
Research Article
CryoProtect: A Web Server for Classifying Antifreeze Proteins
from Nonantifreeze Proteins

Reny Pratiwi,1,2 Aijaz Ahmad Malik,1 Nalini Schaduangrat,1 Virapong Prachayasittikul,3

Jarl E. S. Wikberg,4 Chanin Nantasenamat,1 and Watshara Shoombuatong1

1Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
2Department of Medical Laboratory Technology, Faculty of Health Science, Setia Budi University, Surakarta 57127, Indonesia
3Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University,
Bangkok 10700, Thailand
4Department of Pharmaceutical Biosciences, BMC, Uppsala University, SE-751 24 Uppsala, Sweden

Correspondence should be addressed to Chanin Nantasenamat; chanin.nan@mahidol.edu
and Watshara Shoombuatong; watshara.sho@mahidol.ac.th

Received 17 October 2016; Accepted 26 December 2016; Published 9 February 2017

Academic Editor: José L. Arias Mediano
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Antifreeze protein (AFP) is an ice-binding protein that protects organisms from freezing in extremely cold environments. AFPs are
found across a diverse range of species and, therefore, significantly differ in their structures. As there are no consensus sequences
available for determining the ice-binding domain of AFPs, thus the prediction and characterization of AFPs from their sequence is a
challenging task.This study addresses this issue by predicting AFPs directly from sequence on a large set of 478 AFPs and 9,139 non-
AFPs using machine learning (e.g., random forest) as a function of interpretable features (e.g., amino acid composition, dipeptide
composition, and physicochemical properties). Furthermore, AFPs were characterized using propensity scores and important
physicochemical properties via statistical and principal component analysis. The predictive model afforded high performance with
an accuracy of 88.28% and results revealed that AFPs are likely to be composed of hydrophobic amino acids as well as amino acids
with hydroxyl and sulfhydryl side chains.The predictivemodel is provided as a free publicly available web server called CryoProtect
for classifying query protein sequence as being either AFP or non-AFP.The data set and source code are for reproducing the results
which are provided on GitHub.

1. Introduction

Antifreeze protein (AFP) is an ice-binding protein produced
by organisms living in extremely cold temperatures and
encountering freezing environments. AFPs have been found
in a wide variety of species, including bacteria, fungi, insects,
plants, and animals [1]. Although AFPs have similar func-
tions, their structures are enormously varied amongst species.
The diversity of AFPs may have arisen from the fact that
ice contain surfaces with different geometric arrangements of
oxygen atoms [2]. Moreover, crystallography and NMR stud-
ies of AFPs revealed that there are no consensus sequences
or structures for ice-binding surfaces [3–7]. As a response
to climate changes, AFPs may have evolved their ice-binding
abilities [8]. Despite their diversity, AFPs can be classified into

two major groups: (i) antifreeze glycoproteins (AFGPs) and
(ii) nonglycoproteins (types I to IV AFPs) [9]. The AFGPs
constitute a major fraction of proteins in the blood serum of
Antarctic Notothenioids and Arctic Cod. Each AFP consists
of varying numbers of repeating (Ala-Ala-Thr)n units with
minor sequence variations. Furthermore, the disaccharide
𝛽-D-galactosyl-(1→3)-𝛼-N-acetyl-D-galactosamine is joined
as a glycoside to the hydroxyl oxygen of the Thr residue.
Thus, these compounds allow fish to survive in subzero
temperatures [10]. In this article, we use the term AFPs to
refer to both the AFGP and AFP groups, emphasizing their
ability to protect organisms from freezing environments.

AFPs are known to elicit protection in organisms via two
mechanisms. Firstly, they act by lowering the freezing point
but not themelting point.The difference between themelting
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Table 1: Existing methods for predicting antifreezing protein.

Method Classifier Interpretable Stand-alone program Web server Sequence feature Year
AFP-Pred RF No ✓ PCP 2011
iAFP SVM Yes ✓a 𝑛-peptide compositions 2011
AFP PSSM SVM No ✓a PSSM 2012
AFP-PseAAC SVM No ✓ PseACC 2014
TargetFreeze SVM No ✓ AAC, PseAAC and PsePSSM 2015

AFP-ensemble RF No ✓a
AAC, DPC, PCP, PSSM, disorder

information, and functional domain 2015

CryoProtect RF Yes ✓ AAC and DPC This study
DT: decision tree, RF: random forest, SVM: support vector machine, AAC: amino composition, DPC: dipeptide acid composition, PCP: physicochemical
properties, PSSM: position specific scoring matrix profiles, PseACC: pseudo amino acid composition, and PsePSSM: pseudo position-specific scoring matrix.
aThe web server is not accessible.

and freezing temperatures, termed thermal hysteresis (TH), is
used to detect and quantify antifreeze activity [11]. Secondly,
upon binding with ice, AFPs modify the crystallization of ice
by either developing smaller crystals or forming a different
shape [1]. In addition, the key feature of AFPs activity is their
ability to bind with ice surfaces. Specific amino acids are
arranged in a flat pattern and bind with the ice surface on ice-
binding sites. This binding is stabilized by hydrogen bonds
from hydrophilic amino acids strategically arranged tomatch
the spacing of the ice lattice [3, 8]. However, their unusual
relationship with water (i.e., acting as a solvent for the protein
as well as its target) render the characterization of molecular
mechanisms of AFPs a challenging task [8].

Owing to its importance in the survival of cold-adapted
organisms and their promising agricultural (i.e., freeze-
resistant transgenic animals or plants), medical (e.g., cry-
opreservation and cryosurgery), and industrial (i.e., food
preservation) applications, the precise identification of AFPs
is vital.This can only be achieved with a better understanding
of their ice-binding interaction and mechanisms [10, 12].
Therefore, an accurate computational method for the iden-
tification of AFPs is needed, particularly in the postgenomic
era where protein sequence information accumulate without
being functionally annotated [13]. However, the challenge
in the identification of AFPs lie in their sequence diversity
and different ice-binding sites amongst closely related species
[8, 14]. Quantitative structure-activity/property relationship
(QSAR/QSPR) is a computational paradigm that facilitates
the correlation of structural feature of biological or chemical
entities of interest with their respective endpoints (i.e., activ-
ity or property of interest) [15, 16].

Despite the difficulty ofAFP identification,many research-
ers have exploited computational approaches to directly
predict AFPs based on their protein sequences via the use of
predictive QSARmodels including AFP-Pred [12], iAFP [17],
AFP PSSM [18], AFP-PseAAC [13], AFP-Ensemble [19], and
TargetFreeze [20] as summarized in Table 1. TargetFreeze
provided the highest predictive performance by using sup-
port vector machine and various types of protein features,
namely, amino acid composition, pseudo amino acid com-
position, and pseudo position-specific scoring matrix. Each
of the existing methods has its own merit and did play a

role in stimulating the development of this area. However,
all of the mentioned studies focus mainly on increasing
prediction results while possessing limitations pertaining to
the characterization of important features that are essential
for the identification of AFPs from non-AFPs. Furthermore,
to the best of our knowledge, very few effective methods
or bioinformatics tools for characterizing AFPs have been
proposed.

One of the main values of bioinformatics tools should
be its ability to provide insight into mechanisms of action
under study. Therefore, this work attempts to develop an
interpretable computational predictor for AFPs while afford-
ing a comparable accuracy. A prediction method named
CryoProtect that is based on a random forest classifier and
the combination of amino acid composition and dipeptide
composition is proposed herein. Rigorous cross-validation
suggests that the CryoProtect approach afforded the best
predictive performance amongst four out of the five existing
methods. Furthermore, this method also provided a com-
parable performance against the state-of-the-art approach,
TargetFreeze. Moreover, this study also identified important
features underlying the antifreeze activity based on the amino
acid composition as well as physicochemical properties as
derived from the AAindex database [21]. Finally, CryoProtect
is provided as a free and publicly available web server at
http://codes.bio/cryoprotect/ for classifying query protein
sequences as AFP or non-AFP.

2. Materials and Methods

2.1. Data Set. In order to fairly compare our study with
existing methods, we used the benchmark data set described
by Kandaswamy et al. [12]. Briefly, the positive data set was
constructed in four steps: (1) an initial positive data set
consisting of 221 AFPs was taken from seed proteins in the
Pfam database [22], (2) the 221 AFPs were enriched by using
Position-Specific Iterated-Basic Local Alignment Search Tool
(PSI-BLAST) for each sequence against a nonredundant
sequence database using stringent threshold with 𝐸-value of
0.001, (3) the enriched data set was manually checked and all
non-AFPs were removed, and (4) after the sequence identity
was reduced to 40% via the use of CD-HIT program [23],

http://codes.bio/cryoprotect/
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the final positive data set consisted of 481 AFPs. A negative
data set consisting of 9,193 seed proteins from the Pfam
database that bears no resemblance to AFPs were designated
as non-AFPs [22]. After removing several protein sequences
containing special characters (e.g.,𝑋 and𝑈) we obtained the
final data set containing 478 AFPs and 9,139 non-AFPs.

The data set was further divided into two subsets consist-
ing of an internal set and an external set. In consideration
of the class imbalance of the data set in which the size
of AFPs and non-AFPs was significantly out of proportion
therefore the data set was partitioned such that the internal
set now contains 300 AFPs and 300 non-AFPs. This was
performed via random undersampling of the non-AFP class.
The remaining 178 AFPs and 8,839 non-AFPs served as
the external set for further evaluation of the extrapolation
capability of the predictive model.

2.2. Descriptor Calculation. In order to develop an inter-
pretable computational predictor for providing a compre-
hensive perspective of the biological and chemical properties
under study, feature representation plays a pivotal role.
It allows an effective predictor that can truly reflect the
correlation between features and biological properties and
thereby provide insights onAFPs. Previously, numerous types
of protein feature representationwere used to develop various
sequence-based predictors. However, most of these protein
descriptors were problematic and scarcely contributed any
biological or chemical knowledge to users. To remedy this
shortcoming, an easy and interpretable feature pertaining to
the amino acid composition (AAC), dipeptide composition
(DPC), and physicochemical property (PCP) were consid-
ered. The latter set of descriptors was derived from the
AAindex [21] and spanned a wide range of physicochemical
properties (e.g., hydrophobicity, helices, 𝛽-sheet, side chain,
and buried residues). Moreover, the potential ability of these
features to predict protein functions has been extensively
demonstrated previously.

AAC is the proportion of each amino acid in a protein
sequence that is expressed as a fixed length of 20. Given a
peptide sequence with length l, the occurrence frequency of
the 𝑖th amino acid (𝑎𝑖) is calculated as follows:

𝑎𝑖 =
𝐴𝐴 𝑖
𝑙
, (1)

where 𝐴𝐴 𝑖 is the number of occurrences in the sequence for
the 𝑖th amino acid.

DPC is the proportion of two consecutive amino acids
or dipeptides having a fixed length of 20 × 20 = 400. DPC
encompasses information regarding amino acid composition
along the local order of amino acids. For a given peptide
sequence, the occurrence frequency of the 𝑖th dipeptide (dp𝑖)
is calculated as follows:

dp𝑖 =
DP𝑖
𝑙
, (2)

whereDP𝑖 is occurrence of the 𝑖th amino acid in the sequence.
Physicochemical property (PCP) of amino acids is essen-

tial for the prediction and analysis of various proteins and

peptides in a wide range of bioinformatics studies owing to
its interpretability [24–26].There are 544PCPs of amino acids
extracted from the amino acid index database (AAindex) [21],
which is a collection of the published literature as well as
different biochemical and biophysical properties of amino
acids. Each physicochemical property consists of a set of 20
numerical values for amino acids. After removing 13 PCPs
with the value “NA” in a value set of the amino acid index,
a total of 531 PCPs were used for subsequent analysis.

2.3. Cross-Validation to Identify the Predictive Capability. In
statistical predictions, three popular cross-validation (CV)
methods are often used to identify the empirical predictive
model for its robustness, namely, N-fold cross-validation,
jackknife test, and external validation. To fairly compare the
existing approaches and reduce the computational time, a
10-fold cross-validation (10-fold CV) and external validation
were carried out. Additionally, to avoid the possibility of
bias arising from single data split upon model training,
data splitting was performed for 20 independent iterations.
Particularly, each data split divides the data into two subsets
consisting of an internal set and an external set. The former
set was used as the training set and subjected to 10-fold CV
in which the data was partitioned into 10 folds and 1 fold was
left out as the testing set while the remaining were used for
training themodel.This process was repeated iteratively until
all the folds have had the chance to be left out as the testing
set. Subsequently, an external validation performed on the
external set was used to assess the predictive capability of the
models for inferring any unknown data not previously seen
by the training model.

2.4. Multivariate Analysis. To develop an interpretable
sequence-based predictor, the learning classifiers, namely,
decision tree (DT) and random forest (RF), were used for
the prediction and analysis of AFPs. In order to analyze
the overall aspect of the informative features for classifying
AFPs andnon-AFPs, the principal component analysis (PCA)
approach was applied. This method reduces the original
feature space to a fewer dimensions while still retaining most
of the variation explained by the original data set. Further
details of the three learning classifiers are provided below.

PCA is a mathematical and statistical algorithm that is
used for reducing the dimensionality of the data set while still
retaining most of the variation [27]. In brief, PCA transforms
the original variables into a set of linear combinations,
namely, the principal component (PC). The PCs are linearly
independent and areweighted in decreasing order of variance
coverage. Thus, all originalM-dimensional data patterns can
be optimally transformed to the feature space with lower
dimensionality [28]. PCA analysis was performed using the
FactoMineR package [29] in R program version 3.0.1 [30].

DT is comprised of a hierarchical arrangement of nodes
and branches in which nodes represent the peptide features
whereas branches refer to decision rules for categorizing
peptides as AFPs and non-AFPs. DT models have been
successfully applied in the analysis of various types of
compounds like aromatase inhibitors [31], dipeptidyl pep-
tidase 4 inhibitors [32], influenza neuraminidase inhibitors
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[33], volatile organic compounds [34], cytochrome P450-
interacting compounds [35], and so forth. In this study, the
DT model was constructed using the J48 algorithm from the
RWeka R package using default parameters. Briefly, the J48
algorithm is a Java implementation of the C4.5 algorithm,
which establishes a DT model by iteratively appending
features having high information gains [36]. Finally, the
algorithm automatically calculates the feature usage derived
from the full decision tree or a collection of rules.

RF is an ensemble classification and regression tree
(CART) classifier [37–39] whereby each tree is generated
using a random vector that is sampled independently from
the input vector [38]. The RF method grows many weak
CART trees that enhance its prediction performance. Fur-
thermore, the out-of-bag (OOB) approach was used for
evaluating the feature importance in which two-thirds of
the training data was used for constructing the predictive
classifier while the remaining was used for evaluating the
performance of the classifier where the decrease in the
prediction performance was measured. It should be noted
that the performance evaluation of the model can use either
accuracy or Gini index. Herein, the RF classifier was estab-
lished using the randomForest R package [39, 40]. To enhance
the performance of the RF model, two parameters, namely,
ntree (i.e., the number of tree used for constructing the RF
classifier) andmtry (i.e., the number of randomcandidate fea-
tures), were subjected to optimization. Particularly, 𝑛𝑡𝑟𝑒𝑒 ∈
{100, 200, 300, 400, 500} was determined using 10-fold cross-
validation (10-fold CV) and mtry was estimated using the
tuneRF function in the randomForest R package [39, 40].

2.5. Identification of Informative Physicochemical Properties.
Previously, the physicochemical properties (PCPs) of amino
acids have been recognized as valuable features for pro-
viding a better understanding of protein functions from
their primary sequences [24–26]. Here, the propensity scores
of amino acids were utilized to provide insight into the
characteristics of AFPs. The propensity scores of 20 amino
acids (PS-AFP) for distinguishing AFPs from non-AFPs were
calculated as follows:

PS-AFP𝐴𝐴(𝑖) =
∑AFP𝐴𝐴(𝑖)
∑AFP

−
∑AFP𝐴𝐴(𝑖)
∑ non-AFP

, (3)

where PS-AFP𝐴𝐴(𝑖) is the propensity score for the 𝑖th amino
acid and ∑AFP𝐴𝐴(𝑖) and ∑ non-AFP𝐴𝐴(𝑖) represent the total
number of 𝑖th amino acid in AFPs and non-AFPs, respec-
tively.The∑AFP and∑ non-AFP represent the total number
of all amino acids in AFPs and non-AFPs, respectively.
Finally, the propensity scores of all amino acids were normal-
ized into the range of [0, 1000]. In this study, the identification
of informative PCPs was performed using PS-AFP𝐴𝐴(𝑖) in
which Pearson’s correlation coefficients (𝑅) were computed
between PS-AFP𝐴𝐴(𝑖) and the 531 PCPs followed by selection
of the five top-ranking PCPs affording the highest absolute 𝑅
values for further analysis [26].

2.6. Performance Evaluation. One of the crucial procedures
in developing a reliable and useful predictor is to objectively
evaluate its performance. From the point-of-view of pattern

recognition, the prediction ofAFPs can be addressed as a clas-
sification problem. Herein, five standard statistical parame-
ters, namely, accuracy (Ac), sensitivity (Sn), specificity (Sp),
Matthew’s correlation coefficient (MCC), and Youden’s index
(YI), were used to assess the predictive performance of the
proposed methods. These five parameters were computed as
follows:

Ac = TP + TN
(TP + TN + FP + FN)

× 100

Sn = TP
(TP + FN)

× 100

Sp = TN
(TN + FP)

× 100

MCC

=
TP × TN − FP × FN

√(TP + FP) (TP + FN) (TN + FP) (TN + FN)

YI = Sn + Sp − 1,

(4)

where TP, TN, FP, and FN represent the true positive, true
negative, false positive, and false negative, respectively.

2.7. Development of the CryoProtect Web Server. The Cry-
oProtect web server was developed using the Shiny package
under the R programming environment. The utilization of
Shiny boasts several benefits. The first advantage is the
seamless integration of the web server with the aforemen-
tioned predictive model that was also built in R. The second
benefit is that there is no requirement for developers to
have an extensive knowledge of web development, although
it may be useful. Most importantly, Shiny facilitates rapid
development and deployment of web applications, which
is especially beneficial for the scientific community as pre-
dictive models can be readily deployed as a web server
making it accessible to a wider group of users instead of
confined to those with a background in computer science.
In optimizing the loading and processing time of the web
server, the data set was subjected to data balancing as to
afford a balanced data set consisting of 300 AFPs and 300
non-AFPs.The CryoProtect web server is accessible at http://
codes.bio/cryoprotect/ while the source code is available on
GitHub at https://github.com/chaninn/cryoprotect/.

3. Results and Discussion

In this study, AFPs and non-AFPs are predicted by the
proposed method CryoProtect. Firstly, analyses of PCA,
propensity scores, and Gini index were performed as to
characterize informative properties of antifreeze activity.
Secondly, informative PCPs were used to investigate vital
factors for improving the antifreeze activity of proteins. After-
wards, the proposed CryoProtect method was compared
with existing methods. Finally, CryoProtect is deployed as
a free prediction web server as to afford easy and rapid
classification of query protein sequence as being AFP or
non-AFP. Figure 2 illustrates the workflow of prediction

http://codes.bio/cryoprotect/
http://codes.bio/cryoprotect/
https://github.com/chaninn/cryoprotect/
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Table 2: Propensity score of 20 amino acids, composition difference, and summary of statistical analysis of AFPs and non-AFPs.The rank of
propensity score and Gini index are shown in parenthesis.

Amino acid Propensity score Gini index AFP (%) Non-AFP (%) Difference (%) p value
Cys 1000 (1) 47.16 (1) 3.6 1.5 2.1 >0.05
Ala 944 (2) 18.88 (4) 9.5 8.2 1.3 >0.05
Ser 890 (3) 10.93 (12) 8.4 6.9 1.5 >0.05
Thr 867 (4) 15.49 (7) 6.6 5.3 1.3 >0.05
Gly 858 (5) 12.93 (9) 7.4 6.4 1.0 >0.05
Trp 777 (6) 30.40 (2) 2.5 1.3 1.2 >0.05
Gln 615 (7) 10.18 (13) 4.4 4.0 0.4 0.081
Asn 572 (8) 8.31 (18) 4.8 4.3 0.5 >0.05
Pro 560 (9) 9.14 (17) 4.5 4.7 −0.2 >0.05
His 559 (10) 5.52 (20) 2.4 2.2 0.2 0.066
Asp 502 (11) 7.68 (19) 4.9 5.4 −0.5 0.090
Tyr 471 (12) 11.69 (11) 2.9 3.3 −0.3 >0.05
Glu 433 (13) 12.48 (10) 5.7 6.7 −1.0 >0.05
Phe 407 (14) 9.52 (16) 3.6 4.1 −0.5 0.233
Met 404 (15) 13.48 (8) 2.2 2.5 −0.4 >0.05
Val 379 (16) 9.94 (14) 5.6 6.5 −0.9 >0.05
Arg 249 (17) 21.41 (3) 4.5 5.7 −1.2 >0.05
Ile 191 (18) 16.36 (6) 4.1 5.6 −1.5 >0.05
Lys 159 (19) 9.60 (15) 5.1 6.0 −0.8 >0.05
Leu 0 (20) 18.54 (5) 7.5 9.5 −2.0 >0.05

procedures for CryoProtect in classifying protein sequences
as AFPs and non-AFPs.

3.1. Biological Space of Antifreeze Protein. In this study, the
PCA analysis and propensity score analysis of 20 amino acids
were used for identifying important properties governing the
AFP activity as illustrated in Figure 3 and Table 2. Figure 3
shows the loadings and scores plots derived from the use of
informative amino acids. These amino acids were selected
by using t-test in order to compare compositions of amino
acids between AFPs and non-AFPs. The result of 𝑝 values
and propensity scores of amino acids are shown in Table 2.
As can be seen, 13 amino acids were found to be significantly
different between AFPs and non-AFPs at the level of 𝑝 <
0.05. Figure 3 shows the scores (Figure 3(a)) and loadings
plot (Figure 3(b)) as derived from the informative amino
acids where the red and blue circles represent AFPs and non-
AFPs, respectively. Results indicated that Cys, Ser, Trp, Gly,
Asn, andThr were characteristic of AFPs while Leu, Val, Glu,
Ile, and Met were characteristic of non-AFPs. Interestingly,
these results are well reflected in which amino acids with the
highest propensity scores were Cys, Ala, Ser, Thr, and Gly
with corresponding values of 1000, 944, 890, 867, and 858,
respectively, while amino acids with the lowest propensity
scores were Leu, Lys, Ile, Arg, and Val with propensity scores
of 0, 159, 191, 249, and 379, respectively.

Moreover, this study also made use of the Gini index
from the RF model for evaluating and ranking the feature
importance of amino acids as shown in Table 2. Features with
the largest Gini index are deemed to be the most important

owing to their contribution to the prediction performance
[37–39]. Interestingly, there were seven out of ten top-ranked
amino acids that were found to belong to the top five and
bottom five amino acids representing highest and lowest
propensity scores, respectively, such asCys, Ala,Thr,Gly, Arg,
Ile, and Leu. It was observed that results from the Gini index
were complementary to the analysis of propensity scores.

The importance of Cys, Thr, Ser, Asn, and Gly in con-
tributing to the activity of AFP is supported by several
previous experimental evidences. Liou et al. [41] identified
a consensus sequence consisting of repeating units (Cys-
Thr-Xaa-Ser-Xaa-Xaa-Cys-Xaa-Xaa-Ala-Xaa-Thr) from the
AFPs of the beetle Tenebrio molitor (TmAFP). This TmAFP
has a 10 to 100 times lower freezing point as compared to
fish AFP. Also, the X-ray crystallography and NMR studies
revealed that the ice-binding surface of TmAFP is composed
of Thr-Xaa-Thr motifs [42]. Moreover, Marshall et al. [43]
engineered the addition and deletion of repeated TmAFP
coils in order to study whether the length of AFPs and
the addition of binding site enhance the antifreeze activity
(Figure 4). According to their study, therewas a 10- to 100-fold
gain in activity for the addition of six to nine coils, depending
on the concentration that was compared. The maximum
freezing point depression of 6.5∘C at 0.7mg/mLwas achieved
by the nine-coil construct but decreased for the ten- and
eleven-coil constructs. Therefore, they concluded that the
antifreeze activity increases with the length of the 𝛽-helix.
Although the relationship between the activity of thermal
hysteresis and the concentration of AFPs are nonlinear, the
differences in the activity of AFPs are not strictly proportional
over a concentration range [43].
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Table 3: Propensity score of amino acids and selected physicochemical properties from the AAIndex. The rank of descriptors is shown in
parenthesis.

Amino acid Propensity score RICJ880112 SNEP660104 KOEP990101 QIAN880125
Cys 1000 (1) 0.2 (18) 0.38 (2) 0.57 (2) −0.02 (9)

Ala 944 (2) 0.7 (13) −0.062 (13) −0.04 (12) −0.02 (10)

Ser 890 (3) 0.6 (15) 0.47 (1) 0.15 (7) 0.41 (1)

Thr 867 (4) 0.7 (14) 0.348 (3) 0.39 (3) 0.36 (3)

Gly 858 (5) 0.1 (19) −0.017 (10) 1.24 (1) 0.38 (2)

Trp 777 (6) 0.4 (17) 0.05 (9) 0.21 (6) −0.01 (8)

Gln 615 (7) 1.3 (6) −0.025 (11) −0.02 (11) −0.17 (16)

Asn 572 (8) 0.8 (11) 0.166 (5) 0.25 (5) 0.03 (7)

Pro 560 (9) 0.0 (20) −0.036 (12) 0.00 (9) −0.04 (12)

His 559 (10) 1.1 (8) 0.056 (8) −0.11 (15) −0.09 (14)

Asp 502 (11) 0.6 (16) −0.079 (14) 0.27 (4) 0.11 (4)

Tyr 471 (12) 1.1 (9) 0.22 (4) 0.05 (8) −0.08 (13)

Glu 433 (13) 1.6 (4) −0.184 (16) −0.33 (19) 0.10 (5)

Phe 407 (14) 1.8 (3) 0.074 (7) −0.01 (10) −0.03 (11)

Met 404 (15) 1.0 (10) 0.077 (6) −0.09 (14) −0.14 (15)

Val 379 (16) 1.3 (7) −0.212 (17) −0.06 (13) −0.18 (17)

Arg 249 (17) 0.8 (12) −0.167 (15) −0.30 (18) 0.04 (6)

Ile 191 (18) 1.4 (5) −0.309 (19) −0.26 (17) −0.48 (20)

Lys 159 (19) 2.2 (1) −0.371 (20) −0.18 (16) −0.39 (19)

Leu 0 (20) 1.9 (2) −0.264 (18) −0.38 (20) −0.26 (18)

R 1.00 −0.741 0.736 0.695 0.683

In order to function at subzero temperatures, AFPs rely
mostly on hydrogen and disulfide bonds rather than their
hydrophobic core [44].This observation supports the analysis
of PCA results and propensity scores, which revealed the
importance of residues with hydroxyl and sulfhydryl side
chains (e.g., Cys, Thr, Ser, Asn, and Gly) as the main amino
acids responsible for the bioactivity of AFPs. Amongst these
residues, only Cys is known to exhibit moderate hydropho-
bicity with a sulfhydryl side chain, while the rest are more
hydrophilic and, thus, are prone to participate in hydrogen
bond formation [45, 46]. In addition, the sulfhydryl groups
of Cys form disulfide bridges in 𝛽-helix of TmAFP thereby
allowing for the formation of a tight structure whereby no
hydrophobic core or long sidechains are in the helix.

Meanwhile, Ser residues and Asn residues stabilize 𝛽-
helix structure by forming ladder-like structure. Ser residues
are lining on one side of the protein and form a ladder
structure [44, 47], whereas Asn ladders were identified to
be inside the 𝛽-helix structure of AFP derived from freeze-
tolerant grass Lolium perenne (LpAFP) [48]. Two internal
Asn ladders are made up of side chain amide and carbonyl
groups of hydrogen bonds that bind to the main-chain atoms
of neighboring coils and to the adjacent Asn side chains [48].
Moreover, the importance of hydrogen bonds can be seen in
AFPs from snow flea (sfAFP) lacking hydrophobic cores, as it
mainly contains Gly which is less hydrophobic.The structure
of sfAFP consists of polyproline type II helix, formed by six
coils whereby all the structures projected inwards are made
up of Gly (Figure 5). This structure allows the coils to form
carbonyl-amide hydrogen bonds with each other [44, 49].

3.2. Characterization of AFPs Using Propensity Score of Physic-
ochemical Properties. Physicochemical properties of amino
acids play an essential role in the identification and charac-
terization of protein functions from their primary sequences.
Table 3 shows selected PCPs with their corresponding 𝑅
values consisting of SNEP660104 (𝑅 = 0.736), RICJ880112
(𝑅 = −0.741), KOEP990101 (𝑅 = 0.695), and QIAN880125
(𝑅 = 0.683). The analyses of four PCPs of AFPs are discussed
below.

3.2.1. Contribution of Hydrophobic Residues to AFP Activity.
The property of RICJ880112 was described as “amino acid
preferences for specific locations at C3 ends of the 𝛼-helices.”
In 1988, J. S. Richardson andD. C. Richardson [50] calculated
the amino acid preference at specific location such as at the
end of 𝛼 helices based on 𝛼-carbon positions and a sample
of 215 𝛼 helices from 45 different globular protein structures.
This study revealed that particular amino acids prefer to
remain in certain positions at the 16 individual positions
relative to the helix ends. This finding is important in order
to predict a three-dimensional protein structure from amino
acid sequences. According to this study, a peak preference
for hydrophobic amino acids in position C3 can be observed
and these peaks are especially strong for Leu [50]. As seen in
Table 3, the property of RICJ880112 has the highest inverse
correlation (𝑅 = −0.741) indicating that the AFPs tend
to be composed of amino acids with low hydrophobicity.
Interestingly, five amino acids with the highest propensity
scores belong the group of moderate and less hydrophobic
amino acids.
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Although it is generally accepted that the ice-binding
site of AFPs are mainly composed of hydrophilic amino
acid residues, Chen and Jia [51] suggested that a larger
ice-binding site might contain hydrophobic residues. By
employing molecular docking simulations, they analyzed the
ice-binding interaction energy of 11 different surface patches
of type III AFP from fish.The simulations identified the most
favorable interaction energy containing 14 residues including
the highly hydrophobic amino acids, Ile, Val, and Leu [46].
Based on this analysis, the authors concluded that there is
an enlargement of the ice-binding site resulting from an
incorporation of surrounding hydrophobic residues.

Furthermore, Baardsnes and Davies [4] investigated the
importance of hydrophobic residues of type III AFP towards
protein and ice interactions by mutagenesis study. In their
study, the hydrophobic residues at the ice-binding site (Leu,
Ile, and Val) were mutated into the less hydrophobic Ala
residue (Figure 6). It was found that single substitutions
of Leu19Ala, Val20Ala, and Val41Ala decreased the activity
by 20%, whereas double substitutions of Leu19Ala/Val41Ala
and Leu10Ala/Ile13Ala decreased the antifreeze activity by
more than 50% when compared to the wild type. Although
the Ala substitutions only moderately decreased the van der
Waals interactions, the overall mutations could reduce the
interactions between ice and AFPs [4]. In contrast, Garnham
et al. [52] reported a double mutation of less hydrophobic
amino acids (Pro and Ala) to highly hydrophobic amino
acid residues (Leu and Val) in AFP type III isoform SP seen
in notched fin eelpout fish (SPnfe6). It was found that the
double mutation of Pro19Leu/Ala20Val in the SPnfe6 mutant
increased the ice-binding activity by increasing the surface
coverage. Furthermore, the double mutant decreased the
growth of ice crystals by greater than 30-fold when compared
with the wild type SPnfe6 in the same concentration. Hence,
contact surface area is important for the activity of AFPs
and the enlargement of surface area will result in forming
additional binding sites.

3.2.2. Hydroxythiolation of the AFP Side Chains and Its
Contribution. The property of SNEP660104 is described as
“relations between chemical structure and biological activity
in peptides on principal component IV.” Sneath [53] studied
the correlation of amino acid substitution and variation of
biological activity of peptides by principal component anal-
ysis. Four principal components (principal components I, II,
III, and IV) were derived from calculations of 20 amino acids
and interpreted as different properties. Principal component
IV represents the hydroxythiolation property which can be
described as the involvement of hydroxyl and sulfhydryl
groups in protein activity as well as the ability of amino acids
in vector IV to form hydrogen bonds. This property has the
highest positive correlation (𝑅 = 0.736) indicating that AFPs
favor amino acids that contain hydroxythiolation.

Table 3 shows 3 out of 5 amino acids having the highest
propensity scores (e.g., Cys, Ser, and Thr) possessed hydrox-
ythiolation property. Duman [54] reported the importance of
this property on the structural stability of AFPs in terrestrial
arthropods, Dendroides (DAFP) and Tenebrio (TmAFP, Fig-
ure 1). The sulfhydryl group in Cys residues form disulfide

bridges whereby 6 out of 8 disulfide bonds are aligned in the
internal loop. Although the other 2 disulfide bonds in the N-
terminal do not follow this pattern, there is no distortion in
the loop formation.These structures stabilize the proteins and
enable polar Thr and Ser residues with a hydroxyl side chain
to align in the ice-binding site and form hydrogen bonds
between the AFP and ice [47, 54].

Hydrogen bonds play an important role in protein/ice
interactions as they function to inhibit the growth of ice crys-
tals by blocking surface adsorption [44].The study of the ice-
binding mechanism of AFPs from winter flounder (wfAFP)
shows that the greater the number of hydrogen bonds, the
higher the antifreeze activity [55]. Moreover, Wierzbicki
et al. [56] employed molecular dynamics simulations and
identified that the number of hydrogen bonds are determined
by the type of amino acid residues that move towards the ice.
In addition, they discovered that when the Thr-Ala-Ala site
of the AFP is facing the ice the antifreeze activity increases
as compared to when the Thr-Ala-Asx site faces the ice. This
occurs because themovement of theThr-Ala-Ala site towards
the ice surface allows 13 additional sites of the AFP to come in
close contact and form hydrogen bonds with the ice surface.
Furthermore, the close contact of the Thr-Ala-Ala residues
enables a larger surface area of the protein to associate with
the ice (892 ± 4.5 Å).

3.2.3. Diversity of Secondary Structures of AFPs. We have
selected two properties that describe the diversity of AFPs
secondary structure based on their propensity score correla-
tion coefficient (𝑅 value). The two properties of KOEP990101
(𝑅 = 0.695) andQIAN880125 (𝑅 = 0.683) positively correlate
with our calculated propensity score of the AFP.The property
of KOEP990101, obtained from Koehl and Levitt study [57],
is described as “𝛼-helix propensity derived from designed
sequences,” whereas the QIAN880125 property is described
as “weights for 𝛽-sheet at the window position of 5” obtained
from Qian and Sejnowski [58] prediction model.

A great need for an accurate 3D protein structuremethod
has led to the development of protein secondary structure
prediction in the past decades. Current methods for the
secondary structure prediction of proteins are based on
the algorithms adopted from simple statistical- and pattern
recognition-basedmethods [59]. In 1988,Qian and Sejnowski
[58] developed a method for predicting the secondary struc-
ture of proteins based onneural networks (NNs)model, a pat-
tern recognition-basedmethod.The strength of a connection
from each network is called a weight while the network itself
can be considered as a window. It was observed that there are
certain weights for 𝛼-helix, 𝛽-sheet, and coil, in the specific
window position.

Furthermore, Koehl and Levitt [57] developed a protein
design method and analyzed the conformational preferences
for the amino acids. From the designed sequences, the
conformational preferences of amino acids were derived. In
addition, a structure-based propensity scale was determined
from calculations of a complete physical potential, such as
van der Waals, electrostatic and hydrophobic interactions.
The authors found that the values obtained from a structure-
based propensity scale show significant agreement with the
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(a) (b) (c) (d) (e)
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Figure 1: Diversity of protein structures of AFPs. Winter flounder Pseudopleuronectes americanus (PDB ID: 1WFA) (a), perennial ryegrass
Lolium perenne (PDB ID: 3ULT) (b), insect AFP from Tenebrio molitor (PDB ID: 1L1I) (c), fungal AFP from Typhula ishikariensis (PDB ID:
3VN3) (d),𝛽-helicalAFP fromAntarctic bacteriumMarinomonas primoryensis (PDB ID: 3P4G) (e), Type IIAFP from sea ravenHemitripterus
americanus (PDB ID: 2AFP) (f), Type IIIAFP fromocean poutZoarces americanus (PDB ID: 1KDE) (g), and snowfleaAFP fromHypogastrura
harveyi (PDB ID: 2PNE) (h). 𝛼-helix, 𝛽-sheet, and coil are shown in red, green, and grey colors, respectively, while the inner side of the 𝛼-helix
and the side of the 𝛽-sheet are shown in yellow color.

experimental propensity scale values for both 𝛼-helix and 𝛽-
sheet [60].

In this study, two PCPs of KOEP990101 and QIAN880125
that describe the protein secondary structure propensity
score positively correlate with the propensity score of amino
acid composition derived from AFPs. This result reflects the
diversity of secondary structures ofAFPs (Figure 1). Although
AFPs have no identical amino acid sequences or structures,
they were classified based on their secondary structures.
According to the work of [8], fish AFPs can be classified
into several subfamilies based on their secondary structures.
Type I AFP is a 𝛼-helix that is mainly composed of Ala with
11 amino acid repeating units in the helical turns, whereas
type II AFP is a mixture of 𝛼, 𝛽, and loop or coil structures
with no observed amino acid repeats. Furthermore, type
III AFP contains short 𝛽 strands and, although no amino
acid repeats were observed, this protein was seen to form a

dimer. Likewise, the structure of insect AFPs from different
species Choristoneura fumiferana, Dendroides canadensis,
and Tenebrio molitor are 𝛽-helix.

3.3. Performance Evaluation. In this study, we investigated
the predictive capability of the proposed method by consid-
ering performance comparisons between two popular inter-
pretablemachine learning algorithms (e.g., DT and RF) using
protein features (e.g., AAC, DPC, and a combination of AAC
andDPC). Rigorous evaluation of the predictive power of the
proposedmethod, CryoProtect, was performed via the use of
10-fold CV and external validation. As previouslymentioned,
the benchmark data set described by Kandaswamy et al. [12]
was used as is for comparative purposes. Table 4 lists the
performance comparisons of various models using different
learning methods and sequence features over 10-fold CV and
external validation.
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Figure 2: Flowchart of the prediction procedures of CryoProtect for classifying protein sequences as AFPs and non-AFPs.

In the case of a single feature, the RF model using AAC
yielded the highest prediction results with a mean Ac, Sn,
Sp, MCC, and YI of 86.33%, 87.50%, 85.27%, 0.73, and 0.73,
respectively. Moreover, the 10-fold CV performed notably
over external validation with a mean Ac, Sn, Sp, MCC, and
YI of 87.50%, 78.65%, 87.68%, 0.27, and 0.66, respectively.
Meanwhile, the RF model using DPC and the DT model
using AAC performed effectively with the second and third
highest mean Ac of 84.33%/84.12% and 77.67%/81.99% for
10-fold CV and external validation, respectively. As can
be seen in Table 4, the prediction performances for both
machine learning methods were quite consistent with those
previously reported by He et al. [20]. In order to enhance the
prediction performance, the combination of AAC and DPC
was considered. Table 3 shows that the best Ac, Sn, Sp, MCC,
and YI over 10-fold CV of 89.50%, 89.54%, 89.50%, 0.79,
and 0.79, respectively, are achieved by using the RF model.

Interestingly, the RF model also provided a substantial 10%
improvement for both Sn and YI.

By observing the performance comparisons in Table 3,
it can be briefly summarized as follows: (1) AAC plays a
pivotal role in discriminating between AFP or non-AFP; (2)
the RFmodel with the combination of AAC andDPC showed
significant performance when evaluated by both 10-fold CV
and external validation procedures. For convenience, from
herein the best predictor for discriminating between AFP
or non-AFP based on RF learning method in conjunction
with the combination of AAC and DPC will be referred to
as CryoProtect.

3.4. Performance Comparisons of CryoProtect and Existing
Methods. In this section, we compare the proposed method
CryoProtect with other popular AFP predictors, namely,
iAFP [17], AFP-Pred [12], AFP PSSM [18], AFP-PseAAC [13],
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(𝑝 < 0.05) in their composition were selected for PCA analysis. AFPs and non-AFPs are represented by red and blue circles.
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Figure 4: Crystal structure of wild type AFP from Tenebrio molitor
(PDB ID: 1ezg) showing the 𝛽-sheet region and disulfide bonds in
green and yellow colors, respectively.

and TargetFreeze [20]. Cross-validation (e.g., 10-fold CV)
provides insufficient conditions to determine which model
has a higher predictive power. Thus, this study utilizes the
external validation test to moderate such a problem. The
reported prediction results over an external validation test of
the existing predictors of AFPs shown in Table 4 are directly
obtained from the work on TargetFreeze [20].

Based on the prediction results as shown in Table 5,
CryoProtect achieved a greater prediction performance than

+3.0

−3.0

180
∘

Hydrophilic side Hydrophobic side

Figure 5: Gly-richAFPs from snow flea (PDB ID: 2PNE).The struc-
ture lacks a hydrophobic core and instead one side is hydrophobic
while the other side is hydrophilic. The protein surface is rendered
via an APBS calculation.

Ile13Ala

Leu10Ala

Leu19Ala

Leu19Ala

Val20Ala

Figure 6: Crystal structure of type III AFP from fish (PDB ID: 1msi)
with mutated hydrophobic residues represented in green color.
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Table 5: Performance comparisons of CryoProtect with the existing methods on the external validation set(s).

Method Ac (%) Sn (%) Sp (%) MCC YI
iAFPa,d 95.30 13.26 97.09 0.086 0.10
AFP-Preda,d 77.34 91.16 77.04 0.23 0.68
AFP-PseAACa,d 84.75 85.08 84.74 0.27 0.70
TargetFreezeb,d 91.30 ± 2.00 92.45 ± 1.39 91.27 ± 2.07 0.40 ± 0.04 0.84 ± 0.10
CryoProtectc 88.28 ± 1.00 87.27 ± 2.27 88.30 ± 1.07 0.31 ± 0.01 0.76 ± 0.01
Mean 87.39 73.84 87.69 0.29 0.61
aResults were obtained from 1 round of random split.
bResults were obtained from 3 rounds of random split.
cResults were obtained from 20 rounds of random split.
dResults reported from the work of TargetFreeze (He et al.).

(a) (b)

Figure 7: Screenshot of the CryoProtect web server before (a) and after (b) submission of the input sequence data.

iAFP [17] and AFP-Pred [12] by providing improvements
of >4% and >20% on MCC and YI, respectively, while also
achieving higher performance than AFP-PseAAC [13]. Thus,
values for the five statistical parameters of CryoProtect were
found to be superior to those of the three AFP predictors.
However, TargetFreeze [20], which is considered as the best
AFP predictor, uses a support vector machine (SVM) with
several types of complementary protein features, namely,
AAC, PseAAC, and PsePSSM as summarized in Table 1. It
was observed that TargetFreeze obtained better prediction
results than CryoProtect by approximately 3–5% where the
former approach afforded Ac, Sn, and Sp of 91.30%, 92.45%,
and 91.27%, respectively, while the latter approach afforded
values of 88.28%, 87.27%, and 88.30%, respectively. However,
TargetFreeze was constructed using SVM, which is regarded
as a black-box approach as it is not easily interpretable. On the
other hand, CryoProtect makes use of interpretable learning
methods such as RF because it allows users to understand and
rationalize the biological and chemical properties of AFPs.
Therefore, the CryoProtect model is deemed to be a more
suitable method for predicting and interpreting AFP owing
to its interpretability and moderately good performance that
is only a few percentage less than the best predictor.

3.5. CryoProtect Web Server. As a service to the life science
community, the predictive QSAR model described herein

was made publicly available as a prediction web server.
A screenshot of the CryoProtect web server is shown in
Figure 7. A step-by-step walkthrough of the procedures for
using the CryoProtect web server is described below.

Step 1. Go to the CryoProtect web server at http://codes.bio/
cryoprotect/.

Step 2. Enter the query sequence into the Input box or upload
the sequence file by clicking on the Choose file button (i.e.,
found below theEnter your input sequence(s) in FASTA format
heading). Finally, press on the Submit button to initiate the
prediction process.

Step 3. Prediction results are automatically displayed in a
grey box found below the Status/Output heading. Typically,
it takes a few seconds for the server to process the task. Users
can also download the prediction results as a CSV file by
pressing on the Download CSV button.

Additionally, users could also run a local copy of Cry-
oProtect on their own computer using a one-line code as
follows in an R environment:

shiny::runGitHub(‘cryoprotect’, ‘chaninn’)

However, prior to running the aforementioned code, it
is recommended that users first install the prerequisite R

http://codes.bio/cryoprotect/
http://codes.bio/cryoprotect/
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packages. This can be performed by using the following
code:

install.packages(c(‘shiny’, ‘shinyjs’,
‘shinythemes’, ‘protr’, ‘seqinr’, ‘randomForest’,
‘markdown’))

4. Conclusion

The current study proposed a novel and interpretable RF-
based CryoProtect method for prediction and analysis
of AFPs from their sequences. Several machine learning
approaches have been used in this study, random forest
and decision tree. The performance of CryoProtect method
was comparable to the SVM-based method and better than
decision tree when applied in the independent set. Moreover,
the propensity score analysis of informative physicochemical
properties provided insight into the important features for
AFPs activity. In summary, results revealed that AFPs pre-
ferred to be composed of a certain number of hydrophobic
amino acids (e.g., Leu, Ile, and Val) at the end of the 𝛼-helix.
Furthermore, it was also found that AFPs favor amino acids
with hydroxyl and sulfhydryl side chains (e.g., Thr, Ser, and
Cys). Moreover, Cys residues help to stabilize the structure of
AFPs by forming disulfide bridges inside the 𝛽-helix. Finally,
Thrwas found to increase the activity of AFPs via the addition
of hydrogen bonds on its surface area. As a service to the
scientific community, the predictive model of CryoProtect
was made publicly available as a prediction server to facilitate
easy and rapid classification of query protein sequence as
being either AFP or non-AFP.
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