the interest in creat-
ing the molecules in biological systems [66].  

MEP pathway and MVA pathway 
The precursor molecules for all terpenoids, IDP and DMADP, can be made 
from two different pathways, either the methylerythritol-4-phosphate (MEP) 
pathway or the mevalonate (MVA) pathway. Most bacteria and plant plastids 
use the MEP pathway, while you and other eukaryotes, archaea and some 
bacteria use the MVA pathway [67]. To synthesize IDP and DMADP, the 
mevalonate pathway requires three acetyl-CoA while the MEP pathway uses 
a pyruvate and glyceral-3-aldehyde (G3P) molecule each. Due to the loss of 
CO2 when acetyl-CoA is made from pyruvate, the MEP pathway is more 
efficient with regards to carbon utilization [68]. Having a pathway with low-
er loss of carbon is important for autotrophic organisms which have an ener-
gy investment in each carbon fixed. Due to the stoichiometrically higher 
efficiency of the MEP pathway, several studies have argued that it should be 
used instead of the MVA pathway [69], even though utilizing the MVA 
pathway for terpenoid production have been more successful so far [61].  

The MEP pathway consists of seven enzymatic steps to create IDP and 
DMADP from pyruvate and G3P, and an eighth enzyme that interconverts 
IDP and DMADP (Fig 3). The first step is catalyzed by the enzyme 1-deoxy-
D-xylulose 5-phosphate synthase (DXS), which is widely regarded as the 
bottleneck of the pathway, pulling in carbon from the central metabolism 
[70]. Another important enzyme in the pathway is isopentenyl diphosphate 
isomerases (IDI), which maintains a balance between IDP and DMADP, 
preventing over-accumulation or depletion of either. The enzyme has been 
shown to be especially important when engineering terpenoid production, by 
correcting an IDP:DMADP balance that becomes skewed [35]. The full reg-
ulation of the pathway is still unknown, but a key regulatory feature is the 
feedback inhibition that IDP and DMADP exerts on DXS, by competing 
with the co-factor thiamine diphosphate (TPP) for a binding site [71].   
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Fig. 3. Terpenoid biosynthesis pathway in Synechocystis. Isoprene, squalene and 
manoyl oxide are highlighted as they are all molecules whose production is de-
scribed in this thesis.  Native enzymes are marked in blue, heterologous ones in 
green.  

Terpenoid production in cyanobacteria 
There are several reasons why cyanobacteria are attractive hosts for terpe-
noid production. Many terpenoids have properties that make them suitable to 
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be used as fuels [61], which could be made cheaply in cyanobacteria, as 
discussed previously. Cyanobacteria also have a high natural flux towards 
terpenoid production [34], due to many molecules involved in photosynthe-
sis being made from the pathway, such as carotenoids, the phytol side-chain 
of chlorophylls and the prenyl part of plastoquinone [72]. Less common is 
using cyanobacteria for production of more complex, pharmaceutical plant 
terpenoids. However, P450s are typically dependent on NADPH, which in 
cyanobacteria is readily provided by photosynthesis, but can be limiting 
factor for production in heterotrophic bacteria [73].  

Many different types of terpenoids have been produced in cyanobacteria. 
Isoprene, the simplest of all terpenoids, has probably gained most attention 
so far [34, 35, 72, 74-76]. Other terpenoids produced in cyanobacteria are β-
caryophyllene [77], β-phellandrene [78], limonene [79], farnesene [80], 
bisabolene [81], squalene (Paper I) [33], manoyl oxide (Paper II) [42] and 
amorpha-4,11-diene [82]. In this thesis, cyanobacterial production of three 
different terpenoids is described, the hemiterpenoid isoprene, the sesquit-
erpenoid squalene and the diterpenoid 13R-manoyl oxide, representing dif-
ferent potential uses for biotechnologically produced terpenoids; as chemical 
feedstock, biofuels and medicines.   

Genetic tools  
A typical bacterium contains several thousands of different genes that are 
expressed in a well-controlled manner. Expression of genes has to be done at 
specific conditions and with precise strengths, control of which is mediated 
through the actions of several genetic elements (Fig. 4). The most important 
sequence to impact gene expression is the promoter region. It is the binding 
site for the RNA polymerase and the initiation site of transcription. Based on 
their binding affinity to the RNA complex, promoters can be said to be 
strong if they recruit a high amount of RNA polymerases, while a weak 
promoter only facilitates low amount of transcription [83]. The expression of 
promoters can be dynamically controlled from operator sequences adjacent 
or inside the promoter region, where transcription factors bind to activate or 
inhibit expression [84]. After the RNA-polymerase have bound to the pro-
moter and initiated transcription, it will copy the DNA strand into messenger 
RNA (mRNA) until it reach the hairpin structure of a terminator, where it 
will stop. The ribosome can bind to a ribosomal binding site (RBS) on the 
mRNA, which is positioned slightly upstream of the start of the gene, and 
initiate translation from the start codon until the stop codon, synthesizing a 
complete protein in the process.   
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Fig. 4. The central dogma of biology and the genetic parts required for expression of 
a gene. Abbreviations used: TSS = transcriptional start site, ORF = open reading 
frame, RBS = ribosomal binding site, mRNA = messenger RNA.  

Tools for heterologous expression 
The same mechanisms controlling expression of native genes needs to be 
applied for heterologously expressed pathways. A promoter is required for 
transcription to occur, an RBS for each gene to be translated, and a termina-
tor to end transcription. By characterizing promoters and RBSs to determine 
their strengths and properties, they can be added to a genetic toolbox, from 
where you can pick and combine parts to suit a specific engineering need 
[85].  

A plasmid is usually the carrier of the expressed genes, and can have sev-
eral copies per cell up to many hundreds [86]. Plasmids can also be used for 
inserting expression cassettes in the genome of certain organisms, usually by 
containing homologous regions flanking the DNA sequence to be inserted, 
and then using homologous recombination to integrate it to the chromosome 
[87].   

Usually the selection of promoter has the largest impact on the result of 
the engineering [39]. Some promoters are inducible, meaning that they only 
turn on when an external stimuli is applied, usually a chemical. For engi-
neering of heterologous pathways that are detrimental to the host, inducible 
promoters can be important to prevent the genes from being lost due to ge-
netic instability, and for turning on expression only during the production 
phase (Paper IV) [40]. 

Promoters, RBSs, terminators and plasmids are not the only tools availa-
ble for genetic engineering. Parts such as antibiotic cassettes to enable selec-
tion, protein tags to detect proteins and reporter genes to quantify expression 
are all important components [86]. More recently, advanced expression regu-
lators such as CRISPRi [88], riboswitches [89] and TALEs [90] have come 
into focus, enabling more complex engineering to be done. Important to note 
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is that the properties of the genetic tools do not necessarily behave in the 
same way between species. Differences in the sigma factors of the RNA-
polymerase between Synechocystis and E.coli for example make many Syn-
echocystis promoters nonfunctional in E.coli (Paper IV) [40]. Therefore, 
characterization of the same parts needs to be repeated in different strains, to 
ensure a consistent behavior.  

Another issue that complicates engineering is that using a strong promoter 
and strong RBS does not necessarily generate a high expression [91]. The 
mRNA sequence of the gene being expressed interacts in unpredictable ways 
with the 5’ untranslated region (UTR) upstream of the gene to form second-
ary structures in the mRNA that can block translational initiation [92]. To 
circumvent that problem and increase the reliability of gene expression, “bi-
cistronic design” (BCD) can be used, where a short coding sequence is 
placed upstream of the gene to be expressed [93]. When the ribosome trans-
lates the small coding sequence, it will melt any secondary structures that 
prevent translation of the gene. Another way to increase translational initia-
tion is by using a self-cleaving ribozyme called RiboJ, which cleaves off the 
5’ untranslated region (5’UTR), leaving only a stable structure which does 
not block ribosomal binding [94].  

Expression tools for Synechocystis 
There are fewer genetic tools available for engineering Synechocystis and 
other cyanobacteria, than there are for more commonly used prokaryotes like 
E. coli [95]. The promoters used for metabolic engineering are usually native 
ones that express highly abundant proteins such as the psbA2 promoter, ex-
pressing the D1 promoter from photosystem II, or the RuBisCO promoter 
PrbcL. There are few known, inducible promoters in Synechocystis that are 
capable of giving both high expression and low un-induced expression. 
While the strong, synthetic, lactose inducible promoter Ptrc has been used 
successfully for 2,3-butanediol production in Synechococcus elongatus PCC 
7942 [96], only constitutive expression is possible in Synechocystis due to 
induction not functioning properly [85]. The Tet-promoter series consists of 
a wide variety of well-regulated promoters, but due to the light sensitivity of 
the inducer anhydrotetracycline, they are difficult to work with during photo-
trophic growth [97]. At the moment, probably the best choice for inducible 
expression is using native inducible promoters, such as the copper inducible 
petE promoter, or the metal inducible promoters from a gene cluster encod-
ing metal efflux pumps, PnrsB, PcoaT and PziaA, which are described in 
Paper IV [98]. For the choice of RBS, most often a strong translation initia-
tion is desired for Synechocystis expression, which RBS*, a synthetic RBS 
with a perfectly complimentary sequence to the ribosomal anti-Shine-
Dalgarno sequence, has [11].  
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Expression in cyanobacteria can be done either by integrating expression 
construct into the genome or by keeping it on a self-replicating plasmid. 
Expression on a self-replicative plasmid requires a replicon that is functional 
in Synechocystis, with RSF1010 being commonly used. Those plasmids can 
be transferred from E.coli into a Synechocystis cell by conjugation, and after 
entering the cell, they will start to replicate and maintain themselves [11]. 

Other than the basic tools for engineering such as promoters and RBSs, 
advanced tools to regulate expression such as riboregulators and CRISPRi, 
have also been developed for Synechocystis. The riboregulator works by an 
inducible expressed RNA binding to an mRNA and thereby exposing the 
RBS for translation, in this way creating an inducible expression [89], while 
the CRISPRi system enables a multi gene repression, by using small guide 
RNA directing the nucleus deficient Cas9 to bind and block transcription of 
targeted genes [99]. The latter tool can be especially useful for inducible 
blockage of competing, but essential, pathways of desired products.  
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Aim 

The aim of the work presented in this thesis and which was undertaken dur-
ing my five years of PhD studies can be summaries in three points:  

 
I. To construct and characterize terpenoid producing strains of Syn-

echocystis.  

II. Investigate the properties of the terpenoid biosynthesis MEP 
pathway and ways to increase flux through it, to enhance the pro-
duction of any terpenoid.  

III. To develop tools to enhance and simplify engineering of cyano-
bacteria, and specifically Synechocystis.  
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Results and Discussion 

Construction of plasmids for Synechocystis engineering 
(Paper II & III) 
To make the expression vectors used for engineering of Synechocystis can be 
a time consuming task. Typically, several pieces of DNA needs to be com-
bined to create a functional construct, such as gene sequences, promoters, 
terminators, antibiotic cassettes and homologous recombination sequences. 
Several new DNA cloning techniques such as Gibson assembly [100] and 
Golden Gate cloning [101] can assemble several pieces together in a single 
step, but the experiences from our lab, at least of the former technique, is 
that the end result can be inconsistent. The traditional cloning technique, 
employing restriction enzymes and ligase for cloning typically generates 
more predictable results, but is limited in the amount of parts that can be 
assembled in one step.  

pEERM vectors 
To speed up the process of generating expression constructs, we created 
several plasmids that would only require a single ligation step to create a 
construct capable of heterologous overexpression in Synechocystis. The 
pEERM series of vectors were designed for integration of heterologous 
genes into the genome of Synechocystis at different loci and expression with 
different promoters. The base pEERM plasmids contain a promoter, RBS, 
terminator, antibiotics cassette and the homologous regions that decides at 
which site in the genome integration will occur. Insertion of a single or mul-
tiple genes into the plasmid is done using a method similar to BioBrick clon-
ing, where the capacity of two restriction sites to form a scar when ligated 
together and thereby, move the cloning site downstream for each gene in-
serted, is used [102] (Fig 5A). The plasmids come with two different pro-
moters, the strong psbA2 promoter or the nickel inducible nrsB promoter, 
and with four different integration sites; in frame replacement of the psbA2 
gene, thereby “stealing” its promoter [103], in neutral site 1 which knocks 
out the hypothetical gene slr1068 [104], in neutral site 2, upstream of a 
pseudogene [105] or in the site of squalene synthase (sqs), knocking out the 
cells’ capacity to make triterpenoids (Paper I) [33]. The use of the pEERM 
vectors are detailed in Paper II. 
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Fig. 5. Plasmid maps and cloning strategies for pEERM and pEEC. (A) Plasmid 
map over empty pEERM plasmid (a) which is cut (b) and an open reading frame 
(ORF) is inserted (c). By cutting downstream restriction sites, a second gene (d) can 
be ligated in and the downstream restriction sites are reformed (e). (B) The cloning 
strategy exemplified by pEEC1 and the plasmid maps for pEEC2 and 3 after an ORF 
has been inserted.   
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pEEC vectors 
Another set of standardized expression vectors were constructed for the 
work described in Paper III; the pEEC series of vectors (Fig. 5B). Due to 
pEEC containing the broad host-range-replicon RSF1010 that allows the 
plasmid to be moved from E.coli to Synechocystis by conjugation [85], ex-
pression can be done in both organisms from exactly the same genetic se-
quence and context. Expression is driven by the very strong Ptrc promoter, 
which is inducible in E.coli but not in Synechocystis, and enhanced by the 
BCD [93] or RiboJ [94] genetic elements, which are meant to improve trans-
lational initiation and thereby expression. Cloning into the plasmids are 
based on the BglBrick format [106], where a BglII – BamHI scar forms a 
linker compatible sequence and attaches a strep-tag to the C- or N-terminus 
of the inserted gene, which allows for detection of the proteins.  

The construction of the pEERM and pEEC vectors were done with specif-
ic projects in mind but almost any overexpression study in Synechocystis 
could find a use for them. Making and sharing expression vectors is a good 
way to minimize the amount of time spent on cloning, which is arguably the 
least exciting part of projects. Also, using a standardized expression system 
increases consistency and reliability of expression. We have, or will, upload 
and share these vectors on Addgene.  
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Production of terpenoids in Synechocystis (Paper I & II) 

Construction and characterization of the squalene accumulating 
shc deletion strain (Paper I) 
The triterpenoid squalene is a 30-carbon pure hydrocarbon that has some 
commercial uses in cosmetics and vaccines [61], and could be used as a bio-
fuel if produced in high enough volumes [107]. In many bacteria, squalene is 
converted to hopene by the enzyme squalene hopene cyclase (Shc). Hopene 
is the precursor molecule to make all hopanoids (Fig 3), the function of 
which are thought to be similar to that of eukaryotic sterols; to stabilize and 
regulate the fluidity and permeability of membranes [108].  

To determine if we could make a squalene accumulating Synechocystis 
strain, and to investigate the role of hopanoids under standard growth condi-
tions, we constructed a shc deletion strain by placing a neomycin cassette in 
what we identified as a gene putatively encoding Shc, resulting in the Δshc 
strain. Because of the hydrophobic properties of squalene, we reasoned that 
it would most likely stay in the membranes and not secrete into the media. 
Thus, if there was any accumulation of squalene, it would likely occur inside 
the cells. By creating a modified protocol for total lipid extraction, squalene 
from pelleted cells was extracted and detected using HPLC (Fig. 6A). While 
only small amounts of squalene were detectable in wild type, the Δshc strain 
accumulated 72 times more, reaching 0.67 mg OD750

-1 L-1 (Fig 6B). To con-
firm that the deletion of shc was the cause of the squalene accumulation, a 
plasmid containing the shc region was conjugated into the Δshc strain to 
complement and restore Shc functionality. The new strain Δshc:pPMQshc 
accumulated squalene much less than the Δshc strain, which further indicates 
that the putative shc gene really does encode a functional squalene hopene 
cyclase.  
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Fig. 6. Detection of squalene. (A) Total lipids were separated using HPLC and squa-
lene was detected at 190 nm, by comparing the retention time with a pure standard. 
(B) Quantification of squalene in different Synechocystis strains, n.d. = not detected, 
WT = wild type. Results represent the mean of three biological replicates, error bars 
represent standard deviation. 

We also identified a gene putatively encoding squalene synthase (sqs), and 
investigated how it affected squalene accumulation by creating a Δsqs dele-
tion strain. No squalene could be detected in that strain (Fig. 6B), indicating 
that sqs was correctly identified and that there are no other pathways for 
making squalene in Synechocystis.  

Because the presence of hopanoids have been confirmed in the membrane 
of the cyanobacterium Synechocystis PCC 6714 [109], and squalene is the 
only known precursor for them, the Δshc strain is likely hopanoid deficient. 
Also, due to a shc deletion strain of Burkholderia cenocepacia was reported 
to have damaged membranes [108], we reasoned that a similar phenotype in 
Synechocystis could affect the photosynthetic machinery in the thylakoid 
membranes. However, no reduction in growth was observed between the 
Δshc strain and wild type Synechocystis, at low, medium or high light (5, 50 
or 500 µmol m-2 s-1 (µE)).  

Next, we tested whether the intracellular accumulation of squalene varies 
in different growth phases and at different light intensities. Samples were 
taken for squalene detection from the seed cultures (0 h), the exponential 
phase (40 h), late exponential phase (88 h) and stationary phase (280 h) from 
cultures grown at low and medium light. Squalene accumulation increased as 
the cells entered the later growth phases and was higher at medium light than 
at low light. The dilution of squalene due to cells dividing is likely the big-
gest source of squalene reduction, especially since the Δshc strain cannot 
convert squalene to hopanoids. Therefore, the increase in squalene content 
per cell can likely be attributed to the slower growth of the cells at later 
growth phases and a lower dilution rate of the molecule.  
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In summary, this study showed that a squalene accumulating strain could 
be engineered by knocking out the enzyme converting squalene into hopene. 
We could also confirm the identity and function of shc and sqs. No pheno-
type was observed under standard cultivation conditions at different light 
intensities, indicating a nonessential role of hopanoids under standard la-
boratory growth. The amount of squalene accumulated was equivalent to 
0.80 mg g-1 DCW, which requires many folds improvement before being 
close to a commercially viable production. Increasing flux through the MEP 
pathway could be a way to enhance accumulation, ways of which can be 
read about in Paper III.  
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Engineering of the plant diterpenoid manoyl oxide production in 
Synechocystis (Paper II) 
Forskolin is a diterpenoid naturally found in the root cork cells of the shrub 
Coleus forskohlii [24]. The plant has been used in traditional Hindu medi-
cine since ancient times to treat a broad range of ailments and is presently 
used in the treatment of glaucoma [110]. Only the first two steps of the for-
skolin biosynthesis pathway from C. forskohlii has been identified so far. 
The general diterpenoid precursor GGPP is converted to (13R)-manoyl oxide 
by the action of the two terpene synthases CfTPS2 and CfTPS3 (Fig. 3) [24]. 
Manoyl oxide is then further modified by several unknown P450s and an 
acyl-transferase to form forskolin. Synechocystis could be a good production 
host for forskolin due to the NADPH requirements of P450s, which can be a 
limiting factor in heterotrophic hosts but are readily supplied from the light 
reaction in phototrophic organisms [73]. 

In Paper II, we engineer Synechocystis to make the forskolin precursor 
manoyl oxide, which was the first reported attempt at making a complex, 
pharmaceutical terpenoid in a cyanobacterium. Two terpene synthases from 
C. forskohlii were cloned into three different pEERM plasmids for genomic 
integration into the site of psbA2, neutral site or sqs, resulting in plasmids 
TPS-P, TPS-N and TPS-S (see Paper II for a complete list of strains used). 
Expression in TPS-P were driven by the strong, light inducible psbA2 pro-
moter [103], while TPS-N and TPS-S used the nickel inducible nrsB pro-
moter [111]. While integration in psbA2 [112] and neutral site [104] should 
be silent, the sqs integration in TPS-S deletes squalene and hopanoid for-
mation, which according to the results from Paper I, does not affect the via-
bility of the cells. We reasoned that deleting sqs and triterpenoid production 
might lead to an accumulation of FPP, which then can be converted to GGPP 
by the native enzyme CrtE and thereby, potentially form more manoyl oxide.  

The three pEERM constructs carrying the diterpene synthases from 
C.forskohlii where transformed into Synechocystis and positive colonies 
were isolated for each. All three engineered strains with CfTPS2 and 3 did 
make manoyl oxide, and in a stereospecific pure form. Highest manoyl oxide 
accumulation was produced from the PnrsB driven strain TPS-N, making 
0.24 mg g-1 DCW (Fig. 7A). The disruption of sqs did not lead to a higher 
manoyl oxide production in TPS-S, suggesting that FPP does not become 
redirected towards GGPP and diterpenoid production. In bacteria, the en-
zyme GGPP synthase can use DMADP as substrate and make successive 
additions of IDP or it can use FPP, and add a single IDP to form GGPP 
[113]. While in yeast and mammals, the GGPP synthase selectively uses FPP 
to make GGPP [114], the specificity could be the opposite in Synechocystis, 
having low affinity to FPP as substrate, which would explain the results.  
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Fig. 7. Manoyl oxide production at (A) 20 µE and (B) 100 µE in engineered Syn-
echocystis. Results represent the mean of six biological replicates, error bars repre-
sent standard deviation. DCW = dry cell weight, n.d. = not detected.  

To boost the production of manoyl oxide, two enzymes upstream of GGPP 
biosynthesis were expressed; DXS (CfDXS) and GGPP synthase (CfGGPPs) 
from C. forskohlii. DXS is the first enzyme in the MEP pathway and regard-
ed as the bottleneck [70], while GGPPs forms GGPP from DMADP and 
IDP. By using nonnative enzymes, we hoped to minimize any regulation that 
could be exerted on the enzymes. CfDXS and CfGGPPs were integrated 
separately, or as an operon, into neutral site II of all three manoyl oxide pro-
ducing strain under the control of PnrsB, resulting in eight new strains. 

The expression of the boosters increased manoyl oxide by up to 4.2 times 
in the TPS-P strain, when expressing only CfDXS. That is the highest re-
ported terpenoid increase from expressing upstream genes in cyanobacteria, 
possibly due to the plant enzyme not being susceptible to native regulations 
(Fig. 7A). The same increase in production from CfDXS or CfGGPPs could 
not be seen in either the TPS-N or TPS-S strain, even decreasing manoyl 
oxide formation in some cases.   

The expression of the psbA2 promoter is induced by high light [103], and 
carotenoids, which manoyl oxide share the precursor with, increases with 
light [115]. Therefore, we wanted to investigate whether manoyl oxide ac-
cumulation would increase at high light (100 µE) for selected strains. Pro-
duction in TPS-P, which expresses CfTPSs from PpsbA2 without boosters, 
increased 3-fold (Fig 7B). In contrast, PnrsB driven expression of CfTPSs 
reduced production with 5.3 times at high light compared with at low light, 
and boosters failed to increase accumulation in any strain. In Paper IV, we 
observed a reduced protein accumulation from PnrsB driven expression at 
high light, which could explain these results.  

Because the biosynthesis of both carotenoids and the phytol tails of chlo-
rophyll start from the same precursor molecule as manoyl oxide (Fig. 3), we 
investigate the effect of manoyl oxide production and expression of GGPP 
boosters on those pigments. When grown at low light, the non-boosted strain 
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that produced the most amount of manoyl oxide, TPS-N, had a significant 
reduction of carotenoids compared with wild type, possibly due to redirec-
tion of GGPP from carotenoids to manoyl oxide. When expressing the 
GGPP boosters, carotenoids increased in most strains, suggesting that pig-
ment production also increases. The effect on chlorophyll content was less 
pronounced than for carotenoids, presumably because only parts of chloro-
phyll is made in the terpenoid pathways. At high light, because the large 
variation in accumulation of both pigments, we found it difficult to distin-
guish differences in specific pigments and across every pigment.  

The strains engineered in Paper II are the first reported examples of pro-
duction of high-value pharmaceuticals from complex plant pathways in cya-
nobacteria. The highest producing strain reached 0.45 mg g-1 accumulation 
of the forskolin precursor manoyl oxide.  
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Functional characterization of the MEP terpenoid 
biosynthesis pathway in E.coli and Synechocystis (Paper III) 
The production of squalene reached 0.80 mg g-1 in Paper I, while in Paper II, 
the highest manoyl oxide producing strain accumulated 0.45 mg g-1. To 
reach higher production titers, carbon flux needs to be diverted from the 
central metabolic pathways towards terpenoid production. The aim of Paper 
III was to investigate each enzymatic step of the MEP-pathway in E.coli and 
Synechocystis, to find potential bottlenecks that could increase flux through 
the pathway. The end goal would be to find generalized overexpression tar-
gets in the MEP pathway that can be engineered to get consistent increase of 
production for any terpenoid, such as squalene or manoyl oxide. Also, an 
engineered plug-and-play strain could be created for terpenoids, with a de-
regulated central metabolism that only required a terpenoid production ca-
pacity to be plugged in to get high titers, thereby speeding up the develop-
ment process of new strains [20]. 

We started the investigation of the MEP pathway in E.coli and we chose 
isoprene as reporter of increased flux through the pathway. Isoprene is the 
simplest terpenoid, created directly from DMADP (Fig. 3). The isoprene 
synthase (IspS) from Pueraria montana [34] was codon optimized and 
cloned into a pET vector, creating pET IspS, and high expression of IspS in 
a soluble form was confirmed on a protein gel.  

With an IspS expressing strain successfully engineered, we next wanted 
to create a second set of plasmids that would overexpress each of the eight 
MEP pathway enzymes from E.coli and Synechocystis. For that, we used 
pEEC1 which uses the strong, inducible Ptrc for expression, and includes a 
strep-tag, enabling detection of protein overexpression (Fig. 5B). Also, due 
to pEEC1 being capable of replication in both E.coli and Synechocystis, the 
same constructs could in later stage be transferred and tested in Synechocyst-
is. 

After each MEP gene was cloned into pEEC1, preliminary data showed 
some constructs not expressing measurable amounts of proteins. Because 
low or no expression would make us unable to assess the significance of 
each MEP enzyme, we created two new plasmids, pEEC2 and pEEC3, that 
enhanced expression of Ptrc using the genetic insulators BCD [93] and Ri-
boJ [94] respectively. We then inserted all eight MEP genes from E.coli and 
Synechocystis in all three pEEC vectors to create a total of 48 constructs (see 
Paper III for complete list of constructs). 

All 48 MEP constructs were transformed into the IspS expressing E.coli 
strain, induced with isopropyl β-D-1-thiogalactopyranoside (IPTG), and 
isoprene was sampled from the head space. The base production of isoprene 
from pET IspS with the empty vector reached 8.2 µg OD595

-1 L-1, a level that 
expressing E.coli DXS increased by 14.5 times and IDI by 3.4 times (Fig. 
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8A). Both of those enzymes from Synechocystis also led to a higher isoprene 
production, but Synechocystis DXS did not give as high increase as the 
E.coli isoenzyme (Fig. 8B). Surprisingly, expression of IspH from Synecho-
cystis increased isoprene production in E.coli by 3.1 times, a so far unknown 
target for enhanced terpenoid production. A possible explanation could be 
that the Synechocystis IspH has a higher DMADP:IDP synthesis ratio than 
the enzyme from E.coli, thereby creating more substrate for IspS.  

 
Fig.8. Isoprene production and protein accumulation from MEP enzyme overexpres-
sion in E.coli strains with pET IspS. MEP enzymes from (A) E.coli and (B) Syn-
echocystis were expressed in pEEC1 (blue bars), pEEC2 (red bars) or pEEC3 (green 
bars). Overexpressed and strep-tagged proteins were detected on western-
immunoblot with AtpB used as an equal loading control. Each data point represents 
the mean of six biological replicates, error bars are standard deviation.  

The use of expression-enhancing BCD and RiboJ led for many constructs to 
significant effects on protein expression, in some cases increasing, while in 
others, decreasing expression (Fig. 8). Most striking is the expression of 
Synechocystis IDI, where using BCD or RiboJ led to detectable amounts of 
protein and an increase in isoprene production, while expression with only 
Ptrc gave neither of those effects.  

DXS from E.coli gave the highest increase in isoprene production in our 
assay. To test if we could find a new bottleneck in the MEP pathway if DXS 
was co-expressed with IspS, we cloned E.coli DXS into pET IspS to form 
pET IspS eDxs. One construct per MEP gene with the highest protein accu-
mulation or isoprene increase, was transferred into E.coli together with pET 
IspS eDxs. In the resulting strains, IDI from E.coli and Synechocystis in-
creased isoprene production by 2.8 and 3.2 times respectively, while Syn-
echocystis ispH increased amounts by 1.7 times (Fig. 9). Expressing DXS 
from both pET IspS eDxs and the pEEC constructs did not further enhance 
isoprene accumulation, indicating that step was saturated, and the bottleneck 
had been shifted elsewhere.  
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Fig. 9. Isoprene production in E.coli with pET IspS eDxs and one MEP enzyme 
from E.coli or Synechocystis overexpressed. MEP enzymes were expressed in 
pEEC1 (blue bars), pEEC2 (red bars) or pEEC3 (green bars). Each data point repre-
sents the mean of at least nine biological replicates, error bars are standard deviation. 

The next step was to investigate MEP bottlenecks in Synechocystis using the 
same strategy. However, we first tested whether the expression pattern be-
tween different constructs expressing the same gene would be the same in 
Synechocystis as they were in E.coli. Therefore, we transferred constructs 
that had large differences in protein accumulation between expression in 
pEEC1 and pEEC2 in E.coli, into Synechocystis. In the resulting strains, we 
observed the same relative expression pattern in Synechocystis as in E.coli, 
indicating that a strongly expressing construct in E.coli has a higher proba-
bility to also have a high expression in Synechocystis. 

The strongest expressing constructs for each MEP enzyme were conjugat-
ed into the Synechocystis strain SkIspS generously donated by Anastasios 
Melis, which have the P. montana IspS integrated into the psbA2 site [74]. In 
the resulting strains, overexpression of DXS increased isoprene accumula-
tion slightly, by 1.4 and 1.2 times from E.coli and Synechocystis DXS re-
spectively (Fig. 10), an increase which was much lower than in E.coli. The 
native IDI had the biggest impact on isoprene production, increasing it by 
1.8 times. The third enzyme in the MEP pathway, ispD, enhanced isoprene 
accumulation in all constructs expressing the different isoenzymes of it, 
which to our knowledge is a so far unknown target for increased terpenoid 
production. While ispF from E.coli also increased isoprene production per 
cell, this coincided with a growth reduction, making a comparison with the 
faster growing control strain less reliable.  
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Fig.10. Isoprene production and protein accumulation in Synechocystis strain 
SkIspS, overexpressing MEP enzymes from E.coli or Synechocystis. (A) MEP en-
zymes were overexpressed in pEEC1 (blue bars), pEEC2 (red bars) or pEEC3 (green 
bars). Each data point represents the mean of three biological replicates, error bars 
are standard deviation. (B) Expressed proteins were detected on wester-immunoblot 
with a strep-tag antibody.  

By overexpressing all MEP pathway enzymes individually in E.coli and 
Synechocystis, we could investigate which step in the pathway can contribute 
most to increased terpenoid production. Expression of DXS and IDI in E.coli 
increased isoprene production by 27 times while the increases in Synecho-
cystis were much less dramatic. We also identified a new potential overex-
pression target for increased terpenoid production in Synechocystis; IspD, 
which can be useful in other production studies.  

Another part of the study concerned the expression of proteins. The effect 
of using BCD or RiboJ on expression varied, sometimes improving protein 
accumulation, sometimes not. However, because usually at least one of the 
three constructs for the same enzyme expressed well, we could first test the 
constructs function in E.coli, and then transfer the best one to cyanobacteria, 
thereby decreasing the occurrence of non-expressing Synechocystis strains.  
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Characterization of inducible promoters in 
Synechocystis (Paper IV) 
For engineering of any microorganism, having well-functioning and predict-
able promoters is crucial. In many cases, inducible expression is needed, 
such as when producing compounds toxic to the host or when knocking 
down essential pathways with CRISPRi [99]. Although there are several well 
characterized and tightly regulated promoters in commonly engineered or-
ganisms such as E.coli and yeast, the choices in cyanobacteria are slim. We 
used the Ni2+ inducible nrsB promoter in Paper II, and got higher productivi-
ty than with PpsbA2 but reduced production at high light. In Paper IV, we 
wanted to make a systematic study of promoters and ribosomal binding sites, 
which could be useful for biotechnological applications. We focused on the 
native, metal inducible promoters from a genetic locus in Synechocystis that 
encodes metal resistance genes [111, 116, 117]. For comparison, we also 
measure the expression of some native Synechocystis promoters which are 
commonly used in engineering studies. 

The promoters were cloned upstream of the gene encoding enhanced yel-
low fluorescent protein (EYFP) and promoter activity was measured as fluo-
rescence per cell (OD750). The nrsB promoter showed a low leakiness and a 
strong induced expression, increasing by 39 times upon Ni2+ and Co2+ induc-
tion (Fig. 11A). None of the other metal inducible promoters reached the 
same expression levels as PnrsB, although PnrsD was induced by 14 times 
and PnrsS by 7 times, which could be useful for situations where lower ex-
pression levels are needed. Three different versions of PpsbA2, differing in 
sequence length, resulted in large variations on expression levels, possibly 
due to presence or absence of regulatory sequences or slight changes to the 
5’UTR.  
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Fig. 11. Promoter activities as measured by EYFP fluorescence in Synechocystis. 
The value from the empty (vector) strain was subtracted from each other sample. (A) 
metal ion induction levels were 5 µM Ni2+, 6 µM Co2+, 4 µM Zn2+ and 0.5 µM Cu2+. 
(B) Effect of varying induction concentration on promoter activity. “BG11 -metal 
ion” uses a modified BG11 where that trace metal has been removed. Error bars 
represent SD (n = 4). 

Next, we investigated the induction of PnrsB, to see how expression was 
affected across a range of concentrations and to see how much Ni2+ and Co2+ 
contributed individually to the induction. Ni2+ had the largest effect on PnrsB 
expression, which when used in increasing concentrations led to a gradual 
increase in induction (Fig. 11B). This stepwise increase or decrease in fluo-
rescence was equally distributed among the cells, as could be seen using a 
confocal microscope. For all future experiments, we decided to use 2.5 µM 
of Ni2+ for inducing PnrsB, because it still gave a relatively high expression 
at that concentration, while having only a minor effect on growth, as com-
pared with using 5 µM Ni2+.  
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We also tested how the nrsB promoter would behave if it was driving the 
expression of enzymes making a product. This was especially relevant, due 
to that PnrsB driven EYFP accumulation varied depending on which day and 
growth phase it was measured. Therefore, we made a new PnrsB driven eth-
anol producing construct, expressing pyruvate decarboxylase (pdc) from 
Zymomonas mobilis and the native alcohol dehydrogenase (slr1192) [52]. 
We also attempted to make the same construct driven by PpsbA2, but the 
ethanol production capacity was rapidly lost in Synechocystis, consistent 
with results from a previous study [118]. This highlights the need for induci-
ble promoter when engineering a pathway that puts a heavy burden on the 
cell, which would ease the metabolic load and increase genetic stability of 
the construct [119].  

Ethanol production in the Synechocystis strain expressing the ethanol pro-
ducing genes with the nrsB promoter was highest when induced with 1.25 
µM Ni2+ (Fig. 12A), which differs from the EYFP results where the 2.5 µM 
gave twice the amount of fluorescence as 1.25 µM Ni2+ (Fig. 11B). Presence 
of Ni2+ in the media provided a clear reduction in growth for the ethanol 
producing strain, which was not observed for the empty vector strain. There-
fore, we attributed the growth reduction to the detrimental effect of ethanol 
production, and not to Ni2+ toxicity, which also explains why we were una-
ble to generate a constitutively expressed, ethanol producing PpsbA2 strain. 
At lower levels of inductions; 0 - 1 µM, the amount of ethanol produced 
increased with amount of induction, which was also reflected in lower 
growth rates (Fig. 12B).  
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Fig. 12. PnrsB driven ethanol production with varying amount of Ni2+ induction 
from day 0. Error bars represent SD (n = 4). 

In Paper II, high light led to lower amount of manoyl oxide produces for 
strains using PnrsB. When testing this with the EYFP expressing PnrsB con-
struct, expression did go down with higher light, while a version of PpsbA2 
doubled in expression from 20 µE to 100 µE (Fig. 13A). While the cause of 
the reduced expression of PnrsB at higher light is unknown, PpsbA2 is 
known to be induced at higher lights, due to a higher turnover of the D1 pro-
tein in photosystem II [103]. When growing the ethanol producing PnrsB 
strain at higher light, ethanol production increased (Fig. 13B). This incon-
sistency in PnrsB expression at high light when measuring fluorescence or 
ethanol production is unclear.  However, ethanol production is not only af-
fected by enzyme amounts but also substrate availability, which might in-
crease with light and thereby generating more ethanol.  
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Fig. 13. Effect of light on promoter activity on (A) EYFP accumulation or (B) etha-
nol production. µE = µmol m-2 s-1, error bars represent SD (n = 4).  

Lastly, we wanted to characterize different RBSs in Synechocystis, which 
could be useful for applications such as constructing operons with variable 
expression among the genes. Therefore, we selected eight RBSs from the 
BioBrick registry [86], two native RBSs from highly expressed genes, and 
the synthetic RBS* [11], and measured their activity using two constructs 
with EYFP or a blue fluorescent protein (mTagBFP), designed to have high 
sequence dissimilarities. The strengths of the RBSs varied over a wide range 
of expression, which was mostly consistent between the two fluorescent 
reporter constructs. Although measuring the RBSs with two different genetic 
contexts does not conclusively determine their strength for use in all con-
texts, it gives a better hint than only using one construct.  

In conclusion, we performed a detailed evaluation on the use of PnrsB for 
protein accumulation and product formation. It provided a relatively strong, 
well-regulated expression, and could be fine-tuned by varying inducer con-
centration. However, it also had a reduced expression at high light and the 
inducer is both toxic to the cells at high concentrations and is actively being 
pumped out, generating inconsistent expression. Nevertheless, PnrsB can 
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still be a valuable addition to the genetic engineering toolbox, especially for 
expression of production pathways detrimental to growth.  

It is important not to assume that the expression levels in this promoter 
study can be generalized to be the same for any gene expression [120]. As 
can be seen in Paper III, the same promoter can generate different expression 
levels, depending on which gene sequence is expressed, even when the rest 
of the genetic context is the same. However, the results from the study are 
still valuable for understanding the induction patterns of the nrsB promoter, 
and in the relative strengths of the RBS library that was measured.  
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Conclusions and Future Directions  

This thesis details the metabolic engineering of Synechocystis sp. PCC 6803 
for production of terpenoids. Squalene, a molecule that can be used both as a 
fuel and a chemical feedstock, was produced in Paper I by deleting the na-
tive enzyme Shc. The resulting knock-out strain accumulated 0.80 mg g-1 
DCW and showed no growth defects under standard growing conditions. 
Paper II detailed the production of the plant diterpenoid manoyl oxide, a 
precursor to the high-value pharmaceutical forskolin. By testing production 
from different promoters, and by boosting precursor availability with up-
stream enzymes, we could get production of 0.45 mg g-1 DCW manoyl ox-
ide.  

Cyanobacterial production of fuel and chemical feedstock terpenoids of-
fers a promising alternative to the fossil fuels sources we use today. Based 
on calculations on theoretical maximal phototrophically produced terpe-
noids, the yield of isoprene and squalene can reach ~11 kg/m2/year, with 
solar energy conversion efficiencies of ~8%, assuming all energy is redi-
rected towards production (Fig. 14). Compared with ethanol production de-
rived from sugar cane fermentation, which have a typical efficiency of 0.2% 
[121], the production potential of cyanobacteria are immense. Of course, 
reaching those yields will be a long and difficult process, and it will require a 
detailed knowledge of cellular processes and a tight control of the metabo-
lism.  

 
Fig 14. Maximum theoretical yield from photosynthetically produced isoprene and 
squalene. Efficiency is defined here as energy stored in product per total energy 
from sunlight. Losses from cell maintenance are calculated as 15 % of useable ener-
gy for the cell (29.2%) and assumes no cell growth [122]. Energy content values 
used in calculations: photons = 173.5 kJ/mol, isoprene = 3182.8 kJ/mol, squalene = 
19796.4 kJ/mol. Based on figure and calculations from [57]. 
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To contribute to the increase of that knowledge, we investigated in Paper III 
each metabolic step in the MEP pathway in both E.coli and Synechocystis, to 
find bottlenecks for terpenoid production. Some unknown targets could be 
identified in both E.coli and Synechocystis, expressions of which can further 
increase terpenoid biosynthesis.  

Reaching production levels that are commercially viable, not only re-
quires engineering of the production pathway, but also to modify other 
pathways, to redirect carbons from growth to product [20]. Genome wide 
models can help identify non-intuitive modification targets and find ways to 
couple production to growth [123], which enables increasing production 
titers by adaptive laboratory evolution [124]. For a product like squalene, the 
intracellular accumulation becomes limited by the volume of the bacteria, 
which engineering of lipid transporters may help resolve [125].  

In the ideal situation, the growth of the production strain should be divid-
ed into two phases, one where they use their resources for growth, and one 
where they redirect all of it for making a product. For that kind of control, 
inducible promoters are needed. The nickel inducible promoter PnrsB which 
was characterized in Paper IV, could be a tool used for that kind of applica-
tion. It had a tight regulation and a relatively high induced expression, which 
are attractive promoter properties. That promoter together with the ribosomal 
binding sites characterized can be valuable additions to the genetic toolbox 
of Synechocystis.  

To summarize, the work presented in this thesis can help develop future 
cyanobacterial cell factories for a truly sustainable production system from 
CO2, water and sunlight.  
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Svensk sammanfattning 

Få kan ha missat de negativa konsekvenser mänsklighetens användning av 
fossila bränslen har skapat. Utsläppen och ackumuleringen av koldioxid i 
atmosfären har ökat i en oroande hastighetet, vilket värmer upp vår planet 
och skapar klimatförändringar. De fossila energikällorna håller dessutom på 
att ta slut, vilket leder till ökade energipriser och negativa konsekvenser för 
världens ekonomier. Tillgången till billiga energikällor har till stor del skapat 
välstånd och möjliggjort utveckling av industrier i rika länder, en process 
som länder under utveckling bör ha möjlighet att efterfölja. Därför behöver 
vi utveckla nya alternativa energikällor som kan skapas i stora volymer, till 
ett billigt pris och som inte tillför koldioxid till det naturliga kretsloppet. 
Solen belyser vår planet varje timma med lika mycket energi som vi förbru-
kar under ett helt år, vilket gör den till den naturliga energikällan. Svårighet-
en är hur vi ska kunna fånga solens näst intill outsinliga energi, och i vilken 
form den ska lagras. Solceller, vindkraftverk och vattenkraftverk är alla bra 
alternativ som fångar solenergin i form av elektricitet, vilket är svårt att lagra 
och utgör en minoritet av vår energianvändning. En annan möjlighet är att 
fånga solenergin i form av kemisk energi, som i ett bränsle, vilket är lättare 
att lagra och är den dominerande formen av energianvändning vi har idag.   

Cyanobakterier, också kallade blågröna alger, har varit en av de viktigaste 
organismerna för utvecklingen av liv i vår jords historia. De uppfann foto-
syntesen ungefär 2,3 miljarder år sedan, vilket ledde till syresättning av at-
mosfären, och det syre som vi alla andas idag. De är också urmodern till 
kloroplasten, den del av växter och alger som gör att de har fotosyntes. En av 
anledningarna till att cyanobakterier är intressanta för forskare idag är deras 
potential till att användas för att skapa bränslen direkt från solljus, luft och 
vatten. Naturligt använder de solljus och koldioxid från luften för att bygga 
upp de ämnen som de består av. Genom att använda genetisk modifieringar 
kan bakteriernas metabolism styras om för att istället använda koldioxiden 
och solljuset för att göra bränslen. Beroende på vilka modifieringar som görs 
och vilka gener som stoppas in, så kan man ändra bakterierna till att göra i 
princip vilken naturlig förekommande molekyl som helst. Eftersom cyano-
bakterier kan omdirigera infångad solenergi till att direkt göra en produkt 
utan att ödsla energi på att skapa rötter eller blad som växter behöver, och 
eftersom de kan växa året runt och har en ytterst effektiv fotosyntes, så 
skulle de kunna producera mycket högre mängd bränsle än den mängd som 
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man får ut från dagens sätt att göra biobränslen. De har också fördelen av att 
kunna växa i saltvatten, vilket gör att cyanobakterieodlingar kan förläggas 
till ökenområden med havsvatten som odlingsmedium, och på så sätt inte 
konkurera med odlingen av mat eller förbruka färskvatten.  

Arbetet som beskrivs i den här avhandlingen handlar om att genmodifiera 
cyanobakterien Synechocystis sp. PCC 6803 till att göra terpenoider. Terpe-
noider är en stor och varierad grupp av molekyler där många mediciner, 
smakämnen och dofter ingår. Smaken från kanel, färgen på en tomat och 
doften från eukalyptus är alla exempel på terpenoidmolekyler. Artikel I 
handlar om att genmodifiera cyanobakterier för att göra skvalen, medan Ar-
tikel II handlar om att göra manoyloxid. Båda molekylerna är terpenoider 
men med olika egenskaper. Skvalen är en väldigt fet molekyl som skulle 
kunna användas som råvara för bensin eller till att göra plaster. Synechocys-
tis innehåller naturligt den molekylen fast bara i små mängder eftersom den 
används för att skapa några andra ämnen. Genom att ta bort det enzymet som 
gör om skvalen i bakterien till andra ämnen, så fick kunde vi skapa en 
Synechocystis-stam som ackumulerade skvalen.  

Manoyloxid var den andra terpenoidmolekylen vi producerade från cya-
nobakterier, vilket kan läses om i Artikel II. Det är en molekyl som med 
några fler modifieringar kan användas som en medicin mot grön starr samt 
för några andra åkommor. Manoyloxid görs naturligt i växten Coleus 
forskohlii, men bara i små mängder och kräver en komplicerad extraktions-
process för att renas fram. Ett alternativt sätt att skapa medicinen vore att 
producera den i en bakterie, där den kan ackumuleras i högre mängder och 
till ett billigare pris. Vi tog därför gener från växten och stoppade in dem i 
Synechocystis, vilken då började producera manoyloxid. Genom att variera 
var på kromosomen vi förde in generna och med vilken ljusstyrka vi odlade 
bakterierna, så kunde vi optimera och öka produktionen.  

Mängden skvalen och manoyloxid som våra modifierade cyanobakterier 
producerade var bara några få promille av totala cellmassan, vilket behöver 
ökas flera gånger innan det kan produceras kommersiellt. För att förstå hur 
terpenoider skapas naturligt i bakterier så att vi lättare kan öka produktionen, 
så gjorde vi en studie av terpenoid-biosyntesvägen, som beskrivs i Artikel 
III. Skapandet av terpenoider i bakterier börjar från en reaktionsväg bestå-
ende av åtta enzymer, som gör om substraten pyruvat och glyceraldehyd-3-
fosfat till de byggstenar som bygger upp alla terpenoider.  Genom att modi-
fiera hur mycket av de åtta enzymerna som bakterierna hade, så kunde vi 
identifiera vilka av dem som var viktigast för att påverka terpenoidbiosynte-
sen, något som i framtida studier kan användas för att öka produktionen av 
vilken terpenoid som helst.  

Vid genmodifiering av cyanobakterier för att skapa en produkt, behöver 
man kunna kontrollera hur starkt varje gen ska vara på. Till störst del kon-
trolleras styrkan av en kort DNA-sekvens framför genen som kallas för pro-
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motor. Artikel IV handlar om hur vi tog flera promotorer som Synechocystis 
redan använder för några av sina gener, sedan satte in dem framför en gen 
som bildar ett gult, fluorescerande protein, och slutgiltigen stoppade tillbaka 
den nya DNA-sekvensen in i bakterien. På så sätt kunde vi bestämma hur 
stark varje promotorsekvens var, eftersom det var direkt proportionellt till 
hur mycket gult fluorescens vi fick. Vad som var speciellt för några av pro-
motorsekvenser vi testade var att de var metall-inducerbara, d.v.s. promoto-
rerna är av fram tills bakterien kommer i kontakt med en metalljon, varvid 
promotorn aktiveras och genen nedanför slås på.  

Sammantaget så har resultaten från de arbeten som presenterats här lett 
till en ökad förståelse för hur man kan genmodifiera cyanobakterier till att 
producera terpenoider. Detta kan vara speciellt värdefullt för att skapa kli-
matneutrala energikällor. 
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