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of them, it was investigated the electronic structure, by means of density functional theory
calculations, and/or magnetization dynamics, in the context of atomistic spin dynamics (ASD).
  For bulk properties, we evaluate the magnon spectra of the heavy rare earths (Gd, Tb, Dy,
Ho, Er, and Tm), using the exchange parameters and magnetic moments from first-principles
calculations in ASD simulations. Additionally, we performed Monte Carlo simulations that
nicely reproduced the qualitative trend of lowering of the critical temperatures across the series.
Next, we discuss about the microscopic mechanism of the vanishingly low magnetic anisotropy
of Permalloy using the concept of the orbital moment anisotropy for Fe and Ni atoms in the
alloy.  Turning to surface magnetism, we discuss the use of exchange parameters computed by
a noncollinear formalism for 6 monolayers of Fe on the Ir(001) substrate, in order to have a
more accurate description of magnons at finite temperature and to obtain good comparison with
experimental data. Besides that, we also studied surface magnons on 3 and 9 Ni monolayers
on Cu(001) and Cu(111) in order to track the significant surface and/or interface effects and
contrast it to properties that are fcc Ni bulk-like. Likewise, we used the Monte Carlo method to
estimate the critical temperatures of Ni surfaces and compared with experimental data.  Finally,
in the field of low dimensional magnetism, we present the ab-initio calculations for the electronic
structure of Cr nanostructures of diverse geometries adsorbed on the Pd(111) surface, with focus
on the formation of non-collinear spin configurations, either due to geometric frustration or the
spin-orbit coupling provided by the substrate.
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1. Introduction

The early observations of the magnetic phenomena date back to ancient times.
It can be seen not only in Greek and Chinese writings but also in the archae-
ological remains of pre-Columbian civilizations [1]. These civilizations re-
ported the use of magnetite stones, an iron oxide naturally magnetized with the
ability to attract iron. Centuries later, the first memorable application of mag-
netism has emerged: the sea-navigation compasses. Therefore, the magnetism
contributed to the expansion of the “known world" in the fifteenth century by
European navigators.

The first scientific essay on magnetism is attributed to William Gilbert by
his book “De Magnete" (1600). There was launched the idea that the Earth
has its own magnetic field similar to the natural magnets, and, for this reason
the compass needle align itself to the earth’s field. At this moment Gilbert has
already introduced the concept of magnetic and electric effluvium (field).

After three centuries of theoretical proposals and empirical observations,
the scientific research of magnetism comes to the nineteenth century with
the discovery of electromagnetism and its connection to light in the exper-
imental works of Hans-Christian Oersted (the magnetic field produced by
an electric current), André-Marie Ampère (equivalence between an electric
coil and a magnet) and Michael Faraday (electromagnetic induction and the
magneto-optical effect). Nonetheless, the most precious jewel of the scientific
knowledge in the nineteenth century was developed in 1864, by James Clerk
Maxwell, with the formulations of the laws of electrodynamics. Complemen-
tary, many of the experimental techniques known at that time give birth to new
technologies: electric motors and generators, telephones and telegraphs stated
to be part of the everyday life!

In the twentieth century, the quantum mechanics revealed the deepest se-
cret about magnets: the spin of the electron. Many names can be mentioned,
but Pauli, Dirac, Fermi, Heisenberg, Bloch and Néel definitely have the most
influential contributions to the theory of metals and magnetism. Also the de-
velopment of the density functional theory by Hohenberg and Kohn [2] was a
turning point in theoretical predictions on materials science. Besides that, the
first recordings in magnetic media (magnetic tapes and floppy-disks) appeared
in the 1930’s. However, the new breakthrough in terms of technology came in
1988 with the discovery of the giant magnetoresistance effect (GMR)[3, 4] and
the birth of spintronics at the end of the century. This enabled the development
of faster devices for data storage and processing.
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Meantime, “hard drives are getting so big they’re almost scary. Who really
needs 8 gigabytes of storage (...)?"1, that was the concern in 1998. It is been
almost 20 years since the hard drive disks using GMR heads were released
to the market and, nowadays, the information storage units turned into Ter-
abytes! This just reveals the effort of the scientific community to find new
materials and solutions for magnetic storage. Now, the horizon is to stabilize
bits with the fewest possible number of atoms and optimization of processing,
associated with the lower energy expenditure.

The later developments in experimental techniques have a significant role
for the research on magnetic materials. For example, the scanning tunnel-
ing microscope (STM) [6, 7] enables the topological mapping of the surface
on atomic scale and the manipulation of atoms. It also has some particular
applications, such as spin-polarized STM (SP-STM) [8], which provides in-
formation about noncollinear magnetic textures [9, 10, 11], and the scanning
tunnelling spectroscopy (STS) technique, which by means of the measured
differential conductivity it is possible to distinguish the topography, electronic
structure and magnetism of a sample [12, 13], as well as measure the exchange
coupling between atoms [14]. It is also possible to investigate the collective
excitations of the spins in a magnetic material (magnons) by means of the In-
elastic Neutron Scattering (INS) techniques [15, 16, 17] and Spin Polarized
Electron Energy Loss Spectroscopy (SPEELS) [18].

In fact, the use of neutron and electron scattering techniques to measure the
magnon dispersion relation provide the access to valuable information about
the studied system such as the exchange coupling, magnetic anisotropy and
possibly the Dzyaloshinskii-Moriya interaction. Once the material is charac-
terized and the relevant interactions are known, this knowledge can be applied
subsequently to create devices, such as a magnonic transistors [19]. As other
examples, recent experimental works showed that are the possibility of stabi-
lizing bits composed of 12 atoms at low temperature [20], as well as the con-
struction of nanodevices to perform logical operations using only spins [21].

In fact, “there’s plenty of room at the bottom" as Richard Feynman pointed
out in 1959... and still! The studies show that despite all the advances made,
the understanding of magnetism in matter from the basic knowledge to the ap-
plications of high density magnetic storage and spintronic/magnonic devices
are a daily challenge for scientists.

Therefore, in view of these perspectives and high scientific interest in the
field of nanomagnetism, in this thesis are presented theoretical studies of elec-
tronic structure and atomistic spin dynamics of magnetic materials, done by
means of first principles calculations using the Real-Space Linear Muffin-Tin
Orbital within the Atomic Sphere Approximation (RS-LMTO-ASA) method
and Uppsala Atomistic Spin Dynamics code (UppASD).

1From “When it comes to hard drives, size is everything" by Stan Miastkowski (June 12,
1998) [5].
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The RS-LMTO-ASA [22, 23, 24] is based on the density functional theory
(DFT) [2, 25], an effective and widely used theory for solving many inter-
acting electron problems. The mentioned method is also a real-space gener-
alization of the original k-space LMTO-ASA method, solving the eigenvalue
problem in real space, which simplify the study of systems with low symme-
try. The DFT, the LMTO-ASA method and the RS-LMTO-ASA are presented
in Chapter 2.

Chapter 3 is dedicated to the magnetic ordering. The origin of the atomic
magnetic moment and the band theory of magnetism are shown, followed by
the different energy contributions for the spin Hamiltonian: the pair interac-
tions between atomic spins, as the Heisenberg exchange and Dzyaloshinsky-
Moriya interactions, and the magnetocrystalline anisotropy. The collinear and
noncollinear magnetism is also discussed.

In Chapter 4 the Landau-Lifshitz-Gilbert (LLG) equation is discussed in
the context of atomistic spin dynamics. The study of the dynamical properties
of the atomic spin is described by the stochastic version of LLG equation, as
implemented in the UppASD package [26, 27]. The theory of spin waves and
the Monte Carlo method are also discussed here.

Chapter 5 contains the introduction to the studies presented in this thesis:

• Paper I where we describe the 4 f electrons as core levels in the elec-
tronic structure calculations and estimate the critical temperatures and
magnon spectra of the heavy rare earths (Gd, Tb, Dy, Ho, Er, and Tm);

• Paper II contains the discussion about the microscopic mechanism of
the vanishingly low magnetic anisotropy of Permalloy using the concept
of the orbital moment anisotropy for Fe and Ni atoms in the alloy;

• Paper III discuss the use of exchange parameters computed by the non-
collinear formalism [28] for 6 monolayers of Fe on the Ir(001) substrate
– Fe6/Ir(001), in order to have a more accurate description of magnons
at finite temperature in comparison with experimental data;

• Paper IV deals with surface magnons on Nin/Cu(001) and Nin/Cu(111),
with n = 3,9 in order to track the significant surface and/or interface ef-
fects and contrast this to properties that are fcc Ni bulk-like. Likewise,
we used the Monte Carlo method in order to calculate critical tempera-
tures and compare with experimental data;

• Paper V presents the ab-initio calculations for the electronic structure of
Cr nanostructures of diverse geometries adsorbed on the Pd(111) sur-
face, with focus on the formation of non-collinear spin configurations,
either due to geometric frustration or the spin-orbit coupling interaction
provided by the substrate.

Therefore, the studies presented here comprise several materials in solid
state physics. From the bulk properties, with elemental rare-earths and Fe-
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Ni random alloy, to surface properties, exemplified by Fe and Ni thin films
supported on top of non-magnetic substrates, as well as nanostructures ad-
sorbed on a substrate with considerable spin-orbit interaction, represented by
Cr nanoislands. Finally, I end up with the summary and perspectives based in
the presented finds.
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2. Density functional theory

2.1 The many body problem
The macroscopic physical properties of the materials can be well described
from the investigation of events at the microscopic scale, especially those
related to the quantum states of the electrons in the crystalline lattice. Ac-
cording to quantum mechanics, a priori, we can solve the time independent
Schrödinger equation,

H Ψi(�r,�R) = EiΨi(�r,�R), (2.1)

to obtain the many body eigenstates Ψi(�r,�R) and the eigenvalues Ei for a crys-
talline system, with�r and �R been the coordinates of the electrons and nuclei,
respectively. The Hamiltonian operator H contains the interactions for elec-
trons and nuclei, in Rydberg atomic units,1

H =−∑
I

∇2
I

2MI
−∑

i
∇2

i + ∑
J �=I

ZIZJ

|�RI −�RJ|
+∑

j �=i

1
|�ri −�r j| −∑

I,i

2ZI

|�RI −�ri|
, (2.2)

where small (capital) letters stand for electron (nuclei), as in �ri and �RI . The
element specific information is represented by the atomic number Z and mass
of the nuclei MI . In the right hand side of Eq. 2.2, we find the kinetic ener-
gies of nuclei and electrons with ∇ = ∂

∂ r , as well as the Coulomb interactions
of nucleus-nucleus, electron-electron, and electron-nucleus, respectively. The
exact solution of the many-body problem is restricted to a few cases, specially
due to the coupling between nuclear-electronic movements that hinders the
total wave-function factorization. The most basic approach is to consider the
difference of time-scales of nuclei and electrons movement, which is known
as the adiabatic approximation of Born-Oppenheimer [29, 30]. Due to large
difference in mass, the electron is several orders of magnitude faster than the
nuclei. For example, the ratio of electron-nuclei mass for the hydrogen atom is
1/1836. Therefore, it is possible a description in which the electrons respond
instantaneously to variations in the wave function of the nucleus. Likewise,
the inverse of the nuclear mass 1/MI is small, which allows us to neglect the
nuclear kinetic energy in Eq. 2.2,

H =−∑
i

∇2
i +∑

j �=i

1
|�ri −�r j| −∑

I,i

2ZI

|�RI −�ri|
, (2.3)

1Which means h̄ = 1, e2 = 2 and mi = 1/2

13



and the total wave function can be written in the form

Ψ(�r,�R) = ψnuc(�R) ψele(�R,�r), (2.4)

where ψnuc(�R) is related to the nuclear part, and ψele(�R,�r) the electron part
that remains in the same steady state of the electronic Hamiltonian. Thus,
the electronic problem is reduced to the calculation of electron steady states,
moving in the electrostatic field of the fixed nuclei. Despite this, Eq. 2.3 con-
tinue a complex many electron problem with exact solution restricted to a few
systems. Hence, other approximations are necessary for analytical treatments.

2.2 Density functional theory
A feasible and widespread solution is to map the many electron problem into a
single particle problem by promoting the electronic density n(�r) to a variable
and turn all physical observables written in terms of it. Known as the den-
sity functional theory (DFT), this solution was first proposed in the works of
Thomas [31], Fermi [32] and Dirac [33] however, it was mathematically estab-
lished by Hohenberg and Kohn through their theorems [2]. Then, Kohn and
Sham [25] propose a formulation as a system of independent particles with
interacting electronic density, establishing a self-consistent method to obtain
the ground state density, n0(�r).

From the theorems of Hohenberg and Kohn [2], for an interacting electrons
system subject to an external potential V , follows that:

The Hohenberg-Kohn theorems

1. The ground state density n0(�r) determines uniquely the external
potential V , except for a constant;

2. The energy functional E[n(�r)] is minimized only when the den-
sity n(�r) = n0(�r), giving the exact ground state energy.

For practical purpose, Kohn and Sham proposed to use a effective potential
Ve f f as a way to compute the right ground state density [25]. Therefore, the
multi-electronic Hamiltonian in Eq. 2.3 can be modified, resulting in a new
eigenvalue equation,

[−∇2 +Ve f f (�r)]ψi(�r) = Eiψi(�r), (2.5)

known as the Kohn-Sham equations, where ψi(�r) is the single particle wave-
function and Ve f f (�r) is given by

Ve f f (�r) =Vext +2
∫ n(�r)

|�r−�r′|d
�r′+VXC(�r). (2.6)
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Thus, the problem is reduced to the solution of subsystems of a single particle
subject to an effective field, Eq. 2.6, composed by Vext generated by the nu-
clei, the Hartree term generated by electrons in the neighborhood�r′, and the
exchange-correlation potential VXC with quantum mechanical origin.

The Kohn-Sham (KS) equations are solved in an iterative and self-consistent
(SC) process, given an initial electron density nu(�r). The SC scheme is sum-
marized below.

Kohn-Sham self-consistent scheme

1. obtain the effective potential as a functional of nu(�r);
2. solve the KS equations to obtain the eigenfunctions ψi,u(�r);
3. compute the new electronic density nu+1(�r) = ∑i |ψi,u(�r)|2;
4. if nu+1

nu
> criteria → return to 1.

Usually the iterations cycles continue using new initial density, that is a
combination of nu+1(�r) and nu(�r) and occurs until the resulting density differ
from the initial one by a established threshold (self-consistency process).

2.3 Exchange-correlation functional in local density
approximation

The VXC derives from the electron’s intrinsic properties – charge and spin.
Antecedent to DFT, the Hartree-Fock theory accounts for the exact exchange
part, a consequence of Fermi statistics via the Slater determinant. Aside from
that, the electrons with anti-parallel spins move in a completely uncorrelated
fashion however, the Coulomb repulsion prevents them to occupy regions ex-
tremely close to each other (Coulomb correlation). This type of correlation
effect is neglected in Hartree-Fock, though present in the VXC in the DFT level.

Despite of the fact that the VXC term carries the many-body effects, it does
not have a closed analytical expression yet. For that, the exchange and corre-
lation effects are treated by approximations in the study of materials. Among
the functionals reported are the local density approximation - LDA [25, 34],
generalized gradient approximation - GGA [35, 36], hybrid functionals as
B3LYP [37], and Hubbard corrected functional - DFT+U [38].

The local density approximation (LDA) treat the inhomogeneous system of
many electrons as a set of subsystems (with homogeneous electron gas char-
acteristics) interacting with each other. Complementary, for spin-polarized
systems the local spin density approximation (LSDA) [34] was developed.
Thus, assuming that n(�r) has smooth variation in a region close to�r, the exact
exchange-correlation energy functional can be approximated by the first term
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of its expansion [25]

ELSDA
xc [n↑,n↓] =

∫
n(�r) εhom

xc ([n↑], [n↓],�r) d�r, (2.7)

where n↑(�r) and n↓(�r) stands for majority (↑) and minority (↓) spin densities.
The εhom

xc is the exchange-correlation energy per particle in a homogeneous
spin-polarized electron gas at�r and the ELSDA

xc is a functional of the density in
a region around�r (local characteristic).

The expression of the exchange-correlation potential Vxc(�r) is given by the
functional derivative of Eq. 2.7

V σ
xc(�r) =

δ
(
n(�r) εhom

xc ([n↑], [n↓],�r)
)

δnσ (�r)
(2.8)

with σ =↑ or ↓.
The density n([n↑], [n↓],�r) could be replaced by the generalized density ma-

trix ρρρ(�r) [34], written as

n(�r)→ ρρρ(�r) =
n(�r)

2
1+

mmm(�r)
2

σσσ (2.9)

where 1 is a unitary matrix 2×2, mmm the magnetization density and σσσ the Pauli
spin matrices. The KS wave-functions ψψψ i(�r) are then extended to a spinor
representation,

ψψψ i(�r) =
(

αi(�r)
βi(�r)

)
(2.10)

with αi(�r) and βi(�r) the spin projections. Hence, the ρρρ(�r) assumes the form

ρρρ(�r) = ∑
i

( |αi(�r)|2 αi(�r)β ∗
i (�r)

α∗
i (�r)βi(�r) |βi(�r)|2

)
. (2.11)

Thus, the charge and spin part of the density are expressed in terms of ψψψ i(�r),
accordingly to Eq. 2.9, as

n(�r) = Tr[ρρρ(�r)] = ∑
i
|ψψψ i(�r)|2 (charge) (2.12)

and

mmm(�r) = ∑
i

ψψψ†
i (�r)σσσ(�r)ψψψ i(�r) (spin). (2.13)

The external potential Vext also assumes the 2×2 matrix form and the Kohn-
Sham equation, Eq. 2.5, is generalized to

[−∇2 +V σ
e f f (�r)]ψψψ

σ
i (�r) = Eσ

i ψψψσ
i (�r), (2.14)
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for the spin polarized problem. Considering that the potential V σ
e f f admit the

separation into non-magnetic and magnetic part, bbb and VNM respectively, the
Kohn-Sham Hamiltonian in the LSDA is

HKS =
(−∇2 +VNM

)
1+bbb ·σσσ . (2.15)

The Eq. 2.15 is diagonal in the collinear spin case (when there is a global
quantization direction), then the KS wave-functions for distinct spin channel
do not hybridize and can be solved independently.

In all DFT calculations contained in this thesis, the exchange-correlation
functional was set to LSDA. Thus, we will not further discuss the other ex-
change correlation functionals (more information can be found in the listed
references).

2.4 Spin-orbit coupling
In the electronic structure context, the spin-orbit coupling (SOC) carries the
relativistic character. Therefore, to investigate quantities as the orbital mo-
ments and magnetocrystalline anisotropy, it is necessary to include the SOC
term into the Hamiltonian.

The fully-relativistic treatment can be achieved by solving the Dirac equa-
tion or consider the SOC as a perturbation term added to Eq. 2.15,

H = HKS +ξ LLL ·SSS. (2.16)

Here the ξ ∝ 1
r

∂V
∂ r is the SOC parameter, which is also proportional to the

atomic number Z. Therefore, by construction, the SOC term is more relevant
for heavy atoms [39].

In all DFT calculations contained in this thesis, the SOC term was treated
as a perturbation, accordingly to Eq. 2.16.

2.5 LMTO basis
After discussing the basic features of DFT, one would think how to compute
the KS orbitals and consequently the ground state density. Apart from the
suitable approximation for Vxc, it is also needed to select a basis set to expand
the KS orbitals ψi(�r) and solve Eq. 2.14. Since it has a Schrödinger-like form,
the natural procedure is to write ψi as a linear combination of basis functions
{χ j},

ψi = ∑
j

χ j u j,i , (2.17)

where u j,i are the expansion coefficients. Thus, the eigenvalue equation turns

(HHH −E OOO)uuu = 0, (2.18)
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with uuu the coefficients matrix u j,i and OOO the overlap matrix. The Hamiltonian
matrix HHH and OOO are given by the matrix elements

Hj,k = 〈χ j|(−∇2 +Ve f f )|χk〉 (2.19)

and

O j,k = 〈χ j|χk〉. (2.20)

The form of the basis functions {χ j} is constrained to the most appropri-
ated type of functions to represent each range of problems. For example, wave
function based approaches, as the contracted Gaussian functions [40], are suit-
able to investigate the electronic structure of molecules and small metal clus-
ters. In case of crystalline structures, plane waves basis are known by their
simple form and often implemented in association with pseudopotentials [41].
Periodic systems are also well described by augmented methods such as aug-
mented plane waves formulation [42], Green’s functions method [43] or linear
muffin-tin orbitals methods [44].

In this thesis, the {χ j} basis set is a linear combination of muffin-tin orbitals
(LMTO), following the LMTO formalism [44]. In this picture, the effective
potential inside the atomic regions is approximated to a symmetric spherical
potential Ve f f (�r) → VR(r), while it kept a constant (V0) in the interstitial
region (see Fig. 2.1). Here the atomic sphere approximation (ASA) is applied,
meaning that the Wigner-Seitz cell is approximated with a sphere with radius
s (or MT radius). For simplicity, in order to introduce the basis functions, it is
convenient to consider zero kinetic energy in the region outside of the atomic
sphere (r > s).

Now, imagine an isolated muffin-tin well, as in Fig. 2.1b, where the MT
potential is delimited by s and centred around the atom placed at position �R.
In this case, Eq. 2.14 turns into

[−∇2 +VR(rR)−Ei]ψi(�rR ,E) = 0, r < s (2.21)
and

−∇2ψi(�rR) = 0, r > s (2.22)

with �rR =�r − �R and neglecting the σ index. The MT potential is spherical
symmetric and admit the product of radial and angular functions as solution.
Thus, Eq. 2.21 has the solution

ψi(�rR ,E) = φR,l(r,E)YL(r̂). (2.23)

The Eq. 2.22 is the Laplace equation, with asymptotic solutions

JR,L(�rR
) =

(rR

s

)l 1
2(2l +1)

YL(r̂R) (rR → 0)

= jR,L(rR′ ) YL(r̂R) (2.24)
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Figure 2.1. (a) Muffin-tin potential with the basis functions in the case of (b) an
isolated muffin-tin potential at �R or (c) in a crystalline environment with periodic
muffin-tin potentials at �R′, �R′′, �R′′′, etc.

and

KR,L(�rR
) =

(rR

s

)−(l+1)
YL(r̂R) (rR → ∞)

= kR,L(rR
) YL(r̂R) (2.25)

where YL are the spherical harmonics, with L = {l,m} representing orbital l
and magnetic m quantum numbers.

We assume for a while that we know the one-electron solution inside the
atomic spheres (Eq. 2.23) and focus on the solutions of the Laplace equation.
For a single MT, the Eq. 2.25 has prolongation for all space outside the sphere
R, (see Fig. 2.1b). In case of an arrangement of spheres in a crystal lattice,
Fig. 2.1c, it is sufficient to correct the KR,L in its domain parts that are now
occupied by the other atomic spheres centred at the sites �R′ �= �R. Therefore,
the KR,L are defined as a set of envelope functions. Note that Eq. 2.25 diverges
at the origin, for this reason it only describes the behavior χ0

R,L in the interstitial
area and at the spheres boundary.

The KR,L can be expanded from sites �R′ into the neighboring spheres �R,
creating a complete set using Eq. 2.24. Hence, we can define K0

R,L as

K0
R,L =− ∑

R′,L′
S0

R′,L′; R,L J0
R′,L′(rR′ ), (2.26)

where S0
R′,L′; R,L gathers the expansion coefficients of K0

R,L around R′ and con-

tains structural information, with (|�R− �R′|)−1 dependence. For that reason it
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is called the canonical structure matrix.2 Thus, the envelope function defined
in all space, K∞

R,L, using Eq. 2.25 and Eq. 2.26, is

K∞
R,L = KR,L +K0

R,L

= kR,l(rR) YL(r̂R)− ∑
R′,L′

j0
R′,l′(rR′ ) YL′(�rR′ )S

0
R′,L′;R,L. (2.27)

Now, for the solution inside the sphere �R, Eq. 2.23, the radial part φR,l(r,E)
can be expanded around a fixed and arbitrary energy E = Eν(R, l),

φR,l (r,E)≈ φR,l (r,Eν)+(E −Eν)φ̇R,l (r,Eν), (2.28)

where the dot over φ represents the derivative with respect to the energy.
After defining the solutions inside (φR,l,ν and φ̇R,l,ν ) and outside (K∞

R,L), there
must be a smooth merger of the solutions at the MT sphere contour r = s. This
is ensured by3

χ0
R,L
(�r)≈ {K∞, φ̇ν}R,l φν −{K∞,φν}R,l φ̇ν

{φν , φ̇ν}R,l

(2.29)

and where { f ,g}R,l are the Wronskian determinant ∀ f ,g ∈ [φν , φ̇ν ,K∞] at the
boundary r = s.

2.5.1 Tight-binding and orthogonal representation of the basis
Once the basis are determined by Eq. 2.27 and Eq. 2.28, the electronic struc-
ture of the material is obtained by the solution of Eq. 2.18. However, the
Hamiltonian matrix is related to the S0, which has a slow decay with the dis-
tance, extending H0 by several neighbouring shells. For convenience, as go-
ing to be discussed later, the Hamiltonian matrix described in terms of a more
localized basis allows an efficient use of the recursion method, specially in
the treatment of the LMTO-ASA formalism in the real space. This can be
achieved by combining two basis representations:

• Orthogonal basis: optimal basis to solve the eigenvalue problem.
• Tight-binding basis: short-ranged Hamiltonian.

For the construction of the canonical base, in the previous section, we first
defined a set of envelope functions in order to establish continuity of the basis
functions throughout the space. Now the Eq. 2.27 is rewritten as

|K〉∞ = |K〉− |J0〉 SSS0, (2.30)

2In the basis representations discussion we follow the notation 0 for canonical basis, − tight-
binding basis and the absence of index stands for orthogonal basis.
3For mathematical construction about boundary conditions, logarithm-derivative and Wron-
skians see Skriver [45].
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here in Dirac notation. Next we performed the augmentation of the envelope
functions together with the functions φR,L(r) and φ̇R,L(r) at the sphere bound-
ary, Eq. 2.29. This is a standard procedure to follow in any other LMTO-ASA
basis construction.

Next, we consider that the linear combination of |J0〉 with a fraction of |K〉
is also a solution of the Laplace equation,

|JG〉= |J0〉− |K〉 QQQ
G
, (2.31)

where QQQ
G

is a screening parameter and the superindex G means a general
basis. Hence, using Eq. 2.30, a general envelope function can be defined as

|KG〉∞ = |K〉− |JG〉 SSS
G

(2.32)

with SSS
G

the screened structure constant matrix [46].
In analogy, we can define a general φ̇ G by slightly modifying the φ̇ and

adding a fraction of φ as the following,

|φ̇ G〉= |φ̇〉+ |φ〉oooG. (2.33)

Therefore, the basis, in a general representation, is

|χG〉∞ = |φ〉+ |φ̇ G〉hhhG. (2.34)

Note that oooG guarantee a soft augmentation of the radial functions and hhhG

appears from the boundary conditions at r = s.
Subsequently, we can determine the Hamiltonian H

G
and the overlap O

G

matrices (Eq. 2.19 and Eq. 2.20) in the general basis

H
G
= ∞〈χ

G |−∇2 +V |χG〉∞ = h
G
(1+o

G
h

G
)+Eν O

G
, (2.35)

and

O
G
= ∞〈χ

G |χG〉∞ = (1+o
G

h
G
)(o

G
h

G
+1). (2.36)

where we applied the orthogonal properties between |φ〉 and |φ̇〉. The terms
of order (hG + p hG), with pR,L = |φ̇ 2〉R,L, are very small and, therefore, were
ignored them in Eq. 2.35 and 2.36. Knowing the Hamiltonian and overlap
matrices, the LMTO-ASA eigenvalue equation, in the general basis, is given
by

(HG −E OG)uG = 0. (2.37)

In the general basis there is the freedom of choice of the parameter Q
G

,
tuning the basis localization. The optimal values for Q

G
for the tight-binding
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parametrization,Q, have been found empirically [46, 47] and ensure the struc-
ture matrix S to be short-ranged (until second nearest neighbors), and, conse-
quently, H. Therefore, the tight-binding equation is

(HHH −E OOO) uuu = 0, (2.38)

where − stands for tight-binding.
The orthogonal representation turns the eigenvalue equation into particu-

larly simple form, since it orthogonalizes the Hamiltonian matrix. If o
G
= o =

0 in Eq. 2.35 and Eq. 2.36, it follows that the overlap matrix turn the unity
matrix OOO

G
= OOO = 111. Thus, the orthogonal Hamiltonian is

HHH = hhh+Eν . (2.39)

Both representations are advantageous, therefore we use the orthogonal
form for the Hamiltonian written in terms of parameters from tight-binding
representation. First, one can show the relation [45]

hhh = hhh(1+ooohhh)−1, (2.40)

that is valid for a general basis |χG〉∞ , and , here we choose the tight-binding
basis. Next, using Eq. 2.40 in Eq. 2.39, we obtain

HHH = Eν +hhh(111+ooo hhh)−1. (2.41)

The term (111+ooohhh)−1 can be expanded in power series around small values of
ooohhh resulting

H = Eν +hhh−hhhooohhh+hhhooohhhooohhh−·· · (2.42)

The truncation term is chosen in a balance between the numerical precision
versus computational cost. In general, we consider the two first terms of the
Eq. 2.42 as a good approximation to the Hamiltonian.

2.5.2 Potential parameters and Hamiltonian
The matrices hhh and ooo are written in terms of the tight-binding potential param-
eters CCC and ΔΔΔ, [45]

hhh =CCC−Eν +ΔΔΔ1/2
SSS ΔΔΔ1/2

, (2.43)

where

CCC = Eν −
{k,φ}R,l

{k, φ̇}R,l

, (2.44)
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and

ΔΔΔ1/2
=

(
2
s

)1/2

{ j,φ}R,l . (2.45)

Also

ooo =−{ j, φ̇}R,l

{ j,φ}R,l

. (2.46)

The potential parameters are related to the solution of the Schrödinger-type
equation in each sphere R. Thus, it is necessary to use an expression that re-
lates the potential parameters to the tight-binding and orthogonal bases, which
is as follows:

ΔΔΔ1/2

ΔΔΔ1/2 =
CCC−Eν

CCC−Eν
. (2.47)

Therefore, the Hamiltonian Eq. 2.42 has a dependence of the (self-consistent)
VR potential by the potential parameters CR,l and ΔR,l that represent, respec-
tively, the center and the width of the density of state l from site R. The
VR-independent part is related to the structure matrix SSS.

In this thesis, the DFT results of Papers II, III and V were obtained by using
the real-space implementation of LMTO in atomic-sphere approximation (RS-
LMTO-ASA).

2.6 Real space LMTO-ASA
In order to introduce the RS-LMTO-ASA method, I found the provocative
question of V. Heine [48] quite convenient:

“Instead of making physics fit the mathematics of perfect periodicity
and k space, can we not develop the theory in a way closer and more
appropriate to the physics we want to describe?".

This is really important, if one desire to investigate low symmetry magnetism
and understand local effects, apply techniques beyond the constrains of peri-
odicity of Bloch’s theorem. For that, the RS-LMTO-ASA method [22, 23, 24]
was designed using the powerful electronic structure description of k-space
LMTO-ASA with the advantage of solving the eigenvalue problem in real
space using the recursion method [48, 49]. The mentioned method is indicated
for the study of complex metallic structures, like alloys, defects and impurities
in surfaces and other systems that have low symmetry.
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2.6.1 Recursion method
In the description of the LMTO-ASA formalism, we have shown that the
Hamiltonian in the orthogonal base can be written in terms of tight-binding
parameters. However, this is a sparse matrix of dimension 9N × 9N, where N
is the number of atoms in the cluster and 9 the number of orbitals per atomic
site (one s, three p and five d basis functions). Such a dimension of the Hamil-
tonian matrix requires an efficient inversion of matrices in the process to solve
the eigenvalue equation. To overcome this, the recursion method formulated
by R. Haydock [48, 49] is introduced.

The purpose of this recursion method is to transform HHH into a tridiagonal
Hamiltonian matrix (Jacobi form) by moving to a new base {um}. After trans-
formation, each |un〉 element should only interact with the previous elements
|un−1〉 and later |un+1〉.

The recursion relation is defined by

HHH|un〉= an|un〉+bn+1|un+1〉+bn|un−1〉, (2.48)

where {an,bn} are the coefficients that describe the interaction of |un〉 with
|un−1〉 and |un+1〉.

To obtain the parameters an and bn, the calculation starts from an arbitrary
basis |u0〉, related to the atomic site R of interest. Therefore, by imposing the
orthonormality of the basis |un〉 and also that |u−1〉 = 0, from Eq. 2.48 for
n = 0, gives

HHH|u0〉= a0|u0〉+b1|u1〉. (2.49)

Taken the scalar product with 〈u0| and using the property of orthogonality, we
can determine the coefficient a0

a0 = 〈u0|HHH|u0〉. (2.50)

From Eq. 2.49, we get

b1|u1〉= (HHH −a0)|u0〉. (2.51)

Multiplying Eq. 2.51 by its corresponding dual and using the condition of
normalization, we obtain the expression of the coefficient b1

b1 = [〈u0|(HHH −a0)
†(HHH −a0)|u0〉]1/2. (2.52)

Once the coefficients are determined, the basis |u1〉 turns

|u1〉= (HHH −a0)

b1
|u0〉. (2.53)

Given the values a0, b1, |u1〉, by the recursion equation we can obtain the a1,
b2, |u2〉 and the other values by analogous form. Therefore, the generalization
of the process to obtain the values an, bn+1, |un+1〉 for any n is:

an = 〈un|HHH|un〉, (2.54)
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bn+1 = [〈un|(HHH −an)
† −〈un−1|b∗n] [(HHH −an)|un〉−bn|un+1〉]1/2, (2.55)

|un+1〉= (HHH −an)|un〉−bn|un+1〉
bn+1

. (2.56)

The scalar product of 〈um| with Eq. 2.48 defines the elements of the HHH
matrix in the new base

Hm,n = 〈um|HHH|un〉= an δm,n +bn+1 δm,n+1 +bn δm,n−1, (2.57)

using the orthonormality property. Finally, the Hamiltonian matrix has the
form

HHH =

⎛
⎜⎜⎜⎜⎜⎝

a0 b1 0 0 · · ·
b1 a1 b2 0 · · ·
0 b2 a2 b3 · · ·
0 0 b3 a3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ . (2.58)

By this recursion method, the |un〉 orbitals are calculated through various
applications of HHH on the |u0〉 orbital. Therefore, as n grows, the |un〉 orbital
will extend over a very large region surrounding n+ 1. However, the influ-
ence of the |un+1〉 over |u0〉 is small, so that the inclusion of |un+1〉 has no
significance for the density of states calculation at site R.

This fact is used as a convergence criterion for the self-consistent calcu-
lation, because for a given n the coefficient of |un+1〉 will be null, bn+1 = 0.
Nevertheless, for a given cut-off parameter LL, such that LL < n, the con-
tributions of |un〉 are already negligible. Therefore, in the RS-LMTO-ASA
method, we account coefficients until n = LL. This value is chosen according
to the size of the cluster and the desired precision.

2.6.2 The Beer-Pettifor terminator
After the processes described in the previous section, we can calculate the
local density of states N(E). However, due to the truncation for LL < n we
have a discrete density of states (DOS). To obtain the continuous spectrum
we calculate the DOS through the properties of the Green functions in the
form of a continuous fraction, in addition to using a terminator to simulate the
contribution of the terms an and bn related to n−LL terms neglected.

The local density of states (LDOS) for the |u0〉 orbital is defined by:

N0(E) = LDOS =− 1
π
Im[G0(E)], (2.59)

where G0(E) is the first diagonal element of the matrix

G0(E) = 〈u0|(E −HHH)−1|u0〉, (2.60)
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with

(E −HHH)−1 =

⎛
⎜⎜⎜⎜⎜⎝

(E −a0) −b1 0 0 0 · · ·
−b1 (E −a1) −b2 0 0 · · ·

0 −b2 (E −a2) −b3 0 · · ·
0 0 −b3 (E −a3) −b4 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

−1

.(2.61)

The elements of the inverse of (E −HHH) are given by the expression

G0(E) =
D1(E)
D0(E)

(2.62)

in which Dn(E) is the determinant of the matrix with the first nth rows and
columns suppressed and D0(E) is the determinant of the matrix (E −HHH).

Given the property of the determinant Di,1 of a matrix A with the line i and
column 1 suppressed:

D0(E) =
n

∑
i=1

(−1)(i+1)Ai,1Di,1 , (2.63)

and then we can write down the determinant D0(E) as:

D0(E) = (−1)(1+1)(E −a0) D1,1︸︷︷︸
D1(E)

+(−1)2+1(−b1)(−1)2(−b1)D2(E)︸ ︷︷ ︸
D2,1

= (E −a0)D1(E)−b2
1D2(E). (2.64)

Substituting Eq. 2.64 into Eq. 2.62 we have

G0(E) =
D1(E)

(E −a0)D1(E)−b2
1D2(E)

=
1

(E −a0)−b2
1

D2(E)
D1(E)

. (2.65)

After working out the Eq. 2.63, follows

D1(E) = (E −a1)(−1)2D2(E)− (−b2)
2D3(E)

...
Dn(E) = (E −an)Dn+1(E)− (−bn+1)

2Dn+2(E). (2.66)

If we substitute the Eq. 2.66 in Eq. 2.64, we will have an expression for
G0(E) dependent on a continuous fraction, in the form

G0(E) =
1

(E −a0)− b2
1

(E−a1)−
b2
2

(E−a2)−
b2
3

...

. (2.67)
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The Eq. 2.67 may continue indefinitely, resulting in a continuous spectrum,
or be truncated at a certain point and generate discrete spectrum. Since we
want a continuous spectrum and a reduction of the computational effort, we
truncate the fraction in the term LL, and, in order to compensate for the elimi-
nated terms, we use a terminator t(E) to represent them. Thus,

G0(E) =
1

(E −a0)− b2
1

(E−a1)−
b2
2

(E−a2)−
b2
3

... (E−aLL−1 )−
b2
LL

(E−aLL)−t(E)

. (2.68)

In this thesis, we use the Beer-Pettifor terminator [50], where an = a and
bn = b are constants for LL < n and

t(E) =
b2

E −a− t(E)
. (2.69)

We can manipulate the equation above to obtain the equation of the second
degree for t(E)

t2(E)− (E −a) t(E)+b2 = 0 (2.70)

where the solution is

t(E) =
1
2

[
(E −a)±

√
(E −a−2b)(E −a+2b)

]
. (2.71)

When we replace the Eq. 2.71 in the continuous fraction, it converges to a
continuous spectrum for the local density of states in the energy range

a−2b < E < a+2b. (2.72)

Finally, we can calculate the total DOS, summing the densities of state ob-
tained for all the orbitals at a given site.

2.6.3 Self-consistent procedure
The self-consistent calculations within the RS-LMTO-ASA method present
different approaches regarding the structure in question. However, all are
based in two interconnected self-consistent processes, called the atomic part
and main part. The description of these steps depends on some relationships
obtained before.

In the atomic part, the potential and potential parameters (Cl , Δl and Ql) are
calculated for each non-equivalent site. Thus, the KS equation is solved in the
domain of the muffin-tin spheres and equivalent sites are defined as having the
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same potential parameters and the other quantities that depend on them, such
as occupations, local density of states, etc.

In the main part, the eigenvalue problem, Eq. 2.1, is solved using the Hamil-
tonian as a function of the potential parameters obtained in the previous step.
In this way the solutions of the KS equation in the material and the densities
of states are calculated.

A summary of the RS-LMTO-ASA self-consistent scheme is presented in
the end of this chapter (see Fig. 2.5). In the following is presented a more
detailed description of the atomic and main parts.

Main part

The LMTO-ASA formalism can be written in different base functions {χi}
[46], so that we can choose the most appropriate for each study. Instead of
the canonical basis, in which the LMTO was initially defined, we chose the
orthogonal basis, with wave functions orthogonal to each other, and the tight-
binding (TB) basis, defined so that interactions between neighboring sites are
as small as possible. These bases are related to the canonical basis by a mixture
parameter Q (orthogonal basis) or Q (TB basis) as discussed before.4

Now, considering just the two first terms of Eq. 2.42 and substituting the
Eq. 2.43 into it, we find the expression of the self-consistent Hamiltonian used
in this thesis,

HHH =CCC+ΔΔΔ1/2
SSS ΔΔΔ1/2

, (2.73)

with SSS the structure constant matrix in TB representation given by

SSS = SSS0(1−QQQSSS0)−1 (2.74)

where 1 is the identity matrix and SSS0 is the structure constant in the canonical
basis. The Q values are known and independent of the material [46]. In the
RS-LMTO-ASA method the material’s structure remains constant during self-
consistency, so the matrix SSS is calculated once and independently of the other
steps. Complementary, we calculate the potential parameters related to the
band center and the bandwidth in the TB basis, respectively, Cl and Δl in order
to use in Eq. 2.73. These parameters have an initial guess or estimated from
the atomic part and their values are updated during the self-consistency.

Therefore, we can proceed with the calculation of eigenvalue problem (Eq. 2.1)
in the real space, using the recursion method [48, 49] with the help of the Beer
and Pettifor’s terminator. The recursion method is essential here since the
Hamiltonian is a sparse matrix.

Follows the calculation of the local density of states NR,L(E) (LDOS), pro-
jected for each non-equivalent site R and orbital L = {l,m}. Next, using the

4The index − represents the base TB, 0 the canonical basis and the others, without index, the
orthogonal basis.
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LDOS we can compute the nth order LDOS moment, m(n)
R,l

, given by

m(n)
R,l

=
∫ EF

−∞
(E −Eν ,R,l)

n NR,l(E)dE, (2.75)

with Eν ,R,l the energy of the center of gravity of the band L = {l,m}. The
integral runs until the Fermi energy (EF ), i.e., the occupied part of the density.
Note that for n = 0, Eq. 2.75 provides the occupation of each orbital.

Following in the calculations, we must obtain the potential parameters Pl ,
that determine the boundary conditions for each sphere R, defined as

Pl = 0.5− 1
π

arctan(Dl), (2.76)

with

Dl = 1+(2l +1)

[(
Q−1

l
2(2l +1)

Cl −Eν

Cl −Eν −ΔQ−1
l

)
−1

]
. (2.77)

Equation 2.77 is the logarithmic derivative of the KS equation solution for
orbital l at the boundary r = s (sphere boundary).

Once the density moments m(n)
R,l

and the Pl parameters are known, the atomic
part starts, which when reaches its own self-consistency, return the updated Cl
and Δl . At this stage, the orthogonal potential parameters are going to be
written into TB parameters by

ΔΔΔ1/2

ΔΔΔ1/2 =

[
111− (Q−Q)

CCC−Eν

ΔΔΔ

]
=

CCC−Eν

CCC−Eν
. (2.78)

and then update the Hamiltonian by Eq. 2.73. We solve the eigenvalue prob-
lem with the recursion method and obtain the new LDOS. Next, the m(n)

R,l
, Pl

and Eν are calculated and the self-consistency is tested. If the difference of
the newly calculated moments and of Pl , in relation to those used as input, do
not exceeds a threshold, a weighted average between the new and old values of
these quantities is taken as input values to the next self-consistent loop. There-
fore, the whole procedure is repeated until the self-consistency is reached.

Atomic Part

In this part of the self-consistency, the solution of the KS equation (Eq. 2.5)
is solved within each non-equivalent sphere R, according to m(n)

R,l
and Pl ob-

tained in the main part.
Initially, an input guess for m(n)

R,l
and Pl start the calculation. Thus, the

electronic density ηR(r) for each non-equivalent sphere R is given by

ηR(r) =
1

4π ∑
l

[
m(0)

R,l
φ 2

R,l
+m(2)

R,l
(φ̇ 2

R,l
+φR,l φ̈R,l )

]
, (2.79)
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where φ̇ and φ̈ are the first and second derivatives with respect to energy E =
Eν within the sphere R.

With the value of Eq. 2.79 we calculate the electrostatic potential VEl by the
Poisson equation

∇2VEl =−8π ηR(r), (2.80)

here written in atomic units. We also compute the correlation and exchange
potential, using ηR(r), in the LSDA approximation (Eq. 2.8). Therefore, we
determine the potential VR, as

VR =VEl [ηR(r)]+Vxc[ηR(r)]+VN , (2.81)

where VN =−2Z
r .

Given the new potential, Eq. 2.81, and the boundary conditions determined
by Pl , we again solve the KS equation to obtain the new ψR and calculate the
new electronic density ηR(r). At this point, the atomic part self-consistency
test occurs, verifying whether the difference of the new and old electronic
densities is sufficiently small for convergence to have been reached. If not
self-consistent, a weighted average

ηR(r) = β η
new

R
(r)+(1−β )η

old

R
(r), (2.82)

for 0 ≤ β ≤ 1, is used as an updated density in the calculation of the new VR,
repeating the whole procedure until reaching self-consistency, that is, the value
of the difference is smaller than the established value. When self-consistency
is reached, the potential parameters (Cl , Δl ,Ql) in the orthogonal base are cal-
culated for each non-equivalent site.

The potential VR, Eq. 2.81, is related with an isolated sphere. In order to
correct the potential, by adding the effect of electronic distribution of neigh-
bors sites and self-interaction, we use Madelung potential V ES

V ESi = ∑
j �=i

2DQ( j)
|�Ri −�R j|

+
2DQ(i)

RWS

, (2.83)

with �Ri is the reference sphere, |�Ri−�R j| the distance between the sites i and j,
RWS the WS radius and DQ the charge transfer relative to the site i. The first
term of Eq. 2.83 represents the potential present in i due to the other sites j,
while the second term represents the self-interaction potential. The potential
V ES will modify the values of the center of the band (parameter C) and the
energy of the center of the band Eν , in the form:

C →C+V ES,
Eν → Eν +V ES.
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Self-consistent process for metallic surfaces

In the previous session, the generalized self-consistent RS-LMTO-ASA pro-
cess was described, which can be applied to any metallic system. However, the
electrostatic potential V ES and the Fermi energy EF are determined for each
type of system studied. That is, there are differences in the computational
procedures of the electronic structure for bulk, surface and surface impurities.

For the study of metallic surfaces using this method, the semi-infinite struc-
ture of the system is simulated by a cluster with a few thousand atoms whose
sites are positioned in atomic planes parallel to crystallographic directions.

In the self-consistent calculation of surfaces, we include the empty spheres
(EV-1 and EV-2), which simulate the vacuum region, the metal surface (S) and
the metal layers below it (S-1, S-2, S-3, etc.). There will be as many layers
as are necessary, so that they all have properties different from the periodic
crystalline material. Thus, the layers far from surface or interfaces are going
to have its potential parameters fixed to the same ones as in bulk, and they are
not modified in the self-consistency. In Fig. 2.2 the described surface scheme
is shown.

Figure 2.2. Schematic representation of the layers of a generic surface (without de-
fects).

In this semi-infinite configuration, a small amount of charge can be trans-
ferred to the regions outside the WS spheres of the most superficial atoms. To
simulate this effect, one or two layers of empty WS spheres are included, that
is, without electric charge on the principle of self-consistency, in order to sim-
ulate the vacuum. During the calculation of the RS-LMTO-ASA the amount
of charge in the vicinity of the surface is determined.

This reconfiguration of electrons turns the atomic planes positively charged
and the empty spheres negatively charged, as a parallel plate capacitor. This
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modifies the electrostatic potential and shift the Fermi level from a constant
value proportional to the charge transferred in the surface region [51, 52].

Thus, in the case of systems with two-dimensional symmetry, the Fermi
level is fixed at the value found in the self-consistent calculation for the bulk
material associated with the semi-infinite part of the studied metal system. In
this way, we subtract the potential of all the layers by Vbulk.

The Fermi energy (EF ) of the bulk material is obtained by the condition

∑
R,L

∫ EF

0
NR,L(E)dE = valence charge. (2.84)

If the EF fixed, we can find the LDOS and determine the charge transfer of
each site, including the empty spheres.

For periodic crystalline systems V ES is obtained by the Ewald’s summa-
tion, considering the multipolar contributions of the potential plus the charge
in each sphere. For the two-dimensional systems, where we have the transla-
tional symmetry only along the planes parallel to the surface, each layer has
a different electrostatic potential. In this case, charge transfers are used in the
two-dimensional Ewald’s sum [51, 52], to obtain the Madelung potential and
the value of V ES at each site.

Self-consistent process for adsorbed atoms on surfaces

The study of nanostructures adsorbed on surfaces using RS-LMTO-ASA re-
quires that previously we have obtained the potential parameters of the specific
surface system. Thus, the adsorbed atoms represent a perturbation to the elec-
tronic structure of the surface sites next to it. For the simulation we use a
surface cluster, with the potential parameters converged, and replace an empty
sphere site by an atomic specie of interest, as indicated in Fig. 2.3.

The potential parameters (C and Δ), the charge transfers and the potential
V ES of the sites away from the defect are fixed at the calculated values for
the surface. However, in the region close to the surface impurity, the values of
charge transfer ΔQ and potential V ES are updated using

ΔQ = ΔQsur f +ΔQlocal (2.85)

and

V ES =V ESsur f +V ESlocal , (2.86)

in which the indexes sur f and local are related, respectively, to the unper-
turbed and perturbed surfaces sites. Next, the charge added to the system by
the adatom is distributed at the first vicinity and the potential V ESlocal will
be determined in relation to the resulting charge transfer. Additionally, we
use Eq. 2.86 and V ESsur f to get the new V ES for the whole system. In this
way, the new potential parameters are combined to the old ones and will be

32



Figure 2.3. Schematic representation of the layers of a surface with an adsorbed
atom (adatom). The neighborhood around the adatom is represented by the atoms
circumscribed by dotted circles.

Figure 2.4. Schematic representation of the layers of a surface with an adatom and its
inequivalent neighbours, represented by different labels.

used to update the Hamiltonian. Finally, the calculation process continue until
obtaining the self-consistency, in a similar process as discussed before.

For a more accurate description of the system, we may also recalculation the
potential parameters of sites which are around the impurity, as empty spheres
and non-equivalent atoms (see Fig. 2.4). This process of inclusion of neigh-
bors can be extended until a certain neighborhood that no longer is affected
by the impurity. Then, in such regions, the potential parameters are similar to
those determined for the pure surface.

33



Main Part

Atomic Part

RS-LMTO-ASA self-consistent scheme

Figure 2.5. RS-LMTO-ASA self-consistent scheme, divided into main part (red) and
atomic part (blue). The arrows (I) and (II) indicate the interconnection between them.
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3. Magnetic ordering

So far, it was discussed the electron as a quantum mechanical object ψi(�r)
which obeys the Schrödinger equation or, for practical description of multi-
electronic systems, the KS equations. In this chapter, the focus is the mag-
netism of the electron, which is related to its intrinsic angular momentum –
spin, as well the concept of atomic spin and their arrangement in different
magnetic textures.

3.1 Band theory of electrons
Apart of the long history of magnetism, the quantum nature of it just break
out after the atomic model of Bohr and the discovery of the spin. Thus, the
magnetism of the electron, given by its total magnetic moment me, is divided
into orbital (mo) and spin (ms) contributions as

me
o = −μB

h̄
〈l〉 (3.1)

me
s = −gs

μB

h̄
〈s〉 (3.2)

me = (2s+ l)
μB

h̄
(3.3)

where 〈 〉 stands for the expected value of the angular momentum l and spin
s operators, gs the gyromagnetic factor and μB = eh̄

2me
is the Bohr magneton.

Therefore, the magnetism of multi-electronic atom is deeply related with its
ground state configuration and is given by the Hund’s rules [53].

The electron in a crystal is subjected to a l dependent potential and leads
the valence electron localization or delocalization, accordingly to its orbital
characteristic [54]. In addition, the electrons form bonded states (overlap) and
may hop from site to site.

In the solid state, the magnetism of localized electrons is described with
a certain accuracy by Hund’s rules, while the ones weakly connected to the
nuclei usually have noninteger magnetic moment (in μB units). Therefore,
the itinerant magnetism is associated with delocalized electrons and require a
specific approach by the band theory.

In this picture, the electrons fill the possible delocalized states until the
Fermi energy, forming majority and minority electron spin bands, as in Fig. 3.1.
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(a) (b)

(c)

Figure 3.1. Density of states (DOS) of a transition metal with the occupied electron
states below the Fermi energy (EF ) represented by filled curves (a). If the majority and
minority bands are equally occupied, follows m = 0, as for fcc Pd (b). If the bands are
unequally occupied, m �= 0, as for bcc Fe (c).

The density of states, expressed as Eq. 2.75, for n= 0, represents the density
of electron energy levels and is strongly dependent on the crystal structure and
chemical environment. From the LDOS, the spin magnetic moment is given
by,

ms = μB(DOS↑ −DOS↓). (3.4)

Thus, in the ground state, a paramagnetic material has equally occupied ma-
jority and minority bands below the EF , Fig. 3.1.b, while a magnetic one has
unequally occupied the bands due to the exchange-splitting.

3.2 Magnetic ordering
The magnetic material could present spontaneous magnetic ordering, as the
later 3d transition metals. Therefore, if exists a global axis of magnetization,
the spins could be aligned parallel (ferromagnetic) or antiparallel (antiferro-
magnetic) with each other, as shown in Fig 3.2. In the case of antiferromag-
netic (AFM) materials, if the antiparallel magnetic moments have different
size, it is called ferrimagnetic (FI).
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The band theory of magnetism, by the Stoner criteria [55], describe that
the transition from the paramagnetic to a FM phase will occur if a determined
material exhibits a high density of states at the Fermi level. Thus, for pure
crystalline systems (bulk), the ferromagnetism is associated with elements at
the end of the 3d series, i.e., bcc Fe, hcp Co and fcc Ni. For other elements
the minimum energy is related to the AFM phase, mainly for materials with
semi-filled bands as in the case of Cr and Mn bulk.

In cases that more than one quantization axis exist, the magnetic ordering
is denominated non-collinear. This magnetic ordering give rise to complex
spin textures such as spins spiral [56] and skyrmions [57, 58, 59]. The non-
collinear magnetic textures are observed with the SP-STM technique, in which
the STM tip is magnetized in a given direction, giving a magnetic contrast to
the scanned image.

Figure 3.2. The magnetic ordering as collinear (upper panel) and non-collinear (bot-
tom panel). The J1 and J2 are the exchange coupling Ji j between first and second
neighbors, repectively.

Regarding the DFT treatment of non-collinear magnetism, there are several
theoretical-computational methods that treat it in case of periodic systems.
However, few methods are capable of investigate non-collinear magnetism in
nanostructured materials with low symmetry, see [24, 60]. In the LSDA was
shown that the electron density is expressed by the density matrix ρρρ(�r), Eq.
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2.9, which is divided into a nonmagnetic electron density term n(�r) and an-
other of the electronic density of magnetization mmm(�r).

By the recurrence method, the LDOS can be obtained by the following
equation

N(E) =− 1
π

Im Tr[GGG(E)], (3.5)

when GGG(E) is the matrix whose elements are Green functions given by

GGG(E) = (E −HHH)−1, (3.6)

for each atomic sphere centered in R and orbital l.
Similarly, the magnetic density of states, applied for a collinear arrange-

ment, is calculated as

m(E) =− 1
π

Im Tr[σzG(E)], (3.7)

with the preferential quantization axis been the z-axis, represented in Eq. 3.7
by the Pauli matrix σz, resulting in magnetization mz(E).

To deal with non-collinear magnetism it is needed to calculate the terms
outside the main diagonal of Eq. 3.6. For that, the recurrence method has a
high computational cost. However we can use successive unit transformations
U to Hamiltonian H → H ′ = U HU †, which can be extended to Green func-
tions G′ = U GU † [24]. In this way, the generalized magnetic state density is
obtained, including the possibility of non-collinear arrangement,

m(E) =− 1
π

Im Tr[σσσ ′GGG′(E)], (3.8)

with σσσ ′ and GGG′, respectively, a Pauli matrix and the Green function after the
chosen unit transformation. This corresponds to a spin rotation where the
transformation matrix U can be calculated using the rotation matrices for
spin-1/2, so that

U σ jU
† = σ ′

z ( j = x,y,z). (3.9)

However, U is defined differently for each direction, so that each of the trans-
formations represented by Eq. 3.9 results in a diagonal matrix. This means
that by rotating σσσ to a σσσ ′, we will do it so that σ ′

x is a diagonal matrix and
consequently we can find the mx(E) from Eq. 3.8. In analogy, we can find the
component my(E) from σ ′

y, also diagonal.
By decomposing Hamiltonian into a spin dependent part (bbb) and another

independent of this (H0), the unit transformation U only acts on the first. In
this way

HHH ′ = H0 1+bbb ·U σσσU †. (3.10)
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Then, the elements of Eq. 3.10 are constructed using LMTO parameters in
the tight-binding base and the first-order approximation in energy. Therefore,
the independent part of the spin is given by

H0
Q,Q′ = C0

Q +Δ0 1/2
Q S

Q,Q′ Δ0 1/2
Q′ +Δ1 1/2

Q S
Q,Q′ Δ1 1/2

Q′ mmmQ ·mmmQ′ , (3.11)

while the independent part is

bbb
Q,Q′ =

(
C1

Q +Δ1 1/2
Q S

Q,Q′ Δ0 1/2
Q′

)
mmmQ +Δ0 1/2

Q S
Q,Q′ Δ1 1/2

Q′ mmmQ′ +

+Δ1 1/2
Q S

Q,Q′ Δ1 1/2
Q′ mmmQ ×mmmQ′ , (3.12)

where Q=R,L and the indices 0 and 1 denote independent and spin-dependent
potential parameters, respectively.

The Hamiltonian in Eq. 3.10 is solved by the recurrence method three times,
once a unit transformation is made for each direction. At the end we obtain
mx(E), my(E) and mz(E), that integrated up to the Fermi level correspond to
the direction of the local spin moment.

3.3 Heisenberg Hamiltonian and exchange coupling
Under certain conditions, a classical effective spin Hamiltonian is adequate for
the description of the spin fluctuations of the itinerant electrons. Therefore,

HHei =−∑
i�= j

Ji j ŝi · ŝ j, (3.13)

known as the Heisenberg Hamiltonian, with ŝi the unit vector that indicates
the direction of the magnetic moment at the site i and Ji j the exchange pa-
rameter between the moments sssi and sss j. Though the Heisenberg model was
designed for systems in which the moments are localized, it is suitable for
metals with sufficiently larger ms. Consequently, in case the atomic spins are
parallel (FM), the minimum energy according to Eq. 3.13 is related to Ji j > 0.
Complementary, in case of anti-parallel spins (AFM), follows that Ji j < 0 (see
Fig. 3.2 and 3.3).

Regarding to non-collinear magnetic configurations, for example ↗↖ and
↖ ↗, have the same energy according to Eq. 3.13, if the angle between the
moments are equal. Thus, the Heisenberg exchange interaction is also called
symmetric exchange interaction.

3.3.1 Heisenberg exchange and LKAG formula
The Ji j usually is obtained experimentally by fitting inelastic neutron scatter-
ing data to the Heisenberg Hamiltonian. From the electronic structure calcula-
tions, one can estimate theoretically the Ji j using the formulation of Liechtenstein-
Katsnelson-Antropov-Gubanov (LKAG) [61]. This method associate the Ji j
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Figure 3.3. The FM and AFM ordering (left). The Heisenberg model considering
atoms the distance of first J1 and second neighbors J2 in a square lattice (right).

to the energy variation related to an infinitesimal two-site-rotation of the mo-
ments at the sites i and j, by means of the force theorem.

In this thesis, the calculation of exchange interaction has a similar approach,
computing the Ji j’s using the Green functions [62] instead of the scattering
path operator formalism. Using the relations between the true and auxiliary
Green’s functions in the orthogonal representation of the LMTO-ASA, where
the second derivative of the potential function is zero, follows that

Ji j =
1

4π
Im Tr

(∫ EF

−∞
δi(E)G

↑↑
i j δ j(E)G

↓↓
ji dE

)
, (3.14)

with trace (Tr) over orbital indices l = 0,1,2, Gσ σ
i j is the electron propagator

between i and j sites, and δl,i a diagonal matrix with elements

δl,i(E) =
C↓

l,iΔ
↑
l,i −C↑

l,iΔ
↓
l,i +(Δ↓

l,i −Δ↑
l,i)E

(Δ↑
l,iΔ

↓
l,i)

1/2
(3.15)

where Cσ
l,i and Δσ

l,i are the potential parameters of the site i in the orthogo-

nal basis. If Δ↓
l,i = Δ↑

l,i, Eq. 3.15 becomes independent of energy, depending
only on the difference between the spin-up and spin-down bands center, as
consequence.

3.3.2 Exchange interaction in the non-collinear magnetism
The calculation of exchange parameters can be extended in order to compute
the exchange coupling for non-collinear spin configurations[28]. In the con-
text of the multiple scattering theory it is possible to define the matrix Aαβ

Aαβ =
1
π

∫ EF

−∞
dE ImTr(piT α

i j p jT
β
ji ), (3.16)
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with α,β = 0,x,y,z, pi is related to the magnetic part of the single site scat-
tering operator and Ti j with the scattering path operator.

To the extent that there is a global quantization axis, a choice of coordinates
can be made so that Ti j has only the z-component as non-zero contribution
between two sites. This implies that Aαβ → (A00,Azz) �= 0. Thus, at the
collinear boundary Eq. 3.16 turns

Jcol = A00 −Azz =
1
π

∫ EF

−∞
dE ImTr(piT

↑
i j p jT

↓
ji) (3.17)

where T ↑ = T 0
i j + T z

i j and T ↓ = T 0
i j − T z

i j. The Eq. 3.17 recovers the result
of LKAG formalism. Thus, the collinear exchange parameters are A00 and
Azz, been the rest responsible for non-collinear part. Therefore, the exchange
coupling when there is a non-collinear spins configuration is defined as

Jnoncol = A00 −Axx −Ayy −Azz. (3.18)

The connection between the formalisms of the multiple scattering theory
and the LMTO-ASA is made according to Ref. [63]. In this case, the Eq. 3.16
can be applied for the calculation of the Jnoncol by making the substitutions
p = (C̄−Eν )

Δ̄ and T = Δ̄1/2GΔ̄1/2. In Paper III this formalism is applied.

3.4 The Dzyaloshinskii-Moriya interaction
One of the interactions responsible for non-collinear magnetization is the in-
teraction described by Dzyaloshinsky [64] and Moriya [65](DM) due to the
spin-orbit coupling and the translation symmetry of the crystalline lattice. The
spin Hamiltonian model of this interaction is

HDM = ∑
i�= j

Di j ŝi × ŝ j (3.19)

with Di j is known as the Dzyaloshinsky-Moriya vector. Thus, the DMI is a
non-symmetric interaction and distinguish the energy associated with ↗ ↖
and ↖ ↗ according to Eq. 3.19, differently from the Heisenberg exchange
interaction. Depending on the symmetry of the material, the magnetization
can be complex and characterized by the chirality �C = ŝi × ŝ j, that represents
the sense of handiness of the magnetization. For example, spin-spirals [56]
and skyrmions [57, 59] due to DMI.

There are some approaches of calculating the direction of Di j vector, either
by the micromagnetic method [66], the Force Theorem [67] or even by rules
of symmetry [65, 68]. In the RS-LMTO-ASA, the DM interaction is present
when we consider the spin-orbit coupling in the self-consistent calculations,
however it is not possible yet to extract direct from the potential parameters
the direction and modulus of the DM in the same way as it is performed to the
Ji j.
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3.5 Magnetocrystalline anisotropy
From early experiments, the magnetic anisotropy can be measured, for exam-
ple, comparing the hysteresis loop of two materials. In Fig. 3.4.a can be seen
that the hard material demands higher fields than the soft one in order to re-
verse its magnetization. Additionally, Fig. 3.4.b, illustrates that an material
might have a “square" or “narrow" hysteresis loop depending the angle θ of
the field with respect to some specific magnetization direction {êx, êy, êz} (that
may or may not correspond to {�a1,�a2,�a3} crystallographic axis). Therefore,
it reveals an easy-axis (or preferential axis) that the magnetic moments of a
magnet tend to be aligned with.

θ

Figure 3.4. The hysteresis loop of (a) a hard (left) and soft (right) ferromagnet. As
soon the field �H is applied, the virgin curve (blue) shows the increase of the mag-
netization until reach the saturation magnetization Msat . After reverse the field, the
magnetization assumes its remanent magnetization Mrem at �H = 0. The coercive field
Hcoe is the reverse field needed to reduce the magnetization to zero. (b) Different
hysteresis loop depending on the angle θ between the field and magnetization.

The energy associated with the magnetic anisotropy energy (MAE) can be
modeled by

Euni
MAE = K1 sin2(θ)+K2 sin4(θ)+K2 sin6(θ) (3.20)

with θ the polar angle. The expression above contains the first, second and
third order of uniaxial anisotropy and the respective anisotropy constants K1,
K2 and K3. According to the sign of the anisotropy constants K the Eq.3.20
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represents the easy-axis, easy-plane or easy-cone anisotropy. The MAE is in-
timately related to electrostatic crystal-field or spin-orbit coupling [69]. Thus,
in order to compute the K1, one may extract this information from the elec-
tronic structure of the magnetic material by total energy calculations, force
theorem method, torque method or Bruno’s formula [70].

In case of 3d transition metals, most of the anisotropic energy is attributed
to spin-orbit effects [69]. An approach is to consider the spin-orbit term via
perturbation theory and, in an uniaxial magnet, the first non-zero contribution
appears from second-order perturbation

Hsoc = ξ 2 ∑
n

∑
m

| 〈ψn|L ·S|ψm〉 |2
En −Em

(3.21)

with En and Em the eigenvalues of the wave-function |ψn〉 and |ψm〉 related
to the unperturbed Hamiltonian. Considering that n and m are, respectively,
occupied and unoccupied states, there must be cases in which the states across
the Fermi energy are selectively enhancing the expected value 〈ψn|L ·S|ψm〉.
Thereby, Eq.3.21 shows that even if ξ is small the MAE can be significant.

An alternative procedure to compute MAE is to use the orbital moment
anisotropy ΔL, via Bruno’s formula [70, 71, 72],

EMAE =− ξ
4μB

ΔL (3.22)

with ΔL = Ln̂1
−Ln̂2

the difference of the orbital moment projection L for two
different global quantization axes, n̂1 and n̂2

For Fe, Co and Ni the orbital moment is a result of the SOC [73]. In addi-
tion, the majority spin band is essentially filled and only minority spin states
contribute to the density of states at the Fermi energy. For that, the spin diag-
onal matrix elements of the spin orbit coupling should dominate the contribu-
tion to the MAE [74]. When minority spin states dominate the MAE, the easy
axis is parallel to the direction of maximum orbital magnetic moment. In this
thesis the Bruno’s formula was used to compute the local magnetic anisotropy
in Paper II.
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4. Magnetization dynamics

The investigation of magnetic moments and their interaction of magnetic fields
is an important access to the magnetism of materials. The atomic magnetic
moment can be seen as a magnetic dipole �m on the atomic scale. Hence, in
the presence of an external magnetic field �Hext , the torque that �m experiences
is given by

�T = �m× �Hext . (4.1)

Using the classical relation between the torque and angular momentum d�L
dt =

�T , and that the �m is proportional to �L by the gyromagnetic ratio γ , �m = γ�L,
follows from Eq.4.1,

d�m
dt

= γ
[
�m× �Hext

]
. (4.2)

Equation 4.2 is the equation of motion of a magnetic moment in the field �H.
Experimentally it is known that the magnetization eventually moves toward

the field direction. Therefore, an additional dissipative torque �Tdis must be
considered and it is defined by

�Tdis ∼
[
�m× d�m

dt

]
. (4.3)

In order to ensure the rotation in direction to the z-axis, �Tdis in Eq. 4.3 is
perpendicular to the precessional torque and magnetic moment. From Eq. 4.2
and Eq. 4.3, follows

d�m
dt

= γ
[
�m× �Hext

]
+

αγ
m

[
�m×

(
�m× �Hext

)]
, (4.4)

where m = |�m| and α denotes the dimensionless damping parameter, which
contributes to the dissipation of energy. The Eq. 4.4 is the Landau-Lifshitz
equation of motion for the magnetization. The relationship of the �Be f f and
damping torque are illustrated in Fig. 4.1.

4.1 Landau-Lifshitz-Gilbert equation
In the Gilbert representation of the LL equation, the Eq. 4.4 is slightly modi-
fied to

(1+α2)
d�m
dt

= γ
[
�m× �Hext

]
+

αγ
m

[
�m×

(
�m× �Hext

)]
, (4.5)
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Figure 4.1. Schematic representation of magnetic moment under the influence of mag-
netic field only with the precession (a) and both precession and damping (b). The
green arrow indicates the precession and blue the damping.

where a damping term which depends on the time derivative of the magnetiza-
tion was added, this equation is known as the Landau-Lifshitz-Gilbert (LLG)
equation. In case α is small, the α2 term is negligible and we recover the LL
equation.

It is possible to work with Eq. 4.5 in order to be mathematically equivalent
to Eq. 4.4,

d�m
dt

= γ ′
[
�m× �Hext

]
+

α ′

m

[
�m×

(
�m× �Hext

)]
, (4.6)

which is achieved if γ ′ = γ
1+α2 and α ′ = γα

1+α2 .

4.2 Atomistic spin dynamics
The energy associated to the atomic spins interactions is described by the
Heisenberg Hamiltonian, as discussed previously. From Eq. 3.13, follows

HHei = −
[

1
2 ∑

i�= j
Ji j �mi

]
︸ ︷︷ ︸

�Be f f

·�m j

HHei = −�Be f f ·�m j (4.7)

where �Be f f is called the effective field, since the Eq.4.7 has the same form of
the energy of a magnetic dipole �m in a magnetic field E = −�m · �Hext . Hence,
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the Eq.4.7 has the physical meaning that an atomic moment �m j is subject to
an effective field produced by all �mi in the neighbourhood.

In some cases other magnetic interactions than exclusively exchange inter-
action may be present in a crystal, as anti-symmetric interatomic exchange
coupling (Dzyaloshinski-Moriya), magnetocrystalline anisotropy, dipole in-
teractions and Zeeman terms. For that, one can consider a extended Hamilto-
nian collecting all relevant interactions in an electronic system, such as sym-
metric and antisymmetric terms

H =−1
2 ∑

i�= j
Ji j �mi ·�m j +∑

i�= j

�Di j �mi ×�m j + ... (4.8)

In this context, the definition of effective field �Be f f is generalized to

�Be f f = −∂H

∂�m j
(4.9)

and the LLG equation, Eq. 4.6, is rewritten as

d�mi

dt
= γ ′

[
�mi ×�Be f f

]
+

α ′

m

[
�mi ×

(
�mi ×�Be f f

)]
. (4.10)

The Eq. 4.10 is the atomistic version of LLG equation and represents the equa-
tion of motion for an atomic moment �mi subject to the effective field produced
by its neighbouring atomic moments in a crystal.

4.2.1 Temperature effects
It is noticed experimentally that the magnetic moments tend to align them-
selves in a direction parallel to the magnetic field, however, the temperature
tends to dismantle the alignment. The motion of �m in finite-temperature is
modeled by the Langevin dynamics, in which the temperature is included in
the system by a stochastic field�bi. Then, it is possible to rewrite the effective
field as

�Be f f = �Be f f +�bi, (4.11)

resulting in a stochastic LLG equation given by,

d�mi

dt
=−γ �mi × [�Bi +�bi(t)]− γ

α
mi

�mi × (�mi ×{�Bi +�bi(t)]}, (4.12)

with the thermal fluctuations represented by the stochastic magnetics field�bi.
The Gilbert damping constant α , which contributes to the dissipation of en-
ergy, assist the system to lead the thermal equilibrium.

46



The stochastic fields are represented by fluctuating fields with a Gaussian
white noise shape. Therefore,�bi accounts with the properties of being uncor-
related in space and time. This is expressed by the criteria

〈�bi(t)〉 = 0, (4.13)

which states that the time average of the stochastic field is zero, and

〈�bμ(t)�bν(t ′)〉 = 2Dδμνδ (t − t ′) (4.14)

with

D =
α

1+α2
kBT
μBm

(4.15)

where the Dirac delta δ (t − t ′) states that the stochastic field is uncorrelated
in time, while the Kronecker delta δμν , with {μ,ν} representing spatial co-
ordinates, states that the field�b is the uncorrelated in space. The relation of
the stochastic field and temperature T is represented in Eq. 4.15, called the
fluctuation strength [26]. The relation of D with the energy dissipation comes
from the main statement of the fluctuation dissipation theorem [75, 76].

Lastly, solving Eq. 4.12 means having access to the dynamics of each atomic
magnetic moment �mi(t) in a solid, known as Atomistic Spin Dynamics (ASD) [77,
26]. Thus, in this thesis the ASD simulations were computed using the Up-
psala Atomistic Spin Dynamics (UppASD) computational package [78]. In
the simulations, the numerical method used to solve the stochastic differen-
tial equation Eq. 4.12 was the Semi-implicit Midpoint Solver [79], with time
increments of typically Δt = 0.1 femtoseconds, i.e., 10−16 seconds.

Monte Carlo method

Some static properties as critical temperature, magnetic susceptibility or heat
capacity can be obtained in a efficient manner using Monte Carlo (MC) meth-
ods instead of using the LLG equation, Eq. 4.12.

The MC methods are a collection of sampling algorithms dedicated to search
through the possible configurations of a system. The main goal is to select the
most probable configuration that comply with given conditions. In the context
of magnetism, the Metropolis algorithm is used to describe the static prop-
erties of a magnetic system, given that the energy is represented by a spin
Hamiltonian.

The configurations are selected from a previous state using a transition
probability which depends on the energy difference ΔE = Eintial −E f inal be-
tween the initial and final states. The final state is generated according to a
Markov chain of states, which means that each new state is generated directly
from the preceding state.

Given an initial magnetic arrangement for the system, the Metropolis algo-
rithm can be described as follows:
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Figure 4.2. Example of the scaling method using the Binder cumulant U4.

1. Choose a site i
2. Calculate the energy change ΔE if the spin at site i is rotated
3. Generate a random number rand such that 0 < rand < 1
4. If rand < exp [−ΔE/kBT ], accept the spin rotation
5. Go to the next site and go to (2)
6. If all sites in the simulation box have been visited, go to (1).

The steps (1)-(6) repeat as many MC steps are considered. Regarding the
changes in the moment, here Heisenberg spins are considered, hence any ro-
tations in the unity sphere are allowed.

The Metropolis algorithm can be used to obtain properties of the system
related to magnetization �M = ∑miêi averages, such as magnetic susceptibility
and heat capacity. Due to finite size effects, the Curie temperature (TC) of
ferromagnet can be obtained by the Binder cumulant, given by

U4 = 1− 1
3

〈M4〉
〈M2〉2 (4.16)

where M = |�M|. The intersection of U4 for different simulation cell sizes can
be then used to determine TC [80], as illustrated in Fig. 4.2.

4.3 Spin waves
For a ferromagnet, the ground state is the state of maximum polarization.
Thus, low energy excitations can be created by inverting the atomic spin of
a given site i in the spin chain, see Fig. 4.3. The direct consequence is the
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λ π/
Figure 4.3. Ferromagnetic spin chain: ground state (a), inversion of a spin (b) and
ferromagnetic spin wave (c).

decrease in magnetization, in this case 1 μB. However, this perturbation prop-
agates in the chain in the form of collective excitations called spin waves
(Fig. 4.3).

By analogy with classical mechanics, we can relate the spin moment to the
angular momentum�L. The time evolution of�L is given by

d�L
dt

= T , (4.17)

in which T is the torque. In the classical approximation each spin moment
in a chain is under the action of a molecular field (or exchange field) �Hj due
to the coupling Ji j of the spin moments �s j with the moments �si of the neigh-
borhood. Thus, �Hj can be considered as a local effective magnetic field that
exerts a torque in �m j, collaborating for the magnetic ordering of the ground
state. Therefore, by the Heisenberg Hamiltonian, follows

H =−1
2

[
∑
i�= j

Ji j�mi

]
·�m j =−1

2
γ�Hj, (4.18)

with γ the gyromagnetic ratio. In a chain of spins, Fig. 4.3, each j site has 2
first neighbors j−1 and j+1. The time evolution of �m j will be

d�m j

dt
= �m j × �Hj

=−γJ
[
�m j ×�m j−1 +�m j ×�m j+1

]
. (4.19)

It follows that for each component,
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dmx
j

dt
= J[(mz

j−1 +mz
j+1)m

y
j − (my

j−1 +my
j+1)m

z
j], (4.20)

dmy
j

dt
= J[−(mz

j−1 +mz
j+1)m

x
j +(mx

j−1 +mx
j+1)m

z
j], (4.21)

dmz
j

dt
= J[(my

j−1 +my
j+1)m

x
j − (mx

j−1 +mx
j+1)m

y
j]. (4.22)

For small perturbations transverse to spin we can approximate mz
j ≈ m j and

mx
j,m

y
j << m j. Thus, Eq. 4.20-4.22 turn into

dmx
j

dt
= Jm j[2my

j −my
j−1 −my

j+1)], (4.23)

dmy
j

dt
= −Jm j[2mx

j −mx
j−1 −mx

j+1)], (4.24)

and

dmz
j

dt
= J[(my

j−1 +my
j+1) mx

j︸︷︷︸
≈my

j

−(mx
j−1︸︷︷︸

≈my
j−1

+mx
j+1︸︷︷︸

≈my
j+1

)my
j]

= 0. (4.25)

To solve Eq.4.23 and Eq.4.24 we use the following plane wave ansatz:

mx
j = Am jei( jqa−ωt) (4.26)

and

my
j = Bm jei( jqa−ωt), (4.27)

where a is the inter-atomic distance and q is the modulus of the wave vector.
By replacing Eq. 4.26 and Eq.4.27 in Eq. 4.23 and Eq. 4.24, respectively,
results

−iAω = 2BJm j[1− cos(qa)]. (4.28)

and

−iBω =−2AJm j[1− cos(qa)]. (4.29)

Therefore,(
iω 2Jm j[1− cos(qa)]

2Jm j[1− cos(qa)] −iω

)(
A
B

)
=

(
0
0

)
. (4.30)
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For a solution other than trivial, it follows that∣∣∣∣ iω 2Jm j[1− cos(qa)]
2Jm j[1− cos(qa)] −iω

∣∣∣∣= 0 (4.31)

ω = 2Jm j[1− cos(qa)]

= 4Jm j sin2(qa/2). (4.32)

For q << 1, in regions near the center of the first Brillouin zone sin(qa)≈ qa,

ω ≈ Dq2 (4.33)

The Eq.4.33 is the spin waves dispersion for a ferromagnetic material, in
which D = Jm ja2 is the stiffness constant. Note that D is specific to each
material since it depends on J. Equation 4.33 can be generalized for cubic
lattices, however its characteristic q2 behaviour remains.

The approximation of q << 1 can also be understood as low energy. There-
fore, Eq. 4.33 shows that a small amount of energy is associated with high
wavelength excitations (λ = 2π/q). Thus the lower energy excited states can
be understood as the spin reversal (↑ ↑ ↑ ↓ ↑ ↑ ↑) smeared in the form of wave
in the spin chain.

4.3.1 Adiabatic magnon spectra
Other method to compute the spin wave dispersion is to Fourier transform
the calculated exchange parameters Ji j. That results in the so-called adiabatic
magnon spectrum. In the case of one atom per cell, the energy of a spin wave
with respect to a ferromagnetic ground state is given by

E(�q) = ∑
j �=0

J0, j

[
exp

(
i�q ·�R0, j

)
−1

]
(4.34)

where �R0, j is the relative position vector connecting sites i and j. From this it is
straightforward to calculate the spin wave dispersion ω(q) [39]. For systems
with more than one atom per cell, as is the case for elements with hcp crystal
structure, alloys or thin films consisting of more than one monolayer, the spin
wave energies are given by the eigenvalues of the general N×N matrix, here
expressed in block form(

∑N
n Jln

0 − Jll(�q) −Jln(�q)
−Jln(�q)∗ ∑N

n Jnl
0 − Jnn(�q)

)
, (4.35)

where N is the number of atoms per cell and l,n are indices for different atoms
in the cell. The adiabatic magnon spectra (AMS) relies in the adiabatic ap-
proximation in which the slow motion of the spins is decoupled from the fast
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Figure 4.4. Adiabatic magnon spectra (blue line) and the S(q,ω) for a ferromagnetic
material, here fcc Ni.

motion of the itinerant electrons. Therefore, it is suitable to represent low en-
ergy excitations and for systems with reasonably large exchange splitting [81].
As illustration, in Fig. 4.4 is plotted the AMS for a ferromagnetic material,
showing the characteristic quadratic dispersion around Γ point.

Noncollinear spin wave theory

Recently, the adiabatic magnon spectra were derived within the linear spin
wave theory (LSWT) frame for a noncollinear ground-state magnetic struc-
ture, following a strategy similar to that described elsewhere [82]. For the case
of non-collinear spin order, in which the crystallographic unit cell is commen-
surate with the magnetic cell, we can defined a local coordinate system that
transforms the non-collinear configuration into FM order, by applying a rota-
tion R on every moment within the crystallographic unit cell. This rotation
is applied to the spin Hamiltonian described by Eq. 4.8, considering that the
m̂i, m̂ j are pseudospin-1/2 operators, and provides :

H = ∑i j

(√
mi
2 (ū

T
i ai +uT

i a†
i +vT

i (mi −a†
i ai))

)
Ji j(√

m j
2 (ūT

j a j +uT
j a†

j +vT
j (m j −a†

ja j))

)
, (4.36)

where a†
i /ai are bosonic operators that decrease/increase the spin quantum

number and si is the modulus of the classical spin vector at atomic position
i. The vectors ui and vi are defined in terms of the rotation matrix R by using
the Rodriguest’ formula

uβ
i = Rβ1

i + iRβ2
i ,

vβ
i = Rβ3

i , (4.37)
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Figure 4.5. Adiabatic magnon spectra (blue line) computed by non-linear spin wave
theory and the S(q,ω) for a G-type antiferromagnetic material, here CaMnO3 bulk.
Due to small distortions of the lattice, the two magnon branches are not degenerated
around the Γ point.

where β runs over {x,y,z}. The exchange tensor Ji j reads

Ji j = Ji jI +J S
i j +J A

i j

=

⎛
⎝Ji j +Γxx

i j Dz
i j −Dy

i j
−Dz

i j Ji j +Γyy
i j Dx

i j
Dy

i j −Dx
i j Ji j −Γxx

i j −Γyy
i j

⎞
⎠ . (4.38)

After Fourier transform, the Hamiltonian in Eq. 4.36 can be recast in the fol-
lowing form :

H = ∑
k∈BZ

(
a†

i (k)ai(−k)
)(A(k)−C B(k)

B†(k) Ā(−k)−C

)(
ai(k)

a†
i (−k)

)
,

where A, B, and C are defined as :

A(k)i j =

√mim j

2
uT

i Ji j(−k)ū j , (4.39)

B(k)i j =

√mim j

2
uT

i Ji j(−k)u j , (4.40)

C(k)i j = δi j ∑
l

mlv
T
i Jil(0)vl . (4.41)

This is diagonalized by using a Bogoliubov transformation [83]. The calcu-
lated eigenvalues are the eigenfrequencies of the spin waves and are plotted
in Fig. 4.5 for an antiferromagnetic material, showing the characteristic linear
dispersion around Γ point.
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4.3.2 Dynamical structure factor S(q,ω)
For dynamical properties, a reformulation of the LLG equation in the spirit of
Langevin dynamics must be performed as in Eq. 4.12. In this way, it is possible
to obtain the dynamic properties of the system, such as time evolution of the
magnetization and the spatial and time correlation function of the magnetic
moments,

Ck(�r−�r′, t, t ′) = 〈mk
r(t) mk

r′(t
′)〉−〈mk

r(t)〉 〈mk
r′(t

′)〉 , (4.42)

where 〈 〉 stands for the ensemble mean average and k the Cartesian com-
ponents. The time and space Fourier transform of Eq. 4.42 is the dynamical
structure factor S(�q,ω), given by

Sk(�q,ω) =
1
N ∑

r,r′
e−i�q·(�r−�r′)

∫ ∞

−∞
eiωtCk(�r−�r′, t) dt , (4.43)

where N is the number of terms in the sum, �q and ω are the moments and
energy transfer. In this way, the magnon spectra is obtained by gathering the
positions of the peaks of the dynamical structure factor along a particular di-
rection in the reciprocal space [26, 27] which is in accordance with the adi-
abatic approximation since they are neglected longitudinal fluctuations of the
atomic spins in the simulations.
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5. Introduction to the papers

This chapter is dedicated to summarize the main results of the papers con-
tained in this thesis. The magnetism of bulk, thin films and nanostructures
adsorbed on surfaces system were studied with main focus on the ground state
properties and magnetization dynamics.

My contributions in each work is described below.

Bulk Systems

In Paper I I performed all calculation of critical temperatures and magnons
for the heavy rare-earths using atomistic spin dynamics and Monte Carlo method.

In Paper II I performed electronic structure calculations using the RS-LMTO-
ASA for the Permalloy VCA and local clusters of Fe-Ni. I also was responsi-
ble by the post processing, that was dedicated to compute the local anisotropies
by Bruno’s formula.

Thin films

In Paper III I performed all electronic structure calculations using the RS-
LMTO-ASA, including the calculations of the exchange parameters. I also
performed the atomistic spin dynamics for the Fe6/Ir(001) surface magnons.

In Paper IV I performed the atomistic spin dynamics in order to obtain the
magnon spectra, as well as the MC simulations for the critical temperatures of
fcc Ni and Ni surfaces on Cu(001) and Cu(111).

Nanostructures adsorbed on surface

In Paper V, I performed electronic structure calculations using the RS-
LMTO-ASA for the Pd(111) surfaces and Cr nanostructures on Pd(111). I
was engaged in this project since the very initial stage and I also contributed
to conceive the idea.

Additionally, for all papers listed above, I participated of the discussion of
the results and also contributed to the manuscripts preparation.

5.1 Rare earth’s magnons
In paper I, the applicability of the Hubbard I approximation is examined (in
connection with a full-potential electronic structure method) and how this
method reproduces cohesive, structural, and magnetic properties, as well as
spectroscopic data, of the rare-earth series. In general a good agreement be-
tween theory and observations is found, where a comparison can be made. In
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particular, it is rewarding that equilibrium volumes, bulk moduli, and mag-
netic properties are in good agreement with measured data. Similarly, calcu-
lated magnetic excitations as well as photoelectron spectra (direct and inverse)
are in good agreement with measured data. As to the 4f magnetic moment we
obtain similar values as would be obtained from a Russel-Saunders ground
state. It is rewarding that this follows as a natural result from a quantum me-
chanical treatment that makes no assumption of the mechanism of coupling
angular momentum states. This paper also points out shortcomings of other
methodologies, like local density approximation (LDA) and LDA + U, in es-
tablishing results that consistently agree with measurements. In particular,
the electronic structure from these theories is found to not reproduce the mea-
sured x-ray photoemission spectroscopy and Bremsstrahlung isochromat spec-
troscopy spectra, while the Hubbard I approximation gives a very satisfactory
account of the measured spectra. Among the different methods considered
here, the treatment of the 4f shell as part of a non-hybridizing core comes
closest to the Hubbard I approximation, since the LDA + U approximation is
found to overestimate the hybridization and results in formation of dispersive
energy states. The 4f states were treated in the core with a Russel-Saunders
ground state. The resulting exchange parameters give ordering temperatures
and magnon dispersion that are in acceptable agreement with measurements.
The 4f-induced polarization of the [spd]-valence band states is also captured
with this 4f in the core treatment, a poor-man’s version of the Hubbard I ap-
proximation. The Hubbard I approximation is hence demonstrated to be con-
sistent with the standard model of the lanthanides, which identifies the 4f shell
as atomiclike, and provides practical and reliable theoretical framework of the
rare-earth elements and rare-earth-containing materials in general. This opens
for accurate theoretical analysis of rare-earth-containing multiferroics, rare-
earth-based permanent magnets, rare-earth-based topological insulators, and
rare-earth-based photovoltaics. Although it seems that the HIA is, among the
available state-of-the-art methods, the most promising for the REs, a correct
assessment of the magnetic anisotropy and related quantities remains a chal-
lenge. These quantities strongly depend on the subtle balance between the
crystal field and the spin-orbit coupling.

The ordering temperature TN/C for the heavy RE metals was estimated by
means of Monte Carlo simulations and using the cumulant crossing method.
To do these calculations, we used the values of the exchange parameters and
magnetic moments from DFT. The Hamiltonian used to estimate the ordering
temperature is described by Eq. (6) in Paper I but neglecting the anisotropy
term. The results were compared with the simple estimates, based on mean-
field approximation (MFA). We underline the fact that due to the long-range
nature of the magnetic couplings, a relatively large number of exchange inter-
actions was required in order to sufficiently converge the TN/C value. For most
of the simulations we had to include the Jijt’s with all nearest neighbours (NN)
within the distance of 5.57 lattice parameters, which corresponds to taking into
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account the nearest 1098 neighbours of each atom. The magnon spectrum of
Gd was simulated with ASD, using a low-temperature experimental value of
the uniaxial anisotropy constant K1 = 2.5 μRy. A simulation box containing
50x50x50 sites with periodic boundary conditions was adopted. The temper-
ature was set to T = 78, the damping parameter to α = 0.001. Moreover, the
exchange interaction were taken with all neighbours within a maximum dis-
tance of 5.57a, where a is the lattice parameter.

5.2 Anisotropy in Permalloy
In paper II, the microscopic origin of the vanishingly low magnetic anisotropy
of Permalloy (Py) was investigated by using relativistic first-principles calcu-
lations. The magnetic anisotropy of a macroscopic sample was considered
here as a configurational average of local anisotropies, for a diverse distribu-
tion of clusters containing 19 atomic sites of the fcc lattce. Each cluster may
have several atoms with large local anisotropies directed in any of the com-
mon crystallographic axes (〈001〉, 〈110〉 and 〈111〉), but since the inter-atomic
exchange interaction of Py is much stronger and ferromagnetic, the result-
ing magnetic configuration is a collinear ferromagnet, where, after a proper
configurational average is made, the resulting MAE is expected to be van-
ishingly small. In the presented study, only clusters with approximately the
same concentration of Py (Fe0.2Ni0.8) were investigated. In a real sample such
constrain does not exist, and configurations involving, e.g., 1 Ni and 18 Fe
atoms and vice-verse must also be considered. Once a proper configurational
average of a huge set of clusters is considered, the proper macroscopic MAE
can be obtained, and it is suggested this leads to a vanishingly small MAE for
Py. The scenario proposed here is principally different than simply making a
linear interpolation of anisotropy constants of bcc Fe and fcc Ni and adopt-
ing an interpolated value for all atoms of the alloy. In the current paper, It
was proposed that the low magnetic anisotropy of Py is intrinsically related
to the local symmetries of the alloy. It was shown that the local magnetic
anisotropy of individual atoms in Permalloy can be several orders of magni-
tude larger than that of the bulk sample, and 5-10 times larger than that of
elemental Fe or Ni. It is, furthermore, show that locally there are several easy
axis directions that are favoured, depending on local composition. The results
are discussed in the context of perturbation theory, applying the relation be-
tween magnetic anisotropy and orbital moment. Permalloy keeps its strong
ferromagnetic nature due to the exchange energy to be larger than the mag-
netocrystalline anisotropy. As a final comment, note that the local anisotropy
effects discussed here might affect the magnetization dynamics in thin films
of Py. For that, adopting a scenario of locally unique information, as proposed
in Paper II, would be relevant for the interpretation of pump-probe measure-
ments and crucial to simulations involving an effective spin-Hamiltonian.
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5.3 Magnon softening on Fe6/Ir(001) surface
In Paper III, it is evaluated how thermal effects soften the magnon dispersion
in 6 layers of Fe(001) on top of Ir(001). In order to do that, a systematic
study was performed considering a noncollinear spin arrangement to calculate
configuration-dependent exchange parameters. In addition, Monte Carlo sim-
ulations were performed in order to estimate the noncollinear spin arrange-
ment as a function of temperature. Hence, the noncollinear exchange cou-
plings related to these configurations were calculated and used in an atomistic
spin dynamics approach to evaluate the magnon spectra. Good agreement was
obtained with experimental measurements of the acoustic magnon dispersion,
even though only a one-shot approach was employed where mean angles that
indicates the deviation from ferromagnetic order is obtained from atomistic
spin dynamics simulations using exchange parameters from a ferromagnetic
solution, and new exchange integrals were evaluated from ab initio theory with
these angles. The finite-temperature variations in the exchange coupling are
found to be significant, and it is proposed in Paper III that this is a important
contribution to the magnon softening observed in the Fe/Ir(001) system.

5.4 Surface magnons and critical temperatures at Ni
surfaces

In Paper IV, the magnetic moments and exchange interactions for Ni surfaces
on Cu substrate in the cleavage directions 〈001〉 and 〈111〉 are computed. It
is shown that the Ni ions at the interface experience a reduction of their mag-
netic moments and exchange interactions. These two trends tend to compen-
sate each other because of the form of the Heisenberg Hamiltonian, where the
magnitude of the moment is contained within the exchange couplings. The
middle layers of Ni in the case of 9ML have characteristics similar to Ni-
bulk. Regarding the spin dynamics simulations, an excellent agreement of
the magnon dispersion is found for Ni bulk compared with experiments. The
acoustic branch of the adiabatic magnon spectra is affected by the differences
in coordination number of different surface directions. This feature can be no-
ticed in the exchange stiffness. Further studies are necessary in order to track
the film thickness necessary to recover bulk magnons.

The ordering temperature TC was estimated for Ni bulk and surfaces by
means of Monte Carlo simulations using the peak of susceptibilities. The
Hamiltonian used in the simulations is the one described by Eq. (1) in Paper
IV. The results were compared with mean-field approximation estimations.
The results indicate that mean-field approximation-based estimations fail com-
pared with the ones obtained with Monte Carlo methods. One can also see that
the calculated ordering temperatures for Ni layers obtained with Monte Carlo
simulations, in general, agree with a 1/n trend, however the values are underes-
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timated with respect to the experimental data. The largest errors in the Monte
Carlo calculation are found for Ni bulk which is about half of the experimental
values. This is related to the fact that we neglect longitudinal fluctuations.

5.5 Magnetism of Cr nanostructures on Pd(111)
In paper V, the electronic structure, magnetic moments (spin and orbital) and
exchange interactions (both Heisenberg and Dzyaloshinskii-Moriya type) of
various sizes and shapes of Cr clusters on a Pd(1 1 1) substrate were reported.
We find in general that the magnetic moments are sizeable, almost entirely of
spin-character and strongly affected by the hybridization with other surround-
ing Cr atoms. In general, we find that the Cr atoms induce spin polarization on
Pd sites localized nearby the nanostructure but with an small magnetization.
The local density of states (LDOS) figures also show that for one dimensional
clusters, the peaks are very narrow. This is a characteristic of systems with
reduced symmetry and low dimensionality as in the case of isolated atoms
while for 2D systems, the LDOS become broader and span over a wider en-
ergy range.

It is also found that the interactions in all clusters is dominated by nearest-
neighbor antiferromagnetic Heisenberg form, with a strength of -6.0±0.5 mRy.
This conclusion holds for both one- and two-dimensional clusters, with the
only exception being the dimer, where the interaction is somewhat stronger.
This implies that Cr on Pd(1 1 1) forms an ideal model system, in which
clusters of almost any shape and size can be investigated from a Heisenberg
Hamiltonian, using a nearest-neighbor exchange model with a strength of the
interaction equal to -6.0 mRy. Both static and dynamic effects of Cr clusters
on Pd(1 1 1) should hence be possible to investigate with a rather accessible
model. Finally, we have found that complex magnetic structures can be real-
ized for linear chains of Cr, something which is due to a competition between
exchange interaction and the much weaker Dzyaloshinskii-Moriya term. In
particular, two different magnetic states with very similar energy can be stabi-
lized; one collinear antiferromagnetic structure and one with an antiferromag-
netic spin-density wave. This result can have very interesting technological
applications for magnetic switching. Since both states are similar in energy,
the switching between both magnetic configurations is low-energy cost.
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6. Summary and outlook

In this thesis, I discussed the magnetism of diverse magnetic materials in
solid state. As examples were shown the bulk properties from elemental rare-
earths and Fe-Ni random alloy, the thin films of Fe and Ni supported in a
non-magnetic substrate and Cr nanostructures adsorbed on a substrate with
considerable spin-orbit interaction. The studies were conducted by using the
density functional theory, specially the Real Space Linear Muffin-tin Orbitals
in Atomic Sphere Approximation method, and Atomistic Spin Dynamics sim-
ulations.

In the first study, I verified that the electronic structure of Gd is well repre-
sented even if considering the 4 f electrons not hybridizing with the conduc-
tion electrons. For this reason, the computed magnon dispersion, considering
exchange interaction up to 23rd next neighbors, it is in agreement with the neu-
tron scattering experiments [84]. The long ranged Ji j’s are also important to
capture the pitch vector for Er and Tm, obtained by non-linear spin wave the-
ory. The critical temperatures, computed by Monte Carlo simulations, nicely
reproduced the qualitative trend of lowering of the critical temperatures across
the series, in spite of quantitative underestimations for some rare earths.

Still on bulk systems, in the second study presented, I showed a discussion
about the microscopic mechanism of the vanishingle low magnetic anisotropy
of Permalloy using the concept of the orbital moment anisotropy for Fe and
Ni atoms in the alloy. I studied clusters with 19 atoms, chosen according to
the most probable ones given by the binomial distribution, while keeping the
constrain of Permalloy composition. I showed that the anisotropy energy of
each atom could be larger (1-3 μRy in average) even though no clear trend re-
garding configurations versus anisotropy was found. I expect that such highly
anisotropic landscape could affect dynamical properties of very thin Permalloy
films, which requires further investigations.

The third study discussed the magnetism of Fe6/Ir(001) surface. I per-
formed electronic structure calculations for such system and obtained the Ji j
considering the FM state, verifying that their values were consistent with those
of experimental measurements [18]. By means of the mapping of angular de-
viations of the spin moments with respect to z-direction into temperature, I
noticed a decrease of the first neighbors Ji j with temperature for this system.
Thus, this gives a more accurate description of magnons at finite temperature
in comparison with the experimental data. I propose that this approach could
be applied for other 3d transition metals magnetic layers, giving room for ad-
ditional studies.
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In the fourth study, I also studied surface magnons for 3 and 9 Ni mono-
layers on Cu(001) and Cu(111) in order to track the significant surface and/or
interface effects and contrast to fcc Ni bulk-like properties. Complementary,
I used the Monte Carlo method to estimate the critical temperatures of Ni
overlayers in Cu, and recovered the inverse of film thickness dependence seen
experimentally, but with underestimated TC values, specially for fcc Ni. In a
future work the longitudinal fluctuation must be considered.

Finally, in the fifth study I investigated the Cr structures on the Pd (111)
surface and found that the Ji j’s for Cr nearest-neighbors are always antiferro-
magnetic, with a strength of 6.0± 0.5 mRy. This conclusion holds for both
one- and two-dimensional clusters. Due to this, for linear structures with few
atoms a collinear magnetic configuration is more stable while, for the nanois-
lands, the magnetization is noncollinear as a result of geometric frustration.
For 10 and 24-atom linear nanowires a canted antiferromagnetic configuration
has been found. This is occasioned by the interaction with the Pd substrate
and possibly the interaction of Dzyaloshinsky-Moriya. For future studies I
have special interest in antiferromagnetic dynamics and Cr on Pd(111) is an
ideal model system, in which clusters of almost any shape and size can be in-
vestigated from a Heisenberg Hamiltonian, using a nearest-neighbor exchange
model with a strength of the interaction equal to 6.0 mRy, while some relativis-
tic effects would also be addressed by Dzyaloshinsky-Moriya interaction.

It must be emphasized that the materials investigated in this thesis are di-
rectly related to experimental research carried out in the last years and, there-
fore, I hope that our results contribute to increase the theoretical understanding
of magnetism at the nanoscale.
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7. Sammanfattning på svenska

I det tjugonde århundradet avslöjade kvantmekaniken den djupaste hemligheten
om magneter: spinnet hos elektronen. Många namn kan nämnas, men Pauli,
Dirac, Fermi, Heisenberg, Bloch och Néel har definitivt givit de mest infly-
telserika bidragen till teorin om metaller och magnetism. Även utvecklingen
av täthetsfunktionalteori av Hohenberg och Kohn var en vändpunkt i teoretiska
förutsägelser om materialvetenskap. De första tillämpningarna av magnetiska
media (magnetband och lagrings diskar) dök upp på 1930-talet. Men det stora
genombrottet när det gäller informations teknik kom 1988 med upptäckten av
jättemagnetoresistans (GMR) [3, 4] och födelsen av spinntronik vid slutet av
nittonhundratalet. Detta har möjliggjort utvecklingen av snabbare teknologi
för datalagring och bearbetning.

Nuförtiden går området för magnetisk lagring i en riktning där man vill
stabilisera bitarna med minsta antal atomer och med en optimering och bear-
betning av dessa, med minsta möjliga energiförbrukning. Man bör komma
ihåg att i början av 1990-talet hade hårddiskar en lagringskapacitet på c:a 2
gigabyte, och utvecklingen till nuvarande lagringskapacitet med en terabyte
på en hårddisk med vikten 200 gram, har varit enorm.

Utvecklingen inom experimentella tekniker har en betydande roll för forskn-
ing om magnetiska material. Till exempel, sveptunnelmikroskop (STM) [6,
7] möjliggör en topologisk kartläggning av ytan på atomär skala, till och
med möjligheten med manipulering av atomer. Den har också vissa förfinade
tillämpningar, så som spinn-polariserad STM (SP-STM) [8], som ger infor-
mation om icke-kolinjära magnetiska texturer [9, 10, 11]. Dessutom, svep-
tunnelspektroskopi (STS) teknik, är i stånd till att kvantifiera den magnetiska
kopplingen mellan atomer [14]. Det är också möjligt att undersöka kollek-
tiva magnetiska excitationer i ett magnetiskt material (magnoner) medelst in-
elastisk neutronspridning (INS) [15, 16, 17] och s.k. Spin Polarized Electron
Energy Loss Spectroscopy (SPEELS) [18]. Med användningen av dessa ex-
perimentella metoder har man nyligen visat på möjligheten att stabilisera bitar
sammansatta av så lite som endast 12 atomer [20] och nanokomponenter som
utför logiska operationer har demonstrerats endast med atomära spinn [21].
Användningen av neutron- och elektronspridningstekniker möjliggör att man
kan mäta magnon dispersionen vilket ger tillgång till värdefull information
om det studerade materialet såsom utbyteskoppling, magnetisk anisotropi och
eventuellt Dzyaloshinsky-Moriya interaktion. Det betyder, att man bättre kan
förstå magnetism vilket möjliggör teknologier att skapa nya logiska enheter,
till exempel magnon transistorer [19].
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Därför, med hänsyn till dessa perspektiv och högt vetenskapligt intresse på
området för nanomagnetism, presenteras i denna avhandling teoretiska studier
av elektronstruktur och atomär spin-dynamik av magnetiska material. Ar-
betet har utförts med hjälp av första princip beräkningar och den s.k. Real-
Space Linear Muffin-Tin Orbitals within Atomic Sphere Approximation meto-
den (RS-LMTO-ASA) [22, 23, 24] och Uppsala Atomistic Spin Dynamics kod
(UppASD) [26, 27].

För material med bulkegenskaper, utvärderade vi den kritiska temperaturen
och magnon spektra av de tunga sällsynta jordartsmetallerna: Gd, Tb, Dy, Ho,
Er och Tm. Med hjälp av utbytesväxelverkansparametrar och magnetiska mo-
ment, erhållna från första-princip beräkningar utförde vi Monte Carlo-simuleringar
och kunde på så sätt återge kvalitativa värden av trenden hos den kritiska
temperaturerna, över serien. Förutom bulksystem, innehåller denna avhan-
dling an analys av den mikroskopiska mekanismen hos det försvinnande låga
magnetiska anisotropin av Permalloy. Detta gjordes med hjälp av en atomär
uppdelning av anisotropin för Fe och Ni-atomer i legeringen. Relaterade till
ytans magnetism, har vi diskuterat användningen av utbytesväxelverkansparame-
trar som, beräknats i en icke-kolinjär formalism för 6 monolager av Fe på ett
Ir (001) substrat. Denna ytstudie motiverades med för att få en mer exakt
beskrivning av magnoner vid ändlig temperatur, och möjliggjorde en direkt
jämförelse med experimentella data. Vi har i denna avhandling dessutom stud-
erat magnoner på 3 och 9 Ni-monolager på Cu (001) och Cu (111), för att spåra
signifikanta yt- och/eller gränssnitts effekter hos dessa kollektiva excitationer,
och att kontrastera detta till egenskaper som är fcc Ni bulk-liknande. Dessu-
tom använde vi Monte Carlo simuleringar för att uppskatta de kritiska tem-
peraturerna av Ni-ytor och jämför dessa med experimentella data. Slutligen,
låg dimensionsell magnetism, presenterar vi ab-initio beräkningar för elektro-
niska strukturen av Cr-nanostrukturer med olika geometrier, som adsorberas
på en Pd (111) yta (se figur 7.1). I denna studie var fokus op formeringen av
icke-kolinjära spin konfigurationer, antingen på grund av geometrisk frustra-
tion eller som tillhandahålls av växelverkan via substratet.

Figure 7.1. Cr-nanostrukturer med olika geometrier, som adsorberas på en Pd (111)
yta.
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8. Resumo em português

No século XX, a mecânica quântica revelou o segredo mais profundo sobre
os ímãs: o spin do elétron. Muitos cientistas devem ter seus nomes citados,
porém Pauli, Dirac, Fermi, Heisenberg, Bloch e Néel têm definitivamente as
contribuições mais influentes para a teoria dos metais e magnetismo. Outro
desenvolvimento importante foi a teoria da densidade funcional (DFT acrôn-
imo de density functional theory) por Hohenberg e Kohn, que representou um
momento decisivo para a investigação teórica na ciência de materiais. Além
disso, as primeiras gravações em mídia magnética apareceram na década de
1930, com fitas magnéticas e disquetes. No entanto, com a descoberta da
magnetorresistência gigante (GMR)[3, 4], em 1988, culminou no nascimento
da spintrônica no final do século passado. Isso permitiu o desenvolvimento de
dispositivos mais eficazes para o armazenamento e processamento de dados.

Atualmente, a área de pesquisa em armazenamento magnético tem como
horizonte estabilizar bits com o menor número possível de átomos e otimiza-
ção do processamento, associado a um menor gasto energético. Ao relembrar
que no início dos anos 90 os discos rígidos tinham uma capacidade de ar-
mazenamento de 2 Gigabytes, pode-se ter a dimensão do comedimento da
comunidade científica para atingir os atuais Terabytes em discos rígidos de
200 gramas.

Os recentes desenvolvimentos em técnicas experimentais têm um papel sig-
nificativo para a pesquisa em materiais magnéticos. Por exemplo, o microscó-
pio de tunelamento quântico (scanning tunneling microscope – STM ) [6, 7]
permite o mapeamento topológico de um superfície com resolução atômica
além da manipulação de átomos. Este também conta com algumas aplicações
específicas, tais como sua versão spin-polarizada (SP-STM) [8], que permite
imageamento do magnetismo não-colinear [9, 10, 11] além da espectroscopia
de tunelamento quântico (scanning tunelling spectroscopy – STS), que per-
mite medidas do acoplamento magnético entre átomos [14]. Também é pos-
sível investigar as excitações coletivas dos spins em um material magnético
(magnons) por meio das técnicas de espalhamento inelástico de neutrons (in-
elastic neutron scattering – INS) [15, 16, 17, 16] e além do recente desen-
voltimento de uma nova técnica espectroscópica com resolução para investi-
gar filmes finos chamada Spin Polarized Electron Energy Loss Spectroscopy –
SPEELS [18].

Utilizando técnicas de STM, recentes pesquisas experimentais mostram a
possibilidade de estabilizar bits compostos de 12 átomos a baixa temperatura e
a construção de nanodispositivos que executam operações lógicas usando ape-
nas spins. De fato, o uso de técnicas de espalhamento de elétrons e nêutrons
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para medir a relação de dispersão de magnons garante o acesso a informações
valiosas sobre o sistema estudado, como o acoplamento de troca, anisotropia
magnética e possivelmente a interação de Dzyaloshinsky-Moriya. Ou seja, o
que é essencial para compreender o magnetismo e, subsequentemente, criar
dispositivos, tais como transistores baseados em magnons [19].

Os estudos mostram que, apesar de todos os avanços alcançados, a com-
preensão do nanomagnetismo na matéria, desde o conhecimento básico até as
aplicações de alto desempenho, como discos magnéticos de alta densidade de
armazenamento e dispositivos baseados em spintronics ou magnonics são um
desafio diário para os cientistas de materiais.

Assim, devido estas perspectivas e alto interesse científico no campo do
nanomagnetismo, nesta tese são apresentados estudos teóricos da estrutura
eletrônica e da dinâmica do spin atomísticos de materiais magnéticos, real-
izados por meio de cálculos de primeiros princípios utilizando o método Real-
Space Linear Muffin-Tin Orbitals within Atomic Sphere Approximation (RS-
LMTO-ASA) [22, 23, 24] e o pacote computacional Uppsala Atomistic Spin
Dynamics (UppASD) [26, 27].

Com relação às propriedades de sistemas bulk, avaliamos as temperaturas
críticas e o espectro de magnons das terras raras (Gd, Tb, Dy, Ho, Er e Tm).
Utilizando os parâmetros de troca e os momentos magnéticos dos cálculos
de primeiros princípios, realizamos simulações usando Monte Carlo e obtive-
mos um bom acordo com a tendência qualitativa de diminuição das temperat-
uras críticas ao longo da série. Ainda sobre sistemas bulk, discutimos sobre
o mecanismo microscópico da baixa anisotropia magnética da liga Permalloy
usando o conceito da anisotropia de momento orbital para os átomos de Fe e Ni
da liga. Sobre o magnetismo em superfícies, discutimos o uso de parâmetros
de troca calculados por um formalismo não colinear para as 6 monocamadas
de Fe sobre o substrato Ir(001), de modo a ter uma descrição mais precisa
dos magnons a temperatura finita, em comparação com dados experimentais.
Além disso, estudamos magnons em 3 e 9 monocamadas de Ni em Cu(001) e
Cu(111), a fim de diferenciar os efeitos de superfície e/ou interface em con-
traste as propriedades que são caracteríticas do Ni bulk. Por isso, também
utilizamos o método de Monte Carlo para estimar as temperaturas críticas das
superfícies de Ni e comparar com dados experimentais. Por fim, sobre o mag-
netismo em baixa dimensionalidade, apresentamos os cálculos ab-initio para
a estrutura eletrônica de nanoestruturas de Cr em diversas geometrias adsorvi-
das na superfície Pd(111), com foco na formação de configurações de spin
não-colineares, devido à frustração geométrica ou a efeitos do acoplamento de
spin-órbita proporcionados pelo substrato.
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