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ABSTRACT
Through the past years, several scheduling heuristics were
introduced to improve the performance of task-based ap-
plications, with schedulers increasingly becoming aware of
memory-related bottlenecks such as data locality and cache
sharing. However, there are not many useful tools that pro-
vide insights to developers about why and where different
schedulers do better scheduling, and how this is related to
the applications’ performance. In this work we present a
technique to characterize different task schedulers based on
the analysis of data reuse, providing high-level, quantitative
information that can be directly correlated with tasks per-
formance variation. This flexible insight is key for optimiza-
tion in many contexts, including data locality, throughput,
memory footprint or even energy efficiency.
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1. INTRODUCTION
With the growing complexity of computer architectures,

scheduling task-based applications have become significantly
more difficult. Typical approaches for optimizing scheduling
algorithms consist of either providing an interactive visual-
ization [4, 1] of the execution trace or simulating the tasks
execution [10, 3] to evaluate the overall scheduling policy
in a controlled environment. The developer has to analyze
the resulting profiling information and deduce if the sched-
uler behaves as expected, and qualitatively compare different
schedulers.

This is particularly difficult because the complex bad schedul-
ing decisions are often seen as an effect on the performance
difference between tasks of the same type. Existent work
[11] proposed scheduling strategies that include these perfor-
mance differences in the load-balancing algorithm to over-
come the precision loss of the decision process. However,
understanding the underlying causes of performance anoma-
lies of the tasks as well as the snowball effect of the dynamic
scheduler is still an open question.

In this paper, we present a new methodology to charac-
terize, in a quantifiable way, the scheduling process in the
context of one of the most important performance-related
characteristics: how the schedule affects data reuse between
tasks. We show how the data reuse pattern through the ex-
ecution can provide insight to the performance of the sched-
uler, independent of what is optimizing for (locality, band-
width, memory footprint, etc.).

Figure 1: Performance difference between smart-bfs and
naive-bfs.

Task-based schedulers look at the set of tasks that are
ready for execution and choose which tasks should execute
on which processor to minimize execution time. In order to
understand the performance of a particular schedule, and
thereby the scheduler itself, it is necessary to address two
critical questions: (1) What were the scheduling decisions
that influenced the performance of the execution, and (2)
When did those decisions happen?. As the resulting per-
formance of an application is mainly driven by the memory-
bound phases, we correlate these questions to the reuses of
memory accesses, building an inter-task data reuse graph.
This allows us to quantify the scheduler’s behavior by com-
paring the actual reused data against the potential reuses.
We also observe the performance of the tasks over time, ex-
posing quantitatively why tasks of the same type perform
differently depending on the scheduler under a specific mem-
ory configuration (cache size).

2. MOTIVATION
We take as an example a task-based implementation of

the Cholesky Factorization1 within the OmpSs runtime [5],
and we study its performance through time using a single
threaded execution in the TaskSim simulator2 [9, 8].

Fig. 1 3 shows the total cycle count, total number of last
level cache misses and average task misses-per-kilo-instruction
(mpki), for two different simulated executions.

The only change between the executions is the schedul-
ing policy of the runtime system: naive-bfs with a regular

1The input is a 32MB matrix with 256x256 block size. The
application generates a total of 120 tasks of four different
types (gemm, potrf, syrk, and trsm).
2Default configuration, using a 2MB last level shared cache.
3The reader can click on the figures to see an online inter-
active version.
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Figure 2: Differences in new data rate.

breadth-first-search policy, scheduling tasks in creation or-
der, and smart-bfs which schedules tasks according to a
heuristic breadth first search, where if the task currently
running creates a child task, that path is prioritized com-
pared to the next task in the bread-first order. This op-
timization metric is locality, through the assumption that
child tasks will reuse the data from their parent.

As we see from the total cycle count, smart-bfs is 6%
faster than the naive-bfs scheduler. From the cycle count
breakdown we find out that the difference comes from the
amount of cycles spent on DRAM accesses, as a result of a
5% increase in last-level cache misses. When looking at the
average task mpki, we see that each task misses 14% more
in the later case.

At this point, overall statistics are not enough to give us
valuable insight on the reason why one of the schedules can
incur more cache misses, when in the execution this hap-
pens nor what is the potential for improvement. Measuring
hardware-specific statistics using performance counters pro-
vide overall values but cannot give any insight on the specific
sequence of events that caused those effects.

Furthermore, there are no generic, framework-independent
and architecture-agnostic tools or techniques available to an-
alyze these issues in a straightforward way.

We propose a new technique to infer quantitative metrics
that enable performance characterization of different sched-
ules through the analysis of inter-task data reuses. First, we
describe our technique that is only dependent on the sched-
ule as an input parameter, which enables the insights to be
architecture-independent. Then, we show how by adding a
second parameter, the hardware architecture, the tool allows
correlating changes in reuse patterns with memory behavior
and its real impact on performance.

3. THROUGH THE DATA-REUSE GLASS
Each of the tasks in an application operates in a certain

data set. Throughout the execution, part of this data might
be reused by later tasks. This means that a portion of the
data set can be considered shared. It is well known that it is
important to reuse shared data soon in the execution, as it
maximizes the chance to serve those memory accesses from
the caches, taking advantage of the temporal locality of the
data. The same holds for a task-based application, with the
difference that a change in task schedule affects how soon
the shared data will be reused.

To understand this impact, it is first necessary to analyze

how much shared and private data each task has. We do this
by profiling the execution to sample the memory addresses
for each task. Once the data is collected, we propose the
following classification. For a given schedule, every memory
access for a task is either new (first time seen) or reused
from a previous task.

With this observation, we can divide memory accesses into
the following four categories:

• New-data: the first time the memory address is used
in the application.
• Last-reuse: the memory address was also touched by

the task previously executed.
• 2nd-last-reuse: the memory address was touched by

the second-to-last task.
• Older-reuse: the memory address was used before by

an older task.

Figure 2 compares the cumulative amount of data touched
as the program executes between the two schedules. Note
that the total number of accesses in the new-data category
is a function of how much data the application uses, and as
a result both schedules bring in the same total by the end of
execution. In the figure we can see how the naive-bfs sched-
ule (red curve) executes tasks in a way that touches new data
much more aggressively, in bursts. On the other hand, the
smart-bfs schedule (orange curve) is much smoother, mean-
ing that new data is brought at a much slower rate. The
flat regions on the curves indicate reuse-periods, where the
scheduled tasks operate on previously used data, and there-
fore does not bring in any new-data. From this data it is
clear that the different schedules result in tasks reusing data
in significantly different patterns, which will result in differ-
ent cache miss rates, and therefore impact performance.

Although the new-data category intuitively exposes the
rate at which the applications install new data in the caches,
it is not explaining how the shared data is being used. Thus,
to understand the details of how the two schedules reuse
data differently, we need to look at the other memory access
categories.

Figures 3a and 3b show the breakdown of memory accesses
(new-data, last-reuse, 2nd-last-reuse, older-reuse) for
both schedules (naive-bfs, smart-bfs) as a function of time
(task scheduled). The last-reuses are shown on the bot-
tom (dark blue), while the upper area (orange) represents
the new data regions. The middle-bottom region shows the
percentage of second-last memory accesses, and finally the
middle-top region (light blue) displays the relative amount
of data reuses that come from older tasks, older-reuse.

The first thing we notice is that the area corresponding
to new-data is distributed more sparsely across the graph
for the smart-bfs policy, compared to the naive-bfs ap-
proach, where most new-data is touched during the first 16
tasks. In addition, the area corresponding to last-reuses in-
creased considerably (more dark blue area), meaning that
more shared data is being reused sooner in smart-bfs. This
is also observed between the period of tasks 100 to 115: in
the naive-bfs schedule, most of the data used was coming
from the second-last predecessor, but in the smart schedule,
now data is coming from its immediate predecessor.

With this classification, it is now clear that the two sched-
ules have both very different reuse characteristics. However,
we need to translate the observations from the previous fig-
ures into relevant metrics to compare the schedules in a
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(a) naive-bfs schedule (b) smart-bfs schedule

Figure 3: Relative data reuse.

straightforward way. We do this by looking at aggregated
statistics from each reuse category over time, and under-
standing how reuses flow from one category to another.

Figure 4 shows an example of this. It displays for each task
executed the percentage of memory accesses corresponding
to each category (y-axis, %), as a function of time (x-axis;
task number, i.e. time), for both naive-bfs (left) smart-bfs
(right) schedules. The average value (%) for each access cat-
egory is displayed with the Average line. By comparing the
averages, it is possible to see that the smart-bfs scheduler
has 11% more last-reuses reuses than naive-bfs. Most
importantly, this view of the execution allows us to under-
stand the effect of these changes: we can see that 5% of the
execution time increase comes from the smart-bfs schedule
turning second-last reuses into last-reuses, while the remain-
ing 6% comes from improving older reuses.

Furthermore, this graph not only allows us to quantita-
tively see why the schedules are different, but, more impor-
tantly, it also shows us when their differences cause changes
in data reuse. Since the tasks are uniquely identified, this
analysis allows us to point to the specific tasks that benefited
from the rescheduling or were hurt by it.

The insights from this analysis now allow us to understand
the impact of scheduling changes in a way that can be used
by schedulers to improve performance by increasing reuse
through caches. Approaches that only measured the actual
cache miss ratios per task (e.g., using hardware performance
counters) are unable to trace back changes in memory be-
havior to the scheduling decision that caused them in this
manner. As a result, this is the first analysis that allows
scheduler designers to gain insight into how specific schedul-
ing decisions impact later tasks.

4. EVALUATION AND ANALYSIS
We implemented a tool using Intel’s Pin [6]. During ex-

ecution, an address map is created where for each memory
address accessed (cacheline granularity), a list of the corre-
sponding tasks using it is kept, capturing execution order
(schedule). The overhead of the Pin tool less than 20%.

Later, an analysis phase is run on the collected data. A
data reuse graph is built, which is a unique representation of
the applications’ data characteristics, not dependent on the
schedule. Each node represents a task instance, while each
edge represents the amount of data shared between those
tasks. In addition, a list of the unique memory addresses

(datasets) is kept for each task instance.
By having the schedule as an input, it is possible to walk

though this graph, analyzing each task dataset and compar-
ing it to the previous tasks. The graph is very dense, but it
is only necessary to walk through it according to the input
schedule. What is more, since the representation is schedule
agnostic, it is possible to walk the same graph in a different
fashion, using a different input schedule and concluding the
correct results. This enables the prediction of the sharing
under different schedules without the need for re-profiling
the application.

This technique allows characterizing the impact of differ-
ent schedules in memory behavior in a high-level, framework-
and hardware-agnostic way. However, comparing the rela-
tive differences between these metrics (per-category) is not
enough to conclude what the effects are going to be in per-
formance. Thus, we describe how by combining our reuse
model with the hardware architecture properties we are able
to provide insight for optimization for a specific platform.

In this study, we consider optimizing for cache locality and
we measure the performance of each task by considering the
cycles-per-instruction (CPI). In Fig. 4 we observe the CPI
for every scheduled task, color coded by its type. We can
see that in the naive schedule, the variation of CPI across
the tasks is much more than in the smart case (average 20%
variation).

For instance, if we look at Task 57, in the naive approach
it is scheduled in the 57th position, resulting in 0.33 CPI.
On the other hand, in the smart schedule, this task was
executed 32nd, and resulted in 0.29 CPI, meaning a 15%
difference in performance.

As our technique can tell exactly where the data is coming
from, by correlating CPI with our reuse analysis we are able
to see (highlighted in the figure) that in the first schedule,
the task is reusing 98% of its data from older tasks. By
scheduling this task much sooner, like in the smart sched-
ule, we see that now 96% of the data is coming from the
previously executed task, increasing the likelihood that the
data is reused through the cache, instead of bringing it from
main memory.

Moreover, we also see different performance within the
same schedule for tasks of the same type: e.g. in the smart
schedule, tasks 113-118 are all syrk with same size of input,
however, task 113 has a 7% worse CPI than its subsequent
ones, and by correlating with the new data graph, we see
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Figure 4: Breakdown of reuses per category: naive (left) vs smart (right).

that this is because it is bringing 20% new data.
By knowing the size of the last level cache, and by look-

ing at the amount of new data per task, it is possible to
estimate how many tasks can be scheduled, and which of
them, before the data that is going to be reused is evicted.
When optimizing for locality, this kind of insight is critical:
if data is never going to be touched again, it is possible to
schedule a task that brings new data into the cache; if the
data is not going to fit in the cache anyways, tasks can be
scheduled later in order to prioritize those that reuse data
already present. This information can also be used to de-
termine the task granularity as the memory reuse between
tasks can influence directly their size.

Another example is optimizing for memory throughput on
GPUs. The naive schedule results in lower performance on
CPU, but it has a good property for the GPU: it clusters
many tasks that touch new data. This can be useful for
scenarios where data transfer is expensive and it is better to
amortize the transfer cost by moving more data at once, as
in GPUs. Our analysis gives this insight in a high level way,
while being transparent to the targeted architecture.

5. RELATED WORK
Previous work has proposed different ways to diagnose

scheduling anomalies by either interactively visualize infor-
mation ([4, 1, 7]) or by simulating the task execution in
order to provide a deterministic behavior of the scheduler
([10, 3]) without evaluating the performance behavior as a
result of the memory use. On the other side other signifi-
cant effort has been done to study the locality as a metric to
characterize the workload of an application ([12, 2]) without
considering the ad-hoc scheduling decisions taken as a result
of the complex architectures. In our work we characterize
the scheduling behavior as a result of the memory reuse. We

provide quantifiable insight on how two schedulers behave
differently and on how scheduling decisions of a task-based
application affect the performance of task instances.

Drebes et al. [4], as well as other different visualization
tools ([1], [7]) propose summarizing and averaging informa-
tion provided by both the runtime and the hardware perfor-
mance counters. By integrating this data in an interactive
visualization tool, the programmer can observe the order
of execution of the tasks, their duration, data dependen-
cies, status of the computing resources, etc. However, when
certain tasks end up executing in a certain order and with
different performance, it is up to the programmer to reverse
engineer the scheduler’s decision, the reasons behind them
and the points where those decisions happened, triggering
the current behavior. Our work proposes a solution to help
the programmer understand the variation in performance
across the tasks, based on the analysis of memory reuse, ca-
pable of showing the exact points in time and underlying
reasons for this variation.

Stanisic et al. [10] as well as Chronaki et al [3] rely on
simulation of the tasks’ execution in order to isolate the
scheduler’s effect on performance from tasks’ unpredictable
behavior. Our work also works with native executions of the
entire application, characterizing the interaction between
the scheduler and the tasks. Thus we are able to understand
how tasks affect each others performance due to memory
reuse and how the dynamic scheduling decisions are affected.

Tillenius et al. [11] observed that tasks of the same type
have different executions time and estimated task sensitiv-
ity to resource sharing. Based on this they adjusted the
scheduling in order to optimize the execution time of the
application. In our work we analyze the reason for these
performance difference, i.e. the way the tasks are reusing
the memory, and we provide quantifiable information that
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can be used by the scheduler in order to avoid such effects
and improve the precision of the dynamic decisions.

Weinberg et al. [12], as well as Cheveresan et al. [2]
propose to use memory reuse as a metric to characterize
workloads. Through this technique they analyze spatial and
temporal locality of the application independent of the archi-
tecture. Our work uses a similar approach but with a more
concrete purpose, using this information to understand the
scheduling of task based applications, and implicitly cor-
relate it to performance, memory aware optimizations (or
energy in future work) depending on the metric of the sched-
uler.

6. CONCLUSION
In this work we propose a methodology to provide the pro-

grammer with high-level, quantifiable information regarding
the scheduling decisions of a task-based application. We use
a classification of the memory reuses through time to di-
agnose a scheduling decision, understanding the effects it
triggered (what) and at which point in time this happened
(when). This insight is critical as it can determine the rea-
son (why) for the performance variation of tasks of the same
type and for scheduling decisions based on it.

In this paper, we use this technique to characterize two
different scheduling policies of a task-based implementation
of the Cholesky Factorization, showing that they are reusing
data in different ways when optimizing for data locality. De-
pending on the architecture on which they run (the cache
size) we observe performance differences that correlate di-
rectly with the memory reuse information.

By collecting quantifiable information of the schedule’s
behavior we open up to future work on exposing this in-
sight to different scheduling policies. We target using this
information to optimize for locality (for NUMA aware archi-
tectures), bandwidth (for CPU/GPU architectures), mem-
ory footprint or even energy efficiency. Further extensions
will consist in extending this tool to multi-threaded appli-
cations, exploiting its ability to predict information of other
schedules with low overhead.
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J. Labarta, and M. Valero. Criticality-aware dynamic task
scheduling for heterogeneous architectures. In L. N.
Bhuyan, F. Chong, and V. Sarkar, editors, Proceedings of
the 29th ACM on International Conference on
Supercomputing, ICS’15, Newport Beach/Irvine, CA, USA,
June 08 - 11, 2015, pages 329–338. ACM, 2015.

[4] A. Drebes, A. Pop, K. Heydemann, and A. Cohen.
Interactive visualization of cross-layer performance
anomalies in dynamic task-parallel applications and
systems. In 2016 IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS
2016, Uppsala, Sweden, April 17-19, 2016, pages 274–283.
IEEE Computer Society, 2016.
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[7] M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst,
H. Mix, and W. E. Nagel. Developing scalable applications
with vampir, vampirserver and vampirtrace. In C. H.
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