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1. Introduction

Quantum field theory (QFT) is the framework that combines quantum
mechanics and special relativity. It is the language of modern particle
physics and a fundamental tool of any theoretical physicist, not only for
particle physics but also in condensed matter and of course for string
theory. QFT describes all the fundamental physics we know except
gravity, and has been wildly successful at this. It has made the most
precise predictions ever in the history of science, and been tested against
a huge amount of experimental data. Despite these successes and several
decades of intense study, there are still many things about QFT we do
not understand. For example we do not know how to mathematically for-
mulate the theory properly, except in very simple examples. The proper
mathematical understanding of QFT is one of the Millennium problems
[1], and is a question of great mathematical importance.

One way of formulating QFT is in terms of the so called path integral,
which is an integral over the space of all field configurations. This is an
infinite dimensional space and making mathematical sense of this inte-
gral is an open problem. But in theoretical physics, we care more about
what works than about mathematical rigor, so even though we do not
know exactly what the path integral is, we usually pretend that it is some
ordinary integral and try to evaluate it, using techniques that work in
finite dimensions. The favorite technique is that of the stationary phase
approximation, which leads us to do a perturbative expansion and com-
pute quantities order by order in the coupling constant. Over the years
physicists have developed many powerful tools for dealing with this per-
turbation theory, including the famous Feynman diagrams, and for most
applications these perturbative techniques work very well (something we
know from comparisons with experiments). When the coupling constant
is small, we can compute many orders of the perturbation series, and a
very high numerical precision can be reached.

There are however cases where perturbation techniques are not ap-
plicable, mainly when the theory is strongly coupled, i.e. when the the
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coupling constant is of order 1. This happens for several physically im-
portant cases, like the description of the strong nuclear force, quantum
chromodynamics (QCD), or the theory of high temperature supercon-
ductors. Understanding the behavior of strongly coupled quantum field
theories is therefore one of the major problems of theoretical physics.
The work of this thesis is part of a research program that tries to attack
this problem using a mathematical result called the localization formula,
or equivariant localization or just localization [2, 3, 4] . This is a math-
ematical result stating that for certain integrals, the stationary phase
approximation is actually exact. That means that we can evaluate some
special integrals exactly, without having to do any perturbative expan-
sion. The result is called localization since it reduces the integral to a
much more ‘localized’ object: the entire integral becomes a sum over the
specific places where the phase is stationary.

This result is relevant to QFT since for some special field theories,
namely those with supersymmetry, localization can be applied to the
path integral. The localization formulas then reduce us from the infinite-
dimensional integral to a well-defined finite-dimensional integral, that
we in principal can compute explicitly, giving an exact result. This
is quite impressive and can let us make sense of the path integral for
these theories. Since it works for any value of the coupling constant, it
potentially lets us understand new things about QFTs at strong coupling.

Of course, the supersymmetric theories that we can localize are not
realistic, but they can still serve as useful toy models of the realistic
non-supersymmetric theories that we ultimately care about. The re-
search of this thesis studies some different examples of supersymmetric
quantum field theories and computes their partition functions exactly
using localization. This might also give us some further insight into the
mathematical structures of supersymmetric QFTs, and the investigations
leads us to introduce new special functions which are of mathematical
interest.

Trying to understand strongly coupled QFTs is one motivation for
the present work, but it can also be motivated from a string theory
perspective. String theory is the best attempt at a theory of quantum
gravity, and of a theory of everything, that we have found so far. It
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is also intimately connected to supersymmetric quantum field theories,
including the theories that we study in this thesis.

To describe this connection, we give a lightning review of some of the
basics of string theory. String theory is a generalization of quantum field
theory that instead of describing point particles describe 1d extended
objects, i.e. strings. When one describes this mathematically, a lot of
internal consistency requirements appear, and they fix most of the the-
ory. One uncover a very rigid mathematical structure, and for example
the theory of general relativity follows from consistency, as does the fact
that the theory needs to be supersymmetric. However everything is not
uniquely fixed and there are five different consistent versions of (super-
)string theory, that all live in 10 dimensions (another thing imposed
by internal consistency). It was eventually understood that these are all
connected by various dualities, and should be thought of as different lim-
its of a mysterious, magical, mother theory called M-theory, introduced
by Witten in the mid 1990’s [5].

This M-theory is described in the low-energy limit by the unique 11d
supergravity. It is known that it does not have strings as its fundamental
objects. Instead its fundamental objects are higher dimensional extended
objects, the 3d M2 brane and the 6d M5 brane. These M-branes are de-
scribed by some world-volume theories, which are quantum field theories
that describe their dynamics. The M2 brane is described by the ABJM
theory [6] (after Aharony, Bergman, Jafferis and Maldacena), and the
6d theory is described by the mysterious N = (2, 0) 6d theories [7, 8],
commonly referred to as just the (2,0) theories. These 6d theories are
superconformal (meaning that it is both conformal and supersymmetric)
and does not seem to have a Lagrangian description. The 5d supersym-
metric theories that this thesis studies is very closely related to this (2, 0)
theory through dimensional reduction on a circle, and therefore studying
it gives us a way to learn things about the 6d theory. So this is the part
of motivation from a string theory perspective.

1.1 Organization of the thesis
This thesis is organized as follows. In chapter 2, we give a pedagogical
introduction to the mathematical idea of localization, describing in some
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detail the localization formulas for the finite dimensional setting, and
then demonstrating through an example how they are formally applied
to an infinite-dimensional setting. Next in chapter 3 we introduce super-
symmetric gauge theories, and in particular spell out some details of the
theories in 5 and 4 dimensions that we eventually study. We then turn to
the geometrical background that we need, discussing first toric geometry
in chapter 4 and then Sasaki-Einstein geometry in the following chap-
ter. In chapter 6 we describe how to put 5d N = 1 theory on a curved
Sasaki-Einstein background and how to use localization to compute its
partition function. Next we describe the new special functions that this
computation lead us to define, and the various factorization properties
these functions satisfy. Finally in chapter 8 we discuss the procedure
of dimensionally reducing gauge theories, and how this lets us construct
new 4d N = 2 theories on curved backgrounds by reducing 5d N = 1

theories over a non-trivial circle fibration.
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2. Localization

The main technique used in this thesis is a collection of mathematical
results that goes under the name of localization formulas. These are
formulas that lets us evaluate certain integrals exactly. They work by
reducing the domain of integration from the original space, to something
much smaller, thus “localizing” the integral. The most famous example of
this is the Cauchy residue theorem from complex analysis, which reduces
contour integrals to a sum of residues. That result is not quite the same
as the ones we study here, since it depends on holomorphicity rather
than the existence of a group action, but the idea is very similar.

The first localization formula using a group action was discovered by
Duistermaat and Heckman [2], who gave a localization formula in the
symplectic geometry setting. Berline and Vergne [4] and, independently,
Atiyah and Bott [3] later proved the more general equivariant localization
formula. Hence the main localization result sometimes goes by the name
Berline-Vergne-Atiyah-Bott formula.

In recent years, this mathematical idea has seen a lot of use in theo-
retical physics, where it is used to study supersymmetric field theories,
as we will explain in section 2.3.

2.1 Equivariant cohomology
We begin by introducing the basic set-up, that of equivariant cohomol-
ogy, before turning to the localization formula and its proof. We assume
that the reader is familiar with the notions of manifolds, differential
forms and de Rham cohomology.

Consider a smooth n dimensional manifold X, and let G be a Lie
group with an action on X, meaning a map

ψ : G → Diff(X), (2.1)
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which induces the evaluation map

evψ : X ×G → X,

(x, p) �→ ψg(x).
(2.2)

The map ψ should respect the group multiplication. A group action
is called smooth if the evaluation map is smooth, free if it has no fixed
points, and effective if only the identity element leaves the entire manifold
fixed.

An example of a group action is the action of U(1) on the two-sphere
S2, which rotates it around its axis. This action has two fixed points,
the north and south pole, so it is not free, but it is effective.

The idea of equivariant cohomology is to construct some cohomology
groups of X that takes into account the group action. The simplest case
is if G acts freely (i.e. the group action has no fixed points). Then
the quotient X/G is a smooth manifold and the de Rham cohomology
H•(X/G) is defined. We take this to be the G-equivariant cohomology
H•

G(X) = H•(X/G). If the action of G is not free, the situation is more
subtle, and the above definition of the equivariant cohomology fails, since
X/G is no longer a smooth manifold. In this case, there is a topological
way of defining G-equivariant cohomology,

H•
G(X) = H•(X ×G EG) = H•((X × EG)/G), (2.3)

where EG is the universal bundle of G [9]. This is a topological space
related to G, defined by the two properties that it is contractible, and
that G acts freely on EG. This definition gives a well-defined meaning
to the equivariant cohomology of X, but it is not very explicit. To get
a better understanding, and for performing computations, we will intro-
duce an explicit model of this cohomology. There exists a number of
different such models, including the Weil, Cartan and BRST (or Kalk-
man) models, see for example [10, 11, 12] for more detailed treatments
and explanations of the relations between them. We will construct the
Cartan model [13], since it is most closely related to the quantum field
theory set-up.
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2.1.1 The Cartan model

Let g be the Lie algebra of G. We can write an element φ ∈ g on the
form φ = φaTa, where {Ta|a = 1, 2, . . . , dim(g)} is a basis of g, and
the sum over a is implicit. The coordinates φa can be thought of as
elements in the dual space g∗. For constructing the Cartan model we
need the symmetric algebra of g∗, denoted S(g∗). This is the algebra
whose elements are polynomials in φa, so S(g∗) � R[φ1, . . . , φdim(g)]. We
consider differential forms valued in S(g∗), i.e. Ω•(X)⊗S(g∗). Further,
we care about such forms which are G-invariant, meaning that they are
invariant under the induced group action on the form and the induced
adjoint action on S(g∗). We spell out what this means as follows. For
every basis element Ta of the Lie algebra, the group action on X induces
a vector field va on X, which points along the flow generated by the group
elements etTa , for t a real parameter. We can view va as representing
the infinitesimal group action of Ta on X, and the induced group action
on a differential form is the Lie derivative along va. The adjoint action
on S(g∗) by a basis element Ta is given by

f b
acφ

c ∂

∂φb
, (2.4)

where f b
ac is the structure constants of g. So the condition of a form

α(φ) ∈ Ω•(X)⊗ S(g∗) being G-invariant is

Lva
α(φ) + f b

acφ
c∂α(φ)

∂φb
= 0. (2.5)

We denote the space of G-invariant forms (Ω•(X)⊗ S(g∗))G.
For the forms in Ω•(X)⊗ S(g∗), we define the Cartan differential,

dG : Ω•(X)⊗ S(g∗) → Ω•(X)⊗ S(g∗),

dG = d+ φaιva ,
(2.6)

where d is the usual de Rham differential on the differential forms, and ιva
is the contraction of the differential form and the vector field generated
by Ta. This differential squares to the sum of Lie derivatives along the
vector fields va,

d2G = φaLva . (2.7)
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The action of d2G on G-invariant forms is zero, since for an invariant form
α(φ) we have, using (2.5),

d2Gα(φ) = φaLvaα(φ) = −φaf b
acφ

c∂α(φ)

∂φb
= 0 (2.8)

by the antisymmetry of the structure constants. We can thus define the
Cartan model of equivariant cohomology as the associated cohomology

H•
G(X) = H

(
(Ω•(X)⊗ S(g∗))G, dG

)
. (2.9)

An invariant form α is called equivariantly closed if dGα = 0, and equiv-
ariantly exact if it can be written as α = dGβ.

The Cartan differential is not homogenous with respect to the degrees
of differential forms, since it maps a p-form into a sum of a p − 1 and
p+1 form. If we write an element α ∈ Ω•(X)⊗S(g∗) as a sum of forms
of various degrees,

α(φ) =

n∑
k=0

αk(φ), (2.10)

then the equation dGα = 0 becomes a set of equations relating the
different degrees of the form:

dαk−2(φ) + φaιaαk(φ) = 0. (2.11)

If X is even-dimensional, these conditions relate the top degree compo-
nent to the 0-form part, and we will see this play a part in the localization
formulas that we discuss below.

To make closer contact with the formalism used in physics, we now
reformulate the Cartan model in the language of supergeometry [14].
Supergeometry is a generalization of normal differential geometry, where
instead of having only the usual (even) coordinates one also introduces
Grassmann (odd) coordinates. The usual, even, coordinates commute,
xμxν = xνxμ, and the Grassmann coordinates instead anti-commute,
i.e. obey ψμψν = −ψνψμ. In particular this implies (ψμ)2 = 0. In
physics terms, quantities obeying anti-commutation relations are com-
monly called fermionic, while even quantities are called bosonic.
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Integration of odd coordinates is defined algebraically, so that if we
have n odd coordinates, their integration is given by∫

ψ1dnψ =

∫
ψ1ψ2dnψ = . . . =

∫
ψ1 . . . ψn−1dnψ = 0,∫

ψ1ψ2 · · ·ψn dnψ = 1,

(2.12)

which mimics how we usually integrate forms in how only the “top” part
gives something non-zero. This is called Berezin integration [15].

The primary example of a supermanifold is the odd tangent bun-
dle ΠTX, which is a supermanifold incarnation of the ordinary tangent
bundle. In ΠTX, the even coordinates xμ are the usual coordinates on
X, and we also have the odd coordinates ψμ, which correspond to the
1-forms dxμ. Their multiplication should be thought of as the wedge
product of forms. Differential forms on X correspond to the functions
on ΠTX, Ω•(X) � C∞(ΠTX). There is a canonical integration mea-
sure on ΠTX given by dnx dnψ. Dealing with ΠTX is a reformulation
of the usual theory of differential forms on X.

In this supergeometry language, the Cartan differential is represented
as a transformation on the coordinates (writing now δ for the Cartan
differential)

δxμ = ψμ, δψμ = φavμa ,

δφa = 0.
(2.13)

Written in this way, physicists may recognize the form of a supersym-
metry variation. This is precisely why we reformulated the model in
terms of the supergeometry language. Note that if we took δψμ = 0, the
transformation would instead be the ordinary de Rham differential.

In this language, an equivariantly closed form is a function f ∈ C∞(ΠTX)

such that δf(x, ψ) = 0. In physics terminology we call δ the supersym-
metry and say that f is supersymmetric.

2.2 Localization formulas
The localization formulas give us a way of computing integrals of equiv-
ariantly closed forms in terms of the fixed points of the group action.
For simplicity, we first restrict our attention to the case of a single U(1)
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action (i.e. a rotation) with a set of isolated fixed points. Let X be
a manifold of dimension 2n, equipped with a U(1) action with isolated
fixed points {xp}, and let the vector field representing the group action
be called v. The Lie algebra of U(1) is one-dimensional, u(1) � R, so
it has a single coordinate φ. For an equivariantly closed form α(φ), its
integral over X is exactly given by∫

X

α(φ) =

(
2π

φ

)n∑
p

α0(φ)|xp√
det(v)|xp

. (2.14)

This is the Berline-Vergne-Atiyah-Bott formula [4, 3]. In the formula
det(v)|xp

means the determinant of the linearized action of v at the
fixed point xp, which is also known as the index of v at xp.

We will now briefly review the proof of this formula, following an
approach suggested by Witten [16]. We will work using the supergeom-
etry language, and consider the odd tangent bundle ΠTX, with bosonic
coordinates xμ and fermionic coordinates ψμ � dxμ. Then the Cartan
differential, dG = d+φιv, is represented by the “supersymmetry” δ acting
as in equation (2.13), but with a single vector field v and a single coor-
dinate φ. The integral over X is written in the supergeometry language
as

Z =

∫
X

α(φ) =

∫
ΠTX

d2nx d2nψ α(x, ψ, φ). (2.15)

Consider the following deformation of this integral

Z(t) =

∫
ΠTX

d2nx d2nψ α(φ)e−tδW (φ), (2.16)

where W (x, ψ, φ) is some function such that δ2W = 0 and t ∈ R. Z(t)

is actually independent of t, since

d

dt
Z(t) = −

∫
ΠTX

d2nxd2nψ δW (φ) α(φ))e−tδW (φ)

= −
∫
ΠTX

d2nxd2nψ δ(Wαe−tδW ) = 0,

(2.17)

where we integrate by parts, use that δα = δ2W = 0 and finally apply
Stokes theorem, which tells us that the integral of an exact form is zero
in the absence of a boundary.

The integral we want to compute is given by Z(0), but since Z(t) is
independent of t, we can compute it for any value of t. In particular,
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we can take the limit t → ∞, in which case the integral is dominated
by the points where δW = 0, if δW is semi-positive definite. Using this,
we can compute the original integral exactly through the saddle point
approximation around the points where δW = 0.

We have the freedom of choosing W , and an appropriate choice is
given by

W = gμνψ
μ(δψ)ν = φgμνψ

μvν , (2.18)

where gμν is the metric on X. This is invariant under the group action
as long as v preserves the metric, or in other words if v is Killing, so
we assume this to be the case. One can always construct a G-invariant
metric by averaging over the group action, so there is no loss of generality
with this assumption. Next we compute δW ,

δW = φ∂ρ(gμνv
μ)ψρψν + φ2gμνv

μvν . (2.19)

This has a ‘2-form part’ (quadratic in ψ’s) and a ‘0-form’ part, and the
0-form part is proportional to the square of the norm of the vector field
v. With this choice of W , the only points on the manifolds which will
not be exponentially suppressed in the large t limit are the points where
v vanish, i.e. the fixed points of the group action.

Let us now consider the contribution of one isolated fixed point, xp.
Around this point we can pick local coordinates (x1, . . . , xn, y1, . . . , yn)

so that, with the fixed point being at the the origin, the metric takes the
form

g =

n∑
i=1

(dx2
i + dy2i ). (2.20)

We can think of the local geometry as the product of n two-dimensional
planes.

In these coordinates, any vector field generating a U(1) action and
that vanish at the origin will take the form of a sum of rotations of these
planes, i.e.

v|p =

n∑
i

νpi (xi∂yi
− yi∂xi

), (2.21)

see figure 2.1. The numbers νpi describe how fast each plane is rotated,
and the the index or linearized determinant of v at this fixed point, is
given by

det(v)|xp =

n∏
i=1

(νpi )
2, (2.22)
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Figure 2.1. A sketch of a manifold with a vector field generating a U(1) action,
showing the local behavior of the vector field around a fixed point (marked by
the red dot) in the coordinates of (2.20).

which we will find in the following computations. In these coordinates,
the function W close to the fixed point takes the form

W (x, ψ, φ) =
φ

2

∑
i

νpi (xiψ
y
i − yiψ

x
i ), (2.23)

where we have also split the odd coordinates into two groups labelled by
x and y. The localizing term δW takes the form

δW (x, ψ, φ) = φ
∑
i

νpi ψ
x
i ψ

y
i +

φ2

2

∑
i

(νpi )
2((xi)

2 + (yi)
2). (2.24)

To perform the saddle point approximation (which is exact), we rescale
the coordinates

x̃ =
√
tx, ψ̃ =

√
tψ. (2.25)

The contribution from the fixed point we wish to compute is then

lim
t→∞

∫
α

(
x̃√
t
,
ψ̃√
t
, φ

)
e
−tδW

(
x̃√
t
, ψ̃√

t
,φ

)
d2nx̃d2nψ̃, (2.26)

using that the measure on ΠTX is invariant under scalings, since the
odd coordinates scale inversely compared to the bosonic ones.
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Using the local expression of δW , (2.24), we see that in these coor-
dinates the exponential is quadratic and thus independent of t. The
leading top-form contribution (i.e. the only top-form independent of t),
will come from the exponential, since all the higher form components of
α will come with factors of 1/

√
t. This means that only the 0-form part

of α, evaluated at the fixed point xp, will enter at leading order in t, and
we find that integral is given by∫

α0(φ)|xpe
−φ

∑n
i=1 νp

i ψ
x
i ψ

y
i −φ2

2

∑n
i=1((ν

p
i )

2((xi)
2+(yi)

2))d2nxd2nψ . (2.27)

This a Gaussian integral over a diagonalized quadratic form in both the
odd and the even variables. Performing the integral gives

(2π)
n α0(φ)|xp

∏n
i=1 φν

p
i∏n

i=1 φ
2(νpi )

2
=

(
2π

φ

)n α0(φ)|xp∏n
i=1 ν

p
i

=

(
2π

φ

)n α0(φ)|xp√
det v|xp

,

(2.28)
and after summing up contributions from all the fixed points, we find
the Berline-Vergne-Atiyah-Bott formula (2.14).

One can be less explicit and avoid using specific local coordinates
or particular choice of W , which will give us some important general
insights. The term δW expanded around the fixed point will in general
have terms of quadratic and higher orders, but in the the large t limit
only the quadratic part matter and we write

tδW = φHμν x̃
μx̃ν + φSμνψ̃

μψ̃ν + O(1/
√
t). (2.29)

Here, Hμν is symmetric and Sμν is anti-symmetric. The “supersymmetry
variations”, (2.13), of x̃, ψ̃ are linearized in the large t limit (i.e. we
expand the vector field around the fixed point, keeping only lowest order),

δx̃μ = ψ̃μ, δψ̃μ = φx̃ν∂νv
μ|xp

, δφ = 0. (2.30)

Using this linearized supersymmetry, we can compute δ2W , and find
that the requirement that this is zero gives us the following equation
relating S and H:

tδ2W = 2φHμνψ̃
μx̃ν + 2φSμν x̃

ρ∂ρv
μ|xpψ̃

ν = 0, (2.31)

which implies (using the antisymmetry of S)

Hμν = Sμρ∂νv
ρ|xp

. (2.32)
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The same arguments as before applies to see that only the 0-form part of
α contributes, and the integral around the fixed point xp can be written

∫
α0(φ)|xp

e−(φ2Hμν x̃
μx̃ν+φSμν ψ̃

μψ̃ν)d2nx̃ d2nψ̃ . (2.33)

This is a Gaussian integral over even and odd variables, and performing
it we find the result

(2π)n
α0(φ)|xp

Pf(φS)√
det(φ2H)

. (2.34)

Using (2.32) we can simplify this as

(2π)n
α0(φ)|xpPf(S)√
det(φS · (∂v)|xP

)
=

(
2π

φ

)n α0(φ)|xp√
det((∂v)|xP

)
, (2.35)

which is the same as the previous result, but where the linearized action
of v is written as a determinant of the matrix of first derivatives of v,
∂μvν . One can easily confirm that in the local coordinates (2.20) this
gives the same result as before. The important lesson here is that the
supersymmetry relates the bosonic and fermionic part of the Gaussian
integral, so that a large part of the resulting determinants cancel and
we are left with only the determinant of the linearized part of v. Since
we here did not use the particular form of the localization term W , we
see that no matter which term we pick, we will always find the same
determinant, namely the determinant of δ2.

2.2.1 Generalizations

The above is a valid proof for the case of a single U(1) action with isolated
fixed points on a compact manifold. There are many generalizations of
this, and here we discuss some that are relevant for physics. For example,
it is often the case (as we will see in the example of section 2.4) that we do
not have isolated fixed points, but instead some continuous submanifold
F that is fixed by the group action, called the localization locus. This
usually happens when applying the localization formulas in the QFT
setting. In this case instead of a sum over the discrete fixed points, we
get an integral over the locus F . For an equivariantly closed form α on
a manifold X with a group action, and for φ the coordinates on the Lie
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algebra, we have ∫
M

α(φ) =
∑
F

∫
F

α(φ)

eN (F )(φ)
, (2.36)

where the sum runs over all connected components of the localization
locus, and eN (F ) is the equivariant Euler form of the normal bundle of
F inside M . This should be thought of as the generalization of the index
of the vector field, but where we only include the directions orthogonal
to the locus, hence the normal bundle of F .

The localization formula can also be generalized to a ‘more proper’
supermanifold setting [17]. What we did above used supermanifolds of
the form ΠTX, where the odd coordinates are exactly the differentials
of the even coordinates. This is just a different way of describing dif-
ferential forms on the ordinary manifold X. Instead we can start with
a supermanifold M, with n even coordinates xμ

0 and m odd coordinates
xi
1. We then construct the odd tangent bundle of this, ΠTM, where the

tangent space part has n odd coordinates ψμ
1 and m even coordinates

ψi
0.
Let there be a U(1) action on ΠTM, represented by a vector field v,

which has odd and even parts and that we can write as

v = vμ0
∂

∂xμ
0

+ vi1
∂

∂ψi
1

, (2.37)

where vi1 are Grassmann odd parameters. The Cartan differential (or
supersymmetry) then acts like

δxμ
0 = ψμ

1 , δψμ
1 = φvμ0 ,

δxi
1 = ψi

0, δψi
0 = φvi1,

δφ = 0

(2.38)

where φ again is the coordinate on the S1. Again (x0, x1) are the coor-
dinates on our original manifold and we should think of (ψ1, ψ0) as their
corresponding differentials. Here δ2 = v, which is an operator with both
odd and even parts. In the localization formula the determinant of δ2

becomes a superdeterminant. If we write v as the sum of its even and
odd parts, v = v0 + v1, the linearized superdeterminant of v at a fixed
point xp is

sdet(v)|xp
=

det(v0)|xp

det(v1)|xp

. (2.39)
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The localization formula for this case with isolated fixed points then very
closely mimics the usual Atiyah-Bott formula (2.14), and reads

∫
M

α(φ) =

(
2π

φ

)n−m ∑
p

α0(φ)|xp√
sdet(v)|xp

. (2.40)

This setting is the most relevant for supersymmetric field theories, where
we need to formally generalize it to the infinite-dimensional setting. We
discuss this in the next section.

2.3 Localization for quantum field theories
In quantum field theory, the quantities that we want to compute can
be formulated in terms of a path integral, which is an integral over the
space of field configurations. This space is infinite-dimensional and mak-
ing proper sense of the path integral is a long-standing and very difficult
mathematical problem, worth a million dollars to whomever solves it [1].
However in specific cases when our quantum field theories are of a partic-
ular form, we can formally use the localization formulas discussed above
to define the path integral. For a modern introduction and overview of
this field, see the recent collection of review articles [18].

In the QFT setting one quantity we might want to compute is the
partition function of a field theory placed on a compact manifold M .
Then the equivariant form α is written as eiS[φ], where S is the action
of the theory and φ denotes the collection of all fields. The space we are
integrating over is now the space of field configurations X, which is an
infinite-dimensional supermanifold, where the even coordinates describe
the bosonic degrees of freedom and the odd describe the fermionic degrees
of freedom. The group action on this manifold is generally a combination
of a gauge transformation and an isometry of the space-time manifold.
The partition function is given by the path integral

Z =

∫
X

Dφ eiS[φ]. (2.41)

Looking at the description of the equivariant differential in (2.13), we
see that having an equivariant differential on this space means to have
an operator δ that maps even coordinates (bosons) to odd coordinates
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(fermions) and vice versa. In physics terminology, this is called a super-
symmetry, and theories whose action is invariant under this, δS[φ] = 0,
are called supersymmetric. We will explain supersymmetry a bit more
in the next chapter.

The partition function is not the only possible observable we can com-
pute; localization can also be used to compute other supersymmetric (or
BPS) observables. Certain Wilson loops can be computed, and certain
correlators between operators inserted at the fixed points of the torus
action, but unfortunately localization is not a magic bullet that lets us
compute anything we want even for the theories where we can apply it.

The existence of the supersymmetry δ means that the space of field
configurations has the structure of some odd tangent bundle of a super-
manifold M, i.e. X = ΠTM, with δ acting as the Cartan differential,
mapping from the coordinates on M to their differentials. If further the
various properties required for the localization formula are fulfilled, we
can formally apply the formula (2.40) or some suitable generalization,
and take this as a definition of what the path integral means. In such
cases we can write down a localization term W and study the locus where
δW = 0. This localization locus will often be finite-dimensional, so this
lets us reduce the path integral to some well-defined finite dimensional
integral. Typically one ends up with an integral over a space of matrices,
which is referred to as a matrix model.

In the infinite-dimensional setting there are a number of subtleties that
do not appear in finite dimensional cases. For example the operator δ2

is now a differential operator with an infinite number of eigenmodes and
eigenvalues, and its determinant needs to be regularized somehow. An-
other issue is that of zero modes, something that appear in many places
across physics and mathematics. In general a zero mode is a solution
to an eigenvalue problem with zero eigenvalue. That is to contrast with
the “normal” modes, which are modes with non-zero eigenvalue under
the same operator. In localization, the modes we care about are those of
δ2. Any field configuration can be written as some combination of all its
modes, both normal and zero modes, and when performing the compu-
tation the zero modes of δ2 have to be treated systematically, otherwise
the determinant will typically be identically zero. Pestun did this for
gauge theories on S4 [19], by adding constant fields for each field with
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zero modes to the gauge fixing complex. In the example of section 2.4 ,
we will see another infinite-dimensional example where both regularizing
a functional determinant and dealing with the zero modes are important.

2.3.1 Historical overview
The idea of applying the localization formulas to physics has been around
for a long time and has a successful history in theoretical physics. Here,
I will briefly review some of the important results of this line of investi-
gation, going roughly in historical order. Of course, this is not a small
subject and the review here cannot even attempt being complete. The
idea is to give some historical context so that the reader can understand
where the work of this thesis fits into the development of the field.

The idea of applying localization formulas to physical systems orig-
inated with Witten, who studied supersymmetric quantum mechanics
and connected it with Morse theory [16], where he used a version of a
localization formula. A bit later the idea was applied to the so called
topological quantum field theories, which is an interesting class of field
theories which do not have local degrees of freedom but only depend on
the topology of the background manifold. These can be studied using lo-
calization techniques, that reduces the path integral to something much
simpler, like a sum over indices of vector fields [20, 21].

An important example of these is the 4d N = 2 theories, which can
be turned into a topological field theory by a procedure known as topo-
logical twisting. We will very briefly outline this procedure in chapter 3.
These theories were studied by Nekrasov [22, 23], who showed that once
supersymmetric localization is applied, it reduces the path integral to an
integral over the instanton moduli space. This integral can further by
performed using localization techniques and the answer takes an inter-
esting form as a sum over 2d partitions. This computation reproduced
from first principles the Seiberg-Witten solution [24] of the N = 2 4d
Yang-Mills theory, a very impressive feat. This partition function for
instantons is known as the Nekrasov instanton function, and it makes
appearances in many places when performing localization computations,
as we will see in chapter 6 and in the articles I,II and IV.

Before 2007, localization calculations had been limited to the cases of
topological field theories or supersymmetric quantum mechanics. This
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changed when Pestun [19] constructed non-topological N = 2 supersym-
metric gauge theory on the four-sphere, and used localization to compute
a closed form expression for the partition function. He also computed
the expectation values of certain supersymmetric circular Wilson loops,
proving an older conjecture inspired by AdS/CFT that expectation val-
ues of circular supersymmetric Wilson loops in 4d N = 4 theory are
given by Gaussian matrix models [25]. Pestun started from N = 1 gauge
theory in 10d, and using dimensional reduction and a conformal map-
ping from R

4 to S4, he constructed the physical N = 2 theory on the
four-sphere. Then, applying the supersymmetric localization principle,
he could reduce the infinite dimensional path integral to a finite dimen-
sional integral, i.e. a matrix model. This provided the first explicit
example of a non-topological supersymmetric theory placed on a curved
background; and from this a new direction of research into supersymmet-
ric field theories was spawned. Others repeated similar computations for
a variety of theories in different dimensions, placed on different curved
backgrounds. It is not possible or meaningful to try and list every such
computation, and for a comprehensive introduction and review of the
state of the art in the field we refer to the review volume [18]. The
work presented in this thesis is a natural continuation of this research
program, where we use the localization techniques to study 5d N = 1

supersymmetric Yang-Mills theories placed on any toric Sasaki-Einstein
manifold. In article IV we study 4d N = 2 theories placed on a large
class of 4d manifolds.

2.4 Localization of supersymmetric quantum mechanics
As an example of supersymmetric localization of an infinite-dimensional
path integral, we will study the theory of supersymmetric quantum me-
chanics. This is simpler than the full QFT setting, but still demonstrates
most of the subtleties of localization in an infinite dimensional setting.
The calculation turns out to be closely related to the famous Atiyah-
Singer index theorem [26].

The original idea to use equivariant localization for supesymmetric
quantum mechanics was introduced by Witten in [16], where he used
localization-type arguments to relate supersymmetric quantum mechan-
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ics with Morse theory, and suggested various possible generalizations.
This was followed up by a number of people including Atiyah [27] and
Jaffe et. al. [28]. Here we will follow the approach of Hietamäki, Moro-
zov, Niemi and Palo [29], who used supersymmetric quantum mechanics
to prove an instance of the Atiyah-Singer index theorem.

The model we will deal with is called N = 1/2 supersymmetric quan-
tum mechanics, and it describes a spinning particle moving on a curved
manifold. Let (M, g) be a compact Riemannian manifold of dimension
2n. Our model describes a spinning particle moving along some path in
this manifold, described by x : R → M . We also have a U(1) principal
bundle P over M ,1 with some connection A, or in physics terms a back-
ground U(1) gauge field, that we couple the particle to (see section 3.1
for a short explanation of these terms). Let F = dA be the curvature
of the connection (or the field strength). Then the action of this model
takes the form

S[x, ψ] =

∫
γ

dt

(
1

2
gμν ẋ

μẋν + ẋμAμ − 1

2
ψμFμνψ

ν

+
1

2
ψμ

(
gμν∂t + ẋρgμσΓ

σ
ρν

)
ψν

)
,

(2.42)

where ψμ are odd (Grassmann) coordinates dual to the even coordi-
nates xμ, and t is the time coordinate. Here all the background fields
are evaluated at x(t), i.e. when we write gμν it means gμν(x(t)), and
Aμ = Aμ(x(t)) and so on, which is important to keep in mind. The dot
indicates time derivative as usual, and Γσ

ρν are the Christoffel symbols; so
the third term can also be written as ψμ∇tψμ, where ∇ is the covariant
derivative. This action is invariant under a supersymmetry δ that acts
on the coordinates as

δxμ = ψμ, δψμ = ẋμ, (2.43)

and we see that δ2 = ∂t, the generator of time translation.
If we want to compute the partition function of this theory through

the path integral, we need to regulate the allowed paths in some way,
since otherwise the action diverges with the path length. We do this
by taking time to be periodic, or in other words we take x : S1 → M .
This is equivalent to requiring that the particle only travel around closed

1We could consider a general gauge group, but take U(1) for simplicity.
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loops on M . The space of all maps S1 → M , is called the loop space
of M and is denoted LM . This is an infinite dimensional space. The
action is now the integral over the circle.

The even coordinates x should now be thought of as loops on M ,
i.e. x ∈ LM , while the odd coordinates are anti-commuting loops on
M , which should be thought of as the differential of x, ψ ∼ dx. Thus
the relevant space is the odd tangent bundle of the loop space, ΠTLM ,
which at least formally have a canonical integration measure. The path
integral expression for the partition function is

ZN=1/2 =

∫
ΠTLM

Dx Dψ eiS[x,ψ] , (2.44)

and to make sense of this path integral we will use the localization for-
mulas.

First, let us see that the supersymmetry (2.43) is an equivariant dif-
ferential on the space ΠTLM . For any functional F [x] of closed paths
in LM (for example the action), we define the functional derivative by
the rule

δ

δx[t]
F [x[t′]] = δ(t− t′)F ′[x(t′)], (2.45)

and for the Grassmann valued paths in ΠTLM the functional differen-
tiation is given by the anti-commutator{

δ

δψμ(t)
, ψν(t′)

}
= δνμδ(t− t′). (2.46)

Then the functional exterior derivative on ΠTLM is given by the oper-
ator

D =

∫
S1

dt ψμ(t)
δ

δxμ(t)
, (2.47)

which, thinking of ψμ’s as “1-forms” takes us up one step in form degree,
just like the usual exterior derivative. We can see that this is exactly
captured by the transformation of coordinates δxμ = ψμ. To define the
equivariant differential, we also need the contraction operator, which is
defined as

ιẋ =

∫
S1

dt ẋμ δ

δψμ(t)
, (2.48)

which “eats” a 1-form ψμ along the direction ẋμ, and replaces it with ẋμ.
The equivariant exterior derivative is then

Dẋ = D + ιẋ, (2.49)
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and it is not hard to see that this is exactly encoded in the supersym-
metry of (2.43). The square of Dẋ is the generator of time translations
on ΠTLM ,

D2
ẋ =

∫
S1

dt
d

dt
, (2.50)

so on a functional F [x, ψ] it acts as

D2
ẋW [x, ψ] =

∫
S1

dt
d

dt
W [x, ψ]. (2.51)

We want to consider the functionals that are invariant under this. From
this discussion we see how this supersymmetric model on the loop space
has the properties of the equivariant differential as described in section
2.1.

The action (2.42) is actually Dẋ-exact, S[x, ψ] = DẋΣ[x, ψ], where
Σ[x, ψ] is a functional given by

Σ[x, ψ] =

∫
S1

dt

[
1

2
gμν ẋ

ν(t) +Aμ

]
ψμ(t). (2.52)

Σ is invariant under D2
ẋ. Therefore, in the path integral (2.44) we can

introduce a parameter T in front of the action, and the integral will be
not depend on it2. Thus we can use the action itself as a localizing term.
From looking at the first quadratic term in the action (2.42), 1

2gμν ẋ
μẋν ,

we can see that if we let T → ∞, the path integral manifestly localizes
onto ẋμ(t) = 0. Those are the constant paths, or stationary particles,
x(t) = x(0) ∈ M ∀t, and the space of constant paths is exactly the
original manifold M . Thus, after localizing we end up with a finite
dimensional integral over the locus, i.e. over M .

We should next consider the fluctuations around the fixed points, i.e.
around the constant loops. To do this we introduce the based loops on
ΠTLM

x(t) = x0 + x̂(t), ψ(t) = ψ0 + ψ̂(t), (2.53)

where (x0, ψ0) are the constant modes (or zero modes, as they are killed
by ∂t) and x̂, ψ̂ the non-constant fluctuations around them. The path
integral measure decomposes into a finite-dimensional integral over the
constant modes, and another infinite-dimensional integral over the fluc-
tuations,

DxDψ = d2nx0 d2nψ0 Dx̂ Dψ̂ . (2.54)

2Note that we cannot however take T = 0, since it renders the integral undefined.
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Mimicking the procedure in the proof in the finite dimensional case in
section 2.2, we rescale the non-constant modes with

√
T ,

(x̂, ψ̂) →
(

x̂√
T
,
ψ̂√
T

)
. (2.55)

The measure again stays invariant under such a scaling, since the even
and odd coordinates transform with opposite weight. Expanding the
action to leading order in T gives

TS[x, ψ] =

∫
S1

dt

(
1

2
gμν ˙̂x

μ ˙̂xν +
1

2
ψ̂i(t)ηij∂tψ̂

j(t)− 1

2
ψμ
0Fμν(x0)ψ

ν
0

+
1

2
Rijμν(x0)ψ

i
0ψ

j
0
˙̂xμ ˙̂xν

)
+ O(1/

√
T ),

(2.56)

where we have Taylor expanded the quantities around (x0, ψ0), and also
used the inverse vielbein eiμ to write ψ̂i = ψ̂μeiμ(x0). Here ηij is the
flat space metric: we choose local coordinates around x0 and perform
the Taylor expantion of the metric around it; this is also why Rijμν , the
Riemann tensor on M , appear. We interpret ψi

0 as the usual differential
form dxi at x0, and write Rμν for the Riemann two-forms

Rμν =
1

2
Rijμν(x0)ψ

i
0ψ

j
0, (2.57)

which is what appears in the expanded action.
Note that (by construction) in the T → ∞ limit, the path integral

over the fluctuating modes x̂, ψ̂ is Gaussian and on evaluation it will give
us determinants. Performing the infinite dimensional Gaussian integral
formally gives us the result∫

ΠTM

dnx0 dnψ0 e−
1
2Fμν(x0)ψ

μ
0 ψ

ν
0

Pf ′(∂t)√
det′(δνμ∂2

t + Rν
μ∂t)

. (2.58)

The integral is now over a finite-dimensional space, but the determinant
factors here are over the differential operator ∂t, and needs to be treated
carefully. Looking at the determinant factors, the numerator comes from
the fermionic integral over ψ̂ and the denominator from integrating over
x̂. The ′ denotes that we are excluding the zero modes, since these
are dealt with separetly. We can see that there is partial cancellation
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between numerator and denominator, leaving us with the determinant
factor

Pf ′(∂t)√
det′(δνμ∂2

t + Rν
μ∂t)

=
1√

det′(δνμ∂t + Rν
μ)

. (2.59)

The question now is how to deal with the determinant of the differential
operator ∂t. The eigenfunctions of ∂t with non-zero eigenvalue on the
unit circle are e2πikt for k a non-zero integer, which has the eigenvalue
2πik. Rμν is just an ordinary anti-symmetric matrix of 2-forms on M , so
it can be skew-diagonalized into n 2× 2 skew-diagonal blocks R(j) with
eigenvalues ±λj , j = 1, . . . , n. For each such block the determinant gets
the contribution

det′(∂t + R(j)) =
∏
k �=0

(2πik + λj)(2πik − λj), (2.60)

where the infinite product over k needs to be regularized. Let us consider
half of the above, i.e. we consider only the eigenvalue +λj . The infinite
product over k can be written

∞∏
k=1

(2πik + λj)(−2πik + λj) =

∞∏
k=1

(2πi)2(k +
λj

2πi
)(k − λj

2πi
)

=

[ ∞∏
k=1

(2πi)2

] ∞∏
k=1

(k +
λj

2πi
)(k − λj

2πi
)

(2.61)

Both these infinite divergent products can be assigned values using zeta-
function regularization. Let us start with the second product. We can
further rewrite it as

∞∏
k=1

(k2 − λ2
j

(2πi)2
) =

∞∏
k=1

k2(1− λ2
j

(2πik)2
) =

[ ∞∏
k=1

k2

]
sinh

λj

2

λj/2
, (2.62)

where we use the famous infinite product formula for sin due to Euler,

sinx

x
=

∞∏
n=1

(
1− x2

π2n2

)
, (2.63)

but where the factor of i turned it into the hyperbolic sine function.
We need to deal with the two infinite pre-factors, which we do through

zeta regularization in the following way
∞∏
k=1

k2 = exp

( ∞∑
k=1

2 log k

)
= exp

(
2

∞∑
k=1

log k

ks

∣∣∣∣∣
s=0

)
= exp(−2ζ ′(0)) = 2π,
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where ζ is the Riemann zeta function,

ζ(s) =
∞∑
k=1

1

ks
, (2.64)

for s > 0, which is analytically continued to s = 0. The derivative of
this at zero is ζ ′(0) = −1

2 log(2π), which gives the final result in (2.64).
Similarly for the other infinite pre-factor, we find

∞∏
k=1

(2πi)2 = (2πi)2(
∑∞

k=1
1
ks )|s=0 = (2πi)2ζ(0) = (2πi)−1. (2.65)

So in total, the regularized determinant is found to be

det′(δνμ∂t + Rν
μ) = (−i)

n
det

[
sinh 1

2R
1
2R

]
(2.66)

where the determinant is of the Riemann curvature tensor. Disregarding
the irrelevant overall constant, we have thus found the following expres-
sion for the partition function:

Z =

∫
dx0 dψ0 e−

i
2Fμν(x0)ψ

μ
0 ψ

ν
0

√
det

1
2R

sinh 1
2R

. (2.67)

Interpreting ψμ
0 as a basis of 1-forms on M , we can recognize that the

factor involving F is the Chern character ch(F ) of the U(1) bundle, and
the determinant factor is the Â-genus with respect to the curvature R,
and the entire thing can be written as

Z =

∫
M

ch(F ) ∧ Â(R). (2.68)

So the partition function is in the end given by the integral over these
characteristic classes of P .

In fact, the partition function we are computing is the index of the
Dirac operator on M coupled to the gauge field A, and the result that this
can be written as this integral over characteristic classes is an instance of
the Atiyah-Singer index theorem. The full explanation of this is outside
the scope of this chapter; and the interested reader can find it in [29]
and references therein.
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3. Supersymmetric gauge theories

In this chapter we introduce the supersymmetric theories that this the-
sis study. We begin with a short general introduction to gauge theories,
supersymmetry and their combination, supersymmetric gauge theories.
Then we give a brief introduction to the 6d (2,0) theories, which, al-
though we do not study them directly, provide some motivation and a
unifying perspective of a lot of the supersymmetric field theories and
their relations. These 6d theories are closely related to the maximally
supersymmetric Yang-Mills theories in 5d, and we next introduce super-
symmetric 5d gauge theories, the topic of articles I and II. Finally we
briefly outline 4d N = 2 theories, which is the subject of article IV.

3.1 Gauge theories
The canonical example of a gauge theory is given by Maxwells electrody-
namics in four dimensions. In the classic formulation, this is the theory
of the electric and magnetic fields, described by the Maxwell equations.
In more modern language, the theory is formulated in terms of a gauge
field Aμ, sometimes called the four-potential, since it is a four-vector and
acts as a potential from which the electric and magnetic fields can be
derived. The electric and magnetic fields are the components of the field
strength tensor Fμν , which is given in terms of Aμ as

Fμν = ∂μAν − ∂νAμ. (3.1)

In the language of differential forms, A = Aμdx
μ is a 1-form on space-

time, and F is the exterior derivative of A, F = dA. The classical
theory depends only on F and not on A itself, and F is invariant under
the change of A by an exact form, A �→ A + df for any function f . We
call this shift a gauge transformation of A.

The Lagrangian that describes Maxwell electrodynamics is

LEM[A, J ] = − 1

4g2
F ∧ �F −A ∧ �J. (3.2)
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where g is the coupling constant and J = Jμdx
μ is a four-current that

should be understood as an abbreviation for potentially many terms
describing other fields that carry electric charge. J is not a fundamental
field itself. This Lagrangian plus the fact that d2 = 0 gives us the
Maxwell equations

d � F = g2 � J,

dF = 0.
(3.3)

In more mathematical terms, this gauge theory is constructed in terms
of a principal U(1) bundle over the space-time manifold M . An excel-
lent introduction to this topic is the book [30]. The gauge field is the
connection on the principal bundle.

A connection on a principal G-bundle is a gadget that define a notion
of parallel transport on the bundle. It is represented by a 1-form on the
total space P taking values in the Lie algebra g of G and gives us a way
of “connecting” the fibers over nearby points on the base manifold. It
can also locally (but potentially not globally) be described by a one-form
on the base, also taking values in the Lie algebra.

Let us first describe this in the example of a U(1) bundle. Then g � R,
so the connection is described locally by a real one form Aμ ∈ Ω1(M).
Given this Aμ we define the associated covariant derivative as

Dμ = ∂μ − iAμ. (3.4)

Let γ : [0, 1] → M be a smooth path on M and s be a section of the
principal bundle. We say that s is parallel if

Dγ̇(t)s = γ̇μ(t)Dμs = 0, t ∈ [0, 1], (3.5)

where γ̇μ is the vector field along the direction of the path. This defines
parallel transport and when elements of fibers over nearby points are
to be considered ’the same’, and thus how the different fibers are glued
together. See figure 3.1 for a graphical representation of this.

The field strength F = dA is called the curvature of the connection;
and it can be thought of as measuring the “infinitesimal holonomy” of the
connection, or in other words how much an element of a fiber is changed
by being parallel-transported along an infinitesimally small loop.

So the Maxwell theory is a theory of connections on principal U(1)

bundles, possibly coupled to other fields living in associated vector bun-
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Figure 3.1. A sketch illustrating a principal bundle P → M and the notion of
a section s over a path γ(t) in M .

dles. This was generalized to other, nonabelian gauge groups by Yang
and Mills [31], and this general type of theory is called Yang-Mills the-
ory (abbreviated YM). Then one considers a G principal bundle over M ,
with a connection/gauge field A, locally described by a 1-form valued in
the Lie algebra g. Let T a be a basis of g, and

[T a, T b] = ifabcT c, Tr(T aT b) =
1

2
δab, (3.6)

where fabc are the structure constants of g. We can then write the gauge
field explicitly as A = Aa

μT
adxμ. The field strength is given by

F = dA− i[A,A] = (∂μA
a
ν − ∂νA

a
μ + fklaAk

μA
l
ν)T

adxμ ∧ dxν , (3.7)

and the covariant exterior derivative now acts by dA = d − i[A, ·]. We
have F = dAA, which is the appropriate way to define the curvature of
a connection on a principal bundle for non-abelian gauge groups. F is
again invariant under gauge transformations of A, which acts as A �→
A+ dAσ, where σ is a function taking values in g.

The appropriate generalization of the action is

LYM[A, J ] = −Tr
[

1

2g2
F ∧ �F + 2A ∧ �J

]
, (3.8)

where the factor of 2 comes from the convention for the trace in (3.6).
For the gauge group SU(3) this describes the strong force and with the
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appropriate choice of matter fields it becomes quantum chromodynamics
(QCD).

Yang-Mills theory can be defined in any dimension, but for the quan-
tized version, it is only renormalizable for dimensions 4 and lower. This
can be understood by looking at the dimension of the coupling constant
g2. In 4 dimensions g2 is dimensionless, while in higher dimensions it
acquires the dimension of length (or inverse mass). For example in 5d,
[g2] = [r], implying that the theory is non-renormalizable by simple
power counting. Nevertheless, the theories can be formulated and stud-
ied in higher dimensions, where we can treat them as effective theories.

3.2 Supersymmetry
Next we give a brief introduction to the idea of supersymmetry, before
turning to the supersymmetric Yang-Mills theories. Supersymmetry was
discovered independently by Golfand and Likhtman [32], Volkov and
Akulov [33], and Gervais and Sakita [34], and it is a symmetry that maps
bosons into fermions and vice versa. Because of the spin-statistics theo-
rem, this means that it changes the spin of particles by a half. The spin of
a particle classifies its representation of the Lorentz part of the Poincare
algebra, so this means that supersymmetry interacts non-trivially with
the space-time symmetry. This is very different from gauge symmetries
and other so called internal symmetries, which do not ’talk to’ space-
time symmetries at all (their commutators with the generators of the
Poincare algebra are trivial). There is a famous no-go theorem of Cole-
man and Mandula [35], which states that the only way of extending the
Poincare algebra is through adding internal symmetries. Supersymmetry
was invented as a way around this, and circumvents the result (which im-
plicitly assumed that the additional generators would obey commutation
relations) by adding anti-commuting (Grassmann) generators. Later it
was shown by Haag, Lopuszanski and Sohnius [36] that this in fact is
the most general possible non-trivial extension of the Poincare algebra,
which in itself makes supersymmetry a compelling topic to study.

Supersymmetry extends the Poincare algebra by adding some num-
ber of anti-commuting generators Qa, a = 1, 2, . . . ,N, commonly called
supercharges. Each Qa is a spinor in the minimal spin representation
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that lets you construct a non-trivial extension of the Poincare algebra.
So it has several components, and each component is called a supersym-
metry. We will take 4d as our main example, in which case each Qa is
a Dirac spinor with 4 components, which we usually represent as a pair
of 2-component Weyl spinors, writing Qa = (Qa

α, Q̄
a
α̇) where α, α̇ = 1, 2.

So the N = 1 theory in 4d has 4 supersymmetries.
The non-trivial parts of the algebra between the supercharges and

the generators of the usual Poincare algebra is the commutator with the
generators of the Lorentz group, which is fixed by requiring Qa to be a
spinor, and the anti-commutators between the supercharges themselves,
which in our 4d example is given by

{Qa
α, Q̄

b
β̇
} = 2δabσμ

αβ̇
Pμ,

{Qa
α, Q

b
β} = {Q̄a

α̇, Q̄
b
β̇
} = 0,

(3.9)

where σμ = (1, �τ) is a vector of 2× 2 matrices, and �τ is the three Pauli
matrices.1 σμ is the 2-component representation of the gamma matrices,
which gives the Clifford multiplication of spinors.We see that the super-
symmetries square to a translation, showing that supersymmetry and
spacetime symmetry is deeply connected. For a nice review of spinors
and supersymmetry in various dimensions, we refer the reader to ap-
pendix B of the second volume of String theory by Polchinski [37], or the
book by Wess and Bagger [38].

In ordinary field theory, a particle is defined as an irreducible represen-
tation of the Poincare algebra. This only really works for non-interacting
theories; when the theory is interacting things are more complicated and
it is not easy to describe the Hilbert space. An irreducible representa-
tion of the Poincare algebra is classified by two numbers: its spin and its
mass.

When we extend the Poincare algebra to the super-Poincare, we again
repeat a similar story and find its irreducible representations. These are
called supermultiplets, and take the and take the form of a collection
of different usual fields. Each supermultiplet necessarily include both
bosons and fermions, and since the supersymmetry maps each boson to
a fermion, a given supermultiplet will have equally many bosonic and

1For the experts we comment that this is for the simple case without central charges,
which can be turned on in the second line of (3.9).
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fermionic degrees of freedom. A supermultiplet is classified by its mass
and its ‘component’ of maximal spin. The most commonly used super-
multiplets are the vector multiplet (which includes a gauge field Aμ),
the chiral multiplet and the hypermultiplet (which both describe matter
fields and include scalars and spinors), and the gravity-multiplet, which
includes the graviton and is used for supersymmetric theories of gravity.
The exact field content of a given multiplet depends on the number of
dimensions and the amount of supersymmetry one is considering, where
more supersymmetries makes the supermultiplets bigger.

Each time a supersymmetry generator acts on a field with spin s, it
maps it to another field with spin s+ 1

2 . We also know that interacting
fields with spin 2 have to behave like gravitons (shown by Weinberg
[39]), which means that such theories are theories of gravity and thus
outside the scope of normal quantum field theory. The supersymmetric
theories that include the graviton are called supergravity theories [40].
Restricting ourselves to field theories with no graviton therefore places
a limit on how many supersymmetries we can have, since if we have too
many there is no way to construct a supermultiplet that only include
fields with s < 2. In 4 dimensions, the maximal allowed supersymmetry
is found to be 16 supersymmetries, corresponding to adding four Qa’s.
This is called N = 4, and the corresponding supersymmetric Yang-Mills
theory is one of the most well studied theories of modern theoretical
physics.

3.2.1 Supersymmetric Yang-Mills
The supersymmetric version of Yang Mills theory was first considered
by Brink, Schwarz and Scherk [41] in 1977, and the topic has attracted
a lot of attention ever since. A supersymmetric Yang-Mills (SYM) the-
ory (SYM) is a supersymmetric field theory that contains a vector field
Aμ, and whose action contains the usual YM term, Tr(F ∧ �F ). As
mentioned, the vector field is part of the vector multiplet, which always
will contain at least a fermion partner called the gaugino and possibly
additional scalar fields. In addition to this one can add chiral or hyper-
multiplets that describe matter fields.

The more supersymmetries you have, the larger every supermultiplet
becomes and the more complicated the actions look. However having
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more and more supersymmetry also constrains the theory more and
more, so it is actually easier to study theories with more supersymmetry.
Especially the maximally supersymmetric theories, like 4d N = 4, are
typically excellent models to study.

However here we instead give the least supersymmetric 4d SYM, the
N = 1 theory, as an example since it does not contain very many fields
and has a simple action. The vector multiplet of this theory has the field
content of a (real) gauge field A, and one complex 2-component (Weyl)
spinor λ, the gaugino. A and λ are both valued in the Lie algebra g

of the gauge group; one often says that they take values in the adjoint
representation. The supersymmetry variations on these fields is given by

δεAμ = iε†σ̄μλ− iλ†σ̄με,

δελ = Fμνσ
μνε,

(3.10)

where F is the field strength of A and ε is a constant, complex Weyl
spinor that acts as the parameter for the transformation. We see that δ

maps us from bosons to fermions and vice versa, and the analogy with
the Cartan model of equivariant cohomology of section 2.1.1 should be
clear.

The corresponding Lagrangian that includes the Yang-Mills term F ∧
�F and some term for λ, such that the action is supersymmetric, i.e.
δεS[A, λ] = 0, is

LSYM[A, λ] = − 1

2g2
Tr

[
FμνF

μν − iλ†σ̄μDμλ
]
, (3.11)

where Dμλ = ∂μλ − i[Aμ, λ] is the covariant derivative. In sections 3.4
and 3.5 we give two other examples of more complicated SYM theories,
which have more supersymmetries, so their vector multiplet includes
more fields. We next turn to one of the most interesting examples of
supersymmetric theories, which however is not of SYM type.

3.3 The 6d (2,0) theory
The mysterious N = (2, 0) theories are one of the main motivations be-
hind the investigations of this thesis. The notation (2, 0) means that
the theory has 2 supercharges Q1,2, that are 6d Weyl spinors with the
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same chirality. A Weyl spinor in 6d has 4 complex components (or 8
real ones), so the theory has 16 supersymmetries. One can also consider
(1,1) theories, and (1,0) theories, but the (2,0) theories are especially
interesting. They are superconformal (meaning that they are both con-
formal and supersymmetric) 6d theories, and first appeared in Nahm’s
classification of superconformal theories [42], but did not originally at-
tract very much attention. Then in 1996 Witten constructed 6d (2,0)
theories with A,D and E gauge groups by putting type IIB string theory
on R

1,5×C
2/ΓADE [7, 8]. Witten also understood that the theory, with

SU(N) gauge group should describe the dynamics of M2-branes end-
ing on a stack of N M5-branes; in a similar way that SU(N) 4d SYM
describes strings ending on a stack of D3-branes.

For the abelian theories, their field content is given by a 2-form B, 5
scalars ΦI , I = 1, . . . , 5, and a spinor Ψ. The 2-form is constrained to
have a self-dual field strength,

H = dB = �H, (3.12)

a fact that makes the theory quite hard to study.
We do not know how to formulate the theory for non-abelian gauge

groups, and it is not known if there exists a Lagrangian formulation
of the non-abelian (2, 0) theory. Since the theory is superconformal,
it sits at fixed points of the RG-flow. Furthermore, it is believed that
these fixed points are isolated, which further forbids any dimensionless
parameters, meaning that there is no free parameters at all. Thus, there
is no perturbative regime where one can study the theory, so most of
the usual techniques do not apply. This makes studying the theory very
hard.

By compactifying the (2,0) theories in various ways, one can construct
a large number of interesting lower-dimensional supersymmetric QFTs,
and also discover and understand dualities between them. Perhaps the
most well known is the reduction over T 2, which gives N = 4 SYM in
4d, which again is a superconformal theory. The invariance of the super-
conformal (2, 0) theory under interchanging the two radii of T 2 is then
a natural and geometric explanation of the S-duality of 4d N = 4. The
famous AGT correspondence [43] between 4d and 2d theories can also be
understood from compactifying the 6d theories on (punctured) Riemann
surfaces [44], and the newer 3d/3d duality [45, 46] can be understood in
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6d (2,0)
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4d SYM
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S1

Σ
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Figure 3.2. A sketch illustrating relationships between different theories.

a similar fashion by compactifying to three dimensions in two different
ways. See figure 3.2 for a sketch of these various relations.

On dimensional reduction on a circle, one instead reaches the maxi-
mally supersymmetric 5d N = 2 SYM theory. It has been conjectured
[47] that actually no information is lost in this particular reduction, the
idea being that the instanton contributions in 5d captures all of the in-
formation of the 6d theory. This is argued by comparing the spectrum of
instantons in 5d MSYM with the Kaluza-Klein spectrum of compactified
(2, 0), and finding that with the identification

g25
8π2

= R6, (3.13)

between the 5d YM coupling and the radius of the circle, they match.
This matching is done for the case of two slightly separated M5 branes,
corresponding to the gauge group SU(2), but it is conjectured to hold
in general.

One of the few ways we have of studying the 6d theory is through
the AdS7/CFT6 duality [48]. Through this we know a few important
things about it, such as that its free energy scale as N3 [49]. This has
also been reproduced by localization calculations with the theory placed
on the sphere S5 [50], which provides further evidence of the conjecture
that the 5d SYM indeed captures the entirety of the (2, 0) theory.

3.4 5d Super Yang-Mills
In 5d the maximally supersymmetric YM theories is the N = 2 SYM,
and as mentioned above this is believed to be equivalent to the 6d (2,0)
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theories. Therefore, the 5d SYM theories give us a tool with which we
can study the 6d (2,0) theories. The field content of N = 2 theories can
be described as a N = 1 vector multiplet plus a massless hypermultiplet
in the adjoint representation, so here we describe the field content and
supersymmetry of the 5d N = 1 theories. The introduction here is brief,
considerably more details can be found in for example the review [51].

We should comment here that in 5d, the Yang-Mills coupling becomes
dimensionfull, [g25d] = [m−1], turning the theory non-renormalizable.
Therefore naively, the 5d SYM theory is not a sensible theory to study.
We can however make sense of it by thinking of them as low-energy ef-
fective theories, that have some UV completions. There is evidence that
there exist strongly coupled superconformal N = 1 5d theories [42, 52],
that flow to the 5d SYM theories in the IR. So these are the UV com-
pletions of the N = 1 theories, while the N = 2 theories are believed to
be completed by the 6d (2, 0) theories.

5d N = 1 theories have a vector multiplet containing the gauge field,
and a hypermultiplet that can describe matter fields. Below, we describe
their respective field contents, off shell supersymmetry and supersym-
metric actions, for theories on flat space.

3.4.1 Vector multiplet

The vector multiplet in 5d N = 1 has the following field content: a gauge
boson Am, a symplectic Majorana spinor λI , a real scalar field σ, and
auxilliary real scalars DIJ , all in the adjoint representation of the gauge
group. The indices I, J are in the fundamental of the SU(2)R symmetry
that this theory enjoys, so I, J = 1, 2, and the symplectic Majorana
condition is the reality condition one can impose on spinors in 5d, which
reads

(λα
I )

∗ = εIJCαβλ
β
J , (3.14)

where Cαβ is the charge conjugation matrix, and α, β are the spinor
indices of Spin(5) � Spin(4). The auxiliary scalars DIJ = DJI are
introduced so that we can write the off-shell supersymmetry transforma-
tions that we need for localization.

43



The supersymmetry variations of the vector multiplet are given by

δAm = iξIΓmλI ,

δσ = iξIλI ,

δλI = −1

2
FmnΓ

mnξI + (Dmσ)ΓmξI +D J
I ξJ ,

δDIJ = −i(ξIΓ
mDmλJ) + [σ, ξIλJ ] + (I ↔ J).

(3.15)

where F is the field strength of A and Dm is the gauge covariant deriva-
tive. The constant symplectic Majorana spinor ξI parametrizes the su-
persymmetry. The supersymmetric Yang-Mills Lagrangian invariant un-
der the above supersymmetry is

Lvect =
1

g2YM

Tr
[
1

2
F ∧ �F − dAσ ∧ �dAσ +

(
−1

2
DIJD

IJ

+iλIΓ
mDmλI − λI [σ, λ

I ]
)
Vol5

]
.

(3.16)

Here Vol5 is the volume form. This action is written in 5d flat Euclidean
space, since when we later put the theory on curved backgrounds, S5

being the primary example, this is what we need. Note the ‘wrong’
sign of the scalar kinetic term −dAσ ∧ �dAσ, which we can understand
as follows. The above action can be reached starting from the flat 6d
N = 1 super-Yang-Mills theory in the Lorentzian signature, R

5,1, and
formally reducing along the time direction. This gives a 5d Euclidean
theory but with the wrong sign of the kinetic term of σ, since it comes
from the time component of a vector in 6d Minkowski space. When one
computes the 5d partition function, σ has to be Wick rotated, i.e. we
choose a contour where σ is imaginary instead of real. This makes the
kinetic term have the correct sign and turns the action positive definite.

3.4.2 Hypermultiplet

The hypermultiplet has the field content of 2 real scalars in a SU(2)R

doublet qI , a SU(2)R singlet spinor ψ and doublet of auxiliary scalars
FI . The hypermultiplet fields takes values in a representation R of the
gauge group.
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The supersymmetry algebra for the hyper coupled to a vector multi-
plet, takes the form

δqI = −2iξIψ,

δψ = ΓmξIDmqI + iξIσq
I − ξ̂IF

I ,

δFI = 2ξ̂I(iΓ
mDmψ + σψ + λKqK).

(3.17)

Here ξ̂I is a constant spinor satisfying

ξIξ
I = ξ̂I ξ̂

I , ξI ξ̂J = 0, ξIΓ
mξI + ξ̂IΓ

mξ̂I = 0. (3.18)

The supersymmetric action for the hypermultiplet takes the form

Lhyp = TrR
[
DmqID

mqI − q̄Iσ
2qI − 2iψ̄ΓmDmψ − 2ψ̄σψ

−iq̄ID
IJqJ − 4ψ̄λIq

I − F̄IF
I
] (3.19)

One can also give mass to the hypermultiplet. The easiest way of doing
this is to introduce an auxiliary background vector multiplet (Ã, σ̃, λ̃I , D̃IJ),
and view the mass terms of the hyper as coming from a non-zero vacuum
expectation value of the scalar of this vector multiplet,

〈σ̃〉 = m, 〈Ã〉 = 〈D̃IJ〉 = 〈λ̃I〉 = 0, (3.20)

where m is the mass matrix of the hypermultiplet. Introducing a mass
term will change the supersymmetry variations (3.17), where the new
mass terms will appear as a shift of σ.

If one introduces a massless hypermultiplet in the adjoint representa-
tion of the gauge group, the supersymmetry of the theory is enhanced to
N = 2. The soft supersymmetry breaking of this theory by turning on a
non-zero mass is sometimes referred to as N = 2∗.

In the articles I, II we study the N = 1 theories described above, plac-
ing them on a curved compact manifold and computing their partition
functions exactly using the methods of supersymmetric localization de-
scribed in chapter 2. The procedure of placing a supersymmetric field
theory on a curved manifold is described in section 3.6, but first we turn
to 4d N = 2 theories.

3.5 4d N = 2 theories
Here we briefly describe the basics of 4d N = 2 gauge theories, which
is a large subject of great importance to various areas of physics and
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mathematics [19, 24, 22]. If one takes a 5d N = 1 theory described in
the last section and places it on R

4 × S1 and then shrinks the circle to
zero, as we will describe in chapter 8, one will reach a 4d N = 2 theory.
This is in fact the main tool we use in article IV, and because of this
much of the story is very similar to the 5d N = 1 theories.

3.5.1 Vector multiplet

A 4d N = 2 vector multiplet contains the gauge field Aμ, a pair of (Dirac,
i.e. 4-component) spinors λI , two real scalar fields σ, ϕ, and auxilliary
scalars DIJ = DJI , all taking values in the Lie algebra of the gauge
group. The index I is over the fundamental doublet of the SU(2) R-
symmetry that the theory enjoy. The supersymmetry transformations
are

δAμ = iξIΓμλI ,

δλI = −1

2
FμνΓ

μνξI + ( /Dσ + Γ5 /Dϕ)ξI − i[ϕ, σ]Γ5ξI −DIJξ
J ,

δσ = iξIλ
I , δϕ = iξIΓ5λ

I ,

δDIJ = −iξI /DλJ − [ϕ, ξIΓ5λJ ] + [σ, ξIλJ ] + (I ↔ J).

(3.21)

Again ξI are constant complex Dirac spinors. The two scalar fields are
often combined into a single complex scalar Φ = ϕ + iσ, and slash is
shorthand for contraction with Γμ. The supersymmetric Lagrangian is
given by

Lvect =
1

g2YM

Tr
[
1

2
F ∧ �F +

g2YMθ

16π2
F ∧ F + (dAΦ)

† ∧ �(dAΦ)

+

(
−iλΓμDμλ̄− i

√
2[λ, λ]Φ† − i

√
2[λ̄, λ̄]Φ† − 1

2
[Φ†,Φ]2

)
Vol

] (3.22)

where Vol4 is the volume form. This action includes the famous θ-term,
and it is natural to phrase things in terms of the complex coupling

τ =
θ

2π
+

4πi

g2YM

. (3.23)

3.5.2 Hypermultiplet

The hypermultiplet, much like in 5d N = 1, contains a SU(2)R-doublet
of scalars qI , a SU(2)R singlet ψ and a doublet of auxiliary scalars FI , all
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in a representation R of the gauge group. They have the supersymmetry
variations

δqI = −2iξIψ,

δψ = ΓμξIDμq
I + iξIσq

I − ξ̂IF
I ,

δFI = 2ξ̂I(iΓ
μDμψ + σψ + λKqK).

(3.24)

which is essentially the same as in 5d (since the reduction of both scalars
and spinors is trivial from five to four dimensions, more on this in chap-
ter 8). Again ξ̂ is a constant spinor satisfying

ξIξ
I = ξ̂I ξ̂

I , ξI ξ̂J = 0, ξIΓ
mξI + ξ̂IΓ

mξ̂I = 0. (3.25)

3.6 Rigid supersymmetry on curved backgrounds
Localization gives us a powerful tool with which to investigate quan-
tum field theories, but it requires them to be placed on compact, curved
manifolds (since on non-compact manifolds the partition function di-
verges with volume).2 Therefore a natural and important question is to
ask on which backgrounds we can place supersymmetric field theories.
And how do we go about constructing such a theory? Specifically, given
a compact Riemannian (i.e. Euclidean signature) manifold (M, g), when
can we define a supersymmetric theory on it, and if we can, what is the
theory? There are two known, different approaches to this problem. The
first one is through a procedure called topological twisting, first consid-
ered by Witten [20, 54], and the second one is that of finding spaces that
admit appropriately generalized “constant spinors”. Topological twisting
takes a theory, like the 4d N = 2, and changes it in a particular way
(“twists it”) so that it becomes topological and can be placed on any
background. This is an interesting and useful procedure, but for our
purposes the second approach is more relevant. In the flat space, super-
symmetry is parametrized by constant spinors, ∂μξ = 0, so the natural
generalization to curved backgrounds is to consider covariantly constant
spinors,

∇μξ = 0, where ∇μ = ∂μ − 1

4
Γμνωμν . (3.26)

2There are attempts at localizing theories on non-compact spaces [53], but there are
various technical issues and how it works is not well understood at the moment.
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Here ωμν is the spin connection. For manifolds that admit covariantly
constant spinors, the supersymmetry can be formulated by simply covari-
antizing everything, essentially promoting each derivative to a covariant
derivative. The issue with this is that admitting covariantly constant
spinors is a very strong condition on the background geometry: the only
spaces with covariantly constant (or parallel, as they are also called)
spinors are special holonomy manifolds. Those are the Calabi-Yau man-
ifolds, hyperkähler manifolds, G2-manifolds of dimension 7, and Spin(7)-
manifolds in dimension 8. This is very restrictive, and does not admit
any interesting examples in lower dimensions where we are interested
in studying field theories. Therefore, people considered a deformation
of the ∇μξ = 0 condition, relaxing it into the so called Killing spinor
equation which reads

∇μξ = Kμξ, (3.27)

where Kμ is a background field; usually taken to be a constant divided by
the length parameter r that control the size of the compact manifold, so
that it goes to zero in the flat space or large r limit. So people considered
equations of the form

∇μξ =
α

r
Γμξ, (3.28)

for some constant α. This is the equation one finds on the spheres, which
was the first cases people considered; for correct choices of α the spheres
admit solutions.

If the background admits such Killing spinors, and we modify our
supersymmetry variations and action by adding specific terms with r−1

and r−2 dependence, we can define a supersymmetric theory on the
curved background. The first explicit example of this was by Pestun
on S4 [19]. He used a conformal map between R

4 and S4 to find out
how to modify his action and supersymmetry, and found that adding a
small number of terms that went away in the large r limit allowed him to
have a supersymmetric field theory on S4. We will see examples of these
terms when discussing 5d SYM theories on Sasaki-Einstein backgrounds
in chapter 6.

For a while after Pestuns work, the people studying theories on other
curved backgrounds in different dimensions did not have a systematic
way of finding which terms to add to the action and variations. But for
simple cases like spheres and other highly symmetrical spaces, you can

48



make an ansatz of terms going like r−1 and r−2, and fix their coefficients
by directly checking supersymmetry algebra closure and invariance of
the action.

Of course, we want to understand things better than this, so thank-
fully it was not long until the question was addressed in a systematic way
by Festuccia and Seiberg [55], who used off-shell supergravity to give a
general prescription. Their idea was to find a supergravity solution for
the particular manifold in question, that is, fix the metric and then solve
the supergravity equations of motions to find the corresponding values of
the other fields in the supergravity multiplet. Finally take a rigid limit,
where the gravitational degrees of freedom freeze and decouple, and we
are left with the desired rigid supersymmetric field theory on the correct
background. The extra terms in the supersymmetry transformations and
in the action are then naturally understood as the background fields from
the supergravity solution. In supergravity, the parameters of the super-
symmetry variations is the gravitino, which goes to a fixed background
value in the rigid limit. Since the background fields have to be super-
symmetric, we have to set the supersymmetry variation of the gravitino
to zero, δΨ = 0 and solve for the gravitino. This equation is exactly the
(generalized) Killing spinor equation, and the gravitino solutions are the
Killing spinors that will parametrize the rigid supersymmetry.

So the Festuccia-Seiberg procedure gives us a systematic and concep-
tually clear way of finding supersymmetric backgrounds and constructing
the rigid supersymmetric field theories on them. Of course actually solv-
ing the Killing spinor equation, or finding out when solutions exist, is
not generally an easy task.

People have used this procedure to study many different cases, for
example 4d N = 1 theories with U(1)R symmetry, 3d N = 2 theories
with U(1)R, 2d N = (2, 2) theories and so on [56, 57, 58] For some
of these cases, there is a full classification of possible supersymmetric
backgrounds, like for the 4d N = 1 with U(1)R symmetry [59, 60]. In
this case, given any complex Riemannian manifold one can always solve
the Killing spinor equation. Requiring more than one supercharge gives
us more constraints on the geometry. For other settings, the problem of
classifying all supersymmetric backgrounds are still open. The relevant
example for us is the case of N = 1 in 5d, where it is known that we can

49



always construct such theories on Sasaki-Einstein manifolds (see chapter
5), but the full classification of all possible backgrounds is not known
(although there is informed conjectures, see [61, 62]).
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4. Toric Geometry

In this and the next chapter we leave physics for a while, and introduce
some concepts from geometry that we need, starting with the rich and
interesting subject of toric geometry. Broadly this is the study of spaces
with torus actions. Toric geometry can be viewed from a number of
different perspectives; symplectic geometry, algebraic geometry, combi-
natorics, gauged linear sigma models and so on. Here we will introduce
the subject from the symplectic geometry viewpoint. For more details
and proofs, we refer the reader to the book by Fulton [63].

4.1 Basic concepts
A symplectic manifold is a pair (M,ω), where M is a manifold and ω

is a closed 2-form on M that is non degenerate at every point of M . A
vector field X on M is called symplectic if LXω = 0, and Hamiltonian
if

ιXω = dH, (4.1)

for some function H, which we call the Hamiltonian function for X.
The typical example of a symplectic manifold is C

r equipped with the
canonical symplectic form

ω =
i

2

r∑
i=1

dz̄i ∧ dzi =
r∑

i=1

dxi ∧ dyi, (4.2)

where zi = xi + iyi.
Another fundamental example is the cotangent bundle of some man-

ifold, T ∗N . Letting qi be local coordinates on N and pi be the cor-
responding coordinates on the covectors, then the canonical symplectic
form is given locally by

ω =
∑
i

dqi ∧ dpi. (4.3)
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A fundamental result of symplectic geometry is the Darboux theorem,
which states that any two symplectic manifolds of the same dimensions
are locally symplectomorphic to each other. This means that there al-
ways exists a choice of local coordinates such that the symplectic form
takes the form of (4.3). In particular this means that the symplectic
structure carries no local data.

Next we turn to group actions on symplectic manifolds. Let M have
a G-action for G a compact Lie group, let g be the Lie algebra of G, and
take an element X ∈ g. Denote by X# the vector field on M generated
by {exp(tX)|t ∈ R} ⊂ G, i.e. the vector field that generates the flow in
the direction of X.

If there exists a map

μ : M → g∗ , (4.4)

such that

d〈μ(p), X〉 = ιX#ω, (4.5)

and the map μ is equivariant with respect to the given group action ψ,
then the group action is called Hamiltonian. Here, equivariant means
that

μ ◦ ψg = Ad∗g ◦ μ, ∀g ∈ G, (4.6)

i.e. that the group action and the moment map “commute” in the ap-
propriate sense. This means that the group action and the symplectic
structure are compatible. The map μ is called the moment map. One
should think of 〈μ(p), X〉 as the component of μ along the direction of
X, and the condition (4.5) says that this should be the Hamiltonian
function for the vector field X#.

For toric geometry, the relevant Lie group is a torus, Tn = S1 × · · · ×
S1 = (S1)n. Its Lie algebra and its dual are both identified with R

n.
Hence, if a manifold M has a Hamiltonian T

n-action, the moment map
is a map μ : M → R

n. It further satisfies that for each basis vector
ei of R

n, the function μi = 〈μ, ei〉 is a Hamiltonian function for the
corresponding vector field vi on M . The moment map is invariant under
the torus action.

For an effective Tn action, the dimension of M needs to be at least 2n.
We can now give the precise meaning of toric in the symplectic geometry
setting, namely: a connected symplectic manifold is toric if it is equipped
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with an effective hamiltonian action of a torus T of dimension equal to
half the dimension of the manifold.

A technical warning is in place here. In this thesis, the word toric is
not always used strictly in the sense defined here, but sometimes we use
it in the imprecise sense of “a manifold with a torus action". The precise
meaning of toric also is slightly different for Sasaki-Einstein manifolds,
as we describe in the next chapter. Hopefully with this warning in mind,
the meaning should be clear from the context.

Let us make all the above definitons a bit more concrete by working
out a canonical example in some detail.

Example (Cr) : Consider again the canonical example of a symplectic
manifold, Cr. This has a natural Tr action, acting on the coordinates
as a phase rotation, zj �→ eiθjzj . This action is symplectic, meaning
that it preserves the symplectic form, g∗ω = ω for all g ∈ T

r. It is also
effective, and hamiltonian, which we see explicitly below. The angles
(θ1, . . . , θr) gives an element in the Lie algebra g � R

r of the torus. Let
{ei}ri=1 be the usual basis vectors on R

r; then the action of ei on C
r is

represented by the vector field vi = yi∂xi
− xi∂yi

. We then define the
following moment map

μ : Cr → (Rr)∗ � R
r,

μ(z1, . . . , zr) =
1

2
(|z1|2, . . . , |zr|2).

(4.7)

This is clearly invariant under the torus action.
For the basis vector ei is is easy to see that the corresponding com-

ponent μi of the moment map is precisely its Hamiltonian vector field,
since

dμi = d(
1

2
|zi|2) = 1

2
(z̄idzi + zidz̄i) = xidxi + yidyi (4.8)

which is the same as

ιXiω = ιyi∂xi
−xi∂yi

(
r∑

i=1

dxi ∧ dyi) = xidxi + yidyi. (4.9)

This shows that the torus action is Hamiltonian, so C
r is a toric manifold.

Moment maps and Hamiltonian actions are very important in sym-
plectic geometry, and they help us understand the geometry of toric
manifolds, primarily through the following theorem of Atiyah [64]. Let
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S2
P
2

Figure 4.1. The moment polytopes for S2 and P
2.

(M,ω) be a connected symplectic manifold, and let T
n be a torus with

a hamiltonian action on M , with moment map μ. Then the image of μ
is the convex hull of the images of the fixed points of the action. This
image will thus be a polytope, called the moment polytope.

We have seen already the example of Cr, which is not compact. Its
image under the moment map is the cone R

r
≥0 = {xi > 0|i = 1, . . . r}. A

typical compact example to consider is the the sphere S2 = P
1 with the

standard T
1 = U(1) action acting as a rotation. This group action has

two fixed point, the north and south pole, and so the moment polytope
will be an interval.

A second example is the complex projective space P
2, which can be

described by coordinates (z1, z2, z3) ∈ C
3\{0} under the identification

(λz1, λz2, λz3) ∼ (z1, z2, z3), λ ∈ C
∗. (4.10)

This has the torus action T
3/T1 = T

2, where each factor of the T
3 can

be thought of as rotating one of the different complex coordinates and
you then quotient by the identification above. We can represent the
remaining T

2 action as the phase rotation of say z1 and z2, in which case
the moment map takes the form

μ =

( |z1|2
|z1|2 + |z2|2 + |z3|2 ,

|z2|2
|z1|2 + |z2|2 + |z3|2

)
. (4.11)

This group action has three fixed points, when two of the complex co-
ordinates are zero. On these three fixed points the above moment map
takes the values (0, 0), (1, 0) and (0, 1), and the moment polytope will
be a triangle, see figure 4.1. All higher dimensional projective spaces are
also good examples, and the moment polytope of Pr is the r-simplex.

These polytopes are examples of so called Delzant polytopes, which is
a polytope Δ ∈ R

n fulfilling the following conditions:
• Simplicity: there are n edges meeting at every vertex.
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S2
P
2

Figure 4.2. A sketch of how one can think of toric manifolds as degenerating
torus fibrations over the moment polytope.

• Rationality: the edges meeting at a vertex are generated by rational
vectors u1, . . . , un ∈ Z

n.
• Smoothness: at each vertex, the vectors describing the edges form

a Z-basis of Zn.
A famous result in toric geometry is that for any compact symplectic

toric manifold its moment polytope Δ is Delzant. Something stronger
is in fact true: there is a one-to-one correspondence between compact
toric manifolds and their Delzant polytopes. All the relevant toric data
is contained in the rational polytope.

A useful way of thinking about a toric manifold is as a T
n fibration

over its moment polytope, where as you go to a boundary, one of the
circles degenerate. For example for S2, its polytope is a line interval,
over which a single S1 is fibered, which shrinks to zero size as you go to
the ends of the interval, see figure 4.2. For P

2, over the interior of the
triangle one has a T

2 fibration, and as one goes to an edge of the triangle,
one of the circles degenerate, and when you go to a vertex, the entire
torus degenerates. The local geometry along an edge can be thought of
as R

2 × S2, while the local geometry at the vertex is R
4.

4.2 Symplectic reduction
Another useful view on toric geometry is given by the procedure of sym-
plectic reduction or symplectic quotient. This is a general procedure
where a symplectic manifold M with a Hamiltonian group action of a
group G can be reduced to a lower dimensional space, using the group
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action and the moment map,

M // G = μ−1(t)/G, (4.12)

where t ∈ g is called the Kähler parameter. The reduction preserves the
symplectic structure, so it gives us a way of constructing new symplectic
manifolds. If the manifold further is Kähler (see the next chapter for the
definition) it also preserves the Kähler structure, so it also goes by the
name Kähler reduction.

We specialize this to the case of a torus action on some complex space
C

k+n. Let z1, . . . , zk+n be the complex coordinates on C
k+n, and con-

sider the torus T
k acting on them with the following group action:

zj �→ eiQ
j
aθazj , a = 1, . . . , k. (4.13)

The numbers Qj
a are integers, called the charges of the torus action. The

group action (4.13) has the following moment map:

μa(z1, . . . , zk) =

k+n∑
j=1

Qj
a|zj |2, a = 1, . . . , k . (4.14)

Finally, introduce a set of k real numbers ta, the Kähler parameters, and
then consider the following space:

M = C
k+n // Tk =

(
k⋂

a=1

μ−1
a (ta)

)
/U(1)k. (4.15)

If the torus action acts freely on
⋂

a μ
−1
a (ta), M will be a smooth sym-

plectic toric manifold of real dimension 2n. If there are fixed points, one
can instead get an orbifold or a cone. The notation C

k+n // Tk is often
used for the symplectic reduction. The Kähler parameters in the above
are useful in that they might let us avoid the fixed points of the torus
action.

Example (S2): As an example, let us construct S2 using symplectic
reduction. We start from (z1, z2) ∈ C

2, with the group action of U(1),

(z1, z2) �→ eiθ(z1, z2). (4.16)

Now we have a single U(1), so there is a single charge vector Q = [1, 1].
The group action has the moment map

μ = |z1|2 + |z2|2. (4.17)
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Figure 4.3. In the left figure, the interior region of the four bounding planes is
the moment map image of the resolved conifold. The actual manifold should
be understood as a T

3 fibration over this, where one circle shrinks as one
approaches a face. The right picture is the projection of this, giving what is
commonly referred to as the toric diagram of the CY 3-fold.

We have a single Kähler parameter to t, and performing the symplectic
quotient we get

C
2//U(1) = {(z1, z2)| |z1|2 + |z2|2 = t}/{(z1, z2) ∼ eiθ(z1, z2)} = S2,

(4.18)
which is describing S2 as the base of the Hopf fibration of an S3 with
radius controlled by t. We see that the presence of the Kähler parameter
is crucial, since the U(1) action has a fixed point at the origin.

Example (resolved conifold, O(−1)⊕ O(−1) → P
1): As a second ex-

ample we construct the resolved conifold, which is the total space of
the bundle O(−1) ⊕ O(−1) → P

1. This space is a toric, non-compact
Calabi-Yau manifold (see next chapter for a definition); and it is a very
important example in the context of mirror symmetry [65]. We start
from C

4, with a single U(1) action with charges [1, 1,−1,−1] and some
Kähler parameter t. The group action has the moment map

μ = |z1|2 + |z2|2 − |z3|2 − |z4|2, (4.19)

and for our reduction we consider

μ−1(t) = {(z1, z2, z3, z4)| |z1|2 + |z2|2 − |z3|2 − |z4|2 = t}. (4.20)

Take as coordinates x = |z2|2, y = |z3|2, z = |z4|, then |z1|2 = t −
x + y + z. We see from their definition that x, y, z and t − x + y + z

all have to be positive quantities, which tells us over which region x, y, z
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are allowed to run over. This is the non-compact region of R3 bounded
by the planes x = 0, y = 0, z = 0 and t − x + y + z = 0, see figure
4.3. To describe μ−1(t), we have a T

4 fibration over this space; where
as we go to one of the bounding planes, one of the circles degenerate
(shrink to zero size). However by construction, the combination of circles
given by the charges [1, 1,−1,−1] does not degenerate anywhere, so it
gives a free action on μ−1(t), and we can further quotient by this U(1).
This gives the resolved conifold, which we can view as the remaining T

3

fibration, where some combination of circles degenerate on each bounding
plane. The precise combination of circles is given by the normal to the
bounding plane, something that we explain further in the next chapter
when discussing toric Sasaki-Einstein manifolds. The resolved conifold
is topologically the bundle O(−1) ⊕ O(−1) → P

1 [66], and it is a toric
Calabi-Yau manifold.

The charges Qi
a encode all the data of a toric manifold, and are thus

often referred to as the toric data. Given these charges, there is a simple
condition for telling if a toric manifold is Calabi-Yau. A toric manifold
is CY if and only if its charges satisfy

∑k
i=1 Q

i
a = 0 for all a.
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5. Sasaki-Einstein geometry

In this chapter we introduce a hierarchy of geometrical structures in
even and odd dimensions. This includes the Sasaki-Einstein manifolds,
which are the odd-dimensional sibling to the more famous Calabi-Yau
manifolds in even dimensions. In this thesis we are interested in Sasaki-
Einstein manifolds since they allow Killing spinor solutions, which as
discussed in section 3.6, allows one to construct supersymmetric field
theories on them. They therefore provide a nice source of curved back-
grounds where we can study supersymmetric field theories. To make
it possible to perform explicit calculations, we further restrict ourselves
to toric Sasaki-Einstein manifolds, so that techniques described in the
last chapter can be applied. These have a nice description in terms of
rational convex cones, as we describe in section 5.3.2.

There is a correspondence between geometrical structures in even and
odd dimensions, as the following table illustrate:

Structure Even Odd Structure

ω Symplectic Contact κ

g, ω, J Kähler Sasaki g, κ, J

Rμν = 0, ω, J Calabi-Yau Sasaki-Einstein Rμν = λgμν , κ, J

Rμν = 0, ω, I, J,K Hyperkähler Tri-Sasaki Rμν = λgμν , κ, I, J,K

As you go down the table, you are adding more and more structure.
ω is a symplectic form, κ is a contact one-form, I, J,K are complex
structures, g is a Riemannian metric and Rμν is its Ricci tensor. In the
following sections, we will explain these structures and what compatibil-
ity conditions they have to satisfy for the different cases shown in the
table.
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5.1 Contact structure
A contact structure is a structure in odd dimensions that we can think
of as the odd dimensional version of a symplectic structure. For a more
comprehensive introduction to the topic see for example [67].

Let M be a 2n + 1 dimensional manifold, equipped with a one-form
κ that satisfies the non-degeneracy condition that κ ∧ (dκ)n is nowhere
vanishing, i.e. it is a volume form on M . Then κ is called the contact
one-form, and its kernel defines a hyperplane distribution in the tangent
bundle TM . From the non-degeneracy condition, we see that dκ is a non-
degenerate closed 2-form on the kernel hyperplane of κ. This is one way
of seeing that the contact structure is closely related to the symplectic
structure.

We also define a vector field R, which is uniquely determined by the
conditions

ιRκ = 1, ιRdκ = 0, (5.1)

and is called the Reeb vector field of the contact structure.

Example (R2n+1) The canonical example of a contact structure is the
following one on R

2n+1. Let (x1, . . . , xn, y1, . . . , yn, z) be our coordi-
nates, then the canonical contact 1-form and Reeb are given by

κ = dz −
n∑

i=1

yidxi, R = ∂z. (5.2)

We see that

dκ =
n∑

i=1

dxi ∧ dyi, (5.3)

which is exactly the canonical symplectic form on R
2n.

Contact structure, precisely like symplectic structure, does not give
any interesting local data. Every contact structure looks locally the
same, i.e. we can always pick local coordinates such that the contact
structure can be written in the form of (5.2). This result is called the
Darboux theorem for contact structures.

If M also is equipped with a metric g, we usually want to consider the
cases when the metric and the contact structure is compatible, in the
sense that the following holds:

• the metric is preserved along the flow of the Reeb, LRg = 0, and
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• there exists an almost complex structure J on the kernel hyperplane
of κ such that g(X,Y ) = dκ(X, JY ) for all X,Y ∈ ker(J).

The triplet (M, g, κ) is then called a K-contact manifold.
From the definition of a contact structure we see that it defines a

volume form, κ ∧ (dκ)n. If we also have a metric this gives us another
canonical volume form, that we call Vol. For a K-contact manifold, one
can show that these two are related as

Vol =
(−1)n

2nn!
κ ∧ (dκ)n. (5.4)

In particular for a 5d contact manifold we have Vol = 1
8κ ∧ dκ ∧ dκ.

The contact structure gives us a decomposition of the differential forms
into what we call horizontal and vertical forms, Ω•(M) = Ω•

V ⊕ Ω•
H .

These are defined by the two projectors

PV = κ ∧ ιR, PH = 1− PV , (5.5)

which are projectors since R is normalized. Intuitively a differential form
is vertical if it has a ‘leg’ along κ, and horizontal if it does not. Further,
a differential form α is called basic if it is horizontal and invariant under
the Reeb vector flow, i.e.

ιRα = 0, LRα = 0. (5.6)

We denote by Ωp
B(M) the set of basic p-forms on M , which is a subset

of the horizontal forms. It is easy to see that if α is basic then so is dα.
Therefore we can define the restriction of the exterior derivative to basic
forms, dB = d|Ω•

B
, and use it to define the basic cohomology H•

B(M).

5.2 Sasaki geometry
Next, we introduce a specialization of the contact manifolds, called
Sasaki, which is the odd-dimensional sibling of Kähler structure. An
even-dimensional manifold X is Kähler if it has three structures, namely
a Riemannian metric g, a symplectic form ω and a complex structure J ,
which satisfy the compatibility condition

g(U, V ) = ω(U, JV ) , (5.7)

for any vector fields U, V .
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M
C(M)

r

Figure 5.1. The metric cone over M . The coordinate r is along the cone
direction and at each value of r there is a copy of M , increasing in size with r.

To define a Sasaki manifold, we first introduce the notion of the metric
cone over a manifold (M, g). This is the manifold C(M) = M × R≥0,
equipped with the cone metric

ds2C(M) = dr2 + r2ds2M . (5.8)

M is called the base of the cone. See figure 5.1 for an illustration. The
basic example is that the metric cone over the n-sphere is flat n+1 space,
C(Sn) = R

n+1.
A manifold is called Sasaki if its metric cone is Kähler. On the cone

C(M) we have the homothetic vector field r∂r, pointing in the cone
direction, and we also have a complex structure J . The Reeb vector on
C(M) is defined to be

R = J(r∂r), (5.9)

which is nowhere vanishing (away from the origin,r = 0); and by defini-
tion is orthogonal to the cone direction. Similarly we can define a 1-form
κ on C(M) through

κ = d(log r). (5.10)

Given the cone C(M), we can view M as being embedded into the set
with r = 1, and from the cone metric and definition of the Reeb, we see
that the Reeb on the cone restricted to r = 1 gives a normalized vector
on M . This is the Reeb vector of the contact structure on M . Similarly
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the restriction of κ on C(M) to r = 1 gives the contact one-form on M .
The complex structure on C(M) also descends into a complex structure
on the hyperplanes of the kernel of κ on M . The contact structure on a
Sasaki manifold is K-contact.

One can use the complex structure to further refine the complex of
basic forms that we introduced in the last section. The complex structure
gives a holomorphic grading of the horizontal forms,

Ωk
H(M) =

⊕
p+q=k

Ωp,q
H (M), (5.11)

which carries over to the basic forms. We can then split the basic ex-
terior derivative into its two components dB = ∂B + ∂̄B, which are the
basic Dolbeault operators, acting as ∂B : Ωp,q

B → Ωp+1,q
B . This gives

the basic Dolbeault complex (Ωp,•
B , ∂̄B), which has the associated basic

Dolbeault cohomology. This is also called the Kohn-Rossi cohomology
and is denoted Hp,•

B (M). We will use this when computing one-loop
partition functions for theories placed on Sasaki-Einstein manifolds.

5.3 Sasaki-Einstein geometry
Now we come to the case of Sasaki-Einstein manifolds, which are the
odd-dimensional version of Calabi-Yau manifolds. A metric is Einstein
if the Ricci tensor is proportional to the metric,

Rmn = λgmn, (5.12)

which has this name since it implies that the metric solves the vac-
cum Einstein equations (with a cosmological constant λ). A manifold is
Sasaki-Einstein (SE) if it is both Sasaki and Einstein. If M has dimen-
sion 2n−1 and is Sasaki-Einstein, then it turns out that λ = 2(n−1). A
direct calculation proves that the corresponding cone metric is Ricci-flat,
implying that the cone is Calabi-Yau (CY). So an equivalent definition
of an SE manifold is to say that its metric cone is CY.

The canonical examples of SE manifolds are the odd dimensional
spheres, S3, S5 and so on, equipped with their round metrics. The metric
cones over these are C

n, equipped with the flat metric.
When classifying possible SE structures (or more generally, contact

structures), it turns out that the behavior of the Reeb vector field play a
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crucial role. In particular, it is useful to look at the behavior of the orbits
of the Reeb. Suppose that all orbits of R are closed, i.e. are circles. This
means that R generates an isometric U(1) action on M , and since the
Reeb is nowhere zero this action has to be locally free, meaning that the
isotropy group of any point must be finite. This kind of SE manifolds
are called quasi-regular. If further all points have trivial isotropy, then
the U(1) action is free and the SE manifold is called regular. If M is
regular the quotient M/U(1) is a good manifold, while in quasi-regular
case it is an orbifold. If the orbits of R do not all close, the manifold is
said to be irregular. The generic orbit of R is then a real line, and no
well-defined quotient exists.

5.3.1 Killing spinors
As mentioned in the beginning of this chapter, the reason why SE man-
ifolds are relevant for this thesis is because they admit Killing spinors.
So let us specify what a Killing spinor is and state the result about SE
manifolds.

Let (M, g) be a Riemannian spin manifold, call the spin bundle E, and
let ψ be a spinor on M , i.e. a smooth section of the spin bundle. Then
ψ is called a Killing spinor if for some constant α it satisfies

∇V ψ = αV · ψ, (5.13)

for every vector field V . ∇ denotes the covariant spinor derivative, which
include the spin connection, and the dot-product between V and ψ de-
notes Clifford multiplication. In notation more familiar to physicists we
would write

∇mψ = αΓmψ, (5.14)

where Γm are the gamma-matrices in the dimension of M . If the constant
α is real, ψ is called a real Killing spinor, and if it is imaginary ψ is called
imaginary.

For SE manifolds M there is the following important result. A simply
connected SE manifold admits at least 2 linearly independent real Killing
spinors, with α = 1

2 ,−1
2 if the dimension of M is of the form 4p − 3

(dimensions 1, 5, 9, . . .), and α = 1
2 ,

1
2 if the dimension is of the form

4p− 1 (dimensions 3, 7, 11, . . .). So any simply connected SE manifold is
spin and admits at least 2 Killing spinors.
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In article I, we use 5d SE manifolds. For these, there is the following
result, which follow from Smale’s classification [68]. Any compact simply
connected spin 5-manifold with no torsion in H2(M,Z) is diffeomorphic
to #n(S3 × S2), where #n denotes n connected sums. The connected
sum of two manifolds is constructed by removing a small ball inside each
of them, and then gluing together the two boundary spheres. Although
this involves the choice of balls, the result is unique up to homeomor-
phism.

5.3.2 Toric Sasaki-Einstein manifolds

The main geometrical setting of articles I,II and IV is that of toric SE
manifolds. The reason for requiring a torus action is that it allows us to
use the localization formula to compute things explicitly, which is much
harder in the general case.

A SE manifold M is said to be toric if there is an effective, holomorphic
and Hamiltonian torus action on the corresponding CY cone C(M), with
the Reeb vector field in the Lie algebra of the torus, meaning that it
can be written as a linear combination of the U(1) actions. Here one
identifies the Lie algebra and the corresponding vector fields on C(M)

that generates its group action. The word holomorphic in the above
definition means that the complex structure is invariant under the torus
action. So studying toric SE manifolds is the same as studying toric CY
manifolds, which is a well studied topic. In particular it is well known
that toric CY manifolds have to be non-compact.

The definition implies that there exists a torus invariant moment map
μ,

μ : C(M) → t∗n � R
n, (5.15)

and as reviewed in chapter 4, the image of this,

Cμ = μ(C(M)), (5.16)

will be a convex cone in R
n, that we call the moment map cone. The

base of this cone is a Delzant polytope, which is the polytope associated
to the SE manifold M .

All the relevant data of the geometry is contained in the moment
polytope, and we now consider some different ways this cone can be
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presented. For example, we can specify its inward pointing normals
{v1, . . . , vm} and define it as

Cμ = {y ∈ R
n|y · va ≥ 0, a = 1, . . . ,m} ⊂ R

n. (5.17)

We may assume that the set of normals is minimal, and that they all
are taken to be in Z

n. This cone is also good, meaning that at every
codimension k face, the k associated normals vi1 , . . . , vik can be com-
pleted in to an SLn(Z) matrix (for an explanation, see appendix B of I).
The inward normals are related to the charges Qj

a used for symplectic
reduction in section 4.2 by the relations

m∑
j=1

vjQ
j
a = 0, ∀a. (5.18)

Since the metric cone over M is CY, we know that
∑

j Q
j
a = 0 ∀a. From

(5.18) this can be translated into a condition for the inward normals,
namely that there exists a vector ξ ∈ Z

n such that

ξ · vi = 1, ∀i. (5.19)

This is known as the 1-Gorenstein condition, and it implies that the
normals are all coplanar. We can choose coordinates such that ξ =

[1, 0, 0, . . . , 0], thus setting all the first components of our normals to 1.
The SE manifold is mapped to the hyperplane μ(M) = μ({r =

1} × M), which is given by the intersection of {y · R = 1/2} and Cμ.
This intersection has the form of a compact n − 1-dimensional Delzant
polytope, that we call the base of the cone. Just like for compact toric
manifolds, a useful picture for C(M) is as the Tn fibration over Cμ, where
again a circle degenerates as you hit a face of the cone. The inward nor-
mal of the face describe which combination of circles that degenerate as
you approach it.

Similarly, the SE manifold M can be pictured as a T
n fibration over

the base of the cone. Note here that this is slightly different from the
compact symplectic toric case: the base is of dimension n−1 and there is
a T

n fibration over it. As one goes to the faces, again circles degenerate,
but now at the vertices there will always be one circle that is still non-
degenerate. So where earlier the local geometry close to vertex was C

n,
it is now C

n × S1 instead. In the case of an irregular toric SE manifold,
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S3 S5

Figure 5.2. The moment map cones and polytopes of S3 and S5.

the closed orbits of the Reeb will exactly correspond to the vertices of
this polytope.

Let us consider the example of S3 viewed as a toric SE manifold. The
cone over S3 is R

4, and its moment map cone is R
2
≥0. The Reeb in

explicit coordinates of the moment map cone is given by (1, 1), so the
base polytope is the interval between (0, 1/2) and (1/2, 0), see figure 5.2.
One can then think of S3 as a T

2 fibration over this interval, where one
of the two circles degenerate as you go to the two ends of the interval.
This also means that we can take a linear combination of the two circles
and find a nowhere degenerate circle. This is the usual Hopf fibration
S1 → S3 → S2.

For S5 the story is very similar. The moment map cone is instead R
3
≥0.

The base of this, representing S5, is the triangle between the vertices
(1/2, 0, 0), (0, 1/2, 0) and (0, 0, 1/2). Again this is the Hopf fibration
S1 → S5 → P

2.
Note that for 3d toric SE manifolds, the moment map cones are 2d,

and there is not that much choice involved in choosing such a cone, at
least not compared to the case of higher dimensions, since all 2d cones
have exactly two sides. For 5d toric SE manifolds, the moment map cone
is 3d, which allows for cones with three or more faces. So we have much
more freedom in higher dimensions. These statements are equivalent to
the fact that the only toric SE spaces in 3d are S3 and the lense spaces
L(p, q), which are quotients of S3 by Zp. In 5 and higher dimensions,
we have an infinite number of infinite families of different manifolds,
corresponding to rational convex polytopes. In 5 dimensions, the most
well known example (other than S5 and its lens spaces) is that of the
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(0,0)
(1,0)

(0,p)

(-1,p-q)

Figure 5.3. The polygon base of Y p,q and its moment cone.

Y p,q spaces, which correspond to 4-sided polytopes. We describe those
in some detail in the next section.

5.3.3 The example of Y p,q

The Y p,q spaces, constructed by Martelli and Sparks [69], are toric 5d SE
spaces where an explicit metric is known. The parameters p > q > 0 are
two coprime integers, and the spaces all have the topology of S2 × S3.
They have a free U(1) action and can be viewed as a non-trivial S1

fibration over S2×S2. The cone over Y p,q is a toric CY manifold, which
can be constructed by symplectic reduction of C

4 with a U(1) acting
with charges Q = [−p, p + q,−p, p − q]. The case of p = 1, q = 0 is
slightly outside the Y p,q family, and gives the conifold that we discussed
in the last chapter. In figure 5.3 we sketch the moment cone and the
base polytope of Y p,q.

The explicit metric on Y p,q is given by

ds2 =
1− y

6
(dθ + sin2 θdφ2) +

dy2

w(y)q(y)
+

q(y)

9
[dψ − cos θdφ]2

+ w(y)

[
dα+

a− 2y + y2

6(a− y2)
[dψ − cos θdφ]

]2 (5.20)
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where

w(y) =
2(a− y2)

1− y
,

q(y) =
a− 3y2 + 2y3

a− y2
.

The coordinates run over the following ranges

0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, y1 ≤ y ≤ y2, 0 ≤ ψ ≤ 2π, 0 < α < 2πl,

and the constant a is chosen in the range 0 < a < 1. The constant l is
determined in terms of a and p, q, as described below. Then the equation
q(y) = 0 has one negative and two positive roots, and y1 is taken to be
the negative root and y2 to be the smallest positive root. The coordinate
α runs over the S1 fiber, and (θ, φ, y, ψ) describe the S2 × S2 base. Our
choices of a and y1, y2 makes sure that w(y) > 0 everywhere, so that the
circle fiber never degenerates.

To get the toric Y p,q manifold, we need to pick a such that y2−y1 = 3q
2p ;

which Martelli and Sparks show that you can always do for any coprime
p > q . The roots and the integers p, q and l are related through the
relations

y1 − 1

3ly1
= p+ q,

1− y2
3ly2

= p− q, (5.21)

which can be used to fix l after setting p, q and a.
The Reeb vector field in these coordinates is given by

R = 3
∂

∂ψ
− 1

2

∂

∂α
, (5.22)

which has constant unit norm.
This explicit writing of the geometry can be connected to the descrip-

tion of Y p,q in terms of its toric data in the following way. The toric
action on a manifold with topology of S2×S3 will have (at least) 4 closed
orbits, sitting over one of the two poles of S2 and one of the two poles of
S3. By the logic described above, each closed orbit gives a vertex of the
moment map polytope, so it will have 4 vertices. From the metric, we
can see that the poles of S2 are where θ = 0 or θ = π, while the poles of
S3 is given by y = y1 or y = y2. The edges of the polytope corresponds
to the sets {θ = 0}, {θ = π}, {y = y1} and {y = y2}. We can then
find the vectors that generate the U(1) rotations that degenerate at the
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different edges. Or in other words, combinations of ∂φ, ∂ψ and ∂α whose
norm vanish at one of these edges. Doing this, we find

v1 = ∂φ+∂ψ, v2 = ∂ψ+
p− q

2l
∂α, v3 = −∂φ+∂ψ, v4 = ∂ψ− p+ q

2l
∂α,

(5.23)
which degenerate at θ = 0, y = y1, θ = π and y = y2 respectively. Here,
we rescale ∂α by 1/l so that it has a period of 2π.

The vectors v1, . . . , v4 are precisely the inward normals of the moment
map cone. They are however written in a slightly bad basis, since the
orbits of ∂φ and ∂ψ do not close everywhere (but of course ∂α, pointing
along the fiber, does), and to make closer contact with the usual descrip-
tion we should write things in terms of regular U(1)’s. A basis with this
property is instead

e1 = ∂φ + ∂ψ, e2 = −∂φ +
p− q

2l
∂α, e3 = −1

l
∂α, (5.24)

in which our four vectors take the form

v1 = e1 [1, 0, 0],

v2 = e1 + e2 [1, 1, 0],

v3 = e1 + 2e2 + (p− q)e3 [1, 2, p− q], (5.25)

v4 = e1 + e2 + pe3 [1, 2, p].

In particular we see that the normals written in this basis satisfies the
1-Gorenstein condition, with Gorenstein vector ξ = [1, 0, 0], which shows
that the manifold is SE (or that its cone is CY).

From these normals we can also find the charges Q. Since our vectors
live in 3d and we have 4 of them, we only have a single charge vector
Q = [a, b, c, d]. We can find this by solving

∑4
j=1 Q

jvj = 0 for Q: this
gives 3 equations, but up to overall multiplication it fixes the charges for
us, and we indeed find Q = [−p, p+ q,−p, p− q], as stated above.

5.4 Tri-Sasaki and hyperkähler manifolds
Let us here very briefly mention the last entry in the table of structures
given in the introduction of this chapter. They are interesting and special
manifolds, but not directly related to the work presented in this thesis.
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A hyperkähler manifold is a CY manifold of dimension 4k, which in
addition to the complex structure J has a whole 2-sphere of complex
structures with respect to which the metric is Kähler. In particular it
admits three distict complex structures I, J,K that satisfy the quater-
nion algebra, i.e. the relations

I2 = J2 = K2 = IJK = −1. (5.26)

A tri-Sasaki manifold is a 4k−1 dimensional manifold whose metric cone
is hyperkähler. An interesting example is the seven-sphere.
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6. 5d SYM on Sasaki-Einstein manifolds

Having introduced the necessary background, we give an introduction
and summary of articles I and II. We first give an overview of how to
put 5d N = 1 SYM theories on toric SE manifolds, and how to write
the fields in a cohomological complex. Then we sketch the localization
computation of the partition function. The same topics are covered in I,
II and for example [51, 70, 71].

6.1 Super-Yang-Mills theory on SE manifolds
We consider a compact simply connected 5d SE manifold M , and re-
member from above that this is spin and admits (at least) two linearly
independent Killing spinors. It will be convenient for us to group these
two together into a doublet ξI , with indices I, J, . . ., taking values in
1, 2. This is a fundamental SU(2) doublet, where the SU(2) is the
R-symmetry of our theory. The SU(2)-indices are raised using the an-
tisymmetric symbol εIJ , taken with ε12 = +1, and lowered with εIJ ,
ε12 = −1. We can write the two Killing spinor equations as

∇mξI = tIJΓmξJ , (6.1)

where tIJ is an SU(2)R triplet of scalars, which takes the constant value

tIJ =
i

2r
(τ3)IJ , (6.2)

where r is a dimensionfull parameter controlling the size of the manifold
and τ3 is the third Pauli matrix. We can choose any linear combination
of the Pauli matrices here. The Killing spinor ξI satisfies the symplectic
Majorana condition, and act as the parameter for our supersymmetry
variations. The Reeb vector of the SE manifold is related to these Killing
spinors through

R
m = −ξIΓ

mξI , (6.3)
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which is why the Reeb appears in the square of the supersymmetry. The
dual of this we call κ = g(R), which is the contact one-form. Now, let
us write down the supersymmetry variations for the vector multiplet on
this curved background. They are almost the same as for flat space as
reviewed in section 3.4, but with added terms involving the new back-
ground field tIJ :

δAm = iξIλmλI ,

δσ = iξIλ
I ,

δλI = −1

2
(ΓmnξIFmn + (ΓmξI)Dmσ − ξJDJI + 2t J

I ξJσ,

δDIJ = −iξIΓ
mDmλJ + [σ, ξIλJ ] + it K

I ξKλJ + (I ↔ J) .

(6.4)

Notice here that since tIJ has a factor of 1/r, in the flat space limit of
r → ∞ the terms involving t J

I will go away and the supersymmetry will
go to the flat space version (3.15).

The supersymmetric action for the vector multiplet on this curved
background is

Svec =
1

(gYM )2

∫
M

VolM Tr
[1
2
FmnF

mn −DmσDmσ − 1

2
DIJD

IJ

+ 2σtIJDIJ − 10tIJ tIJσ
2 + iλIΓ

mDmλI − λI [σ, λ
I ]− i tIJλIλJ

]
,

(6.5)

which is the flat space action plus extra terms involving tIJ . We can treat
the hypermultiplet in a very similar way, the interested reader can find
the details in paper I and [71, 51]. In this chapter we will for simplicity go
through the calculations for the case of a theory with a vector multiplet
and no hypers.

6.2 Cohomological complex
We can use the Killing spinor to make a change of field variables, so that
we can write all the fields in terms of differential forms instead of spinors.
This makes the structure and geometry of the supersymmetry easier to
understand, and it will also help with the localization computation that
we will sketch in section 6.3.
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To do this, we construct the following forms

Ψm = ξIΓmλI ,

χmn = ξIΓmnλ
I − (κ ∧Ψ)mn.

(6.6)

Ψ is an arbitrary 1-form, while χ is a horizontal 2-form w.r.t. the Reeb,
ιRχ = 0. It further satisfies

ιR � χ = χ, (6.7)

which can be proved using Fierz identities and properties of the Killing
spinor. We call this condition horizontal self-duality. The map (6.6)
between forms and spinors is invertible, so there is no loss of information
in formulating everything in terms of forms instead of spinors. The
inverse map is given by

λI = ΓmξIΨm − 1

2
ξJ(ξJΓ

mnξI)χmn. (6.8)

So this is a good change of variables, and we have not performed a
topological twist, which is the most famous example where spinors gets
mapped to forms.

In these cohomological variables the supersymmetry variations take
the form

δA = iΨ,

δΨ = −iιRF + dAσ,

δσ = −iιRΨ,

δχ = H,

δH = −iLA
Rχ− [σ, χ].

(6.9)

Here, LA
R = ιRdA + dAιR is the covariant Lie derivative along the Reeb

vector field, and it is clear that δ2 = −iLA
R + iGσ, where Gσ denotes

a gauge transformation with parameter σ. H is an auxiliary bosonic 2-
form, defined from the relation H = δχ, that enjoy the same properties
as χ. Essentially H contains the degrees of freedom of the auxiliary
scalars DIJ .

In terms of these variables we can write the action in the following
form:

Svec =
1

g2YM

[
CS3,2(A+ σκ) + iTr

∫
M

κ ∧ dκ ∧Ψ ∧Ψ

]
+ δWvec,

(6.10)
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where

CS3,2(A) = Tr
∫
M

κ ∧ F ∧ F,

Wvec =
1

g2YM

Tr
∫
M

[
Ψ ∧ �(−ιRF − dAσ) + χ ∧ �(2F − 1

2
H)

+κ ∧ dκ ∧ (σχ)] .
(6.11)

This way of writing it makes it easy to evaluate the action on the local-
ization locus, since we know that δ-exact quantities cannot contribute.
The non-exact part is the supersymmetrization of CS3,2. CS3,2 is the
5d lift of 3d Chern-Simons theory using the contact structure, which is
more clearly seen if one integrates by parts. One can also think of it as
the lift of the topological θ-term F ∧ F in 4d.

6.3 Localization
As explained in chapter 2, to perform the localization computation, we
have to add an appropriate localization term, and find the localization
locus where it vanishes. Then we have to compute the 1-loop determinant
of δ2 for the fluctuations around this locus.

For the localization term, we choose something that looks almost like
Wvec in (6.11), but we drop the last term and take

W = Tr
∫
M

[
Ψ ∧ �(−ιRF + dAσ) + χ ∧ �(2F − 1

2
H)

]
, (6.12)

and then add −tδW to the action as a localizing term. This has the
bosonic part

δW |bos = Tr
∫
M

[
ιRF ∧ �ιRF − dAσ ∧ �dAσ − 1

2
H ∧ �H + F+

H ∧ �H

]
,

(6.13)

where F+
H indicates the horizontally self-dual part of F , which appears

since it is the only component of F ∧ �H that is non-zero.
Looking at both δW |bos and at the action, we can see that we should

pick an integration contour where σ is imaginary, so that the (dAσ)
2-

terms become positive. Formally we take σ → iσ. Further, H is auxil-
iary, it has no kinetic term and only appear quadratically, so it can be
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integrated out and we find

δW |bos = Tr
∫
M

[
ιRF ∧ �ιRF + dAσ ∧ �dAσ + F+

H ∧ �F+
H

]
, (6.14)

which is a sum of three positive squares. Thus the localization locus is
given by solutions to

F+
H = 0, ιRF = 0, dAσ = 0. (6.15)

The last equation says that σ is covariantly constant, and the first two
equations are known as the contact instanton equation [70]. They can
equivalently be be written as

�F = −κ ∧ F, (6.16)

i.e. that F is horizontally anti-self dual. This can be thought of as a
5d lift of the 4d anti-self-dual instanton equation, �F = −F , using the
contact structure. The contact instanton equation is closely related to
this more famous 4d equation, but not as much is known about it.

One can also consider the self-dual contact instanton equation, �F =

κ ∧ F , but it is in fact not as natural, since the anti-self-dual equation
implies the Yang-Mills equation, dA �F = 0, while the self-dual equation
does not. This is because dκ is horizontally self-dual, so that dκ∧F−

H = 0,
which implies that if F satisfies the anti-self dual equations we have

dA � F = −dA(κ ∧ F ) = −dκ ∧ F = 0. (6.17)

This is different from in 4d, where both instantons and anti-instantons
automatically satisfies the vacuum Yang-Mills equation.

The system of equations (6.15) is not elliptic, which means that study-
ing it is a slightly unconventional business. There is however a lift of this
into another set of equations, called the Haydys-Witten equation which
is a good elliptic system. These equations were first proposed by Wit-
ten [72] in an attempt to understand Khovanov knot homology from a
field theory point of view. They were also independently constructed by
Haydys [73]. These equations can be understood from a 5d field theory
perspective as coming from the localization locus of a twisted N = 2

theory [74].
To continue our localization computation, we should classify all the

solutions to (6.15), which however proves to be a difficult problem to
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fully solve. On S4, Pestun [19] was able to prove that for his locus, the
only smooth solution was F = 0 and σ covariantly constant, and then
he argued that on the north and south pole, there was also point-like
instantons and anti-instantons. For our case, we can show that the only
smooth solutions are F = 0 and σ covariantly constant, but we have no
proper argument for why the only allowed singular solutions are those of
localized contact instantons sitting at the closed Reeb orbits. There are
however some energy arguments about why this should be the case, and it
is in line with general conjectures on instantons on toric backgrounds [75],
so we conjecture that it is the case. The localized contact instantons will
contribute to the non-perturbative part of the partition function; giving
one factor of the appropriate Nekrasov partition function on R

4×S1 per
closed orbit.

On the locus of smooth solutions, which up to gauge fixing is given by
A = 0 and σ = ia constant, we evaluate the action and find the classical
action

Svec(a) =
1

g2YM

CS3,2(κ(ia)) =
1

g2YM

Tr
∫
M

κ ∧ dκ ∧ dκ(ia)2

= −8Vol(M)

g2YM

Tr[a2],
(6.18)

remembering that the volume form on M is taken to be 1
8κ ∧ dκ ∧ dκ.

This will act as the Gaussian damping factor for the matrix model that
we get from the localization procedure, where the integral is over all
matrices in g.

6.3.1 1-loop determinant

Having found the localization locus, the next step is to compute the
linearized determinant of δ2 = −iLA

R + Gia around it. As explained in
section 2.3, when applying this procedure to a gauge theory one should
deal properly with the issues of gauge fixing and zero modes. However
here we will not be perfectly rigorous, and take a number of shortcuts.

Looking at the cohomological complex (6.9), we observe that with
the further change of variables Φ = ιRA + σ, which is the true gauge
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parameter, the complex takes the simple form

δX = X ′, δX ′ = (−iLR + iGΦ)X,

δΦ = 0,
(6.19)

where we use the collective notation for our fields, X = {A,χ} and
X ′ = {Ψ, H}. We should now think of X as the coordinates on the
infinite dimensional supermanifold of fields, and X ′ as the corresponding
1-forms. The gauge connection A is an even coordinate and χ is an odd
coordinate. The Atiyah-Bott localization formula should be understood
for the supermanifold setting, as explained in section 2.2.1, which means
that the determinant becomes a superdeterminant.

We will not treat the issues of gauge fixing and zero modes in full
detail. There is a rigorous procedure for this, as performed by Pestun on
S4 [19], which involves the normal BRST procedure, in which one intro-
duces ghosts fields c, c̄, b, as well as introducing further fields a, c0, c̄0, b0

that deal with zero modes. Here, we will only say that we use the gauge
freedom to fix Φ to the value Φ = a, which on the locus with A = 0 is
constant across the manifold. This incurs a Fadeev-Popov determinant
from the ghost fields.

For the vector multiplet after adding the ghosts, the supermanifold
parametrized by the coordinates X is

V = A(M, g)⊕ΠΩ2,+
H (M, g)⊕ΠΩ0(M, g)⊕ΠΩ0(M, g), (6.20)

where the first factor is the space of gauge connections, the second factor
is from the fermionic 2-form χ, which is horizontally self-dual, and the
last two factors are from the ghost fields used for gauge fixing. We write
Π in front to show when something has the odd grading, i.e. when the
field is fermionic. The entire space of fields that we integrate over is the
odd tangent bundle, ΠTV, where the fields of X ′ are the coordinates on
the tangent bundle part.

Since we are computing the determinant around the locus of A = 0

and σ = constant, we should linearize our description of ΠTV around
it. The only non-affine part of V is the space of connections, which after
linearizing around A = 0 is locally described by the space of 1-forms
Ω1(M, g). So the linearization of V around the locus is

v = Ω1(M, g)⊕ΠΩ2,+
H (M, g)⊕ΠΩ0(M, g)⊕ΠΩ0(M, g), (6.21)
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and the determinant we should compute is

1√
sdetv(−iLR + iGa)

=

√
detΩ2,+

H
(−iLR + iGa)(detΩ0(−iLR + iGa))2

detΩ1(−iLR + iGa)
.

(6.22)
Using the contact structure that our SE manifold has, we can decompose
these spaces into their horizontal and vertical parts, and then further use
the complex structure to decompose the horizontal parts,

Ω1 = Ω1
V ⊕ Ω1

H = Ω1
V ⊕ Ω

(1,0)
H ⊕ Ω

(0,1)
H , (6.23)

Ω2,+
H = Ω2

dκ ⊕ Ω
(2,0)
H ⊕ Ω

(0,2)
H , (6.24)

where Ω2
dκ denotes the part of the horizontal 2-form along dκ. From the

properties of the Reeb, it is easy to see that the operator whose determi-
nant we are computing, L(a) = −iLR+iGa, respects this decomposition,
meaning that we can write the determinant as

1

sdetvL(a)
=

det
Ω

(2,0)
H

(L(a)) det
Ω

(0,2)
H

(L(a))
(
detΩ(0,0)(L(a))

)3
det

Ω
(1,0)
H

(L(a)) det
Ω

(0,1)
H

(L(a)) detΩ(0,0)(L(a))

=

(
detΩ(0,0)(L(a)) det

Ω
(2,0)
H

(L(a))

det
Ω

(1,0)
H

(L(a))

)(
detΩ(0,0)(L(a)) det

Ω
(0,2)
H

(L(a))

det
Ω

(0,1)
H

(L(a))

)
,

where we have used that since the spaces Ω1
V ,Ω

2
dκ can be described as a

function multiplying a fixed differential form, they are both isomorphic
to the space of 0-forms Ω(0,0). We thus find the complex of holomorphic
and anti-holomorphic forms, which are isomorphic, so up to a phase we
only need to compute the superdeterminant of the complex Ω

(0,•)
H . That

is
1√

sdetv(L(a))
=

∣∣∣∣∣
detΩ(0,0)(L(a)) det

Ω
(2,0)
H

(L(a))

det
Ω

(1,0)
H

(L(a))

∣∣∣∣∣ . (6.25)

These spaces of differential forms are infinite dimensional, but the pres-
ence of supersymmetry guarantees that there will be massive cancella-
tions in the above super determinant. The issue is how to understand
and classify these cancellations, and for this purpose we remember from
section 5.1 that the complex Ω(0,•) has a differential, namely the basic
Dolbeault operator ∂̄H . We will next argue that only the modes in the
associated Dolbeault cohomology, H

(0,•)
∂̄H

, called the Kohn-Rossi coho-
mology, will contribute: the contributions of all other modes will cancel.

79



This is seen as follows. For any element in Ω0,p that is not closed, the
differential of this gives a mode in Ω0,p+1. In the toric case that we con-
sider, it is also clear that ∂̄H and L(a) commute: meaning that the mode
α and the mode ∂̄Hα have the same eigenvalue under L(a). Therefore,
all non-closed modes will cancel when we perform the super-determinant.
Similarly any exact mode can be written as ∂̄Hβ, and its contribution
is cancelled by the mode β. So the only modes that are not cancelled is
exactly the modes in the Kohn-Rossi cohomology, and what we need to
compute is

detH0,0

∂̄
(L(a)) detH0,2

∂̄
(L(a))

det
H

(0,1)

∂̄

(L(a))
. (6.26)

This can be computed using various methods, including using an index
theorem for transversally elliptic operators or some heat kernel methods
etc., but to our knowledge the simplest way was introduced by Schmude
[76]. He pointed out that for the toric SE manifolds we are considering,
there is a very explicit description of the modes in the various cohomolo-
gies in terms of the toric data. To see how this works, first let α be
some representative in H

(0,•)
∂̄

. We can then assume that it has a charge
vector �q under the U(1)3 action on M . When we then write the Reeb as
a linear combination of the three U(1) actions, R =

∑3
a=1 Raea, we have

LRα = i(�R · �q)α, (6.27)

where �R means the three components (R1,R2,R3).
Let t be the coordinate along the cone direction of C(M). Then the

Dolbeault differential on the cone is related to ∂̄H as

∂̄6 =
1

2
(t−1dt− iκ)(Lt∂t

+ iLR)−
i

2
dκιt∂t

+ ∂̄H . (6.28)

We can now extend the representative α to a form on C(M) by taking
α̃ = t�R·�qα. Plugging this into the expression for ∂̄6 one can see that it
is killed, and hence ∂̄6-closed. Similarly an exact form is mapped to a
∂̄6-exact closed by the same map, so it gives us a good map between the
cohomologies,

H
(0,•)
∂̄H

(M) → H
(0,•)
∂̄6 . (6.29)

Note also that this map is the identity on t = 1, which is where we think
of M as being embedded into C(M). This shows that the restriction
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map that restricts a form to the surface t = 1, is onto. Since C(M) is
CY, we know that H(0,1)

∂̄6 (C(M)) = 0, so from that the restriction is onto
it follows that H

(0,1)

∂̄
(M) = 0 as well. Next, we consider the functions

H0,0

∂̄
. The elements in H

(0,0)

∂̄6 (C(M)) are the holomorphic functions on
C(M), so the calculation becomes the counting of holomorphic functions
on C(M) weighted by their U(1)3 charges. This is well known problem
considered in the context of AdS/CFT on AdS × M , where the holo-
morphic functions correspond to supersymmetric operators in the chiral
ring [77, 78]. The monomials that generate the holomorphic functions on
C(M) are in one-to-one correspondence with the integer lattice points
within the moment map cone Cμ(M) = μ(C(M)). And we can read of
the charges under U(1)3 from the coordinates of the lattice point that
represent the monomial. Explicitly, a lattice point in Cμ(M) with coordi-
nates (n1, n2, n3) (in an appropriate basis of the U(1) actions) represents
the monomial zn1

1 zn2
2 zn3

3 . Each coordinate zi has the eigenvalue Ri un-
der the Reeb; which is just the component of the Reeb vector written
in this basis of U(1)’s. Then the eigenvalue of the monomial is given by
n1R1 + n2R2 + n3R3 = �n·R.

We can also use this explicit map to realize that the restriction map
is injective, since two different monomials with difference charges cannot
cancel each other when restricted to t = 1.

This gives us the determinants over the 0-forms, but we also need to
consider H

(0,2)

∂̄6 . This can actually be mapped to H0,0, in the following
way. Let ρ̄ ∈ Ω

(0,2)
H , satisfying ∂Hρ = 0. Since the rank of Ω0,2

H is one,
once we’ve picked a representative ρ̄, any form in it can be written as f̄ ρ̄
for some function ρ, and to find H0,2

∂̄H
we only need to remove the exact

ones. If the form f̄ ρ̄ is co-exact with respect to ∂̄H , that is ∂̄†
H(f̄ ρ̄) = 0,

then f̄ ρ̄ is orthogonal to all exact (0, 2) forms, which means that this
condition is a way of removing all exact forms. But we can see that

∂̄†
H(f̄ ρ̄) = −gpq(∂pf̄)ρ̄qrdx

r, (6.30)

which is zero if and and only if ∂H f̄ = 0. Hence f̄ is the complex conju-
gate of some holomorphic function f ∈ H

(0,0)

∂̄H
, and we have constructed

the isomorphism between the holomorphic functions and the (0,2) forms
given by f �→ f̄ ρ̄.
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The eigenvalue under LR of the form f̄ ρ̄ is given by minus the eigen-
value of f (because of the complex conjugation) plus the charge of ρ̄.
The form ρ̄ is taken to be the reduction of the unique (0, 3)-form on the
CY cone over M ; and its eigenvalue is given by the Gorenstein vector
ξ that satisfies ξ · vi = 1 ∀i, where vi are the inwards normals of the
moment map cone C = Cμ(M). This means that the eigenvalues of the
(0,2) form modes are given by −(�m+ξ)·R for �m ∈ C∩Z3. Because of the
property ξ · vi = 1, shifting by ξ precisely excludes all the lattice points
on the faces of C, meaning that one can also write this without the shift
as −�m · R for �m ∈ C◦ ∩ Z

3, where C◦ is the interior of the cone. This
description is valid also for more general cones where the 1-Gorenstein
condition is not fulfilled and ξ does not exist.

The determinant we are computing is thus given as the product over
all the lattice points inside the moment map cone of our manifold and
we find the following infinite product:∏

�n∈C∩Z3

(a+ �n · R)(ξ · R − a+ �n · R) ≡ SC
3 (a|R), (6.31)

where we define this to be the generalized triple sine function SC
3 associ-

ated to the cone C. This function is a generalization of the usual triple
sine [79], which is the 1-loop determinant one finds on the squashed S5,
where C = R

3
≥0. The infinite product as written is obviously divergent,

and needs to be understood in a proper, zeta-regularized way. We will
give an overview of zeta regularization and the definition and properties
of this function in chapter 7, and the details can be found in articles III
and V.

Here the determinant has only been taken over the ‘spatial’ part, LR,
and we are sloppily treating the Lie algebra element a as just a number.
To be more specific, we can decompose the Lie algebra into its root
spaces

g =
⊕
β

gβ, (6.32)

where β runs over all the roots of g. Then the eigenvalue of some a ∈ g

on gβ is given by i〈a, β〉, and we can write the determinant over the Lie
algebra as

detadjS
C
3 (a|�R) =

∏
β

SC
3 (i〈a, β〉|�R). (6.33)
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In the above, we have also not been careful with the zero modes. The
scalars or 0-forms have zero modes (the constant functions), and those
needs to be excluded. Keeping track of these more carefully (see [71])
gives that the determinant for the vector multiplet is given by

1√
detV(L(a))

=
det′adjS

C
3 (a|�R)

det′adj(−Ga)
(6.34)

where the ′ means that we exclude zero modes of the determinant over
the adjoint, and the denominator cancels the contributions from the zero
modes of the constant functions. We then note that det′adj(−Ga) is the
usual Vandermonde determinant that appears when changing from a
matrix integral over g to its Cartan subalgebra t, so by performing this
change we can precisely cancel this factor. The perturbative answer for
a single vector multiplet on a toric SE manifold M is therefore

Zpert =

∫
t

da e
− 8Vol(M)

g2
Y M

Tr[a2]
det′adj S

C
3 (ia|R). (6.35)

One can repeat the above story almost word for word for the computa-
tion of the 1-loop determinant of a hypermultiplet. The main difference
is in how the map between spinors and forms go: for the hyper we find
bosonic 2-forms and functions, and a fermionic 1-form, which leads to
that its contribution is that of (SC

3 )−1. The mass of the hyper appear
as a shift of its eigenvalue. The details of this can be found in I or in
[71, 51], and the perturbative answer when including a hypermultiplet
in representation R is given by

Zpert =

∫
t

da e
− 8Vol(M)

g2
Y M

Tr[a2] det′adj S
C
3 (ia|R)

detR SC
3 (i(a+m) + ξ · R/2|R) . (6.36)

6.4 Factorization
In addition to deriving the perturbative answer on any toric SE mani-
fold, in paper I we also prove a factorization property of the perturbative
partition function. Specifically we show that the generalized triple sine
function can be written as a product of a number of copies of another spe-
cial function called the multiple q-factorial, that is introduced in chapter
7. The factorization takes the form

SC
3 (z|�R) = e−

πi
6 BC

3,3(z|�R)
∏
f

(
e2πiβfz|e2πiβf ε

1
f , e2πiβf ε

2
f

)
∞

, (6.37)
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where the product runs over the closed orbits of the Reeb, or equiva-
lently the vertices of the moment map polytope of M . The multiple
q-factorial is the 1-loop determinant for a vector multiplet on the back-
ground C

2×ε1,ε2 S
1
β. Here β is the radius of the S1, which is non-trivially

fibered over C
2 as described by the following identification

[θ + 2π, z1, z2] � [θ, e2πiβε
1

z1, e
2πiβε2z2]. (6.38)

This is a 5d version of the Ω-background used by Nekrasov in the context
of instanton counting [22, 23]. In the factorization formula (6.37), the
parameters βf , ε

i
f are dictated by the local geometry at the closed orbit,

and they can be read off from the toric data, i.e. from the cone C. That
is, the factorization tells us that the 1-loop partition function splits into
a product of flat space partition functions, one from each neighborhood
of the different closed Reeb orbits, with parameters describing how the
local geometry of M looks at the closed orbit. The exact map between
the parameters and the toric data is described in article I.

This structure of the partition function has previously been observed
in many different cases, including for 2d theories [80], 3d theories on S3

and S2 × S1 [81, 82] and of course by Pestun for S4 [19]. Geometri-
cally one can understand this as a decomposition of the manifold into
a number of flat space patches of the form R

2n or R
2n × S1, that the

partition function respects. The building block from one patch is called
a holomorphic block, and they are interesting mathematical objects. For
example, holomorphic blocks can be understood from the perspective
of the AGT correspondence, where they are related to particular CFT
correlators, see [83] for a review.

6.5 Instanton contributions
As mentioned above, we conjecture that the only instanton solutions that
will contribute to the partition function will be those localized around
the closed Reeb orbits. This is in line with what was observed on S4

by Pestun [19], who found point-like instantons living at the two fixed
points of his torus action; and it is also what Nekrasov has conjectured
in general [75]. The partition function contribution from a point-like
instanton sitting at the origin of R4

ε1,ε2 ×S1
β is given by the 5d Nekrasov
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instanton partition function [23, 84]. So we add one such contribution for
each closed orbit with the appropriate parameters and conjecture that
the full answer on any toric SE manifols is

Zfull =

∫
t

dae
− 8Vol(M)

g2
Y M

Tr[a2] det′adj S
C
3 (ia|�R)

detR SC
3 (i(a+m) + �ξ · �R/2|�R)

×
∏
f

ZC
2×S1

inst (a,m|βf , ε
1
f , ε

2
f ).

(6.39)

The product again runs over closed Reeb orbits. It is more natural to
write all of this in the factorized form,

Zfull =

∫
t

da
∏
f

[
e
− 1

g2
Y M

P (a,m|βf ,ε
i
f )
ZC

2×S1

Nek (a,m|βf , ε
i
f )

]
, (6.40)

where ZC
2×S1

Nek is the full Nekrasov partition function on this background,
including the perturbative and instanton part. The function P (a,m|βf , ε

i
f )

is the effective potential of the local flat space theory on this background.
So the entire answer is written in a factorized form, where each factor

is a flat space answer. One can think of this as a gluing of patches
of C

2 × S1, where the parameter a is fixing the boundary conditions
at infinity for each patch. In article II we further investigated the full
answer for abelian theories, and we discuss this next.

6.5.1 Abelian instantons

For gauge group U(N), the Nekrasov instanton partition function takes
the form of a sum over a N -tuplet of 2d partitions (Young diagrams).
This representation is not particularly helpful when studying what hap-
pens when you glue a number of them together, as we conjectured above.
However for the case of a U(1), N = 2∗ theory (i.e. a theory with a vector
multiplet and a hyper in the adjoint with mass m), Carlsson, Nekrasov
and Okounkov were able to perform the sum explicitly over partitions
[85], and arrive at a closed-form expression for the instanton partition
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function, writing it as an infinite product,

ZC
2×S1

inst (m,β, ε1, ε2) =
∞∏

j,k,l=1

(1− e2πiβ((j+1)ε1+kε2+k+1))(1− e2πiβ(jε1+(k+1)ε2+k+1))

(1− e2πiβ(m+jε1+kε2+k+1))(1− e2πiβ(−m+(j+1)ε1+(k+1)ε2+k+1))

=
(q1Q|q1, q2, Q)∞(q2Q|q1, q2, Q)∞

(MQ|q1, q2, Q)∞(M−1Qq1q2|q1, q2, Q)∞
,

(6.41)

where in the last line we use the exponentiated variables, qi = e2πiβεi , Q =

e2πiβ and M = e2πiβm. This expression is helpful when investigating
what happens under gluing, and in the paper II we show that using this
formula we can combine the perturbative answer and the conjectured
factorized instanton contributions in a natural way. This was previously
studied by Lockhart and Vafa [86], who considered abelian N = 2∗ the-
ory on S5. For a U(1) theory, there is no integration at all, and on S5,
one finds that the full answer have the simple form

Zfull
U(1)(m,R) =

G′
2(0|R)

G2(im|R) , (6.42)

where G2 is the double elliptic gamma function. This is defined as

G2(z|ω) =
∏

n∈Z3
≥0

(1− e2πi(z+n·ω))(1− e2πi(ω1+ω2+ω3−z+n·ω))

= (e2πiz|e2πiω1 , e2πiω2 , e2πiω2)∞(e2πi(ω1+ω2+ω3−z)|e2πiω1 , e2πiω1 , e2πiω1)∞,

(6.43)

and this special function is closely related to the triple sine function, see
chapter 7. This has a single zero at z = 0, so in equation (6.42), the ′

indicates that we remove this zero mode.
The G2 function enjoys a modular property which relates its values at

points related by SL3(Z) transformations, taking the form

G2(z|ω) = e
2πi
4! B4,4(z|ω,−1)

3∏
i=1

G2(zi|ωi), (6.44)

where zi = z/ωi and ωi = (
ωj

ωi
, ωk

ωi
,− 1

ωi
) for j �= k �= i. From a physics

perspective this exactly the statement of factorization: the flat space
full partition function for a U(1) theory is also given by a G2 function.
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Figure 6.1. A sketch illustrating the triangulation of the polytope and the dual
diagram in red. For each triangle (or outgoing leg) we associate a G2 function,
for each shared face (or internal line) we associate a G1 and for each internal
vertex (each loop) we put a G0.

So there is something interesting going on here, where the S5 partition
function is related to the flat space one with just a rescaling of the
variables.

The story can also be generalized for any toric SE manifold: one
defines the generalized double elliptic gamma function GC

2 associated to
a cone C as

GC
2 (z|ω) =

∏
n∈C∩Z3

≥0

(1− e2πi(z+n·ω))(1− e2πi(ω1+ω2+ω3−z+n·ω)), (6.45)

and then the full answer is the same as (6.42) but with GC
2 instead of G2.

The generalized double elliptic gamma function also enjoy a modular or
factorization property, factorizing into one copy of the usual G2 function
for each closed Reeb orbit,

GC
2 (z|ω) = e

2πi
4! BC

4,4(z|ω,−1)
∏
f

G2(βfz|βf ε
1
f , βf ε

2,−βf ), (6.46)

where BC
4,4 is a generalized Bernoulli polynomial that encode the geom-

etry of the cone. This again corresponds to one flat space contribution
from each closed orbit, and gives evidence for our conjecture about only
localized instantons contributing, at least for the case of an abelian the-
ory.

The other interesting thing observed in article II is that of some gluing
rules that the full abelian partition function satisfy. On the level of
the cone, we can subdivide the cone into a number of simplicial cones,
or equivalently, we triangulate the polytope base of the cone. Then
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for each triangle we associate a (normal) G2 function with parameters
determined by the geometry of the triangle. For each shared face between
two triangles we associate a G1 function, and for each internal point
where multiple triangles meet, we associate a G0 function. The product
of all of these then gives us the generalized GC

2 function that builds up
our partition function.

On the level of the special functions, this is just an observation of
how to compensate for the various over and under countings of modes
when subdividing the cone. But it might be interesting from a physic
perspective. The G1 function can be thought of as the index of some
theory on S3 × S1, and G0 looks like the index of a on S1 × S1. And
the decomposition correspond geometrically to gluing together the 5d
manifold out of R4 × S1 patches, and where their boundaries meet, we
find what looks like the degrees of freedom of a 4d theory on S3 × S1

(which is the topology of the boundary), and where there is overlap of
the form S1 × S1 = T 2 we find the degrees of freedom of a 2d theory on
this space.

This is a different gluing story than that of the factorization described
in 6.4, and seems closely related to localization results in the presence
of defects [87, 88]. This is an interesting observation hinting at a deeper
structure relating the partition function, defects and the cutting and
gluing of manifolds, and is something that should be investigated further.
It would for example be interesting to see if a similar structure can be
found for partition functions in other dimension, and for non-abelian
theories.
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7. Special functions

In this chapter, we provide some background and brief overview of the
results of articles III and V. They are about two new hierarchies of spe-
cial functions, the generalized multiple sine and multiple elliptic gamma
functions that was briefly introduced in the last chapter. The “usual”
elliptic gamma function is an elliptic generalization of the Euler gamma
function, which was introduced by Ruijsenaar [89], and studied by Felder
and Varchenko [90]. This is a meromorphic function Γ of 3 variables
(z, τ, σ) which is symmetric in τ and σ, and characterized by a difference
equation involving the Jacobi theta function,

Γ(z + σ|τ, σ) = θ0(z|τ)Γ(z|τ, σ). (7.1)

Felder and Varchenko proved several identities that this function satisfies,
most interestingly a modular three-term relation, relating its values at
points related by SL3(Z) transformations, acting as a fractional linear
transformation on the periods (τ, σ). These identities can be interpreted
as a generalization of the behavior of modular forms.

The elliptic gamma function fits naturally into a hierarchy of multiple
elliptic gamma functions as first defined by Nishizawa [91], and these
are closely related to the hierarchy of multiple sine functions [79]. Both
these hierarchies were studied by Narukawa [92] who gave integral repre-
sentations of them and proved that they in general satisfy an interesting
factorization property, which for the multiple elliptic gamma function
can be thought of as a kind of generalized modular property.

From the computations in articles I and II, we found it natural to
define the two new special functions that we named the generalized
triple sine and the generalized elliptic gamma function. These mimic
the original definitions closely, but the functions are now associated to
a non-compact toric manifold, or equivalently a rational cone of appro-
priate dimension. The original functions are recovered when the cones
are taken to be the positive quadrant of R

n, R
n
≥0. In article III we
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properly define these new hierarchies and write down their integral rep-
resentations. We then prove that these generalized functions also satisfy
interesting factorization or modularity properties, labelled by the choice
of cone.

7.1 Q-factorials, multiple sine functions and elliptic
gamma functions

Here we introduce a number of special functions, starting with the q-
Pochhammer symbol, also called a q-shifted factorial, which is defined
as

(x|q)n =
n−1∏
k=0

(1− xqk), (x|q)0 = 1. (7.2)

It can be extended to an infinite product,

(x|q)∞ =

∞∏
k=0

(1− xqk), (7.3)

which is an analytic function in x and q as long as |q| < 1, and that can
be extended to |q| > 1 by defining it to be

(x|q)∞ =

∞∏
k=0

(1− xq−(k+1))−1, (7.4)

in this case. This function is important in many areas of mathematics. It
is one of the major building blocks when construction of q-analogs, in the
combinatorics of counting partitions, and it shows up when studying the
geometric Langlands. This function also comes up in a variety of physics
contexts, and was introduced to physicists as the quantum dilogarithm
by Faddeev and Kashaev [93], who used it when studying 2d quantum
CFTs and solvable lattice models in 2 and 3 dimensions. They proved
that it satisfies an interesting pentagon identity. For us, this function
is relevant because the 1-loop determinant for a supersymmetric gauge
theory in 3d on the background R

2 ×q S1 can be written in terms of
q-shifted factorials, (x|q)±1

∞ .
One can generalize this and define the multiple q-shifted factorial,

which depends on more variables q1, . . . , qk. For |q1|, . . . , |qk| < 1 this is
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defined as

(x|q1, . . . , qk)∞ =
∞∏

i1,...,ik=0

(1− xqi11 · · · qikk ). (7.5)

Just as for the single variable case, the definition can be extended for
when say |q1|, |q2|, . . . , |qj | > 1, and the rest |qj+1|, . . . , |qk| < 1, as

(x|q1, . . . , qk)∞ =
∞∏

i1,...,ik=0

(1− xq
−(i1+1)
1 · · · q−(ij+1)

j q
ij+1

j+1 · · · qikk )(−1)j ,

but the function is not defined when any |qj | = 1. As we have seen in
chapter 6, the multiple q-factorial with two q’s shows up as the building
block of the 1-loop determinant for a 5d theory on R

4 × S1.
Let us next discuss the idea of zeta function regularization. When we

write infinite products that are divergent, they have to be understood in
a proper way, which is through zeta function regularization, a technique
that lets us assign to them a finite value, using some zeta function. We
now explain this construction in the setting that we need to define the
multiple sine functions. For ω1, . . . , ωr, z ∈ C such that they are all in
the same half-plane of C, for example that their imaginary parts are all
greater than zero, the multiple Hurwitz zeta function is defined as [94]

ζr(s, z|ω) =
∞∑

n1,...,nr=0

(z + n · ω)−s, (7.6)

for R(s) > r and where n·ω = n1ω1+· · ·+nrωr. This can be analytically
continued for all s ∈ C as a meromorphic function and is holomorphic
at s = 0. Then the multiple gamma function Γr is defined as

Γr(z|ω) = exp

[
∂

∂s
ζr(s, z|ω)|s=0

]
. (7.7)

This is the Barnes multiple gamma function up to a multiplicative con-
stant. We think of Γr as the regularized version of a divergent infinite
product and write

∞∏
n1,...,nr=0

(z + n·ω) = Γr(z|ω)−1. (7.8)

Then we define the multiple sine functions Sr as

Sr(z|ω) = Γr(z|ω)−1Γr(|ω| − z|ω)(−1)r−1

, (7.9)
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where |ω| = ω1 + ω2 + . . . + ωr. Physicists will often write the infinite
product instead, defining Sr as

Sr(z|ω) =
∞∏

n1,...,nr=0

(z + n · ω)(|ω| − z + n · ω)(−1)r−1

, (7.10)

leaving the zeta regularization implicit.
The multiple sine functions were first introduced by Kurokawa, and

form a hierarchy generalizing the usual sine function, which is the first
member: S1(z|ω) = 2 sin z

ω . They show up in physics when computing 1-
loop determinants of theories placed on odd-dimensional spheres, for S3

one finds the double sine S2 [95], for S5 one finds the triple sine [96, 71],
and for S7 the quadruple sine appear [97, 98]. In the next subsection we
define a generalization of the multiple sine functions that show up when
the 1-loop determinant is computed for general toric manifolds.

The multiple sine functions have Weirstrass product representations
[99]. To keep formulas manageable, we consider the case when all ωi = 1

and write Sr(z|1, 1, . . . , 1) = Sr(z) . Then the Weirstrass representation
of S1 is

S1(z) = 2πz

∞∏
n=1

(
1− x2

n2

)
, (7.11)

which is the famous infinite product representation of the sine function
due to Euler. The double sine have the representation

S2(x) = 2πxe−x
∞∏

n=1

(
1 +

x

n

)n+1 (
1− x

n

)−n+1

e−2x, (7.12)

and so on for the higher multiple sines as well.
The Weirstrass representation can be understood as an alternative

(but equivalent) way of regularizing of the infinite product, as we now
explain for the example of S2. Starting from its divergent infinite prod-
uct, that we can put in the form

P =
∞∏

n1,n2=0

(z + n1 + n2)

(2− z + n1 + n2)

= z
∞∏
t=1

(z + t)t+1(z − t)1−t

(7.13)

The idea is now to remove the divergent parts of this infinite product, so
we have to understand what they are. We do this by taking the logarithm
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of P:

logP = log z +

∞∑
t=1

[(t+ 1) log(z + t) + (1− t) log(−z + t)] , (7.14)

and expanding this for large t to find the divergences, we find

log z +
∞∑
t=1

[
2 log t+ 2z + O

(z
t

)]
, (7.15)

where the two terms inside the sum tells us how the product is diverging.
To arrive at a finite product, we need to compensate each factor of the
product with the factor that precisely cancel these divergences. The 2z

part is compensated by multiplying each factor inside the product by
e−2z, and the 2 log t term tells us to multiply each factor by t−2. So a
regularized version of P is

z

∞∏
t=1

t−2(z + t)t+1(−z + t)1−te−2z

= z

∞∏
t=1

(
1 +

z

t

)t+1 (
1− z

t

)1−t

e−2z,

(7.16)

This is now a convergent product, but in order to not change the original
value, we should compensate for the extra factors that we have inserted.
This means that we have to divide the above expression by the regu-
larized values of

∏
t t

−2 and
∏

t e
−2z. The product over t−2 we have

already computed in equation (2.64), and it is (2π)−1, and the product
over e−2z is ez by the same computation as in (2.65). So in total the
correct regularized version of P is

2πze−z
∞∏
t=1

(
1 +

z

t

)t+1 (
1− z

t

)1−t

e−2z, (7.17)

and we see that this regularization procedure correctly recovers the above
Weirstrass representation of S2 (7.12).

Next, we give some important properties of the multiple sine functions.
They satisfy a generalized periodicity relation, where they are periodic
with periods ωi ‘up to’ a lower-degree multiple sine:

Sr(z + ωi|ω) = Sr−1(z|ω−(i))−1Sr(z|ω). (7.18)
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Since there is no S0, this is just normal periodicity for the usual sine
function S1. For us, the most important property the multiple sine
functions satisfy is the following factorization property:

Sr(z|ω) = e(−1)r πi
r! Br,r(z|ω)

r∏
k=1

(e
2πi z

ωk |e2πi
ω1
ωk , . . . ,



e
2πi

ωk
ωk , . . .)∞, (7.19)

which applies as long as Im(ωi

ωj
) �= 0 for all i �= j. Here, Br,r is a poly-

nomial in z of degree r, called a multiple Bernoulli polynomial. These
are defined from a generating series as

(−1)r
trezt∏r

j=1(1− etωj )
=

∞∑
n=0

tn

n!
Br,n(z|ω) , (7.20)

which closely mimics the generating series for the Bernoulli numbers.
The multiple sine functions are also closely related to the multiple elliptic
gamma functions, which we turn to next.

The multiple elliptic gamma functions [91] are generalizations of the
usual gamma function, which depends on more variables in an elliptic
way. The first example is that of the original elliptic gamma function,
that was studied by Felder and Varchenko [90]. This is a meromorphic
function of three variables z, τ1, τ2 defined by the following infinite prod-
uct (for Im (τi) > 0, ∀i)

Γ(z, τ1, τ2) =

∞∏
j,k=0

(1 + e2πi(τ1+τ2−z+jτ1+kτ2))

(1− e2πi(z+jτ1+kτ2))
. (7.21)

We can here recognize the infinite q-Pochhammer function defined above,
so we can also define the elliptic gamma function as

Γ(z, τ1, τ2) =
(e2πi(τ1+τ2−z)|e2πiτ1 , e2πiτ2)∞

(e2πiz|e2πiτ1 , e2πiτ2)∞ , (7.22)

which is defined for any region of τ1, τ2 away from Im(τi) = 0.
The elliptic gamma function shows up in various contexts, for exam-

ple in statistical mechanics when studying the Ising model [100], and in
mathematics when studying solutions to elliptic qKZB difference equa-
tions [101], which is the motivation of the study in [90]. Felder and
Varchenko derive a number of properties that the elliptic gamma func-
tions enjoy, most importantly a “modular” three-term relation, which
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connects the values of Γ(z, τ1, τ2) at points related by SL3(Z) transfor-
mations acting on (τ1, τ2) as a fractional linear transformation. Explic-
itly, this relation reads

Γ(z, τ1, τ2) = e
2πi
3! B3,3(z|τ1,τ2,−1)Γ(

z

τ1
|τ2
τ1
,− 1

τ1
)Γ(

z

τ2
|τ1
τ2
,− 1

τ2
), (7.23)

where B3,3 again is a multiple Bernoulli polynomial, now cubic is z. This
relation have an interpretation in terms of a generalization of Jacobi
modular forms.

There is a natural generalization of the elliptic gamma function to a
function depending on more variables, called the multiple elliptic gamma
functions, which form a hierarchy that includes the Jacobi theta function
and the elliptic gamma functions. These were defined by Nishizawa
[91], and they are closely related to the multiple sine functions discussed
above.

Let x = e2πiz and qi = e2πiτi , i = 0, . . . , r. Then the multiple elliptic
gamma functions are defined as

Gr(z|τ) = (x|q)(−1)r

∞ (q0q1 · · · qrx−1|q)∞ . (7.24)

In this hierarchy, the Jacobi theta function is given by θ0(z|τ) = G0(z|τ),
and the elliptic gamma function is given by Γ(z, τ0, τ1) = G1(z|τ0, τ1).

The multiple elliptic gamma functions enjoy the modularity property

Gr(z|τ) = e
2πi

(r+2)!Br+2,r+2(z|τ,−1)
r∏

k=0

Gr

(
z

τk

∣∣∣∣ τ1τk , · · · ,
|τk
τk

, . . . ,
τr
τk

,− 1

τk

)
.

(7.25)
This includes the modular property for the Jacobi theta function and
the elliptic gamma functions.

Another important property the multiple elliptic gamma functions
satisfy is a recurrence relation, or a type of generalized periodicity in the
τi-parameters, which reads

Gr(z + τi|τ) = Gr−1(z|τ−(i))Gr(z|τ), (7.26)

where τ−(i) = (τ0, . . . , τi−1, τi+1, . . . , τr).
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Figure 7.1. A 2d cone C, where the red dots indicate the lattice points in the
interior, i.e. C◦∩Z

2, and the black dots are the lattice points on the faces. For
this particular cone we can restrict to only interior lattice points by shifting
with the vector (2, 1).

7.2 Generalized multiple sine functions
We generalize the above story in a particular way, guided by the local-
ization calculation on 5d toric SE manifolds reviewed in chapter 6. For
this purpose, we think of the ordinary multiple sine and elliptic gamma
functions as being associated to odd-dimensional spheres, and our goal
is to generalize this to other toric manifolds.

Recall the concept of the moment map polytope from chapter 4 and
the moment map cone of section 5.3.2. For the spheres S2r−1, the mo-
ment map cones are given by R

r
≥0, and the infinite products that define

both the multiple sine and multiple elliptic gamma functions runs over
all lattice points within this cone. So the generalization that we consider
is to replace this with an arbitrary cone C of dimension r, which we
require to be rational and good. These conditions ensures that the cone
corresponds to a smooth toric manifold.

For such a cone C, we define the associated generalized multiple sine
function, written in the Weirstrass representation as

SC
r (z|ω) =

∏
n∈C∩Zr

(z + n · ω)
∏

n∈(C)◦∩Zr

(−z + n · ω)(−1)r−1

, (7.27)

where C◦ denotes the interior of the cone, i.e. it doesn’t include points
on its boundary, see figure 7.1. This is the correct generalization of the
shift by ω1 + . . . + ωr that occur for the usual multiple sine functions.
When there exists a vector ξ such that ξ · vi = 1 for all inward normals
vi of C, i.e. when the cone is 1-Gorenstein, the shift corresponding to
restricting to only interior points is given by ξ · ω.
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The infinite product in this definition is again to be understood as a
zeta-regularized product, and the precise procedure for this is explained
in III. There, we also prove the most important property of these func-
tions enjoy, which is a factorization property that closely mimics the one
for the ordinary multiple sines:

SC
r (z|ω) = e(−1)r πi

r! B
C
r,r(z|ω)

∏
ρ∈ΔC

1

(xρ, qρ)∞. (7.28)

Here, ΔC
1 is the 1d edges of C, which also corresponds to the vertices of

the moment polytope of our toric manifold. To each such vertex, there is
a natural way to associate an SLr(Z) element, and this acts as a linear
fractional transformation on (z|ω) to give us the correct local variables
(xρ|qρ). BC

r,r is a generalized Bernoulli polynomial, which depends on
the geometrical data of the cone/manifold. The details of all of this is
described in article III.

7.3 Generalized multiple gamma functions
We can repeat a very similar story for the generalized multiple elliptic
gamma functions. Again, for a cone C of dimension r, we can define the
generalized multiple elliptic gamma function as

GC
r−1(z|τ) =

∏
n∈C∩Zr

(1− e2πi(z+n·τ))(−1)r−1 ∏
n∈C◦∩Zr

(1− e2πi(−z+n·τ)).

(7.29)
This function again satisfies a number of properties mimicking the

usual multiple elliptic gamma functions, and perhaps most importantly
we again find a factorization property. For each generator ρ ∈ ΔC

1 of
the cone there is a natural way of associating a SLr(Z) element Kρ,
essentially by completing the r − 1 normal vectors of ρ into a SLr(Z)

matrix. Then the factorization of GC
r−1 can be written as

GC
r−1(z|τ) = e

2πi
(r+1)!B

Ĉ
r+1,r+1(z|τ,−1)

∏
ρ∈ΔC

1

K∗
ρGr−1(z|τ), (7.30)

where K∗
ρ acts as a fractional linear transformation on the arguments of

Gr−1. For details of this see III.
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8. Dimensional reduction

The idea of constructing new theories by starting from a higher dimen-
sional theory and reducing goes back to Kaluza [102] and Klein [103].
They were seeking a unification of electromagnetism and gravity, and
came up with the ingenious idea of postulating an extra fifth dimension
and consider only gravity (i.e. general relativity) on this five dimensional
space. By taking the extra dimension to be a small circle, the effective
theory in 4d then looks like gravity coupled to electromagnetism. This
procedure is called to dimensionally reduce on a circle, and it is a very
appealing idea. Of course we can also consider more extra dimensions
and consider them to have other geometries, in which case the resulting
effective theories depends in various ways on the geometry of the extra
dimensions.

Since string theory lives in 10 dimensions but we only observe 4, di-
mensional reduction is a core part of the subject. This topic is called
string compactifications, and it is a very rich subject with a lot of inter-
esting physics and mathematics. In the present thesis we do not consider
the dimensional reduction of supergravity or string theory, but only of
supersymmetric field theories. This is an interesting topic in itself and
sheds light on how different theories are connected. Especially the vari-
ous dimensional reductions of the mysterious 6d (2,0) theory has lead to a
number of interesting results, such as constructions of new theories [104]
and the discovery of various field theory dualities [43, 44]. It has also
explained some previously known dualities, like S-duality of 4d N = 4

theory that can be naturally understood from the compactification of 6d
(2,0) on a torus.

The topic of article IV is closely related to the reduction of the (2,0)
theory on a non-trivial elliptic fibration, as studied in for example [105].
As we will see, since the fibration is non-trivial the resulting 4d theory
will have a space-dependent complexified coupling.
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8.1 Dimensional reduction on R
n × S1

Let us first sketch how dimensional reduction on a trivially fibered circle
on flat space work, and what it does to the different fields of a SYM
theory. The starting manifold is Rn ×S1, and we want to see what hap-
pens when we take the circle to be really small. The resulting theory will
effectively look like a n-dimensional theory on R

n, and we are interested
in what the field content and action of that theory is given that we know
the theory in n+ 1 dimensions.

Let (xμ, α), μ = 1, . . . , n be the coordinates on R
n × S1, and let r

be the radius of the circle. Consider a massless scalar φ on R
n × S1.

Its field configuration can be expanded in Fourier modes along the circle
direction,

φ(x, α) =

∞∑
k=−∞

φk(x)e
ikα/r. (8.1)

This shows that the momentum is quantized along the compact circle
direction and given by k/r. The wave-equation that the massless scalar
satisfies, (∂μ∂μ + ∂α∂

α)φ = 0 becomes

(∂μ∂
μ − k2

r2
)φk(x) = 0, (8.2)

which shows that the modes φk become an infinite tower of n-dimensional
scalar fields, with masses m2

k = k2/r2. As we take r small, and consider
the effective theory at energies much smaller than r−1, only the massless
modes with k = 0 remain. This is the mode which is independent of the
circle direction. Essentially the same computation can be made for fields
of any spin, so when we dimensionally reduce we keep only the modes
that are independent of the circle direction.

The types of fields that we want to reduce are scalars, vector fields and
spinors. We have seen that a scalar goes into a lower-dimensional scalar,
and that we only keep the mode independent of the circle direction. The
gauge field A is decomposed as Am = (Aμ, Aα), and on reduction Aμ

becomes a 1-form in n dimensions, and the last component becomes a
scalar in the lower-dimensional theory, Aα = ϕ.

For spinors, what happens depends on if the dimension n, is even or
odd. This is because the number of components of a spinor in dimensions
n = 2k+1 and n = 2k are both 2k. We mainly care about the reduction
from five to four dimensions, and the spinor in 5d has 4 components and
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can be trivially pushed down to a 4d 4-component spinor, so that we have
λ5d = λ4d. If we instead are reducing from for example 4d to 3d, one
Dirac spinor in 4d becomes a pair of 2-component spinors in 3d, λ4d →
(λ3d

1 , λ3d
2 ). Of course this also depends on the reality conditions on the

spinors and is in general a representation theory question of decomposing
spinor representations under the lower-dimensional Lorentz subgroup.

To work out how the terms in the action reduces is straightforward:
one writes every piece in terms of its lower-dimensional components, and
then drops every term where something is differentiated along the circle
direction. For example the field strength 2-form F for an abelian theory
is

F = (∂μAν − ∂μAν)dx
μ ∧ dxν + (∂αAμ − ∂μAα)dα ∧ dxμ

= F4d − ∂μϕdα ∧ dxμ
(8.3)

so from the kinetic term of the gauge field we get

F ∧ �F = (FμνF
μν + (∂μϕ)(∂

μϕ))Vol. (8.4)

The other terms in SYM actions reduce in a similar fashion. Next we
discuss the case that is relevant for article IV, which is when we start
with a compact manifold that has the structure of a non-trivial circle
fibration over a 4d base.

8.2 Dimensional reduction of theories on compact
manifolds

As we have seen in the above, dimensional reduction is straightforward if
the space is a trivial circle fibration over flat space. If we instead consider
a non-trivial S1 fibration, it might still be possible to reduce. For the
case of non-compact manifolds, this was studied by Scherk and Schwarz
[106], where they find that the non-trivial fibration can introduce some
mass terms. We are instead interested in compact geometries, so we have
to investigate whether there are any obstructions to reducing, and when
a consistent reduction can be performed. In article IV this is investigated
in some detail and we find a number of mathematical conditions for when
such a reduction can be performed.
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In general, the various fields that we want to reduce are sections of
vector bundles over our manifolds, so we study when vector bundles
and sections of them can be pushed down. Let E → M be a vector
bundle over the manifold M , and let M have the structure of a S1

fibration over a base manifold B, S1 → M → B. Then E can be pushed
down to a bundle over B if there exists a trivialization of E over M

where the transition functions are invariant along the circle direction.
This condition on the bundle can be rephrased as a condition that its
holonomy along the fibration circle is trivial. Further, any section s of
E that satisfies Dαs = 0, where α is the coordinate along the circle, can
then also be pushed down and viewed as a section of the bundle over B.

The above is the formal requirements on fibrations and the bundles,
but in particular, we have to consider when the spin bundle can be
pushed down. We now specify to the situation of article IV, when we
care about reduction from 5d to 4d. Then the spin-bundle can only be
pushed down when the 4d base B is a spin-manifold, otherwise there is
an obstruction and the spin bundle of M may instead be pushed down
to a spinc bundle on B (which always exist). An example of where this
happens is the Hopf fibration S1 → S5 → P

2, since P
2 is not spin. But

one can still in principle do the reduction and find supersymmetric N = 2

theories on such non-spin base manifolds, but one has to deal with some
subtleties related to having only a spinc bundle. In the paper IV we do
not consider these cases, but leave it for future investigations.

Let us now briefly explain how dealing with a non-trivial connection
changes the reduction. For concreteness, we start with a 5d manifold
and write its metric in coordinates adapted to the fibration, so that it
takes the form

ds25 = ds24 + e2φ(dα+ b)2, (8.5)

where α again is the coordinate along the fiber, b is the connection one-
form for the fibration and eφ is the radius of the fiber. b and φ are
both constant along the fiber, but they can vary along the base. Now
let β = e−2φgM (∂α) = dα + b; which up to normalization is the dual
one-form of the vector along the fiber.

As explained above we consider fields constant along the fiber. In
particular the 5d gauge field Â then takes the form Â = A+ ϕβ, where
A is the gauge field on B and ϕ is its component along the fiber, which
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is an adjoint scalar constant along the fiber. Plugging this expression
into the curvature we obtain

F̂ = F + (dAϕ) ∧ β + ϕdβ, (8.6)

and, using the inverse metric we can write the 5d YM term in 4d quan-
tities, which will tell us what will appear in the 4d action

F̂∧�5F̂ = eφ(dα+β)∧[(F+ϕdβ)∧�4(F+ϕdβ)+2e−2φ(dAϕ)∧�4(dAϕ)].

We see from this that both the connection β and the position-dependent
radius eφ enter in non-trivial ways; the term ϕ2(dβ)2 is something like
a mass term for ϕ, and eφ will give us a position dependent coupling
constant.

Reducing the fields as described above is consistent with supersym-
metry as long as the Killing spinor is constant along the fiber. Then
we can reduce the supersymmetry variations and the action and get a
4d supersymmetric theory, which is what we do in article IV. We also
classify the 5d SE manifolds with a free U(1) action where the base is
spin, and find that the corresponding 4d manifolds all have the topology
of #n(S

2×S2), n-fold connected sums of S2×S2. The resulting theories
have N = 2 supersymmetry, and a position dependent coupling constant
as shown above. We also find their partition functions by expanding
the 5d 1-loop determinant along the fiber and only keeping the constant
modes, and we discuss the instanton contributions. An interesting fea-
ture of the theories we construct is that they support instantons living
on half the torus fixed points, and anti-instantons on the other half. This
is the same as what Pestun found on S4 [19] and shows that the theories
we construct are not related to the equivariantly twisted theories studied
in [107].
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Svensk sammanfattning

Inom modern fysik är kvantfältteori ett viktigt verktyg som används
inom många olika ämnesområden. Den utgör grunden för partikelfysiken,
används för att beskriva material inom fasta tillståndets fysik, och är
också intimt förknippat med strängteori. En viss typ av fältteorier, så
kallade gaugeteorier, är speciellt viktiga och beskriver elektromagnetism,
den svaga samt den starka kraften. Därför är det ett viktigt problem att
förstå deras beteende.

Så länge gaugeteorierna är svagt växelverkande, vilket är fallet för elek-
tromagnetism och den svaga kraften, så har fysiker över åren utvecklat
diverse kraftfulla metoder för att beräkna olika storheter och förstå teori-
ernas dynamik. Men när en teori är starkt växelverkande, vilket är fal-
let med den starka kraften som beskrivs av kvantkromodynamic (QCD)
och för teorin som beskriver högtemperaturs supraledare, så fungerar
inte dessa metoder längre och nya angreppssätt behövs. Ett sätt att
försöka förstå starkt växelverkande teorier är att studera teorier med
mer symmetrier. Dessa är inte längre realistiska, men kan ändå agera
som användbara förenklade modeller som kan låta oss förstå mer om de
involverade mekanismerna.

En speciellt användbar klass av sådana mer symmetriska teorier är de
med en speciell typ av symmetri, s.k. supersymmetri. Denna symmetri
begränsar teorierna på olika sätt och gör dem enklare att studera. I
denna avhandling studerar vi supersymmetriska gaugeteorier och använ-
der oss av en specifik matematisk teknik, lokalisering, som kan användas
för dessa teorier. Denna teknik låter oss beräkna olika storheter exakt,
även när teorierna är starkt växelverkande. Vi använder denna teknik
för att studera teorier i fem och fyra dimensioner, och våra beräkningar
leder oss också till att formulera en ny klass av speciella funktioner.

Supersymmetriska gaugeteorier är också intimt förknippade med sträng-
teori, och en alternativ motivation för forskningen i denna avhandling
kommer därifrån. Det finns fem olika strängteorier som alla lever i 10
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rumtidsdimensioner, och de är alla besläktade med en unik teori i 11 di-
mensioner, som kallas M-teori. Denna teori har inte längre strängar som
sina fundamentala objekt, utan istället högre-dimensionellla membran,
de så kallade M2 och M5 branen. Dessa beskrivs i sin tur av olika su-
persymmetriska fältteorier, och i synnerhet de 6d teorier som beskriver
M5 branen är väldigt speciella och intressanta. Dessutom är de svåra att
studera direkt, då våra vanliga verktyg inte fungerar. Dessa 6d teorier är
nära besläktade med de 5d och 4d teorier vi undersöker i denna avhan-
dling, och hoppet är att om vi kan förstå dessa bättre kan vi också lära
oss någonting nytt om de mystiska 6d teorierna.

I artikel I och II studerar vi supersymmetriska 5d gauge-teorier plac-
erade på toriska Sasaki-Einstein mångfalder, med hjälp av lokalisering-
stekniken, och beräknar deras tillståndssummor. Detta leder oss till att
definiera en ny hierarki av speciella funktioner som vi studerar i artikel
III och V och som uppvisar intressanta faktoriseringsegenskaper. I ar-
tikel IV använder vi de 5d teorier som vi studerat för att konstruera nya
supersymmetriska 4d teorier, och vi använder våra resultat från 5d för
att beräkna deras tillståndssummor. Vi finner att dessa teorier har en
positionsberoende kopplingskonstant och att vårt svar innehåller bidrag
både från så kallade instantons och anti-instantons, något som tidigare
observerats för teorier på fyrsfären S4.
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