
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at CGO 2017, February 4–8, Austin, TX.

Citation for the original published paper:

Jimborean, A., Waern, J., Ekemark, P., Kaxiras, S., Ros, A. (2017)
Automatic detection of extended data-race-free regions.
In: Proc. 15th International Symposium on Code Generation and Optimization (pp.
14-26). Piscataway, NJ: IEEE Press

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-316826

Automatic Detection of Extended Data-Race-Free Regions

Alexandra Jimborean Jonatan Waern Per Ekemark Stefanos Kaxiras Alberto Ros*
Uppsala Universitet, Sweden *Universidad de Murcia, Spain
alexandra.jimborean@it.uu.se, stefanos.kaxiras@it.uu.se, aros@ditec.um.es

Abstract
Data-race-free (DRF) parallel programming becomes a stan-
dard as newly adopted memory models of mainstream pro-
gramming languages such as C++ or Java impose data-race-
freedom as a requirement.

We propose compiler techniques that automatically de-
lineate extended data-race-free regions (xDRF), namely re-
gions of code which provide the same guarantees as the
synchronization-free regions (in the context of DRF codes).
xDRF regions stretch across synchronization boundaries,
function calls and loop back-edges and preserve the data-race-
free semantics, thus increasing the optimization opportunities
exposed to the compiler and to the underlying architecture.
Our compiler techniques precisely analyze the threads’ mem-
ory accessing behavior and data sharing in shared-memory,
general-purpose parallel applications and can therefore infer
the limits of xDRF code regions.

We evaluate the potential of our technique by employing
the xDRF region classification in a state-of-the-art, dual-
mode cache coherence protocol. Larger xDRF regions reduce
the coherence bookkeeping and enable optimizations for
performance (6.8%) and energy efficiency (11.7%) compared
to a standard directory-based coherence protocol.

1. Introduction
Parallel programming languages based on the shared-memory
model have well-defined memory consistency models to
clarify when data modified by one thread must be visible
to other threads. To simplify reasoning about correctness of
parallel executions, mainstream languages such as C++ and
Java adopt data-race-free (DRF) as a standard and provide
none or weak guarantees in the presence of data races.
For instance, C and C++ programs that contain data races
have undefined semantics [3, 16, 17]. In contrast, data-race-
free codes enable a variety of optimizations based on the
fundamental observation that different threads cannot access
the same memory location without synchronization, if at least
one thread modifies the target variable.

In other words, in DRF applications, synchronization-free
regions provide the strong guarantee that different threads
cannot target concurrently the same memory address. Lever-
aging this property, recently proposed micro-architectural

DR
F1

xD
RF

C
S

DR
F2

xD
RF

// globals:N, a,b,c, G,
shared_counter

for (i=0; i<N; i++){
a[i] = G + 5;

b[i] = G - 2;

lock(mtx);
 shared_counter++;
unlock(mtx);

c[i] = G+5;
}

DR
F1

C
S

DR
F2

// globals:N, a,b,c, G,
shared_counter

for (i=0; i<N; i++){
a[i] = G + 5;

b[i] = G - 2;

lock(mtx);
 shared_counter++;
unlock(mtx);

c[i] = G+5;
}

C
S

// globals:N, a,b,c, G,
shared_counter

for (i=0; i<N; i++){
a[i] = G + 5;

b[i] = G - 2;

lock(mtx);
 shared_counter++;
unlock(mtx);

c[i] = G+5;
}

(a)

(b) (c)

visible

visible

visible

visible

 join / barrier
visible

 join / barrier visible

(b) (c)

 join / barrier

Figure 1. (a) One loop iteration contains two data-race-free
regions (DRF1 and DRF2), interleaved with a critical sec-
tion (CS). A standard coherence protocol makes the store

operations visible immediately after they have executed, thus
performing 3◊N actions. (b) Coherence protocols designed
for DRF applications delay the action of making write op-
erations visible until the first encountered synchronization
point, hence N + 1 actions. (c) The xDRF regions consists
of both DRF1 and DRF2 regions (bypassing CS). An op-
timized coherence protocol can safely defer the action of
publishing writes until the boundary of the xDRF region, thus
significantly reducing the number of actions to only 1.

enhancements relax unnecessarily restrictive constraints, as
shown for example in state-of-the-art coherence protocols [6,
9, 12, 19, 31, 37, 38]. These proposals demonstrate that
synchronization-free regions in DRF applications permit the
core to delay the action of publishing the writes, shown in
Figure 1.b, leading to significant improvements in perfor-
mance and energy. Similarly, C/C++ compilers and alike
typically optimize synchronization-free regions as if the code
was sequential, without the need for speculation or costly
inter-thread analysis.

In this paper we denote synchronization-free regions that
are not guarded by lock-unlock operations as DRF. Ex-
tended data-race-free (xDRF) regions are sets of DRF re-
gions which span across synchronization points (e.g. acquire-
release pairs), bypass the synchronized code (i.e. the critical
section), while maintaining the DRF semantics [4] across
the entire region [29, 30]. For example, in Figure 1.c, the

978-1-5090-4931-8/17 c� 2017 IEEE CGO 2017, Austin, USA

Accepted for publication by IEEE. c� 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

14

xDRF region consists of the data-race-free regions DRF1 and
DRF2, excluding the synchronized code which we denote as
enclave non-DRF region (CS). Assuming that threads execute
different iterations of the loop, the memory locations modi-
fied during the xDRF region are distinct —a[i] �= b[i] �= c[i],
a[i] �= a[j] if i �= j etc— and do not alias with read-only
global variables G, N . Furthermore, shared_counter, read
and modified in the critical section, points to a different loca-
tion than the other global variables.

In short, xDRF regions enable optimizations across syn-
chronization points. At the compiler level, xDRF regions
enable thread-local (sequential) reasoning and static op-
timizations across the entire xDRF region, without the
need for whole-code-analysis. Unlike standard optimiza-
tions, xDRF-based optimizations can bypass synchronization
points (pairs of acquire-release) and function calls. At the
micro-architectural level, xDRF region classification trans-
lates to a private (thread-local) vs. shared classification of
accesses, which is essential for efficient data placement,
designing optimized coherence protocols or reordering mem-
ory operations. Previous work emphasized the benefits of
xDRF regions, showing significant performance and energy
improvements for automatically parallelized and OpenMP
applications [29, 30]. This line of research demonstrated that
structured parallel programming – OpenMP, TBB, Cilk, etc. –
provides strong guarantees, which can be exploited to delimit
xDRF regions with high accuracy.

This work aims to increase the applicability of the xDRF
delineation to a considerably larger class of applications.
We propose compiler techniques to statically identify xDRF
regions in “unmanaged" shared-memory parallel applications
that follow the fork-join with synchronization model, such as
pthreads-based parallel applications. They represent the most
challenging class of codes for static analysis due to the use of
pointers, indirections, complex control-flow, recursions, etc.
In contrast to previous work that relies on the programming
paradigm (OpenMP) [29, 30], we target applications where
the programmer, not the compiler, has control over the way
parallelism is expressed.

Departing from DRF applications, we propose a compile-
time technique for identifying xDRF regions. To verify
the xDRF properties, the compiler analyzes aliasing not
only between memory accesses initiated from data-race-free
regions —a[i], b[i], c[i], G, N— but must also compare
whether these accesses alias the memory locations accessed
from critical sections (shared_counter). Next, the inter-
thread, inter-procedural analysis crosses threads accessing
the same synchronization variables and verifies that the
memory accesses before the critical section of one thread
do not conflict with the accesses after the matching critical
section of another thread.

This work makes the following contributions:
1. We automatically identify xDRF regions in general-

purpose parallel applications that follow the fork-join

with synchronization model (POSIX-threads). xDRF is
an inter-thread and inter-procedural analysis, which: (i)
Extends across synchronization points and even across
multiple acquire-release pairs. (ii) Is full-path context-
sensitive, where contexts are defined with respect to syn-
chronization regions: we distinguish between matching
synchronization points (threads using the same synchro-
nization variable), non-matching synchronization points
(threads using different synchronization variables) and
xDRF regions (outside critical sections) and reason about
their semantics for delimiting xDRF regions. (iii) Extends
the synchronization-free guarantees to a larger scope.

2. We formalize the definition of xDRF regions and the
correctness of our static analysis.
We evaluate the potential of the xDRF classification with

a state-of-the-art, dual-mode cache coherence protocol [30]
which deactivates coherence during the execution of xDRF
regions and maintains coherence in hardware for the rest
of the accesses. We report improvements in execution time
(6.8%) and energy efficiency (11.7%) compared to a standard
directory-based protocol.

2. What Are xDRF Regions?
We start with a few intuitive examples (Figure 2) illustrat-
ing cases when the xDRF bypasses and extends beyond the
synchronization point —(a) and (e)— and other cases when
conflicts between the regions preceding and following the
synchronization point forces the split of the xDRF region
executed by each thread —(b), (c), (d), (f). Synchronization
operations shown in these examples use the same synchro-
nization variable, unless indicated otherwise. We consider
that the entire critical section represents a synchronization
point (denoted non-DRF, on in short nDRF). Conflicts can
occur only between accesses that escape the thread scope.
The example in (a) shows an xDRF region that contains the
memory accesses to a[i] and b[i] (assuming that within the
same array, threads access different elements). Since a[i] and
b[i] are different, threads Th0 and Th1 are free to reorder
the memory accesses across the synchronization point be-
cause these accesses share no data. In (b) on the other hand,
it may be that while Th0 initializes x, Th1 prints its value,
hence the barrier represents a limit between two different
xDRF regions. The first xDRF region contains the initializa-
tion x = 1 and the second xDRF region prints x. In (c)
the threads share x, hence the signal-wait becomes a limit
between consecutive xDRF regions. xDRF1 of Th0 contains
x = 1 and xDRF2 of Th0 contains the region after synchro-
nization illustrated as {...} (similarly for Th1). In (d) the
signal-wait mechanism is implemented by means of flags,
but the conflict to x, again, forces the split of the region in
distinct xDRF regions. In contrast, in (e), there are no con-
flicts between the synchronization-free regions before and
after the critical sections, therefore there is no need to split
the region. Each thread considers the critical section as en-

15

Th0, Th1:

a[i] = i
lock
 counter++
unlock
print (b[i])

(a)

Th0, Th1:

x = 1
barrier;
print (x)

(b)

Th0:

x = 1
signal
...

(c)

Th1:

...
wait
print (x)

Th0:

x = 1
lock
flag = 1
unlock
...

(d)

Th1:

...
lock
 local = flag
unlock
if (local)
print (x)

Th0:

...
lock
flag = 1
unlock
...

(e)

Th1:

...
lock
 local = flag
unlock
if (local)
print ("Hello")

Th0:

x=1
signal A
...

(f)

Th1:

...
wait A
signal B
...

Th2:

...
wait B
print (x)

Th0:

...
lock A
...
unlock A
...

(g)

Th1:

...
lock B
 ...
unlock B
...

Figure 2. In (a) and (b) multiple threads execute the same code and cross a synchronization point, while (c) - (f) show examples
when the threads execute different code regions that synchronize on the same resource. In (g) threads do not lock the same
resource, hence the regions are not synchronized and do not contribute to the xDRF delimitation of the other thread. Conflicts are
marked in red indicating that the synchronization point splits the code executed by each thread in two different xDRF regions.
Shaded blocks indicate xDRF regions (one per thread). xDRF regions bypass and enclave synchronization points, but do not
include them. (xDRF regions that cannot expand across synchronization points are not shaded – (b), (c), (d), (f).)

clave (not breaking the xDRF region) in its xDRF region and
can freely reorder memory accesses within the xDRF region
across the synchronization point, as long as intra-thread de-
pendences are respected (i.e. the accesses to the local variable
local). The more complex example in (f) shows three threads
that synchronize by transitivity. Since Th0 and Th1 synchro-
nize using signal A - wait A and, similarly, Th1 and Th2

synchronize using signal B - wait B there is an implicit
synchronization between Th0 and Th2. Since Th0 and Th2

both access variable x and Th0 performs a write, the syn-
chronization points that separate the accesses to x – namely
signal A - wait A and signal B - wait B – are marked as
non-enclave (breaking the xDRF regions), which means that
accesses cannot be reordered across these synchronization
points because they are shared between the threads. In conse-
quence, (f) illustrates six xDRF regions, i.e. one before and
one after each synchronization point. Finally, (g) shows that
it is necessary to check for conflicts only between threads
that synchronize on the same variable. Threads executing the
regions in (g) are not synchronized since they lock different
resources.

The driving force of the xDRF analysis is that, in a
DRF application, conflicts cannot occur between memory
accesses executed outside critical sections. If two memory
accesses that belong to data-race-free regions (DRF) executed
by different threads target the same data (e.g. Figure 2
(c)), the synchronization point adjacent to the DRF regions
imposes a happens-before relation and represents an xDRF
boundary. Thus, the xDRF analysis merely verifies whether
any memory access performed before the synchronization (i.e.
before the lock) conflicts with a memory access performed
by any other thread after a synchronization operation that
uses the same resource (i.e. after the unlock). Furthermore,
for completeness, the analysis must ensure that the critical
sections do not target the same data as a DRF region. For
example, in Figure 2 (d), the programmer may conservatively
(or in error) place within the critical section the instruction
if(local)print(x) performed by T1. Although no conflict
occurs on the paths preceding and following the matching
synchronizing operations, the region is not xDRF since the

two threads share variable x and one access is outside a
synchronizing operation.

We define “consecutive regions" to be regions of code
reachable by control-flow without passing through other
regions of the same type. For example, in Figure 1, DRF1
and DRF2 are consecutive DRF regions, since there is a
path from DRF1 to DRF2 that does not cross any other
DRF region, although it crosses a non-DRF (CS) region.
Intuitively, an xDRF region consists of consecutive data-
race-free regions executed by one thread, with the property
that the accesses performed during the xDRF region do not
target a memory location accessed by any other concurrent
thread. We denote two non-DRF regions as matching nDRF
regions if they synchronize using the same variable. And, by
extension, xDRF regions corresponding to different threads
are called matching xDRF regions, if they enclave matching
nDRF regions. We guarantee that:
• Threads executing matching xDRF regions do not access

the same memory location, if at least one access is a write.
• Enclave non-DRF regions do not access the same location

as the matching xDRF region (at least one write).

3. Compile-Time Delineation of xDRF
Regions

We implemented the automatic compile-time delineation of
xDRF regions in LLVM [20] and integrated a state-of-the-art
pointer analysis [36] to increase the accuracy. The algorithm
of the xDRF analysis consists of the following steps:
1. Identify synchronization points – nDRF regions – (lock-

unlock, atomics, join operations) and build the control-
flow graph between them (Sync-CFG) (subsection 3.1).

2. Mark on the Sync-CFG the first reachable nDRF region
(in depth-first-search order) in each thread function, as an
entry nDRF region.

3. Identify nDRF regions that use the same synchronization
variable (matching nDRF regions) (subsection 3.2).

4. Mark all join, barriers and signal-wait operations as
non-enclave and the remaining nDRF regions as not-
yet-processed (subsection 3.3).

16

5. Parse the Sync-CFG in a depth-first-search manner start-
ing from each entry nDRF region. When unwinding, de-
termine for each nDRF region if it is enclave, as follows:

5.1. Build the preceding-xDRF-paths and following-xDRF-
paths for each nDRF region. Preceding- and following-
xDRF-paths represent control-flow-paths that depart
from the current nDRF region, extend across nDRF
regions already marked as enclave and stop on the first
encountered non-enclave or not-yet-processed nDRF
region (subsection 3.4).

5.2. Identify conflicts (subsection 3.5):
5.2.1. Between the preceding-xDRF-paths and following-

xDRF-paths of matching nDRF regions.
5.2.2. Between the instructions within the matching

nDRF regions and the preceding- and following-
xDRF-paths.

5.2.3. Between the instructions within any enclave
nDRF crossed when building the xDRF paths of
the matching nDRF regions (Step 5.2.1) and the
preceding- and following-xDRF-paths of the cur-
rent nDRF region.

5.3. If there are no conflicts, the nDRF region is enclave,
otherwise non-enclave (subsection 3.5).

6. The nature of each nDRF region (enclave or non-enclave)
automatically determines the xDRF boundaries. Enclave
regions permit the xDRF region to extend across them,
while non-enclave regions represent boundaries between
adjacent xDRF regions. The starting xDRF region for
each thread is the trivial DRF region leading up to the first
nDRF region. Next, parse the Sync-CFG in a depth-first-
search manner starting from each entry nDRF region:

6.1. If the current nDRF region is enclave, extend the
current xDRF region, otherwise break the current
xDRF region at this point and start a new one.

6.2. If the current nDRF region is already enclave in
another xDRF region, merge that xDRF region with
the current xDRF region.

In what follows we detail each step of the xDRF delin-
eation algorithm.

3.1 nDRF Region Delimitation
The analysis proceeds by identifying synchronization points,
i.e. join operations, atomic instructions and regions of code
guarded by acquire-release pairs1. We denote such regions
non-DRF (in short, nDRF). To delineate nDRF regions,
a depth-first-search is performed parsing the control-flow-
graph (CFG), starting at the entry point of each thread (i.e.

1 In DRF applications, any synchronization point is either an atomic instruc-
tion or is guarded by an acquire-release pair. In the POSIX threads parallel
programming paradigm, barriers, semaphores, signal-wait constructs, etc.
are also implemented with or guarded by mutexes, i.e. lock-unlock opera-
tions (or atomics). Identifying synchronization points is the only part that is
pthreads tailored, however the analysis can be easily extended to detect any
other synchronization mechanisms.

Unlock

Lock

Lock Lock

Unlock

1

62

3

4

5

1

2

3

4

7

6

5

begin_nDRF

begin_nDRF begin_nDRF

end_nDRF end_nDRF

(a) (b)

Figure 3. Single-entry and multiple-entry nDRF regions: In
(a) the depth-first-search reaches the lock operation in block 1
and starts a new nDRF region, collects blocks 2, 3 and 4,
reaches block 5 and marks the end of the nDRF region and
then backtracks and adds block 6. In (b) the control flow splits
in block 1, before the start of the nDRF. Starting with the left
branch, block 2 is recorded as the start of a new nDRF, the
search ads blocks 3 and 4, then block 5 marking the end of the
nDRF. When the search backtracks to block 1 and continues
to block 6, block 6 will be recorded as the start of a second
nDRF also including block 7. When discovering the visited
block 4 of a different nDRF, the first and the second nDRFs
are merged before backtracking.

the function called by a newly spawned thread). The compiler
delineates join operations, atomic instructions, or in the case
of lock-unlock it marks the region in between as nDRF (CS

in Figure 1). When a lock operation is encountered, it is
recorded as the start of a new nDRF region. Instructions
encountered on the depth-first-search path that follow the lock
are added to the region up until the end of the nDRF region,
i.e. the corresponding unlock operation, as shown in Figure 3.
To handle nested or overlapping locks, a counter is held to
make sure that all locks acquired within the nDRF region are
released before the end. Lock-unlock pairs are matched by
synchronization-variable in addition to the counter.

If an nDRF region has multiple starting points (Figure 3.b),
i.e. a lock is acquired on two branches that later merge before
the release of the lock, the depth-first-search algorithm will
come across one lock operation before the other. An nDRF
region will be created including the instructions between the
encountered lock and unlock, however, instructions between
the unvisited lock and the merge point of the two branches
will not be detected at this time. Instead, when the depth-first-
search algorithm naturally reaches the other lock operation,
a new nDRF region will initially be recorded. When the
algorithm eventually reaches the merge point of the branches,
it detects that the next instruction has already been visited,
like a regular depth-first-search algorithm would do, and

17

also that it is part of a different nDRF region than the one
being recorded. At this point the compiler can infer that
the encountered nDRF region and the one being recorded
is actually part of the same nDRF region, which causes the
merging of the two records.

In addition to the control-flow of each thread-function,
we parse the call-graph and examine the callee functions
to identify all synchronization points. The compiler keeps
track whether the nDRF context extends inter-procedurally
(the lock is acquired in the caller function and released in
the callee). The analysis is full-path context-sensitive, with
re-use of information from already analysed contexts. We
handle recursions by collapsing the recursive call site to one
point. We analyze whether a function is called from different
contexts – (i) called from two nDRF regions using different
locks or (ii) from one nDRF and one xDRF region, or if the
function can only be called from the same context – (i) called
from different nDRF regions but which synchronize on the
same variable or (ii) it is only called from xDRF regions.
We also handle functions called via indirection (function
pointers), by conservatively analyzing all functions whose
addresses are taken within the program. While parsing the
control-flow and call- graphs, the analyses builds the Sync-
CFG, a graph that records the control- and call-flow between
all synchronization points (Step 1). For each thread function,
starting from the entry block we analyze the control-flow
path and the first encountered nDRF region is marked as an
entry-nDRF (Step 2). Since Sync-CFG is a graph without a
single root node, the entry nDRF regions will serve as starting
points for subsequent analyzes on Sync-CFG.

3.2 Synchronization Variables of Matching nDRFs
To correlate nDRF regions that synchronize one with another,
i.e. matching nDRF regions, we first identify the synchroniza-
tion variables used by each nDRF region, namely expres-
sions that can be used for synchronization. To this end, all
instructions of an nDRF region are analyzed and the synchro-
nization instructions (pthread_mutex, pthread_condition, etc)
are single-out. The variables accessed by these instructions
represent the synchronization values. For instance, in call

@pthread_mutex_lock(lock), lock is the synchroniza-
tion value.

Starting from a synchronization value we build the set
of variables this value aliases with and we denote this set
a synchronization variable. Conservatively, synchronization
values are in the same class if they MayAlias. Therefore,
synchronization variables are exhaustive, non-overlapping
sets of synchronization values that (may) refer to the same
global variable. Matching nDRF regions are nDRF regions
that share at least one synchronization variable (Step 3).

3.3 Pre-Analysis Marking of nDRFs
Before proceeding to the analysis of data sharing between
threads in order to mark nDRF regions as enclave or non-
enclave, we mark all join, barrier and signal-wait operations

as non-enclave. The reasoning is that these synchronization
points, by their semantics, impose the happens-before relation
between threads. Since in practice such operations indeed
almost always are marked as non-enclave, we simplify the
analysis using this conservative pre-analysis step. Further-
more, by marking these nDRFs as non-enclave, we alleviate
the problem of identifying statically which threads synchro-
nize and handling of partial and indirect joins.

The remaining nDRF regions are marked as not-yet-
processed and their nature will be detected based on the
data-sharing between threads, as described in what follows.

3.4 DRF and xDRF Paths
To determine the nature of each nDRF region, the compiler
examines the instructions on the control flow paths preceding
the nDRF region (DRF1 in Figure 1) and the instructions
following the nDRF region (DRF2). The xDRF analysis
builds the sets of instructions reachable before and after an
nDRF region in two steps:
1. Collecting instructions on the DRF paths;
2. Collecting instructions on the xDRF paths;

Collecting instructions on the DRF-paths: We use the
term DRF-path to denote a program path from one nDRF
region to another, without passing through any nDRF region.
The paths leading to a particular nDRF region are called
the preceding-DRF-paths of the nDRF region, while the
paths departing from a particular nDRF region are called
the following-DRF-paths of that region. Figure 4(a), (b), and
(c) shows examples of DRF paths for linear, divergent, and
cyclic control-flow-graphs. The union of the preceding-DRF-
paths builds the data-race-free region before the nDRF region
of interest, while the union of the following-DRF-paths builds
the data-race-free region after the nDRF region of interest.
Note that the DRF-paths may have as limits different nDRF
regions (Figure 4(b)) or that preceding- and following-DRF-
paths may not be disjoint due to cycles in the control-flow-
graph (Figure 4(c)).

Preceding- and following-DRF-paths are identified by
parsing the CFG and the reverse-CFG, respectively, starting
from the nDRF region of interest. The compiler collects
instructions until an nDRF region is encountered, in which
case the algorithm backtracks in search of not-yet-explored
paths.

Collecting instructions on the xDRF-paths: Similarly,
we use the term xDRF-path to denote a program path that
starts from the current nDRF region, bypasses enclave nDRF
regions (i.e. the xDRF path extends over enclave nDRF
regions, but does not include the instructions from the critical
section), until reaching a non-enclave or not-yet-explored
nDRF region. Consequently, xDRF paths cannot bypass non-
enclave nDRF regions. Akin to the notion of DRF paths, we
use the terms preceding-xDRF-paths and following-xDRF-
paths to refer to the union of xDRF paths leading to or starting
from a given nDRF region. For example, in Figure 4(e),

18

1

2

(a) DRF-before={1,2}
DRF-after={3}

1

2

(b) DRF-before={1,2,3}
DRF-after={4,5}

1

2

(c) DRF-before={1,2,3}
DRF-after={3,1}

2

1

4

3

(d) xDRF-before={1,2,3}
xDRF-after={4}

3

2

1

4
5

(e) xDRF-before={1,2,3,4}
xDRF-after={5}

Figure 4. Examples of DRF and xDRF paths. The nDRF region of interest is shown as a double-bordered light-gray block.
Dark-gray blocks represent nDRF regions already identified as non-enclave. Enclave nDRF regions are shown in light gray.
White boxes represent basic blocks in a DRF region.

one preceding-xDRF-path contains blocks {1,2}, the other
preceding-xDRF-path contains blocks {1,3} and there is no
other path leading to the current nDRF block. Thus, the union
of the preceding-xDRF-paths contains the blocks {1,2,3},
denoted as xDRF-before in the figure. When building each
xDRF-path, instructions on the xDRF paths are analyzed.
Call instructions trigger the analyis of the callee functions,
if their code is available. If library calls cannot be analyzed,
the call instruction is conservatively marked as a non-enclave
nDRF region. Library calls can also be white-listed (e.g. math
operations, etc).

Function summaries are not preserved, instead functions
are re-analyzed for each call. This ensures correct handling of
functions called from different contexts—(i) called from two
nDRF regions using different locks or (ii) from one nDRF
and one xDRF region. One solution is generate a new version
per context (function cloning) or to use the most conservative
of the classifications. To avoid code-size increase we took
the latter approach and marked a synchronization-point as
non-enclave if at least one context required it.

In what follows, we explain how the xDRF-paths are built.
Before the nDRF regions are marked as enclave/non-enclave
(i.e. not-yet-processed), the preceding- and following-xDRF-
paths correspond the preceding- and following-DRF-paths of
the current nDRF region, respectively. The approach is then to
iteratively extend DRF-paths into xDRF-paths by confirming
that the nDRF regions that synchronize the DRF paths can be
enclave (subsection 3.5).

Figure 4(d) and (e) shows xDRF-paths that depart from
the nDRF region of interest, bypass nDRF regions already
identified as enclave, and continue the search on each path
until a non-enclave nDRF region is encountered.

Furthermore, matching nDRF regions guide the analysis
to other functions that synchronize on the same variable to
model additional parts of the data-flow (Figure 2 (b-f)). Thus,
the analysis “connects” the xDRF-paths of an enclave nDRF

region to all xDRF-paths (both preceding- or following-xDRF
paths) adjacent to a matching nDRF region. For instance, in
Figure 4(e), the preceding-xDRF-path of the nDRF region
of interest collects block 1, then crosses an enclave nDRF
region and branches to the matching nDRF region (marked
as connected by a dashed line). The search continues on the
xDRF paths of each matching nDRF region until all paths
have been explored. Searching on each xDRF path stops
when a non-enclave block is reached. This algorithm adds
blocks 2, 3 and 4 to the union of preceding-xDRF-paths.

3.5 xDRF Data Conflict Detection
Conflicts are detected from the perspective of each nDRF
region, between three categories of accesses: (1) accesses
on the preceding-xDRF-paths, (2) accesses on the following-
xDRF-paths and (3) nDRF accesses (nDRF accesses refer
to accesses from the current nDRF region and from its
matching nDRF regions). A conflict occurs when accesses
from different categories target the same memory location,
at least one being a write. We denote such a conflict an
xDRF data conflict. Note that conflicts do not occur between
accesses of the same category. For instance, if accesses that
belong to a preceding-xDRF-path incurred a conflict, this
would be a regular data-race and the program would not
be DRF. Regarding nDRF accesses, they are by definition
synchronized and cannot lead to conflicts between them.

To determine if two accesses point to the same location,
we complement traditional LLVM alias analysis [1] with a
state-of-the-art pointer analysis [36] and report no conflict if
at least one of the pointer analyses guarantees the accesses
do not interfere.

Our analysis distinguishes between thread-local and vari-
ables that escape the thread function and only checks for
conflicts between variables visible to all threads (i.e. either
global or escaped thread-local variables). This is implemented
by tracing the def-use chain of the address in reverse order,

19

searching for either a global variable, a function return, a
function argument or a value that has been stored in or aliases
non-local memory. We call such a value found on the def-use
chain of the address a shared value. Given a pair of accesses,
if at least one target address does not stem from a shared
value, then there is no conflict between the two accesses. If
each address stems from a shared value, but the shared values
can be determined to be disjoint, then there is no conflict.

If the base addresses of two pointers stem from an escaped
value (e.g. global+off_1 and global+off_2) we compare
whether off_1 and off_2 can be equal, by tracking the
de-references (memory indirections) and offsets used in
the pointer arithmetic. Furthermore, we discard aliases in
which the offset is initialized with the thread ID. This simple
extension can, in most cases, guarantee that accesses to
different elements of data structures do not alias.

Otherwise, a conflict is reported and the nDRF region
separating them (currently analyzed nDRF region) is marked
as non-enclave. When a conflict is detected between xDRF
paths that cross nDRF regions already marked as enclave, not
only the currently analyzed nDRF region is marked as non-
enclave, but also the status of the nDRF region adjacent to the
conflicting access is changed from enclave to non-enclave.
For example, in Figure 4(e), if a conflict is detected between
block 5 and block 3, both the currently analyzed nDRF region
and the one following block 3 are marked as non-enclave.

Matching nDRF regions can lead to transitive synchro-
nization (recall Figure 2(f)). An xDRF path can “branch” to
other paths on enclave nDRF regions in order to account that
thread-ordering caused by synchronization is transitive, i.e.
Th0 and Th1 may synchronize to establish a happens-before
order and Th1 and Th2 synchronize as well, which implicitly
synchronizes Th0 and Th2. Although the pairs of threads
that synchronize explicitly might not share data (i.e. Th0 and
Th1 or Th1 and Th2), the implicitly synchronized threads
(Th0 and Th2) may share data outside critical sections as
the DRF properties can be guaranteed by the happens-before
order established by the synchronization points.

Conflicts between transitively synchronized threads are
detected in multiple steps. In the example from Figure 2(f), in
the first step, the compiler checks for conflicts between mem-
ory accesses on the preceding-xDRF-path of signal A and
on the following-xDRF-path of wait A (and vice-versa) and
no conflict is detected. This signal-wait pair is now marked
as “enclave". In the second step, the compiler checks the
synchronization point signal B. When collecting the mem-
ory accesses on the preceding-xDRF-path of signal B, the
compiler encounters another synchronization point wait A
marked as “enclave". Therefore, it recursively collects all
memory accesses on the xDRF-paths of wait A and on the
xDRF-paths of any matching nDRF region (i.e. the xDRF-
paths of signal A), reaching the access x = 1. The conflict
between Th0 and Th2 is therefore detected and the signal-
wait operations on A is changed from enclave to non-enclave,

marking the boundary of the xDRF regions (in Th0 and Th1),
while signal-wait on B marks the boundary of the following
xDRF regions (in Th1 and Th2). Once a synchronization
was marked as an xDRF boundary (non-enclave), it cannot
be promoted back to being "enclave".

Cyclic xDRF paths (the preceding- and following-xDRF-
paths overlap, as in Figure 4(c)) are handled as follows:
• Non-overlapping blocks of one xDRF-path are checked

for conflicts against the other xDRF-path: block 2 from
the preceding-xDRF-path and blocks 1 and 3 from the
following-xDRF-path, in Figure 4(c);

• Blocks belonging to the loop are analyzed for loop carried
dependences: blocks 1 and 3.
To expose region boundaries to the hardware, the compiler

marks begin/end_xDRF, begin/end_nDRF regions through
special instructions, akin [29,30].

4. Formal Definitions and Proofs
4.1 Formal Definitions
We start by providing definitions for the notions that represent
the building blocks of an xDRF region (data race, data-race-
free accesses, data-race-free region) and finally we formally
define the xDRF region and its properties.

Given the set of conditions on a pair of accesses:
1 In a multi-threaded process, two accesses executed by

different threads target the same memory location and at
least one of the accesses is for writing;

2 The accesses take place concurrently;
3 At least one access is not a synchronization operation.

Definition 1: A data race occurs when all conditions hold:
1 ⇥ 2 ⇥ 3 .

We denote two accesses a, b that incur a data race as a⇤ b.
Definition 2: Two accesses are called data-race-free, if at

least one of the conditions do not hold: 1 ⌅ 2 ⌅ 3 .
We denote two data-race-free accesses a, b as a�b.
Corollary 1: In a multi-threaded process, if two data-race-

free accesses can run concurrently, are not synchronization
operations and at least one is a write operation, the accesses
do not target the same memory location. Formally, a�b ⇥
2 ⇥ 3 =⇧ 1 .

Definition 3: A program P in which any pair of ac-
cesses is data-race-free is called data-race-free. Formally,
P is DRF ⌃⇧ ⌥a, b � P, a�b.

We denote that there is a path from an access a to an access
b by a � b.

Definition 4: We denote a synchronization-race-free re-
gion (SFR) the set of instructions on the control-flow paths
between two consecutive synchronizing operations, i.e., not
including other synchronization operations on any path be-
tween them. Formally, SFR region = {instr|(instr �=
sync) ⇥ (⌥a, b � SFR, �x, x = sync ⇥ a � x � b)},
where sync is a synchronization instruction.

20

We further divide SFR regions in two classes: (1) flexible,
amenable to optimizations, such as regions between two
unlock-lock operations and excluding the synchronization
operations (i.e. outside critical sections), denoted as DRF

regions; and (2) constrained, imposing restrictions, such as
regions within two lock-unlock operations and including
the synchronization operations (i.e. inside a critical section),
denoted as nDRF . The step 1 in our algorithm identifies the
nDRF regions.

Definition 5: We define two nDRF regions nDRF and
nDRF

� as matching nDRF regions, and denote them by
nDRF �⇥ nDRF

�, if they synchronize on the same resource,
i.e., use the same synchronization variable. Matching nDRF
regions are identified in the step 3 of our algorithm.

We denote that the control flows from a region A to a
region B as A ⇥ B.

Definition 6: We define two DRF regions, DRF

A

and DRF

B , as consecutive if for any path from DRF

A

to DRF

B there is only one nDRF region. Formally,
DRF

A ⇥ nDRF ⇥ DRF

B .
Definition 7: We define as preceding-DRF-paths of an

nDRF region nDRF all accesses in a DRF region DRF such
that DRF ⇥ nDRF . Similarly, we define as following-
DRF-paths of nDRF all accesses in a DRF region DRF

such that nDRF ⇥ DRF .
Definition 8: An xDRF path is recursively defined as a

single DRF path, or as the union of two xDRF paths given
the following conditions.

xDRFpath =

�
DRFpath

xDRFpath
⇥
xDRFpath

Let there be nDRF region nDRF , with its preceding-
xDRF-paths DRF

A and its following-xDRF-paths DRF

B :
DRF

A ⇥ nDRF ⇥ DRF

B .
And let there be any nDRF region nDRF

�
match-

ing nDRF region nDRF , with its preceding-xDRF-paths
DRF

A�
and following-xDRF-paths DRF

B�
: DRF

A� ⇥
nDRF

� ⇥ DRF

B�
, where nDRF �⇥ nDRF

�
.

1. For any pair of accesses a, b , where a is on a preceding-
xDRF-path (of either nDRF or nDRF

�
) and b is on a

following-xDRF-path (of either nDRF region), the pair of
accesses is data-race-free, a�b (step 5.2.1).

2. For any pair of accesses a, b , where a is on an xDRF-path
(⌥a � {xDRF

A
,

xDRF

A�
, xDRF

B
, xDRF

B�}) and b is in an nDRF
region (⌥b � {nDRF, nDRF

�}), the pair of accesses
is data-race-free, a�b (step 5.2.2).
The union of the preceding- (xDRF

A) and following-
xDRF-paths (xDRF

B) of nDRF build an xDRF-path
(xDRF

A
B) extending across nDRF . Similarly, preceding-

and following-DRF-paths of nDRF

�
build an xDRF-path

xDRF

A�B�
extending across nDRF

�
.

Definition 9: The set of xDRF paths between consecutive
non-enclave nDRF regions builds an xDRF region. Hence, an

xDRF region is recursively defined as a single DRF region,
or as the union of two xDRF regions:

xDRF =

�
DRF

xDRF

⇥
xDRF

Definition 10: We define an nDRF region nDRF as
enclave in an xDRF region xDRF

AB , and denote as
nDRF ⇤ xDRF

AB , if xDRF

A ⇥ nDRF ⇥ xDRF

B

and xDRF

A and xDRF

B belong to xDRF

AB .
Definition 11: Two xDRF regions are said to be matching

if they enclave matching nDRF regions. Formally, xDRF �⇥
xDRF

� ⌃⇧ nDRF ⇤ xDRF ⇥ nDRF

� ⇤ xDRF

� ⇥
nDRF �⇥ nDRF

�.
The property of matching xDRF regions is transitive. If

xDRF matches xDRF

� and xDRF

� matches xDRF

�� —
possibly synchronizing on a different resource than the pair
(xDRF, xDRF

�)— then no conflict can occur between the
regions xDRF and xDRF

�� or between an xDRF region
and the nDRF regions enclave in the “transitively matching”
xDRF region (step 5.3). This property ensures that transitive
synchronization and sharing of data between threads (see
Figure 2(f)) is detected.

4.2 Proof of Correctness
The xDRF analysis (section 3) identifies non-enclave nDRF
regions based on the observation that accesses in xDRF
regions are data-race-free with accesses in other concurrent
xDRF regions.

Corollary 2: In a multi-threaded DRF program, if two
memory accesses target the same memory location, at least
one is a write operation (1) and they are not synchronization
operations (3), the accesses cannot run concurrently (2).
Formally, in a DRF application: 1 ⇥ 3 =⇧ 2

Hence, Corollary 2 states that two accesses to the same
memory location that are not synchronization must be sep-
arated by synchronization points that establish a happens-
before order between the two accesses. On the premises that
the input program is a data-race-free program, these syn-
chronization points exist and represent boundaries of xDRF
regions (3). By detecting conflicts between matching xDRF
regions, the xDRF analysis tests the nature of the synchro-
nization point:
• If no conflict occurs, threads can access memory through-

out the xDRF region in any relative order, without the
need to communicate data (synchronize), except during
the execution of enclave nDRF regions (1 ⇥ 3 =⇧ 2);

• If a conflict occurs, the synchronization is marked as non-
enclave, thus, it is a boundary between the adjacent xDRF
regions. Memory accesses performed in adjacent xDRF
regions cannot be reordered across non-enclave nDRF
regions, as they may access data shared between threads
(1 ⇥ 3 =⇧ 2).

21

5. Evaluation of xDRF Regions
This section analyzes the xDRF regions found in applications
from the Splash-3 [34] (a modernized, data-race-free version
of the Splash-2 [39]) and Parsec-2.1 [7] benchmark suites
with standard and simsmall inputs, respectively. We simulate
the entire application and collect statistics corresponding to
the parallel region of the applications (region of interest).

5.1 Static xDRF Regions
We compare the automatic compile-time xDRF delineation
with one performed by an expert based on code inspec-
tion [33]. Manually delineated xDRF regions act as an oracle
of the applications’ potential, namely, the largest xDRF re-
gions which could be exposed by perfect analysis, which
is equivalent to exposing the maximum number of enclave
nDRF regions. We show empirically that no data races occur
in practice by employing a consistency checker tool similar
to Fast&Furious [32], but extended to support xDRF regions.
Figure 5 shows three categories:
• Correctly Non-Enclave: both the compiler and the expert

marked the regions as non-enclave (xDRF boundaries).
They correspond to barriers, signal-waits, and locks which
establish the happens-before order.

• Correctly Enclave: both the compiler and the expert
marked the regions as enclave. They show the potential
for optimizations.

• Conservatively Non-Enclave: the compiler conservatively
marked the region as non-enclave, while the expert de-
tected that the region can be safely enclave.
As one can observe, the compiler misses some optimiza-

tion opportunities but is always correct. In general, the xDRF
analysis performs well and approaches the oracle delineation
on Dedup, FFT, Fluidanimate, LU, Radix, and Streamcluster.
Other applications, such as Barnes, FMM, Radiosity, Water-
Nsq, and Water-Sp miss optimizations opportunities, due to
the conservative approach of the compiler. For instance, in
Barnes, the compiler cannot identify that the conditional that
guards a region of code ensures that only one thread can exe-
cute that region. An expert can reason about the semantics of
the code in addition to detecting potential conflicts and manu-
ally mark the region as xDRF. Radiosity, Raytrace, and FMM
operate on tasks that are obtained from a task-queue. Tasks
are accessed via non-statically analyzable function pointers
and the compiler cannot determine statically that each thread
obtains a unique task. By assuming that each task may be
executed by multiple threads, the compiler reports conflicts,
whereas the expert can identify that the potentially conflict-
ing accesses are actually performed by a single thread. Water
benchmarks show the limits of the pointer analysis, as many
of the may-alias conflicts reported by the compiler do not
occur in practice.

The conservatively non-enclave regions in Cholesky and
Raytrace stem from a custom memory allocator which is
called before the parallel region and within the region from

Barnes
Cholesky

Dedup FFT

Fluidanimate FMM LU
LU-nc

Ocean
Ocean-nc

RadiosityRadix
Raytrace

Streamcluster
Volrend

Water-Nsq
Water-Sp

Average
0.0

10.0

20.0

30.0

40.0

50.0

60.0

N
um

be
r o

f n
D

R
F

re
gi

on
s

Correctly Non-Enclave
Correctly Enclave
Incorrectly Non-Enclave

Figure 5. Compiler vs Manual delineation of xDRF regions.

Barnes
Cholesky

Dedup FFT

Fluidanimate FMM LU
LU-nc

Ocean
Ocean-nc

RadiosityRadix
Raytrace

Streamcluster
Volrend

Water-Nsq
Water-Sp

Aver
age

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 x
D

R
F

re
gi

on
s

xDRF-Compiler xDRF-Manual

Figure 6. Number of executed xDRF regions.

the main thread. Similar to Barnes, the compiler does not
detect that only one thread actually can execute this code
region and safely reports a potential conflict. Cholesky and
FMM additionally report false-positives due to a recursive
function forcing the same region to be checked for conflicts
against itself (instructions may alias with themselves, even
though each thread executes a different recursion level of the
function, similar to different iterations of a loop).

5.2 xDRF Regions at Runtime
Figure 6 plots the number of dynamic instances of xDRF
regions normalized to the number of executed DRF regions
(not shown). In this figure lower is better, meaning that
less but larger xDRF regions have been found. Figure 6
complements Figure 5 by actually counting, at runtime, which
regions are executed more frequently. If the normalized bar
equals 1, #xDRF = #DRF , this indicates that no DRF
regions could be merged into the same xDRF region.

The first bar (xDRF-Compiler) shows the results of the
automatic delineation, while the second bar (xDRF-Manual)
emphasizes the maximum potential of the applications.

Some applications by their construction do not extend
DRF regions (high percentage of Non-Enclave regions), as
they synchronize mainly based on barriers and signal-wait
constructs, which do not permit extending the xDRF regions
across the synchronization points (FFT, LU, LU-nc, Radix,
and Streamcluster). On the other hand, although Dedup con-
tains a small percentage of enclave regions, they are executed
in a loop, which accounts for a large number of xDRF regions
in practice. Applications with high potential (Radiosity and
Volrend), indeed show a low number of large xDRF regions.
An interesting observation is that although the compiler is
overly conservative in Radiosity, the regions conservatively
marked as non-enclave are not on the frequently executed
path, hence they do not impact the total number of executed

22

Parameter Value
Cache hierarchy Non-inclusive
Block / Page size 64 bytes / 4 KB
Split instr & data L1 caches 32 KB, 8-way (128 sets)
L1 cache hit time 1 (tag) and 2 (tag+data) cycles
Shared unified L2 cache 512 KB / tile, 16-way (512 sets)
L2 cache hit time 6 (tag) and 12 (tag+data) cycles
Directory cache 64 sets, 8 ways (◊1 L1)
Directory cache hit time 2 cycle
Memory access time 160 cycles
Topology Mesh 2D
Flit size, link time 16 bytes, 1 cycle

Table 1. System parameters.

xDRF regions. In contrast, in Barnes, Cholesky, Water-Nsq,
and Water-Sp a few conservative non-enclave regions exe-
cuted frequently change the total number of xDRF regions
compared to xDRF-manual. Fluidanimate, Radiosity and Ray-
trace show the highest potential, both with automatic and
manual delineation, with a few large xDRF regions.

6. Optimizing Cache Coherence Using xDRF
Identifying xDRF regions offers great potential for optimiz-
ing cache coherence protocols. This section analyzes the im-
pact of xDRF regions in a state-of-the-art, dual-mode cache
coherence protocol: SPEL++.

6.1 SPEL++: A Dual-Mode Cache Coherence Protocol
SPEL++ [30] deactivates coherence for memory accesses
performed within xDRF regions and maintains traditional
directory coherence for accesses within nDRF regions. Data
accessed during xDRF regions are made visible (coherent
with other threads) in the boundaries of xDRF regions,
by flushing blocks cached privately. While nDRF memory
references are resolved as in a standard directory protocol,
accesses within xDRF regions perform in the following way:
• Read misses: Read misses obtain the data as in a directory

protocol. The data block is stored in the cache in “private”
mode without being tracked by the directory (the copy
is invisible to the coherence protocol), making a more
efficient use of its storage.

• Write misses: Store operations do not cause write misses
nor invalidation messages, since they do not require read
or write permission. Every store allocates space in cache
and writes the new value. The block is marked as “private”
and “dirty” bits are set to track every written byte.

• Cache evictions and flushing: A cache eviction of a
“private” block has the same effect as a flush, employed to
enforce coherence in the xDRF region boundaries. Clean
blocks can be silently evicted. Dirty blocks require a write-
back of the modified bytes. In case there are coherent
copies of a block cached by remote cores (by an nDRF
access), they should be first invalidated, and then updated
with the data being written back.

Barnes
Cholesky

Dedup FFT

Fluidanimate FMM LU
LU-nc

Ocean
Ocean-nc

RadiosityRadix
Raytrace

Streamcluster
Volrend

Water-Nsq
Water-Sp

Aver
age

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 n
et

w
or

k
tra

ffi
c DRF xDRF-Compiler xDRF-Manual3.8 2.1

2.1
2.1

Figure 7. Network traffic normalized to Directory.

6.2 Simulation Methodology
We employ the GEMS simulator [26] fed with memory
accesses generated by PIN [25] as explained by Monchiero
et al. [27]. The interconnection network has been modeled
with GARNET [5], included in the GEMS toolset. Reported
energy consumption has been obtained with McPAT [21],
assuming a 32nm process technology.

We evaluate a system with 64 in-order cores and L1 caches
kept coherent by a directory protocol. Table 1 shows the
parameters of the simulated system. We compare SPEL++
using straightforward DRF delineation (DRF), i.e. regions
between any two consecutive nDRF regions, manual xDRF
(xDRF-Manual) delineation, and automatic xDRF delineation
(xDRF-Compiler) to a directory protocol (Directory).

6.3 Performance Results
Larger xDRF regions imply a lower number of region bound-
aries, which in turn leads to decreasing the number of flush
operations required to keep coherence of DRF accesses. This
results in less invalidations and write-backs, and thus less
cache misses and coherence traffic. Our simulations show
that the automatic xDRF delineation can avoid, on average,
34.5% of the cache misses that take place when coherence is
enforced at every DRF boundary.

This reduction impact network traffic. Figure 7 shows the
network traffic generated by the applications, normalized to
Directory (not shown). SPEL++ for DRF regions is able to
reduce the network traffic in all cases except in Barnes, Flu-
idanimate, FMM, and Radiosity. These are synchronization-
intensive applications, and therefore contain a large number
of small DRF regions. This leads to many cache flushes which
cancels the benefits of SPEL++ for DRF codes. On the other
hand, the automatic identification of xDRF regions reduces
noticeably the traffic in Fluidanimate, Dedup, Radiosity, and
Volrend, as a consequence of merging DRF regions into larger
(see Figure 6). On average, the network traffic is reduced
by 20.7%, which approaches the ideal, manual delineation
(23.4%).

Figure 8 shows the execution time normalized to a direc-
tory protocol (not shown). Again, we observe that, on average,
SPEL++ with mere DRF delineation is on-par or slightly out-
performed by the baseline. When applying automatic xDRF
delineation, execution time is reduced by 10.0% (compared
to DRF), leading to 6.8% improvements with respect to Di-
rectory and almost on-par with the ideal, manual delineation

23

Barnes
Cholesky

Dedup FFT

Fluidanimate FMM LU
LU-nc

Ocean
Ocean-nc

RadiosityRadix
Raytrace

Streamcluster
Volrend

Water-Nsq
Water-Sp

Aver
age

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e DRF xDRF-Compiler xDRF-Manual2.7

Figure 8. Execution time normalized to Directory.

Barnes
Cholesky

Dedup FFT

Fluidanimate FMM LU
LU-nc

Ocean
Ocean-nc

RadiosityRadix
Raytrace

Streamcluster
Volrend

Water-Nsq
Water-Sp

Aver
age

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

DRF xDRF-Compiler xDRF-Manual3.8 4.4
4.4

4.4

Figure 9. Energy consumption normalized to Directory.

(8.1%). The only exception is Barnes, where the automatic
delineation does not reach the performance of the manual
one. This is due to false-positive conflicts reported by the
compiler, as it cannot detect that a region of code is only
executed by the main thread.

Finally, Figure 9 plots the energy expenditure normalized
to Directory (not shown). Clear improvements are observed
when using the xDRF delimitation compared to both DRF
and Directory. On average, the automatic compile-time de-
lineation saves 11.7% of the energy consumed by a directory
protocol, which is approaches the ideal, manual xDRF delin-
eation (16.5%).

7. Related Work
We have proposed methods to identify and exploit xDRF
regions in OpenMP applications [29], but previous techniques
were not suitable for “unmanaged” (e.g. pthreads) parallel
applications based on the fork-join with synchronization
model, addressed in this work.

Joisha et al [18] build a Procedural Concurrency Graph
to determine interferences between threads and identify ac-
cesses with read- and write-siloed properties on certain in-
traprocedural paths. The analysis unblocks classical compiler
optimizations for accesses free of interferences. Similarly,
Effinger-Dean et al. [10, 11] perform a data-centric classifi-
cation of regions, called interference free regions (IFR). IFRs
are associated to variables (data), extend forward until the
first release and backwards until the first acquire oper-
ation, and ensure that no other thread accesses the certain
data during the IFR execution. Our compiler analysis ensures
that all memory accesses within the xDRF region are free of
interferences and can expand both backwards and forward
across multiple acquire-release operations, across function
boundaries and loop back-edges.

Techniques for private-shared data classification [22, 23,
35] consider memory blocks as shared if accessed by dif-
ferent threads at different execution points (i.e. in different
regions). xDRF takes temporality into considration and clas-
sifies such accesses as private throughout the xDRF region.
Singh et al. [35] propose a static thread-escape analysis which
identifies as “safe" (i.e. private) only data that is guaranteed
to be thread-local or read-only, while dynamically allocated
variables, global or static variables are marked as unsafe.
Moreover, an instruction which can access both safe and un-
safe data (e.g. a pointer dereference), would demote all safe
data it may touch to unsafe. In consequence, safe data is re-
stricted only to locations that are thread-local and can only
be accessed by safe instructions.

A wide spectrum of static and dynamic techniques have
been proposed [2, 11, 13–15, 28] to combat races. Static
techniques [2, 13, 28] must be conservative and therefore
report false-positives, while dynamic techniques [11, 14,
15, 24] miss races which do not occur in the observed
execution and introduce high overheads. Acculock [40] is a
hybrid lockset – happens-before data race detector, balancing
precision and coverage by exploring thread interleavings
which do not occur in the observed execution. Valor [8] is a
software-only, dynamic data race detector which operates
at region level using epochs to identify ongoing regions
and logs to keep track of read/write operations. Conflict
Exceptions [24] relies on hardware support for race-detection.
In contrast, our xDRF analysis is entirely static, therefore
region classification is available prior to execution suitable
for both compiler and micro-architectural optimizations.

Our work goes along the lines of data race detectors, but is
not a data race detector. xDRF builds upon the premises that
the code is DRF and identifies large regions of code which
preserve the DRF semantics.

8. Conclusions
We describe an automated compile-time classification of “un-
managed” parallel programs which delineates DRF regions
and identifies extended data-race-free regions (xDRF). xDRF
are regions of code which bypass and extend across syn-
chronization points (acquire-release pairs), loop backedges,
function calls etc and guarantee data-race-freedom semantics,
similar to one large synchronization-free region.

Acknowledgments
We thank the reviewers for feedback on this work. This
work is a result of the internship 19998/IV/15 funded by
the Fundación Séneca-Agencia de Ciencia y Tecnología de la
Región de Murcia under the “Jiménez de la Espada” program
for mobility, cooperation and internationalization. This work
was supported by the Spanish MINECO, as well as European
Commission FEDER funds, under grant TIN2015-66972-C5-
3-R and the Fundación Séneca under the project “Jóvenes
Líderes en Investigación” 18956/JLI/13.

24

References
[1] LLVM Alias Analysis. website, Mar. . URL http://llvm.

org/docs/AliasAnalysis.html.

[2] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe
locking: Static race detection for java. ACM Transactions on
Programming Languages and Systems (TPLS), 28(2):207–255,
Mar. 2006.

[3] S. V. Adve and H.-J. Boehm. Memory models: A case for
rethinking parallel languages and hardware. Communications
of the ACM, 53(8):90–101, Aug. 2010.

[4] S. V. Adve and M. D. Hill. Weak ordering – a new definition.
In 17th Int’l Symp. on Computer Architecture (ISCA), pages
2–14, June 1990.

[5] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. GARNET: A
detailed on-chip network model inside a full-system simulator.
In IEEE Int’l Symp. on Performance Analysis of Systems and
Software (ISPASS), pages 33–42, Apr. 2009.

[6] T. J. Ashby, P. Díaz, and M. Cintra. Software-based cache
coherence with hardware-assisted selective self-invalidations
using bloom filters. IEEE Transactions on Computers (TC), 60
(4):472–483, Apr. 2011.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural implica-
tions. In 17th Int’l Conf. on Parallel Architectures and Compi-
lation Techniques (PACT), pages 72–81, Oct. 2008.

[8] S. Biswas, M. Zhang, M. D. Bond, and B. Lucia. Valor: Effi-
cient, software-only region conflict exceptions. In 15th ACM
Conf. on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA), pages 241–259, Oct. 2015.

[9] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honar-
mand, S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou.
DeNovo: Rethinking the memory hierarchy for disciplined
parallelism. In 20th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), pages 155–166, Oct. 2011.

[10] L. Effinger-Dean, H.-J. Boehm, D. Chakrabarti, and P. Joisha.
Extended sequential reasoning for data-race-free programs. In
2011 ACM SIGPLAN Workshop on Memory Systems Perfor-
mance and Correctness (MSPC), pages 22–29, June 2011.

[11] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J.
Boehm. Ifrit: Interference-free regions for dynamic data-race
detection. In 2012 ACM Conf. on Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA), pages
467–484, Oct. 2012.

[12] M. Elver and V. Nagarajan. RC3: Consistency directed cache
coherence for x86-64 with RC extensions. In 24th Int’l Conf.
on Parallel Architectures and Compilation Techniques (PACT),
pages 292–304, Oct. 2015.

[13] D. Engler and K. Ashcraft. Racerx: Effective, static detection
of race conditions and deadlocks. In 22th ACM Symp. on
Operating Systems Principles (SOSP), pages 237–252, Oct.
2003.

[14] C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise
dynamic race detection. In 2009 ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI),
pages 121–133, June 2009.

[15] J. Huang, P. O. Meredith, and G. Rosu. Maximal sound
predictive race detection with control flow abstraction. In 2014
ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), pages 337–348, Mar. 2014.

[16] ISO. ISO/IEC 9899:2011 Information technology — Program-
ming languages — C. International Organization for Standard-
ization, 2011.

[17] ISO. ISO/IEC 14882:2015 Information technology — Pro-
gramming languages — C++. International Organization for
Standardization, 2015.

[18] P. G. Joisha, R. S. Schreiber, P. Banerjee, H. J. Boehm, and
D. R. Chakrabarti. A technique for the effective and automatic
reuse of classical compiler optimizations on multithreaded
code. In 38th ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, pages 623–636, Jan. 2011.

[19] S. Kaxiras and A. Ros. A new perspective for efficient virtual-
cache coherence. In 40th Int’l Symp. on Computer Architecture
(ISCA), pages 535–547, June 2013.

[20] C. Lattner and V. S. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In 2nd IEEE /
ACM Int’l Symp. on Code Generation and Optimization (CGO),
pages 75–88, Mar. 2004.

[21] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi. Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architectures.
In 42nd IEEE/ACM Int’l Symp. on Microarchitecture (MICRO),
pages 469–480, Dec. 2009.

[22] Y. Li, A. Abousamra, R. Melhem, and A. K. Jones. Compiler-
assisted data distribution for chip multiprocessors. In 19th Int’l
Conf. on Parallel Architectures and Compilation Techniques
(PACT), pages 501–512, Sept. 2010.

[23] Y. Li, R. G. Melhem, and A. K. Jones. Practically private:
Enabling high performance cmps through compiler-assisted
data classification. In 21st Int’l Conf. on Parallel Architectures
and Compilation Techniques (PACT), pages 231–240, Sept.
2012.

[24] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm.
Conflict exceptions: Simplifying concurrent language seman-
tics with precise hardware exceptions for data-races. In 37th
Int’l Symp. on Computer Architecture (ISCA), pages 210–221,
June 2010.

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building cus-
tomized program analysis tools with dynamic instrumentation.
In 2005 ACM SIGPLAN Conf. on Programming Language De-
sign and Implementation (PLDI), pages 190–200, June 2005.

[26] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset. Computer Architecture News, 33
(4):92–99, Sept. 2005.

[27] M. Monchiero, J. H. Ahn, A. Falcón, D. Ortega, and P. Fara-
boschi. How to simulate 1000 cores. Computer Architecture
News, 37(2):10–19, July 2009.

[28] M. Naik, A. Aiken, and J. Whaley. Effective static race detec-
tion for java. In 2006 ACM SIGPLAN Conf. on Programming

25

Language Design and Implementation (PLDI), pages 308–319,
June 2006.

[29] A. Ros and A. Jimborean. A dual-consistency cache coherence
protocol. In 29th Int’l Parallel and Distributed Processing
Symp. (IPDPS), pages 1119–1128, May 2015.

[30] A. Ros and A. Jimborean. A hybrid static-dynamic classi-
fication for dual-consistency cache coherence. IEEE Trans-
actions on Parallel and Distributed Systems (TPDS), 27(11):
3101–3115, Nov. 2016.

[31] A. Ros and S. Kaxiras. Complexity-effective multicore co-
herence. In 21st Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), pages 241–252, Sept. 2012.

[32] A. Ros and S. Kaxiras. Fast&furious: A tool for detecting
covert racing. In 6th Workshop on Parallel Programming
and Run-Time Management Techniques for Many-core Archi-
tectures (PARMA) and 4th Workshop on Design Tools and
Architectures for Multicore Embedded Computing Platforms
(DITAM), pages 1–6, Jan. 2015.

[33] A. Ros, C. Leonardsson, C. Sakalis, and S. Kaxiras. Poster:
Efficient self-invalidation/self-downgrade for critical sections
with relaxed semantics. In 25th Int’l Conf. on Parallel Archi-
tectures and Compilation Techniques (PACT), pages 433–434,
Sept. 2016.

[34] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros. Splash-3:
A properly synchronized benchmark suite for contemporary
research. In IEEE Int’l Symp. on Performance Analysis of
Systems and Software (ISPASS), pages 101–111, Apr. 2016.

[35] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and
M. Musuvathi. End-to-end sequential consistency. In 39th
Int’l Symp. on Computer Architecture (ISCA), pages 524–535,
June 2012.

[36] Y. Sui, P. Di, and J. Xue. Sparse flow-sensitive pointer analysis
for multithreaded programs. In 14th IEEE / ACM Int’l Symp.
on Code Generation and Optimization (CGO), pages 160–170,
Mar. 2016.

[37] H. Sung and S. V. Adve. DeNovoSync: Efficient support for
arbitrary synchronization without writer-initiated invalidations.
In 15th Int’l Conf. on Architectural Support for Programming
Language and Operating Systems (ASPLOS), pages 545–559,
Mar. 2015.

[38] H. Sung, R. Komuravelli, and S. V. Adve. DeNovoND:
Efficient hardware support for disciplined non-determinism.
In 18th Int’l Conf. on Architectural Support for Programming
Language and Operating Systems (ASPLOS), pages 13–26,
Mar. 2013.

[39] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. In 22nd Int’l Symp. on Computer Architecture
(ISCA), pages 24–36, June 1995.

[40] X. Xie and J. Xue. Acculock: Accurate and efficient detection
of data races. In 9th IEEE / ACM Int’l Symp. on Code
Generation and Optimization (CGO), pages 201–212, Apr.
2011.

26

