Revised version 2017-06-30: See Revision history.

Adaptive Cache Warming for Faster Simulations

Gustaf Borgstrom Andreas Sembrant David Black-Schaffer
Uppsala University, Department of Information Technology
P.O. Box 337, SE-751 05, Uppsala, Sweden
{gustaf.borgstrom, andreas.sembrant, david.black-schaffer}@it.uu.se

ABSTRACT

The use of hardware-based virtualization allows modern simu-
lators to very quickly fast-forward between sample points and
regions of interest. This dramatically reduces the simulation
time compared to traditional functional forwarding. However,
as the fast-forwarding takes place through virtualized execu-
tion on the native hardware, it is unable to warm simulated
structures, such as caches. As a result, sampled simulations
taking advantage of virtualization for fast-forwarding find
their execution time dominated by functional warming.

To address the cost of warming, we present Adaptive Cache
Warming (ACW), a new fast method that determines how
much warming each sample/phase/application needs. ACW
takes advantage of the virtualization-based fast-forwarding
to search for the minimum warming time required during
simulation. To determine when the cache is sufficiently warm,
ACW uses heuristics based on the last-level cache’s cold-set
misses.

Our results show that typical practice of conservatively
warming last-level caches for around 100M instructions is a
vast overkill for nearly all checkpoints. By using ACW, we can
adapt the warming per-sample and speedup the simulation
by 6.9-18x on average (512x speedup maximum) depending
on cache size (2-32MB).

1. INTRODUCTION

State-of-the-art computer-system architecture simulators (e.g.,

Gemb [3] and MARSS [9]) use hardware-based virtualization

to rapidly fast-forward between samples [11] and phases/regions-

of-interest [13]. This significantly speedup the simulation
since virtualized forwarding can run at near-native processor
speed and is therefore much faster than traditional functional
forwarding (e.g., 2500 faster on an 2.8 GHz AMD Phenom
processor). However, the simulated micro-architectural state
belonging to the processor and caches is not updated during
virtualized fast-forwarding. The caches and other compo-
nents must therefore be warmed by a non-virtualized simula-
tion mode before detailed simulation begins. As detailed sim-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

RAPIDO ’17 January 23-25, 2017, Stockholm, Sweden
(© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4840-9/17/01.

DOL: http://dx.doi.org/10.1145/3023973.3023974

[Conservative [Oracle [Adaptive

%’é "_é,!d" -

i,

0 ¢
£ e | Warming | Saved

50 o
g % Warming
S 20
2 10
i< 0

Offset: 1330B | Offset: 1774B Offset: 1B Offset: 112B
leslie3d leslie3d mcf mcf

Benchmark/Sample Offset

Figure 1: Millions of instructions of functional warm-
ing before detailed simulation for 4 samples from 2
applications. The minimum warming for each sam-
ple is shown by the Oracle. The Conservative ap-
proach uses the same amount of warming for all sam-
ples in the benchmark suite. This wastes simulation
time by warming the caches more than necessary
for most samples (1). reduces the
amount of warming by determine how much warm-
ing each sample needs during simulation (2).

ulation is often very quick for large numbers of samples [14],
the result is that functional warming dominates the sim-
ulation time (70-90% of the simulation time in functional
warming [11]).

To address the cost of functional warming, we present
Adaptive Cache Warming (ACW), a new method that en-
able us to reduce the amount of time we spend in func-
tional warming mode. Unlike traditional warming, where
all samples conservatively use the same amount of cache
warming, ACW dynamically adapts the amount of warm-
ing for each checkpoint/sample during simulation. The ef-
fect of tailoring warming to just what a sample needs is
shown in Figure 1 for two applications and samples from
SPEC2006 [6]. Traditionally, Conservative warming uses a
fixed amount of warming for all samples that is set to ensure
that the worst sample will produce accurate results (a typ-
ical value is 100M instructions of warming). However, this
one-size-fits-all approach wastes simulation time since many
applications, and even samples within an application, need
much less warming than others @. To reduce the functional
warming overhead,
determines how much warming each sample needs during
simulation. ACW enable the simulator to dramatically re-

duce the amount of warming @. As a result, ACW speeds
up the simulation by 6.9-18% (Adaptive vs. Conservative)
depending on cache size (2-32MB).

To determine if the cache is warm enough, we use the
optimistic and pessimistic IPC error heuristic proposed by
Sandberg et al. [11]. This heuristic treats cache accesses that
hit in un-warmed sets (cold-set misses) alternately as hits
and misses, and uses this to determine the overall impact
on the simulation of the current degree of warming. ACW
then increases warming until we detect a sufficiently low IPC
error estimate. To speed up the simulation further, ACW can
trade-off some accuracy for more speedup. By allowing 0.05
IPC error, ACW can speed up the simulation further from
6.9-18x to 23-56x (2-32MB cache sizes).

Because ACW measures the effect of the current degree of
warming and adjusts as needed, it automatically adapts to
different conditions, such as cache size, prefetcher, sample,
phase, and application. This is especially useful for HW/SW
co-design, simulations of JIT compiled programs or memory
system research, where storing memory system state with
sampled checkpoints is not possible due to the changes on
the program binary and/or the underlying simulated system,
and where predicting the required warming for each change
would be difficult.

We make the following contributions:

e A new method that dramatically reduces the amount
of time spend on functional warming for simulators
with virtualized fast-forwarding. This speeds up the
simulation by 6.9-18x.

e A new method that enables the user to intuitively trade-
off some accuracy for faster simulation. By allowing
0.05 IPC error, we can speed up the simulation from
6.9-18x to 23-56x.

e We explore how much warming is needed for different
last-level cache sizes (2-32MB), and show that ACW de-
livers excellent speedups and accuracy across different
simulation setups.

2. ADAPTIVE CACHE WARMING

The goal of ACW is to minimize the amount of time the
simulator spend doing functional warming. To do so, ACW
needs to determine how much warming is needed for each
sample during simulation. ACW accomplishes this through
an iterative process that starts with a small amount of warm-
ing and increases it if our optimistic/pessimistic heuristic
indicates too large an error due to cache warming. To do
this efficiently, we leverage two techniques: hardware-based
virtualization and optimistic/pessimistic error estimates.

Virtualization. Hardware-based virtualization enable us
to fast forward at near-native execution speed. This dra-
matically changes where the simulator spends its time. Fig-
ure 2 shows two simulation samples for a sampled simulation
(i.e., many short detailed simulation samples spread out over
the whole application’s execution). For PFSA and SMARTS,
most of the instructions are executed in fast-forwarding mode,
but since virtualized fast-forwarding runs at near native
speed, most of the simulation time is spend on functional
warming. Note that while we use the same SMARTS [14]-like
approach used in pFSA [11], our adaptive cache warming is
applicable to any sample simulation approach that requires
warming, such as SimPoint [13], random sampling, etc.

e Fast Forwarding

. Functional Detailed
using Hardware @ O

Warmi : :
Virtualization (KVM) arming Simulation
> u > B
1) Time in Instructions
- - -

1) Time in Seconds

Figure 2: Sampled simulation uses multiple simula-
tion samples [13, 14, 11]. Virtualized fast forward-
ing (A) can be used to rapidly move between sam-
ples without the need to store checkpoints, or when
they cannot be stored due to HW/SW co-design.
In sampled simulation, caches and other state are
warmed using functional warming (B) before de-
tailed simulation is performed to evaluate the sam-
ple (C). Although most instructions are executed in
fast forwarding mode (I), most of the time is spent
in functional warming (II) due to the near-native
speed of virtualized fast-forwarding.

We leverage the speed of virtualized fast-forwarding to
efficiently jump to different points to adjust the amount of
warming. Figure 3 shows an overview of how ACW works.
ACW first creates an in-memory checkpoint (implemented
with a simple Unix fork) and fast-forwards to the minimum
warming period @. ACW then warms the caches with func-
tional warming @, and then does two detailed simulations
to determine the optimistic and pessimistic results for that
degree of cache warming @. If the error estimate is too large,
ACW restarts from the in-memory checkpoint and tries again
with increased warming (@, @, @). ACW continues until
there is sufficient warming that the error estimate is below
the target (@, @, @). Note that doubling the warming at
each step will incur the overhead of all the earlier warmings
by the time it finds the appropriate warming.

Error Estimates. To determine if we have enough warm-
ing (€@ too short, @ too short, @ right length), we use the
optimistic and pessimistic error heuristic [11]. The idea is to
perform two detailed simulations' with the same amount of
functional warming: one for the pessimistic assumption that
any cache miss due to insufficient warming would have been
an actual miss with enough warming, and one for the opti-
mistic assumption that misses due to insufficient warming
would have been hits with enough warming. From these two
simulations we can determine how much the current state of
warming could impact the performance of our application.

To determine if a miss due to insufficient warming would
have been a hit with enough warming, we track cold-set
misses. We consider a set to be warm if all of its available
cache line slots have been touched (e.g., all eight ways in an
8-way associative cache are used). A cold-set miss is there-
fore a miss to a set that still has untouched cache line slots.
A miss on a cold set may contain the requested data if more
warming was used. The optimistic simulation therefore treat
the cold-set miss as a hit.

An important observation is that the cache only needs
to contain data that is actually used during the detailed

Note that the amount of time spent in detailed simulation
is vastly less than that spent warming, so the cost of two
detailed simulations is small.

Iteration 1
L 912.5&-:
Iteration 2 ?
e 9 xu G
Iteration 3 ?

<

Q o so Q-

a) Adaptive Warming

o Cold-set Mis_g_gs
S| e e
S -
5]
of e L
'y
% Error
g ! % Q % bound
Pessimistic Estimate
Time
— 100M D
b) Conservative Warming
_— 50M [

c) Oracle Warming

Figure 3: Adaptive Cache Warming is shown for
three iterations of increasing cache warming. Vir-
tualized fast-forwarding is used to move from an
in-memory checkpoint (1) to 12.5M instructions
away from the sample for functional warming (2),
followed by detailed warming (3). If the opti-
mistic/pessimistic heuristic indicates too large an er-
ror, ACW uses virtualized fast-forwarding to restart
from the previous in-memory checkpoint (4), fast
forward to 25M instructions before the sample for a
longer functional warming period (5) before detailed
simulation (6). This process continues until the error
estimate is below the target error (7-9). The conser-
vative approach (b) uses the same amount of warm-
ing for all samples whereas an Oracle (c) finds the
shortest amount of warming without any searching.

simulation: warming for longer may fill other parts of the
cache, but unless the sample touches those portions it will
not affect the results. That is, cache occupancy is not a good
metric to reduce the amount of warming since the cache
does not have to be full to be warm enough for accurate
simulation. Instead we want a metric that helps us measure
whether we have the needed data in the cache.

Moreover, since the optimistic and pessimistic simulations
give us an estimate of the maximum warming effect on the
error, we can use them to increase simulation speedup by
trading-off accuracy for reduced warming.

Summary. ACW uses hardware-based virtualization to
cheaply test different functional warming periods, and it uses

Frequency

2.5GHz

Width: F/D/R/1/W/C
ROB/1Q/LQ/SQ
Int. / FP Registers

8/8/8/8/8/8
192 /64 /32 /32
256 / 256

L1 Instruction / Data Caches
L2 Unified Cache
L3 Shared Cache

32kB, 64B, 8-way, LRU, 4c
128kB, 64B, 8-way, LRU, 6¢
2/8/32MB, 64B, 16-way, LRU, 20c

DRAM

SimpleMemory, 3GB, 30ns

ACW Warming Periods

100M, 50M, 25M, 12.5M, 6.2M,

3.1M, 1.6M, 781k, 391k, and 195k.
0.01, 0.02, 0.05 and 0.10

ACW IPC Target Errors

Table 1: Processor configuration.

optimistic and pessimistic estimates of the impact of the cur-
rent degree of cache warming to determine if more warming
is needed.

3. RESULTS

3.1 Methodology

We implemented ACW in the gem5 simulator [3]. Table 1
shows the processor configuration. We evaluate three last-
level cache sizes (L3): 2MB, 8MB, and 32MB. To evaluate the
method, we use the SPEC2006 [6] benchmark suite. We use
ten uniformly distributed checkpoints per application and
input. We compare ACW with Conservative (all samples
use 100M instructions functional warming since the amount
of warming is set very conservatively such that the most
demanding sample in the benchmark suite will not lose accu-
racy) and Oracle (the minimum amount of warming found
using ACW without any search overhead). To evaluate the
performance, we used simulation time from KVM- and func-
tional simulation-based gemb) runs.

3.2 GemS5 Extensions

To support pessimistic and optimistic error estimates, we
had to add functionality to track cold-set misses. To do so,
we extend each cache set with a counter that determines
how many “cold” cache lines the set contains. The counter is
initialized equal to the cache’s associativity and then decre-
mented when data is installed. The cache set is thus warm
when the counter reaches 0. A cold-set miss is handled dif-
ferently depending on whether we are doing a pessimistic or
optimistic simulation.

e Pessimistic: A cold-set miss is reported as a real miss
(i-e., memory latency).

e Optimistic: A cold-set miss is viewed as present in the
cache and reported as a hit (i.e., L3 hit latency). We
implement this as a “prioritized” memory request, that
fetches the data immediately from memory without
any memory latency.

The output of these two simulations produce an error esti-
mate where the optimistic [PC > pessimistic IPC. The true
IPC is somewhere in between. In our evaluation, we only
consider the last-level cache (L3) since the lower level caches
should be warm if the last-level cache is warm.

200

/] 2MB @ 8 MB

175
150

125

P2

Warming (Millions of instructions)

8 32)
| Conservative s,

BN 32 MB

Does not converge
with 100M warmin

Max Warmin
100 MaxWarming . pp——
75 1 I L Ja s Cracie 2
Eh
50 | Warming
25| p
n 3 i I
o | = m n [l [. | |
C L OO TN COELLEAILOINLDdD LR
B AT G S S S F TP SO & S
P SEE @ §S L ISR S Y 8
e Q&e\{_\b Qé\\ TR N 06@ & & N v
6@? SN g TP N > %
@

Figure 4: The amount of functional warming for different cache sizes (2, 8, and 32MB). The darker shaded
area at the bottom of each bar shows the minimum amount of warming needed without any search (Oracle),
the middle shows the total amount of warming ACW needs (search + final warming). The lighter shaded
bars behind shows how much Conservative needs to warm the caches based on the worst sample in each

application. ACW uses a 0.01 IPC error limit.

3.3 Adaptive Cache Warming

Figure 4 shows the average amount of functional warming
used by each application, for three different cache sizes (2,
8, and 32MB), with an maximum error target of a 0.01 IPC
deviation from Conservative. The figure also shows, Oracle
(dark bars) and Conservative (light bars). Conservative shows
the warming needed for the most demanding sample for the
given cache sizes.

Overall, ACW adapts the functional warming to the differ-
ent cache sizes and applications. This saves a significant
amount of simulation time compared to Conservative @.
Across all applications, ACW speeds up the simulation by
18%, 9.7x, and 6.9x for 2, 8, 32MB, respectively. The maxi-
mum speedup is 512x, which occurs when ACW and Oracle
warm the same minimum amount (i.e., the right/minimum
amount of warming is found in the first iteration). The
speedup drops slightly with larger caches. This is to be ex-
pected since larger caches typically need more warming.

Note that there are some samples that need a lot more
than 100M instructions warming. For example, zeusmp’s sam-
ples are very cache sensitive, as almost none of the optimistic
and pessimistic estimates converges when reaching the 100M
maximum warming threshold @. We investigated this by
warming the caches for up to 400M instructions. While al-
most all cache sensitive applications benefited from this (i.e.,
the number of samples that did not converge dropped from
94 to 17) there were still a few samples that needed more
than 400M instructions to converge. Due to limited simula-
tion time, we could not do “infinite” warming, i.e., where we
warm the caches from the start of the application.

3.4 Speedup vs. Accuracy

Figure 5 shows the speedup as a function of simulation
error. By tolerating more error, we can reduce the amount

of warming further and speedup the simulation more. Note
that the speedup includes overhead of the adaptive warming
search (i.e., the extra time to find the right amount of warm-
ing). The accuracy is defined as the IPC difference between
ACW and Conservative. We show the results for 0.01, 0.05,
and 0.10 target IPC errors. An IPC error of 0.10 is high, but
we include it to illustrate the trade-off between speedup and
accuracy.

As expected, the speedup increases as we allow more IPC
deviation. For example, (6b: Demanding) moves up from
0x (0.01) to 55% (0.05) to 121x (0.10), (6d: Flexible) moves
from 5x (0.01) to 23x (0.05). However, the average error
remains relatively low even when we allow more error since
only a subset of the applications can take advantage of the
speedup vs. accuracy trade-off. For example, (6a: Tolerant)
does not move and has a 161x speedup for all error targets.

Most samples fall below the target error @. However, in
some cases the error is larger than the target error @. This
happens when the assumption that more warming improves
performance does not hold. Some samples benefit from less
warming because of the complexity of out-of-order proces-
sors. We are still investigating why cache warming is not
always a monotonically increasing function, and how ACW
can address this issue.

3.5 Cache Warming Behavior

As we have seen in Figures 4 and 5, different applications
react differently to the amount of warming they receive. We
have observed four different behavior: Tolerant, Demanding,
Adaptable, Flexible. These are illustrated in Figure 6 and
discussed below.

Tolerant (calculix). These samples are insensitive to
cache warming and perform well with very little cache warm-
ing @. For Tolerant applications, Oracle and ACW use the
same amount of warming and will show the highest possible

@ calculix @ astar/lakes gemsfdtd @ milc < average
@ Fig 6a) Tolerant @ Fig 6b) Demanding O Fig 6c) Adaptable @ Fig 6d) Flexible
200 0.1 200 0.05 200 0.10
o i L4 °
>
=T | L—— — ~ ~
§ 150 oWIthln IPC 150 150
g &« target error. o °
o .o o 100 100 N
) e
% | Non-monotonic L o e o
x 50 performance. | 50 (R 50 e
B C Yoo c°.® - ©c.0) .
L] ®

8 0 ". 0 4%.0 7Y 0 % o 9
& 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06

Error (Absolute IPC Difference)

a) 0.01 Target Error

b) 0.05 Target Error

c) 0.10 Target Error

Figure 5: Speedup (including warming period search overhead) vs. Error (IPC difference compared to 100M
conservative warming) for an 8MB last-level cache. The dots represent different samples. The big black lined
circles highlights the samples that we look in more detail in Figure 6 (next figure).

Target IPC Error Real IPC Error (Avg.) Speedup (Geomean)
0.01 0.007 0.012 0.012 18x 9.8x 6.9x
0.02 0.009 0.013 0.013 25x 14x 10x
0.05 0.010 0.017 0.017 56 X 33x 23X
2MB s8MB 32MB 2MB 8MB 32MB

Table 2: Speedup vs. Target IPC Error for 2, 8,
32MB cache sizes. Avg. shows the geometric mean
across all sample points.

speedup over Conservative since they always use the mini-
mum amount of warming.

Demanding (astar/lakes). In contrast, demanding sam-
ples need a lot of warming. For example, astar/lakes needs
the full 100M warming @. Here, all three, Oracle, ACW and
Conservative use the same amount of warming.

Adaptable (gemsfdtd). These samples have very differ-
ent behavior depending on how much warming they receive.
Too little warming and the IPC error is too large €, but
very small error if they receive a little bit more warming @.
Here, ACW is effective at finding the minimum amount of
warming the application can tolerate.

Flexible (milc). The speedup changes gradually as a
function of warming. These samples are good candidates for
trading off some accuracy for more speedup. For example,
if we allow only 0.01 IPC error (basically no error), ACW
can reduce the amount of warming from 100M to 12M @.
However, if we allow a small 0.05 IPC error, ACW can reduce
the amount of warming further down to only 781k instruc-

tions @.

3.6 Summary

The results show that ACW significantly reduces the amount
of warming, and it can improve the performance further by
trading off some accuracy for more speedup. Table 2 summa-
rizes the results. On average, ACW speeds up the simulation
by 18x%, 9.7x, 6.9x for an 2, 8, 32MB caches, respectively,
and by 56x, 33x, 23x if we allow a 0.05 IPC error.

4. RELATED WORK

Sampled Simulation. Sampled simulation is used exten-
sively to reduce simulation time, e.g., SMARTS [14], or by the
selection of representative samples, e.g., SimPoint needed [12,
13, 10]. The value of knowing which part of an application
to simulate has even made its way into benchmarks, such as
with PARSEC benchmark [2], where the applications indi-
cate the regions of interest themselves.

In all cases, sampled simulation requires that the simula-
tion state is warm before collecting detailed statistics.

Warmup Methodologies. There have been many works
on identifying the correct amount of warming. BLRL [4]
counted reuse latencies in a simulation trace to statistically
determine the amount of warming needed for each sample.
This was extended by Lou et. al. [8] by keeping track of “cold-
start accesses”. This latter approach is similar to Sandberg’s
“cold-set misses”, however it lacks the optimistic/pessimistic
information which allows us to determine when to stop warm-
ing.

While these methods can accurately determine how much
warming is needed, they assume an always-on warming method-
ology. This is helpful for determining a conservative warm-
ing bound for checkpoints which will be re-simulated many
times if you cannot save the processor and cache state. Our
approach assumes that we do not have always-on warming
and need to dynamically adjust the warming, but that we
do have very fast virtualized fast-forwarding, which allows
us to cheaply simulate at different points in the execution.

Virtualization Use in Simulations. Throughout this
paper, we have frequently used ideas presented by Sandberg
et al [11] to leverage virtualization for fast-forwarding be-
tween samples and to find the right amount of warming.
Virtualization has also been used by MARSS [9, 15] as well
as in TQSIM [7] through QEMU [1] to execute applications
and generate execution- and memory traces, whose perfor-
mance can then be estimated. Recently, Hassani et all demon-
strated LiveSim [5], a framework that uses virtualization to
store processor and system checkpoints in memory for rapid
re-simulation of the same checkpoints.

06

O
o

0.85 |-
08 Il Il Il Il Il Il Il Il Il Il

1.1 T T
1.05

1.0 - 0.10 IPC error N

0.95 |-
0.9 —Li

Y ——

Needs 100M warming. |

S

0.01 IPC error |

0.05 IPC error

,&q(')‘(%q\)é,‘%'\‘é ,))I\ 3@\ 6@\,\1\'\15@\6ng\'\/00@\
Functional warming (Instructions)

b) Demanding (aster/lakes)

17 I I I I I I I I I I
1.68 | o
1.66 I Does not need any warming.
g
1.64 -6
1.62 |
16 l l l l l l l l l l
,\/g(’)‘(%q\,\ﬁ\%'\,\é 7)‘\ 3@\ 6@\,\1@15\'\60&{\\00&‘\
Functional warming (Instructions)
a) Tolerant (calculix)
18 | I I I I I I I I I
1.6 |
14 —eErrorbound
1.0 | Can not warming.
0.6 |- | | | | | T | | | |

'\96%39’\’\"\%’\‘\‘ ’2)‘\ '5@\ 6“\ '\f))‘\ 7«6\‘\ 60@’\&00@\

Functional warming (Instructions)
c) Adaptable (gemsfdtd)

accu/('jacy for eReduce]
ipee il warming.
052 L <">0.05 IPC erroN 0.01 IPC error]
0.5 L L L | L | | | | |

»\96\(:59\‘\(:\?)’\’\‘ ’1)‘\ '5@\ Q&‘\'\"L@\’L{D@\CJQ@,\\QQ@\

Functional warming (Instructions)
d) Flexible (milc)

Figure 6: Applications react differently to the amount of warming they receive. We have identified four types
of behavior: a) Insensitive, b) Sensitive, ¢c) Adaptable, d) Flexible.

S. CONCLUSIONS

Today’s computer architectural simulators spend most of
their time doing functional warming. In this paper, we pre-
sented Adaptive Cache Warming (ACW). ACW determines
during simulation time how much cache warming is needed
for each simulation sample. It leverages hardware-based vir-
tualization and optimistic/pessimistic error bounds to find
the right amount of warming quickly. To obtain even greater
speedups, ACW allows the user to trade accuracy for even
faster simulation. Our results show that ACW speedups up
the simulation by 6.9-18% on average (and 23-56x by trad-
ing off accuracy with a 0.05 IPC error) depending one cache
size (2-32MB).

6. ACKNOWLEDGMENTS

This work was funded in part by the Swedish Science Coun-
cil (grant 2014-5480), the Swedish Foundation for Strategic
Research (grant FFL12-0051), the Uppsala Programming for
Multicore Architectures Research Center, and the Swedish
National Infrastructure for Computing (SNIC) at UPPMAX.

7. REFERENCES
[1] F. Bellard. Qemu, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
FREENIX Track, pages 41-46, 2005.
[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
parsec benchmark suite: Characterization and
architectural implications. In Proc. International

Conference on Parallel Architectures and Compilation
Techniques (PACT), 2008.

8]

[4

5

[6]

7]

8]

(10]

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower,

T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood. The gem5
Simulator. SIGARCH Comput. Archit. News, 2011.

L. Eeckhout, Y. Luo, K. D. Bosschere, and L. K. John.
BLRL: Accurate and Efficient Warmup for Sampled
Processor Simulation. The Computer Journal,
48(4):451-459, Jan. 2005.

S. Hassani, G. Southern, and J. Renau. LiveSim: Going
Live with Microarchitecture Simulation. In Proc.
International Symposium on High-Performance
Computer Architecture (HPCA), 2016.

J. L. Henning. SPEC CPU2006 Benchmark
Descriptions. SIGARCH Comput. Archit. News, 2006.
S.-h. Kang, D. Yoo, and S. Ha. TQSIM: A fast
cycle-approximate processor simulator based on
QEMU. Journal of Systems Architecture,
66aAS567:33-47, May 2016.

Y. Luo, L. K. John, and L. Eeckhout. Self-monitored
Adaptive Cache Warm-up for Microprocessor
Simulation. In Proc. Symposium on Computer
Architecture and High Performance Computing
(SBAC-PAD), 2004.

A. Patel, F. Afram, S. Chen, and K. Ghose. MARSS:
A Full System Simulator for Multicore x86 CPUs. In
Proc. Design Automation Conference (DAC), 2011.

E. Perelman, G. Hamerly, M. Van Biesbrouck,

T. Sherwood, and B. Calder. Using SimPoint for
Accurate and Efficient Simulation. In Proc.

[12]

[13]

International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), 2003.
A. Sandberg, N. Nikoleris, T. E. Carlson, E. Hagersten,
S. Kaxiras, and D. Black-Schaffer. Full Speed Ahead:
Detailed Architectural Simulation at Near-Native
Speed. In Proc. International Symposium on Workload
Characterization (IISWC), 2015.

T. Sherwood, E. Perelman, and B. Calder. Basic Block
Distribution Analysis to Find Periodic Behavior and
Simulation Points in Applications. In Proc.
International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.

(14]

(15]

Automatically Characterizing Large Scale Program
Behavior. In Proc. Internationl Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2002.

R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C.
Hoe. SMARTS: Accelerating Microarchitecture
Simulation via Rigorous Statistical Sampling. In Proc.
International Symposium on Computer Architecture
(ISCA), June 2003.

M. T. Yourst. PTLsim: A Cycle Accurate Full System
x86-64 Microarchitectural Simulator. In Proc.
International Symposium on Performance Analysis of
Systems € Software (ISPASS), 2007.

Target IPC Error Real IPC Error (Avg.) Speedup (Avg.)

0.01 0.007 0.012 0.012 103 x 93 x 92x
0.02 0.009 0.013 0.013 124 112x 110x
0.05 0.010 0.017 0.017 199x 185X 183 %

2MB 8MB 32MB 2MB 8MB 32MB

Table 3: Speedup vs. Target IPC Error for 2, 8,
32MB cache sizes. Avg. shows the arithmetic mean
across all sample points.

Revision history

2017-06-30: In the paper, we previously used the arithmetic
mean for average speedup. However, the arithmetic mean
produce overly optimistic performance numbers since it does
not weight speedup and slowdown equally. In this revision,
all speedup averages have been changed to show geometric
mean instead. The “average” points in Figure 5 have also
been changed accordingly over the “Speedup” axis.

Table 3 shows the arithmetic mean of the speedups over
all sample points. The geometric mean in Table 2 in Section
3.4 is lower in comparison, but the results show that the
simulation technique still produces significant performance
improvements. The conclusions remain the same.

