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Abstract
Koumpouras, K. 2017. Atomistic spin dynamics and relativistic effects in chiral nanomagnets.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and
Technology 1467. 97 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9791-0.

In this thesis, studies based on magnetization dynamics on atomic length scales are presented
for a number of magnetic systems, where Dzyaloshinskii-Moriya (DM) interaction is present.
First-principle methods, based on density functional theory (DFT), have been used to study the
pairwise magnetic interactions, such as Heisenberg exchange and DM interaction, which are
the crucial parameters for the helimagnetic systems. The first part of this thesis concerns the
theoretical background: basics of DFT, atomistic spin dynamics and magnetic skyrmions. The
second part concerns the ground state and dynamical properties of helimagnets.

Magnetic interaction parameters have been calculated for heterostructures, such as Co/Ni/
Co on heavy metal non-magnetic substrates. These parameters are strongly dependent on
the material of the substrate. Furthermore, the magnetization dynamics of domain wall and
skyrmion are studied and our results show that motion is influenced by the spin-Hall effect
(SHE) which arises from the non-magnetic substrate. Similar studies of magnetic interaction
parameters have been made for several half-Heusler compounds MnZSn (Z=Tc, Ru, Rh, Os, Ir
and Pt) and the phase diagram of the MnPt0.99Ir0.01Sn alloy proves the existence of skyrmions in
a wide range of temperature and external magnetic field.

The manipulation of low-dimensional magnetic structures (skyrmions and solitons) with
spin transfer torques have been investigated. The nucleation and annihilation processes of
skyrmion, by the use of spin polarised current, are essential and the impact of different edges
(antiferromagnetic, magnetically softer and stiffer) on both processes is studied. When the
edge is magnetically softer, less current is required for skyrmion nucleation and annihilation.
Furthermore, one-dimensional magnetic solitons are used to explore concepts of logical
operations in a prototype majority gate device, since they are stable and can be easily created
and manipulated by spin currents.

Lastly, edge dislocations in FeGe helimagnet have been studied. These dislocations described
in terms of thermally driven dynamics by the use of atomistic spin dynamics approach and
possibly explain some unusual jumps of the spiral wavelength observed by time-dependent
experiments.
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1. Introduction

Magnetic storage is a field which has been around for a long time and not only
these last decades as many people may think. It started in 1888 by the Ameri-
can engineer Oberlin Smith [1] and even nowadays the main idea remains the
same, read and write heads are used to store and retrieve the data. In the last
30-35 years there has been a huge growth of this kind of magnetic storage
devices, the capacity has increased from kilobytes to terabytes and the data
transfer rate has grown from bytes per second to 100+ megabytes per second.

The big successes on writing and reading data came with the change from
mechanical devices to electronic devices. The driving force behind this change
was the discovery of new electronic devices with smaller size and they perform
faster logical operations by using electronic currents. The bottleneck of such
devices based on electron transport is the further decrease of their size because
of the Joule heating.

An alternative direction for the solution of the previous problem and in gen-
eral for better performance of such devices can be the change from the con-
ventional electronic devices to devices which exploit the spin of the electron
(spintronics) or the excitations of the magnetic structures such as spin waves
(magnonics). In spintronics, the interesting phenomena are taking place at the
nanoscale level which means that, ideally, the size of future devices can be
reduced, faster transfer speeds and higher bit density, can be achieved. The
research on spintronics have started with the discovery of the Giant Magneto-
Resistance (GMR) effect [2, 3] by Peter Grünberg and Albert Fert who was
awarded the 2007 Physics Nobel Prize for their work on magnetic manipula-
tion of electronic currents.

A very important role in the investigation of spintronics plays the growth of
new synthesizing techniques, like Molecular Beam Epitaxy (MBE) and Pulsed
Laser Deposition (PLD). Those two techniques give the opportunity of build-
ing up new nano-structures and thin films. Another important aspect for the
spintronics is also the growth of high definition microscopes (e.g SEM, TEM).

On the other hand, in magnonics a whole new concept is introduced where
the information carrier is not coming from the motion of electrons but from
excitations of the magnetic structure which are called spin waves or magnons.
The main advantage of this idea is the reduction of information losses and
the increase of its transmission speed as well as the absence of Joule heat-
ing. Magnonic diodes and transistors have already been introduced by several
research groups [4, 5, 6].

In what can be seen as an inverse of the GMR effect, John Slonczewski and
Luc Berger proposed that the magnetization of a material can be influenced by
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a spin polarised current. This effect is called spin transfer torque (STT) [7, 8].
Based on this idea, Stuart Parkin proposed a racetrack memory device where
the spin transfer torque effect is used to move ferromagnetic domain walls by
using a spin polarised electronic current [9]. The high-speed performance is
the characteristic which makes domain walls attractive for constructing logic
devices, such as Magnetic Random Access Memories (MRAMs). However,
in order to achieve these extraordinary speeds, very high current densities are
needed which are of the order of j ∼ 1012 A/m2.

In 2009, a non-trivial magnetic structure was discovered [10] which at-
tracted the research interest in condensed matter systems. This structure is
called skyrmion lattice. Magnetic skyrmions are topologically stable chiral
spin structures with a whirling configuration where the magnetic structure has
a very smooth variation. This last property makes them couple successfully
with the spin polarised electronic current and the result of this coupling is an
extremely low depinning current density which is about j∼ 106 A/m2. In other
words, 5-6 orders of magnitude less current density is needed to put them in
motion compare to domain walls. Additional to their small depinning current,
skyrmions are promising candidates for future data storage devices because of
the weak influence of defects and their flexibility to avoid pinning centres [11]
due to their topological protection.

Since the new studied devices are based on the spin of the electron, it can
be argued that the most interesting phenomena takes place on the nanometer
length scale. In other words, a detailed characterization of magnetic ground
state properties, as well as the magnetisation dynamics, in atomistic scale is
required for a full understanding if these phenomena. It is well-known that
the origin of magnetism in solids is the spin and angular momentum of the
electrons and for this reason, it can only be explained and understood in the
concept of quantum mechanics. Thus, the electronic structure is very impor-
tant for the material’s magnetic properties and ab-initio methods can be a very
useful tool for extracting the important information of the magnetic ground
state properties with very good accuracy.

Simple models are often used for the description of magnetism in mate-
rials. A very popular and common model is the Heisenberg’s model [12]
which predicts the exchange coupling between two atomic magnetic moments.
The Hamiltonian arising from Heisenberg’s model, which is called Heisenberg
Hamiltonian, can be extended in such a way that in addition to the exchange
constant J, it also includes the magnetocrystalline energy and a third magnetic
contribution which is called Dzyaloshinskii-Moriya interaction (DMI). This
last contribution is an antisymmetric exchange interaction between two atom-
istic magnetic moments. All the previous constants can in fact be calculated
by using density functional theory (DFT) methods. To study the magnetiza-
tion dynamics of atomic magnetic moments the Landau-Lifshitz (LL) or the
Landau-Lifshitz-Gilbert (LLG) equation [13, 14] can be used. This method
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is powerful and has been successful for investigating the time evolution of
magnetism in small length scales and in more complex magnetic structures.

In the present thesis, magnetization dynamics is investigated by using a
two-step approach. As already mentioned above, the magnetism in solids can
be understood from quantum mechanics and the magnetic properties are ex-
plained by the electronic structure. Thus, in order to model the behaviour
of solids, the first step is the materials specific calculations from first prin-
ciples. The methods to calculate the electronic structure, used in the thesis,
are the Korringa-Kohn-Rostoker (KKR) approach [15, 16] and the exchange
interactions are calculated by the Liechtenstein, Katsnelsson, Antropov and
Gubanov (LKAG) formula [17, 18], which both are described in Chapter 3.
After extracting the necessary information from the first step, the parameters
are mapped into the Hamiltonian which is used in the LLG equation of motion
for atomistic magnetization dynamics studies. This is the second step of our
approach. In Chapter 4 is discussed the derivation of LLG equations of mo-
tion for the atomic spins as well as the current driven magnetisation dynamics
predicted from Berger [8, 19, 20] and Slonczewski [7].

Chapter 5 discusses the formation and the stability of magnetic skyrmions
as well as their experimental observation in B20 non-centrosymmetric chi-
ral ferromagnets. Furthermore, is presented the dynamics of such structures
and how they are influenced by the presence of magnetic and non-magnetic
defects. Magnetic skyrmions exist in the FeGe which exhibits a helical spin-
spiral ground state and magnetic defects in the ground state is of great interest
since they promote the formation of magnetic skyrmions. The dynamics of this
kind of defects are studied from theoretical point of view by using the LLG
equation of motion in Chapter 6, where the magnetic properties of the material
were first calculated by using the KKR approach. As previously mentioned,
magnetic skyrmions are promising candidates for future data storage devices
in which the writing and deleting bits of information are very crucial. This
means that the nucleation and annihilation processes of magnetic skyrmions
at the edges of the system are very important and they are studied in Chapter 9
by investigating energy barriers of different kind of edges in terms of atomistic
spin dynamics calculations.

Beside the magnetic skyrmions, lower dimensional structures like quasi-
one-dimensional magnetic solitons are of great interest nowadays which are
also very good candidates for future data storage devices. By the use of toy
models, in Chapter 7 is studied the behaviour and the dynamics of such struc-
tures by means of atomistic spin dynamics calculations. Moreover, the use of
magnetic solitons in a functional and dynamic three-input majority gate is in-
vestigated, where the input and the output signals are encoded in the chirality
of the solitons, allowing to perform logical operations.

The Dzyaloshinskii-Moriya interaction has gathered much attention be-
cause it is very important for the stabilisation of non-collinear magnetic con-
figurations like magnetic skyrmions and solitons. DMI is present in the B20
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structures (MnSi, FeGe and MnGe) with broken inversion symmetry, but it has
been proposed that at the surface of magnetic thin films on top of heavy metal
a symmetry breaking takes place which leads to a strong DMI. In Chaper 8,
Co monolayers, Co trilayers and heterostructures of Co/Ni/Co deposited on
different types of heavy metals are studied by performing ab-initio calcula-
tions for the electronic and magnetic properties. Another class of materials
which exhibit strong DMI is the half-Heuslers compounds MnZSn, where Z is
a transition metal (Tc, Ru, Rh, Os, Ir, Pt). All these half-Heusler compounds
and the MnPt1−xIrxSn alloy are studied in Chapter 10 by performing first prin-
ciples calculations. Furthermore, the phase diagram of MnPt0.99Ir0.01Sn is
investigated in terms of atomistic spin dynamics calculations.
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2. Magnetism

Magnetism was discovered since the ancient years and it has a long history un-
til nowadays. Ancient Chinese and Greeks mention permanent magnets from
the fourth century B.C. and according to the texts Chinese were using mag-
netic compasses for navigation (first for orientation on land and then at the
sea). From then, very important discoveries on the properties of magnetism
have been made through all these years and today the research on magnetism
is to a large extent driven by the technological innovations in information tech-
nology and has a particular focus on data storage and memory applications.

2.1 Magnetic moment
A magnetic dipole can be modelled by two opposite magnetic charges (posi-
tive and negative) with equal magnitude where d is the distance between them,
as represented in Fig. 2.1, and it can be expressed as m = qmd. Where qm is
the strength of the pole.

-

+

d

Figure 2.1. Representation of magnetic dipole moment m.

Before the discovery of spin from quantum mechanics, it was believed that
the origin of the magnetic moments of atoms, and as a consequence, the mag-
netisation of solids, is the motion of electrons (current) in a close circular

13



loop. The magnitude of magnetic dipole moment arising by a rotating electric
charge is given by

|m|= μ0IS, (2.1)

where μ0 is the magnetic permeability of the vacuum, I is the current of the
loop and S the area of the loop.

The classical relation of the magnetic dipole moment can be written as:

m =− eμ0

2me
L. (2.2)

where e is the charge of the electron, μ0 is the magnetic permeability of the
vacuum, me is the electron mass and L is the classical angular momentum
which depends on the distance r and the momentum p.

When Neils Bohr announced his famous atomic model, which took his
name and is called Bohr’s model, he gave three very important rules. In our
case, we will focus on the last rule which is saying: "Electrons can only gain
and lose energy by jumping from one allowed orbit to another, absorbing or
emitting electromagnetic radiation with a frequency f determined by the en-
ergy difference of the levels according to the Planck relation: ΔE = E2−E1 =
h f , where h is the Planck’s constant". By using this rule he discovered that the
angular momentum L is quantised and is constrained to discrete values by the
by the quantum number n. So, the quantum angular momentum is given by:

L = mur =
hr
λ

=
hr[2πr
n

] = nh
2π

= nh̄. (2.3)

By adding the quantum angular momentum to the expression for magnetic
dipole moment (Eq. 2.2) we get the expression for quantum magnetic moment
which is:

m =− eμ0

2me
nh̄. (2.4)

Only the component of quantum angular momentum can be observed along
a quantisation axis (let’s assume z) on which the field is aligned. Thus, the
expectation value of the quantum magnetic moment is:

〈mz〉=− eμ0

2me
h̄Lz. (2.5)

The above relation is used to define the Bohr magneton which is μB = eh̄/2me.
The value of the Bohr magneton is μB = 0.927×10−23 Am2=1.17×10−29 V
m s, and is very common to use μB as the unit for the magnetic moment instead
of V m s.

14



2.1.1 Classical dipole and external magnetic field
The magnetic dipole moment interacts with an external magnetic field and this
interaction can be observed by the simple experiment of a magnetic needle, as
can be found in a common compass, which is aligned with the earth’s magnetic
field. From this example of the magnetic needle we come to a conclusion that
the magnetic dipole moments are aligned with a uniform external magnetic
field when they under its influence. As we can see in Fig. 2.2 when an external
magnetic field is applied perpendicular to the dipole, two forces are acting at
the edges where the positive (head) and the negative (tail) charges are located
and it starts rotating to the direction of the external field H. Since the initial
position of the magnetic dipole moment is perpendicular to the external mag-
netic field and the final is parallel to it, the energy of the system is E =

∫
F ·dl,

where F is the force and l the distance (see Fig. 2.2). As mentioned in the pre-
vious section the magnetic dipole moment is m = qd and the force is F = qH.
The energy of the system now is given by:

E =

∫
F ·dl = 2q

∫
H ·dl = qdH

∫ 0

π/2
cosφdφ =−m ·H. (2.6)

-

+

d

H

-F

+F

l

l

Figure 2.2. Magnetic dipole moment m in an external magnetic field H.

2.2 Simple magnetic models
Investigating the properties of magnetism by using magnetic models is very
important not only for the magnetism itself but for other branches of science
as well. More specific, in the area of magnetic storage applications, magnetic
models play a crucial role for the improvement of existing materials and the
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investigation for new candidates. By the time of Maxwell’s equations, which
show the connection between different electromagnetic fields, a lot of ques-
tions arisen and by now more and more questions are looking for an answer
since research takes place in nanometer scale and more complex phenomena
are involved. Here is the point where magnetic models have the opportunity
to give very important answers in a simple and effective way.

2.2.1 Ising model
The Ising model is perhaps the simplest of all magnetic models. Here one
takes into only two possible states for each atom: spin-up (↑) and spin-down
(↓) which are treated as classical entities. In fact, many areas of science and
technology are using extensions of this very simple model, not only in physics
but also in chemistry and biology. In the past, it had been observed that in
the absence of external magnetic fields or electric currents, some systems and
by extension some materials exhibit a spontaneous magnetisation. This is a
result of strong interactions between the atoms known as exchange interactions
which were first introduced by Heisenberg and Bloch. The details of these
interactions will be discussed in the following chapters.

Ising model was the first attempt to express the interaction between atoms
in the simplest way and the Hamiltonian of the system is defined as:

H =−1
2 ∑

i�= j
Ji jsis j, (2.7)

where si and s j are the spins on sites i and j respectively, and Ji j is the ex-
change interaction between spins i and j. It should also be pointed out here
that the exchange interaction J is taking place between the nearest neighbours
of the system. As mentioned before, in the Ising model there are only two
states allowed, thus si = ±1. In Fig. 2.3 it is shown the configuration of two
neighbouring spin when J > 0 (ferromagnetic state) and J < 0 (antiferromag-
netic state).

2.2.2 Heisenberg model
The Heisenberg model looks very similar to the previous simple magnetic
model, Ising model. The difference between these two models is that the
spins are here three-dimensional unit vectors (|�S| = 1) which means that they
are allowed to rotate in any direction compared to the Ising model in which
only two states are allowed. The Heisenberg model is defined in terms of the
Heisenberg Hamiltonian which is:

H =−1
2 ∑

i�= j
Ji j�Si · �S j, (2.8)
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J>0

J<0

Figure 2.3. Configuration of spins under ferromagnetic (J > 0) and antiferromagnetic
exchange (J < 0).

where �Si is the spin unit vector on site i and Ji j is the interaction between
the i-th and j-th site. Usually the interaction between nearest neighbours is
enough to describe most of the systems. This choice is valid because this
interaction is related to the overlap of wavefunctions and as the distance is
increased the value of J is decreasing rapidly and it can be neglected for second
and third nearest neighbours. On the other hand, in some cases more long
ranged interactions are needed to describe the material properly, where the
second and the third neighbour interaction is important.

The interaction is between nearest neighbours only due to the fact that is
related to the overlap of wavefunctions and as the distance is increased the
value of J is decreasing rapidly and it can be neglected for second and third
nearest neighbours.

2.2.3 Extended Heisenberg model
The simple Heisenberg Hamiltonian can be used in various cases to describe
the magnetic properties of systems and materials, but sometimes only the
Heisenberg exchange interaction is not enough to describe the system. For
instance, in a system with a strong spin-orbit coupling, the magnetization is
influenced and it cannot be described by only the Heisenberg exchange. The
spin-orbit coupling results in the magnetocrystalline anisotropy and the anti-
symmetric Dzyaloshinskii-Moriya interaction [21, 22] which gives a chiral
magnetic configuration as a ground state.
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According to the previous examples, is necessary to add more terms in the
Heisenberg Hamiltonian to describe more complex systems. This Hamiltonian
is called the extended Heisenberg Hamiltonian and is given by:

H =−1
2 ∑

i�= j
Ji j�Si · �S j− 1

2 ∑
i�= j

Di j�Si× �S j +K ∑
i
(�Si · ê)2−∑

i
B ·�Si, (2.9)

where Di j is the antisymmetric exchange interaction, the so-called Dzyaloshinskii-
Moriya interaction [21, 22], K is the constant of uniaxial anisotropy where the
magnetic easy axis is oriented along ê and B is the external magnetic field.

2.3 Magnetic ordering
All materials can be classified into two main categories depending on their
magnetic properties: those which exhibit spontaneous magnetisation and those
which do not. The materials which carry permanent magnetic moments, can
be further categorised to the ones which result in a long-ranged order of the
magnetic moments and the ones which do not have any order. A final classi-
fication of the magnetic materials is coming from the preferable configuration
of their magnetic moments and this is called magnetic ordering of the material.

Ferromagnetic Anti-ferromagnetic 

Ferrimagnetic Paramagnetic 

Figure 2.4. The main classification of the materials with spontaneous magnetisation.
There are four cases according to their configuration: ferromagnetic (upper left panel),
anti-ferromagnetic (upper right panel), ferrimagnetic (lower left panel) and paramag-
netic (lower right panel).

There are four main types of magnetic ordering as illustrated in Fig. 2.4
which can be easily described by the simple Heisenberg model. The main
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types of magnetic ordering are: the ferromagnetic, anti-ferromagnetic, ferri-
magnetic and paramagnetic. The paramagnetic materials, despite the fact that
they have magnetic moments, do not result in any long-range order without
the presence of an external magnetic field. The exchange interaction J of
those materials is very weak with respect to thermal energy. The moments are
oriented in a random direction and as a consequence, there is no net magnetic
moment. On the other hand, the strength of exchange interaction J in fer-
romagnetic materials is big enough and their magnetic moments are aligned
parallel below a critical temperature. Some materials exhibit a long-range or-
der but the total net magnetisation is zero and they called anti-ferromagnets.
In anti-ferromagnets, there is a strong exchange interaction like in ferromag-
nets, and the only difference is the sign of J which in this case is negative.
The negative J forces the magnetic moments to be aligned antiparallel and the
system is considered to consist of two opposite sublattices which explains the
zero net magnetisation. A similar case to anti-ferromagnets is the ferrimag-
netics, where again the exchange interaction is negative but the two opposite
sublattices have different net magnetic moments which results in performing
a small net magnetisation and not zero as in the previous case.

The magnetic ordering of the ferrimagnets, anti-ferromagnets and ferro-
magnets as presented in Fig. 2.4, is valid up to a critical temperature Tc which
is known as Curie temperature for the ferrimagnets and ferromagnets and Neel
temperature for anti-ferromagnets. For example, a ferromagnet at T = 0 the
total magnetisation along the aligned axis is maximum and as the temperature
is increased in the system, the value of the magnetisation in decreasing. As
the critical temperature is approached by keep increasing the temperature the
magnetisation drops to zero and the system behaves like a normal paramagnet.

2.4 Non-collinear magnetism
As mentioned in the previous section, in collinear magnets (ferromagnets,
anti-ferromagnets and ferrimagnets) the magnetic moments are pointing along
a common magnetisation axis which usually is the z−axis for convenience.
For ferromagnets the magnetic moments of the whole lattice are oriented on
+z−axis, for anti-ferromagnets are oriented alternatively on ±z−axis and the
same for ferrimagnets with the difference that in −z direction the length of
the magnetic moment is smaller. However, there are plenty magnetic struc-
tures which do not belong in the category of collinear magnets and they are
called non-collinear magnetic structures. In these structures, the direction of
the magnetic moments is not along the same axis (e.g. z−axis) but it changes
from site to site in the lattice. Even though that they have not been used much
in applications, non-collinear magnets have been known for more than half a
century [23, 24].
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Non-collinear magnetism can be found in a variety of materials and usu-
ally in systems with frustrated anti-ferromagnetic interaction (e.g. triangular
lattices), in systems with different exchange interactions between neighbours
(e.g. fcc Fe) and in systems where different types of exchange interactions are
competing each other (e.g. domain walls, skyrmions).

rotational
    axis

q

a

Figure 2.5. Schematic representation of one-dimensional spin-spiral configuration
with a wavelength period λ , nearest neighbours distance a and out of plane rotational
axis.

Chiral magnets (or spin spirals) belong to the general class of non-collinear
magnets and their non-collinearity occurs from the broken inversion symmetry
in the unit cell which in turn gives rise to the Dzyaloshinskii-Moriya interac-
tion. A spin spiral is a periodic structure as can be seen from Fig. 2.5 where λ
is the period. The magnetic moments are rotating around an axis who is fixed
and is called rotation axis. In the case of Fig. 2.5 is out of plane. The spin
spiral vector q is showing the direction of the spiral propagation and its length
depends on the wavelength period λ . The units of the propagation vector q

are given in 2π/a, where a is the distance between the neighbouring magnetic
moments (see Fig. 2.5). A spin spiral is given in cartesian coordinates [25],

m(r) = m(r)[cosφsinθ ,sinφsinθ ,cosθ ]. (2.10)

The angle φ is defined as φ = q ·R, where q is the propagation vector of the
spin spiral and R is the lattice vector. θ is the azimuthal angle between m

and the rotational axis. In our example of the one-dimensional spin spiral, the
angle θ is equal to π/2 which means that the rotational plane of the magnetic
moments is perpendicular to the rotational axis.

2.5 Landau-Lifshitz-Gilbert equation
The ground state properties of a magnetic system can be calculated by the ex-
tended Heisenberg Hamiltonian, but what happens when someone is interested
to investigate the dynamics of a system? Then an equation of motion needs to
be obtained in order to observe the dynamical behaviour of a magnetic system.
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We will start from the simplest case where the magnetisation M is under
the influence of an external magnetic field B. We have to mention here that
the total field which is acting on the magnetisation is not exclusively coming
from the external field but also from different interactions taking place in the
material. If we want to be more precise, in the equation of motion an effective
field Be f f should be included rather than just the external field B. The effective
field is described by Be f f =−∂H /∂M. H is the Hamiltonian of the system.
The effective field now, exerts a torque and forces the magnetic moment to
precess around the direction of the field (see left panel of Fig. 2.6):

dM

dt
=−γM×Be f f , (2.11)

where γ is the gyromagnetic ratio.
From the equation (2.6) is given that the energy of the system is minimized

if the magnetic moments are aligned with the effective field. According to the
equation (4.8), the energy will not change since the motion of the moment is
perpendicular to the field. Due to energy dissipation from the system an extra
term is needed in order to damp the motion of M and eventually be aligned
with the field (see right panel of Fig. 2.6). After adding this damping term,
equation (4.8) becomes:

dM

dt
=−γM×Be f f − γ

λ
Ms

M× (M×Be f f ), (2.12)

where Ms is the saturation magnetisation of the investigated system and λ is
the damping term which is expressing the dissipative energy. The equation
(2.12) is the famous Landau-Lifshitz (LL) equation [13], which describes the
damped motion of magnetic moment under the influence of a field.

Later, Gilbert modified the Landau-Lifshitz equation of motion and intro-
duced another form of the same equation where the time derivative of mag-
netisation is inserted in the right hand side of equation (2.12) and this new
equation of motion is called Landau-Lifshitz-Gilbert (LLG) equation of mo-
tion [14]:

dM

dt
=− γ

1+α2 M×Be f f +
α
Ms

M× dM

dt
, (2.13)

where α is the Gilbert damping. Both LL and LLG equations are giving the
same results in the case of very small damping (α � 1), nevertheless larger
values of damping are described more realistic by the LLG equation and this
is one reason that it is used more often.
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B B

M M

Figure 2.6. Schematic representation of magnetic moment under the influence of mag-
netic field only with the precession (left panel) and both precession and damping (right
panel). The green arrow indicates the precession and blue the damping.
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3. Density functional theory (DFT)

For the improvement of technology, the discovery of new materials is needed
which is not an easy task and a deeper understanding of several phenomena
is necessary. As we are scaling down in size the use of quantum mechanics
for the study of these materials becomes unidirectional. Electronic proper-
ties of solids are crucial for the prediction of their behaviour but the calcu-
lation of these properties is rather complicated since the atomic nuclei and
the electrons compose a very difficult many-body problem which is impossi-
ble to be solved analytically for many-electron systems. A very good method
for solving this problem is the density functional theory (DFT) which is a first-
principle method and reduces the many-body problem into finding the electron
density n(r), which is the key variable. To accomplish that, the DFT starts by
adopting the Born-Oppenheimer approximation [26], which neglects the mo-
tion of the nuclei and they considered to be frozen. The interaction between
the nuclei and the electrons is replaced by an effective potential. DFT is a
very powerful tool since it is very accurate and the properties of the solids
can be calculated by the knowledge of atomic number and the structure of the
elements.

3.1 The many body problem
The main problem for the description of material properties is the treatment of
interactions taking place between many particles, like many-electron atoms,
molecules and bulk materials. Actually is impossible to solve analytically the
quantum equations and various approximations are needed.

All the solid state systems consist of nuclei and electrons which all inter-
act via the Coulomb force. The many-body Hamiltonian describing all the
interactions of such systems is given by:

H = T̂n + T̂e +V̂nn +V̂ee +V̂ne, (3.1)
where T̂n and T̂e are the kinetic energies of the nuclei and the electrons re-
spectively, while V̂nn, V̂ee and V̂ne are the Coulomb interactions between the
electrons, the nuclei and the electrons with the nuclei repsectively. By substi-
tuting these terms in the Hamiltonian it can be written as:

H =− h̄2

2Mi
∑

i
∇2

i −
h̄2

2m ∑
k

∇2
k +

1
2 ∑

i�= j

ZiZ je2

|RiR j| +
1
2 ∑

l �=k

e2

|rk− rl | −∑
k,i

Zie2

|rk−Ri|
(3.2)
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where M is the nuclei mass, m is the electron mass, R the coordinates of the
nucleus, r coordinates of electrons and Z the atomic number. As previously
mentioned, with the Bohr-Oppenheimer approximation, the nuclei of the sys-
tem are treated as being stationary because of their big mass compare to the
electrons mass (M � m). Considering this approximation the first and the
third term of the Hamiltonian can be neglected and the Coulomb interaction
between the nuclei and the electrons is represented by an external potential V̂ext
which is interacting with the electrons of the system. After this approximation,
the Hamiltonian reads:

H =− h̄2

2m ∑
k

∇2
k +

1
2 ∑

l �=k

e2

|rk− rl | +V̂ext . (3.3)

3.2 Density Functional Theory
The basic idea under the DFT is to use the electron density instead of the
electron wavefunction and the first theoretical step for the DFT was given by
Hohenberg and Kohn [27]. In the work of Hohenberg and Kohn two theorems
are proven which state:

Theorem I: For any system of interacting particles in an external potential
Vext(r), the density is uniquely determined.

Theorem II: A universal functional for the energy E[n] can be defined in
terms of the density. The exact ground state is the global minimum value of
this functional.

According to the above theorems the energy functional can be written as:

E[n(r)] = F [n(r)]+
∫

Vext(r)n(r)d3r, (3.4)

where the functional F [n(r)] is independent from Vext(r) and includes the ki-
netic energy and the interaction between electrons.

3.3 Kohn-Sham equations
Kohn and Sham have been shown an ansatz [28] in which they simplify the
many-body problem to an effective non-interacting single particle problem by
using the same ground state electron density n0(r). The Schrödinger equation
—from here is called Kohn-Sham equation— with this approach becomes:

(
− h̄2

2m
∇2 +Ve f f (r)

)
ψi(r) = εiψi(r) (3.5)

24



where εi are the Khon-Sham eigenvalues, ψi are the Kohn-Sham orbitals and
Ve f f (r) is the effective potential:

Ve f f (r) =Vext(r)+
∫

d3r′
2n(r)
|r− r′| +Vxc(r). (3.6)

Vext(r) is the potential generated by the nuclei, the second term is the electron-
electron interaction and Vxc(r) is the exchange-correlation potential which in-
cludes all the many-body effects. The relation between the ground state elec-
tron density and the wavefunctions which are solutions of equation (3.5) is

n(r) =
N

∑
i=1
|ψi(r)|2, (3.7)

N is the number of the eigenstates. To complete the simplification of many-
body problem a last challenge remains, to approximate the Vxc(r) in order to
make DFT accurate. In the following section we will briefly mention the two
main approximations for the exchange-correlation potential.

3.4 Local and non-local density approximations
In order to use the Kohn-Sham approach to find the ground properties of the
system we investigate, an approximation for finding the exchange-correlation
potential Vxc(r) is needed. The most common is the so-called local density
approximation (LDA) [29, 30] which assumes that the exchange-correlation
potential is the one of a homogeneous electron gas and it depends on the charge
density at each point in space. LDA is very successful in systems where a
smooth variation of n(r) is present but surprisingly it works very well also for
systems with inhomogeneous electron density.

Despite the fact that LDA is very successful, an improved approach was
necessary to describe systems where the LDA is failing. The improved ap-
proach is called Generalised Gradient Approximation (GGA) [31] which is
taking into account not only the homogeneous electron density but also its
local gradient (∇n). By using the GGA, the ionization and binding energies
are improved. Both of the previous approaches fail to describe the ground
state properties of strongly correlated systems and some other corrections are
required such as LDA+U [32, 33] and dynamical mean field theory (DMFT)
[33, 34] which improve the band gaps in insulators [35].

3.5 Spin polarised systems
The Kohn-Sham equations as introduced above are not able to describe mag-
netic systems since they are not taking into consideration the spin degree of
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freedom. However, an extension of LDA introduced by von Barth and Hedin
[36] gives the opportunity to handle spin polarised densities within DFT. This
approach is known as local spin density approximation (LSDA).

In order to introduce the spin into the Kohn-Sham equations, a spin depen-
dent exchange-correlation potential is needed. To achieve that, the electron
density n(r) has to be replaced by the generalised density matrix p(r):

p(r) =
n(r)

2
l+

m(r)

2
σ , (3.8)

where l is the 2× 2 unit matrix, m(r) is the magnetisation density and σ =
(σx,σy,σz) are the Pauli matrices. The wavefunctions now are in the form of
spinors

ψi(r) =

(
αi(r)
βi(r)

)
. (3.9)

The spin projections are represented by αi(r) and βi(r) and the density matrix
becomes

p(r) =
N

∑
i=1

( |αi(r)|2 αi(r)βi(r)
∗

αi(r)
∗βi(r) |βi(r)|2

)
. (3.10)

By the use of density matrix, one can describe the electron and magnetisation
density:

n(r) = Tr[p(r)] =
N

∑
i=1
|ψi(r)|2 (3.11)

m(r) =
N

∑
i=1

ψi(r)
†σ(r)ψi(r). (3.12)

N is the number of states in the system. Similar to the electronic density
expansion to 2× 2 matrix, the Hamiltonian has to be expanded as well to a
matrix in order to express the spin dependent part. This means that kinetic
energy and effective potential are written in form of spinors by generalising
first the Kohn-Sham equation:

2

∑
β=1

[
−δαβ ∇2 +V αβ

e f f (r)
]

ψiβ (r) = εiδαβ ψiβ (r). (3.13)

The Hamiltonian of the system can be separated to a magnetic and non-magnetic,
which is written as follows:

H =
2

∑
β=1

[
−∇2δαβ +V αβ

0 (r)+(Be f f (r) ·σ)
]
, (3.14)
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where V αβ
0 (r) is the non-magnetic potential and Be f f (r) ·σ is the magnetic

one.

3.6 Relativistic electrons
Spin and orbital angular momentum of electrons are the origins of magnetism
in solids. In the non-relativistic Schrödinger equation only the spin angu-
lar momentum is taken into account and then, Dirac proposed an equation
in which beside the magnetic part (spin angular momentum) is taking into
account relativistic effects [37] as well. In the relativistic density functional
theory (RDFT), the ground state energy of the system (E ′) is a functional of
the four component current, jμ(r) and it can be written:

E ′[ jμ ] = Ts[ jμ ]+Eext [ jμ ]+EH [ jμ ]+Exc[ jμ ], (3.15)

where Ts[ jμ ] is the kinetic energy of the system, Eext [ jμ ] is the external poten-
tial energy, EH [ jμ ] is the Hartree energy and Exc[ jμ ] is the exchange-correlation
energy.

The Dirac equation is expressed as:

E ′Ψ = HDΨ (3.16)

and the Hamiltonian is given by:

HD =−eV (r)+βmc2 +α · (cp+ eA(r)) . (3.17)

In the above Hamiltonian, c is the speed of light in the vacuum, p is the mo-
mentum operator, m is the mass of the electron, V is the external scalar poten-
tial and A(r) is a vector potential. α is a 4×4 matrix and is equal to:

αi =

(
0 σi
σi 0

)
(3.18)

where σi are the Pauli matrices. β is also a 4×4 matrix:

β =

(
1 0
0 −1

)
(3.19)

and the unit entries of β are 2×2 matrices.
The wavefunction Ψ, is a four component wave function and it can be writ-

ten as a two-vector, large and small components ψ and χ . For these two
components we end up in the equations:

(
E ′ −mc2 + eV (r)

)
ψ = σ · (cp+ eA(r))χ (3.20)(

E ′+mc2 + eV (r)
)

χ = σ · (cp+ eA(r))ψ (3.21)
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where E ′ is the energy of eq. (3.16). By making an approximation for χ and
then insert it in (3.20) it gives the following:

[E + eV (r)− 1
2m

(
p(r)+

e
c

A(r)
)2

+
1

2mc2 (E + eV (r))2

+i
eh̄

(2mc)2 E(r) ·p− eh̄
(2mc)2 σ · (E(r)×p)− eh̄

2mc
σ ·B(r)]ψ = 0.

(3.22)

Here, the electric field E is the gradient of the potential V , the magnetic field
B is the curl of A and E = E ′ −mc2. The first three terms represent the non-
relativistic Hamiltonian, the fourth is the correction to the kinetic energy and
the fifth is the Darwin term. The two later terms do not include spin matrices
and they are called scalar relativistic terms. The two last terms of eq. (3.22)
describe the interaction of spins with the magnetic field and more specific the
last one is the Zeeman term.

The sixth term of the above equation is the spin-orbit interaction and if we
consider a spherically symetric potential, V (r), this term can be rewritten as:

σ ·(E(r)×p)=σ ·(∇V (r)×p)=
1
r

dV (r)
dr

σ ·(r×p)=
1
r

dV (r)
dr

(σ ·L )= ξ σ ·L ,

(3.23)
where where ξ is the spin-orbit coupling constant and L is the orbital an-
gular momentum. In transition metal compounds, since the spin-orbit cou-
pling constant is much smaller than the band energy, the spin-orbit coupling
term is introduced as a perturbation. The relativistic description of the DFT
gives the opportunity to describe phenomena which cannot be done by the
non-relativistic DFT such as Dzyaloshinskii-Moriya interaction and magneto-
crystalline anisotropy.

3.7 Korringa-Kohn-Rostoker approach
The Korringa-Kohn-Rostoker method (KKR) is a multiple-scattering method
for the calculation of material’s electronic structure. It was introduced by
Korringa in 1947 [15] and by Kohn and Rostoker in 1954 [16]. Within this
method, the solutions of Kohn-Sham equations (3.5) are based on green’s
function G(E,r,r′). The first step in this approach is to obtain the scatter-
ing properties of each atom and afterwards the multiple-scattering of all atoms
is determined. In order to fullfill the second step, the sum of the outgoing
waves from each atom is equal to the incident wave. The potential around the
atoms is considered spherical within the Wigner-Seitz cell, in other words the
atomic sphere approximation (ASA) is used.

The Green’s function is defined as:
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(E−H )G(E,r,r′) = δ (r− r′), (3.24)

where H is the Hamiltonian and E is the energy. The relation between the
unperturbed Green’s function G0(E), which is used for the free electron, and
the perturbed Green’s function G(E) is given by the use of Dyson equation. If
the solution of eq. (3.24) is G0 for the unperturbed H0, the Green’s function
G for the perturbed system H = H0 +ΔV is written as:

G(E) = G0(E)+G0(E)ΔV G(E)
= G0(E)+G0(E)T G0(E),

(3.25)

where T is the T−operator and is related to the perturbation ΔV by T G0(E) =
ΔV G(E). The T−operator, is taking into account all the scattering properties
of the entire system:

T (E) = ∑
i j

τi j(E), (3.26)

where

τi j(E) = ti(E)δi j + ti(E)∑
k �=i

Gik
0 (E)τk j(E). (3.27)

The scattering path operator τi j transfers a wave at site i to a wave at site j
and takes into account all the possible paths. The τ-matrix can be rewritten as:

τ =
(
t−1−G0

)−1
, (3.28)

which is the fundamental equation of multiple scattering theory.

3.8 Calculation of exchange interactions
From ab-initio calculations it is possible to estimate the exchange interaction
Ji j between two magnetic atoms and use it in our Hamiltonian. There are two
methods of calculating the exchange interaction, one is the frozen magnon
approximation [38, 39] and the other one is the real space method by using the
Liechtenstein-Katsnelson-Antropov-Gubanov (LKAG) formula [17, 18] based
on the multiple scattering theory (MST). The later is the approach which is
used in the KKR method [40] and extract the parameters we need. In the
later approach, the Ji j parameter is obtained from a small angle perturbations
from the reference state which usually is ferromagnetic and the differences in
energy are calculated by using the local force theorem:
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Ji j =− 1
π

ℑ
∫ εF

−∞
TrL

{
(t−1

i↑ − t−1
i↓ )τi j(t−1

j↑ − t−1
j↓ )τ ji

}
dε

=
1
π

ℑ
∫ εF

−∞
Tr

{[
n̂i · σ̂ , t−1

i
]

τi j

[
n̂ j · σ̂ , t−1

j

]
τ ji

}
dε.

(3.29)

In the above equation, εF is the Fermi energy, τi j is the scattering path operator,
t is the perturbed single-site scattering matrix. Since Eq. (3.29) is obtained for
a small angle deviation around the rotational axis n̂i from the reference state,
it means that is more accurate for small values of temperature than tempera-
tures close to Curie temperature where the angles are larger and make LKAG
formula less accurate. We have to note here that in the non-relativistic fer-
romagnetic case the rotational axis n̂i is the ŷ. It is worth mentioning here
that the approach discussed before, about calculating the exchange parameter,
does not make any assumptions about the nature of the exchange if it is a direct
exchange, RKKY or super-exchange.

Collinear magnetic materials and in some cases non-collinear order (e.g.
systems with frustration in exchange interaction J) are understood well within
the Heisenberg model but on the other hand materials with non-collinear mag-
netic ordering due to broken inversion symmetry cannot be defined by the
same model. To describe the later magnetic systems a new term has to be
added in the magnetic Hamiltonian and this was first introduced by Dzyaloshin-
skii [21] and Moriya [22] who proposed that this interaction comes from the
symmetry of the lattice where some symmetry rules have to be fulfilled. This
new term is called Dzyaloshinskii-Moriya interaction and enters in the Hamil-
tonian as:

HDM =−1
2 ∑

i, j
Di j · m̂i× m̂ j (3.30)

where Di j is the DM vector and m̂ is the unit vector of the magnetic moment.
In order to calculate DM interaction from ab-initio calculations, a general-

isation of the LKAG formula is necessary. As mentioned before the LKAG
formula is non-relativistic and the origin of DM interaction is the spin-orbit
coupling which has to be introduced in LKAG formalism and end up with a
relativistic expression. A technique developed by Udvardi et al [41] made pos-
sible to map the generalised exchange interaction in the Hamiltonian and Ebert
and Mankovsky [42] developed an alternative method for the general expres-
sion of exchange coupling. In the last case the general form of the exchange
coupling is:

Hex =−1
2 ∑

i, j
m̂iJi j

m̂ j, (3.31)
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where J
i j
= Ji j1 + Si j + Ai j is the exchange coupling tensor. The trace of

the tensor is the scalar Heisenberg exchange Ji j as introduced before and the
antisymmetric part Ai j of this tensor is the DM interaction. The difference
between these two interactions is that the first one there is only one axis of
rotation and in the case of DM interaction there are two (n̂1 and n̂2). The
expression of the exchange coupling is given from:

J
aia j
i j =

1
π

ℑ
∫ εF

−∞
Tr

{[
n̂ai

i ·J, t−1
i

]
τi j

[
n̂

a j
j ·J, t−1

j

]
τ ji

}
dε. (3.32)

J is the total angular momentum and a = 1,2 specifies the rotation axis.
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4. Atomistic spin dynamics

Micromagnetism uses the LLG equation (Eq. 2.13) which has been introduced
earlier to study the magnetisation dynamics in micrometers scale in order to
understand the magnetization dynamics. This approach is very successful but
it suffers from some limitations. The main limitation is that the ground state
properties from first-principles calculations can be directly mapped into the
micromagnetic Hamiltonian. Another limitation of this method is the incapa-
bility of capturing rapidly fluctuations of magnetic textures in space. Atom-
istic spin dynamics approach tries to fill the gap and connect the electronic
structure of the material with the dynamical response of the magnetization
[43]. Thus, the atomistic spin dynamics approach provides us with the possi-
bility to study the dynamics with different chemical compositions and complex
magnetic ordering.

4.1 Atomistic equations of motion
In the previous chapter, the spin polarised Kohn-Sham equations were intro-
duced in order to describe magnetic systems. However, those equations de-
scribe time-independent systems and in order to allow for a description of the
dynamics of the magnetic systems, time should be included in the equation.
By neglecting the spin-orbit coupling the time-dependent Kohn-Sham Hamil-
tonian becomes [43]:

H KS
αβ =

2

∑
β=1

[−∇2δαβ +V0(r, t)δαβ +(σ ·Be f f (r, t))αβ
]
. (4.1)

The first term of the Hamiltonian is the kinetic term, the second term is the
non-magnetic part of the potential and the third term the magnetic part of the
potential.

The time-dependent charge and spin density are defined as n(r, t) =ψ†(r, t)
ψ(r, t) and s(r, t) = ψ†(r, t)Ŝψ(r, t) respectively where Ŝ is the spin operator.
Now, the Schrödinger KS equation can be written as:

i
∂ψ(r, t)

∂ t
= H KSψ(r, t) (4.2)

and

32



− i
∂ψ†(r, t)

∂ t
=
[
H KSψ(r, t)

]†
. (4.3)

By using the charge density as defined above, we are able to express straight-
forwardly the time evolution of it:

∂n(r, t)
∂ t

=
∂
∂ t

[ψ†(r, t)ψ(r, t)]

= ψ†(r, t)
∂ψ(r, t)

∂ t
+

∂ψ†(r, t)
∂ t

ψ(r, t)

=
1
i
[ψ†(r, t)H KSψ(r, t)− [H KSψ(r, t)]†ψ(r, t)]

=
1
i
∇ · [[∇ψ†(r, t)]ψ(r, t)−ψ†(r, t)∇ψ(r, t)

]
=−∇ ·QKS

n ,

(4.4)

where QKS
n is the charge current density and is defined as:

QKS
n =

1
i

[
ψ†(r, t)[∇ψ(r, t)]− [∇ψ†(r, t)]ψ(r, t)

]
. (4.5)

Similar to the time evolution of charge density we can calculate the time
evolution of spin density s(r, t) = ψ†(r, t)Ŝψ(r, t) as well.

∂ s(r, t)
∂ t

=
∂
∂ t

[ψ†(r, t)Ŝψ(r, t)]

= ψ†(r, t)Ŝ
∂ψ(r, t)

∂ t
+

∂ψ†(r, t)
∂ t

Ŝψ(r, t)

=
1
i
[ψ†(r, t)ŜH KSψ(r, t)− [H KSψ(r, t)]†Ŝψ(r, t)]

=
1
2i

[
[Ŝ∇ψ†(r, t)]ψ(r, t)−ψ†(r, t)Ŝ∇ψ(r, t)

]− γs×Be f f

=−∇ ·QKS
s − γs×Be f f ,

(4.6)

where Be f f is the magnetic part of the KS equation and QKS
s is the spin current

density which is defined as:

QKS
s =

1
2i

[
[Ŝ∇ψ†(r, t)]ψ(r, t)−ψ†(r, t)Ŝ∇ψ(r, t)

]
, (4.7)

and the term ∇ ·QKS
s defines the spin current process in the magnetic system.

To solve the time dependent KS equation is rather complicated, but by us-
ing some approaches the equation can be separated and keep the part of main
interest. The first step is to use the adiabatic approximation. As introduced
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earlier in Chapter 3, the most famous adiabatic approximation is the Bohr-
Oppenheimer approximation where the ions are considered as slow variables
because of their big mass and on the other hand the electrons are considered
fast variables because of their small mass. Similar to the previous example, the
adiabatic approximation allows us to separate the equation of motion atomic
spins and the equation of motion of electrons, where the first one is the slower
variable and the second one the faster. In our case the separation is not made
possible because of the difference in masses, like Bohr-Oppenheimer approx-
imation, but due to their difference in energy. The excitation energies of the
direction of magnetisation are of the order of meV and the energies of elec-
tronic structure are of the order of eV. This approach allows us to put aside the
time evolution of charge density which then is represented as a potential for
the effective magnetic field that will perform a torque on the magnetisation.
Thus, our interest is focused on the equation (4.6) which contains two terms:
the first one is the contribution of spin currents in the equation of motion of
spins, and the second one is the precession of spins under the influence of
an effective field. However, the contribution of spin current is neglected in
atomic moment approximation which postulates very small fluctuations of the
atomic moment length [44]. The spin current term attracts the attention when
one tries to describe the very important effect of spin transfer torque (STT)
[8, 7, 45] which will be described later in this chapter.

After the adiabatic approximation discussed above, a second simplification
is introduced, the so-called atomic moment approximation (AMA). By using
the atomic moment approximation, space is separated into spheres where each
sphere is located on a magnetic atom. If the spin density of magnetic atom on
site i is integrated over this sphere, then the total spin is related to the atomic
magnetic moment and we can do the replacement s(r, t)→mi(t) [44].

By neglecting the spin current and using the atomic moment approximation
from equation (4.6) we end up in:

dmi

dt
=−γmi×Bi

e f f (r, t). (4.8)

The above equation of motion, which comes from the time-dependent Kohn-
Sham equation, has the same form of the precessional motion as in the widely
used LLG equation of motion.

The equation (4.8) would be valid in an ideal case where the spin system is
completely isolated and it doesn’t exchange any energy with the lattice or the
environment. Of course, this is not true and the atomic magnetic moment can
relax by dissipating energy and angular momentum to the surrounding, and on
top of that the moments respond to changes in applied external fields. Thus,
the mechanism which describes the dissipation of the energy and angular mo-
mentum and resulting in a damped motion of atomic magnetic moment can be
expressed by an additional term as introduced by Gilbert. By introducing the
damping term the equation (4.8) in LL form becomes:
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dmi

dt
=− γ

1+α2 mi×Bi
e f f (r, t)−

γα
(1+α2)m

mi× (mi×Bi
e f f (r, t)), (4.9)

where α is the damping coefficient, mi is the atomic magnetic moment on
site i and Bi

e f f is the effective field acting on the magnetic moment.

4.2 Langevin dynamics
In the previous section, the precession and the damping term of the LLG equa-
tion for atomic magnetic moments have been shown (Eq. 4.9). This equation
can now be used to combine the description of the magnetization dynamics
with results from first principles calculations. The derivation in the previous
section was done by considering zero temperature but the behaviour of mag-
netic systems at finite temperature is of course of great interest. Thus, temper-
ature effects should also be included in the equation of motion. In this work
we use Langevin dynamics which is used to simulate the temperature effects
as a stochastic field [46] which exerts a stochastic torque on the atomic mo-
ment apart from precession and damping torque. By redefining the effective
field of the equation of motion we are able to include the stochastic field:

Bi
e f f = Bi

e f f +b(t), (4.10)

where b(t) is the stochastic field.
The stochastic fields are fluctuating fields with a Gaussian distribution which

is modelled as white noise. In principle, with the choice of white noise the
stochastic fields are uncorrelated in time and in each of the directions. This is
expressed by satisfying the following criteria:

〈b(t)〉= 0 (4.11)

〈
bi(t)b j(t ′)

〉
= 2Dδi jδ (t− t ′) (4.12)

D =
α

(1+α2)

kBT
μBm

. (4.13)

The first of the criteria shows that the time average of the stochastic field is
zero. In second criterion (Eq. 4.12), the Dirac delta (δ (t− t ′)) denotes that the
stochastic field is uncorrelated in time, while the Kronecker delta (δi j where
i = {x,y,z}) express that is uncorrelated in space. D is the strength of the
stochastic field which is related to the temperature T as we can see from equa-
tion (4.13) [47]. The fluctuation strength (D) and the relaxation are corre-
lated to each other and it comes from the main statement of the fluctuation-
dissipation theorem [48, 49].
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By adding the stochastic field to equation (4.9) we arrive at a stochastic
Landau-Lifshitz-Gilbert (SLLG) equation:

dmi

dt
=− γ

1+α2

[(
mi× (Bi

e f f +bi(t))
)
+

α
m

mi×
(
mi× (Bi

e f f +bi(t))
)]

,

(4.14)
where the stochastic field is both included in the precession term and the damp-
ing term.

4.3 Current driven magnetisation dynamics
It has been found that the magnetisation dynamics of a system is influenced
by the presence of spin polarised currents. The description of this effect was
first predicted from Berger [8, 19, 20] and followed by Slonczewski [7] who
showed that is possible to reverse the magnetisation in a magnetic multilayered
system by a spin polarised current. This phenomena is called spin transfer
torque (STT) and arises from the exchange of angular momentum between the
electron of the current and the magnetic moments. This discovery has opened
up a new discussion about innovational device applications such as magnetic
random access memory (MRAM) or high density recording media [9]. The
main advantage over using external fields in switching magnetisation is the
reduced power electrical consumption.

If a spin polarised current is flowing in the magnetic material and the spins
of the electrons are aligned with the local magnetisation there is no exchange
of angular momentum and the electrons travel unperturbed. On the other hand,
if there is a smooth variation of the magnetization, the spins of the electron cur-
rent and the local magnetic moments will try to align and a transfer of angular
momentum takes place. Because of the exchange interaction, a rotation of the
magnetic moment occurs and the magnetic texture with the spatial variation
starts moving. Thus, another condition for rotating the magnetic moment is
the number of injected spins in the magnetic system, in other words, if the
spin current is low then the magnetic moment stays unperturbed but if it is
high then results in the rotation.

In order to map the STT effect in atomistic magnetisation dynamics, addi-
tional terms need to be introduced to the SLLG equation of motion (Eq. 4.14).
Since the spin transfer torque needs a smooth variation of magnetisation to
act, the additional terms should depend on the gradient of the magnetisation
and the SLLG equation takes the form [50]:
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Figure 4.1. Schematic representation of the influence of spin transfer torque on mag-
netic switching.

dmi

dt
=− γ

1+α2

[(
mi× (Bi

e f f +bi(t))
)
+

α
m

mi×
(
mi× (Bi

e f f +bi(t))
)]

+
1+βα
1+α2

u

m2
i
· (mi× [mi×∇mi])− α−β

1+α2
u

mi
· [mi×∇mi].

(4.15)

Two new parameters are entering the above equation of motion: the non-
adiabatic parameter β [51, 52] which describes the the violation of spin con-
servation during the spin-transfer process and the velocity term u which is in
units of velocity. The velocity term is expressed as:

u =
jePgμB

2eMs
, (4.16)

where je is the current density, P the polarisation, Ms the saturation magneti-
sation of the magnetic system, g the Landé factor, e the electronic charge and
μB the Bohr magneton.

4.4 Spin-Hall effect
As mentioned above, one way of manipulating spin textures is by means of
spin polarised currents which as mentioned earlier can be important for spin-
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tronic applications. An alternative way for manipulating the same spin textures
has recently arisen, which is based on current induced spin-orbit (SO) torques
through the spin Hall effect (SHE) [53]. These phenomena have been shown
to be present in a magnetic layer deposited on a non-magnetic conductive layer
that exhibits a strong spin-orbit coupling [54]. The influence of SHE on the
manipulation of spin textures have been demonstrated by recent experiments
[55, 56] of magnetic films on a heavy metal substrate, where the dynamics
could not be explained by only the traditional spin transfer torque.

Since an increasing number of materials with large values of spin Hall angle
are reported [57, 58, 59], these spin currents which are connected to the SHE
are becoming very important and they increase the efficiency of transport phe-
nomena. So as to express this notable effect, an additional torque is required
in the above SLLG equation of motion (4.15) and it is given by [60]:

τSHE =−γ
h̄aSHE | je|

2eMst f

[
m̂× (

ĵe× ẑ
)× m̂

]
, (4.17)

where γ is the gyromagnetic ratio, aSHE is the spin Hall angle, | je| is the value
of the current density, Ms the saturation magnetisation and t f the thickness of
the ferromagnetic layer. The direction of the torque is given by [m̂× ( ĵe×
ẑ)× m̂], where m̂, ĵe and ẑ are the unit vector of the local magnetisation, the
direction of the polarised current and the out-of-plane direction, respectively.
The effect of both STT and SHE are studied in paper VI for domain walls as
well as for skyrmions in a combination of model systems and material specific
calculations.

4.5 The magnetic Hamiltonian
The central term of the atomistic spin dynamics is the effective field Bi

e f f and
all the important interactions that are present in the system should be included
in this field, including the interatomic exchange interaction, Dzyaloshinskii-
Moriya (DM) interaction, magnetocrystalline anisotropy and external mag-
netic field (Zeeman term). The most convenient way to obtain the effective
field is to introduce all the interactions in an effective Hamiltonian and then
the effective magnetic field can be found from the partial derivative of the
Hamiltonian with respect to each local magnetic moment:

Bi
e f f =−

∂H

∂mi
. (4.18)

Details of how the interatomic exchange interaction and DM interaction are
evaluated from first-principles theory can be found in the previous Chapter 3.
We have to mention here that the effective Hamiltonian used in this work is
classical and there are no quantum operators involved. The described magnetic
Hamiltonian has four terms:
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H = HHeis +HDM +HMAE +HZeeman. (4.19)

The first term is the Heisenberg exchange interaction, the second is the Dzyaloshin-
skii - Moriya interaction, the third the magnetocrystalline anisotropic energy
and the fourth is the Zeeman energy.

Depending on the system of interest, not all terms in equation (4.19) are
necessarily present. However, the dominant term of the above Hamiltonian
is normally the Heisenberg exchange interaction, in other words, it has the
biggest contribution in energy and is the most important interaction. This term
accordingly expresses the exchange interaction between atoms on sites i and
j:

HHeis =−1
2 ∑

i�= j
Ji jmi ·m j, (4.20)

where m is the atomic magnetic moment and Ji j is the interatomic exchange
parameter which describes the change of energy when the atomic magnetic
moments on sites i and j are changing their direction from their initial con-
figuration. The minus sign of the equation (4.20) is a convention that ensures
that a positive value of Ji j corresponds to a ferromagnetic ground state and in
a case of negative value the corresponding ground state is antiferromagnetic.

In systems with broken inversion symmetry and spin-orbit coupling, such
as non-centrosymmetric B20 structures (MnSi [10]) or many low-dimensional
magnets (one layer of Fe on top of Ir(111) [61]), a non-collinear magnetic or-
der has sometimes been observed to be the ground state, an effect which typ-
ically cannot be explained by introducing only the Heisenberg exchange, thus
additional interactions must be introduced. This interaction is described by the
second term of the Hamiltonian (4.19) which was proposed by Dzyaloshinskii
[21] and Moriya [22] and is expressed in the Hamiltonian in the following
way:

HDM =−1
2 ∑

i, j
Di j · (mi×m j), (4.21)

where Di j is the vector of Dzyaloshinskii-Moriya interaction and is calculated
from first principles (see Chapter 3).

In systems with low symmetry the spin-orbit coupling is often enhanced
which means that the effect of magnetocrystalline anisotropy is large. On the
other hand, in cubic systems the spin-orbit coupling is very weak and the effect
of the magnetocrystalline anisotropy is also very weak. For this reason, in our
Hamiltonian we keep only the uniaxial anisotropy which is dominant and is
written:

Huni = K ∑
i
(mi · êK)

2, (4.22)
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where êK gives the direction of the easy axis and K is the uniaxial anisotropy
constant. Once in the Huni there is positive sign it means that a negative value
of K corresponds to the easy axis anisotropy and otherwise corresponds to the
hard axis. If the cubic anissotropy is indeed important it can be added to the
Hamiltonian (4.19) as well.

The last term of the Hamiltonian (4.19) is the Zeeman term and expresses
the interaction between the atomic magnetic moments and the external mag-
netic field:

H =−Bext ·∑
i

mi, (4.23)

Bext is an applied external field.

4.6 Coarse-graining exchange interactions
Sometimes the description of non-trivial magnetic structures is difficult from
the atomistic point of view because of their size. For example, the spin-spiral
ground state of a helimagnet can have a long wavelength, depending on the
system, which means that an atomistic description of such a system would
have a huge computational cost and additionally if the magnetization changes
very smoothly then it can be considered as ferromagnet on an atomic level.
Furthermore, a direct comparison with experimental results is often more than
necessary and desirable. For both reasons, it is very convenient to have an ef-
ficient and simple methodology for coarse-graining the exchange interactions.

A straightforward but arguably naive approach is based on resolving the
system into a number of ferromagnetic grains so that the system is divided
into a number of cubic blocks and the interaction between these blocks is only
the sum of those atomic exchange interactions which are reaching the region
outside of each block (e.g. the next nearest neighbour interaction of the sec-
ond last magnetic moment from the block boundaries). This approximation
may be an effective way to bridge from atomistic magnetization dynamics to
micromagnetism for certain switching scenarios in ferromagnets at low tem-
peratures but on the other hand is difficult to use it in a case of non-uniform
magnetisation, like smooth domain walls, spin-spirals or even finite tempera-
ture excitations in ferromagnets.

A better and improved solution for a coarse grain approach is to base the
description of the system so that at least long-wavelength magnons can be
properly described. It is well known [62] that the energy of magnetic excita-
tions, magnons, in the limit of long wavelengths follows a square dispersion
relation as given by:

E(q)≈ Dq2, (4.24)
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where q and is a vector in the corresponding Brillouin zone, q is the magnitude
of q and D is the spin stiffness constant. For a cubic system with one atom per
unit cell, the spin wave stiffness [62] is described by:

D=
2
3 ∑

i, j

Ji j√mim j
|ri j|2. (4.25)

The distance between the magnetic moments on sites i and j is ri j and mi is the
magnitude of the magnetic moment. If λ is a wavelength of the spin wave then
q = 2π/λ . If we consider that the each coarse-grained volume in our system
is built of a cubic block that consists of N×N×N atoms, then the wavelength
as expressed in terms of the blocks is λblock = λ/N and qblock = 2π/λblock =
Nq. Since in both the atomistic and the coarse-grained cases, the spin wave
dispersion relation 4.24 should hold we can get the following relation:

Dq2 = Dblockq2
block

⇒ D= N2
Dblock,

(4.26)

where the parameters of D in equation (4.25) can be calculated from ab-initio
calculations and from eq (4.26) it is posible to extract the Jblock

i j interaction
from:

Jblock
i j =

D

r2
block

, (4.27)

where rblock = Nrinter is the size of the block and rinter is the interatomic dis-
tance between two neighbouring atomic magnetic moments.
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5. Magnetic skyrmions

In this chapter, we will introduce magnetic skyrmions as topological protected
magnetic structures. We will continue with describing their formation, sta-
bilisation and the kind of materials they exist. Finally, we will present their
dynamics and why their properties put them as potential candidates for infor-
mation carriers in magnetic storage devices.

5.1 Introduction to topology and skyrmion number
Magnetic structures which exhibit non-trivial configuration like domain walls,
solitons and skyrmions are known as "topological defects" and their stability
can be explained from a topological point of view. The basic idea behind the
concept of topology in magnetism is that two magnetic structures are topo-
logical equivalent when the one can continuously be transformed to the other
one without overcoming an infinite energy barrier. On the other hand, two
magnetic structures are inequivalent in terms of topology when is impossible
to continuously transform one into the other [63]. In reality the term of an
infinite energy barrier does not apply, for example real systems are finite and
a topological protected structure such as skyrmion, can be moved out of the
sample as it is shown later in this chapter. Thus, in real systems a deformation
of two unequivalent magnetic structures into each other can happen in the case
of overcoming a finite energy barrier as presented in paper VII.

In order to further elaborate on the concept of topology in magnetic struc-
tures we can consider the configurations of Fig. 5.1 which are characterised by
the winding number that can be interpreted how many times the magnetization
is wrapped around a circle. Since, the winding number w counts wraps, it is an
integer number and configurations with different w, e.g. a and c from Fig. 5.1,
are topologically inequivalent and are thus not able to continiously twist into
each other. The obtained two dimensional skyrmion structure (Fig. 5.2) is
topological protected and is characterised by the skyrmion number (which is
the same with the winding number):

Nsk =
1

4π

∫ ∫
n̂ ·

(
∂ n̂

∂x
× ∂ n̂

∂y

)
d2r, (5.1)

which is the integral of the solid angle and gives the number of times wraps
the unit sphere [64, 65]. n̂ is the unit vector pointing in the direction of mag-
netisation. If the magnetisation at the center of the skyrmion is pointing up,
then Nsk =+1 and if is pointing down Nsk =−1.
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(a) (b)

(c)
Figure 5.1. Examples of configurations with winding number w = 1 (a and b) which
are able to transform into each other by a global rotation in the plane. In the case of
(c), the winding number is zero (w = 0) and the structure cannot transform into the
first two due to their difference in w.

5.2 Introducing skyrmions
In the early 60s the nuclear physicist Tony Skyrme suggested a theoretical
model in which skyrmions are topological non-trivial quasi-particles in field
theory [66]. Since the proposal of Skyrme’s model, many different alterna-
tive models are being used in several fields of physics, for example in Bose-
Einstein condensates [67, 68], liquid crystals [69] etc. However, in recent
years there has been very high interest in the area of solid state magnetism
for non-trivial spin textures, which are called magnetic skyrmions. The spins
of this non-trivial magnetic texture can be described as pointing in all direc-
tions wrapping a sphere as we can see in Fig.5.2a and the number of wraps
coincides to the topological invariant which makes the structure topologically
stable. Since the magnetic skyrmion is stable from the topological point of
view means that it cannot be continuous transformed to a trivial topological
structure such as ferromagnetic or antiferromagnetic structure. This last im-
portant property of skyrmions along with their ability to avoid pinning centers
and the small value of depinning current makes them very good candidates for
using them as information carriers.
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Figure 5.2. Schematic representation of the two-dimensional skyrmion. (a) Hedgehog
type skyrmion as proposed by Tony Skyrme, (b) gradual rotation of spins and (c) the
two-dimensional projection of the right sphere. This picture is taken from [70].

5.3 Formation and stability of skyrmions
The formation of a magnetic skyrmion can take place in several systems as a
result to different mechanisms, which are the following [71]: a) long-ranged
dipolar interactions in thin-layer magnetic systems with perpendicular easy
axis anisotropy (PMA), b) systems with broken inversion symmetry which
gives rise to Dzyaloshinskii-Moriya interaction, and c) exchange interactions
in frustrated systems and in systems with four-spin exchange interactions. The
size of the skyrmion depends on the mechanism and the strength of the govern-
ing interactions, thus with the first mechanism skyrmions have a typical size
of 100nm - 1μm, with the second 5nm - 100 nm and with the last two, < 5nm.
In this thesis, we will focus on the second mechanism (Dzyaloshinskii-Moriya
interaction) and the rest are beyond the scope of the thesis.

For the class of systems studied here, the broken inversion symmetry gives
rise to the Dzyaloshinskii-Moriya interaction and its competition with the
Heisenberg exchange interaction (J) is responsible for the formation of skyrmions
[72, 73, 74]. The ground state of such systems is the helical spin-spiral state.
Due to their magnetic order being determined by the chirality-inducing DMI,
these materials are also called chiral magnets and some examples of those
magnets with B20 structure are: MnSi [10], FeGe [75, 76, 77, 78], Fe1−xCoxSi
[79, 80] and Mn1−xFexGe [81].

The Heisenberg exchange interaction J favours a ferromagnetic orientation
of the magnetic moments (Fig. 5.3a) and on the other hand, the DM interac-
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tion as it is expressed in atomistic spin dynamics (Eq. 4.21) favours a rotation
of π/2 as illustrated in Fig. 5.3b. When both interactions are present in the
system, the ground state helical modulation is stabilised [82, 83] (Fig. 5.3c).

(a) (b)

(c)

Figure 5.3. (a) Orientation of magnetic moments under the influence of only the
Heisenberg exchange interaction, (b) the π/2 angle between neighbouring magnetic
moments when only the DM interaction is present and (c) spin-spiral configuration
when both interactions are present in the system.

By applying an external magnetic field of suitable strength (and tempera-
ture in the case of bulk systems) into the spin-spiral state, the system enters the
skyrmion phase where the magnetic moments of the skyrmion perimeter have
direction parallel to the external magnetic field and the ones at the center are
antiparallel. The size of the skyrmion depends on the strength of the DM in-
teraction (D) and the Heisenberg exchange interaction (J). In the case of small
D/J ratio then the skyrmion favours a slow rotation of its magnetic moments
which is translated in a big size skyrmion. On the other hand, if the D/J ratio
is big then it favours a faster rotation which makes the skyrmion small in size.
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B=0 B 0
Figure 5.4. Transition from two-dimensional spin-spiral ground state to skyrmion
phase by applying parpandicular external magnetic field. The colour scheme of the
figure is chosen in a way that the magnetic moments pointing out of plane towards the
reader are blue and in the opposite direction are red. The external magnetic field is in
direction of the red region.

5.4 Classification of skyrmions
The magnetic structure of skyrmions are stable due to their topological pro-
tection which means that small changes in the system, e.g. external magnetic
field or temperature, are not able to deform the skyrmion structure.

Figure 5.5. Different configurations of magnetic moments according to the skyrmion
number and helicity. This picture is taken from [71].

With respect to their topological properties, skyrmions are categorised to
different types. The two main categories have been already introduced and
depend on the skyrmion number Nsk, if it is +1 or -1. Apart from the two
main categories, there are more subcategories where the structure depends on
the helicity γ . The origin of the helicity is the direction of the DM interac-
tion which is determined by the symmetries of the crystal structure [84, 85].
In Fig. 5.5 are presented the configurations of magnetic moments around the
center of the skyrmion for different values of skyrmion number (+1 or -1), of
the helicity (γ) and its sign (+ or -).
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5.5 Experimental observation in chiral magnets
It was mentioned in the previous section, that one class of materials where the
skyrmion structure exists is the non-centrosymmetric ferromagnets which ac-
cording to the space group they belong to the B20 alloys. MnSi belongs in this
class of alloys with B20 space group and its structure is shown in Fig. 5.6c.
The strongest and most important interactions between the magnetic atoms are
the exchange interaction J and Dzyaloshinskii-Moriya interaction D, in con-
trast to the magnetic anisotropy which is relatively weak. The phase diagram
of external magnetic field (B) with respect to the temperature (T ) of bulk MnSi
is shown in Fig. 5.6c. Under the influence of zero external magnetic field and
under the critical temperature Tc, which is approximately 30 K, the helical spin
order is stabilised due to the competition of the two main interactions J and
D. The lattice constant of MnSi is a = 4.56 Å and the period of the spin spiral
is λ = 190 Å which indicates that the exchange interactions between the Mn
magnetic atoms are rather weak. By looking the MnSi phase diagram it is eas-
ily noticed that there are five different phases instead of the usual two of the
ferromagnets (ferromagnetic below Tc and paramagnetic above). Of course,
the two typical phases exist in this compound as well, above Tc the paramag-
netic phase occurs and in large enough external magnetic field the magnetic
moments are fully aligned with the direction of the field which gives a result
to the ferromagnetic state. The three phases that remain are non-collinear and
as mentioned above in low external field the helical spin state is stabilised, and
the magnetic moments precess around a rotational axis which is perpendicular
to the field. By increasing the external magnetic field, moments tend to align
with the field and there is a transition from the helical state to the conical one.

Just below the critical temperature Tc, a narrow region in the T-B phase di-
agram can be observed, which is called A-phase and that is the fifth magnetic
state of the compound and in this region, several properties such as magnetic
susceptibility and magnetoresistance [86] have been experimentally shown to
exhibit a strange behaviour. The exact spin texture of the A-phase was not
identified for many years until 2009, when skyrmion phase was discovered by
small angle neutron scattering (SANS) experiment [10]. In this experiment,
magnetic Bragg reflections in reciprocal space appear due to the scattered neu-
tron beam, which makes it possible to investigate the A-phase of the sample.
The results of the SANS experiment are presented in Fig. 5.6a where the exter-
nal magnetic field is perpendicular to the observation plane, the Bragg peaks
have a symmetric six-fold pattern and its origin is the superposition of three
spin spirals with an angle of 120◦ between them. This pattern can be consid-
ered as a triangular skyrmion lattice and an example of a closed packed lattice
from our model simulations is shown on the right panel of Fig. 5.4, where
a six-fold symmetry of the neutron scattering peaks can be also seen here.
However, only the results of the SANS experiment cannot reproduce the exact
structure of the A-phase and it was necessary to be combined with measure-
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(a) (b)

(c)

Figure 5.6. (a) Experimental measurement of SANS in the case of T = 27.7 K and
B = 0.162 T. (b) unit cell structure of the non-centrosymmetric MnSi B20 compound
and (c) T-B phase diagram of bulk MnSi. Figures (a) and (c) are taken from [10].

ments of the topological Hall effect [87]. Skyrmions during their motion give
an extra contribution to the Hall effect because of the change in the magnetic
field.

The next step regarding the magnetic structure of the A-phase, was the di-
rect experimental observation obtained by using Lorentz transmission electron
microscopy (TEM) for the thin films of the chiral magnet Fe0.5Co0.5Si [88].
The advantage of TEM over the SANS, is the real space representation of
the in-plane component of the magnetic moments which gives a clear picture
of the A-phase structure as is shown in Fig. 5.7b. Since with TEM only the
in-plane components of the magnetic moments are measured, the ones that
they have out-of-plane component only (parallel and antiparallel to the ap-
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plied external field) are coloured black as it is presented in the Fig. 5.7c where
at the center has antiparallel direction and at the perimeter where is parallel.
In Fig. 5.7 are shown the real space images for the spin-spiral ground state
(B = 0) with a wavelength of several nanometers and for the skyrmion lattice
under the influence of B = 50 mT.

(a) (b) (c)
Figure 5.7. Real-space figures from the analysis of Lorentz transmission electron
microscopy measurements for the chiral magnet Fe0.5Co0.5Si. (a) Helical spin-spiral
structure of the ground state (B = 0). (b) The structure of the skyrmion crystal when a
perpendicular external field is applied (B = 50 mT) and (c) zoomed-in picture of one
skyrmion. This figure is taken from [88].

A big issue about the skyrmion structures is the temperature in which are
stable and still well defined. Most of the B20 structures exhibit a low critical
temperature Tc and since the A-phase is present just below this temperature,
the skyrmions exist in low temperatures as well. The existence of such struc-
tures up to room temperature is a big challenge for the community. One of
the few (if not the only one) B20 structures which exhibit high temperature
for the skyrmions, is the thin film FeGe where the formation of a skyrmion
crystal is taking place up to 275 K [77, 89]. Furthermore, skyrmion forma-
tion takes place at and above room temperature in alloys with different chi-
ral space group than B20 and those are the β -Mn-type Co-Zn-Mn alloys in
which skyrmions observed both in bulk and thin films [90]. Since DMI is
also arising from the symmetry breaking at the interfaces [91, 92, 93, 94],
multilayers are investigated for skyrmion formation at room temperature. It
was found that Co thin films in-between of two heavy metals (Ir/Co/Pt tri-
layer) [95], Fe/Ni bilayers on top of Cu/Ni/Cu(001) and ultrathin transition
metal ferromagnets (Pt/Co/Ta and Pt/CoFeB/MgO) [96] favor the formation of
skyrmions at and above room temperature. In all these multilayers, perpendic-
ular magnetic anisotropy is present which is very important for the skyrmion
size and by tuning the anisotropy, the skyrmion size can be changed which
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results in a larger bit density. Another case of observing individual skyrmions
at room temperature is in heavy metal/ultrathin ferromagnet/insulator trilayers
with broken inversion symmetry [92] where skyrmions are created by a sparse
magnetic stripe when the stripe is forced by a current to move through a geo-
metrical constriction. In this device, magnetic domains and skyrmion bubbles
are both present which indicates that are metastable.

5.6 Dynamics of skyrmion
There is now a large effort focused on the discovery of the next generation
magnetic storage devices which will be more efficient and faster than the cur-
rent technology. Ferromagnetic domain walls were very promising candidates
due to the fact that is possible to move them in a race-track memory [9] by us-
ing spin polarised current utilizing the STT effect [7, 8] between the electrons
in the current and the magnetization texture at the domain wall. The disad-
vantage of this proposal is that it has been found that large threshold current
density is required to move the domain walls ( jc = 1010− 1012 A/m2) which
results in an unwanted Joule heating of the proposed device. However, it was
also found that the magnetic skyrmions in chiral B20 magnets can be moved
by spin polarised currents [97, 89, 98, 99, 100, 101] by using much smaller
current density ( jc = 105−106 A/m2) which would then mean a reduction of
the Joule heating with several orders of magnitude. Furthermore, the magnetic
skyrmions have the ability to avoid pinning centers, which is not happening in
the case of domain walls, and these properties make them strong candidates
for information carriers.

As mentioned earlier, the size of the skyrmions in most investigated chi-
ral magnets is quite big. Thus, most of the important theoretical research
efforts that has been done on skyrmions has been pursued in the micromag-
netic regime. In this section, a micromagnetic description will be used for the
motion of skyrmions starting from the continuum Hamiltonian [102] which is
expressed as:

H =

∫
dr

[
A(∇M)2 +DM(∇×M)−BM

]
, (5.2)

where A is the exchange energy strength, D is the strength of the DM interac-
tion and the third term of the integral is the Zeeman term.

Similar to the expression of Landau-Lifshitz-Gilbert (LLG) (Eq.4.15) equa-
tion of motion for discrete magnetic moments which is introduced in the previ-
ous chapter, the LLG for the continuum case, including the spin torque effect
[11] is:
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dMr

dt
=−γMr×Beff

r +
αG

M
Mr× dMr

dt
+

pα3

2eM
(j ·∇)Mr

− pα3β
2eM2 [Mr× (j ·∇)Mr] .

(5.3)

Here γ = gμB/h̄ is the gyromagnetic ratio, p is the spin polarisation of the
current, e is the charge and α and αG are the lattice constant and the Gilbert
damping respectively. The effective magnetic field is:

Beff
r =− 1

γ h̄
∂H

∂Mr

. (5.4)

The first two terms of the right-hand side of equation (5.3) are the preces-
sion and damping term respectively and the two last terms (third and fourth)
are expressing the coupling between the magnetisation of the system and the
spin-polarised electric current j.

The motion of skyrmions can be studied by using the Thiele equation [103]
which is obtained by solving the LLG equation of motion and is expressed as
[99, 100]:

G× (vs−vd)+D(βvs−αGvd)+Fpin−∇U = 0. (5.5)

The first term is the Magnus force in which vs is the velocity of the conduction
electrons and vd is the skyrmion drift velocity. The second term describes the
dissipative force, where β is the non-adiabatic term and the third term is the
phenomenological pinning force caused by the presence of the defects. The
last term is the force due to the potential of the environment.

5.6.1 Motion in infinite system
Iwasaki et. al. [11] in their work present the dependence of the skyrmion
velocity which is parallel (v||) to the direction of the electric current on the
value of the current density. They examine the velocity for both cases of he-
lical state (HL) and the skyrmion state (SkX) with impurities(w/) and without
(w/o). Finally, in their calculations, they also include different values of the
non-adiabatic parameter β .

Within their model the helical spin-spiral ground state is considered as a set
of Bloch walls in a ferromagnetic background and in this frame is easier to
compare the velocities of these two different configurations by changing only
the applied external magnetic field and all the other parameters are remain the
same. The impurity concentration chosen by the authors were x = 0% in the
clean case and x = 0.1% in the dirty case. At this point, it is necessary to
mention that the impurities here are considered as sites with enhanced easy-
axis anisotropy along the z-direction. Surprisingly, for the skyrmion state case
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it was found that the velocity is universal and independent of the non-adiabatic
parameter and the impurities. Furthermore, the dependence of the velocity was
found to be linear and all these characteristics are shown in the relation:

v|| =
pα3

2em
j. (5.6)

Thus, the above relation also implies that skyrmions are ideal structures for
moving them by spin polarised current and achieve high velocities with small
current densities.

In opposition to the skyrmion state, the velocity of the helical state is de-
pendent of both the non-adiabatic parameter and the impurity concentration.
When only adiabatic effects (β = 0) are present in the system of helical state,
the set of Bloch walls do not move for both systems (clean and dirty) due to
the intrinsic pinning effect. Another observation is the difference in velocity
between the clean and the dirty system for finite β and only without impurities
follows the relation:

v|| ∝ (β/αG) j. (5.7)

In the presence of impurities, it seems that the motion is suppressed in low
current density and the threshold density is larger.

5.6.2 Impurities and influence of the trajectory
It has now been established that skyrmions have a particle-like behaviour
which explains their flexibility to avoid pinning centers in the sense of mag-
netic impurities [11, 104, 105]. A presence of magnetic impurity influence the
trajectory of the skyrmions while they are moving and they show their pref-
erence to move around the impurity either if their size is small [11] or big
[104]. The previous behaviour holds when there is nothing to constrain the
motion of the skyrmions and they are moving "free" in the system (e.g. one
individual skyrmion). On the other hand, when a whole skyrmion lattice is
in motion, each skyrmion is pushed from the surroundings skyrmions, and as
a result they are restricted and cannot move around the impurity but they are
however able to move through it [11]. In the latter case, the skyrmion survives
when the size of the impurity is smaller than the size of the skyrmion. For the
skyrmions is not energetically very costly to travel through the impurity since
the easy-axis magnetic anisotropy of the impurity is along z−direction which
is in accordance with the direction of the skyrmion center.

In addition to the findings reported above that concerned magnetic impuri-
ties with large anisotropies, also non-magnetic impurities can affect the trajec-
tories of current driven skyrmions as it shown from our simulations. In other
words, when the impurities are in the form of empty sites (voids) and we can
consider them as "holes" in the system. Around the void there is a repulsive
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b)a)

c) d)

Figure 5.8. Motion of the skyrmion under the influence of spin polarised current in
a system with non-magnetic impurity. The trajectory of the skyrmion structure is
influenced and is moving around the impurity due to the repulsive potential.

potential which forces the skyrmion to move around, as it is shown in Fig. 5.8.
The presence of the repulsive potential results from the lack of one neighbour
of the magnetic moments in the neighbourhood of the "hole". This effect is ex-
plained in more detail in the following section of skyrmion annihilation where
the edges of the system have identical behaviour with the voids since the also
lack one neighbour.

5.6.3 Creation, annihilation and motion in finite system
It is well-known that the information carriers in the magnetic storage devices
need to have three main characteristics: they should be easily transported in
nanostructures, it should be possible to create and annihilate them at will. In
the previous section was presented the ability of skyrmions to move in infinite
systems with very low current densities compared to the domain walls, and
their ability to avoid pinning centers. At the beginning of this section, we
will see how skyrmions behave in finite systems, for example in a finite width
channel, and their difference with the previous case of infinite systems. The
presented results are from numerical calculations using the Hamiltonian of
equation (5.2) and based on the LLG equation of motion (5.3).

In the presence of boundaries, skyrmions behave differently because of their
interaction with the boundaries where they feel a potential. The origin of this
potential is the lack of one neighbour from the magnetic moments at the end of
the system and due to the presence of the Dzyaloshinskii-Moriya interaction
those moments are not aligned with the ferromagnetic background of the rest
of the system. In other words, there is a finite angle between the moments at
the boundaries and the inner moments.
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Previous studies have been shown that the skyrmion velocity depends on
value of the non-adiabatic parameter β in a system with finite width [106].
Unlike the infinite systems, the skyrmion velocity is more influenced by the
presence of the magnetic impurities in case of finite system and their effect is
no longer negligible. By using the Thiele’s equation, a relation for the compo-
nent of the velocity which is parallel to the direction of conduction electrons
of the current can be found:

v|| =
β

αG
vs, (5.8)

where v|| is the parallel component of velocity to vs, which is the velocity of
the conduction electrons.

We will continue now with the interaction between skyrmions and the edges
of the sample to see what happens when the annihilation process is taking
place. In Fig. 5.9 we see two different behaviours of skyrmion at the edge
of the sample. When the current density is big enough, the skyrmion is able
to overcome the edge barrier, it reaches the boundary and the annihilation
process starts (Fig. 5.9a-d). On the other hand, when the current density is
lower, then the skyrmion is moving towards the edge but its energy is not
enough to overcome the potential barrier. This results in a motion parallel
to the edge (Fig. 5.9e-h). Our results are consistent with the micromagnetic
simulations in the work of Iwasaki et. al. [106].

a) b) c) d)

e) f) g) h)

j

Figure 5.9. Snapshots of skyrmion dynamics when is driven to the edge of the sample
under the influence of low current density (a-d) and under the influence of higher
current density, where the skyrmion is annihilated at the edge of the sample (e-h). The
red arrow is showing the direction of the skyrmion motion. The black arrow shows
the direction of the current.

Lastly, an equally important procedure for information carriers along with
the previous two (dynamics in finite system and annihilation at the edges) is
the generation of the information itself, which in our case is the skyrmion.
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Edges can be used as nucleation centers by applying a spin-polarised current
into the system which is ferromagnetic, provided that the value of the perpen-
dicular external magnetic field is in the range of the A-phase of the certain
system [106]. As discussed above, the moments at the edges of the sample are
slightly rotated compare to the inner moments which are totally aligned with
the external field and they have a quite large in-plane component because of
the DM interaction. As the spin-polarised current flows into the system, inner
moments very close to the boundary starts rotating due to their interaction with
the electrons of the current, which means that they gain an in-plane component
as well. After some time, the region with in-plane components is growing and
at some point due to the DM interaction a flipping of moments is taking place
and their direction is opposite to the external field. This is the nucleation of
the skyrmion core, and as the current keeps flowing a complete skyrmion pops
out. The whole procedure as described above is shown in Fig. 5.10.

b) a)

c) d)

Figure 5.10. Snapshots of skyrmion nucleation at the edge of the system by applying
spin polarised current. The direction of the current is shown by the black arrow.
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6. Magnetic defects and helical spin-spiral
state

6.1 Introduction
The examination of the helical magnetic texture is of great interest since the
formation of skyrmions is promoted from the presence of defects [107], which
are topological and in the form of edge dislocations [108, 88]. FeGe is a B20
structure which means that it has finite DM interactions and as a result FeGe
exhibits a helical spin-spiral ground state. In paper II is studied, from the
experimental and theoretical point of view, for the dynamics and emergent
topological defects in the helical spin-spiral state of FeGe. The experimental
study of the system is done by using magnetic force microscopy (MFM) [109]
and Nitrogen-vacancy (NV) center-based magnetometry [110, 111]. The NV
technique gives the opportunity to study the sample in atomic scale and the
advantage over the MFM is that secures the absence of extrinsic effects (e.g.
tip-induced effects). For the theoretical study, ab-initio calculations were used
to extract the parameters of the system following by spin dynamics simulations
of the topological defects.

6.2 Experimental techniques
6.2.1 Magnetic force microscopy
Magnetic force microscopy (MFM) is a technique which is used to scan mag-
netic samples. The tip of the microscope is coated with a ferromagnetic film
and it interacts with a magnetic sample through the magnetostatic forces. De-
pending on the polarisation of each region, the tip feels an attractive or repul-
sive force which makes it possible to characterise the magnetic domains of the
sample. The magnetostatic interaction is very strong and it does not depend
much on the surface purity (if it is clean or not) which gives the advantage of
using it under any environmental conditions.

MFM gives the ability to measure the variation of the stray field near the
surface, even individual interdomain boundaries [112] and sometimes even
magnetic structures that are not only on the surface [113]. The previous
achievements make MFM a very important tool when the variation of mag-
netisation is of main interest. MFM technique keeps evolving through the
years with breakthrough methods since magnetic thin films are widely studied
for the development of magnetic devices for industrial applications.
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6.2.2 Nitrogen vacancy (NV) center based magnetometry
Since understanding the magnetic phenomena taking place on the nanometer
scale is very important and there is a strong drive to improve the detection,
as well as the imaging, of the weak magnetic fields in this scale. In order to
improve the sensitivity and the resolution of the scanning, single spins were
proposed [114, 115] as nanoscale magnetic field sensors. When the tip is
close to the surface of the scanned sample, the local magnetic field coming
from it is evaluated by the Zeeman shift of the electron spin resonance fre-
quency [116, 117] which provides a high spatial resolution. For implementing
this idea it proved that the nitrogen vacancy (NV) center in a diamond is a
very good choice [118, 119]. The main advantage of this technique is the
reliability since the information is coming only from the sample’s stray field
by excluding any contribution from the tip which makes it very successful on
studying more complex structures like domain walls [120, 121], vortices [122]
and spin-spirals [123]. In the paper II, is the first reported application of NV
magnetometry on spin-spiral materials.

6.3 Results of magnetic defects in FeGe
By the usage of both experimental techniques described above, a helical spin-
spiral ground state have been observed with a spiral wavelength of λ = 70±
5 nm. The important exchange interactions J and DM were extracted from
ab-initio calculations with the use of LKAG formalism which was described
in Chapter 3. Afterwards, the calculated interactions were coarse grained,
with the method described in Chapter 4, which makes it possible to study
the magnetization of the system, including the movement and annihilation of
topological defects in the micromagnetic regime. The spiral wavelength from
theoretical studies was found λ ≈ 100 nm by using the Monte Carlo method
for the stabilisation of the ground state. With the same method, the critical
temperature of FeGe was examined and found TN = 240 K, which is in good
agreement with the experimental value TN = 276 K [124].

The MFM data from the experiment that can be seen in Fig. 6.1 a, b, and
e, showed that over time, a jump in the period of helical spin-spiral state
would occur during the MFM scans which can clearly be seen in Fig. 6.1e.
In Fig. 6.1a is the MFM scan at the temperature of T = 255 K, where the
black and white regions indicate the different orientation of the magnetic mo-
ments. In the same figure (a), green arrows are showing defects in the magnetic
structure of the sample which according to our simulations are characterised
by non-trivial topology [76, 88, 108] and they are responsible for the jumps
of the period during the measurements. The change in the period can be ex-
plained easier by looking at the schematic representation of Fig. 6.1c, in which
is shown the helical spin-spiral state and how the defect influences the period.
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Figure 6.1. (a) Results of the helical spin-spiral state by MFM measurements in tem-
perature T = 255 K. The black and white regions indicate the orientation of the mag-
netic moments and the white arrows are pointing the jumps in period during the mea-
surement. (b) Zoomed-in figure of the non-trivial defect of the yellow box in (a). (c)

Schematic representation of the defect in (b) and of its two possible motions shown
by the blue and the red arrow. (d) Schematic representation of the helical spin-spiral
after the removal of the defect. (e) The evolution of the period in time as captured in
the blue box of (a).

For further studies of the spin-spiral period change captured from the ex-
periment, we performed micromagnetic calculations of the system based on
our ab-initio calculations. In the presence of finite temperature (T > 0 K),
the thermal fluctuations of the magnetic atoms influence the structure of the
helimagnet and when temperature near but below TN is reached, the helimag-
netic order is broken at some regions of the lattice. These kind of dislocations
are present in the structure even at low temperature, which are quasi-stable
because of their topological properties (non-zero topological number).

The defects are active in finite temperature due to the thermal fluctuations as
it is presented in Fig. 6.2. In this figure, three different mechanisms of defect
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Figure 6.2. Spin dynamic simulations of three different defect motions at tempera-
ture T = 0.5 ·TN . (a-c) The topological defect is climbing through the helimagnetic
structure. (d-f) Annihilation of two opposite topologically charged defects when they
come close to each other. (g-i) Slip motion of the defect.

annihilation are shown, which are called climbing (a-c), pair annihilation (d-
f) and slipping (g-h). In the first case, the defect is moving perpendicular
to the wave-vector q and it causes a phase shift (opposite orientation of the
magnetic moments in a red circle between (a) and (c)). In the second case
(d-f), when positive and negative defects meet, they annihilate each other and
in the last case (g-i), the edge is moving parallel to the wave-vector. The
defect dynamics shown by using the LLG simulations are in fact similar with
topological defects in crystals and nematics.

In summary, from the detailed examination of topological magnetic defects
in FeGe by combining two experimental techniques and micromagnetic LLG
simulations it was demonstrated that mobile magnetic edge dislocations are
very important for the development of spin-spiral ground state. These motions
which are described above, reduce the free energy of the system and it is nec-
essary to be controlled for device applications. Despite the fact that with our
coarse graining methodology we might not get the correct time scale of the
events, overall the simulations seem to agree very well with the experiments.
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7. One dimensional magnetic structures within
ASD

7.1 Introduction to 1D solitons
Studying low-dimensional magnetic structures remains extremely challeng-
ing and represents an exciting part of modern condensed matter physics. As
discussed earlier in this thesis, in crystalline structures with lack of inversion
symmetry, Dzyaloshinskii-Moriya (DM) interactions can emerge and they can
cause the formation of two-dimensional chiral modulations like helical spin-
spirals and skyrmions. In fact, the competition between Heisenberg exchange
and DM allows for nontrivial topological texture to exist as a spin-spiral ground
state configuration. Theoretically, such modulations were predicted by Bog-
danov [72] and were originally identified as nonlinear configurations of a mag-
netic order parameter, or as solitons.

By applying a small perpendicular external magnetic field to a one dimen-
sional helimagnetic structure with easy-plane anisotropy, it turns into a chiral
magnetic soliton lattice [125, 126]. An isolated soliton structure along z−axis
is represented in the left Fig. 7.2, where the xy−plane is the easy-plane accord-
ing to the anisotropy in the model. The soliton is characterized by the soliton
winding number, which is related to, yet different from the skyrmion winding
number (Nsk) mentioned in chapter 5, and is given by:

wsol =
1

2π

∫ ∞

−∞
∂zΦdz, (7.1)

where Φ = Φ(z, t), is the polar angle (Fig. 7.2) while z is the axis of the chain.
The soliton winding number wsol counts the number of twists of the magne-
tization along the chain. The result is an integer number and if it is equal to
one, then it corresponds to one topological soliton.

Progress in the fabrication of quasi-one-dimensional metal-organic com-
pounds and development of spintronics has opened new horizons for appli-
cations. In general, the class of quasi-one-dimensional magnetics includes a
vast amount of systems and particularly the compound Cr1/3NbS2 [127] is
for the purpose of this study of main interest since a chiral soliton lattice has
been proposed for its magnetic structure [128]. Its hexagonal crystal structure
is built up from NbS2 layers intercalated by Cr ions. There are three basic
magnetic interactions which constitute the spin structure: (i) the ferromag-
netic exchange within the Cr layers J⊥, (ii) another ferromagnetic coupling J‖
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Figure 7.1. (a) A unit cell of the crystalline structure of Cr1/3NbS2. (b) Schematic
representation of 10 unit cells along the z−axis, where the moments rotate in the
xy−plane. This figure is taken from [128].

and (iii) the DM between Cr ions, the latter two interactions belong to the two
intercalating layers separated by NbS2 [129]. The competition between the
latter two interactions forms a helicoidal structure in the absence of external
magnetic field.

7.2 Analytical model
The behaviour of a quasi-one-dimensional helical structure can be studied an-
alytically by using the micromagnetic Hamiltonian:

h̃ = hex +hDM +han +hZ, (7.2)

where the structure is located along the z−axis and the external field H along
the x−axis. The first term of the Hamiltonian is the exchange interaction hex =
A(∂zM)2 /2, the second is the DM interaction hDM = DM · (∇×M), the third
is the anisotropy term with xy−plane being the easy plane han = BM2

z /2 and
the last term is the Zeeman term hZ =−M ·H. The magnetization M(z, t) is a
vector field with constant magnitude while the parameters A, D, and B provide
the strength of the exchange interaction, DM interaction and the magnetic
anisotropy respectively.

The magnetisation can be expressed in polar coordinates:

M(z, t) = M0 (sinΘcosΦ,sinΘsinΦ,cosΘ) , (7.3)

where Φ ≡ Φ(z, t) and Θ ≡ Θ(z, t) are the polar and azimuthal angles. In the
case of very strong anisotropy [130] the magnetization is almost confined to
the xy−plane and for such systems we can use Θ = π/2+θ , where θ � 1. By
using this expression of magnetism in the Landau-Lifshitz equation of motion,
one arrives at the sine-Gordon model [131, 132]:
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Figure 7.2. Left: Visualisation of the soliton where the direction of the external mag-
netic field is on x−axis. L stands for the period of the soliton and L′ is the centre of
the period. All the atomic magnetic moments are in x− y plane. Right: Size of the
centre of a soliton as a function of the external magnetic field.

Φt̃ t̃ −Φz̃z̃ + sinΦ = 0. (7.4)

The sine-Gordon equation has soliton solutions and this is very interesting be-
cause is giving us the analytical tool for the one-dimensional helical structures.

7.3 Calculations within ASD
In Fig. 7.2 a one-dimensional soliton structure is presented and, as described
above, the rotation of the magnetic moments is taking place in the xy−plane
whereas an external magnetic field is applied along the x−axis. For studying
the behaviour and the dynamics of one-dimensional solitons we perform cal-
culations by means of atomistic spin dynamics method [43], as implemented
in the UppASD package [47]. For the calculations, the magnetic Hamiltonian
described in Chapter 3 is used, where the strength of the ferromagnetic ex-
change interaction is chosen to be J = 1.88 mRy and the strength of the DM
interaction is D = 0.08 mRy. The magnetic moments are treated as classical
vectors with fixed length and the magnitude 1 μB. When applying an external
field of 0.1 T at zero temperature, a soliton is stabilised, where the size of its
center L′ depends on the D/J ratio and the strength of the external field. By in-
creasing the external magnetic field, the size of the soliton decreases (Fig. 7.2)
and at some point, the soliton collapses when the Zeeman term becomes dom-
inant.

Since the solitons have a continuously varying magnetic texture, they can
be manipulated by spin-polarised current where an exchange of angular mo-
mentum takes place between the electrons of the current and the magnetic mo-
ments of the soliton structure. This exchange of angular momentum gives mo-
tion to the structure and the interaction between solitons can be investigated.
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Figure 7.3. Collision (b and c) and annihilation (d and e) of two solitons when

they are moving in the opposite direction. (a) The initial positions of the stabilised
solitons. (b) Snapshot of the position of the solitons at the moment of their collision
when spin-polarised current is applied with j = 0.19× 1012 A/m2 and β = 0.2. (c)

Relaxed position of the solitons after the removal of the spin current. (d) Snapshot
during the annihilation of solitons after applying spin current with j = 0.38× 1012

A/m2 and β = 0.2 and (e) creation of one soliton after the annihilation and turn off the
spin current.

In order to investigate soliton-soliton interactions we stabilize by applying lo-
cal field two solitons at the edges of the system (Fig. 7.3a) and by using the
SLLG equation of motion (Eq. 4.14), two opposite spin polarised currents with
direction from the edges to the center of the system drive the solitons towards
each other and eventually make them collide. For the particular choice of ex-
change and anisotropy in our model, it is found that when the value of the
current density is j = 0.19× 1012 A/m2 the solitons start moving and when
the are close enough the current is removed. This value of the current density
is not enough to overcome the repulsive potential between the solitons and as
a result the solitons are moving back and relax as soon as the distance between
them is big enough in order not to feel the potential (Fig. 7.3b and c). This is
in agreement with the obtained 2-soliton solutions of the sine-Gordon equa-
tion which shows that solitons with the same chirality interact and push each
other away. With an increase of the current density ( j = 0.38× 1012 A/m2)
the solitons overcome the repulsive potential which results on the "merging"
in one soliton (Fig. 7.3d and e). The two opposite currents are turned off when
the two solitons are almost annihilated and due to the emission of spin-waves
which small fluctuations of the magnetization are caused which results in the
emergence of new soliton. The final position of the emerged soliton (Fig. 7.3e)
is not controllable because of the stochastic fluctuations which are present in
the system. For more details see paper I.

7.4 Application of solitons in logic gates
A logic gate is a building block of any digital system which has one or more
inputs and only one output. The connection between the inputs and the output
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is based on a specific logic depending on the type of the gate. Two of the
most famous types of gate is the AND and OR gate which consist of two input
signals and one output signal. In the first case the output logic state is "1" only
if both of the inputs are in logic state "1", otherwise the output signal is "0".
On the other hand, the OR gate gives output signal "1" if one or more of the
input signals are also "1". Another type of logic gate which is studied in this
chapter is the majority gate which has three or more, odd number, inputs and
one output which is defined by the majority logic state of inputs in the binary
code ("0" or "1").

Nowadays, micro- and nanoelectronics are based on the complementary
metal-oxide- semiconductor (CMOS) transistors, but for better functionality a
fair amount of attention has been put into alternative approaches where CMOS
can be replaced by other technologies [133, 134]. The major attributes of the
new devices should be lower power dissipation and nonvolatility. This can be
achieved by exploiting spin electron degree of freedom and the use of currents
for transferring the information [9]. Non-collinear magnetic configurations
such as solitons obey the forenamed requirements and are candidates for these
new devices.

In paper III we build on our previous work on soliton-soliton interactions
and use these results to study a three input majority gate based on 1D-solitons.
The majority gate can perform AND and OR operations if one of the inputs
considered as a regulator (input 1 in Table 7.1). In the solitonic majority gate
that we propose here, the information is encoded in the chirality of the soliton
as indicated in Fig. 7.4 where the helicity is determined by DMI exclusively.
The strength and the sign of the DM interaction is possible to be controlled by
circularly polarised laser which provides an ability to choose the input state.

Table 7.1. Table of the logic operations for the solitonic majority gate. When the input
signal 1 is controlled, the device performs an AND- operation when the input signal 1
is "0" an OR- operation when it is "1".

Input 1 Input 2 Input 3 Output Input 1 Input 2 Input 3 Output
AND- OR-

0 0 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 1 0 0 1 0 0 0
0 1 1 1 1 1 1 1

Similar to the previous section, for our study we use the atomistic spin
dynamics approach and the solitons are driven by applying spin-polarised cur-
rent. The parameters of the input part of our toy model (the three input arms on
the left of Fig. 7.4) are J = 1 mRy, D = 0.2 mRy and the anisotropic constant
is K = 0.3 mRy with the easy plane being the xz. It should also be mentioned
here that the three left edges of the system have easy axis anisotropy along the
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state "0" state "1"

input 1

input 2

input 3

output

Figure 7.4. (a) The solitonic majority gate device, where on the left there are three
input signals and on the right one single output signal. One soliton is stabilised in
each branch with input states: "0" for input 1, "0" for input 2 and "0" for input 3. (b,

c) Zoomed-in snapshots of the two different logic states "0" (left figure) and "1" (right
figure).

z−axis with constant K = 0.9 mRy in order to supress the undesirable case of
generating solitons at the edge of the system when the spin-polarised current
is applied. In the output single arm, there is no DM interaction but anisotropy
and exchange interaction are still present with a strength of J′ = 0.3 mRy.
The direction of the external field is perpendicular to the plane of the device
(shown as B in Fig. 7.4), the coloured blue magnetic moments are parallel to
it, whereas the red ones at the center of the soliton are antiparallel.

By applying a spin-polarised current along the x−direction, the solitons
start moving towards the output arm. When they reach the thicker arm, they
start interaction with each other and due to the lack of DM coupling in this part
of the device, the magnetic moments prefer to be aligned in accordance with
Heisenberg exchange interaction J′. This leads to a change in the direction
of the edge moments of the minority soliton (edge moments of the soliton
at input 2 of Fig. 7.5) and the resulted soliton of the output branch has the
same chirality with the majority solitons as it is presented in Fig. 7.5. Since
the output soliton is not well defined (there is no DM coupling between the
moments) our interest is focused on the right edge of the solitons and when
the rotation of this edge is along the −y direction the output signal is "0"
otherwise is "1".

The bottleneck of the suggested device is its sensitivity to the chosen pa-
rameters of the system and especially the strength of J′ which if it is bigger
than the threshold value of 0.3 mRy then the device looses its functionality and
there is no output signal at all. Furthermore, the value of the current density
has to be much bigger (4 orders of magnitude) than the depinning current in
order to receive the output signal.
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a)

b)

c)

Figure 7.5. Snapshots from atomistic spin dynamics simulations which show the input
and output signals before (a) and after (c) applying an external circularly polarised
electromagnetic field at input 3 in order to inverse the DM vector and create a soliton
afterwards with opposite chirality (b).
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8. Magnetic heterostructures on heavy metal
substrates

8.1 Introduction
Magnetic heterostructures on heavy metal substrate is currently attracting a
lot of interest due to their unexpected behaviour of domain wall dynamics
[55, 135], which is not compatible with the volume spin transfer torque (STT).
These observations have triggered the interest of investigating the properties
of such materials by ab-initio calculations and an extended study of differ-
ent types of materials is done in paper IV. The majority of the systems un-
der investigation perform perpendicular magnetic anisotropy (PMA) which
is very important for the devices using domain walls since that allows for
higher information density. Furthermore, it has been proposed [135] that rel-
ativistic effects are responsible for the unusual behaviour of the domain walls
in these materials and more specific, the DM interaction and the spin-Hall
effect. Based on the previously experimentally characterized materials, Co
monolayers, Co trilayers and heterostructures of Co/Ni/Co deposited on dif-
ferent types of heavy metals are studied here. Our interest is focused on the
Dzyaloshinskii-Moriya vectors and the magnetocrystalline anisotropy (MAE)
which are crucial for a proper description of the magnetization dynamics of
these systems.

In addition to the effect on the domain wall dynamics, the existence of
strong DMI in this type of heterostructures is also very interesting because it
favors the existence of skyrmions. In addition to the ab-initio characterization
of the Co based PMA structures presented in paper VI, we have also studied
the resulting dynamics in these kinds of system. In paper VI the domain wall
and skyrmion dynamics are studied, under the influence of STT and the torque
which arises from spin-Hall effect (SHE). The simulations have been done on
model systems where the chosen parameters are based on the ab-initio studies
of paper IV.

8.2 Computational methods and systems
The ab-initio calculations for the electronic and magnetic properties of the
system are done by using the Korringa-Kohn-Rostoker approach, as imple-
mented in the SPR-KKR package [40] and fully relativistic effects are taken
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into account. Structural relaxation has also been considered for all the sys-
tems where the atoms are allowed to relax only along the z−axis. In order to
determine the pairwise exchange interactions between the magnetic atoms (Ji j
and Di j), LKAG formalism is used with the Ebert and Mankovsky approach
[42] for the DM vectors. The distance of each calculated interaction set to 8
lattice spacings in order to take into account any possible RKKY interactions
in the system [136, 137, 138]. The dynamics of the model systems is studied
in terms of atomistic spin dynamics as implemented in UppASD package [47]
and the torque resulting from SHE is given by equation (4.17) in Chapter 4.

Figure 8.1. Visualization of the studied systems in the [111] direction in the interest
region, the same kind of ordering is considered for the stacking in the [001] direction.
The number of layers in each of the zones is kept constant.

In Fig. 8.1, the Co/Ni/Co superlattice on top of the heavy metal substrate is
presented. As a substrate, they are used Cu, Rh, Pd, Ag, Ir, Pt and Au, while
the systems are capped with Cu. For all the above systems, [001] and [111]
stackings are studied with and without relaxation.

8.3 Results
For the atomistic spin dynamics study of the model system, the unit cell is
given by a fcc (001) monolayer and the strength of the Heisenberg exchange
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is fixed to J = 1 mRy for both cases of DWs and skyrmions. The strength
of the DM interaction is D = 0.025 mRy for DWs and D = 0.1 mRy for the
skyrmions. The direction of the DM vector stabilizes Néel DWs and Néel
skyrmions. The value of the magnetocrystalline anisotropy is taken to be K =
0.01 mRy and the easy axis anisotropy is out-of-plane. The magnitude of the
magnetic moments is m= 1μB. Lastly, the damping parameter is considered to
be a= 0.01, for simplicity, the non-adibacity parameter is maintained constant
at β = a and the spin-Hall angle ΘSHE varies from 0.01 to 0.1.

8.3.1 Monolayers and trilayers of Co
The effect of the substrate on the magnetic properties of the simple case of
monolayers and trilayers of Co studied and our interest is focused on the
MAE and the pairwise exchange interactions. All the structures are relaxed
along the z−direction as mentioned before and are examined in fcc [001], fcc
[111] and the hcp [0001] when the Co is deposited on Tc and Re. For both
monolayers and trilayers of Co, the easy axis of magnetisation depends on the
crystallographic direction which is in-plane for the fcc [001], while in the case
of fcc[111] and hcp [0001] stackings is out-of-plane. The magnitude of the
anisotropy depends on the material of the underlayer and the change of the
Fermi energy.

Similar to the MAE, the exchange stiffness of both monolayers and trilayers
of Co are strongly dependent on the material of the underlayer. For the Co
monolayers, the exchange stiffness of fcc [001] crystallographic direction is
much larger than the case of bulk Co for all the underlayer materials. On the
other hand, in the case of fcc [111] stacking there is however a larger variation
where the exchange stiffness is larger than the bulk Co for monolayers on x, y,
z while for when the substrate consists of q, w, r the stiffness is smaller than the
bulk value. In the hcp [0001] stackings, the nearest neighbour interactions are
much weaker and their values are smaller than the fcc stackings and the bulk
case. For the Co trilayers, in the hcp [0001] stacking the value of the exchange
stiffness is increased significantly in comparison with the Co monolayers and
it becomes larger than the bulk Co.

The magnitude and the chirality of the DMI for both monolayers and trilay-
ers of Co depend on the underlayer as well as the crystallographic direction.
From our calculations, it is shown that in general, the DMI in the Co mono-
layers is larger than the trilayers and this results from the fact that the DMI
is stronger at the interface where the spin-orbit coupling is larger due to the
broken inversion symmetry. This means that in the layers far away from the
interface the DMI is decreasing. More details can be found in the Tables I and
II of paper IV.
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8.3.2 Multilayers with heavy metal substrate

Co

Pt

In plane Co-Co
DM vector

Out of plane Co-Co
DM vector o

o-Co

[001]

[111]

Figure 8.2. Diagrams for DM vectors for the central atom of the Co layer over the Pt
substrate. Top: Unrelaxed structure for the [001] crystallographic direction. Bottom:

Unrelaxed structure for the [111] crystallographic direction.

In this section, the electronic and magnetic properties of Co/Ni/Co multi-
layers on top of a heavy metal substrate (Cu, Rh, Pd, Ag, Ir, Pt and Au) will be
presented. For the same crystallographic directions as in the previous section
([001] and [111]) and both relaxed and unrelaxed structures are considered.
Again the relaxation is allowed to take place only along the z−direction. For
the case of [001] growth without considering relaxation, changing the sub-
strate the properties of the structure have a variation which is not dramatic for
most of the substrates, except in the case of Ir substrate. By performing a struc-
tural relaxation, the exchange stiffness for each substrate increasing. Concern-
ing the magnetocrystalline anisotropy, it does change significantly upon the
relaxation for Cu and Ir substrates. Comparing our results between the two
different crystalographic directions, most of the properties do not exhibit any
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severe change, apart from EMAE which is smaller for the [111] direction. For
more details see Table III and IV of paper IV.

The ab-initio calculations, for both crystallographic directions, give DM in-
teractions in the interface of the multilayers with the heavy metal substrate.
In the case of [001] direction, the DM vectors between two neighbouring Co
atoms are perpendicular to the bond and in-plane, and their directions are not
changing with the structural relaxation. The magnitude of the DM vector de-
pends on the material of the substrate. When the growth is taking place along
the [111] direction, the DM vectors are still perpendicular to the distance vec-
tor between the two Co atoms, but compared to the situation for the unrelaxed
structures they have also an out-of-plane component as presented at the bottom
of Fig. 8.2. The relaxation, in this case, does thus not only change the magni-
tude but also the direction of the DM vectors which makes the relaxation very
important. The strong relaxation dependence of the DM vectors could open
up a possibility of tuning the DMI of a material by straining it, which could be
achieved by alloying the substrate.

8.3.3 Domain wall and skyrmion motion
As mentioned in the introduction of this chapter, magnetic heterostructures
on top of heavy metal exhibit an unexpected dynamical behaviour of domain
walls [55, 135, 56]. This behaviour is observed in the case of Néel DWs
and its origin is the torque coming from the spin-Hall effect (SHE) [135]. In
our studies, in order to investigate the effect of the SHE on the dynamics of
magnetic textures, a Néel domain wall is stabilised by choosing the direction
of the DM interaction in our toy model. Furthermore, since DMI is usually
strong in this kind of interfaces, skyrmions can be stabilised by introducing an
external magnetic field. By applying spin polarised current to move the DW,
a dependence of domain wall speed on the chirality of the DMI is observed as
it can be seen in Fig. 2 of paper VI. This is consistent with the experimental
results of reference [55].

When a magnetic layer is in contact with a non-magnetic one with a large
spin-orbit coupling, then while the electronic current flows through the non-
magnetic layer a transverse spin current is created and this is called spin-Hall
effect. The SHE affects the dynamics of the spin textures [135, 60, 139, 140,
141] as shown on the left of Fig. 8.3. The magnitude of the spin-Hall angle
influences the speed of the DW and a larger value of it results in higher speed.

The SHE torque has also impact to the total skyrmion velocity (on the
right of Fig. 8.3) and in the direction of the motion. By using only the STT
(ΘSHE = 0) to move the skyrmion and when the damping and the non-adiabatic
parameter are a = β = 0.01, then the skyrmion is travelling almost parallel to
the current, while the uy contribution is almost negligible. This can be seen
from the diagram on the right of Fig. 8.3, where for zero spin-Hall angle the
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Figure 8.3. Left: Domain wall speed as a function of u factor and spin-Hall angle
ΘSHE . The subscript of the u parameter indicates the direction of the flow of the
electronic current. Right: Total and the components of skyrmion velocity under the
influence of SHE.

uy is extremely small compare to the ux. On the other hand, the SHE forces
the skyrmion to move perpendicular to the direction of the current (along the
y−axis) [142] and as the spin-Hall angle is increased the uy contribution be-
comes larger. This behaviour of the perpendicular motion due to the SHE
can be explained by the torque given in equation (4.17) of Chapter 4. As
the current flows along the x−axis, the SHE torque is acting on the magnetic
moments which have y−component (0,my,0) and it starts rotating them in the
opposite direction (from -y direction to +y direction). Thus, when both STT
and SHE torque are present in the system results in a skyrmion motion by a
finite angle and not in a straight line.

8.4 Conclusions
At the interfaces of the studied systems there is a strong spin-orbit coupling
but the magnetic properties which are derived from this coupling are also very
sensitive to the local symmetry of the system and thus the crystallographic di-
rection and possible relaxations can have a dramatic influence on the MAE and
DMI. On the other hand, exchange stiffness is not influenced by the change
of the growth direction. Furthermore, in the case of Co/Ni/Co multilayers, the
value of MAE is affected by the underlayer material.

It is observed that the DM vectors depend on both the substrate and the
crystallographic direction. The highlighted difference of DM vectors is the in-
fluence of their direction by the stack ([001] or [111]). Thus, in [001] direction
the vectors have only in-plane components while in [111] an out-of-plane com-
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ponent appears which is determined by the substrate. An impact of the DMI
is the stabilization of the SHE which exerts a torque to the magnetic textures
which results in higher speed for the DW and in higher value of skyrmion’s
velocity utotal .
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9. Importance of edge interactions on creation
and annihilation of skyrmions

As referred in detail in Chapter 5, there is a response of skyrmions to the
spin polarised electronic current through spin transfer torques (STT) [97, 87,
100] and in this way it is possible to manipulate such spin textures efficiently.
As was mentioned in Chapter 5, skyrmions have some advantages such as
small depinning current and their ability to avoid defects, which make them
promising candidates as information carriers for the next generation spintronic
devices. However, in order to utilize skyrmions for this purpose, controlling
their motion is not enough but of crucial importance is also the possibility
of nucleating and annihilating skyrmions at will. Moreover, the information
should be stable and protected during the transfer from the input to the output
parts of the digital device. This means that the skyrmions should not be easily
annihilated at the edges of a finite system. In the following chapter, we will
demonstrate the impact of different edges to the annihilation and generation
of skyrmions.

In order to study the interaction between skyrmion and edges, we evalu-
ate the LLG equation of motion for a magnetic Hamiltonian with model pa-
rameters that resemble a generic skyrmion material. The simulations follows
the methodology described in Chapter 4. The considered system is a two-
dimensional model with 5,184 atoms (72× 72) in the xy−plane with open
boundaries conditions. The exchange interactions are taking place between
nearest neighbours only with values of J = 1 mRy and D = 0.32 mRy. The
atomistic magnetic moments are treated as classical vectors with fixed length
and magnitude 1 μB, while the dimensionless damping parameter is a = 0.1.
The mechanisms described below has also been simulated for other sets of ex-
change and damping parameters in order to conclude that the observed effects
are not particularly sensitive to the choice of these parameters. The involved
energies will however change with the choice of interaction strengths used in
the Hamiltonian.

9.1 Generation of skyrmions
In order to examine which mechanisms and parameters that are important for
current-induced skyrmion creation, we have simulated the effect of varying
the exchange interactions present at the edges of the considered system.
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As a starting point for the simulations, a ferromagnetic state is first stabi-
lized by applying an external magnetic field along the z−direction. A spin
polarised current is then injected into the system along the y−direction where
we here have neglected non-adiabatic effects of the current by using a value
of the β = 0 and we measure the threshold current density for nucleation of
skyrmions at the edge. This procedure is also described in Chapter 4. The
different edges are created by adding two rows at the bottom edge of the sys-
tem and both the strength and the sign of the Heisenberg exchange has been
varied. The values which are used for the edges are J′ =−J,J/2 and 2J which
represent the antiferromagnetic, the magnetically soft and stiff edge respec-
tively. In Fig. 9.1 is illustrated the model system with the antiferromagnetic
edge. The calculations show, as expected, that the magnetically soft edge has
the lower current density threshold (2.9×1012 A/m2) for generating skyrmion
and the highest value is for the stiff edge (1.3×1013 A/m2). While the thresh-
old current for generating skyrmions in the normal system is 7.2×1012 A/m2

and in the case of the anti-ferromagnetic edge is slightly smaller (5.1× 1012

A/m2). In the case of the magnetically soft edge, the strength of the exchange
interaction is J′ = 0.5 mRy < J and since all the other parameters are the same
as the rest of the system, the effective field Be f f

i of the magnetic Hamiltonian
is smaller and is easier to rotate the magnetic moment at the edge by applying
spin polarised current.

For more details see Table I in paper VII.

Figure 9.1. Vizualisation of the sytem with the antiferromagnetic edge with the stabi-
lized ferromagnetic state for skyrmion nucleation (left figure) and stabilized skyrmion
for the annihilation procedure (right figure).
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9.2 Annihilation of skyrmions
For using skyrmions as information carriers, the annihilation process is equally
important as for the creation process. When the skyrmion is close to the edge,
there is a repulsion between the outer boundary of skyrmion and the edge of
the system. The repulsive nature of the potential comes from the opposite
orientation of the magnetic moments at the edge and at the outer boundary of
the skyrmion. Responsible for this opposite orientation is the direction of the
DMI in the system which means that it would cost energy to the system if a
rotation of these magnetic moments takes place. Thus, in order to annihilate
the skyrmion at the edge, it has to overcome this energy barrier. By applying
a spin polarised current into the system, the skyrmion can be driven to the
edge but the energy barrier infers that in order to annihilate the skyrmion by
driving it out of the sample, the spin current density must be larger than a
given threshold value. On the other hand, if the strength of the current is
smaller than the threshold value, then the skyrmion is not able to overcome
the energy barrier but instead it moves parallel to the edge of the system. In
this section, we investigate the effect of the energy barriers for different kind
of edges similar to what was done in the previous section for the nucleation
process.

Table 9.1. Energy barrier for different kind of edges. The applied current density for
moving the skyrmion is j = 8.45×1011 A/m2.

Type of edge Energy barrier (mRy)
Normal edge 0.0011

AF edge 0.0012
Soft edge 0.0007
Stiff edge 0.0014

First, a single skyrmion is stabilised at the center of the system (Fig. 9.1)
and then is driven to the bottom edge by injecting current. The current density
is j = 8.45×1011 A/m2. The highest and the lowest energy barrier are reported
for the case of the magnetically stiff and soft edge respectively as it is shown in
Table 9.1. As previously mentioned, the strength of the exchange interaction
of the soft edge J′ is smaller than the J of the rest of the system. This means
that it favours a slower rotation of the magnetic moments since DMI is not
changed at the edge. In other words, the angle between the magnetic moments
at the soft edge and the direction of the external field is smaller compare to
the case of the normal edge. This smaller angle explains the lower repulsive
potential and therefore the smaller energy barrier.

A particularly interesting observation that was obtained from the simula-
tions is that there are actually two different annihilation processes observed,
depending on the choice of interaction strengths. For all the different edges,
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except for the stiff edge, the skyrmion is approaching the edge and a rotation
of the magnetic moments at the edge is taking place. The rotation results in
the reduction of the repulsive potential and as the skyrmion is getting closer,
the repulsive potential keeps decreasing. At some point, the skyrmion will be
attached to the edge and the annihilation process starts (Fig. 9.2a-c). A differ-
ent procedure is on the other hand found for the annihilation process against
the magnetically stiff edge. In this case, there is no rotation of the moments
at the edge of the system but instead it is the moments at the perimeter of the
skyrmion who start to rotate. This has an impact on the size of the skyrmion
which is getting smaller and smaller as the current keeps pushing it at the edge.
At the end, the skyrmion collapses as is shown in Fig. 9.2d-f. Therefore, the
energy barrier n Table 9.1 for the magnetically stiff edge (0.0014 mRy) it does
not come from the edge but it is actually the intrinsic energy of the skyrmion.
The interpretation of the two observed scenarios is that the energy barrier, or
associated current density threshold, can be lowered by softening the magnetic
interactions at the edges of a skyrmion-carrying material. On the other hand,
it is not possible to increase the barrier by a magnetically hard edge because
the maximum strength of the annihilation barrier is in fact determined by the
intrinsic exchange interactions in the material where the skyrmion exists.

a) b) c)

d) e) f)

Figure 9.2. Vizualisation of the two different procedures of annihilation. (a-c)
Skyrmion forces the edge moments to rotate and eventually is attached to the edge
and is getting out of the system. (d-f) In the case of magnetically stiffer edge, the
skyrmion does not penetrate into that region which results in the shrinking of the
skyrmion which is followed by collapsing.
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10. Skyrmion phase in MnPt0.99Ir0.01Sn
half-Heusler alloy

It is already mentioned throughout this thesis that the most important interac-
tion for the stabilization of skyrmions is the DM interaction and its competi-
tion with the Heisenberg exchange. Materials with large spin-orbit coupling
and lack of inversion symmetry exhibit strong DM interaction. The most fa-
mous and studied class of materials for stabilising skyrmions are the ones
with non-centrosymmetric B20 structure (e.g MnSi [10] and FeGe [77, 76]).
Skyrmions have also been observed in low dimensional structures as Fe mono-
layer on top of Ir(111) [61] or in a ferromagnet/heavy metal bilayer [92]. An-
other promising class of materials for skyrmion observation are some Heuslers
alloys, such as Mn2RhSn [143], which show a non-collinear ground state.

From energy considerations, it is evident that the skyrmion size can be al-
tered by varying the D/J ratio. Changing this ration can be achieved by alloy-
ing, as has been demonstrated for Mn1−xFexGe B20 structure [81]. In paper

V, MnZSn half-Heusler systems have been studied from first-principles with
Z being Tc, Ru, Rh, Os, Ir and Pt in order to explore which of them perform a
non-collinear ground state. The ground state of MnPtSn is a spin-spiral, thus
the alloy MnPt1−xIrxSn has also studied from first-principles in order to ex-
amine how its spin-spiral wavelength λspiral changes. Afterwards, the phase
diagram of lowest Ir concentration (x= 0.01) investigated in terms of atomistic
spin dynamics calculations.

10.1 Magnetic interactions and spin-spiral wavelength
The magnetic interactions of all half-Heusler compounds which are referred
in the introduction are calculated in order to investigate if they exhibit non-
collinear magnetic order. The Mn-Mn Heisenberg exchange interactions for
the studied systems show strong anti-ferromagnetic interactions, except for
the case Z=Pt as presented in Fig. 10.1. It is further found from the calcula-
tions that the strength and the direction of the DM interaction depend on the Z
material. From all the studied compounds only MnPtSn was found to have fer-
romagnetic exchange interaction and its ground state is a spin-spiral with short
wavelength due to the small Heisenberg exchange and the large DMI. More
details of the electronic structure for the Heusler compounds can be found in
paper V.
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Figure 10.1. Left: Pairwise exchange interactions as a function of distance
for MnZSn. Right: Spin-spiral wavelength as a functon of Ir concentration in
MnPt1−xIrxSn.

The electronic structure of MnPtSn is affected by partial alloying, in our
case by substituting Pt with Ir. As the Ir concentration increases in the com-
pound, the pairwise Heisenberg exchange interaction between the Mn-Mn
nearest neighbours decreases and this behaviour can be understood by looking
the left panel of Fig. 10.1, where it is shown that the MnIrSn has antiferromag-
netic Mn-Mn interaction. In contrast to the Heisenberg exchange interaction,
the x and y component of the DM vector are increased while there is no signif-
icant change of the z component as it can be seen in Fig. 10.2. Since the D/J
ratio is tuned as a function of Ir concentration, the spin-spiral wavelength is
also tuned as is illustrated in the right plot of Fig. 10.1. From our results, we
observe that the wavelength is much shorter compare to the B20 structures.
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Figure 10.2. In the upper panel are shown the exchange interactions as a function of
distance for MnPt1−xIrxSn for three different concentration of Ir (0.0, 0.05 and 0.10).
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10.2 Phase diagram of MnPt1−xIrxSn thin film
Guided by the results for the fully ordered Heusler compounds studied in the
previous section, the existence of skyrmions has also been investigated in the
thin film MnPt0.99Ir0.01Sn alloy by performing atomistic spin dynamics simu-
lations. A thin film is used in our calculations because of the fact that several
experimental results [76, 88, 144, 145] agree on the wider region of SkX-phase
in the T −Bext (T is the temperature and Bext is the external magnetic field)
phase space, when the thickness of the sample is smaller or slightly bigger
than the spin-spiral wavelength.
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Figure 10.3. Calculated phase diagram of thin film MnPt1−xIrxSn alloy.

The results show a skyrmion phase for the certain half-Heusler compound
as it is presented in Fig. 10.3, where the SkX-phase is the skyrmion phase. As
seen in Fig. 10.3, skyrmions are stable when an external magnetic field is ap-
plied even when the temperature is zero. The spiral wavelength in the ground
state is λspiral = 4.6 nm and the thickness is chosen t = 3.7 nm. The critical
temperature of the system is TC = 140 K and above this temperature, the sys-
tem exhibits a paramagnetic behaviour. At T = 0 K and in low external field
the spin-spiral configuration is stabilised and the transition to skyrmion phase
takes place at Bext = 3.3 T. When the external field is increased further, then
the Zeeman term of the magnetic Hamiltonian is the dominant one and the
ferromagnetic state is stabilised. Those three states exist in the whole temper-
ature range up to the TC and it is observed that in higher T lower external field
is needed for the stabilisation of skyrmions and for the ferromagnetic state as
well. It is worth mentioning here, that the range of the magnetic field in which
the skyrmion phase exists in the thin film MnPt0.99Ir0.01Sn alloy is quite large
(∼3 T at zero temperature) compare to the one of B20 structure thin films. For
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instance, the experimental observation of FeGe thin film [77] gives a range of
∼0.3 T at zero temperature where skyrmion phase is present.

By applying a spin-polarised current through the thin film we are able to
move the stabilised skyrmions and discover the depinning current density. For
the MnPt0.99Ir0.01Sn thin film under the influence of Bext = 4.7 T and at T = 0
K the depinning current density is j = 8.3×109A/m2.

Because of the observed spin-spiral ground state, the half-Heusler MnPtSn
compound and the MnPt1−xIrxSn alloy are suggested to be promising candi-
dates for realising the skyrmion state in the Heusler family. The advantage of
the MnPt1−xIrxSn alloy is that the magnetic properties can be tuned, by chang-
ing the Ir concentration in order to achieve small size skyrmions. In the case of
the small Ir concentration (x = 0.01), the skyrmionic state is stable in a wide
range of external magnetic field even at zero temperature in the case of thin
film.
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11. Conclusions and outlook

Devices used in technology nowadays are getting smaller in size, which means
that the characterization of magnetic properties and the investigation of mag-
netization dynamics on the atomic level becomes more and more important.
This characterization can be done by combining first-principles calculations
and the atomistic spin dynamics method. We have demonstrated that first-
principles calculations, by the use of density functional theory, can describe
the magnetic ground state properties, while the LKAG formalism can describe
the pairwise exchange interactions, J and DM, of the studied materials quite
well. In addition, the magnetic ground state and the evolution of magnetiza-
tion in time can be studied with atomistic spin dynamics by using the Landau-
Lifshitz-Gilbert equation of motion. Combining these two methods provides
a valuable and powerful tool for studying the static and dynamic magnetic
properties on an atomistic level.

Both methods described above, have been used in this thesis with the over-
all goal of studying the mechanisms behind skyrmion manipulation and also
characterizing materials suitable for future skyrmion-based applications.

Regarding the investigation of suitable skyrmion materials we have studied
the MnZSn half-Heuslers compounds. First, first-principles studies are used
in order to discover the magnetic properties of these half-Heuslers compounds
and the results show that the alloy MnPt1−xIrxSn has a ferromagnetic cou-
pling (J > 0) and a strong DM interaction. Then, atomistic spin dynamics
simulations show that the competition between these two exchange interac-
tions results in a spin-spiral ground state. The wavelength of the helimagnetic
ground state is influenced by the Ir concentration and as the concentration is
increasing, the wavelength is decreasing. By applying an external magnetic
field to the thin film of MnPt0.99Ir0.01, the skyrmion phase is observed even at
zero temperature.

The same methods have been also used for the investigation of the dynam-
ics of topological magnetic defects in FeGe which are combined with exper-
iments (MFM and single-spin magnetometry with NV centers). From this
study it was found how thermally induced defects, especially in the shape of
magnetic edge dislocations, move. The understanding of the defect dynamics
in helimagnets is important for explaining the development of the helimag-
netic ground state. The defect motion takes over micromagnetic distances and
it explains the magnetic instabilities in helical magnets.

Furthermore, the LKAG formalism has also been used to study the ex-
change interactions of low-dimensional Co heterostructures on top of a non-
magnetic heavy metal substrate. From this study it is found that the choice
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of substrate determines the magnitude and the direction of DM interactions.
Also, the crystallographic direction of the stacks plays a major role to the DM
vector. Based on the results of the previous heterostructures, toy models are
used in order to investigate the motion of domain wall and skyrmion by the use
of SLLG equation of motion. It is found that the speed of the domain wall and
both the speed and the direction of skyrmion are influenced by the presence of
SHE.

Concerning the dynamics of topological magnetic structures and individ-
ual solitons several studies on how such systems can be manipulated has been
performed. Magnetization dynamics studies show that it is possible to annihi-
late and create one-dimensional solitons by means of a spin-polarised currents.
Furthermore, these nanostructures are able to perform logic operations by en-
coding the logic state ("0" or "1") in the chirality of the structure. A three-input
majority gate been proposed which requires the absence of DMI in the output
arm. The choice of the encoded input has been proposed to be achieved by the
use of a laser which gives the opportunity to change the sign of the DMI and
tune the strength if necessary.

Regarding skyrmion dynamics, the interaction between skyrmions and the
edges of the system on which they are confined have been investigated by
means of atomistic spin dynamics simulations. In particular, the annihilation
and nucleation processes that can be obtained at the edge of a sample, by
injecting spin polarised current has been studied. It is demonstrated that the
current density threshold strongly depends on the strength and type of the
magnetic interactions present at the edge. Being able to modify the current
thresholds needed for annihilating and creating skyrmions has an an obvious
impact on the energy consumption associated with these processes. This is
important since skyrmions are candidates as information carriers in the future
magnetic storage devices.

The presented methods offer the tool for designing magnetic materials for
new technological applications which can improve the performance and the
energy consumption of the computer technologies. The atomistic discrete de-
scription gives also the opportunity for the examination of more complex mag-
netic structures which attract a lot of interest lately, such as antiferromagnetic
skyrmions. By further development of the atomistic spin dynamics method,
it will be possible to study the magnetization dynamics of such structures by
applying spin-polarised currents.

One of the challenges for magnetic skyrmions is the ordering temperature
which in B20 structures is below room temperature and for that reason dif-
ferent classes of materials with strong DMI have to be investigated for mag-
netic skyrmions. In this thesis, we found out that skyrmion state exists in a
thin film of half-Heusler alloy (MnPt0.99Ir0.01) in which the ordering temper-
ature is again below the room temperature but it shows that the huge class
of Heusler alloys are also candidates for investigating the skyrmion phase.
Another challenge is the size of magnetic skyrmions where a small size is
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desirable since a higher bit density can be achieved. Interfaces between thin
magnetic layers and non-magnetic heavy metal substrates are promising can-
didates because some of them exhibit strong DM interaction and perpendicular
magnetic anisotropy as it is shown from our first-principles studies. Moreover,
it has been shown in the thesis that the exchange interactions (both J and DM)
can be tuned by alloying half-Heusler compounds which could result in a small
size magnetic skyrmions.

The physical and topological stability of magnetic skyrmions are of par-
ticular interest for spintronic applications. These properties make skyrmions
robust against defects and each skyrmion could be used to store 1 bit of infor-
mation. This type of structure is possible to be created with a magnetic field,
electric field or low-density current which it can be also used for manipulating
them. However, until recently, skyrmions did exist at very low temperatures
but it is predicted that they also exist at room temperature by stacking mag-
netic and non-magnetic thin layers. In other words, there is an opportunity of
creating next generation very high density information storage devices due to
the nanometer size of each skyrmion. Moreover, the properties of the mag-
netic skyrmions as previously mentioned, improve the stability of the bits as
well as the speed and the efficiency of writing and reading the information due
to their fast motion through the material. In addition, compare to the HDD
or SDD storage devices, skyrmion-based devices do not require mechanical
moving parts but only low-density current which makes it possible to reduce
the energy consumption. Furthermore, these proposed devices are compatible
with conventional integrated circuit technology but of course, there are still
challenges that have to overcome in order to use skyrmions as information
carriers. Some of these challenges are the difficulties of fully controlling their
motion and their nucleation as well as the issue of protecting them from the
boundaries of the device in order to avoid undesirable annihilations. There is
still a long way to go until the first memory applications based on magnetic
skyrmions are produced.
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12. Summary in Swedish

Magnetisk datalagring är ett forskningsområde som har varit aktivt långt mer
än bara senaste årtiondena, vilket många kanske tror. Grundidén är dock fort-
farande densamma: skriv- och läshuvuden används för att spara och hämta
data. Under de senaste 30-35 åren har den här sortens magnetisk lagring
utvecklats enormt, kapaciteten har ökat från kilobytes till terabytes och över-
föringshastigheten har ökat från enstaka bytes per sekund till 100+ megabytes
per sekund. Dessa framsteg har till stor del möjliggjorts genom upptäckan-
det av nya elektroniska komponenter, som utför snabbare logiska beräkningar
genom att använda sig av elektriska strömmar. Det verkar dock som att taket
snart är nått för prestandan hos de elektroniska komponenterna på grund av
problem från oönskad Joulevärme som uppkommer av elektronernas rörelse.
Ett alternativ för att fortsätta att öka prestandan kan vara att använda kom-
ponenter som utnyttjar elektronernas spinn (spinntropik) eller förändringar
av materialets magnetiska struktur såsom spinnvågor (magnonik), istället för
konventionella elektroniska komponenter. Utvecklandet av spinntropik kan
sägas ha startat på bred front med upptäckandet av Giant Magneto-Resistance-
effekten (GMR) [2, 3] av Peter Grünberg och Albert Fert som fick Nobelpriset
i fysik 2007 för det arbetet om magnetisk manipulation av elektriska ström-
mar. Användandet av spinn för att transportera information har sedan dess lett
till en ny generation av snabbare och energisnålare komponenter med ökad
datalagringsförmåga.

Ett fenomen som kan ses som en invers av GMR är möjligheten att påverka
magnetismen i ett material med hjälp av spinnpolariserade elektriska ström-
mar. Den effekten kallas på engelska spin transfer torque (STT) eftersom den
orsakas av att det sker en överföring av rörelsemängdsmoment mellan elek-
tronerna i strömmen och elektronerna i det magnetiska materialet. Baserat
på det här fenomenet har Stuart Parkin föreslagit en datalagringslösning, där
STT-effekten används för att flytta domänväggar i ett ferromagnetiskt material.
Deras höga hastighet är en egenskap, som gör domänväggar till en lockande
metod för att skapa logiska komponenter, t.ex. Magnetic Random Access
Memories (MRAMs). Dock måste man, för att nå de här höga hastigheterna,
använda en väldigt hög strömtäthet i storleksordningen j ∼ 1012 A/m2.

2009 upptäcktes en icketrivial magnetisk struktur som sedan dess har fått
ett väldigt stort intresse inom området av kondenserad materialteori. Struk-
turen kallas skyrmion och dess beskrivning härstammar ursprungligen från
en högenergimodell inom partikelfysiken. Magnetiska skyrmioner är topol-
ogiskt stabila och kirala spinnstrukturer som kan beskrivas av en virvel av
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de magnetiska momenten och där den magnetiska strukturen har en väldigt
mjuk övergång i materialet. Den sistnämnda egenskapen får skyrmionerna att
koppla väldigt effektivt till spinnpolariserade elektriska strömmar, vilket re-
sulterar i ett extremt låg tröskelvärde för den kritiska strömtätheten, i storlek-
sordningen j∼ 106 A/m2. Men skyrmioner är lovande kandidater för framtida
datalagringskomponenter inte bara på grund av det lilla strömtröskelvärde som
behövs för att förflytta dem, utan även för att deras rörelser inte påverkas my-
cket av eventuella defekter i materialet.

För att fullkomligt förstå fenomenen på nanonivå hos de nya föreslagna
spinnbaserade komponenterna, oavsett om de är uppbygda av domänväggar
eller skyrmioner, behövs en karaktärisering av dess magnetiska egenskaper
samt deras magnetiseringsdynamik på atomär nivå. Enkla modeller används
ofta för att beskriva magnetismen i material. En väldigt populär och van-
lig modell är Heisenbergmodellen [12], vilken beskriver kopplingen mellan
lokaliserade magnetiska moment. Heisenberghamiltonianen kan expanderas
så att den förutom kopplingskonstanten J, också innehåller termer som beskriver
ett materials magnetiska anisotropi (MAE), samt ett tredje magnetiskt bidrag
som kallas Dzyaloshinskii-Moriyaväxelverkan (DMI). Det sistnämnda bidraget
är en antisymmetrisk utbytesinteraktion mellan de magnetiska momenten och
den spelar en avgörande roll för stabiliseringen av skyrmioner och liknande
magnetiska strukturer. Alla parametrar i den utökade Heisenbergmodellen
kan beräknas med hjälp av metoder baserade på täthetsfunktionalteori (DFT).
För att studera magnetiseringsdynamiken för atomära magnetiska moment
kan Landau-Lifshitzekvationen (LL) eller Landau-Lifshitz- Gilbertekvationen
(LLG) [13, 14] användas. Kombinationen av LLG simuleringar på atomär
nivå, som också kallas atomistisk spinndynamik (ASD), med DFT beräkningar
av de viktigaste parameterarna i den magnetiska Hamiltonianen ger en metod
som är väldigt användbar för att undersöka tidsutvecklingen av magnetism på
små längdskalor och i komplexa magnetiska strukturer.

Denna avhandling rymmer ett antal studier där DFT beräkningar och ASD
simuleringar har använts för att undersöka hur skyrmioner, domänväggar och
andra magnetiska strukturer kan manipuleras genom spinnpolariserade ström-
mar. En familj av lovande system för framtida skyrmiontillämpningar är tun-
nfilmsbaserade material där övergångsmetallen Co kombineras med tyngre
metaller som Pt, Ir och Au. Dessa system har undersökts med hjälp av DFT
beräkningar som visat att såväl materialens MAE och DMI uppvisar ett starkt
beroende på vilken metall som kombinerats med Co. Beroendet är så kraftigt
att till och med tecknet på växelverkan kan ändras mellan de olika systemen.
DFT beräkningar har också använts för att undersöka magnetiska egenskaper
hos Mn-baserade metalliska legeringar med Heuslerstruktur. För lämpligt
valda legeringsammansättningar såsom MnPt0.99Ir0.01Sn indikerar beräkningarna
att legeringens DMI är sådan att det går att stabilisera skyrmioner i materialet.

Genom att kombinera DFT beräkningar och ASD simuleringar har magne-
tiseringsdynamiken i det heliska spinnspiralmaterialet FeGe studerats, framför
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allt med avseende på hur magnetiska defekter uppkommer och rör sig vid höga
temperaturer. Den teoretiska undersökningen har här kombinerats med exper-
imentella studier och tillsammans har det visat att de magnetiska defekterna i
den helimagnetiska strukturen kan vara av topologisk karaktär och att de även
beter sig på ett liknande sätt som defekter i helt andra system så som ordnade
kristaller.

Dynamiken hos isolerade skyrmioner i tunna filmer har också studerats
med ASD. Studierna har visat att det går att påverka hur lätt det är att skapa
och förstöra individuella skyrmioner genom att ändra de magnetiska egen-
skaperna, framförallt Heisenberg och Dzyaloshinskii-Moriya inneraktionerna
vid systemens kanter. Starkare Heisenbergkoppling bidrar till att en högre
strömtäthet krävs för att skapa skyrmioner, medan den kritiska strömtäthet
som behövs för att förstöra en skyrmion är begränsad av utbyteskopplingarna
inne i materialet och inte främst vid kanterna.

Dessutom har magnetiseringsdynamiken för magnetiska solitoner i kvasi-
endimensionella material studerats med ASD simulerings och där har det visats
att för enkla fall kan dynamiken beskrivas med analytiska uttryck som ges av
sina-Gordonekvationen. Vidare har simuleringarna visat, givet att DMI i ma-
terialet kan påverkas genom yttre stimulans, att dessa magnetiska solitoner
kan kombineras för att utföra fundamentala logiska operationer. Solitonerna
skulle därmed kunna användas som byggklossar för framtida spinnbaserade
tillämpningar för informationsbehandling.
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[62] M. Pajda, J. Kudrnovskỳ, I. Turek, V. Drchal, and P. Bruno, “Ab initio
calculations of exchange interactions, spin-wave stiffness constants, and Curie
temperatures of Fe, Co, and Ni,” Physical Review B, vol. 64, no. 17, p. 174402,
2001.

[63] A. S. Schwartz, “Topology for physicists,” 1994.
[64] R. Rajaraman, “Solitons and instantons,” 1982.
[65] H.-B. Braun, “Topological effects in nanomagnetism: from

superparamagnetism to chiral quantum solitons,” Advances in Physics, vol. 61,
no. 1, pp. 1–116, 2012.

[66] T. H. R. Skyrme, “A non-linear field theory,” in Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences,
vol. 260, pp. 127–138, The Royal Society, 1961.

[67] T.-L. Ho, “Spinor Bose condensates in optical traps,” Physical review letters,
vol. 81, no. 4, p. 742, 1998.

[68] U. Al Khawaja and H. Stoof, “Skyrmions in a ferromagnetic Bose–Einstein
condensate,” Nature, vol. 411, no. 6840, pp. 918–920, 2001.

92



[69] J.-i. Fukuda and S. Žumer, “Quasi-two-dimensional skyrmion lattices in a
chiral nematic liquid crystal,” Nature communications, vol. 2, p. 246, 2011.

[70] C. Pfleiderer, “Magnetic order: Surfaces get hairy,” Nature Physics, vol. 7,
pp. 673–674, 2011.

[71] N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic
skyrmions,” Nature nanotechnology, vol. 8, no. 12, pp. 899–911, 2013.

[72] A. Bogdanov and D. Yablonskii, “Thermodynamically stable vortices in
magnetically ordered crystals. the mixed state of magnets,” Zh. Eksp. Teor. Fiz,
vol. 95, pp. 178–182, 1989.

[73] A. Bogdanov and A. Hubert, “Thermodynamically stable magnetic vortex
states in magnetic crystals,” Journal of magnetism and magnetic materials,
vol. 138, no. 3, pp. 255–269, 1994.

[74] U. Rößler, A. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground
states in magnetic metals,” Nature, vol. 442, no. 7104, pp. 797–801, 2006.

[75] B. Lebech, J. Bernhard, and T. Freltoft, “Magnetic structures of cubic FeGe
studied by small-angle neutron scattering,” Journal of Physics: Condensed
Matter, vol. 1, no. 35, p. 6105, 1989.

[76] M. Uchida, N. Nagaosa, J. He, Y. Kaneko, S. Iguchi, Y. Matsui, and Y. Tokura,
“Topological spin textures in the helimagnet FeGe,” Physical Review B,
vol. 77, no. 18, p. 184402, 2008.

[77] X. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Zhang, S. Ishiwata, Y. Matsui,
and Y. Tokura, “Near room-temperature formation of a skyrmion crystal in
thin-films of the helimagnet FeGe,” Nature materials, vol. 10, no. 2,
pp. 106–109, 2011.

[78] H. Wilhelm, M. Baenitz, M. Schmidt, U. Rößler, A. Leonov, and A. Bogdanov,
“Precursor phenomena at the magnetic ordering of the cubic helimagnet
FeGe,” Physical review letters, vol. 107, no. 12, p. 127203, 2011.

[79] J. Beille, J. Voiron, and M. Roth, “Long period helimagnetism in the cubic
B20 Fex Co1−x Si and Cox Mn1−x Si alloys,” Solid state communications,
vol. 47, no. 5, pp. 399–402, 1983.

[80] K. Ishimoto, Y. Yamaguchi, J. Suzuki, M. Arai, M. Furusaka, and Y. Endoh,
“Small-angle neutron diffraction from the helical magnet Fe0.8Co0.2Si,”
Physica B: Condensed Matter, vol. 213, pp. 381–383, 1995.

[81] K. Shibata, X. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto,
S. Ishiwata, Y. Matsui, and Y. Tokura, “Towards control of the size and helicity
of skyrmions in helimagnetic alloys by spin-orbit coupling,” Nature
nanotechnology, vol. 8, no. 10, pp. 723–728, 2013.

[82] Y. Ishikawa, K. Tajima, D. Bloch, and M. Roth, “Helical spin structure in
manganese silicide MnSi,” Solid State Communications, vol. 19, no. 6,
pp. 525–528, 1976.

[83] K. Motoya, H. Yasuoka, Y. Nakamura, and J. Wernick, “Helical spin structure
in MnSi-NMR studies,” Solid State Communications, vol. 19, no. 6,
pp. 529–531, 1976.

[84] G. Shirane, R. Cowley, C. Majkrzak, J. Sokoloff, B. Pagonis, C. Perry, and
Y. Ishikawa, “Spiral magnetic correlation in cubic MnSi,” Physical Review B,
vol. 28, no. 11, p. 6251, 1983.

[85] M. Ishida, Y. Endoh, S. Mitsuda, Y. Ishikawa, and M. Tanaka, “Crystal

93



chirality and helicity of the helical spin density wave in MnSi. II. Polarized
neutron diffraction,” Journal of the Physical Society of Japan, vol. 54, no. 8,
pp. 2975–2982, 1985.

[86] K. Kadowaki, K. Okuda, and M. Date, “Magnetization and magnetoresistance
of MnSi. I,” Journal of the Physical Society of Japan, vol. 51, no. 8,
pp. 2433–2438, 1982.

[87] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. Niklowitz, and
P. Böni, “Topological Hall effect in the A phase of MnSi,” Physical review
letters, vol. 102, no. 18, p. 186602, 2009.

[88] X. Yu, Y. Onose, N. Kanazawa, J. Park, J. Han, Y. Matsui, N. Nagaosa, and
Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal,”
Nature, vol. 465, no. 7300, pp. 901–904, 2010.

[89] X. Yu, N. Kanazawa, W. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui,
Y. Onose, and Y. Tokura, “Skyrmion flow near room temperature in an
ultralow current density,” Nature communications, vol. 3, p. 988, 2012.

[90] Y. Tokunaga, X. Yu, J. White, H. M. Rønnow, D. Morikawa, Y. Taguchi, and
Y. Tokura, “A new class of chiral materials hosting magnetic skyrmions
beyond room temperature,” Nature communications, vol. 6, 2015.

[91] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von
Bergmann, A. Kubetzka, and R. Wiesendanger, “Writing and deleting single
magnetic skyrmions,” Science, vol. 341, no. 6146, pp. 636–639, 2013.

[92] W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E.
Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, et al., “Blowing magnetic
skyrmion bubbles,” Science, vol. 349, no. 6245, pp. 283–286, 2015.

[93] A. Fert, “Magnetic and transport properties of metallic multilayers,” in
Materials Science Forum, vol. 59, pp. 439–480, Trans Tech Publ, 1990.

[94] A. Crépieux and C. Lacroix, “Dzyaloshinsky–Moriya interactions induced by
symmetry breaking at a surface,” Journal of magnetism and magnetic
materials, vol. 182, no. 3, pp. 341–349, 1998.

[95] C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C. Vaz,
N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, et al.,
“Additive interfacial chiral interaction in multilayers for stabilization of small
individual skyrmions at room temperature,” Nature nanotechnology, vol. 11,
no. 5, pp. 444–448, 2016.

[96] S. Woo, K. Litzius, B. Krüger, M.-Y. Im, L. Caretta, K. Richter, M. Mann,
A. Krone, R. M. Reeve, M. Weigand, et al., “Observation of room-temperature
magnetic skyrmions and their current-driven dynamics in ultrathin metallic
ferromagnets,” Nature materials, 2016.

[97] F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer,
T. Adams, R. Georgii, P. Böni, R. Duine, et al., “Spin transfer torques in MnSi
at ultralow current densities,” Science, vol. 330, no. 6011, pp. 1648–1651,
2010.

[98] K. Everschor, M. Garst, R. Duine, and A. Rosch, “Current-induced rotational
torques in the skyrmion lattice phase of chiral magnets,” Physical Review B,
vol. 84, no. 6, p. 064401, 2011.

[99] K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Mühlbauer, C. Pfleiderer, and
A. Rosch, “Rotating skyrmion lattices by spin torques and field or temperature

94



gradients,” Physical Review B, vol. 86, no. 5, p. 054432, 2012.
[100] T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer,

K. Everschor, M. Garst, and A. Rosch, “Emergent electrodynamics of
skyrmions in a chiral magnet,” Nature Physics, vol. 8, no. 4, pp. 301–304,
2012.

[101] J. Zang, M. Mostovoy, J. H. Han, and N. Nagaosa, “Dynamics of skyrmion
crystals in metallic thin films,” Physical review letters, vol. 107, no. 13,
p. 136804, 2011.

[102] A. Aharoni, “Introduction to the theory of ferromagnetism, vol. 93 of
international series of monographs on physics,” 1996.

[103] A. Thiele, “Steady-state motion of magnetic domains,” Physical Review
Letters, vol. 30, no. 6, p. 230, 1973.

[104] A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nature
nanotechnology, vol. 8, no. 3, pp. 152–156, 2013.

[105] A. Rosch, “Skyrmions: moving with the current,” Nature nanotechnology,
vol. 8, no. 3, pp. 160–161, 2013.

[106] J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Current-induced skyrmion
dynamics in constricted geometries,” Nature nanotechnology, vol. 8, no. 10,
pp. 742–747, 2013.

[107] X. Yu, M. Mostovoy, Y. Tokunaga, W. Zhang, K. Kimoto, Y. Matsui,
Y. Kaneko, N. Nagaosa, and Y. Tokura, “Magnetic stripes and skyrmions with
helicity reversals,” Proceedings of the National Academy of Sciences, vol. 109,
no. 23, pp. 8856–8860, 2012.

[108] M. Uchida, Y. Onose, Y. Matsui, and Y. Tokura, “Real-space observation of
helical spin order,” Science, vol. 311, no. 5759, pp. 359–361, 2006.

[109] U. Hartmann, “Magnetic force microscopy,” Annual review of materials
science, vol. 29, no. 1, pp. 53–87, 1999.

[110] C. Degen, “Scanning magnetic field microscope with a diamond single-spin
sensor,” Applied Physics Letters, vol. 92, no. 24, p. 243111, 2008.

[111] L. Rondin, J. Tetienne, T. Hingant, J. Roch, P. Maletinsky, and V. Jacques,
“Magnetometry with nitrogen-vacancy defects in diamond,” Reports on
Progress in Physics, vol. 77, no. 5, p. 056503, 2014.

[112] T. Göddenhenrich, U. Hartmann, M. Anders, and C. Heiden, “Investigation of
bloch wall fine structures by magnetic force microscopy,” The Monthly
Microscopical Journal, vol. 3, no. 3, pp. 527–536, 1987.

[113] T. Göddenhenrich, H. Lemke, U. Hartmann, and C. Heiden, “Magnetic force
microscopy of domain wall stray fields on single-crystal iron whiskers,”
Applied physics letters, vol. 56, no. 25, pp. 2578–2580, 1990.

[114] B. M. Chernobrod and G. P. Berman, “Spin microscope based on optically
detected magnetic resonance,” Journal of applied physics, vol. 97, no. 1,
p. 014903, 2005.

[115] S. Sekatskii and V. Letokhov, “Nanometer-resolution scanning optical
microscope with resonance excitation of the fluorescence of the samples from
a single-atom excited center,” Journal of Experimental and Theoretical
Physics Letters, vol. 63, no. 5, pp. 319–323, 1996.

[116] J. Wrachtrup, C. Von Borczyskowski, J. Bernard, M. Orritt, and R. Brown,
“Optical detection of magnetic resonance in a single molecule,” 1993.

95



[117] J. Köhler, J. Disselhorst, M. Donckers, E. Groenen, J. Schmidt, and
W. Moerner, “Magnetic resonance of a single molecular spin,” 1993.

[118] G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin,
C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, et al., “Nanoscale imaging
magnetometry with diamond spins under ambient conditions,” Nature,
vol. 455, no. 7213, pp. 648–651, 2008.

[119] J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang,
M. G. Dutt, E. Togan, A. Zibrov, et al., “Nanoscale magnetic sensing with an
individual electronic spin in diamond,” Nature, vol. 455, no. 7213,
pp. 644–647, 2008.

[120] J.-P. Tetienne, T. Hingant, J.-V. Kim, L. H. Diez, J.-P. Adam, K. Garcia, J.-F.
Roch, S. Rohart, A. Thiaville, D. Ravelosona, et al., “Nanoscale imaging and
control of domain-wall hopping with a nitrogen-vacancy center microscope,”
Science, vol. 344, no. 6190, pp. 1366–1369, 2014.

[121] J.-P. Tetienne, T. Hingant, L. Martinez, S. Rohart, A. Thiaville, L. H. Diez,
K. Garcia, J.-P. Adam, J.-V. Kim, J.-F. Roch, et al., “The nature of domain
walls in ultrathin ferromagnets revealed by scanning nanomagnetometry,”
Nature communications, vol. 6, 2015.

[122] L. Rondin, J.-P. Tetienne, S. Rohart, A. Thiaville, T. Hingant, P. Spinicelli,
J.-F. Roch, and V. Jacques, “Stray-field imaging of magnetic vortices with a
single diamond spin,” Nature communications, vol. 4, 2013.

[123] A. Dussaux, P. Schoenherr, K. Koumpouras, J. Chico, K. Chang, L. Lorenzelli,
N. Kanazawa, Y. Tokura, M. Garst, A. Bergman, et al., “Local dynamics of
topological magnetic defects in the itinerant helimagnet FeGe,” Nature
Communications, vol. 7, p. 12430, 2016.

[124] N. Porter, J. C. Gartside, and C. Marrows, “Scattering mechanisms in textured
FeGe thin films: Magnetoresistance and the anomalous Hall effect,” Physical
Review B, vol. 90, no. 2, p. 024403, 2014.

[125] Y. A. Izyumov, “Modulated, or long-periodic, magnetic structures of crystals,”
Physics-Uspekhi, vol. 27, no. 11, pp. 845–867, 1984.

[126] J.-i. Kishine, K. Inoue, and Y. Yoshida, “Synthesis, structure and magnetic
properties of chiral molecule-based magnets,” Progress of Theoretical Physics
Supplement, vol. 159, pp. 82–95, 2005.

[127] T. Moriya and T. Miyadai, “Evidence for the helical spin structure due to
antisymmetric exchange interaction in CrNbS2,” Solid State Communications,
vol. 42, no. 3, pp. 209–212, 1982.

[128] Y. Togawa, T. Koyama, K. Takayanagi, S. Mori, Y. Kousaka, J. Akimitsu,
S. Nishihara, K. Inoue, A. Ovchinnikov, and J. Kishine, “Chiral magnetic
soliton lattice on a chiral helimagnet,” Physical review letters, vol. 108, no. 10,
p. 107202, 2012.

[129] T. Miyadai, K. Kikuchi, H. Kondo, S. Sakka, M. Arai, and Y. Ishikawa,
“Magnetic properties of Cr1/3NbS2,” Journal of the Physical Society of Japan,
vol. 52, no. 4, pp. 1394–1401, 1983.

[130] A. Borisov, J.-i. Kishine, I. Bostrem, and A. Ovchinnikov, “Magnetic soliton
transport over topological spin texture in chiral helimagnet with strong
easy-plane anisotropy,” Physical Review B, vol. 79, no. 13, p. 134436, 2009.

[131] A. Borisov and V. Kiseliev, “Topological defects in incommensurate magnetic

96



and crystal structures and quasi-periodic solutions of the elliptic sine-gordon
equation,” Physica D: Nonlinear Phenomena, vol. 31, no. 1, pp. 49–64, 1988.

[132] A. Borisov and V. Kiselev, “Quasi-one-dimensional magnetic solitons,”
Fizmatlit, Moscow, 2014.

[133] K. Bernstein, R. K. Cavin, W. Porod, A. Seabaugh, and J. Welser, “Device and
architecture outlook for beyond CMOS switches,” Proceedings of the IEEE,
vol. 98, no. 12, pp. 2169–2184, 2010.

[134] D. E. Nikonov and I. A. Young, “Overview of beyond-CMOS devices and a
uniform methodology for their benchmarking,” Proceedings of the IEEE,
vol. 101, no. 12, pp. 2498–2533, 2013.

[135] K.-S. Ryu, S.-H. Yang, L. Thomas, and S. S. Parkin, “Chiral spin torque arising
from proximity-induced magnetization,” Nature communications, vol. 5, 2014.

[136] M. A. Ruderman and C. Kittel, “Indirect exchange coupling of nuclear
magnetic moments by conduction electrons,” Physical Review, vol. 96, no. 1,
p. 99, 1954.

[137] T. Kasuya, “A theory of metallic ferro-and antiferromagnetism on Zener’s
model,” Progress of theoretical physics, vol. 16, no. 1, pp. 45–57, 1956.

[138] K. Yosida, “Magnetic properties of Cu-Mn alloys,” Physical Review, vol. 106,
no. 5, p. 893, 1957.

[139] A. Manchon and K.-J. Lee, “Spin Hall effect-driven spin torque in magnetic
textures,” Applied physics letters, vol. 99, no. 2, p. 022504, 2011.

[140] S.-H. Yang, K.-S. Ryu, and S. Parkin, “Domain-wall velocities of up to 750
m/s driven by exchange-coupling torque in synthetic antiferromagnets,” Nature
nanotechnology, vol. 10, no. 3, pp. 221–226, 2015.

[141] A. Khvalkovskiy, V. Cros, D. Apalkov, V. Nikitin, M. Krounbi, K. Zvezdin,
A. Anane, J. Grollier, and A. Fert, “Matching domain-wall configuration and
spin-orbit torques for efficient domain-wall motion,” Physical Review B,
vol. 87, no. 2, p. 020402, 2013.

[142] R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, and
G. Finocchio, “A strategy for the design of skyrmion racetrack memories.,”
Scientific reports, vol. 4, p. 6784, 2014.

[143] O. Meshcheriakova, S. Chadov, A. Nayak, U. Rößler, J. Kübler, G. André,
A. Tsirlin, J. Kiss, S. Hausdorf, A. Kalache, et al., “Large noncollinearity and
spin reorientation in the novel Mn2RhSn Heusler magnet,” Physical review
letters, vol. 113, no. 8, p. 087203, 2014.

[144] A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa,
H. S. Park, and Y. Tokura, “Real-space observation of skyrmion lattice in
helimagnet MnSi thin samples,” Nano letters, vol. 12, no. 3, pp. 1673–1677,
2012.

[145] S. Huang and C. Chien, “Extended skyrmion phase in epitaxial FeGe (111)
thin films,” Physical review letters, vol. 108, no. 26, p. 267201, 2012.

97



Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1467

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-312462

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2017


	Abstract
	List of papers
	Contents
	1. Introduction
	2. Magnetism
	2.1 Magnetic moment
	2.1.1 Classical dipole and external magnetic field

	2.2 Simple magnetic models
	2.2.1 Ising model
	2.2.2 Heisenberg model
	2.2.3 Extended Heisenberg model

	2.3 Magnetic ordering
	Ferromagnetic Anti-ferromagnetic
	Ferrimagnetic Paramagnetic

	2.4 Non-collinear magnetism
	2.5 Landau-Lifshitz-Gilbert equation

	3. Density functional theory (DFT)
	3.1 The many body problem
	3.2 Density Functional Theory
	3.3 Kohn-Sham equations
	3.4 Local and non-local density approximations
	3.5 Spin polarised systems
	3.6 Relativistic electrons
	3.7 Korringa-Kohn-Rostoker approach
	3.8 Calculation of exchange interactions

	4. Atomistic spin dynamics
	4.1 Atomistic equations of motion
	4.2 Langevin dynamics
	4.3 Current driven magnetisation dynamics
	4.4 Spin-Hall effect
	4.5 The magnetic Hamiltonian
	4.6 Coarse-graining exchange interactions

	5. Magnetic skyrmions
	5.1 Introduction to topology and skyrmion number
	5.2 Introducing skyrmions
	5.3 Formation and stability of skyrmions
	5.4 Classification of skyrmions
	5.5 Experimental observation in chiral magnets
	5.6 Dynamics of skyrmion
	5.6.1 Motion in infinite system
	5.6.2 Impurities and influence of the trajectory
	5.6.3 Creation, annihilation and motion in finite system


	6. Magnetic defects and helical spin-spiral state
	6.1 Introduction
	6.2 Experimental techniques
	6.2.1 Magnetic force microscopy
	6.2.2 Nitrogen vacancy (NV) center based magnetometry

	6.3 Results of magnetic defects in FeGe

	7. One dimensional magnetic structures within ASD
	7.1 Introduction to 1D solitons
	7.2 Analytical model
	7.3 Calculations within ASD
	7.4 Application of solitons in logic gates

	8. Magnetic heterostructures on heavy metal substrates
	8.1 Introduction
	8.2 Computational methods and systems
	8.3 Results
	8.3.1 Monolayers and trilayers of Co
	8.3.2 Multilayers with heavy metal substrate
	8.3.3 Domain wall and skyrmion motion

	8.4 Conclusions

	9. Importance of edge interactions on creation and annihilation of skyrmions
	9.1 Generation of skyrmions
	9.2 Annihilation of skyrmions

	10. Skyrmion phase in MnPt0.99Ir0.01Sn half-Heusler alloy
	10.1 Magnetic interactions and spin-spiral wavelength
	10.2 Phase diagram of MnPt1−xIrxSn thin film

	11. Conclusions and outlook
	12. Summary in Swedish
	13. Acknowledgements
	References



