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The discovery of integrability in planar N=4 super Yang-Mills and ABJM has enabled a precise
study of AdS/CFT. In the past decade integrability has been successfully applied to the spectrum
of anomalous dimensions, which can now be obtained at any value of the coupling. However,
in order to solve conformal field theories one also needs to understand their structure constants.
Recently, there has been great progress in this direction with the all-loop proposal of Basso,
Komatsu and Vieira. But there is still much to understand, as it is not yet possible to use that
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to obtain perturbative data that can be used to check if the all-loop proposal is correct or if there
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In this thesis we compute several structure constants of short operators at strong coupling,
including the structure constant of Konishi with half-BPS operators. Still at strong coupling, we
find a relation between the building blocks of superstring amplitudes and the tensor structures
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and the relation of their poles to mixing with double-trace operators.

We also study three-point functions at weak coupling. We take the OPE limit in a four-point
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corrections of the Hexagon form factors. Finally, we take the first steps in the generalization
of the Hexagon programme to other theories. We find the non-extremal setup in ABJM and
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1. Introduction

Quantum field theory is a theoretical framework which has been ex-
tremely successful in the description of particle physics, both with the
SU(2) × U(1) gauge theory for electroweak interactions as well as with
quantum chromodynamics for the strong interactions. But the useful-
ness of quantum field theories goes well beyond the realm of the standard
model, as they can provide an effective description for relativistic the-
ories at low energies. Some of these effective models have also proved
useful in the description of phenomena in condensed matter physics.

However, despite all the applications of quantum field theories, there
is still much we do not understand. In most situations, all one can
hope to do analytically is perturbation theory, but that will clearly be
insufficient if the theory happens to be strongly coupled. Furthermore,
general relativity predicts the existence of black holes, which contain
spacetime singularities behind the event horizon. This indicates that our
understanding is incomplete and we need a quantum theory of gravity
in such high curvature regimes. There have been many attempts to
incorporate gravity effects in the framework of quantum field theory, but
they have been unsuccessful.

It turns out that string theory is a mathematical framework with
the ability to tackle both these problems. Instead of considering point-
like particles, the fundamental object is a single one-dimensional object
sweeping out a two-dimensional worldsheet in spacetime, and particles
are simply different excitation modes of the same string. In a theory of
strings one can also consider higher-dimensional extended objects called
D-branes, where open strings end [1]. In order to have fermions, we need
to consider a supersymmetric worldsheet theory, which happens to be
consistent only in ten dimensions.

Interactions are obtained through joining and splitting of strings, so
the quantum theory introduces a genus expansion. This can be seen as a
first hint at duality, as we can also obtain a genus expansion in quantum
field theories. It was shown by ’t Hooft that in a gauge theory with N
colours, Feynman diagrams with the same topology also have the same
power of N [2]. It then looks like classical strings are just a planar limit
of gauge theories, while quantum strings correspond to gauge theories at
small finite N .

It is also true that any theory of closed string must contain a massless
spin-two excitation, and it can be shown that the low energy limit of
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string theory is a supersymmetric quantum field theory of gravity. Fi-
nally, the extended nature of string interactions indicates that the theory
should be free of UV divergences, so string theory naturally becomes a
strong candidate for a theory of quantum gravity.

There is an important open/closed string duality, which claims that
the presence of D-branes can be viewed in two very different ways [3,4].
When closed strings propagate in the presence of a D-brane, we have
to consider all possible interactions where closed strings split into open
strings which can later fuse back into closed strings. We then obtain an
integral over the moduli of Riemann surfaces which can have an arbitrary
number of holes. It is however possible to replace holes in the worldsheet
with operator insertions, so we can also see the D-brane as a source of
closed strings. This background of closed strings can in turn be mapped
to a deformation of the background geometry in which strings propagate.

Let us now take the low energy limit of a stack of d-dimensional branes.
Only the massless string modes survive in this limit, and the string ac-
tion decomposes into two parts, a brane action for the open strings and
a bulk action for the closed strings, which do not interact in this limit.
The bulk action corresponds to ten-dimensional supergravity, while the
open strings are described by a d-dimensional quantum field theory. On
the other hand, we can instead consider the presence of the branes as
effectively deforming the background geometry. At infinity the low en-
ergy excitations correspond both to massless strings far from the horizon,
which are described by ten-dimension supergravity, but also by stringy
excitations close to the horizon. This is simply a manifestation of the
redshift effect for particles in strong gravitational potentials. If we con-
sider stacks of D3, M2 or M5 branes, the near-horizon geometries are
of the form AdSd+1 × M, with M some compact manifold, and the
low energy worldvolume theories become conformal. We are then forced
to conclude that the d-dimensional conformal field theories are dual to
superstring theories in AdSd+1 backgrounds [5–7].

This duality is the most explicit realization of the holographic princi-
ple, which in fact precedes these discoveries. Going back to the black hole
solutions of general relativity, it was found that the charges describing
the black hole obey thermodynamic-like relations. Using semiclassical
methods Hawking showed that they emit a thermal radiation, and also
that the entropy of the black hole is proportional to the area of its event
horizon [8]. This was the first indication that the degrees of freedom
of gravity in d dimensions can be mapped to the degrees of freedom of
boundary theories in one lower dimension [9].

Two of the most well studied examples of AdS/CFT are given by the
propagation of type IIB strings in AdS5 × S5 and type IIA strings in
AdS4 × CP3, whose dual conformal field theories are N = 4 SYM in
four dimensions and ABJM in three dimensions. These theories are su-

8



persymmetric, but in the planar limit they are conjectured to become
integrable since there is an infinite tower of hidden symmetries. Integra-
bility can be found explicitely both in the two-dimensional worldsheet
theory and in the spin-chain one obtains as a representation of single-
trace operators [10,11]. There are many important consequences of inte-
grability on two-dimensional theories. It is possible to show that particle
production or annihilation is forbidden, and the presence of an infinite
number of conserved charges also fixes outgoing momenta to be a per-
mutation of the incoming momenta. Finally, another key implication of
integrability is that the S-matrix factorizes into two-to-two scatterings.
This means that any scattering process is determined by the dispersion
relation and the two-body S-matrix. In the past decade these features
have been explored thoroughly, leading to non-perturbative frameworks
for the computation of the spectrum of N = 4 SYM and ABJM [12,13].
In recent years there has been strong evidence that integrability can also
be used to obtain the structure constants of N = 4 SYM at any value of
the coupling [14], and we can hope that the same will happen for ABJM
and other integrable theories appearing in the context of AdS/CFT.

Note that these are weak/strong dualities so they have strong impli-
cations both for quantum field theories and for string theory. When the
conformal field theory is weakly coupled, the string tension goes to zero
and we have a quantum regime of string theory. This is extremely helpful
as it gives an understanding of quantum gravity from simple perturba-
tive calculations in gauge theories. Meanwhile, semi-classical strings are
dual to strongly coupled quantum field theories, so the duality provides
a very powerful tool for the study of strong interactions. Notice however
that it is usually very difficult to ascertain the validity of such a duality,
since one has to perform all orders perturbative computations to match
observables in the two theories. If that is not possible one can also match
protected observables which still provide evidence for the validity of the
conjecture.

Let us end this introduction with an outline for the rest of the thesis.
In chapter 2 we review the basic concepts of conformal symmetry and
then focus on its application to the superconformal field theories men-
tioned above, N = 4 SYM and ABJM. We will then review superstring
theory and its scattering amplitudes in chapter 3, focusing on string
states from the Regge trajectory, and also at the massless and first mas-
sive levels. ln chapter 4 we introduce the flat-space approximation for
short operators of N = 4 SYM, and them move on to present the strong
coupling structure constants obtained in Papers I and II. We conclude
that chapter with an explanation of the relation between extremality and
mixing with double-trace operators which was presented in Paper II. In
chapter 5 we move on to the weak coupling side of the duality, where we
take the coincidence limit in a four-point function of half-BPS operators
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in order to obtain their structure constant with the Konishi operator
at five loops. We describe the technique of asymptotic expansions, and
also elaborate on the transcendentality features of the master massless
propagator integrals obtained along the way. The focus of chapters 6
and 7 is on the use of integrability to obtain non-perturbative results. In
the first of these chapters we introduce the Bethe ansatz for integrable
spin-chains and its application for the spectrum of N = 4 SYM and
ABJM. We also review the recent Hexagon proposal for the computa-
tion of structure constants in N = 4 SYM, and in chapter 7 we take
the first steps into generalizing such a framework for the AdS4/CFT3

duality.

10



2. Conformal Field Theories

In this chapter we review general concepts of conformal field theories
and then specialize to the integrable theories relevant for the rest of this
thesis. A theory with conformal symmetry is invariant under transforma-
tions that preserve angles, which is equivalent to a local scaling. It is very
natural to study such symmetries, as many theories are classically con-
formal, such as φ4 theory, classical Yang-Mills in four dimensions and
even massless QCD. Conformal symmetry also plays a crucial role in
condensed matter physics, as critical phenomena are described by scale-
invariant systems where there is no correlation length. A characterisitic
feature of such theories is the power-law behaviour of their correlation
functions.

Another very important reason to study conformal symmetry is related
to the renormalization group flow. It is well understood that as one varies
the energy scale of a theory, the strength of its interactions changes
accordingly to its β-functions. The flow leads to fixed points where the
β functions vanish, corresponding to theories which are invariant under
scaling. If a theory has vanishing β funtions at any loop order, then it is
also conformal at the quantum level. There are many examples of such
theories, but here we shall focus our attention on N = 4 SYM in four
dimensions and ABJM in three dimensions.

2.1 Conformal Symmetry
Since conformal transformations preserve angles, they must leave the
metric gµν invariant up to a scalar factor

gµν
dx̃µ

dxα
dx̃ν

dxβ
= Ω2(x)gαβ . (2.1)

For the rest of the chapter, we will focus on spacetime dimensions higher
than two. It is possible to show that the infinitesimal form of a conformal
transformation is at most quadratic, more precisely of the form

xµ → x̃µ = xµ + aµ + λxµ + ωµνxν + x2bµ − 2(x · b)xµ . (2.2)

We can recognize aµ and the antisymmetric ωµν as the translation and
Lorentz symmetries that form the Poincaré group, present in all rela-
tivistic quantum field theories. The parameter λ corresponds to global
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dilations, and bµ is the parameter of the special conformal transforma-
tions, which can be understood as a composition of translations with the
inversion

xµ → xµ

x2
. (2.3)

The generators for translations, boosts, dilatations and special con-
formal transformations are denoted by Pµ, Lµν , D and Kµ, and their
action can be expressed through the differential operators

Pµ = −i∂µ , Lµν = i(xµ∂ν − xν∂µ) ,

D = −ixµ∂µ , Kµ = −2ixµ(x · ∂) + ix2∂µ . (2.4)

Given these expressions, one can derive the commutation relations of the
algebra. It is useful to organize the generators in the following way

Jµν = Lµν , J−1,µ =
1

2
(Pµ −Kµ) ,

J−1,0 = D , J0,µ =
1

2
(Pµ +Kµ) , (2.5)

so that we can recognize it as so(2, d), the Lie algebra associated to the
Lorentz group in R2,d

[Jmn, Jpq] = i(ηmqJnp + ηnpJmq − ηmpJnq − ηnqJmp) . (2.6)

This relabelling of the generators might look inocuous at first, but it will
turn out to be useful later when we introduce the embedding formalism.

2.1.1 State-Operator Map and Primary Fields
In quantum field theories, one has to choose a spacetime foliation in
order to quantize the theory. A standard approach is to choose equal-
time surfaces, and the map between the Hilbert spaces of those surfaces
is given by the action of the unitary operator eiHt. Given this choice
of foliation, the states are characterized by their energy and momenta.
However, it turns out that in conformal field theories there is a more
natural choice of foliations. We can gain some intuition by considering
the map from Rd to R×Sd−1, where we relate the radial coordinate with
the time coordinate τ on the cylinder

r = eτ . (2.7)

Equal time surfaces on the cylinder correspond to a radial foliation of
Rd, so the energy spectrum on the cylinder corresponds to the spectrum
of the dilatation operator on the plane. Quantization with this radial
foliation is usually denoted by radial quantization, and is more useful as
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it naturally describes operator insertions in conformal field theories. In
this case, states are described by their scaling dimensions

D|∆, l〉 = i∆|∆, l〉 . (2.8)

Since the generators of rotations on the sphere Sd−1 commute with the
dilatation operator, we also label states by their spin on the sphere

Lµν |∆, l〉 = Σµν |∆, l〉 , (2.9)

where the matrices Σµν act on the spin indices of the operator in ques-
tion. The unitary operator that maps equal-radii surfaces acts on states
as eiDτ |∆〉 = r−∆|∆〉.

Notice that moving towards the origin of the sphere corresponds to
approaching past infinity on the cylinder, so a state at a given radius is
created by the insertion of local operators at the origin. We then have
a state-operator correspondence, since the insertion of local operators
creates a state with definite scaling dimension

O∆(0)|0〉 → |∆〉 . (2.10)

It is easy to see that Pµ andKµ are raising and lowering operators as they
shift the scaling dimension of the state by +1 and −1 respectively. The
lowest weight of the representation, which is called a primary operator,
must therefore be annihilated by Kµ. The action of the generators on a
primary field is given by

[Kµ,O(0)] = 0 ,

[Pµ,O(0)] = −i∂µO(0) ,

[D,O(0)] = −i∆O(0) ,

[Mµν ,O(0)] = −iΣµνO(0) . (2.11)

The other states of the theory are the descendants, given by derivatives
of primary fields which can be created by acting with the translation
operator Pµ on the primary state. If the operator insertion is away
from the origin, then the state produced is a superposition of states with
different scaling dimensions, as can be seen easily from rewriting the
operator in the following manner

O(x) = eiP ·xO(0)e−iP ·x . (2.12)

Lastly, it is useful to note that one can extract bounds on the scaling
dimensions from unitarity considerations [15]. Seeing that time-reversal
on the cylinder corresponds to an inversion, it then follows that Kµ is
the hermitian conjugate of Pµ. For states to have positive norm, we need
the following matrix to be positive definite

〈∆, l|Kµ′Kν′PνPµ|∆, l〉 . (2.13)
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From this kind of considerations it is possible to derive the following
bounds on scaling dimensions of scalars and operators in symmetric
traceless representations of spin l

∆ ≥ d

2
− 1 , ∆l ≥ l + d− 2 . (2.14)

2.1.2 Correlation Functions
We now know from the previous discussion that a primary scalar field
must transform as

φ(x)→ φ̃(x̃) =

∣∣∣∣∂x̃∂x
∣∣∣∣−∆/d

φ(x) . (2.15)

It then follows that correlation functions of primary scalar operators
satisfy

〈O1(x̃1) . . .On(x̃n)〉 =

∣∣∣∣∂x̃∂x
∣∣∣∣−∆1/d

x1

. . .

∣∣∣∣∂x̃∂x
∣∣∣∣−∆n/d

xn

〈O1(x1) . . .On(xn)〉 ,

(2.16)
which imposes strong constraints on such correlators. For example, the
only non-vanishing one-point function is for the identity operator, which
has ∆ = 0. Meanwhile, for two-point functions it is sufficient to consider
behaviour under Poincaré transformations and dilatations to show that
they must obey

〈O1(x1)O2(x2)〉 =
δ∆1,∆2

(x1 − x2)2∆1
. (2.17)

For three-point functions it is necessary to also consider the transforma-
tion under inversion, from which we can then show that they are of the
following form [16]

〈O1(x1)O2(x2)O3(x3)〉 =
C123

|x1 − x2|2α3 |x1 − x3|2α2 |x2 − x3|2α1
, (2.18)

where we introduce αi = Σ−∆i, with Σ = 1
2

∑
i ∆i. With four external

points it is possible to form two independent conformally invariant cross
ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (2.19)

This implies that four-point functions are fixed only up to a function of
the cross ratios. Assuming all operators have scaling dimension ∆ we
then have

〈O1(x1) . . .O4(x4)〉 =
G(u, v)

|x1 − x2|2∆|x3 − x4|2∆
. (2.20)

14



2.1.3 Operator Product Expansion
The notion of operator product expansion appears already in quantum
field theories, as we can substitute a product of two local operators close
to each other by a sum of local operators. However, while that notion
is only asymptotic in QFT, in conformal field theories we do have a
convergent OPE, as can be seen from radial quantization. Consider for
example two operator insertions which create a state in a sphere around
them. This state can in turn be seen as an expansion over eigenstates of
the dilatation operator. Using the operator-state correspondence we then
conclude that the operator insertions can be substituted by an infinite
sum of primary and descendant operator insertions at the center of the
sphere. More explicitely, we have

O1(x)O2(0) =
∑
k

C12k|x|∆k−∆1−∆2 (Ok(0) + descendants) , (2.21)

where we sum only over the primary operators, while the contribution
of descendants is totally fixed by conformal symmetry. It can be shown
that the structure constants Cijk of the OPE decomposition correspond
exactly to the numeric coefficients of three-point functions. Meanwhile,
the convergence of the expansion depends on which correlation functions
we consider. The fact that they diverge as two operators approach each
other implies that the radius of convergence of the OPE is the distance
from the origin of the sphere to the closest operator in the correlation
function.

The fact that we have a convergent operator product expansion has
strong implications on the study of conformal field theories. Given any
higher-point function, we can perform OPEs until we are left only with
three operator insertions, which means that all the information from
those correlators is encoded in the spectrum of anomalous dimensions
and the set of structure constants of the theory. It is therefore possible
to compute any correlation function of local operators as long as those
two sets of numbers are known. However, in practice it might not be
feasible to perform all the necessary sums, so the study of higher-point
functions is also important.

2.1.4 Embedding Formalism
Let us finish this review of conformal symmetry with a brief explanation
of the embedding formalism. The tools used so far were sufficient for
the study of scalar correlation functions, but if one wants to classify
also the allowed tensor structures for correlators with spin [17–19], then
the embedding formalism provides the machinery required for a much
more efficient analysis. The crucial observation was made already in
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(2.6), where we saw that the conformal group SO(2, d) acts linearly on
an embedding space R2,d. Following the notations introduced in (2.5),
and introducing the coordinates XM for the space R2,d, the action of
conformal transformations on the embedding space is [20]

X̃M = ΛMNX
N . (2.22)

In order to relate this with the d-dimensional physics we have to get rid of
two degrees of freedom. First, we restrict to the null cone in embedding
space

X2 = 0 , (2.23)

and then we take a section of the cone parametrized by

X(x) = (X+, X−, Xµ) = (1, x2, xµ) , (2.24)

where the metric has a non-diagonal component η+− = −1/2 associated
to the light-cone coordinates.

Given the transformation rule (2.15) for primary fields in Rd, the
natural extension in embedding space is a homogeneity condition on the
fields

O(λX) = λ−∆O(X) . (2.25)

Let us now look at operators in a symmetric traceless representation,
for which this formalism becomes especially powerful. The fields on the
embedding space will also be in a symmetric traceless representation, but
once again we have to eliminate two of the degrees of freedom associated
to each index. First we will require the fields to be transverse

XMOM...(X) = 0 , (2.26)

and since we are working on the null cone X2 = 0, any component
proportional to XM projects to zero, so this gauge redundancy

OM...(X)→ OM... +XMf(X) (2.27)

reduces the number of degrees of freedom to what we need. Finally, we
obtain the physical operator with the following projection on the section

Oµ1...µn(x) =
∂XM1

∂xµ1
. . .

∂XMn

∂xµn
OM1...Mn(X)

∣∣∣∣
X(x)

. (2.28)

Notice that tracelessness of Oµ...ν follows simply from tracelessness of
OM...N .

Finally, since it is much easier to deal with polynomials than with
tensors, let us pick a reference polarization vector z for each symmetric
traceless field, and encode the operators by symmetric polynomials [21]

O(z) = Oµ1...µnz
µ1 . . . zµn |z2=0 . (2.29)
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To understand why we should restrict to the z2 = 0 surface, consider
two polynomials which are equal up to terms depending only on z2.
That means that the respective tensors are related up to δµiµj terms,
but that creates no ambiguity as the original tensor is obtained by the
action of a symmetric traceless projector, for which such terms vanish.
The action of the projector is obtained rather easily by applying the
following differential operator on the polynomial,

Dµ =

(
d

2
− 1 + z · ∂

∂z

)
∂

∂zµ
− 1

2
zµ

∂2

∂z2
. (2.30)

Going back to embedding space, the symmetric and traceless tensors are
encoded by the following polynomials

O(X,Z) = OM1...MnZ
M1 . . . ZMn

∣∣
Z2=0,Z·X=0

. (2.31)

Just like in (2.29), the resctriction to Z2 = 0 selects a representative for
the class of polynomials which are equal after application of a symmetric
traceless tensor. Meanwhile, the condition Z · X = 0 selects a repre-
sentative in the class of polynomials which are equal up to the gauge
redundancy of (2.27), while the transversality condition (2.26) takes the
form

X · ∂
∂Z
O(X,Z) = 0 . (2.32)

After we find the relevant polynomials in embedding space, we just need
to use the following prescription in order to go back to the physical space

O(x, z) = O(X(x), Z(x)) . (2.33)

The embedding space polarization is related to the physical polarization
in the following manner

Z(x) = (0, 2x · z, zµ) . (2.34)

At last, we can enumerate the tensor structures allowed by conformal
symmetry in three-point functions. It can be shown that all allowed
polynomials are [21]

Vi,jk =
(Zi ·Xj)(Xk ·Xi)− (Zi ·Xk)(Xj ·Xi)

Xj ·Xk
,

Hij = (Zi · Zj)(Xi ·Xj)− (Xi · Zj)(Xj · Zi) . (2.35)

We conclude that there are six building blocks, since Vi,jk = −Vi,kj
and Hij = Hji, with i 6= j, k. Three-point functions of operators in
symmetric traceless representations are given by a sum over all possible
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polynomials one can form with those six structures

〈O1O2O3〉 =

∑
nij ,mi

C123({nij},mi)
∏
i V

mi
i

∏
i<j H

nij
ij

(X1 ·X2)
τ1+τ2−τ3

2 (X1 ·X3)
τ1+τ3−τ2

2 (X2 ·X3)
τ2+τ3−τ1

2

,

(2.36)
where τi = ∆i + Si and Si is the spin of the operator Oi. The sum is
over all nij and mi that satisfy

mi +
∑
j 6=i

nij = Si . (2.37)

2.2 N = 4 SYM
Maximally super-symmetric Yang-Mills theories were originally intro-
duced by dimensionally reducing N = 1 Yang-Mills in ten dimensions
[22]. In this section we will consider the four dimensional theory with
N = 4 supersymmetry, which preserves all sixteen Poincaré supersym-
metries and has in addition sixteen charges more due to conformal in-
variance . One of the reasons this theory has been so thoroughly studied
is the fact that it also describes a stack of N D3-branes in string theory,
which was later discovered to be equivalent to the propagation of type
IIB closed strings in an AdS5×S5 background [5]. Furthermore, the the-
ory seems to be invariant under an infinite tower of hidden symmetries,
which make it integrable.

2.2.1 Field Content
The fields of the theory are the gauge bosons Aµ, six real scalars φIJ ,
four chiral fermions ψIα and four anti-chiral fermions ψ̄α̇I . The fields are
all massless and transform in the adjoint of the SU(N) gauge group. For
a gauge transformation U the transformation rules are

φIJ → UφIJU
† , Aµ → UAµU

† − iU∂µU† ,
ψIα → UψIαU

† , ψα̇I → Uψα̇IU
† . (2.38)

The scalar fields also transform in a six-dimensional representation of
the SU(4) R-symmetry group, while the chiral and anti-chiral fermions
transform in the fundamental and anti-fundamental representations re-
spectively.

The action of the theory is

S =
1

g2
YM

∫
d4x(Lk − V ) , (2.39)
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where the kinetic terms for the gauge field, scalars and fermions are given
by

Lk = Tr

[
−1

4
FµνF

µν +
1

4
(DµφIJ)(DµφIJ)− iψ̄α̇I /D

α̇α
ψIα

]
, (2.40)

and the interaction terms are

V = Tr

[
ψαI [ψJα, φIJ ] + ψ̄α̇I [ψ̄α̇J , φ

IJ ]− 1

4
[φIJ , φKL]2

]
. (2.41)

The action of the covariant derivative on a field χ is the usual

Dµχ = ∂µχ− i[Aµ, χ] . (2.42)

It is useful to relabel the scalar fields as three complex scalars

Z = φ12 , X = φ13 , Y = φ14 ,

Z̄ = φ34 , X̄ = φ42 , Ȳ = φ23 . (2.43)

The supersymmetry of the theory relates all couplings to gYM, so it is
enough to study its behaviour under the renormalization group flow of
gYM. One can see that at one loop the number of scalars and fermions
conspires such that one obtains a vanishing β-function. One can also see
that conformal symmetry is preserved at the quantum level, by realizing
that the Lagrangian belongs to a supermultiplet of protected operators.
That means its dimension stays constant, which implies that the Yang-
Mills coupling is invariant under rescaling. Said in another way, the
β-function must vanish at all loop orders and we see that the power-
ful constraints imposed by supersymmetry make sure that the theory
remains conformal at the quantum level [23].

2.2.2 Superconformal Algebra
As a conformal field theory, N = 4 SYM is invariant under the SO(2, 4)
conformal group in four dimensions. The Lorentz part of the algebra is
so(1, 3) ∼= su(2)× su(2), so we can write the Lorentz boosts as two sets
of traceless generators

L β
α , L̇ β̇

α̇ , (2.44)

corresponding to the two independent su(2) algebras. The conformal
algebra is comprised by the dilatation operator D, translations Pµ and
special conformal generators Kµ, which we rewrite in the following way

Pαα̇ = γµαα̇Pµ , Kα̇α = γα̇αµ Kµ . (2.45)

with γµ the off-diagonal blocks of the gamma matrices in four dimen-
sions. The bosonic algebra is complemented by the global R-symmetry
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transformations SO(6) ∼= SU(4), which are generated by fifteen opera-
tors R J

I , with R I
I = 0.

Finally, N = 4 SYM is a maximally superconformal gauge theory,
so there are also thirty two fermionic generators. Just as Pµ and Kµ

are raising and lowering operators in the conformal algebra, we can also
separate the fermionic generators in two sets. By looking at the com-
mutation relations, we realize the existence of sixteen generators which
raise the dimension of an operator by 1/2, which we call supercharges

QαI , Q̇Iα̇ , (2.46)

as well as sixteen superconformal charges wich lower the dimension of
operators by 1/2

SIα , Ṡα̇I . (2.47)
Just like in conformal fields theories we define conformal primaries as
the lowest weight states. Here we say an operator O is a superconformal
primary if it is annihilated by all superconformal charges

[SIα,O] = [Ṡα̇I ,O] = 0 . (2.48)

Both the spinor indices α and α̇ as well as the R-symmetry indices are
the same that label the Weyl fermions of the theory, with Q̇ and S trans-
forming in the fundamental of SU(4), while Q and Ṡ transform in the
anti-fundamental representation. It can be shown from the commuta-
tion relations of the superalgebra that a superconformal primary is also
a conformal primary. Finally, by looking at the commutation relations
for all the generators mentioned above, it is possible to recognize they
form the psu(2, 2|4) superalgebra.

2.2.3 Representations
Primary operators and their descendants form irreducible representations
of the algebra, which are infinite-dimensional due to its non-compact na-
ture. In general we organize representations into modules which are
closed under the action of the bosonic algebra, su(2|2)×su(4), and char-
acterized by the charges of the bottom component under the Cartan
generators. We can relate the modules of the representation by the ac-
tion of QαI and Q̇Iα̇, which means that a typical representation has 216

such modules.
However, whenever the lowest weight is also annihilated by some of

the supercharges, the number of modules is smaller and we say we have a
short representation. An important case we need to consider in detail is
the half-BPS representation V with lowest weight Z, which is annihilated
by half of the supercharges

Qα1 , Qα2 , Q̇3
α̇ , Q̇4

α̇ . (2.49)
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In the decomposition of the tensor product V⊗L there is a symmetric
representation, whose lowest weight is given by the following single-trace
operator

Tr[ZL] . (2.50)

These operators are still annihilated by half the supercharges, and we call
them chiral primaries. It can be shown from the commutation relations
of the algebra that their scaling dimension is related to the Dynkin label
of its SU(4) representation [0, J, 0]

∆ = J . (2.51)

Since the R-charge must be an integer, then the scaling dimension can-
not vary continuously, which means that the representation is protected
from quantum corrections. If we set J = 2, we obtain a very special
supermultiplet as it contains both the Lagrangian of the theory as well
as the stress-energy tensor and other conserved currents. The fact that
the Lagrangian is the top component of this protected multiplet implies
that the theory is conformal at the quantum level.

2.2.4 Planar Limit and AdS/CFT
If we look at the Feynman diagrams for correlation functions, it is natural
to organize them by powers of 1/N , which is equivalent to grouping them
by their topology. It is then natural to take the planar limit of large N ,
where processes are dominated by planar diagrams. By sending the
Yang-Mills coupling to a very small value, we obtain a new expansion
parameter that is fixed in the planar limit, the ’t Hooft coupling [2]

λ = g2
YMN . (2.52)

N = 4 SYM is the world-volume low energy theory of a stack of D3-
branes, which is equivalent to the propagation of type IIB closed strings
in an AdS5 × S5 background. The parameters of the two sides of this
duality relate in the following way

gs =
λ

N
,

R2

α′
=
√
λ . (2.53)

where R is the radius of both AdS and the five-sphere. In the planar
limit the string coupling goes to zero, so we eliminate processes where
strings split or join, which means we restrict to the first term in the genus
expansion of string theory. It is also very important to note that this
is a weak-strong duality, as the weakly coupled regime of N = 4 SYM,
with small λ, corresponds to strings with small tension, while at strong-
coupling the string tension is very large and the string theory becomes
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classical. On one hand this kind of duality is difficult to check since one
needs to perform calculations to all orders in perturbation theory on one
side of the duality if one hopes to obtain a match. On the other hand,
it becomes extremely powerful since it teaches us both about strongly
coupled gauge theories and quantum gravity.

It is possible to formulate superstring theory in such a background by
writing it as sigma-model on the following coset

PSU(2, 2|4)

SO(1, 4)× SO(5)
. (2.54)

The bosonic part of PSU(2, 2|4) gives the isometries of AdS5×S5, while
SO(1, 4)×SO(5) corresponds to the set of transformations that leaves a
point invariant. The algebra psu(2, 2|4) has a Z4 automorphism, which
introduces a grading of the algebra currents

j = g−1dg = j(0) + j(1) + j(2) + j(3) , (2.55)

where g is a group element of PSU(2, 2|4). The superstring action is
then written as [24]

S =

√
λ

4π

∫
STr

[√
−hhαβj(2)

α j
(2)
β − ε

αβj(1)
α j

(3)
β + εαβΛαj

(2)
β

]
, (2.56)

where the last term in the action is a Lagrange multiplier that ensures
supertracelessness of j(2).

2.2.5 From Local Operators to Spin-chains
In the context of this thesis we will consider only correlation functions
of local observables. In order for these local observables to be gauge
invariant, they must be constructed from traces which contract the gauge
indices. The fields inside the trace can be any scalar, fermion or even field
strength Fµν , and they each can have any number of covariant derivatives
Dµ. A local observable is an operator composed of any number of such
traces, but we can restrict our attention to single-trace operators since
mixing with multi-trace operators in suppressed in the planar limit.

A useful way to study such class of operators is by thinking of them
as spin-chains. The idea is that a trace with L fields can be mapped into
a tensor product of L Hilbert spaces [10]

V1 ⊗ . . .⊗ VL , (2.57)

where on each site V is the fundamental representation of PSU(2, 2|4).
When considering the map between single-trace operators and spin-
chains, it is important to remember that the cyclicity of the trace results
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in a shift symmetry of the chain. In the computation of the spectrum,
we must renormalize the operators and then diagonalize the resulting
mixing matrix, which corresponds to the spin-chain Hamiltonian. The
eigenstates of the spin-chain then correspond to operators with definite
scaling under dilatations, and their eigenvalues are the anomalous di-
mensions. Since the interaction terms in the Lagrangian are at most
quartic, the one-loop dilatation operator is given by a spin-chain Hamil-
tonian with nearest neighbour interactions. However, as we go to higher
loops we obtain a long-range spin-chain.

The ground state of the Hamiltonian corresponds to the protected
operators

Ogs = Tr[ZL] , (2.58)

which break the PSU(2, 2|4) symmetry to SU(2|2)L ⊗ SU(2|2)R. Two
of the bosonic su(2) factors are the Lorentz generators L β

α and L̇ β̇
α̇ .

Meanwhile, for Z = φ12 it is easy to see that the only R-symmetry
generators that annihilate the vacuum are the ones corresponding to
transformations in the (12) or (34) R-symmetry planes. That means that
the R-symmetry algebra breaks to su(2)× su(2)× u(1) with generators

R b
a , Ṙ ḃ

ȧ , J =
1

2
(R 1

1 +R 2
2 −R 3

3 −R 4
4 ) , (2.59)

where we introduce new indices a and ȧ, which correspond to the original
R-symmetry indices I = 1, 2 and I = 3, 4, respectively. In that language,
the supercharges that annihilate the ground state (2.49) can be written as
Qαa and Q̇ȧα̇. Finally the residual algebra closes with the superconformal
generators Saα and Ṡα̇ȧ.

It turns out that not all fields correpond to elementary excitations of
the spin-chain. To find out what are the elementary excitations we have
to look at the charges

E = ∆− J , (2.60)

under the generator of u(1)E , which is a central element common to both
factors of the residual symmetry su(2|2)L ⊗ su(2|2)R. We can see that
the elementary excitations form an (2|2)L ⊗ (2|2)R representation with
sixteen degrees of freedom ΦAȦ, which have the following components

Φaȧ = φaȧ , Φaα̇ = ψα̇,a ,

Φαα̇ = Dαα̇ , Φαȧ = ψȧα . (2.61)

Other fields that can appear in the single-trace operators show up in the
spin-chain as composite excitations. For example, Z̄ corresponds to a
double excitation

Z̄ ∼ εabεȧḃΦaȧΦbḃ ∼ XX̄ + Y Ȳ . (2.62)
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The sites of the spin-chain transform in general in the fundamental
representation of psu(2, 2|4). It is however possible to consider subsets of
fields which are closed under the action of the dilatation operator, which
we call closed sectors. There are several closed sectors we can consider
at one-loop, from the SU(2) Heisenberg spin-chain with excitation X, to
the mixing between all the scalars in the SO(6) sector, or the SU(1|1)
sector with a fermionic excitation. However, at higher loops only a few
of the closed sectors survive, with the rank one cases being SU(2) and
SL(2). The larger sector SU(2|3) is also closed to all orders in perturba-
tion theory, and corresponds to a spin-chain with three bosons and two
fermions. Note that the mixing between fermions and bosons leads to
a variation in the number of fields inside the trace, so we say that the
spin-chain of N = 4 SYM is dynamical.

2.3 ABJM
Another example of an integrable CFT which has played a very impor-
tant role in the study of AdS/CFT is ABJM theory. It originated from
the discovery of an N = 8 superconformal theory in three dimensions de-
scribing the world-volume theory of two interacting M2-branes [25–27].
The naive Chern-Simons term of the action is not parity invariant, as
one would expect from eleven-dimensional supergravity, but this prob-
lem is solved by taking the gauge group to be a product U(N)× Û(N)
with two Chern-Simons terms of levels k and −k. ABJM generalizes
the construction to more than two branes, but preserves only N = 6
supersymmetry, except for Chern-Simons level k = 1, 2 when there is
an enhancement to N = 8 [28]. If the two factors in the gauge group
are different, then we end up with ABJ theory [29], where the presence
of integrability is still an open problem. From the open/closed string
duality, the stack of branes in the near-horizon limit is equivalent to the
propagation of closed strings in the orbifold background AdS4 × S7/Zk.
Taking k large the circle effectively shrinks and we can instead describe
the system with type IIA strings in AdS4 × CP3.

2.3.1 Field Content
The gauge fields corresponding to the two Chern-Simons terms are Aµ
and Âµ, which transform in the adjoint of the respective gauge groups.
There are also four complex scalars Y I and four Dirac fermions ψαI
which transform in the bifundamental representation (N, N̄) of the gauge
group, while their complex conjugates transform in the anti-bifundamental
representation (N̄ ,N). A gauge transformation for such a gauge group
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is given by (U, Û), under which the fields transform as

Y I → UY IÛ† , Aµ → UAµU
† − iU∂µU† ,

ψαI → UψαIÛ
† , Âµ → Û ÂµÛ

† − iÛ∂µÛ† . (2.63)

The scalars Y I transform in the fundamental representation of the SU(4)
R-symmetry, while the fermions transform in the anti-fundamental rep-
resentation, and vice-versa for their complex conjugates.

The action of the theory is

S =
k

4π

∫
d3x(Lk − Vbos − Vferm) , (2.64)

where Lk has the kinetic terms for the gauge fields, scalars and fermions

Lk = Tr

[
εµνλ

(
Aµ∂nuAλ +

2i

3
AµAνAλ

)
− (DµY

I)(DµY
†
I )

−εµνλ
(
Âµ∂nuÂλ +

2i

3
ÂµÂνÂλ

)
− iψI† /DψI

]
, (2.65)

and the interaction terms are

Vferm =
i

2
Tr
[
Y †AY

Aψ†BψB − Y AY †AψBψ
†B + εABCDY

Aψ†BY Cψ†D

−εABCDY †AψBY
†
CψD + 2Y AY †BψAψ

†B − 2Y †AY
Bψ†AψB

]
,

Vbos = − 1

12
Tr
[
Y IY †I Y

JY †J Y
KY †K + Y †I Y

IY †J Y
JY †KY

K

+4Y IY †J Y
KY †I Y

JY †K − 6Y IY †J Y
JY †I Y

KY †K

]
. (2.66)

The action of the covariant derivative on a bifundamental field χ is

Dµχ = ∂µχ+ iAµχ− iχÂµ . (2.67)

As is well known, the Chern-Simons term is not gauge invariant, but
changes by an integer multiple of 2πk under a gauge transformation.
For the theory to be gauge invariant, the path integral must be gauge
invariant which leads to a quantization condition for k

k ∈ Z . (2.68)

This has strong implications on the quantum behaviour of the theory.
ABJM is classically conformal, but as the energy scale varies, the cou-
plings could in principle vary as well. However, since k must be an inte-
ger, it cannot vary continuously with the energy, which means that the
coupling is protected from renormalization. Since all other couplings are
related to k due to supersymmetry, then the theory remains conformal
at the quantum level.
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2.3.2 Superconformal Algebra
As a three-dimensional conformal field theory, ABJM is invariant un-
der the conformal group SO(2, 3) ∼= Sp(4,R). The Lorentz algebra is
so(1, 2) ∼= sl(2,R), so we write it with the usual traceless generators L β

α .
The rest of the algebra is composed by D, translations Pµ and special
conformal generators Kµ, which we rewrite in a more convenient way

Pαβ = (CΓµ)αβPµ , Kαβ = (CΓµ)αβKµ , (2.69)

with C the charge conjugation matrix and Γµ the Dirac matrices in three
dimensions. The rest of the bosonic algebra is given by the generators
of the global SU(4) R-symmetry, which we write with R J

I as in N = 4
SYM.

A natural choice for the Cartan generators of su(4) is

J =
1

2
(R 2

2 −R 3
3 ) , J̇ =

1

2
(R 1

1 −R 4
4 ) , J3 = R 1

1 −R 2
2 −R 3

3 +R 4
4 .

(2.70)
This is convenient as later on the R-symmetry algebra will be broken into
an su(2)G × su(2)Ġ × u(1) subgroup, with J and J̇ the Cartan charges
of the su(2) factors formed by R b

a and R ḃ
ȧ , where a and ȧ correspond

to I = 2, 3 and I = 1, 4 respectively. Meanwhile, J3 will turn out to be
useful for distinguishing the two types of excitations in the spin-chain
picture. The relation of these charges with the Dynkin labels [p1, q, p2]
is

J =
p1 + q + p2

2
, J̇ =

q

2
, J3 = p1 − p2 . (2.71)

Finally, ABJM is also invariant under the action of twenty four su-
persymmetries. Once again, half of them are are raising operators, the
supercharges Qα,IJ , while the superconformal generators Sα,IJ corre-
spond to lowering operators. Since a superconformal primary O is a
lowest weight of the representation, then it must satisfy

[Sα,IJ ,O] = 0 . (2.72)

The spinor indices are the same that label the Dirac fermions, but the
fermionic generators have antisymmetric R-charge indices, so they trans-
form in a six dimensional representation of the R-symmetry group. If
we put all the commutation relations of these generators together, we
obtain the superalgebra osp(6|4,R).

2.3.3 Representations
The representations of the superalgebra are infinte-dimensional and we
organize them in modules which are closed under the bosonic subalgebra
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so(2, 3) × su(4). Each module is characterized by the Cartan charges
of the bottom component: scaling dimension ∆, Lorentz spin S, and
R-charges J , J̇ and J3 . The modules can be related to each other
by the action of the supercharges Qα,IJ , which means that a typical
representation will have 212 such modules.

Let us now look at some of the most relevant short representations.
We have the representation V with lowest weight Y 4 and V̄ whose lowest
weight is the scalar Y †1 . They are both half-BPS representations as they
are annihilated by half the supercharges

V : Qα,12 , Qα,13 , Qα,23 ,

V̄ : Qα,12 , Qα,13 , Qα,14 . (2.73)

If we combine these representations together in the tensor product (V ⊗
V̄)⊗L, there is an L-symmetric representation in its decomposition whose
lowest weight corresponds to the following single-trace operator

Tr[(Y 4Y †1 )L] . (2.74)

These are 1/3-BPS operators since there are only four supercharges that
annihilate both V and V̄ at the same time

Qα,12 , Qα,13 . (2.75)

These operators are commonly known as chiral primaries, and their su(4)
Dynkin labels are [J̇ , 0, J̇ ], with J̇ the R-charge under su(2)Ġ. By look-
ing at the superconformal algebra we can derive a relation between the
scaling dimension and the R-charge of the chiral operators

∆ = J̇ = L , (2.76)

which protects these short multiplets from quantum corrections to their
scaling dimensions.

2.3.4 Planar Limit and AdS/CFT
Also in ABJM we can organize Feynman diagrams by powers of 1/N ,
so in the planar limit correlation functions are dominated by planar
diagrams. Since k appears as an overall factor in front of the action,
we can then see 1/k as a coupling constant. In the planar limit the
expansion parameter is the ’t Hooft coupling [2]

λ =
N

k
, (2.77)

which remains fixed if we take k to also be very large. As menioned
above, ABJM has an AdS4 × CP3 dual in type IIA string theory, so we
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can relate its parameters with the string tension and string coupling

gs =
λ5/4

N
,

R2

α′
= 4π

√
2λ , (2.78)

with R the radius of the compact manifold CP3, which is twice the radius
of AdS. Just like for N = 4 SYM, we have once again a weak-strong
duality. As we take λ to be small, where ABJM is weakly coupled, the
string background becomes highly curved and the string worldsheet is
strongly coupled. When λ is large, we have strongly-coupled ABJM and
semi-classical strings. Note that in the planar limit strings become free,
so it is enough to take the first term in the genus expansion, with the
topology of the sphere.

The superstring action in that background can be written as a sigma
model on the supercoset

OSp(6|4)

SO(1, 3)× U(3)
. (2.79)

The algebra osp(6|4,R) has a Z4 automorphism which introduces a nat-
ural grading for the algebra currents

j = g−1dg = j(0) + j(1) + j(2) + j(3) , (2.80)

where g is an element of the group OSp(6|4,R). These currents are then
used to write the action [30,31]

S = −
√

2λ

∫
d2zSTr

[√
−hhαβj(2)

α j
(2)
β + εαβj(1)

α j
(3)
β

]
. (2.81)

Note that in ABJ we have two ’t Hooft couplings λ and λ̂ related to the
two limits for the different ranks of the gauge group factors. The theory
is unitary when |N − N̂ | ≤ k which in the planar limit corresponds to
|λ− λ̂| ≤ 1.

2.3.5 Alternating Spin-chains
In our study of ABJM we will only consider correlation functions of
local observables. In order to be gauge invariant, they must be made of
a product of traces which contract the gauge indices. Given the structure
of the gauge group, the fields inside the trace must alternate between the
bifundamental and the anti-bifundamental representations.

As with N = 4 SYM, it is useful to think of single-trace operators as
spin-chain states, which are also alternating due to the product nature
of the gauge group and the representations of the matter fields. In or-
der to solve the mixing problem for the spectrum, we must diagonalize
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the spin-chain Hamiltonian [11]. It turns out that in three dimensions
only integrals with even number of loops have ultraviolet divergences,
so the expansion of ABJM is in powers of λ2. The two-loop spin-chain
Hamiltonian has next-to-nearest neighbour interactions which include
the six-boson interaction, and the range of interaction increases as we
consider higher loops.

The ground state of the ABJM spin-chain is the protected operator
introduced earlier

Ogs = Tr[(Y 4Y †1 )L] , (2.82)

which breaks the symmetry to su(2|2)×u(1) [32]. One of the su(2) factors
corresponds to the Lorentz generators, while there is an su(2) × u(1)
parametrized by (R b

a , R) which is preserved in the breaking of the R-
symmetry to su(2)G × su(2)Ġ × u(1)

R J
I −→ R b

a +R ḃ
ȧ +R ḃ

a +R b
ȧ +R . (2.83)

The indices a and ȧ correspond to the original R-symmetry indices I =
2, 3 and I = 1, 4 respectively. Under the breaking of the R-symmetry
the fermionic generators decompose as

Qα,IJ −→ Qaȧα +Qα + Q̄α ,

Sα,IJ −→ Sαaȧ + Sα + S̄α . (2.84)

In this language, the supercharges that annihilate the ground state (2.75)
are written as Qa1̇

α and finally the algebra closes with the superconformal
generators Sα

a1̇
.

Other single-trace operators can be built by replacing some of the fields
in the trace, but not all correspond to elementary excitations in the spin-
chain picture. The elementary excitations can be found by looking at
the charges under the bosonic generator D − J̇ of u(1)E , where J̇ is the
Cartan generator of su(2)Ġ. They transform as (2|2)A ⊕ (2|2)B, where
the two fundamental representations of su(2|2) have opposite charges J3

under u(1). We denote the A and B fundamental representations by ΦA
and Φ̇Ȧ repectively, and they correspond to the fields

ΦA =(Y 3,−Y 2|ψα1) ,

Φ̇Ȧ =(Y †2 , Y
†
3 |ψ†4α ) . (2.85)

If the single-trace operator has excitations other than these fundamental
ones, then they correspond to composite excitations. For example, the
scalars Y 1, Y †4 and the derivatives Dµ are made up of the following
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fundamental excitations [33]

Y 1Y †1 ∼ Y 2Y †2 + Y 3Y †3 ,

Y 4Y †4 ∼ Y 2Y †2 − Y 3Y †3 ,

DµY
4Y †1 ∼ ψα1(CΓµ)αβψ†4β . (2.86)

In a similar manner, one can see that ψα2, ψ†2α , ψα3 and ψ†3α are double-
excitations while ψα4 and ψ†1α are triple excitations.

Finally, the spin-chain sites transform in a representation of osp(6|4,R),
but it is often easier to study a set of fields which is closed under the
action of the spin-chain Hamiltonian. Given the choice of vacuum we
have made, the simplest closed sectors are the rank one groups SU(2)
and SU(1|1). The first is composed of a single scalar excitation on ei-
ther the even or the odd sites, while the second corresponds to a single
fermionic excitation. A good playground for the study of integrability
in ABJM is usually the SU(2) × SU(2) sector, as it has excitations in
both even and odd sites of the spin-chain while being simple enough due
to the fact that the excitations are decoupled. Just like in N = 4 SYM,
one could also consider the sector of scalar fields, but this is only closed
at two loops.
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3. Superstring Theory

String theory originated as a proposal for a theory of hadrons, but it
was discarded after the appearance of QCD. Interestingly, the presence
of a spin two excitation, one of the reasons for its failure as a theory of
the strong force, was crucial to turn it into a candidate for a theory of
quantum gravity. In string theory the basic object is a one-dimensional
string that spans a two-dimensional worldsheet in spacetime. String
interactions are given by joining and splitting of strings, and the fact
that they do not single out a point in spacetime makes it free of short
distance divergences. Another feature that makes it so compelling is that
unlike quantum field theory, each order in perturbation theory is given
by a single worldsheet topology.

Even if string theory does not turn out to be the correct theory of
quantum gravity, it is undeniable that it has had a huge impact in the-
oretical physics. One such example is the AdS/CFT duality discovered
by Maldacena [5], in which string theories in AdSd+1 spaces were found
to be dual to conformal field theories in d dimensions. This provides
an excellent framework for the study of strongly coupled gauge theories
and several observables like amplitudes, correlation functions and Wil-
son loops can now be computed to all orders in perturbation theory, at
least in the planar limit.

In the context of this thesis, superstring amplitudes are important
because they are dual to correlation functions of conformal field theories.
In this chapter we introduce superstring theory in flat space as well as
the vertex operators necessary for the study of three-point functions in
N = 4 SYM at strong coupling. In the treatment of the superstring we
will mostly follow the conventions of [34,35].

3.1 Wolrdsheet CFTs
The coordinates of the two-dimensional worldsheet spanned by the string
are the proper time σ0 and the spacial coordinate σ1

∼= σ1+2π. Switching
to Euclidean signature, we can form two new variables w = σ1−iσ0 and
w̄ = σ1 + iσ0, which parametrize the cylinder formed by the worldsheet.
It is however useful to use a conformal map z = eiw, so that the string
worldsheet is parametrized by the complex plane, where we can use the
tools of complex analysis.
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3.1.1 Conformal symmetry in two dimensions
We will see later that the worldsheet theory is superconformal, so let us
first introduce the basic tools for conformal field theories in two dimen-
sions. In chapter 2 we mentioned that an infinitesimal conformal trans-
formation has at most quadratic terms. However, in two dimensions that
is not true, and any holomorphic or anti-homorphic transformation

z → f(z) , z̄ → g(z̄) , (3.1)

is conformal. The stress-energy tensor must be traceless and if the theory
is also supersymmetric, then there is a gamma-traceless supercurrent Gµ

Tµµ = 0 , ΓµαβGµβ = 0 . (3.2)

In two dimensions, we can then see that there are only two non-vanishing
components for each of them. Furthermore, the conservation laws show
that the two non-vanishing components must be either holomorphic or
anti-holomorphic.

If an operator is a primary, then under a conformal transformation it
obeys

φ(z, z̄)→
(
∂f

∂z

)h(
∂̄f̄

∂̄z̄

)h̄
φ(z, z̄) , (3.3)

where the two weights h and h̄ can be related to the dimension and spin
of the operator

∆ = h+ h̄ , S = h− h̄ . (3.4)

From the transformation rule, we can show that a Fourier series of an
holomorphic operator on the cylinder becomes a Laurent expansion on
the plane, shifted by the weight of the operator

φ(z) =
∑
n

φnz
n−h . (3.5)

In radial quantization the action of the charges on the fields is given
by the countour integral

[Q,φ(z)] =

∮
z

dw

2πi
χ(w)T (w)φ(z) . (3.6)

We can then derive the leading singularities in the OPE of the stress-
energy tensor with primary fields to be

T (z)φ(w) =
hφ(w)

(z − w)2
+
∂φ(w)

z − w
+ . . . . (3.7)
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One can also show that the stress-energy tensor and the supercurrent
must have the following OPEs

T (z)T (w) =
c

2(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . . ,

T (z)G(w) =
3G(w)

2(z − w)2
+
∂G(w)

z − w
+ . . . ,

G(z)G(w) =
2c

3(z − w)3
+

2T (w)

z − w
+ . . . , (3.8)

where c is the central charge of the CFT. These equations show that the
stress-energy tensor is not a primary operator, while the supercurrent is.
The mode expansions of the currents are

T (z) =
∑
n

Lnz
n−2 , G(z) =

∑
r

Grz
r−3/2 ,

T̃ (z̄) =
∑
n

L̃nz̄
n−2 , G̃(z̄) =

∑
r

G̃rz̄
r−3/2 , (3.9)

where n ∈ Z for the stress-energy tensor, while for the supercurrent r
could be either integer of half-integer. By putting together the OPE
relations (3.8) and the expansions (3.9), we can derive the commutation
relations of the superconformal algebra in two dimensions

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n ,

[Lm, Gr] = (
m

2
− r)Gm+r ,

[Gr, Gs] = 2Lr+s +
c

12
(4r2 − 1)δr,−s . (3.10)

This algebra is called super-Virasoro, and there is a similar copy for the
anti-holomorphic currents.

3.1.2 The string matter sector
The string propagates in a spacetime described by the coordinates XM .
Just like for particles the action is the worldline length, here it is natural
to introduce the Nambu-Goto action, which minimizes the worldsheet
surface

SNG =
1

2πα′

∫
d2σ

√
−det γ , (3.11)

where the prefactor is interpreted as the string tension and γ is the
induced metric on the worldsheet

γab =
∂XM

∂σa
∂XN

∂σb
ηMN . (3.12)
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The square root in the action is not very compelling, so we introduce the
Polyakov action, whose linearity in the target-space coordinates comes
with an independent field for the worldsheet metric hab

SP =
1

4πα′

∫
d2σ
√
−hhab∂aXM∂bX

MηMN . (3.13)

The equation of motion for hab shows that it is proportional to the
induced metric, which means that the equations of motion for XM are
exactly the same as the ones obtained from the Nambu-Goto action.

The Polyakov action enjoys several symmetries. On one hand there
are the global Poincaré transformations of the fields XM . But there are
also local symmetries: the action is invariant under worldsheet diffeo-
morphisms and local rescalings (also known as Weyl transformations)

σa → σa + ξa(σ) ,

hab → eφ(σ)hab . (3.14)

The worldsheet metric hab has three degrees of freedom, but we can use
the local symmetries to select a conformal gauge for the metric

hab = ηab . (3.15)

By computing the variation of the action to a perturbation of the world-
sheet metric we obtain the stress-energy tensor. Imposing the equations
of motion on hab is then equivalent to requiring the vanishing of the
stress-energy tensor.

It is also important to note that even after fixing the worldsheet met-
ric, there is still a residual gauge symmetry. By introducing the complex
coordinates z and z̄ from the previous discussion, we can see that the
residual symmetry is composed of holomorphic and anti-holomorphic
transformations, so it corresponds to the group of conformal transforma-
tions in two dimensions. Unlike the higher-dimensional cases studied in
the previous chapter, this group is now infinite dimensional.

If we want our string theory to have fermionic excitations in its spec-
trum, then we must modify the Polyakov action. There are several ways
to do so, but here we will take the RNS approach to the superstring. We
shall then supplement the Polyakov action with two new ingredients: the
anticommuting Dirac spinor ΨM , which transform as a spacetime vector,
and a world-sheet gravitino χ. We can also use worldsheet supersymme-
try to fix the gravitino degrees of freedom, and the gauge fixed action
simplifies to

Sm =
1

4π

∫
d2z

(
2

α′
∂XM ∂̄XM + ψM ∂̄ψM + ψ̃M∂ψ̃M

)
, (3.16)

34



with ψ and ψ̃ the components of the Dirac spinor in the Majorana-Weyl
basis. The equations of motion for the matter fields are

∂∂̄XM = 0 , ∂̄ψM = 0 , ∂ψ̃M = 0 , (3.17)

which imply that the they also split into two parts: ∂XM and ψM are
holomorphic while ∂̄XM and ψ̃M are anti-holomorphic. The first two
are usually called right-moving fields while the later are left-moving.

3.1.3 The string ghost sector
The previous discussion did not take into account that we also have to
perform a path integral over the matter fields and the worldsheet metric.
After gauge fixing we integrate over a slice that cuts once through each
equivalence class. We must determine the measure of that integration,
which can be done with the Faddeev-Popov method. The inverse of the
Faddeev-Popov determinant is given by

1

∆[h]
=

∫
DφDξDµ exp

(∫
d2z
√
|h|µab(φhab +∇aξb)

)
. (3.18)

We can integrate out the Weyl parameter φ, which forces µab to be
traceless. By substituting the parameters µab and ξa by anti-commuting
ghost fields b and c, we then obtain the Fadeev-Popov determinant. We
should follow the same logic and fix the worldsheet supersymmetries
arising in the superstring, which leads us to introduce a pair of bosonic
ghosts, β and γ. Finally, in the conformal gauge these determinants can
be expressed through the ghost action

Sgh =
1

2π

∫
d2z (b∂̄c+ b̃∂c̃+ β∂̄γ + β̃∂γ̃) . (3.19)

Just like for the matter sector, the equations of motion are

∂̄b = 0 , ∂b̃ = 0 , ∂̄c = 0 , ∂c̃ = 0 ,

∂̄β = 0 , ∂β̃ = 0 , ∂̄γ = 0 , ∂γ̃ = 0 , (3.20)

which imply that b, c, β and γ are holomorphic while b̃, c̃, β̃ and γ̃ are
anti-holomorphic.

There are two further complications that we ignored in the previous
discussion. The first concerns the parameters of the metric that cannot
be removed using diffeomorphisms and Weyl invariance, called metric
moduli. For the sphere there are no such moduli, but the torus has a
complex modulus τ since we can at best bring the metric to the form

ds2 = |dσ0 + τdσ1|2 . (3.21)
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The other issue is related to the conformal Killing group, when there
are global symmetries that are not fixed by the choice of the metric.
For example in the sphere there are six conformal Killing vectors, with
infinitesimal transformations labeled by three complex parameters

δz = a0 + a1z + a2z
2 , (3.22)

which exponentiate to the PSL(2,C) group. The Riemann-Roch theo-
rem relates the number of metric moduli µ and the number of conformal
killing vectors κ with the genus of the surface

µ− κ = 6g − 6 . (3.23)

By taking these two points into account when doing the gauge fixing of
the path integral one can show that each metric moduli leads to a b ghost
insertion and each conformal Killing vector removes an integration of a
vertex operator while inserting a c ghost. Therefore, for the calculation
on the sphere we need the following correlator of c ghosts

〈c1c2c3c̃1c̃2c̃3〉 =

∣∣∣∣∣∣det

 1 1 1
z1 z2 z3

z2
1 z2

2 z2
3

∣∣∣∣∣∣
2

= |z12|2|z13|2|z23|2 , (3.24)

which can be understood as the Jacobian of the transformation that
eliminates three of the integrations.

The ghost action also possesses a U(1) symmetry generated by the
currents

jb,c(z) = −b(z)c(z) , jβ,γ(z) = −β(z)γ(z) . (3.25)

The c and γ fields have charge +1 under these transformations, while
the ghosts b and β have charges −1. These currents are not world-
sheet primary fields, as they have cubic singularities in the OPE with
the stress-energy tensor. The coefficients of those singularities have a
physical meaning as they give the background charges

Qbc = −3 , Qβγ = 2 . (3.26)

3.1.4 Currents and Primary Fields
If we assume that the path integral of a total derivative vanishes, the
following equation ∫

DΦ
∂

∂φi(w)

(
φj(z)e

−S) = 0 (3.27)
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can be used to obtain differential equations for the propagators. For the
matter fields we then obtain the following OPE singularities

XM (z)XN (w) = −α
′

2
ηMN log |z − w|2 ,

ψM (z)ψN (w) =
ηMN

z − w
, (3.28)

while for the ghosts we get

b(z)c(w) =
1

z − w
, b(z)b(w) = c(z)c(w) = O(z − w) ,

β(z)γ(w) = − 1

z − w
, β(z)β(w) = γ(z)γ(w) = O(1) . (3.29)

The stress-energy tensor can be obtained by varying the worldsheet
metric, so it must be computed before setting the conformal gauge for
the metric. We have seen before that the stress-energy tensor has a
holomorphic component Tzz = T (z) and an anti-holomorphic one Tz̄z̄ =
T̃ (z̄). The holomorphic component can be split into two parts

Tm(z) = − 1

α′
∂XM∂XM −

1

2
ψM∂ψM ,

Tgh(z) = −2b∂c+ c∂b− 3

2
β∂γ − 1

2
γ∂β , (3.30)

coming from the matter and ghost sectors of the action. Meanwhile, the
supercurrent is given by

Gm(z) = i

(
2

α′

)1/2

∂XMψ
M ,

Ggh(z) = c∂β +
3

2
β∂c− 2bγ . (3.31)

By computing the OPE of the matter and ghost fields with the stress-
energy tensor as in equation (3.7), we can understand what are their
transformation rules under conformal transformations. It turns out that
the only field of the action that is not a primary is XM . The conformal
weights of the primary fields are

h(∂XM ) = 1 , h(b) = 2 , h(β) =
3

2
,

h(ψM ) =
1

2
, h(c) = −1 , h(γ) = −1

2
, (3.32)

and analogously for the anti-holomorphic fields. It will also be useful to
study the plane-wave operator eik·X . We can show that it is a primary
operator with weights

h = h̄ =
α′

4
k2 , (3.33)
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which can be used to derive the OPE

eik1·X(z)eik2·X(0) = |z|α
′k1·k2ei(k1+k2)X(0) + . . . . (3.34)

From this equation we can show that the correlator of plane-waves im-
poses conservation of momenta

〈
∏
j

eikj ·X(zj ,z̄j)〉 = δ(
∑
j

kj)
∏
j<k

|zjk|α
′ki·kj , (3.35)

where we introduce the short-hand notation zij = zi − zj .
Finally, by doing the OPE of the stress-energy tensor with itself as in

(3.8), we obtain an expression for the central charge of the superstring

c =
3D

2
− 26 + 11 . (3.36)

Conformal symmetry plays a crucial role in eliminating states with neg-
ative norm, so we would like the strings to remain conformal at the
quantum level. However, the Weyl symmetry becomes anomalous in
the quantum theory, since the trace of the stress-energy tensor has a
non-vanishing vacuum expectation value

〈T aa 〉 = − c

12
R , (3.37)

with c the central charge and R the worldsheet Ricci scalar. We then
conclude that the superstring can only be consistent if the target-space
is ten-dimensional [36].

3.1.5 RNS sectors
When we consider the theory on the cylinder, it is important to specify
the periodicity conditions of the fields. The spacetime coordinates XM

must be periodic so the field expansion is

i∂XM (z) = (α′/2)1/2
∑
n∈Z

αMn
zn+1

. (3.38)

The ghosts must have the same periodicity as the corresponding matter
field so we have

b(z) =
∑
n∈Z

bn
zm+2

, c(z) =
∑
n∈Z

cn
zm−1

. (3.39)

Meanwhile, the fields ψM and ψ̃M live on the double cover of the
complex plane, so they are either periodic or anti-periodic, which cor-
repond to the Ramond and Neveu-Schwarz sectors respectively. Notice
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that these are periodicity conditions on the cylinder, so in the plane the
expansions are

ψM (z) =
∑
r

ψMr
zr+1/2

, βM (z) =
∑
r

βMr
zr+3/2

, γM (z) =
∑
r

γMr
zr−1/2

,

(3.40)
where r is integer for the R sector and half-integer in the NS sector.
Notice that the half-integer conformal weight of the fermions introduces
a branch cut in the R sector while it removes the branch cut coming from
anti-periodicity of the NS sector. In a closed string, where we consider
both left and right movers, we can choose the periodicity conditions
independently, so we obtain four different sectors: NS-NS, NS-R, R-NS
and R-R.

In the quantum theory, we have the following commutators for the
modes of the matter fields

[αMm , α
N
n ] = [α̃Mm , α̃

N
n ] = mηMNδm,−n ,

{ψM , ψN} = {ψ̃M , ψ̃N} = ηMNδm,−n , (3.41)

while for the ghosts we have

[γr, βs] = [γ̃r, β̃s] = δr,−s ,

{cm, bn} = {c̃m, b̃n} = δm,−n . (3.42)

Finally, we can substitute the mode expansions in the expression for the
stress-energy tensor (3.30), with normal ordering for the creation and
annihilation operators. That procedure is unambiguous for all modes
except L0, for which we must introduce a normal ordering constant.
In order to obtain the commutation relations (3.10), that normal order
constant is given by

aNS = −1

2
, aR = 0 . (3.43)

3.2 Spin fields and Bosonization
We will now look at the ground state of both the NS and R sectors and
see that we need to introduce a new kind of operator, the spin field.
The spin fields have non-trivial OPEs with the matter fields, so we will
introduce the idea of bosonization where, at the cost of manifest Lorentz
invariance, we substitute the interacting RNS CFT by one of free bosons.
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3.2.1 The ground state
The matter ground state
By the state-operator correspondence, the state |1〉 is equivalent to the
insertion of the identity operator. If we consider the action of the matter
field on this state, by regularity we have that

αMm |1〉 = α̃Mm |1〉 = 0 for m ≥ 0 ,

ψMn |1〉 = ψ̃Mn |1〉 = 0 for n ≥ 1/2 . (3.44)

Since all positive modes annihilate |1〉, and there are no zero modes ψM0
in the NS sector, then it correspond to the NS ground state |0〉NS. Since
the NS ground state is a Lorentz singlet and excited states are created
by the action of spacetime vectors, one sees that the NS Hilbert space is
composed only of states of integer spin.

However, in the R sector there are zero modes ψM0 which do not in-
crease the energy of the state, so the vacuum is degenerate. In fact the
ψM0 form a Clifford algebra, so they create a spinor representation of
SO(1, d− 1). We can then label the R sector ground states by

|A〉R = |A1 . . . A5〉 , (3.45)

with Ai = ±1/2. We can see the ground state in the R sector as the
action of a spin field operator on the NS vacuum [37,38]

|A〉R = ΘA|0〉NS . (3.46)

Since the excited states of the R sector are created by modes which are
spacetime vectors, then the whole R sector Hilbert space is composed
of states of half-integer spin. Note that in ten dimensions the Dirac
representation splits into two sixteen dimensional Weyl representations,
with opposite chiralities.

The ghost ground state
Let us now analyze the ground state in the fermionic ghost sector. Due
to the different weights of the ghost fields, the action of the ghost modes
on |1〉 is now

bn|1〉 = 0 for n ≥ −1 ,

cn|1〉 = 0 for n ≥ 2 . (3.47)

By looking at the commutation relations with L0 we can see that any
positive mode lowers the energy of the state, which means that |1〉 cannot
be the ground state. We can introduce a new state by acting with a c
ghost

| ↓〉 = c(0)|1〉 = c1|1〉 . (3.48)
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Since c is a fermion, we see that | ↓〉 is annihilated by all positive ghost
modes, so it must be a ground state of the ghost system. However, we
are still free to act with the zero mode c0 which does not increase the
energy of the state, which implies that this ghost system has a degenerate
ground state

c0| ↓〉 = | ↑〉 , c0| ↑〉 = 0 ,

b0| ↓〉 = 0 , b0| ↑〉 = | ↓〉 . (3.49)

When we introduce BRST quantization in section 3.3.1, we will see that
| ↑〉 is not a physical state, so the ground state of this ghost system is

|0〉bc = c(0)|1〉 . (3.50)

The superghost ground state
Finally, let us look at the ground state of the superghost CFT. Since γ
also has a negative weight, then we will run into the same problem where
|1〉 is not annihilated by some of the lowering operators

βn|1〉 = 0 n ≥ −1

2
,

γn|1〉 = 0 n ≥ 3

2
. (3.51)

However, since γ is bosonic, the solution presented above does not work
in this case. We must rewrite the fields β and γ as a product of two
fermions, where we bosonize one of them [39,40]

β(z) = e−φ(z)∂ξ(z) , γ(z) = eφ(z)η(z) . (3.52)

The leading singularities in the OPE of these fermions must be such that
we reproduce the ones of β and γ, which is achieved with

φ(z)φ(w) = − log(z − w) + . . . , ∂ξ(z)∂ξ(w) = O(z − w) + . . . ,

η(z)ξ(w) =
1

z − w
+ . . . , η(z)η(w) = O(z − w) + . . . .

(3.53)

The stress-energy tensor for these new CFTs can be derived from a point-
splitting technique we will introduce in section 3.2.3

Tφ = −1

2
∂φ∂φ− ∂2φ ,

Tηξ = −η∂ξ , (3.54)

from which we derive the following weights for the primary operators

h(elφ) = − l
2

2
− l , h(η) = 1 , h(ξ) = 0 . (3.55)
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Using the fact that the zero mode of η annihilates |1〉, it can be shown
that the following state of weight 1/2

|0〉NS = e−φ|1〉 (3.56)

is also annihilated by γ1/2, which makes it the ground state in the NS
sector.

Meanwhile, in the R sector, we need to find a state that is annihilated
by γ1. Given the branch cut in the R sector expansions, we need to find
an operator that also has a square root branch cut, which is achieved
with

|A〉R = ΘAe−φ/2|1〉 . (3.57)

The weight of the exponential factor is 3/8, which combines exactly with
the weight of the spin field to form a vertex of conformal weight 1, which
ensures locality of the OPE.

3.2.2 Bosonization
The worldsheet fermions ψM and the spin fields ΘA form an interacting
CFT, so it can be non-trivial to obtain some of the correlators of the the-
ory. This problem is circumvented by the introduction of bosonization,
where we map the RNS fields to operators built from five free bosons [41].
A disadvantage of this method is that the expressions at intermediate
steps are not manifestly Lorentz covariant.

The new free bosons φi have an OPE analogous to that of the target-
space scalars XM

φi(z)φj(0) = δi,j log z . (3.58)

From this we can show that for each scalar φi, we have the following
OPE for their exponentials

epφi(z)eqφi(0) = zpqe(p+q)φi(0) . (3.59)

This is quite useful as we recognize the fields of weight 1/2, e−φi and
eφi , to be equivalent to a set of complex fermions. In order to make
contact with our Majorana-Weyl fermions, we have to rewrite them in
the Cartan-Weyl basis

ψ±e0 =
1√
2

(±ψ0 + ψ1) ,

ψ±ei =
1√
2

(ψ2i ± iψ2i+1) , for i = 1, . . . , 4 . (3.60)

The identification with the auxiliary bosons is done in the following
way

ψ±ej = e±φjc±ej . (3.61)
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Notice that we had to introduce a new element in the expression, the
Jordan-Wigner cocycle factors c±ej [42, 43]. While the bosonized oper-
ators built from a single scalar anticommute, the same is not true for
operators built from different scalars, as they are independent. There-
fore, the cocycle factors make sure that all bosonized operators have
the correct commutations relations. This can be done explicitely if the
cocycle is given by

c±ej = (−1)N1+...+Nj−1 , (3.62)

with Nj the fermion number operator.
So far we have not gained much since it was already simple to compute

the OPE for the Majorana-fields. The real power of this technique is
in the treatment of the spin fields describing the ground state of the R
sector. The spin fields map the NS ground state to the ground state of the
R sector, which means that they must introduce square root branch cuts.
We can see from equation (3.59) that this is achieved by the operator

ΘA = exp

[∑
i

Aiφi

]
cA , (3.63)

with Ai = ±1/2. Since the weight of the exponential is

h(elφi) = l2/2 , (3.64)

then we obtain the correct conformal weight for the worldsheet fermions
and a conformal weight of 5/8 for the spin fields.

It is useful to combine the notation for the bosonization of the matter
fields together with the bosonization of the superghosts. For example,
for the Cartan-Weyl fermions we get

ψ±eje−φ = eλ·φcλ , λ = ±ej − e6 . (3.65)

The correlator for n fields with such six-dimensional weights is

〈eλ1·φ(z1)cλ1
. . . eλn·φ(zn)cλn〉 = δ(

∑
j

λj + 2e6)
∏
j<k

z
λi·λj
jk eiπλj ·M ·λk ,

(3.66)
where the scalar products now have a Lorentzian signature (1, . . . , 1,−1)
and we have implemented the cocycle relations with a lower-triangular
sign matrix

M =


0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
−1 1 −1 0 0 0
1 1 1 1 0 0
−1 −1 −1 −1 1 0

 . (3.67)
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In order to recover convariant expressions after using bosonization, it
is important to know that the gamma matrices in the Cartan-Weyl basis
are (

Γ±ek
)A
B

=
√

2eiπ(±ek)·M ·Aδ(±ek +A,B) . (3.68)

The relation to gamma matrices in a covariant basis is exactly analogous
to equation (3.60). For the charge conjugation matrix we have

CAB = ±δ(A+B)e−iπA−1/2·M ·A−1/2 , (3.69)

where the sign corresponds to the chirality of A and A±1/2 denotes the
extended weight (A,±1/2).

3.2.3 Point-splitting
When studying operators at higher massive levels, it is necessary to
consider the product of several RNS fields at the some point. To find the
bosonized version of these operators we use the point-splitting method.
The idea is to evaluate the product at separated points, subtract the
singular term and then take the limit of the separation going to zero [44].
Specifically, we have

ψeiψei(z) = ψ−eiψ−ei(z) = 0 ,

ψeiψ−ei(z) = −ψ−eiψei(z) = ∂φi . (3.70)

If we include also a spin field, then we have

ψ±ek(/ψΘ)A = 4
√

2δ(Ak ∓
1

2
)e±iπek·M ·AΘA±ek

+ (2Ak ± 6ek) · ∂φ(Γ±ekΘ)A , (3.71)

where ΘA is defined exactly like the spin fields (3.63), but for non-
spinorial weight A.

3.3 Superstring Spectrum
Now that we have introduced the worldsheet CFTs describing the super-
string, we need to understand its spectrum. From light-cone quantiza-
tion one can see that timelike components of the worldsheet fields do not
contribute to the spectrum. Here we will introduce the BRST charge,
whose cohomology selects the physical states in a covariant way. Then
we will also have to consider the GSO projection in order to obtain a
supersymmetric spectrum free of tachyons.

Finally, we will introduce the notion of superghost picture and the
vertex operators from the massless and first massive level, as well as
from the leading Regge trajectory.
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3.3.1 BRST quantization
Looking at both the matter and ghost actions together, we can see that
there is a new symmetry between matter and ghost fields. This BRST
invariance is a manisfestation of the gauge freedom that was fixed, and
it is given by the BRST current [45]

jB = cTm + γGm +
1

2
(cTgh + γGgh) , (3.72)

which can be seen to transform as a tensor from the OPE with the stress
energy tensor. The BRST charge is then given by

QB =
1

2πi

∮
dzjB − dz̄j̃B . (3.73)

The fact that the BRST operator generates gauge transformations
implies that any physical state |χ〉 must be annihilated by the BRST
charge

QB|χ〉 = 0 . (3.74)

A very important feature of the BRST charge is that it is nilpotent

Q2
B = 0 , (3.75)

so any state QB|χ〉 could in principle be a physical state as well. How-
ever, since the BRST charge is hermitian, one can show that a BRST
exact term must always be orthogonal to all physical states

〈ψ|QB|χ〉 = 0 . (3.76)

We conclude that any two physical states that differ by such a null state
must be physically equivalent, so physical states are in the cohomology
of the BRST charge.

In order to find physical states, it is useful to split QB into three parts

QB = Q0 +Q1 +Q2 , (3.77)

where Qk carries superghost number k. Since physical states have a
definite ghost number, this implies that Q0, Q1 and Q2 must annihilate
them independently.

When studying the ground state of the ghost system, we found that it
was degenerate, and at that point we simply chose the state annihilated
by the zero mode b0 to be the ground state. In order to motivate this
choice, note that its commutator with the BRST charge is

{QB, b0} = L0 . (3.78)

We can then see that by requiring the zero mode of b to annihilate any
physical state, we ensure that BRST invariance implies that string states
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are on-shell. Analogously, physical states in the superstring should also
be annihilated by the zero mode of the superghost β.

Finally, let us derive some implications of BRST invariance on physical
states. We have seen before that the ground state of the ghost system is
generate by c(0). Let us then denote a vertex operator as c(0)Vh(0)|1〉,
with Vh a field of weight h built from matter and superghost fields. The
vertex operator can only be annihilated by Q0 if the vertex is a conformal
primary with weight h = 1. We have also seen before that the number of
conformal Killing vectors of a given surface determines the number of c
ghost insertions. So while c(0)Vh(0) corresponds to a ghost number one
representative of the vertex, we also need to find the ghost number zero
representation. It turns out that the following integrated vertex∫

dzVh(z) , (3.79)

is also annihilated by the BRST charge for conformal weight h = 1.

3.3.2 GSO projection
So far we have eliminated states with negative norm from the spectrum
by requiring BRST invariance. However, while the simplest vertex in the
R sector

ΘA(0)e−φ(0)/2eik·X(0)c(0) (3.80)

corresponds to a massless string state, in the NS sector the simplest
possibility is

e−φ(0)eik·X(0)c(0) , (3.81)

which corresponds to a tachyonic string with imaginary mass.
In order to eliminate the tachyonic string, which indicates an instabil-

ity of the theory, we need to perform the GSO projection [46]. Physical
states must obey one further constraint

QGSO|χ〉 = |χ〉 . (3.82)

In the NS sector, the projection is performed with the following operator

QGSO = −eiπF , (3.83)

with F the worldsheet fermion number. The projection then selects
states with an odd number of worldsheet fermions, which clearly removes
the tachyonic state from the spectrum.

Meanwhile, in the R sector the projector is

QGSO = ±eiπFΓ11 , (3.84)
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with Γ11 the chirality matrix in ten dimensions. We can see that in
the R sector the projection into even or odd fermion number depends
on the chirality of the state, but the choice of overall sign is purely a
convention. For closed strings we have to project both left and right
movers, and depending on the choice of sign in (3.84), we can have two
different theories. In Type IIA, we pick different signs, while in Type
IIB we pick the same projection for left and right movers, so the theory
becomes chiral.

A key observation is that the GSO projection gives the same number of
bosonic and fermionic degrees of freedom at any mass level, making the
spectrum supersymmetric. It is also important that the BRST charge
commutes with the operator eiπF , so that the previous discussion on
BRST invariance still holds for a subsector with definite fermion number.

3.3.3 Superghost pictures
The background superghost charge imposes a condition on the total
charge of the vertex operators. That means that we might have to con-
sider vertex operators in different superghost pictures. From requiring
BRST invariance of an NS vertex operator VNSe

−φ, we obtain the fol-
lowing constraint on the OPE with the supercurrent

G(z)VNS(w) =
1

z − w
WNS(w) + . . . , (3.85)

which means that the vertex operator must be the lowest component of
a superconformal primary field. We can then relate the two components
in the following way

WNS = G−1/2G̃−1/2VNS . (3.86)

For a vertex operator in the R sector VRe
−φ/2, closure under the BRST

charge requires that it is a highest weight of the super-Virasoro algebra.
To obtain the higher superghost picture we have to find the next element
in the representation of the superconformal algebra

WR = G−1G̃−1VR . (3.87)

More systematically, if we want to find the vertex operator in a higher
superghost picture we have to use the following formula

V (g+1)(z) = −[QB, ξ(z)V
(g)(z)] . (3.88)

At first it might look like we are creating a BRST exact state, but that
is not true. The subtlety is that only ∂ξ appears in the bosonization of
the superghost fields. That means that the zero mode ξ0 does not belong
to the superghost algebra so the new vertex is not actually BRST exact.
However, the nilpotency of the BRST charge still guarantees that the
new vertex operator is BRST closed.
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3.3.4 Vertex operators
Given that the Poincaré transformations of the target-space coordinates
are global symmetries of the superstring action, we want to form vertex
operators that are eigenstates of the corresponding charges. For example,
the translations

PM =
2

α′

∮
dz

2πi
i∂XM , (3.89)

are diagonalized by the exponential eik·X with eigenvalue kM , which
contributes to the vertex with weight α′k2/4. For a string state with
mass m, we then see that it is annihilated by Q0 if the remainder of the
vertex has weight 1 − α′m2/4. This will fix the type of terms that can
appear in the vertex operator at a given level, while invariance under Q1

and Q2 will give constraints on the coefficients of each allowed term.
For simplicity, in the remainder of this section we will drop the ghost

and plane-wave factors from the vertex operators, and we will discuss
only the right movers contribution to the closed strings, as the results
for left movers are analogous.

Massless States
After the GSO projection, the string excitations with lowest energies are
massless states. Let us start by considering closed massless strings in the
NS sector. The only possible vertex we can write in the (−1) superghost
picture is

V
(−1)
NS = εMψ

Me−φ . (3.90)

BRST invariance demands transversality of the polarization

εMk
M = 0 . (3.91)

This condition makes the vertex BRST closed, but we must remember
that the physical state is defined up to BRST exact terms. It turns out
that the vertex becomes exact if the polarization is proportional to the
momentum kM , which leaves us with 8 degrees of freedom. We will also
need this vertex in the (0) superghost picture , so we use equation (3.88)
to obtain

V
(0)
NS = εM

√
2

α′

(
i∂XM +

α′

2
(k · ψ)ψM

)
. (3.92)

Meanwhile, in the R sector the only vertex operator we can write at
the massless level is

V
(− 1

2 )

R = tAΘAe−φ/2 . (3.93)

In order for the operator to be BRST invariant the polarization must
satisfy

(t/k) = 0 , (3.94)
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which eliminates half of the degrees of freedom.
As expected, we obtained the same number of bosonic and fermionic

degrees of freedom and the polarizations transform in representations of
the little group SO(8).

First Massive Level
The next string level is given by operators with k2 = −4/α′, so the
NS vertex in superghost picture (−1) is a combination of the following
terms [44]

εMN i∂X
MψN + αMNPψ

MψNψP + σM∂ψ
M , (3.95)

where we already eliminated the term ∂φψM by the addition of a to-
tal derivative to the vertex. By adding BRST exact terms we can also
make εMN symmetric and eliminate the term σM∂ψ

M . Finally, requir-
ing closure under the BRST charge imposes further constraints on the
polarizations

εMNη
MN = 0 , εMNk

M = 0 , αMNPk
M = 0 . (3.96)

The symmetric, transverse and traceless tensor εMN has 44 degrees of
freedom, while the antisymmetric transverse tensor αMNP has 84, and
they both correspond to representations of SO(9). Using the ghost pic-
ture changing prescrition (3.88) we obtain the vertices at zero ghost
charge

V
(0)
NS,1 = εMN

2

α′

(
i∂XM

(
i∂XN +

α′

2
k · ψψN

)
+
α′

2
∂ψMψN

)
,

V
(0)
NS,2 = αMNP

√
2

α′

(
3i∂XM +

α′

2
k · ψψM

)
ψNψP . (3.97)

In the R sector, there are two vertices one can form at the first massive
level, but there are several constraints imposed by BRST invariance. On
one hand the vertex must be written as the following combination of the
two terms

V
(−1/2)
R = tM,A

(
i∂XMΘA − 1

8

α′

2
ψM (/k/ψΘ)A

)
e−φ/2 , (3.98)

but it also imposes transversality on the polarization. Finally, by adding
BRST exact terms we can add a gamma-traceless constraint on the po-
larization

tM,A k
M = 0 , (/tM )A = 0 , (3.99)

which leaves us with 128 degrees of freedom.
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Leading Regge Trajectory
In general, at higher massive levels the complexity of the vertex operators
increases very fast due to the large number of SO(9) representations
allowed. However, closed string states in the leading Regge trajectory
are quite simple due to the relation between their spin S and mass level
n

S = n+ 1 . (3.100)

These are states in the NS sector, so they must have at least one ψ field
in the vertex. However, if we want to create a state totally symmetric in
its n+ 1 indices, then the only possibility is

V (−1) = εM1...Mn+1i∂X
M1 . . . i∂XMnψMn+1e−φ , (3.101)

with a totally symmetric, traceless and transverse polarization

εM1...Mn+1η
MiMj = 0 , εM1...Mn+1k

Mi = 0 . (3.102)

3.3.5 Supercharges
We had already seen that the target-space was Poincaré invariant, but
now we observed that there is also spacetime supersymmetry. The
Poincaré algebra then gets enlarged to super-Poincaré, which includes
the anticommutator

{QAL,R, QBL,R} = −2 (Γ11ΓMC)
AB

PM , (3.103)

with C the charge conjugation matrix and Γ11 the projector onto positive
chirality. The left and right supercharges are given by

QAL =

∮
dz

2πi
ΘAe−φ/2 , QAR =

∮
dz̄

2πi
Θ̄Ae−φ̃/2 . (3.104)

It will be useful later to use the supercharges in a higher superghost
picture, which we write as

QAL =
1

α′1/2

∮
dz

2πi
i∂XM (ΓMΘ)Aeφ/2 . (3.105)

3.4 String Interactions
We will now briefly discuss the origin of the string coupling and the
prescription for computing superstring amplitudes in flat space.
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3.4.1 Genus expansion
In order to consider strings on a curved background, it is natural to
modify the bosonic part of the Polyakov action by changing the flat
Minkowski metric into a general curved one

S =
1

4πα′

∫
d2σ
√
−hhabGMN (X)∂aX

M∂bX
N . (3.106)

This might seem confusing as the graviton is an excitation of the super-
string in flat space, so a curved background should be obtained from a
coherent background of string states. These two pictures can be shown
to be equivalent if we consider a metric infinitesimally close to the flat
one, GMN (X) = ηMN+χMN (X). By expanding the exponential, we see
that the first term obtained corresponds to the Polyakov action, while
higher orders correspond to the insertion of the graviton vertex operators
in the Polyakov path integral.

Analogously, we can include the backgrounds for the other massless
string states in the following way

S =
1

4πα′

∫
d2σ
√
−h
(
habGMN + εabBMN

)
∂aX

M∂bX
N + α′RΦ(X) ,

(3.107)
with R the worldsheet Ricci scalar, BMN the antisymmetric tensor, and
the dilaton given by Φ and the trace of GMN . We can see that for
GMN = ηMN , BMN = 0 and Φ = Φ0 the theory is still Weyl invariant
and the last term of equation (3.107) can be integrated, producing a
topological term in the path integral

S = SP + Φ0(2− 2g) , (3.108)

which gives different weights to different topologies. We can identify eΦ0

as the string coupling gs so that each handle added to the worldsheet
comes with an additional power of gs. We conclude that adding a back-
ground dilaton corresponds to changing the string coupling and the full
superstring theory can be seen as an expansion over topologies, or genus
expansion.

3.4.2 Scattering Amplitudes
In general we cannot consider correlation functions involving closed string
states at specific spacetime points, as they would depend on the choice
of coordinates which is not a physical quantity. The objects of interest
in string theory are then correlators of string states coming from infinity,
which are gauge invariant observables and correspond to elements of the
S-matrix. The scattering process is then a worldsheet with n legs that
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extend to infinity. Each leg has the topology of a cylinder, but we can use
a conformal transformation and map each string state to the insertion
of a local vertex operator.

Considering the first term in the genus expansion of string theory we
have then a sphere with n local insertions. The sphere has six conformal
Killing vectors which can be used to fix the positions on the worldsheet
for three of the vertex operators. The amplitude for three closed string
states is then given by

〈cc̃V1(0) cc̃V2(1) cc̃V3(∞)〉 . (3.109)

The insertions of the three c ghost fields cancel the ghost background
charge. Analogously, the choice of superghost pictures for the vertex op-
erators must add up to −2 to cancel the background superghost charge.

Since the vertex operators in the NS sector have integer superghost
charges, while in the R sector they are half-integer, we conclude that we
must always have an even number of vertex operators in the R sector.
In the case of three-point superstring amplitudes the correlators that we
need to evaluate are then

〈cc̃V (−1)
NS (0) cc̃V

(−1)
NS (1) cc̃V

(0)
NS (∞)〉 ,

〈cc̃V (−1)
NS (0) cc̃V

(−1/2)
R (1) cc̃V

(−1/2)
R (∞)〉 . (3.110)
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4. Strong Coupling

In this chapter we will study correlation functions of N = 4 SYM at
strong coupling. AdS/CFT implies that the generating functional for
correlators in the gauge theory is equivalent to the string action subject
to some boundary conditions. Each operator in the gauge theory corre-
sponds to the insertion of a string vertex operator at the boundary of
AdS and so the correlators of the gauge theory become amplitudes in
the string theory.

There are many types of correlators one can compute, but we shall
focus in the case when point-like propagation in the bulk is still valid,
so that interactions are localized at a point in the bulk. We will con-
sider non-protected operators, so the supergravity approximation will
not suffice and we will need to perform superstring computations.

The study of these operators is very important as they are usually
associated with wrapping corrections that need to be resummed at strong
coupling. There is currently a proposal for evaluating structure constants
of N = 4 SYM at any value of the coupling, but unfortunately it is not
known yet how to efficiently resum its new kind of wrapping corrections.
Once such a framework is proposed, the results obtained from our string
amplitudes will provide invaluable tests of its validity at strong coupling.

4.1 Types of Correlators
When all operators in a correlation function are protected, the dual string
states are all massless and it is sufficient to consider the low energy
limit of the superstring. In this limit strings become point-like and we
need only to compute Witten diagrams in type IIB supergravity. The
operators of N = 4 SYM couple to sources φ0(~xi) on the boundary
of AdS. In order to compute the string action subject to such boundary
conditions we need to find the boundary to bulk propagatorK∆(~z, ~xi) [6],
so that we can write the fields in the bulk

φ(~z) =

∫
ddxiK∆(~z, ~xi)φ0(~xi) . (4.1)

In the case of a scalar field the propagator is simply the Green function
for a Laplace operator

K∆(~z, ~xi) =
Γ(∆)

π2Γ(∆− 2)

(
z

z2 + (~x− ~xi)2

)∆

. (4.2)
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For a three-point function one would have to consider the cubic Witten
diagram, where all propagators meet at a point in the bulk and we in-
tegrate that point over AdS. In this case the integral can be evaluated
to [47]∫

ddzdz0

zd+1
0

K∆1(z, ~x1)K∆2(z, ~x2)K∆3(z, ~x3)

=

√
∆1 − 1

√
∆2 − 1

√
∆3 − 1

25/2πΓ(∆1)Γ(∆2)Γ(∆3)

Γ(α1)Γ(α2)Γ(α3)Γ(Σ− 2)

|x12|2α3 |x13|2α2 |x23|2α1
. (4.3)

In general, a correlation function of protected operators is given by a
sum over Witten diagrams. This method is quite powerful, but it also
requires the computation of many Witten diagrams which correspond to
a single superstring amplitude.

In the realm of unprotected operators, there are still several cases
one must consider separately, as they require different techniques. On
one hand we have semi-classical operators whose anomalous dimensions
grow as ∆ ∼

√
λ. These operators correspond to string solutions that

are extended in AdS, and the saddle point is given by minimizing an
effective action that includes a contribution from the vertex operators.
It is simpler to study the case when two of the operators are of this type
and the third is much lighter [48–50], since in this case one can integrate
the insertion of the light operator over the classical solution formed by
the other two. The case when all three operators are semi-classical is
more complicated but has been tackled in [51–54].

Finally, there are operators we will call "short" which have anomalous
dimensions that scale as ∆ ∼ λ1/4, and are dual to string states at lower
massive levels [7]. In this case the size of the strings is much smaller than
the radius of AdS, so one can use a flat-space approximation [55–58].
Effectively the propagation in AdS is analogous to that of a half-BPS
operator with the same scaling dimension.

There are however some differences between the case of short and
point-like strings. In supergravity a cubic coupling might have deriva-
tives, but one can eliminate these terms by a field redefinition. In this
way one obtains the so called extended chiral primaries, which mix with
multi-trace operators [59]. In general the contribution of the multi-trace
operators has no effect on the three-point function, but it could play a
role in the extremal limit.

However, in the case of short strings we should view the scalar Wit-
ten diagram as the exponential contribution to the semiclassical vertex
operators of [60, 61], rather than a Witten diagram in a supergravity
computation. For example, for correlation function with spin operators,
the spacetime dependence in this case is given by (2.36), which differs
from the spacetime dependence obtained through a scalar cubic Witten

54



diagram. We will see later in this chapter that the remainder of the
spacetime dependence comes from the superstring amplitude, which is
not at all as one would expect from a supergravity computation. This in-
dicates that the vertex operators we have found correspond to primaries
and not their extended version.

4.2 Flat-space approximation
Since the size of the operators we consider is small when compared to
the radius of AdS, we can treat strings as point-like particles with action

S =
1

2

∫ +1

−1

ds

(
ẋµẋ

µ + ż2

z2
e−1 + ∆2e

)
, (4.4)

where e(s) is the einbein and xµ and z are the Poincaré coordinates.
The propagation in AdS is given by a cubic Witten diagram but for
operators of large dimensions it suffices to take the saddle-point which
fixes the position of the intersection point [62]

e−∆1L1(~x1)−∆2L2(~x2)−∆3L3(~x3) , (4.5)

where Li(~xi) represents the geodesic distance from the boundary point
~xi to the intersection point ~z = (z, ~x)

Li(~xi) = log
z

z2 + (~x− ~xi)2
. (4.6)

4.2.1 Saddle-point and canonical momenta
There is a unique solution to the saddle-point equations obtained by
varying the position of the intersection point [63,64]

xµ =
α1α2x

2
12x

µ
3 + α1α3x

2
13x

µ
2 + α2α3x

2
23x

µ
1

α1α2x2
12 + α1α3x2

13 + α2α3x2
23

,

z2 =
α1α2α3Σx2

12x
2
13x

2
23

(α1α2x2
12 + α1α3x2

13 + α2α3x2
23)2

, (4.7)

and if we plug this solution back into (4.5), we obtain the large ∆i limit
of the full Witten diagram. We can also compute the fluctuations of the
action, which shows that the interaction is over a small region of AdS. It
is then natural to evaluate the string amplitude at the intersection point
using flat-space vertex operators, but one needs first to understand what
are the momenta characterizing the vertices.
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The saddle-point configuration is formed by three semi-circle geodesics
meeting at the point (4.7), so we can evaluate the canonical momentum

Πµ = −i ẋ
µ

z2
, Πz = −i ż

z2
, (4.8)

which satisfies Π2 = −∆2. It turns out the saddle-point equations cor-
respond exactly to conservation of the canonical momenta at the inter-
section point, which means that they are the momenta that should enter
the vertex operators [64]. For Π1 we have

Πµ
1 =

2
√
α1α2α3Σ|x12||x13||x23|

α1α2x2
12 + α1α3x2

13 + α2α3x2
23

(
α3
xµ21

x2
12

+ α2
xµ31

x2
13

)
,

Πz
1 = ∆1 −

2α2α3Σx2
23

α1α2x2
12 + α1α3x2

13 + α2α3x2
23

, (4.9)

with analogous expressions for Π2 and Π3. The ten-dimensional mo-
menta are given by combining these expressions with the momentum on
the five-sphere, kM = (Πµ,Πz, ~J), so that we have

k2 = −∆2 + J2 ≈ −4n
√
λ , (4.10)

with n the string mass level.

4.2.2 Flattening of the superconformal algebra
For each operator on the boundary we will have to find the correct flat-
space vertex operator, and in order to better understand this map we
should look at the superconformal algebra. In chapter 2 we introduced
the supercharges of N = 4 SYM: QαI , Q̇Iα̇, Ṡα̇I and SIα. It is now
more conveninent to write the spinor indeces in a SU(2, 2) ∼= SO(2, 4)
covariant way

QaI = (QαI , Ṡα̇I) , SaI = (εαβSIβ, ε
α̇β̇Q̇Iα̇) . (4.11)

QaI is in the fundamental of both SU(2, 2) and SU(4), while SaI is in
the anti-fundamental representaion. We can also see these indices as
chiral spinor indices of SO(2, 4) and SO(6) respectively. Finally we can
combine them further in the following way

QAL = QaI + γ−1
ab γ

10
IJS

bJ ,

QAR = −i(QaI − γ−1
ab γ

10
IJS

bJ) , (4.12)

where γ−1 and γ10 are gamma matrices of SO(2, 4) and SO(6) respec-
tively. It is now more convenient to write the R-symmetry generators
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with antisymmetric SO(6) indices RIJ and also write the conformal al-
gebra in a covariant way with the generators Jmn of (2.5). By choosing a
basis where only the generators J−1m and RJ,10 have non-vanishing ex-
pecation values we can identify the ten-dimensional momentum operator

PM = (J−1m, RJ,10) . (4.13)

We also rescale the generators with a small parameter ε

Q̂AL,R =
√
εQAL,R , P̂M = εPM , (4.14)

so that they stay finite in the limit of large scaling dimension ∆. In this
limit, the superconformal algebra flattens to super-Poincaré, with the
commutation relations

{Q̂AL,R, Q̂AL,R} = −(ΓMC)ABP̂M , {Q̂AL , Q̂AR} = 0 . (4.15)

In this way we can identify the boundary operators with flat-space string
states.

4.2.3 Superconformal primaries
Let us now consider the superconformal primary, which is annihilated by
all superconformal generators

SIαO(0) = Sα̇O(0) = 0 . (4.16)

We need to understand the equivalent of these equations in terms of
flat-space quantities. We can divide the ten-dimensional spinor index
A with positive chirality into two parts SO(1, 3) × SO(6), so that A
decomposes into (α, ã) and (α̇, ˙̃a), where dotted and undotted indices
denote negative and positive chirality respectively. The superprimary
condition then becomes [64]

QαãL O = iQαãR O ,

Qα̇
˙̃a

L O = −iQα̇ ˙̃a
R O , (4.17)

where α and α̇ label the boundary spacetime directions.
At the intersection point in the bulk there is an analogous condition,

but the spinor indices label instead the spacetime directions perpendic-
ular to the momentum of the state at the intersection point, which we
label as (0′, . . . , 3′). This is equivalent to the following relation on the
vertex operator V

QALV = i(iΓ0′Γ1′Γ2′Γ3′)ABQ
B
RV , (4.18)
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where the factor iΓ0′Γ1′Γ2′Γ3′ gives ±1 according to the chirality of the
spinor in the relevant spacetime directions. We will find it easier to
implement first a relation on a twisted vertex operator

QALV
T = iQARV

T , (4.19)

and later find the implications of untwisting on the polarizations of the
vertices.

In this work we will only consider bosonic excitations of the string, so
we can have string states in the NS-NS and R-R sectors. Since the action
of the supercharge exchanges an NS string by a state in the R sector,
we can then see that the equations determining the vertex operator for
a superconformal primary imply that it must be a linear combination of
states from both sectors.

It is also important to note that when applying equation (4.19) we
will have to make sure to match the superghost picture of the vertex
operators on both sides of the equation. If we pick the NS-NS states
to be in the (−1,−1) picture, and R-R states to have (−1/2,−1/2)
superghost numbers, then the supercharge acting on the R-R state must
be in the (−1/2) picture, while the supercharge acting on NS-NS states
much be in the (1/2) superghost picture.

4.3 The vertex operators
In this section we will specify which operators of N = 4 SYM we will
consider in the correlation functions at strong coupling, and we will show
what are the vertex operators that describe the dual string states.

The dual of N = 4 SYM is type IIB string theory, which has the same
chirality for left and right-moving states in the R sector. In the rest of
this work we choose the convention of positive chirality.

4.3.1 Protected operators
The chiral primaries are given by

OCP = CI1K1,...,IJKJ Tr[φI1K1 . . . φIJKJ ] , (4.20)

with CI1K1,...,IJKJ a symmetric and traceless tensor on any pair of indices

CI1K1,...,IJKJ εIpKpIqKq = 0 . (4.21)

These states transform in the [0, J, 0] representation of SU(4) and have
protected dimension ∆ = J , as they are annihilated by half the super-
charges.

58



Protected states are dual to massless strings, so they will map to the
following vertices in the NS-NS and R-R sectors

W1 = gcεMM̃ψ
Me−φψ̃M̃e−φ̃eik·X ,

W2 = gctABΘ̃Ãe−φ̃/2ΘBe−φ/2eik·X . (4.22)

We have seen before that the chiral primaries of N = 4 SYM are the
lowest weight states of short representations with 28 elements. In the
previous chapter we have also seen that the open massless string has
8 + 8 degrees of freedom, which implies that the closed string has 28

states, so we conclude that the counting of degrees of freedom matches.
The solution to the twisted condition (4.19) is then

WT =
1

4
(WT

1 +WT
2 ) , (4.23)

with the polarizations given by

εT
MM̃

= ηMM̃ −
kMqM̃ + kM̃qM

k · q
,

tTAB =
1√
2

(
α′

2

)1/2

(C†/k)AB . (4.24)

The vector q is an arbitrary light-like vector whose scalar product with
the momentum k is non-vanishing and the twisted vertex corresponds to
a linear combination of the dilaton and axion with some Kaluza-Klein
momentum.

Another family of protected operators we will consider later are the
relatives of the Lagrangian with some R-charge J and dimension ∆L =
4 + J

LJ = Tr[FµνF
µνZJ ] + . . . , (4.25)

where the ellipsis denotes two types of terms we do not write explicitely:
terms where the field strength Fµν of N = 4 SYM occupies different
positions inside the trace, and also other terms with scalars and fermions.

At strong coupling this operator corresponds to the ten-dimensional
dilaton with some Kaluza-Klein momentum, so the vertex is simply the
NS-NS part of the twisted chiral above, with corrected normalization

VL =
gc√

8

(
ηMM̃ −

kMqM̃ + kM̃qM
k · q

)
ψMe−φψ̃M̃e−φ̃eik·X . (4.26)

4.3.2 Konishi-like operators
We would like to consider the Konishi operator, which is dual to a string
in the first massive level, with ∆K ≈ 2λ1/4 [55, 56]. However, in some
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cases we will need to add some R-charge to the operator in order to have
non-vanishing three-point functions. These operators are described by
Beisert in [65] and they correspond to a generalization of BMN operators
outside the BMN regime J ∼

√
λ. The operators are given by

OJ =
J∑
l

4∑
K,L=1

cos
π(2l + 3)

J + 3
TrφKLZ

lφKLZJ−l . (4.27)

Like the chiral primaries, these operators transform in the [0, J, 0] rep-
resentation of SU(4), but their bare dimension is ∆ = J + 2. For J = 0
this operator becomes the Konishi and in the limit of large R-charge J
it becomes the BMN operator of [66]. The Konishi-like operators we are
going to consider will have R-charge J � λ1/4 so that the anomalous
dimension at strong coupling is still the main contribution to ∆K .

These operators are also superprimaries, so the dual vertices are a
combination of the following R-R and NS-NS vertex operators

V3 = gc(i∂̄X
M Θ̃A − 1

8

α′

2
ψ̃M (/k /̃ψΘ̃)A)e−φ̃/2

× tMA,NB(i∂XNΘB − 1

8

α′

2
ψN (/k/ψΘ)B)e−φ/2eik·X ,

V1 = gcεMN,M̃Ñ i∂X
MψNe−φi∂̄XM̃ ψ̃Ñe−φ̃eik·X ,

V2 = gcαMNP,M̃ÑP̃ψ
MψNψP e−φψ̃M̃ ψ̃Ñ ψ̃P̃ e−φ̃eik·X . (4.28)

The open string has 128+128 states, so there are degrees 216 of freedom
in the closed string at the first massive level, which corresponds exactly
to the dimension of a typical representation of N = 4 SYM. The solution
to (4.19) is in this case

V T =
1

16
(V T

1 + V T
2 + V T

3 ) , (4.29)

with the following twisted polarizations

tTMA,NB =
1√
2

(
α′

2

)1/2

(C†/k(η̂MN −
1

9
ΓRΓS η̂RM η̂SN ))AB ,

εT
MN,M̃Ñ

=
1

2
(η̂MM̃ η̂NÑ + η̂MÑ η̂NM̃ )− 1

9
η̂MN η̂M̃Ñ ,

αT
MNP,M̃ÑP̃

=
1

36
(η̂MM̃ η̂NÑ η̂PP̃ ∓ 5 permutations) . (4.30)

In order for the polarizations to be transverse to the momentum, we
defined the matrix η̂ as

η̂MN = ηMN − kMkN

k2
. (4.31)
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4.3.3 Leading twist operators
The twist of an operator is given by the difference between the scaling
dimension and the spin. We will now consider the twist two operators of
N = 4 SYM that are R-charge singlets. There are three such operators,
whose degeneracy at tree level is lifted at one loop, as can be seen from
the action of the dilatation operator [67]. In general the eigenstates of
the dilatation operator will be linear combinations of the three operators,
but we are interested only in the one with the lowest eigenvalue, so that
its string dual sits in the leading Regge trajectory. That operator is
given by the following linear combination [68]

|φDSφ〉+
2(S + 1)

S
|ψ̄DS−1ψ〉 − 2(S + 1)(S + 1)

S(S − 1)
|FDS−2F 〉 , (4.32)

where we defined the states

|ψ̄DS−1ψ〉 =

S∑
k=0

(−1)k
(
S

k

)(
S

k + 1

)
Tr[Dµ1...µk ψ̄α̇IDµk+1...µS−1

ψIα] ,

|FDS−2F 〉 =
S∑
k=0

(−1)k
(
S

k

)(
S

k + 2

)
Tr[Dµ1...µkFµk+1νDµk+2...µS−1

F ν
µS ] ,

|φDSφ〉 =

S∑
k=0

(−1)k
(
S

k

)2

Tr[Dµ1...µkφIJDµk+1...µSφ
IJ ] . (4.33)

At strong coupling this operator is dual to a string state with spin S
at the n-th mass level. To make contact with (2.36) we introduce a
polarization vector ZM and turn it into a polynomial. The normalized
vertex is then

VS = gc
2n

Γ(S/2)α′n
(Z · (i∂X))n(Z · ψ)e−φ(Z · (i∂̄X))n(Z · ψ̃)e−φ̃eik·X ,

(4.34)
which is explicitely symmetric in its S indices. BRST invariance of the
state constrains the polarization (3.102), and in terms of the polarization
vector the constraints become

Z2 = 0 , Z · k = 0 . (4.35)

4.3.4 Untwisting
Finally, we have introduced the vertex operators at the massless and first
massive level that satisfy the twisted condition (4.19), but now we need
to understand how to untwist the vertex operators. It can be shown that
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the untwisting factor iΓ0′Γ1′Γ2′Γ3′ leads to the following transformation
of gamma matrices

(iΓ0′Γ1′Γ2′Γ3′)ΓM (iΓ0′Γ1′Γ2′Γ3′) = (−1)σ(M)ΓM , (4.36)

with

σ(M) =

{
1 M = 0′, . . . , 3′

0 M = 4, . . . , 9
(4.37)

With this in mind we can analyze the equation (4.18) and see that the
solution is exactly the same as for the twisted case, but with the following
modifications to the massless polarizations

εMM̃ = (−1)σ(M̃)εT
MM̃

,

tAB = (C†iΓ0′Γ1′Γ2′Γ3′/k)AB . (4.38)

Analogously, at the first massive level we have

tMA,NB = (−1)σ(M)
(
C†iΓ0′Γ1′Γ2′Γ3′/k(η̂MN −

1

9
ΓRΓS η̂RM η̂SN )

)
AB

,

εMN,M̃Ñ = (−1)σ(M̃)(−1)σ(Ñ)εT
MN,M̃Ñ

,

αMNP,M̃ÑP̃ = (−1)σ(M̃)(−1)σ(Ñ)(−1)σ(P̃ )αT
MNP,M̃ÑP̃

. (4.39)

Since we have to untwist three operators, we need to introduce three
different untwisting factors σi as the directions perpendicular to the mo-
mentum are different for each vertex operator. It is then useful to in-
troduce a twisting factor that switches the sign of all components corre-
sponding to AdS

σ̃(M) =

{
1 M = 0, . . . , 4

0 M = 5, . . . , 9
(4.40)

Its action on the metric is related to the action of the original untwisting
factor in the following way

(−1)σ(M)ηMN = (−1)σ̃(M)ηMN − 2
k̃M k̃N

∆2
, (4.41)

where k̃ denotes the AdS projection of the momentum, and k̃2 = −∆2.
It is also useful to rewrite the factor iΓ0′Γ1′Γ2′Γ3′ so that we don’t have
dependence on specific indices for each polarization

iΓ0′Γ1′Γ2′Γ3′ =
1

∆i
Γ0Γ1Γ2Γ3Γ4/̃ki . (4.42)
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Just like in (4.36), we can relate the new product of gamma matrices
with the new untwisting factor

(Γ0Γ1Γ2Γ3Γ4)ΓM (Γ0Γ1Γ2Γ3Γ4) = (−1)σ(M)ΓM . (4.43)

Finally, it is useful to note that for the massless vertex operators we
had to choose an arbitraty light-like vector q whose scalar product with
the momentum was non-vanishing. For practical purposes it is useful to
choose qM = (−1)σ(M)kM .

4.4 Structure Constants
Now that we have introduced all the vertex operators, we can move on
to considering the superstring amplitudes that will correspond to the
correlation functions of interest. We have seen that the propagation to
the intersection point is just a large dimension approximation to the
cubic Witten diagram, so the structure constant is given by

C123 =

√
∆1 − 1

√
∆2 − 1

√
∆3 − 1

25/2π

Γ(α1)Γ(α2)Γ(α3)Γ(Σ− 2)

Γ(∆1)Γ(∆2)Γ(∆3)
G123 ,

(4.44)
with the coupling given by

G123 =
8π

g2
cα
′ 〈Vk1Vk2Vk3〉〈ψJ1ψJ2ψJ3〉 , (4.45)

where 〈Vk1Vk2Vk3〉 is the superstring amplitude and 〈ψJ1ψJ2ψJ3〉 the
sphere overlap integral [69,70]

〈ψJ1ψJ2ψJ3〉 =

∏3
i=1

√
(Ji + 1)(Ji + 2)Ji!√

2π3/2α1!α2!α3!(Σ + 2)!
〈CJ1CJ2CJ3〉 . (4.46)

The factor 〈CJ1CJ2CJ3〉 is the unique SO(6) invariant that can be
formed with the polarizations of the spherical harmonics. Using the
relation of gc to the string coupling, gc = 4π5/2gsα

′2, we obtain the
following relation with the gauge theory parameters

gc =
π3/2

N
. (4.47)

Note that if ∆ is large it is acceptable to use overlaps even for small
J . To understand this we can think of particles in a box, where the
interactions are local but the particles are unlocalized. In this case one
can still use the overlap integrals over the whole box. In our problem,
the condition for local interaction is satisfied when scaling dimensions are
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large, so we can take the R-charge to zero and obtain structure constants
for the Konishi operator.

In order to obtain the relevant correlation functions we have computed
several superstring amplitudes with massive states, which are in itself
new results. However, in the remainder of this section we will focus on
their implications for correlation function of N = 4 SYM, and refer the
reader to the appendices of Paper I and II for more details on superstring
amplitudes.

4.4.1 Ward identities and protected correlators
Before we show the results obtained, let us present some checks of our
methods.

While the twisted vertices satisfying (4.19) were originally meant purely
as an auxiliary object, they were also useful in checking both the expres-
sions found for the vertices as well as the Mathematica implementation
of the contractions.

The twisted vertex operators are annihilated by the following sixteen
flat-space supercharges

Q̃A = QAL − iQAR . (4.48)

Since the twisted vertex operators have non-zero momenta, we can write
them as

V T = {Q̃A, Ṽ } , (4.49)

and use this to show that superstring amplitudes with three twisted
vertices must vanish due to a supersymmetric Ward identity

〈V T
1 V

T
2 V

T
3 〉+ 〈Ṽ1[Q̃A, V T

2 ]V T
3 〉+ 〈Ṽ1V

T
2 [Q̃A, V T

3 ]〉 = 0 . (4.50)

We can also derive a similar Ward identity even for the case when one
of the vertex operators is untwisted. If we choose supercharges that
have positive chirality in the four-dimensional space orthogonal to the
momentum of the untwisted vertex

Q̃+ = QαaL − iQαaR , (4.51)

then

〈V T
1 V

T
2 V3〉+ 〈Ṽ1[Q̃+, V T

2 ]V3〉+ 〈Ṽ1V
T
2 [Q̃+, V3]〉 = 0 . (4.52)

We cannot derive any such identity for the case of two untwisted ver-
tices, as the charges that annihilate one of the them do not annihilate
the other. This happens because the rotation from k2 to k3 mixes com-
ponents with negative chirality in the four-dimensional subspace.
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We can also check our results against correlators that were previously
known in the literature. One such example is the case of three chiral
operators, for which the flat-space amplitude takes a remarkably simple
form

〈WWW 〉 = g2
cα
′α1α2α3Σ5

J2
1J

2
2J

2
3

, (4.53)

which combined with the largeR-charge limit of (4.44) gives the following
structure constant

CCCC =

√
J1J2J3

N
〈CJ1CJ2CJ3〉 . (4.54)

This result coincides with the one derived in [69] with supergravity tech-
niques. Let us emphasize however that in our method the scaling dimen-
sions must be large, so the match for protected operators occurs only in
the limit of large R-charges.

4.4.2 Structure constants with unprotected operators
We are now ready to summarize the main results obtained for correlators
with primary operators dual to string states in the first mass level. For
the case of three Konishi operators we are free to send all R-charges to
zero, so the superstring amplitude simplifies to

〈V V V 〉 = g3
c

38

29
. (4.55)

The simplicity of the prime factors in this expression is remarkable as it
comes after the manipulation of roughly a million terms in Mathematica.
Plugging this result into (4.44) we obtain the structure contant for three
Konishi operators at strong coupling

CKKK =
26π1/2λ1/4

N

(
3

4

)2λ1/4+5/2

. (4.56)

The structure constant is exponentially supressed, but that is a universal
property of semiclassical three-point functions. The intuition for this
stems from the fact that each prong in the three-point function is longer
than the two-point semicircle geodesics. The action (4.5) then indicates
that for large dimensions this leads to an exponential suppression.

Another important result is for two chiral primaries and one Konishi
operator. In order to have R-charge conservation we need the chiral
primaries to have opposite R-charges and their dimension is then ∆ = J .
The most interesting regime in this case is near extremality J ≈ λ1/4,
for which we get the following string coupling

G123 =
8π
√
λ

N
, (4.57)
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which leads to the structure constant

CCCK =
λ3/8

N(2J −∆K)
. (4.58)

This case is especially interesting as we can see that the coupling does
not vanish, which means that the structure constant develops a pole. We
will study this in more detail in section 4.5.

Finally, we can look at the correlation function of two Konishi opera-
tors and one chiral primary of dimension J . In order to have R-charge
conservation we will need to give some R-charge to one of the operators
and make it a Konishi relative as in (4.27). Since we take J � λ1/4, the
R-charge will not make an appearance in the string coupling, leading to
the following structure constant

CCKK =
π1/2λ1/4

N
2−J . (4.59)

In this case two of the operators are much heavier than the third one, so
the intersection point (4.7) lies on the geodesic between them, and the
exponential suppression scales with the dimension of the light operator.

4.4.3 From superstring to CFT building blocks
Let us now move on to the case of operators with spin, dual to states
in the leading Regge trajectory. In [71] Schlotterer obtained the open
superstring amplitude for three states of spin si in the leading Regge
trajectory at mass levels ni, obtaining∑

i,j,k∈I

(α′/2)−i−j−k(is3 + js2 + ks1 − ij − ik − jk)

i!j!k!(s1 − i− j)!(s2 − i− k)!(s3 − j − k)!
(Z1 · k2)s1−i−j

× (Z2 · k3)s2−i−k(Z3 · k1)s3−j−k(Z1 · Z2)i(Z1 · Z3)j(Z2 · Z3)k ,
(4.60)

where the summation range is

I = {i, j, k ∈ N0 : s1 − i− j ≥ 0, s2 − i− k ≥ 0, s3 − j − k ≥ 0} .
(4.61)

In our case this would be the contribution for only the left and right
movers independently, but we can still see that the closed superstring
amplitude will be a sum over all terms of the form

(Z1 ·k2)S1−i−j(Z2 ·k3)S2−i−k(Z3 ·k1)S3−j−k(Z1 ·Z2)i(Z1 ·Z3)j(Z2 ·Z3)k .
(4.62)

We will now see that we can relate these superstring building blocks
with the tensor structures allowed by conformal symmetry in (2.36). We
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will restrict here to the case of massive vertices, where we can send the
R-charge to zero and use the expression (4.9) for the momenta ki. The
key observation is that the polarization at the intersection point ZM lives
on a four-dimensional plane perpendicular to the momentum, which we
can map to the four-dimensional boundary space, where the polarization
vector becomes zµ. The transformation between these is

ZMi = zµi (Pi)
M
µ , (4.63)

where the matrix PMµ performs a change of basis. We can then map the
superstring building blocks to boundary objects through

Zi · kj = zµi (kMj (Pi)
M
µ ) = −

2
√
α1α2α3Σx2

jk

|x12||x13||x23|∆i
Vi

∣∣∣∣∣
Z(z,x),X(x)

, (4.64)

and

Zi ·Zj = zµi (PiP
T
j )µνz

ν
j =

1

x2
ij

(
Hij +

2αiαj
∆i∆j

ViVj

)∣∣∣∣∣
Z(z,x),X(x)

. (4.65)

Putting all terms of (4.62) together, we get the following expression∏
i

V
Si−

∑
j 6=i nij

i

∏
i<j

|xij |Sk−Si−Sj
(
Hij +

2αiαj
∆i∆j

ViVj

)nij
. (4.66)

A very important feature of this equation is that the spacetime de-
pendence combines with the factor |x12|−2α3 |x13|−2α2 |x23|−2α1 from the
geodesic propagation to the intersection point, reproducing exactly the
spacetime dependence expected in correlation functions of operators with
spin (2.36). This shows that the correct prescription for the geodesic
propagation in AdS is with scalar cubic Witten diagram, with the flat-
space vertex operators taking into account the different nature of the
operators.

4.5 Extremality and Mixing
A three-point function is extremal when the dimension of one of the
operators equals the sum of the dimensions of the other two. In general a
single-trace operator mixes with multi-trace operators, but in the planar
limit one can usually ignore such corrections. However, this is not true for
extremal correlation functions, where mixing with double-trace operators
becomes important.

When studying the three-point functions of chiral operators, the in-
tegration of the Witten diagram still produces a pole, but the coupling
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vanishes in the extremal limit. It can be seen from analytic continua-
tion that the correlators remain finite, while in [72] the authors worked
exactly at extremality and showed that the results are due to boundary
terms.

Meanwhile, in our computation of the structure constant between
Konishi and two chiral operators, we saw that the coupling remains finite
while the correlator develops a pole. We can relate this to mixing with
double-trace operators, but in order to do so we will first consider a toy
model which leads to insight in the problem.

4.5.1 Toy Model
Consider a theory with a complex scalar field φ in d dimensions. Its
scaling dimension is δ = d

2 − 1 and we will assume it is normalized such
that its two-point function is

〈φ∗(x)φ(y)〉 =
1

|x− y|2δ
=

1

|x− y|d−2
. (4.67)

We can also add an interaction term to the Lagrangian

Lint = λφ∗φO(x) , (4.68)

whereO is an operator of dimension two and the coupling λ is dimension-
less in any dimension. At one-loop, the three-point correlator is given
by

〈φ∗(x1)φ(x2)O(x3)〉 = λ

∫
ddz

1

|z − x1|2δ|z − x2|2δ|z − x3|4
. (4.69)

For 0 ≤ d − 4 � 1 this becomes a conformal integral and so we obtain
the three-point function expected from conformal symmetry

〈φ∗(x1)φ(x2)O(x3)〉 =
C

|x12|d−4|x23|2|x13|2
≈ C
|x23|2|x13|2

. (4.70)

Note that in this regime the correlation function becomes extremal, as
the dimension of the complex scalar approaches half the dimension of O.

Let us now assume that the complex scalars are much closer to each
other than to the operator O, so that |x12| = ε� |x13|. In this case the
integral is approximately

〈φ∗(x1)φ(x2)O(x3)〉 ≈ λ
∫
ε

ddz
1

|z|4δ|z − x31|4
, (4.71)

where we have introduced a cutoff ε around x1. We will also assume
there is a cutoff ε̃ around z = x31 which we can later take to zero. The
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dominant contribution to the integral is near z = 0 and z = x31, hence
we find that

〈φ∗(x1)φ(x2)O(x3)〉 ≈ 2π2λ

(d− 4)|x13|d

((
|x13|
ε

)d−4

−
(

ε̃

|x13|

)d−4
)
.

(4.72)
Now we can consider two different limits of this expression. On one

hand we can take ε̃ to zero in a non-singular way for d > 4. The three-
point function becomes

〈φ∗(x1)φ(x2)O(x3)〉 ≈ 2π2λ

(d− 4)εd−4|x13|4
, (4.73)

and we recognize it to be of the form (4.70), thus fixing C

C =
2π2λ

d− 4
. (4.74)

On the other hand, we could have considered a different limit, where ε̃
is of the same order of ε and we take first the extremal limit d → 4. In
this case the integral becomes

〈φ∗(x1)φ(x2)O(x3)〉 ≈ 4π2λ

|x13|d
log

ε

|x13|
. (4.75)

This is the sort of term one computes for the anomalous dimension mix-
ing between : φ∗φ : and O.

In comparing the two limits we see that the former approach uses a
UV cutoff for one operator and dimensional regularization for the other
in order to regulate the integral, while the latter approach imposes a
UV cutoff at the positions of both operators. Using the UV dimreg
combination, the mixing of the operators is given by

Oren = O − lim
d→4

2π2λ

d− 4
µ4−d :φ∗φ : ,

:φ∗φ :ren =:φ∗φ : + lim
d→4

2π2λµd−4 log(εµ)O , (4.76)

where the powers of µ are necessary to match dimensions. The anoma-
lous dimension matrix then has the form(

0 δO,:φ∗φ:

δ:φ∗φ:,O 0

)
, (4.77)

where
δ:φ∗φ:,O = µ

∂

∂µ
2π2λ log(εµ) = 2π2λ = δO,:φ∗φ: . (4.78)

So we conclude that the splitting between the operators is 4π2λ.
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4.5.2 Mixing in N = 4 SYM
We can easily adapt the previous discussion to the case of N = 4 SYM.
The analog of the coefficient C is the structure constant between the
Konishi and two chiral operators from equation (4.58)

C123 ≈
λ3/8

N

1

2J −∆K
, (4.79)

while the role of the coupling is played by 1/N , and extremality is ap-
proached at J ∼ λ1/4.

The structure constant for physical operators must be finite, so the
pole indicates that there is mixing between the Konishi and the double-
trace operators OJJ̄(x). In order to find the mixing we need to regulate
the double-trace operator using a point-splitting technique

OεJJ̄(x) = : OJ(x+ ε)OJ̄(x) : . (4.80)

The two-point function between the double-trace operator and Konishi
can be related to the three-point function, so one obtains

〈OεJJ̄(x)OK(y)〉 ≈ λ3/8

N

1

(2J −∆K)|ε|2J−∆K

1

|x− y|2∆K
. (4.81)

We can therefore extract the non-planar contribution to the two-point
function from a planar three-point function. As one would expect, there
is no mixing between Konishi and the double-trace operator in the limit
of infinite N .

It is important to remember that Konishi is an R-charge singlet, so it
can only mix with the R-charge singlet appearing in the tensor product of
the two J-symmetric traceless representations. The two-point function
(4.81) corresponds only to one of the components of the double-trace
singlet, which we can write as

Oεs,J =
∑
~I

C~I : O~I O−~I : , (4.82)

where we sum over over all states ~I in the representation [0, J, 0] of
SU(4). Since the state is an R-charge singlet it must be annihilated by
all roots of the algebra, which implies that all coefficients C~I must be
equal up to a phase. Since the dimension of the representation is

M =
(J + 1)(J + 2)2(J + 3)

12
≈ J4

12
, (4.83)

then the two-point function of the Konishi operator with the double-trace
singlet is

〈Oεs,J(x)OK(y)〉 ≈ λ3/8
√
M

N

1

(2J −∆)|ε|2J−∆

1

|x− y|2∆
. (4.84)
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Besides the pole, there is a logarithmic divergence in the UV cutoff,
so we cancel both of these with the following renormalized operators

Oε,rens,J = Oεs,J + lim
∆→2J

λ3/8
√
M log(εµ)

N
µ2J−∆OK ,

OrenK = OK − lim
∆→2J

λ3/8
√
M

N(2J −∆)
µ∆−2J Oεs,J , (4.85)

with µ the renormalization scale. To leading order in 1/N , the three-
point function of two chiral operators and OrenK now becomes finite

〈OJ(x1)OJ̄(x2)OrenK (x3)〉 ≈ λ3/8
√
M

N |x13|2J |x23|2J
log

|x12|
µ|x13||x23|

. (4.86)

Analogously, the correlation function of the chiral operators with Orens,J is
also finite at leading order in 1/N . The three-point functions are not of
the form imposed by conformal symmetry anymore since the operators
do not have definite scaling dimensions. To find the correct primary
operators we need to diagonalize the anomalous dimension matrix

Γ =

(
0 δsJ,K

δK,sJ 0

)
, (4.87)

where the off-diagonal elements are given by

δsJ,K = δK,sJ =
λ3/8
√
M

N
. (4.88)

At the cross-over point J = ∆/2 ≈ λ1/4, the mixed operators have
dimensions

∆± = 2J ±
√
Mλ3/8

N
(4.89)

and thus the splitting is given by1

∆+ −∆− ≈
λ7/8

√
3N

. (4.90)

Note that the splitting found is much larger that the leading correction
to the double-trace dimension coming from supergravity [73].

The operators with definite scaling dimension at the cross-over point
are

O± =
1√
2

(OrenK ±Orens,J ) , (4.91)

1The published paper missed a factor of 2, which was meanwhile fixed in the preprint
arXiv:1410.4746.
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and their three-point functions with two chiral operators now have the
expected spacetime dependence

〈OJ(x1)OJ̄(x2)O±(x3)〉 =
1√
2

1

|x13|∆± |x23|∆± |x12|2J−∆±
. (4.92)

After Paper II was published, Korchemsky extended the results pre-
sented above by considering the splitting of operators away from the
cross-over point [74]. His considerations are for generic CFTs and so
he finds universal behaviours for the anomalous dimensions and OPE
coefficients in the vicinity of the crossing.
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5. Weak Coupling

Integrability of N = 4 SYM paves the way for a finite coupling de-
scription of many of its observables. A paradigmatic example is the
planar anomalous dimension of single trace operators. As the integra-
bility framework is developed, it is crucial to compare its proposals with
perturbative computations done by other means. For example, the per-
turbative calculations in [75–78] were crucial for understanding wrapping
corrections in the context of the spectrum of anomalous dimensions.

More recently there has been great progress in the understanding of
other observables at finite coupling. A striking example is the all-loop
Hexagon proposal [14] for the three-point functions of N = 4 SYM.
The Hexagon form factors are also the building blocks for higher-point
functions [79], so it is extremely important to ensure that we have a good
understanding of those objects.

The Hexagon has been thoroughly checked up to three loops [80–82],
but at four loops there is a contribution from two virtual particles which
leads to a double pole singularity. In [83] the authors have provided
a resolution to this issue by introducing a renormalization prescription,
and matched the perturbative computations of [84,85].

It is important to check if the regularization of the double pole sin-
gularity continues to hold without any change at the five loop level, so
one must perform a perturbative computation of the OPE coefficients
at five loops. While doing so we find the structure constant to be given
in terms of massless propagator integrals, which are currently unknown.
Nevertheless, we were able to devise a strategy that determines most of
these integrals without any explicit integration.

5.1 Structure constant from four-point function
We will be considering the four-point function of the half-BPS operator
in the [0, 2, 0] representation of SU(4). This is a very special opera-
tor, as it belongs to the same supermultiplet as the Lagrangian and the
stress-energy tensor. Just like in (2.29) we encoded operators with spin
as polynomials, it is also useful here to introduce the antisymmetric har-
monic variables YIJ and write the chiral operator in the following way

O(x, Y ) = YIJYKL Tr[φIJφKL](x) . (5.1)

73



The operator is manifestly symmetric, and tracelessness is obtained by
requiring that the harmonic variables are null

YIJY
IJ = 0 . (5.2)

The four-point function can be decomposed into a sum over conformal
blocks, where each block corresponds to the contribution of a primary
operator and its descendants to the OPE of two chiral primaries

〈O(x1, Y1) . . .O(x4, Y4)〉 =
∑
k

c2k
G∆k,Sk(u, v)

x4
12x

4
34

Fmk,nk(σ, τ)

y−4
12 y

−4
34

, (5.3)

where we introduce the R-charge cross ratios

σ =
y2

12y
2
34

y2
13y

2
24

, τ =
y2

14y
2
23

y2
13y

2
24

, (5.4)

and the short-hand notation y2
ij = Yi,IJY

IJ
j . The labels of the blocks

Fm,n correspond to the exchange of operators in the [n−m, 2m,n−m]
representation of SU(4).

Since we consider a four-point function of scalar operators, there can
only be operators of even spin in the OPE. There is a closed expression
for the conformal blocks in four dimensions, and in the OPE limit of
small u the conformal block for an operator of dimension ∆ and spin S
simplifies to [86]

G∆,S(u, v) ≈ u
∆−S

2

(
v − 1

2

)S
2F1

(
∆ + S

2
,
∆ + S

2
,∆ + S, 1− v

)
.

(5.5)
For small u the leading contribution comes from operators with the low-
est twist ∆ − S. The identity operator is the only operator with twist
zero, and next we have several operators with twist two. There are six
representations in the tensor product of two [0, 2, 0] representations of
SU(4)

20′ ⊗ 20′ = 1⊕ 15⊕ 20′ ⊕ 84⊕ 105⊕ 175 , (5.6)

so for each twist we will have to consider six distinct channels in the OPE
decomposition. In general the singlet channel is more difficult to study as
it has a contribution from three twist two operators (4.32). Meanwhile,
in the channel of the 20′ there is a single twist two primary for each
spin. For S = 2 it corresponds to the primary Tr[ZD2Z], which is in the
same supermultiplet of the Konishi operator. The relation between the
structure constants can be found from supersymmetry to be

c2K = 3c220′ . (5.7)
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Since the spinless operator in the 20′ channel is the chiral operator
itself, which is protected, then the spin two operator is the first one
appearing beyond tree level. Expanding both the anomalous dimension
γ and the structure constant ck in the coupling we obtain

uγ(λ)/2c2K(λ) =
5∑

n=0

n∑
k=0

cn,k log(u)kλn . (5.8)

5.2 Perturbative Correlators
We have seen how we can obtain the structure constant of Konishi with
two half-BPS operators from the OPE limit of a four-point function of
chiral operators. The correlation function can be expanded as

C4 = 〈O(x1, Y1)O(x2, Y2)O(x3, Y3)O(x4, Y4)〉 =

∞∑
l=0

g2lC
(l)
4 , (5.9)

with the tree level component given by

C
(0)
4 =

N2 − 1

(4π2)4

(
y2

12y
2
23y

2
34y

2
41

x2
12x

2
23x

2
34x

2
41

+
y2

12y
2
24y

2
43y

2
31

x2
12x

2
24x

2
43x

2
31

+
y2

13y
2
32y

2
24y

2
41

x2
13x

2
32x

2
24x

2
41

)
+

(N2 − 1)2

4(4π2)4

(
y4

12y
4
34

x4
12x

4
34

+
y4

13y
4
24

x4
13x

4
24

+
y4

14y
4
23

x4
14x

4
23

)
. (5.10)

And we can see that the first line gives the connected contribution while
the second corresponds to disconnected diagrams.

We can see already from the tree level result that it splits into six struc-
tures, corresponding to the six irreducible representations in the tensor
product of two [0, 2, 0] representations of SU(4). In general, at higher
loops the correlator will still be a linear combination of these six struc-
tures, each accompanied by a funtion of the cross ratios u and v. How-
ever, since the correlator is invariant under exchange of the four external
points, we can show that only two of them are independent. Further-
more, in a superconformal theory such as N = 4 SYM, it can be shown
that supersymmetry imposes further constraints, and the quantum cor-
rections to the four-point function take in fact a factorized form [87]

C
(l)
4 =

2(N2 − 1)

(4π2)4
R(xi, Yi)F

(l)(xi) , (5.11)
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where the factor R(xi, Yi) contains all the information on the harmonic
variables

R =
y2

12y
2
23y

2
34y

2
41

x2
12x

2
23x

2
34x

2
41

(x2
13x

2
24 − x2

12x
2
34 − x2

14x
2
23) +

y4
13y

4
24

x2
13x

2
24

+
y2

12y
2
24y

2
43y

2
31

x2
12x

2
24x

2
43x

2
31

(x2
14x

2
23 − x2

12x
2
34 − x2

13x
2
24) +

y4
14y

4
23

x2
14x

2
23

+
y2

13y
2
32y

2
24y

2
41

x2
13x

2
32x

2
24x

2
41

(x2
12x

2
34 − x2

13x
2
24 − x2

14x
2
23) +

y4
12y

4
34

x2
12x

2
34

. (5.12)

The functions F (l) are given by l-loop Feynman diagrams with four
external operators, but we can rewrite them as tree-level (4 + l)-point
correlators by using the method of Lagrangian insertion [88]. This equiv-
alence stems from the fact that the derivative of a correlation function
with respect to the coupling brings down insertions of the corresponding
marginal operator

λ
∂

∂λ
〈O(x1) . . .O(x4)〉 =

∫
d4x5〈O(x1) . . .O(x4)L(x5)〉 . (5.13)

Since F (l) are conformally covariant on the external points with weight
+1, we write them as

F (l) =
x2

12x
2
13x

2
14x

2
23x

2
24x

2
34

l!(−4π2)l

∫
d4x5 . . . d

4x4+lf
(l)(x1, . . . , x4+l) , (5.14)

so that the functions f (l) are conformally covariant on all 4 + l points
with weight +4. The explicit symmetry is S4×Sl corresponding to per-
mutations of both external and internal points. So far these are very
generic considerations, but in N = 4 SYM something special happens,
as supersymmetry requires the functions f (l) to be completely symmet-
ric under exchange of any two of the 4 + l points, thus enhancing the
symmetry to S4+l [89]. It is useful to consider the following ansatz

f (l)(x1, . . . , x4+l) =
P (l)(x1, . . . , x4+l)∏

1≤i<j≤4+l x
2
ij

, (5.15)

so that the numerator P (l)(x1, . . . , x4+l) is a homogeneous polynomial
in x2

ij of degree l − 1 on each point. The reason we make this ansatz
is because one can show that in the OPE limit of xi → xj the (4 + l)-
point function of chiral and Lagrangian operators cannot have a stronger
divergence than x−2

ij .
We then see that at one and two loops the polynomial is fixed from

these considerations alone, as the only totally symmetric polynomials
with the correct weights are

P (1) = 1 , P (2) =
1

48
x2

12x
2
34x

2
56 + S6 permutations , (5.16)
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where the coefficients are such that each term appears only once.
A crucial observation is that only planar conformal integrals contribute

to the planar limit of the four-point function. At three loops there is only
one planar conformal integral, but at four loops there are 3 while at five
loops there are 7. In order to find the correct linear combination of poly-
nomials at each loop order, one needs to study the Minkowski light-cone
limit and require that it has the singular behaviour expected from the
analysis of the logarithm of the correlation function [90, 91]. This limit
is defined by taking the external points to be light-like separated from
each other. In the end such techniques are sufficient for the determina-
tion of the planar integrand up to very high loop order. The three- and
four-loop polynomials are

P (3) =
1

20
x4

12x
2
34x

2
45x

2
56x

2
67x73 + S7 permutations ,

P (4) =
1

24
x2

12x
2
13x

2
16x

2
23x

2
25x

2
34x

2
45x

2
46x

2
56x

6
78

+
1

8
x2

12x
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13x

2
16x

2
24x

2
27x

2
34x

2
38x
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45x

4
56x

4
78

− 1

16
x2

12x
2
15x

2
18x

2
23x

2
26x

2
34x

2
37x

2
45x

2
48x

2
56x

2
67x

2
78

+ S8 permutations , (5.17)

while at five loops we have

P (5) = −1

2
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16x

2
18x

2
19x
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+
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+
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+
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+ S9 permutations . (5.18)

5.3 Four-point function in the OPE limit
We have seen above that we can obtain the perturbative four-point func-
tion without ever considering Feynman diagrams, which is a very impres-
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sive result. It would seem at this point that the problem is almost solved,
since we know the integrand and only need to perform the integration.
Up to three-loop order this task is doable, but beyond three loops there
are no techniques for the evaluation of all the necessary conformal inte-
grals.

5.3.1 Asymptotic expansions
However, it is important to note that ultimately our goal is finding the
structure constant, so we only need to perform the integrations in the
coincidence limit of small x12, which can be done with the method of
asymptotic expansions [92]. For simplicity, we use the conformal sym-
metry to set the point x1 to zero and x4 to infinity. Usually one would
also use the degrees of freedom left to fix x3, but we will not do so as the
method of asymptotic expansions introduces spurious powers of log(x3).
The fact that these spurious terms must vanish introduces many con-
straints on the master integrals, so it is useful to leave x3 generic. In the
coincidence limit we have |x2| � |x3| and the cross ratios become

u =
x2

2

x2
3

≈ 0 , v = 1− 2x2 · x3

x2
3

+ u ≈ 1 . (5.19)

The polynomial (5.18) leads to 200 inequivalent conformal integrals Φi.
Due to the permutations of external points we need to consider six dis-
tinct versions for each of these

Φi(u, v) , Φi(v, u) , Φi(1/u, v/u) ,

Φi(u/v, 1/v) , Φi(1/v, u/v) , Φi(v/u, 1/u) . (5.20)

In the limit of u → 0 and v → 1 we then have an expansion of each
conformal integral in different regions of its parameters.

In what follows we will denote the integration points x4+i by ki. The
key idea in the method of asymptotic expansions is to separate each
integration into two regions, where the integration point ki is either of
the order of x2 or of x3. For example, if ki is close to x3 while kj is very
small, then we can expand the propagators

1

(x2 − ki)2
=

∞∑
n=0

(2x2 · ki − x2
2)n

(k2
i )

1+n
,

1

(x3 − kj)2
=
∞∑
n=0

(2x3 · kj − k2
j )
n

(x2
3)1+n

,

1

(ki − kj)2
=
∞∑
n=0

(2ki · kj − k2
j )
n

(k2
i )

1+n
. (5.21)
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In general the expressions in (5.21) are only valid for k2
i > x2

2 and k2
j <

x2
3, but we can extend the region of integration to the whole space. In

doing so we introduce divergences which can be regulated via dimensional
regularization, where we set the dimension to be 4− 2ε. For a five-loop
integral we will then have 25 different regions we need to consider, and
schematically the asymptotic expansion gives

Φ(5)(u, v) =
∑
{α}

P (|α|)(x2)P (|ᾱ|)(x3) , (5.22)

where α denotes a subset of the internal points {ki}, ᾱ is its comple-
ment and P (l)(xi) represents an l-loop massless propagator integral with
external points at the origin and at xi. This is a very important sim-
plification as we transformed an integral with three external points into
products of integrals with two external points. We can see that only two
of the propagator type integrals obtained with asymptotic expansions are
five-loop integrals. They correspond to the cases where the integration
variables are either all close to x2 or all close to x3.

5.3.2 Tensor reduction
In general, the conformal integrals have numerators such as (ki − x3)2

and the asymptotic expansions include regions where ki is of the order
of x2. The integral in ki will therefore contain numerators where the
integration variable is contracted with external vectors, which we need
to rewrite as a combination of scalar integrals. The algorithm for tensor
reduction of an integral with denominators Da is [82]

∫
ddk1 . . . d

dkn
Nµ1...µs∏

aDa
=

[s/2]∑
j=0

Pµ1...µs
j (x3)Ij(x3) , (5.23)

where Ij(x3) are scalar integrals and the tensor structure is now encoded
outside the integral with the factors

Pµ1...µs
j (x) =

x2j

4jj!
(�x)j (xµ1 . . . xµs) . (5.24)

The scalar integrals can be defined through a matrix Mij(x3) and a set
of scalar integrals Jj(x3)

Ii(x3) = M−1
ij (x3)Jj(x3) , (5.25)

79



where

Mij(x) =
k2i

4ii!
(�k)i

(
x2j

4jj!
(�x)j(k · x)s

)∣∣∣∣
k=x

,

Jj(x) =

∫
ddk1 . . . d

dkn∏
aDa

x2j

4jj!
(�x)j (xµ1 . . . xµsNµ1...µs) . (5.26)

In the end, the l-loop massless p-integrals we need to compute are of
the form

P ({ai, bi, cij})(x) =

∫ l∏
i=1

ddki

l∏
i=1

1

k2ai
i

l∏
i=1

1

(x− ki)2bi

∏
1≤i<j≤l

1

k
2cij
ij

,

(5.27)
where all exponents are integer. It is possible to write the dependence
on the scale x explicitly so that we obtain a purely numeric integral

P ({ai, bi, cij}) = P ({ai, bi, cij})(x)× x2
∑
i(ai+bi+

∑
j>i cij)−d l(x) .

(5.28)
If we use (5.28) we can see that many regions of the asymptotic expan-
sions do not contribute as they lead to higher powers of u. In some cases
one also finds scaleless integrals where an integration variable appears at
most in one denominator. These integrals are vanishing so we can throw
them away.

5.4 Bootstrap of master integrals
At the end of the day we have transformed conformal integrals into com-
binations of massless propagator integrals. The optimal way to evaluate
them is to first reduce them to master integrals through Integration By
Parts identities [93]. This is a very important step as it reduces the inte-
grals that need to be evaluated to a smaller set of simpler integrals. The
IBP identities follow from the fact that the integral of a total derivative
is vanishing∫ 5∏

i=1

ddki
∂

∂ki

nj 5∏
i=1

1

k2ai
i

5∏
i=1

1

(x− ki)2bi

∏
1≤i<j≤5

1

k
2cij
ij

 = 0 , (5.29)

where nj is a polynomial that depends on internal and/or external points.
The IBP identities can be rewritten as∑

αk({ai, bi, cij})P ({ai + δ
(1)
k,i , bi + δ

(2)
k,i , cij + δ

(3)
k,ij}) = 0 , (5.30)

where δ(l)
k,i ∈ {−1, 0, 1} and the cofficients αk depend on the exponents

of the denominators.
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These identities can be implemented very efficiently with the help
of the computer programs FIRE5 [94] and LiteRed [95]. The five-loop
integrals we consider are exactly at the boundary of feasibility, since in
many cases the reductions required the use of a cluster node with 256
GB of RAM.

For lower loop level, all master integrals are known up to the required
order of ε. However, at five loops there is barely any data on the ε
expansion of the master integrals. In the remainder of this section we
show how one can obtain information on the five-loop master integrals
without any explicit integration.

5.4.1 Canceling divergences
One of the key ideas is to realize that both the method of asymptotic
expansions and the reduction to master integrals introduce spurious di-
vergences. Any massless propagator integral diverges at most as ε−5,
but the coefficients of its reduction to master integrals may also include
poles in ε. If the highest divergence introduced by the coefficients is of
order k, then the expansion in ε of the integral gets shifted to

P ({ai, bi, cij}) =
∞∑

n=−5−k

P ({ai, bi, cij})(n)εn . (5.31)

The integral appears to have a divergence of order higher than five, but in
fact all those higher divergences must vanish, which leads to the following
constraints on the coefficients

P ({ai, bi, cij})(n) = 0 for n < −5 . (5.32)

This idea of cancellation of spurious divergences can be taken even fur-
ther. All the conformal integrals that appear in the four-point function
happen to be convergent, but after performing the asymptotic expansions
there is an apparent divergence up to ε−5. Besides this, the conformal
integrals depend only on the cross ratios, but the expansions also intro-
duce a spurious dependence on the point x3. In general the expansion
of a conformal integral looks like

5∑
n=0

n∑
k=0

n−k∑
l=0

cnklε
−5+n log(x2

3)k log(u)l , (5.33)

where the coefficients cnkl depend on the expansions of the master inte-
grals. The fact that only powers of log(u) are allowed to appear in the
conformal integral lead to another set of equations

cnkl = 0 for n 6= 5 and k 6= 0 . (5.34)
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It is worth noting that these systems of equations are highly redundant
and the existence of a solution strongly indicates that both the asymp-
totic expansions and the reduction to master integrals were performed
correctly.

5.4.2 Magic Identities
Since a subintegral of a conformal integral is also conformal, then we
know that we can express the subintegral through a function of cross
ratios and some spacetime factor that takes into account the conformal
weights of its external points. We can permute the internal points of
the subintegral without changing the function of cross ratios, but that
permutation will have a non-trivial effect both on the subintegral and the
full integral. In that way we can obtain very different representations of
the same conformal integral, and the fact that they are equivalent leads
to the so called magic identities [96].

In order to understand better how to implement these identities, let
us consider an example of a five-loop conformal integral

I =

∫
d4x5d4x6d4x7d4x8d4x9 x6

15

x2
16x

2
17x

2
18x

2
19x

2
25x

2
28x

2
35x

2
36x

2
37x

2
45x

2
46x

2
56x

2
57x

2
58x

2
59x

2
79x

2
89

.

(5.35)
We can now look at the subintegral formed by the integration variables
x7, x8 and x9. The external points of the subintegral are x1, x2, x3 and
x5, and so we have

Isub =

∫
d4x7d4x8d4x9

x2
17x

2
18x

2
19x

2
28x

2
37x

2
57x

2
58x

2
59x

2
79x

2
89

=
1

x6
15x

2
23

Φ(ũ, ṽ) , (5.36)

where I expressed the subintegral as a function Φ(ũ, ṽ) of its cross ratios

ũ =
x2

12x
2
35

x2
13x

2
25

, ṽ =
x2

15x
2
23

x2
13x

2
25

. (5.37)

If we exchange x1 with x2 and x3 with x5, then the function of the cross
ratios Φ(ũ, ṽ) remains the same but we have

I ′sub =

∫
d4x7d4x8d4x9

x2
18x

2
27x

2
28x

2
29x

2
37x

2
38x

2
39x

2
57x

2
79x

2
89

=
1

x2
15x

6
23

Φ(ũ, ṽ) . (5.38)

We can then go back to the full integral I and substitute Isub by I ′sub.
Taking into account the different spacetime factors we obtain

I ′ =

∫
d4x5d4x6d4x7d4x8d4x9 x

2
15x

4
23

x2
16x

2
18x

2
25x

2
27x

2
28x

2
29x

2
35x

2
36x

2
37x

2
38x

2
39x

2
45x

2
46x

2
56x

2
57x

2
79x

2
89

.

(5.39)
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The equivalence between the conformal integrals I and I ′ is highly non-
trivial as the integrals have different numerators and a different number
of propagators between internal points.

Usually this kind of magic identity is used to simplify a calculation.
For example, if the integral I appeared in a physical problem then it
would be wise to use I ′ instead as it is a much simpler integral. Never-
theless, we keep all equivalent versions of the conformal integrals as their
asymptotic expansions lead to different expressions and in that way we
can obtain even more constraints on the master integrals. Each confor-
mal integral will lead to a set of equations like (5.34), so ultimately we
have

I =

5∑
l=0

c50l log(u)l , I ′ =

5∑
l=0

c′50l log(u)l . (5.40)

Since the integrals are equivalent, we can add the following constraint

c50l = c′50l . (5.41)

5.4.3 Generalized ladder diagrams
At this point it is obvious that the more conformal integrals we analyze
and the more p-integrals we reduce, the more information we gain on the
ε expansion of master integrals. We will then consider a class of integrals
introduced by Drummond [97] which generalizes ladder diagrams. At five
loops there are sixteen such integrals, labeled by four letters ai which
can be either 1 or 2. The integrals are given by

L(a1, . . . , a4) =

∫
ddxb5

1

x2
1b1
x2

3b5
x2

2b5
x2

4b5

4∏
i=1

ddxbi
x2
bibi+1

x2
biai

x2
4bi

. (5.42)

We can see that half of the diagrams is mapped to the other half by some
global symmetry, so we then have seven additional conformal integrals
that we can evaluate.

For each conformal integral we consider the expansion of small u and
1−v in six regions of the parameter space as in equation (5.20). Just like
before we use magic identities and the knowledge of allowed singularities
in order to obtain more constraints on the master massless propagator
integrals, with the advantage that in this case we can use the prescription
of Drummond to evaluate the conformal integrals directly.

5.5 Results
While the original motivation of the project was the extraction of the
structure constant of Konishi with half-BPS operators, along the way
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we found an extremely powerful method of obtaining five-loop master
integrals without any explicit integration. We cannot in any way present
here all the results obtained, but we will rather comment on some uni-
versal features of the integrals we have found.

5.5.1 Master Integrals
The simplicity of the methods used to determine master integrals is truly
remarkable, as it amounts to solving a large system of linear equations, at
least as long as all lower loop integrals are already known to the required
order in ε. At the end of the day we obtained 1580 coefficients in the
expansions of 179 master integrals, reaching terms of transcendentality
weight 7 for as many as 159 of the integrals.

There are some universal transcendental features of the integrals which
are worth commenting upon. However, a discussion on transcendentality
is only sensible once the normalization of the integrals is specified. We
have worked with the convention where the five-loop bubble diagram is
given exactly by ∫ 5∏

i=1

ddki
k2
i (ki − x)2

=
1

ε5
, (5.43)

for x2 = 1.
For the lower loop master integrals, it had been observed that the

transcendentality weight of the singular term ε−n in an l-loop integral
never exceeds 2l − 1 − n. We have confirmed that this property of the
singular terms still holds for the five-loop master integrals.

It was also found at lower loop level that the transcendentality weight
in the coefficient of εp−n cannot exceed k − n, where k is the transcen-
dentality weight at some higher power εp. Once again we confirmed that
all the five-loop master integrals also have this property.

Let us emphasize that five-loop massless propagator integrals can be
applied in many other problems. One such example is the evaluation
of conformal integrals [98], where the integral is directly reduced master
integrals. One then obtains a set of differential equations governing the
master integrals, and their boundary value is given by the kind of prop-
agator integrals we have considered. Something very analogous happens
also in the computation of the photon-quark form factor of large Nc
QCD [99], where the p-integrals enter as boundary values in the system
of differential equations for the relevant master integrals.

Finally, the massless propagator integrals also appear in the study of
integrable deformations of N = 4 SYM and ABJM. In [100] the chiral
limit of those theories has been considered, and the Feynman diagrams
relevant for the spectrum are given by multi-loop massless propagator
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integrals. In that paper the authors proposed some relations between
five-loop integrals from integrability considerations, which we have now
confirmed to be true.

5.5.2 Structure constant at five loops
Regarding the structure constant of the Konishi operator with two half-
BPS operators, the bootstrap of master integrals does not fix the result
completely, but it provides nonetheless a much stronger simplification
than we had expected. We have determined the following five-loop terms
in the expansion of (5.8)

c5,1 = 95072 + 14976ζ(3) + 864ζ(3)2 + 34560ζ(5) + 40320ζ(7) ,

c5,2 = −30912− 5184ζ(3)− 8640ζ(5) ,

c5,3 = 5328 + 864ζ(3) ,

c5,4 = −504 ,

c5,5 =
108

5
, (5.44)

which matches the expected combination of the anomalous dimension
and lower orders of the structure constant. The expression for c5,0, which
is proportional to the structure constant at five loops is

c5,0 =− 18 P ({0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0})(2)

− 216 P ({0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 0, 0, 0})(1)

+ 3 P ({0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0})(2)

+ 8 P ({0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0})(2)

− 4 P ({0, 0, 1, 1, 1, 1, 2, 0, 1, 2, 1, 1,−1, 1, 1, 1,−1, 1,−1, 1})(0)

− 604341

5
ζ(2, 6) +

472878

25
ζ(3, 5)− 1239119ζ(9)− 3015022ζ(7)

5

+
1211838ζ(3)ζ(5)

5
− 29868π4ζ(5)

25
− 85998ζ(5)

5
+

267951ζ(3)3

5

+
110202ζ(3)2

5
− 2824π6ζ(3)

15
− 34331π4ζ(3)

75
− 550372ζ(3)

15

+
1590287π8

15000
+

397π6

63
+

517π4

25
− 1771112

15
, (5.45)

with ζ(s1, . . . , sn) multiple zeta functions and P ({n1, . . . , n20})(p) the
order in εp of the propagator integrals defined in (5.27).

The most complicated of these unknowns is a propagator integral that
we have not been able to reduce to master integrals yet. We expect nev-
ertheless that the reduction will be possible on a cluster node with 512
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GB of RAM. The other four terms correspond to coefficients in the ex-
pansion of master integrals, which can be evaluated with HyperInt [101].
This package automatizes the computation of integrals that are linearly
reducible. The main idea is to consider their Feynman parametrization
and then find an order of integration of the Feynman parameters such
that at each step the result is written in terms of hyperlogarithms mul-
tiplied by rational functions with linear denominators.
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6. Integrability Review

Integrability first appeared in the context of condensed matter physics,
with Bethe’s solution of the Heisenberg model [102]. His ansatz consists
on a superposition of plane waves, and terms with different orderings of
the momenta come with S-matrix phase factors. The key point of the
ansatz is that scattering factorizes and everything can be expressed as
a function of the two-body S-matrix, which must obey the Yang-Baxter
equation for consistency. The fact that the S-matrix factorizes can be
related to the presence of an infinite number of symmetries, which is also
a signature feature of integrable theories.

Integrability was first applied in the context of quantum field theories
by Lipatov [103] and then introduced in the context of AdS/CFT by Mi-
nahan and Zarembo when studying the one-loop anomalous dimensions
of scalar single-trace operators in N = 4 SYM [10]. Meanwhile, there
has been a lot of work to generalize their proposal, which led eventually
to an extension to the full theory and also to all orders in perturbation
theory. Later on, the same authors proved ABJM to be integrable at two
loops [11], and since then other lower dimensional examples have been
discovered, as well as possible deformations of these theories.

In the following sections we will review the construction of the Bethe
ansatz in the simple SU(N) spin-chain and then explain how these tech-
niques can be used to solve for the spectrum of N = 4 SYM and ABJM.
We will finish with a review of Hexagon form factors, which are the
building blocks of higher point functions. For an extended review of
integrability one should check [104].

6.1 SU(N) spin-chain
In this section we will consider single-trace operators which map to spin-
chains where each site transforms in the fundamental representation of
SU(N). This is a very simple toy model but it already illustrates quite
well many of the crucial features in the Bethe ansatz.
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6.1.1 The Hamiltonian
At each site we have N possible spins which we label with φi, and we
will consider a Hamiltonian with nearest neighbour interactions

H =
∑
n

Hn,n+1 . (6.1)

The terms Hn,n+1 take values in the tensor product of two fundamental
representations, which decomposes into the symmetric and antisymmet-
ric representations

N ⊗N =
N(N − 1)

2
⊕ N(N + 1)

2
. (6.2)

We then conclude that a Hamiltonian with SU(N) symmetry must be a
linear combination of projectors into these two representations

Hn,n+1 = cAΠA
n,n+1 + cSΠS

n,n+1 , (6.3)

with the projectors given in terms of the permutation operator P

ΠA =
1

2
(I− P) , ΠS =

1

2
(I + P) . (6.4)

The cyclicity of the trace induces a shift symmetry of the spin-chain,
which implies that the constants cA and cS cannot depend on n. The
symmetry fixes the spin-chain Hamiltonian up to the ratio of these two
constants, but we can shift the ground-state energy to any value we like
by adding a term proportional to the identity I. At the end, we are free
to write the Hamiltonian as

H =
∑
n

(In,n+1 − Pn,n+1) . (6.5)

With the specific setup we have chosen here, the spin-chain Hamiltonian
is automatically integrable, but this is not what happens in general. Even
for an SU(N) spin-chain we could have considered sites transforming
in another representation, leading to more terms in the tensor product
decomposition. In that case integrability would appear only for very
specific combinations of the projectors.

For a spin-chain with L sites, the spectrum is found by diagonalizing
an NL × NL matrix. A way to do this is to find all representations in
the tensor product of L fundamentals, and then find the eigenvalues for
the lowest weight of each representation

N ⊗ . . .⊗N︸ ︷︷ ︸
L

=
(N + L− 1)!

L!(N − 1)!
⊕ . . . (6.6)

However, this task becomes very difficult as we take L to be large, so we
need to come up with a better strategy.
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6.1.2 Bethe Ansatz
Since the Hamiltonian is integrable we will be able to diagonalize it by
introducing the Bethe ansatz. We pick the ground state to be made up
of L spins φ1, as it is annihilated by the spin-chain Hamiltonian

H|φ1 . . . φ1〉 = 0 , (6.7)

like any other state in the totally symmetric representation. The excited
states of the spin-chain are given by substituting any number of vacuum
sites by φi, with i 6= 1.

The natural ansatz for the single-excitation state is given by

|φap〉 =
∑
n

einp|φan〉 , (6.8)

where p is the momentum of the excitation and |φan〉 stands for a state
where the n-th vacuum site is substituted by an excitation φa. A straight-
forward calculation shows that such a state is an eigenvector of the
Hamiltonian with energy

E(p) = 4 sin2 p

2
. (6.9)

An excitation with zero momentum does not increase the energy of the
ground state, but this is what one would expect as such states are in the
symmetric representation whose lowest weight is the ground state.

Let us now consider a two-particle state, with momenta p and q. The
Bethe ansatz is given by a superposition of plane-wave factors

|φapφbq〉 =
∑
n<m

ei(pn+qm)|φanφbm〉+ Ŝabcde
i(qn+pm)|φcnφdm〉 , (6.10)

where in general the S-matrix Ŝabcd can transform the flavours of the ex-
citations. Notice however that our choice of vacuum breaks the SU(N)
symmetry of the Hamiltonian, and the scattering must be invariant un-
der the residual symmetry SU(N − 1). The S-matrix acts on the tensor
product of two fundamental representations, which like before decom-
poses into symmetric and antisymmetric representations

(N − 1)⊗ (N − 1) =
(N − 1)(N − 2)

2
⊕ N(N − 1)

2
, (6.11)

so the S-matrix is fixed up to two functions of the momenta, Ss(p, q)
and Sa(p, q). One can find the energy of such a state by looking at the
region where the excitations are well separated, so that the Hamiltonian
acts on each independently. The energy of the two-particle state must
then equal the sum of energies of the single-particle states

E(p, q) = 4 sin2 p

2
+ 4 sin2 q

2
. (6.12)
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Now that we have determined the energy, we just need to find the right
S-matrix elements for which the Hamiltonian acts in a consistent way
when excitations are close to each other. We start by acting on the
lowest weight state in the symmetric representation |φ2

pφ
2
q〉, for which we

obtain the usual S-matrix of the Heiseberg model

Ss = −1 + ei(p+q) − 2eiq

1 + ei(p+q) − 2eip
. (6.13)

Similarly, in order to find the antisymmetric component it suffices to act
with the Hamiltonian on the state |φ2

pφ
3
q〉 − |φ3

pφ
2
q〉, which leads to the

simple scattering phase
Sa = 1 . (6.14)

Finally, we can introduce the rapidity variable u = 1
2 cot p2 , so that the

expressions become more compact

E(u) =
1

u2 + 1
4

, Ss(u1, u2) =
u1 − u2 − i
u1 − u2 + i

. (6.15)

6.1.3 Factorized Scattering and the Yang-Baxter Equation
The correct ansatz for the multi-particle state is given by a sum over the
n! different orderings of the excitations

|φa1
p1
. . . φanpn〉 =

∑
σ

∑
m1<...<mn

Ŝ({p}σ)a1...an
b1...bn

∏
j

eipσjmj |φb1pσ1
. . . φbnpσn 〉 .

(6.16)
Some orderings in the multi-particle state require a single permutation of
two excitations, and in that case the scattering is given by the two-body
S-matrix found above. However, in general there are also new phase
factors that need to be computed for each new multi-particle state. For
example, for three particles one of the orderings is {p3, p2, p1}, which in
principle leads to a three-to-three scattering matrix. Here integrability
plays a crucial role, as it requires the S-matrix to factorize into two-body
scattering processes. To ensure there is no ambiguity in the way we do
the decomposition, the S-matrix must satisfy the Yang-Baxter equation

Ŝ12Ŝ13Ŝ23 = Ŝ23Ŝ13Ŝ12 . (6.17)

This equation is trivially satisfied by a scalar S-matrix, as in the case of
the Heisenberg model, but it does impose strong constraints in a more
complicated setup. We can for example check that the S-matrix we
obtained in our SU(N) model does satisfy the Yang-Baxter equation.

In [105,106] it was argued that this property of the S-matrix is in fact
related to the presence of higher conserved charges, which guarantee that
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scattering can only rearrange the momenta of the particles. While the
origin of these higher conserved charges is obscured by the approach we
have taken to the Bethe ansatz, they can be explicitely constructed from
the algebraic approach reviewed in [107], but which we will not present
here.

6.1.4 Nested Bethe Equations
We now understand how to write any excited state in the SU(N) spin-
chain, but we still do not have a quantization condition for the rapidities.
That comes about when we require L to be finite, in which case particles
are in a circle and one needs to impose boundary conditions on the Bethe
wavefunction (6.16)

ψ(m1,m2, . . . ,mn) = ψ(m2, . . . ,mn,m1 + L) . (6.18)

These boundary conditions lead to the Bethe equations

eipjL
∏
k 6=j

Ŝ(pj , pk) = 1 . (6.19)

The problem would be solved if the S-matrix was a number, but that is
not the case so we need to diagonalize it by introducing several levels
of excitations, in a procedure called the nested Bethe ansatz [108]. The
level I vacuum |0〉I is the spin-chain ground state, and the excitations at
the first level are given by φ2, whose scattering is given by

Ŝ|φ2
p1
φ2
p2
〉 = SI,I(p1, p2)|φ2

p2
φ2
p1
〉 = Ss(p1, p2)|φ2

p2
φ2
p1
〉 . (6.20)

At the next level, the ground state |0〉II is now given by the set of exci-
tations in level I

|0〉II = |φ2
p1
. . . φ2

pn〉 . (6.21)

The single excitation at level II is given by substituting a level II vacuum
site by φ3, which carries a new auxiliary parameter q

|χq〉II =

n∑
i

f(q, pk)

k−1∏
j

SII,I(q, pj)|φ2
p1
. . . φ3

q . . . φ
2
pn〉 . (6.22)

The factors SII,I account for the scattering phase we have to pay to move
the new excitation past the level I excitations, and f is related with the
creation of an excitation at level II. In order to fix these two functions,
we just require that the level II state is compatible with scattering of
level I excitations

Ŝ|χq〉II{p1,p2} = SI,I(p1, p2)|χq〉II{p2,p1} . (6.23)
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which fixes the scattering between level II vacuum sites and excitations
to be

SII,I(u, v) =
u− v + i

2

u− v − i
2

. (6.24)

The two-particle state at level II is now given by the usual superposition
of states

|χq1χq2〉 =f(q1, p1)f(q2, p2)SII,I(q2, p1)|φ3
q1φ

3
q2〉

+ f(q2, p1)f(q1, p2)SII,I(q1, p1)SII,II(q1, q2)|φ3
q2φ

3
q1〉 , (6.25)

and a compatibility condition like (6.23) requires that the scattering
between level II excitations is given by

SII,II(u, v) =
u− v − i
u− v + i

. (6.26)

By continuing this process until there are no excitations left, we create
N − 1 sets of Bethe roots. At the end we can impose periodicity at each
level, which leads to the Bethe equations(

u
(k)
i + i

2Vk

u
(k)
i − i

2Vk

)L N−1∏
l=1

Nk∏
j=1

u
(k)
i − u

(l)
j − i

2Mkl

u
(k)
i − u

(l)
j + i

2Mkl

= −1 , (6.27)

with Nk roots u(k)
i at level k. For a spin-chain with sites in the funda-

mental of SU(N) the matrix M and the vector V obtained are

M =


2 −1 0 · · ·
−1 2 −1 · · ·
0 −1 2 · · ·
...

...
...

. . .

 , V =

 1
0
...

 , (6.28)

which correspond exactly to the Cartan matrix and Dynkin labels of the
spin-chain representation. The equations (6.27) hold for any integrable
nearest neighbour spin-chain with sites trasnforming in a representation
V of any Lie algebra with Cartan matrix M [109–111]. Finally, the
cyclicity of the trace imposes a constraint on the momentum-carrying
Bethe roots of the spin-chain

∏
i

u
(1)
i + i

2

u
(1)
i − i

2

= 1 , (6.29)

which means that the total momentum of the spin-chain must vanish.
Let us end this section with a remark on the number of auxiliary roots

that is necessary to consider. The creation of excitations at each new

92



level can be seen as the action of a raising operator of the algebra. These
operators have well defined SU(N) charges, and given the charges of the
spin-chain states we want to study, we can derive exactly how many roots
we need to add at each level.

6.2 Spectrum of N = 4 SYM and ABJM
The nested Bethe ansatz presented in the previous section is a very
powerful method for computing the eigenvalues of integrable spin-chains.
This is especially obvious in the limit of very large L, which is not difficult
to take with the integrable framework.

Let us now apply the Bethe ansatz technique to some of the integrable
models that appear in the context of AdS/CFT. The mixing matrices for
two-point fuctions of single-trace operators in N = 4 SYM and ABJM
correspond to the Hamiltonians of spin-chains where the sites transform
in representations of psu(2, 2|4) and osp(6|4,R) respectively.

Since the integrable construction is very similar for both theories, we
will mostly focus on the four-dimensional case, and we will finish the
section with some remarks on what needs to be changed in the case of
ABJM.

6.2.1 One-loop Integrability in N = 4 SYM
At one-loop in N = 4 SYM we have a nearest-neighbour Hamiltonian
similar to the one of the previous section. A crucial difference now is that
the tensor product of two fundamental representations V of psu(2, 2|4)
decomposes into an infinite number of representations Vj . However, de-
spite this apparent difficulty, Beisert was able to show by using an oscil-
lator representation that the full one-loop Hamiltonian is of the form [67]

H =
L∑
n=1

∞∑
j=0

(
j∑

k=1

1

k

)
Π

(j)
n,n+1 , (6.30)

with Π(j) the projector onto the representation Vj . If we restrict to the
SO(6) scalar sector, it can be shown that there are only three representa-
tions in the tensor product. The corresponding projectors can be written
in terms of the identity I, the permutation P and the trace operator K
appearing in the work of Minahan and Zarembo. Like we did in the
previous section, we can rescale the identity term by shifting the ground
state energy. The only meaningful parameter in the SO(6) Hamiltonian
is then the ratio of coefficients for P and K, whose value turns out to
make the spin-chain integrable. Similarly, Beisert and Staudacher [112]
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showed that the full one-loop Hamiltonian in (6.30) also corresponds to
an integrable model.

The one-loop anomalous dimensions of N = 4 SYM can then be ob-
tained by applying the Bethe ansatz techniques reviewed in the previous
section. The Bethe equations are given by (6.27), by specifying the
Cartan matrix of the super Lie algebra su(2, 2|4) and its fundamental
representation. Note that for super algebras the Dynkin diagram is not
unique, so there are several ways to write the Bethe equations depending
on the choice we make. Despite the apparent ambiguity, it can be shown
that all those choices are equivalent and lead to the same spectrum [112].

6.2.2 Perturbative Asymptotic Bethe Ansatz
So far we have used the Bethe ansatz to tackle only the problem of
one-loop anomalous dimensions. A way to extend it to higher loops is
by finding the dilatation operator at the corresponding loop order. For
example, in N = 4 SYM we know the three-loop Hamiltonian for the
maximal compact SU(2|3) sector [113, 114], which includes long-range
interactions. However, as long as we work with asymptotically long spin-
chains, then the states will always have regions where all excitations are
well separated and the plane-wave ansatz still holds. There are then two
effects that change the anomalous dimension at higher loops: the disper-
sion relation for the single excitations is corrected, and the S-matrix in
the two-particle state is also modified.

In order to find the correction to the dispersion relation one needs to
apply the higher loop Hamiltonian on the regions of the Bethe states
where excitations are far from each other. Meanwhile we can obtain the
scattering matrix by introducing the Perturbative Bethe Ansatz [115],
where we modify the wave function close to the collision point. For
example, in the SU(2) sector of the spin-chain the two-particle state is

|φpφq〉 =
∑
n<m

(φ(n,m) + S(p, q)φ(m,n))|φnφm〉 , (6.31)

with

φ(n,m) = eipn+iqm(1 + λAδm,n+1) ,

S(p, q) = S(0)(p, q) + λS(1)(p, q) . (6.32)

By looking at the action of the Hamiltonian when m = n + 1 and m =
n+ 2, and discarding terms of order O(λ2), one can fix both A and the
one-loop scattering matrix.

At higher loops the relation between the momentum p of the excita-
tions and the Bethe rapidity u changes [116,117]. By looking at the BMN
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scaling it is possible to see that at higher loops the relation is modified
to

eip =
x+

x−
, (6.33)

where we introduce the Zhukowsky variables x± parametrized by the
rapidity u as

x± +
1

x±
=
u± i

2

g
, g =

√
λ

4π
. (6.34)

Note that this map introduces a branch cut in the u complex plane, and
the physical region is given by |x±(u)| > 1. Surprisingly, despite the
complexity of the dilatation operator at higher loops, the S-matrix re-
mains quite compact. This is very important as the S-matrix is the only
non-trivial element of the Bethe equations, which quantize the Bethe
rapidities and determine the anomalous dimensions. The simple form of
the S-matrix hints at the presence of a structure to all orders in pertur-
bation theory, which we will uncover in the rest of this section.

6.2.3 Centrally extended su(2|2) algebra
The choice we made for the ground state of equation (2.58) breaks the
symmetry of the spin-chain to SU(2|2)2. The building block for the
multi-particle Bethe ansatz is then the SU(2|2) S-matrix, and we will
now use symmetry considerations to constrain it as much as possible. In
general the full S-matrix is defined for on-shell states with vanishing total
momentum P . However, integrability imposes factorized scattering, so
the two-body S-matrix must then be invariant under the full off-shell
symmetry group of the problem [118]. From the string point of view,
this means that we must relax the level-matching condition, and the
worldsheet momentum does not necessarily vanish. We can then see that
the symmetry group SU(2|2) is enlarged by two central elements [108],
with charges

P = ige2iξ(eiP − 1) , K = −ige−2iξ(e−iP − 1) . (6.35)

Naturally, as we go on-shell these central charges vanish and we go back
to the original group of symmetries.

In what follows we will study the centrally extended algebra psu(2|2)n
R3 and its fundamental representation. The commutation relations of
the bosonic generators with a generic operator J are

[L β
α , Jγ ] = δβγJα −

1

2
δβαJγ , [L β

α , J
γ ] = −δγαJβ +

1

2
δβαJ

γ ,

[R b
a , Jc] = δbcJa −

1

2
δbaJc , [R b

a , J
c] = −δcaJb +

1

2
δbaJ

c . (6.36)
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Meanwhile, the commutation relations of the fermionic generators in the
extended algebra are modified to

{Qaα, Qbβ} = εαβε
abP , {Sαa , S

β
b } = εαβεabK ,

{Qaα, S
β
b } = δabL

β
α + δβαR

a
b +

1

2
δab δ

β
αC , (6.37)

with C the central charge generating the u(1)E , and P and K the new
central elements.

The fundamental representation (2|2) is composed by two bosons φa
and two fermions ψα. The action of the bosonic generators follows from
(6.36), while the most general action of the fermionic generators is

Qα
a |φb〉 = aεabε

αβ|ψβ〉 , Sa
α|φb〉 = cδab |ψα〉 ,

Qα
a |ψβ〉 = bδαβ |φa〉 , Sa

α|ψβ〉 = dεabεαβ|φb〉 . (6.38)

Closure of the algebra then implies that the action of the central charges
on a generic state |χ〉 is

C|χ〉 = (ad+ bc)|χ〉 , P|χ〉 = ab|χ〉 , K|χ〉 = cd|χ〉 , (6.39)

and it also constrains the parameters to obey ad − bc = 1. Notice that
without central extension the parameters b and c would vanish, which
would constrain the eigenvalue of C to be constant. Since that central
charge is the generator of u(1)E , which gives the energy of the spin-chain
state, then we see that the central charges play a fundamental role in this
construction as they allow to form a representation with a continuous
parameter. The fact that the representation obeys a dispersion relation
is a special feature of these integrable models and it happens because
the spin-chain Hamiltonian belongs to the group of symmetries of the
spin-chain.

In order for the representation to be unitary, the parameters must be
related by complex conjugation: a = d∗ and b = c∗. If we also want
to match the central charges with the ones from the worldsheet analysis
(6.35), it is convenient to parametrize the fundamental representation
with the Zhukowsky variables from (6.33), and two parameters η and
ζ = e2iξ [119]

a =
√
gη , c = −√g η

ζx+
,

b =
√
g
iζ

η

(
x+

x−
− 1

)
, d =

√
g
x+

iη

(
1− x−

x+

)
, (6.40)

where unitarity constrains η to be of the form

η =
√
ix− − ix+ei(ξ+ϕ) . (6.41)
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From these expressions we can show that the dispersion relation is

C = Ep =

√
1 + 16g2 sin2(p/2) . (6.42)

By setting ϕ = 0 one obtains the representation in the string frame,
more natural from the worldsheet theory point of view. However, we
can also set ϕ = −ξ thus obtaining the so called spin-chain frame. In
that case we can understand the representation also from the perpective
of a dynamical spin-chain where we need to introduce Z± markers that
correspond to length changing effects.

6.2.4 Multi-particle states
We have obtained a representation of psu(2|2)nR3 which is characterized
by the momentum p and the phase ζ. The one-particle state can then be
identified with the module V (p, ζ), and we build the multi-particle state
by tensoring a number of such modules [120]

V (p1, ζ1)⊗ . . .⊗ V (pn, ζn) . (6.43)

While for the one-particle state we can just set the phase ζ to 1, that is
not true for a state with several excitations. We know that the action of
the central charges on the full multi-particle state is still given by (6.35),
so we can only have a dependence on the total momentum P of the
state. We can then show that happens only if the phases of the different
modules satisfy the following relation

ζi = ζ1

i−1∏
l=1

eipl . (6.44)

The action of the generators on two-particle states is then given by

B(p1, p2, ζ1) = B(p1, ζ1)⊗ I + I⊗B(p2, ζ1e
ip1) ,

F(p1, p2, ζ1) = F(p1, ζ1)⊗ I + Σ⊗ F(p2, ζ1e
ip1) , (6.45)

where B and F correspond to bosonic and fermionic generators repec-
tively. We introduce the matrix

Σ = diag(1, 1,−1,−1) , (6.46)

which ensures we get a minus sign when a fermionic generator goes past
a fermion on the first site.

So far we have associated phases ζi to the representation at each site
and used these phases to create a well define multi-particle state. There
is however a different construction with an Hopf algebra interpretation,
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where instead we consider a non-trivial tensor product [121]. We define
the coproduct by modifying the graded tensor product in the following
way

∆(B) = B⊗̂I + I⊗̂B ,

∆(Qaα) = Qaα⊗̂I + eiP/2⊗̂Qaα ,
∆(Sαa ) = Sαa ⊗̂I + e−iP/2⊗̂Sαa , (6.47)

where once again we denote the bosonic generators R b
a or Lβα by B.

Meanwhile, the coproduct obtained for the central charges is

∆(P) = P⊗̂I + eiP ⊗̂P ,

∆(K) = K⊗̂I + e−iP ⊗̂K , (6.48)

which implies that ∆ corresponds to an algebra homomorphism. Hopf
algebras also have an antipode map S which in this case acts on the
generators as

S(B) = −B , S(Qaα) = −e−iP/2Qaα , S(Sαa ) = −eiP/2Sαa . (6.49)

The reason we introduce this machinery is because the antipode map
does play a crucial role in constraining the S-matrix by introducing cross-
ing relations [121].

6.2.5 The SU(2|2) S-matrix
We are now ready to derive the SU(2|2) S-matrix. The fact that it is
invariant under an SU(2|2) symmetry implies that it commutes with all
the generators J of su(2|2)

Ŝ12(p1, p2)J(p1, p2, ζ1) = J(p2, p1, ζ1)Ŝ12(p1, p2) . (6.50)

One can show that invariance under the bosonic algebra requires the
S-matrix to be of the form [108,122]

Ŝ12|φ1
aφ

2
b〉 = A12|φ2

{aφ
1
b}〉+B12|φ2

[aφ
1
b]〉+

1

2
C12εabε

αβ|ψ2
αψ

1
β〉 ,

Ŝ12|ψ1
αψ

2
β〉 = D12|ψ2

{αψ
1
β}〉+ E12|ψ2

[αψ
1
β]〉+

1

2
F12εαβε

ab|φ2
aφ

1
b〉 ,

Ŝ12|φ1
aψ

2
β〉 = G12|ψ2

βφ
1
a〉+H12|φ2

aψ
1
β〉 ,

Ŝ12|ψ1
αφ

2
b〉 = K12|ψ2

αφ
1
b〉+ L12|φ2

bψ
1
α〉 . (6.51)

Meanwhile, we can use the fermionic symmetries to show that all coef-
ficients can be obtained up to a single scalar function of the momenta.
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We can fix the matrix part by setting A12 to x−1 −x
+
2

x+
1 −x

−
2

, so that the full
S-matrix of N = 4 SYM is

Spsu(2,2|4) = S0 Ŝpsu(2|2) ⊗ Ŝpsu(2|2) , (6.52)

with an overall scalar factor defined as

S0(p1, p2) =
x+

1 − x
−
2

x−1 − x
+
2

1− 1
x−1 x

+
2

1− 1
x+

1 x
−
2

1

σ2(p1, p2)
, (6.53)

and σ the dressing phase. The fact that the algebra is centrally extended
plays a crucial role here, as the central charges ensure that the tensor
product of two short representations decomposes into a single long rep-
resentation, which is very unusual. One can also check that the S-matrix
obtained from symmetry considerations automatically obeys the Yang-
Baxter equation.

6.2.6 Crossing Equations and the Dressing Phase
In relativistic theories, the S-matrix depends on two Mandelstam vari-
ables, s and t, and crossing symmetry implies that the S-matrix should
be invariant under exchange of those variables. It turns out that in
two dimensions, unitarity and crossing symmetry are enough to fix the
dressing phase.

In a non-relativistic model, the S-matrix is still unitary, but we do
not have the same notion of crossing. However, it was understood by
Janik that the antipode of the Hopf algebra introduced in (6.49) can
be seen as a particle/anti-particle transformation. At the level of the
representation, the antipode introduces a charge conjugation matrix C.
This leads to another representation for the generators of the algebra

J̃((x±)2γ) = C J(x±) C−1 , (6.54)

with exactly the same central charges. The crossing transformation of
the Zhukowsky variables is

(x±)2γ =
1

x±
, (6.55)

which corresponds to flipping both energy and momentum of the excita-
tion. Finally, this property of the generators together with the invariance
of the S-matrix (6.50) leads to a constraint on the dressing phase [121]

σ(u2γ
1 , u2)σ(u1, u2) =

x−1 − x
−
2

x−1 − x
+
2

1− 1/x+
1 x
−
2

1− 1/x+
1 x

+
2

. (6.56)
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The solution to the crossing equation was conjectured by Beisert, Eden
and Staudacher [123], following the string analysis of [124] and trancen-
dentality considerations. Later on, that solution was derived by con-
sidering the analytical properties of the S-matrix [125]. We know for
example that the position of simple poles should match the structure of
bound states, and higher-order poles are related to exchange of multi-
particle states. A useful integral representation was obtained by Dorey,
Hofman and Maldacena in [126]. While at weak coupling the dressing
phase goes to one, at strong coupling we recover the dressing factor found
by Arutyunov, Frolov and Staudacher [127]

σAFS(u1, u2) =
1− 1/u+

1 u
−
2

1− 1/u−1 u
+
2

(
u−1 u

−
2 − 1

u−1 u
+
2 − 1

u+
1 u

+
2 − 1

u+
1 u
−
2 − 1

)i(u1−u2)

. (6.57)

6.2.7 Some remarks
At this stage we have the all-loop S-matrix, which enables us to write the
all-loop Bethe equations for asymptotic spin-chains. Using the nested
Bethe ansatz we obtain a set of Bethe equations which quantize the
rapidities at the different levels, and the energy obtained corresponds
to the anomalous dimension of a primary single-trace operator. The
descendants are obtained by changing the state while keeping the energy
fixed, which can be done by adding roots at infinity.

For short operators the spectrum also gets corrected by wrapping cor-
rections, which correspond to planar Feynman diagrams wrapping the
operators one or more times. The key idea is to understand that the
finite-size problem can be related to a thermodynamic mirror model
[128–130]. Using the Thermodynamic Bethe Ansatz [131–133] one can
then obtain the anomalous dimension of short operators at intermediate
values of the coupling [134,135].

6.2.8 Integrability in ABJM
The integrability setup for ABJM follows very closely the previous dis-
cussion of N = 4 SYM. Despite the alternating nature of its spin-chain,
the residual symmetry is generated by the same su(2|2) algebra, supple-
mented by an u(1) that distinguishes the two types of excitations. The
S-matrix of ABJM must also be invariant under the off-shell symmetry
algebra, which becomes the centrally extended algebra we studied be-
fore. A major difference is that now we have a different parametrization
of the Bethe rapidity with the Zhukowsky variables

x± +
1

x±
=
u± i

2

h(λ)
. (6.58)
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In ABJM the function h(λ) has a very non-trivial dependence on the
coupling constant λ, with h(λ) ∼ λ at weak coupling and h(λ)2 ∼ λ/2
at strong coupling. The dispersion relation of ABJM is also very similar
to the one of N = 4 SYM

Ep =
1

2
C =

√
1

4
+ 4h2(λ) sin2(p/2) , (6.59)

where the different factor of 1/2 can be traced back to the different
R-charge of the vacuum sites.

Another difference is that in ABJM we can have four different types
of scatterings, depending on the u(1) charges of the incoming particles.
For each scattering, the matrix part is exactly the same as in N = 4
SYM, but now we have two new scalar factors

SAA = SBB = SAA0 Ŝpsu(2|2) ,

SAB = SBA = SAB0 Ŝpsu(2|2) . (6.60)

Since A and B particles are related by complex conjugation, then the
crossing equations relate the two dressing phases of the S-matrix. We
can express the dressing factors of ABJM through the BES phase of
N = 4 SYM [136]

SAA0 (p1, p2) =
1− 1

x−1 x
+
2

1− 1
x+

1 x
−
2

1

σ(p1, p2)
,

SAB0 (u, v) =
x+

1 − x
−
2

x−1 − x
+
2

1

σ(p1, p2)
. (6.61)

An interesting property of this S-matrix is that it is reflectionless [137],
which has been checked both at weak and strong coupling.

When we take the size of the operators to be small, we must also con-
sider wrapping corrections in ABJM, which have been resummed through
the TBA approach in [138]. In [139] the authors combined results from
localization and integrability to obtain an exact formula for h(λ).

6.3 Structure Constants from Hexagon Form Factors
Now that we have reviewed the solution to the spectral problem, the
natural next step is to find an integrable framework for the computation
of structure constants. We will focus on N = 4 SYM where most of the
progress has been made.

At weak coupling a series of papers [140–142] introduced the tailoring
technique for tree level three-point functions in the SU(2) sector, while
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[143,144] developed a similar approach for the other rank one sectors of
the theory. At the same time, some progress was made at strong coupling
in [54] for semi-classical operators. In what follows we will introduce the
all-loop Hexagon proposal for N=4 SYM [14], which we will apply and
amend accordingly in the next chapter in our own research on ABJM
structure constants.

6.3.1 Intuition for Hexagons from Strings
From the perspective of the string worldsheet, the three-point function
corresponds to the amplitude process for three closed strings. For the
spectral problem, it was useful to consider first an infinite volume limit
where we map the cylinder to the plane and then glue back by inserting
a complete basis of states. Those states correspond to virtual particles
wrapping the cylinder. Analogously, it will be useful to consider an
asymptotic limit for the pair of pants, but in this case we can perform
that expansion in several ways. If we first cut only one of the seams, we
obtain the string field theory vertex that has been considered by [145].
By cutting another edge we obtain an octagon [146], and finally, in the
full asymptotic limit where all three states are asymptotically large, we
can see the string worldsheet as the product of two hexagons.

The hexagon form factors depend on three sets of Bethe rapidities
coming from three different operators. While usual form factors probe
incoming and outgoing excitations, the Hexagon form factors probe par-
ticles from three distinct infinities, which hints at a conical excess of π
associated to each hexagon. In fact, this picture is corroborated by a
string analysis, where one can find the existence of two points in the
worldsheet with such a conical excess [51,54].

6.3.2 The non-extremal setup
In order to avoid mixing with double-trace operators, we need to con-
sider non-extremal correlation functions. It is then clear that operators
at different points in spacetime must have different polarizations. More-
over, if the polarization depends on the spacetime position in the right
way, then it is possible to preserve some supersymmetry [147]. Using
conformal symmetry we can move the operators to a line, with one at
the origin, another at x = 1, and the last at infinity. The single-trace op-
erator at the origin is Tr[ZL], but as we supertranslate the others along
the line we obtain the following configuration

Tr[ZL1 ](0) , Tr[(Z + Z̄ + Y − Ȳ )L2 ](1) , Tr[Z̄L3 ](∞) , (6.62)

which preserves a residual SU(2|2) symmetry. Each SU(2) factor of
the bosonic subalgebra corresponds to the SO(3) group of rotations pre-
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α ᾱ

×
βγ γ̄β̄

{u}

{v} {w}

∼ =

∫ ∑
α,β,γ

Figure 6.1. Each coloured circle in the pair of pants represents a spin-chain
state. As we cut the worldsheet we obtain two hexagons, where we must sum
over the partitions α, β and γ of the three sets of rapidities {u}, {w} and {v}.
The symbols on the dashed lines represent virtual particles that one has to
integrate in order to go back to finite size.

served by the setup. An interesting feature of this construction is that
some of the spin-chain excitations are longitudinal, which means that
even a single excitation on one of the operators will lead to a non-
vanishing three-point funtion due to absorption of excitations by the
rotated vacua.

6.3.3 Structure constants as partitions over Hexagons
In the asymptotic limit we cut each operator in two parts, so the world-
sheet is divided into two planes which probe a subset of the excitations
from each of the three operators. We must therefore split each set of
Bethe rapidities into two parts

{u} = α ∪ ᾱ , {v} = β ∪ β̄ , {w} = γ ∪ γ̄ , (6.63)

and sum over all possible ways to distribute the excitations, as repre-
sented in Figure 6.1. We can also think of the hexagon as a projector
〈h| acting on the tensor product of three spin-chain states

〈h|(|α〉|β〉|γ〉) = 〈h|α|β|γ〉 . (6.64)

The structure constant should then be given by [14]

C123 =
∑
α,β,γ

ωl13(α, ᾱ)ωl12(β, β̄)ωl23(γ, γ̄)〈h|α|β|γ〉〈h|γ̄|β̄|ᾱ〉 , (6.65)

where lij are the bridge lengths between two given operators. They are
given by the number of Wick contractions between the operators at tree
level

lij =
1

2
(Li + Lj − Lk) , (6.66)

and must all be large in the asymptotic limit. Each partition of the
Bethe rapidities comes with a splitting factor

ωl(α, ᾱ) =
∏
i

eip(ᾱi)l
∏
j>i

S(ᾱi, αj) , (6.67)
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which has a clear physical interpretation. When we move the excitations
ᾱi to the second hexagon, we get a phase eipl for propagating over the
bridge of length l. Along the way, these excitations also scatter with
a number of particles that stay in the first hexagon, which produces a
phase shift given by the product of S-matrices. There is no direct proof
that the structure constants can be written in this form, but one can look
at simple Wick contractions at tree level and check that one recovers the
sum over partitions.

The computation of structure constants is then reduced to the eval-
uation of form factors with excitations in all three edges 〈h|α|β|γ〉. In
relativistic theories, form factors with both incoming and outgoing mo-
menta can be related by crossing to form factors with only outgoing
momenta. Using the crossing for Zhukowsky variables from (6.55) and
the crossing relation for the dressing phase (6.56), we can relate any
hexagon form factor to the one where all excitations are on the same
edge

〈h|ΦA1Ȧ1
. . .ΦAnȦn〉 = hA1Ȧ1,...,AnȦn

. (6.68)
It is also important to understand how the flavour of the excitations ΦAȦ
changes with crossing. They transform under the residual SU(2|2)L ⊗
SU(2|2)R, and it can be shown that the left and right parts of the excita-
tions transform as particle and anti-particle under the diagonal SU(2|2)
preserved by the Hexagon. It is then natural that left and right indices
get exchanged under a crossing transformation

ΦAḂ −→2γ ΦBȦ . (6.69)

Finally, note that in the hexagon we can cross excitations in two dis-
tinct ways: either we cross them clockwise and change their flavours, or
we cross them anti-clockwise twice, in which case the flavour remains
unchanged. It is quite non-trivial that both crossings give exactly the
same result, despite the fact that the computation looks very different
at intermediate stages.

6.3.4 Fixing the one- and two-particle form factors
Just like we did for the S-matrix, it is very useful to consider the im-
plications of the residual symmetry on the Hexagon form factors. For
a generic multi-particle state there is no hope that symmetry will fix it
totally, but there are very strong contraints imposed on the one- and
two-particle form factors.

We want the Hexagon form factors to be invariant under the symmetry
group, which means that they must be annihilated by the action of the
generators J of the algebra defined in (6.37) and (6.36)

〈h|J|ψ〉 = 0 . (6.70)
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It follows from bosonic symmetry that the non-vanishing elements of the
one-particle form factor are

〈h|Φaḃ〉 = εaḃ , 〈h|Φαβ̇〉 = N (p)εαβ̇ . (6.71)

The relative coefficient N (p) is fixed by imposing fermionic symmetries,
but it will still depend on the frame we are working with, eitherN (p) = 1
for the spin-chain frame or N (p) = i for the string frame. We can
see immediately that half the excitations produce a non-vanishing form
factor, and they correspond exactly to the longitudinal excitations Y , Ȳ ,
D and D̄.

The residual symmetry is also sufficient to fix the full two-particle form
factor up to a single undetermined function of the momenta. It turns
out that it is defined through the S-matrix of (6.51) and the one-particle
form factors of equation (6.71)

hAȦ,BḂ = h12(−1)ḟ1f2ŜCDAB hDȦhCḂ , (6.72)

where fi, ḟi denote the fermion numbers of the left and right parts of the
i-th excitation, while h12 is the undetermined overall factor. In order
to obtain the two-particle hexagon we have to scatter the left parts of
the excitations, and then use the one-particle hexagon to contract them
with the right parts. As seen in the previous section, the two-particle
representation is (V (p1, ζ1)⊗ V̇ (p1, ζ̇1))⊗ (V (p2, ζ1e

ip1)⊗ V̇ (p2, ζ̇1e
ip1)),

so invariance under the residual symmetry also imposes a condition on
ζ1 and ζ̇1

ζ1ζ̇1 = e−iP . (6.73)

In the spin-chain frame, this equation is interpreted as a condition on
the eigenvalue of the Z marker under the action of the hexagon.

The two-particle Hexagon should also obey the form factor axioms,
which include the Watson equation [148,149]

〈h|S12|Φ1Φ2〉 = 〈h|Φ2Φ1〉 . (6.74)

The matrix part of this relation is trivially satisfied by (6.72), but it also
introduces a contraint on h12

h12

h21
= S0

12 , (6.75)

with S0 the overall factor of the SU(2|2) S-matrix written in (6.53).
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6.3.5 The Multi-particle Form Factor
We cannot determine any other form factor fully from symmetry consid-
erations, but the most natural guess is

hA1Ȧ1,...,AnȦn
= (−1)

∑
i<j ḟifj

∏
i<j

hij〈χȦn . . . χȦ1
|Ŝ|χA1 . . . χAn〉 .

(6.76)
with Ŝ is the matrix part of the factorized S-matrix. This ansatz au-
tomatically satisfies the Watson equations for the multi-particle form
factors.

The scalar factors hij dressing each of the S-matrices are not the usual
ones from the S-matrix solution, as we cannot require them to satisfy
unitarity. In order to fix these scalar factors, we need to consider another
of the form factor axioms, the so called decoupling condition [150]

res
u1=u2

〈h|Φ(u2γ
1 )Φ(u2)Φ(u3) . . .〉 = 〈h|Φ(u3) . . .〉 , (6.77)

which says the form factor must develop a kinematical pole whenever
a particle-antiparticle pair decouples from the rest of the state. For a
form factor of local operators there would also be another term with a
product of S-matrices, but only the identity is compatible with the non-
local nature of the Hexagon form factors. In the end, this implies that
the scalar factor h12 must obey exactly the same crossing equation (6.56)
as the dressing phase of N = 4 SYM. There are many possible solutions
to this equation, but the correct one turns out to be [14]

h12 =
x− − y−

x− − y+

1− 1
x−y+

1− 1
x+y+

1

σ12
, (6.78)

which has passed many non-trivial higher-loop tests.

6.3.6 General remarks
All we have considered so far was the asymptotic contribution to the
three-point function. There are also new wrapping corrections that need
to be considered when the bridge lengths are small, since the asymptotic
description applies only for large lij . We will however not give any further
detail as the wrapping corrections play no role in the work developed in
this thesis.

Meanwhile, the Hexagon form factors have also been used for the
study of higher point-functions. In [151] the authors have been able to
compute four-point functions of half-BPS operators by performing an
OPE expansion, where each structure constant is given as a product
of two Hexagon form factors. By taking a certain limit on the sizes
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of the operators, one can make sure that the asymptotic result gives
the leading contribution even at finite coupling. In [151] the authors
also obtained a modification of the splitting factors for operators with
excitations transforming under su(2|2)2.

Finally, it has been understood recently that the Hexagon form fac-
tors are also the building block of higher-point functions. A precise
prescription for the computation of four-point functions at any value of
the coupling was given in [79]. The method is quite distinct from an
OPE expansion, as it relies on a very different hexagonalization of the
string wordsheet.
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7. Hexagon Form Factors in ABJM

With the success of the Hexagon form factor approach to correlation
functions of N = 4 SYM, it is natural to attempt a generalization to
other integrable theories. The solution for the spectrum of anomalous
dimensions in ABJM is very similar to the one in N = 4 SYM, so it is
natural to study Hexagon form factors in ABJM.

In this chapter we will assume that like in N = 4 SYM the structure
constants are given as a partition of the Bethe roots over two hexagon
form factors. There are three reasons why this assumption is reasonable.
First, in N = 4 SYM that structure is not proved, but rather observed
from weak coupling tests. In the same way, we have evaluated structure
constants at tree level in ABJM for operators in simple closed sectors,
and we observed the same structure as in equation (6.67). Second, there
are also hints of the existence of the hexagons at strong coupling. In
[51,54] it was found that the classical worldsheet in AdS has two points
with conical excess of π. However, the analysis was done in an AdS3

subspace of AdS5, and the same result should therefore be valid for
AdS4. Finally, ABJM must also have an asymptotic limit for three-point
functions. When the operators are all large, the three-point function
becomes a superstring amplitude with the form of a pair of pants. The
asymptotic limit should correspond to cutting the string worldsheet and
in that way one should obtain two separated hexagons, like in N = 4
SYM. These statements do not in any way prove the assumption, but the
existence of such arguments both at weak and strong coupling indicates
that it should be correct.

7.1 Non-extremal setup
If the three-point functions are indeed given as a partition of the Bethe
roots over two hexagons, then there are several points that need to be
understood. For example, one needs to find the form of the splitting
factor in the case of operators with auxiliary Bethe roots. However,
the most important problem is to understand if one can bootstrap the
Hexagon form factors.

In N = 4 SYM symmetry fixed the one- and two-particle form factors,
which led to a natural ansatz for the multi-particle case. Here we will
follow the same logic and see how far can symmetry take us.
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7.1.1 Supertranslation
The vacua of the three-point functions are three chiral operators, which
in principle can have different polarizations. In fact, in order to obtain
a non-vanishing and non-extremal three-point function, all the polar-
izations need to be different. If the operators are at generic spacetime
positions then there is no supersymmetry generator that annihilates all
of them. However, following the ideas of [147], we can preserve some
symmetry by carefully picking a polarization that depends on the space-
time position.

We can use conformal transformations to put all three operators in a
line. The chiral primary Tr[(Y 4Y †1 )L](0) preserves an SU(2|2) × U(1)
symmetry, so we need to perform a supertranslation and see what is the
residual symmetry. The action of the supertranslation is given by

eT a(Y 4Y †1 )(0)e−T a , (7.1)

and it is built from the translation operator and the R-charge generators
written in the su(2)G × su(2)Ġ × u(1) form of (2.83)

T = AαβPαβ +Bȧ
ḃ
R ḃ
ȧ + C ȧbR

b
ȧ +Da

ḃ
R ḃ
a , (7.2)

where Aαβ, Bȧ
ḃ
, C ȧb and Da

ḃ
are constants. This is the most generic

supertranslation we can consider, as both R b
a and R are part of the

symmetry algebra that annihilates the vacuum, which means they do
not change the polarization.

The supersymmetry generators preserved by Tr[(Y 4Y †1 )L] are the Qa1̇
α

and Sα
a1̇

from (2.84), so we need to find the right linear combination
that commutes with the supertranslation. The translation operator com-
mutes with the supercharges, but the commutator with the superconfor-
mal charges is proportional to Qb2̇γ . We then conclude that we must
include R 2̇

1̇
in the supertranslation as it is the only R-symmetry genera-

tor which can cancel the contribution from the translation. In the same
way, we understand that R 1̇

2̇
is absent from T as its commutator with

the fermionic generators produces terms that cannot be cancelled in any
way.

The only fermionic generators that have a chance of being preserved by
the supertranslation are then given by the following linear combination

Qa
α =

1√
2
Qa1̇
α +

1√
2
εabEαβS

β

b1̇
, (7.3)

where Eαβ is a constant matrix. One can see that their commutator
with

T (4) = AαβPαβ +R 2̇
1̇

(7.4)
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vanishes only if the matrix A and E are related in the following way

A = −1

2
E−1 . (7.5)

If one wants to preserve all four supersymmetry generators Qa
α, then

T (4) is the best one can do and we have to send all C ȧb, D
a
ḃ
and B1̇

1̇
to

zero. For simplicity we will take E to be a matrix of determinant −1 in
the remainder of the chapter.

We can consider a more generic supertranslation, but in that case we
preserve at most two supersymmetries given by

Fα = ρaQ
a
α , (7.6)

with ρa a generic vector. They commute with a supertranslation of the
form

T (2) = AαβPαβ +R 2̇
1̇

+ cȧρbR
b
ȧ + εacρcdḃR

ḃ
a , (7.7)

where cȧ and dḃ are arbitrary constants.

7.1.2 Residual symmetry
We have now established what kind of supertranslation we should per-
form in order to preserve some of the supersymmetries, and we will now
see what is the residual symmetry in each case. Since we are translating
the operators along a line, it is clear that rotations around that line are a
symmetry of the setup. The generator of this SO(2) symmetry is given
by

B =
1

2
Bαβε

βγL α
γ , (7.8)

and we can show that it commutes with the supertranslation.
Let us start with the configuration that preserves four supersymme-

tries. It is useful to relabel the fermionic generators slightly

Qa = εabQ
b
2 , Sa = Qa

1 , (7.9)

so that the commutation relations induced from (6.36) and (6.37) become

{Qa,Qb} = 0 , {Sa,Sb} = 0 ,

[R b
a ,Qc] = δbcQa −

1

2
δbaQc , [B,Qa] = −1

2
Qa ,

[R b
a ,S

c] = −δcaSb +
1

2
δbaS

c , [B,Sa] =
1

2
Sa ,

{Qa,S
b} = δba

(
B +

1

2
(P− K)

)
+Rba . (7.10)
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This corresponds to an su(1|2) algebra and since R commutes with all
elements of this algebra and with the supertranslation, then the residual
symmetry is su(1|2) × u(1). Note that the su(1|2) algebra cannot be
centrally extended, so the central charges are simply a redefinition of the
u(1) generator

B̃ = B +
1

2
(P− K) . (7.11)

We will however keep the su(2|2) central charges explicit as it is useful
to decouple their action from that of B on the hexagon form factors.

If instead we consider the setup that preserves only two supersymme-
tries, then the only R-charge generator that commutes with the super-
translation is given by

J = R b
a ε
acρcρb . (7.12)

If we relabel the supersymmetry generators as Q = F1 and S = F2 then
the commutation relations are

[J,Q] = 0 , [J,S] = 0 ,

[B,Q] = −1

2
Q , [B,S] =

1

2
S ,

{Q,S} = J . (7.13)

The residual symmetry is in this case only u(1|1) as the generator R does
not commute with the supertranslation T (2).

7.1.3 Representations of the residual algebra
The elementary spin-chain excitations in ABJM transform as (2|2)A ⊕
(2|2)B under su(2|2)×u(1), so we have to understand how they transform
under the residual symmetries.

Unfortunately, the (2|2) representation does not decompose into (1|1)2

under any of the residual algebras. This makes the generalization to
ABJM much harder so we will henceforth consider only the supertrans-
lation from equation (7.4), which preserves more symmetry.

The (2|2) excitations φa and ψα transform as the typical four-dimensional
representation (1|2|1) of su(1|2). There is no bosonic symmetry relating
the two fermions anymore, so we relabel them in the following way

|χ〉 = |ψ+〉 , |ξ〉 = |ψ−〉 . (7.14)
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The action of the generators on this representation can be induced from
the action of su(2|2) on the fundamental representation and we obtain

Qa|φb〉 =
εab√

2
(a+ c) |ξ〉 , B|χ〉 =

1

2
|χ〉 ,

Sa|φb〉 =
δab√

2
(a− c) |χ〉 , B|ξ〉 = −1

2
|ξ〉 ,

Qa|χ〉 =
1√
2

(b+ d) |φa〉 , Qa|ξ〉 = 0 ,

Sa|ξ〉 =
εab√

2
(b− d) |φb〉 , Sa|χ〉 = 0 , (7.15)

where we used the parameters a, b, c and d defined in (6.40) for the
fundamental representation of su(2|2).

7.1.4 Rotated vacua
Finally, we can now apply the supertranslation obtained and see how it
rotates the operators. For simplicity, we pick a direction for the transla-
tion which corresponds to the following choice for the matrix E

E =

(
0 1
1 0

)
. (7.16)

Looking at the form of the gamma matrices in three dimensions we can
see that the relation between Pαβ and Pµ is

Pαβ =

(
P0 + P1 P2

P2 P0 − P1

)
, (7.17)

which means that our choice corresponds to a translation along the x2

direction. Using equation (7.1) we can then show that the rotated vacua
are

Tr[((Y 4 − aY 1)(Y †1 + aY †4 ))L](0, 0, a) . (7.18)

For operators at the origin, at infinity and at a = 1, we have

Tr[(Y 4Y †1 )L1 ](0, 0, 0) ,

Tr[((Y 4 − Y 1)(Y †1 + Y †4 ))L2 ](0, 0, 1) ,

Tr[(−Y 1Y †4 )L3 ](0, 0,∞) . (7.19)

We have therefore obtained a setup where Wick contractions between
any pair of operators are non-vanishing, which is ideal for the study of
non-extremal three-point functions of single-trace operators.
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It is worth remarking a few differences from the setup of N = 4 SYM.
In our case a single elementary excitation cannot contract with any of
the other vacua, so we do not have longitudinal excitations. This in fact
indicates that form factors with an odd number of excitations will be
vanishing.

Another difference is that the contraction of colour indices is dif-
ferent in ABJM, as the fields transform in bifundamental and anti-
bifundamental representations of the gauge group. The number of Wick
contraction between two operators at tree level is given by

lij = Li + Lj − Lk . (7.20)

Since each operator has an even number of fields, then the lij are either
all even or all odd. It turns out that when they are all odd the three-
point function must be vanishing due to a cancelation in the contraction
of colour indices. The reason why this happens is that we need to sum
all planar contributions, so we must consider all cyclic permutations of
the fields inside the traces. There are L1L2L3 contributions where the
first field is in the bifundamental representation, and they all contribute
equally. But there are also L1L2L3 contributions where the first field in
the trace is in the anti-bifundamental representation. However, due to
the minus signs in (7.19), these two contributions cancel each other for
lij odd, while they add up to 2L1L2L3 when they are all even.

The argument made here also holds for excited states if one uses the
additional fact that the total momentum of Bethe states must be van-
ishing.

7.2 Hexagon form factors
Usually, the form factor of an operator O is defined as the expectation
value between an incoming and outgoing on-shell state

〈θ1, . . . , θn|O|θ1, . . . , θm〉 . (7.21)

By using crossing we can consider form factors only with incoming par-
ticles. The fact that we have the form factor between two states corre-
sponds to the fact that there is a past and future infinity.

Something analogous happens with three-point functions. From the
string point of view we have a worldsheet with three infinities, which cor-
respond to the states from the three operator insertions at the boundary.
When we cut the worldsheet into two hexagons, each of them probes the
three infinites, but we can use crossing to map excitations from one edge
to another. The fact that each hexagon is associated with a point of
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conical excess in the worldsheet is related with the presence of three in-
finities and implies that two crossing transformations do not lead to the
original configuration.

We can also think of the hexagon form factor as the action of a vertex
〈h| on the tensor product of three spin-chain states [152–154]

〈h|ψ1|ψ2|ψ3〉 . (7.22)

By using crossing, it is enough to consider hexagon form factors where
all excitations are in the same edge

〈h|ΦA1 . . .ΦAn〉 . (7.23)

Once this object is known for any number n of particles, then it is in
principle possible to compute any three-point function of ABJM.

7.2.1 Constraints on the multi-particle form factors
In what follows we will use the residual symmetry to constrain the
hexagon form factors. The fact that the vertex is invariant under an
SU(1|2) × U(1) symmetry implies that it is annihilated by all genera-
tors of the algebra. There are some general remarks that can be done
without specifying the number of excitations. In ABJM we have A and
B particles, which have opposite charges under the abelian U(1). Since
that symmetry is preserved by the hexagon, we have

〈h|R|ΦA1 . . .ΦAn〉 = 0 , (7.24)

which implies that the hexagon is only non-vanishing if the number of
A and B particles is the same. A consequence of this is that the only
non-vanishing hexagon form factors are the ones with an even number
of excitations.

The fact that P−K annihilates the hexagon also has a generic conse-
quence. First we must remember that the multi-particle state is defined
through the modules V (p1, ζ1)⊗ . . . V (pn, ζn), where the phases ζi obey
equation (6.44). The symmetry then imposes a constraint on ζ1

ζ2
1 = e−iP , (7.25)

where P is the total momentum of the state.
Finally, since the fermions have opposite charges under the bosonic

generator B, we conclude that the hexagon form factors must have an
equal number of χ and ξ excitations in order to be non-vanishing.

7.2.2 The two-particle Hexagon
The most fundamental hexagon of ABJM is then the two-particle form
factor. We know that it must contain an A and B particle, which we
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write as ΦA and ΦḂ respectively. There are in principle two structures
allowed, 〈h|ΦAΦ̇B〉 and 〈h|Φ̇AΦB〉. However, the three-point function
with A-type excitations at the origin and B-type at infinity should be
equivalent to the case where we have B-type excitations at the origin
and A-type at infinity, which implies that those two structures should
be equal. If we impose bosonic symmetries we can fix the hexagon up to
three scalar functions

〈h|φ1
aφ̇

2
b〉 = A12εab ,

〈h|χ1ξ̇2〉 = B12 ,

〈h|ξ1χ̇2〉 = C12 . (7.26)

By further requiring the fermionic charges of su(1|2) to annihilate the
two particle hexagon form factor, we understand that it depends only on
a single scalar function A12

B12 = A12
b(p1) + d(p1)eiP/2

a(p2)eiP/2 + c(p2)eip2
,

C12 = A12
b(p2)e−ip1 + e−iP/2d(p2)

a(p1)e−iP/2 + c(p1)
. (7.27)

Unfortunately, and unlike the one-particle form factor in N = 4 SYM,
the dependence on the momenta of the excitations is quite non-trivial,
and we have not found any way to simplify (7.27).

7.2.3 The four-particle Hexagon
The hope for a bootstrap of the hexagon form factors in ABJM is that
the two-particle form factor provides a inner-product between excitations
which is then used in the multi-particle hexagon.

We will now impose su(1|2)×u(1) symmetry on the four-particle form
factor and see how far it takes us. There are in general six structures
that one can consider

〈h|ΦAΦBΦ̇CΦ̇D〉 , 〈h|ΦAΦ̇BΦCΦ̇D〉 , 〈h|ΦAΦ̇BΦ̇CΦD〉 ,
〈h|Φ̇AΦBΦCΦ̇D〉 , 〈h|Φ̇AΦBΦ̇CΦD〉 , 〈h|Φ̇AΦ̇BΦCΦD〉 , (7.28)

and they are all annihilated independently by the residual algebra. We
will focus on the structure 〈h|ΦAΦBΦ̇CΦ̇D〉 which from bosonic symme-
tries must be of the form

〈h|φaφbφ̇cφ̇d〉 = A1εacεbd +A2εadεbc ,

〈h|φaφbχ̇ξ̇〉 = B12εab ,

〈h|φaφbξ̇χ̇〉 = C12εab ,

〈h|χχξ̇ξ̇〉 = D12 . (7.29)
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where Bij corresponds to the case when the bosonic excitations are in
the positions i and j, and analogously for Cij and Dij . Once we impose
fermionic symmetries, we are left with only three undetermined functions
of the four momenta.

Unfortunately, we were not able to express the four-particle hexagon in
terms of two-particle hexagons, and it is unclear if that task is difficult or
impossible. On one hand, one can see that all non-vanishing components
of the four-particle form factor 〈h|ΦAΦBΦCΦD〉 coincide with the non-
vanishing components of at least one of the following three structures

〈h|ΦA1 ΦB2 〉〈h|ΦC3 ΦD4 〉 ,
〈h|ΦA1 ΦC3 〉〈h|ΦB2 ΦD4 〉 ,
〈h|ΦA1 ΦD4 〉〈h|ΦB2 ΦC3 〉 . (7.30)

On the other hand, one can also argue that it might not be possible
to express the four-particle hexagon in terms of the two-particle form
factors. To understand the argument let us look at N = 4 SYM for a
moment. In that case the prescription for the multi-particle form factor
involved scattering the right parts of the excitations. In terms of the
modules, after scattering we have

(V (p1, ζ1)⊗ V̇ (p1, ζ̇
′
1))⊗ . . .⊗ (V (pn, ζn)⊗ V̇ (pn, ζ̇

′
n)) . (7.31)

It turns out that the phases obey

ζnζ̇
′
n = e−ipn , (7.32)

which is exactly the condition for a well defined two-particle hexagon. In
some sense this justifies the multi-particle conjecture as we see that after
scattering the action of the projector 〈h1| ⊗ . . . ⊗ 〈hn| is well defined.
From this point of view, in ABJM we would need to find a map

ρ : V (p1, ζ1)⊗ . . .⊗ V (pn, ζn)→ V (pσ1
, ζ ′1)⊗ . . .⊗ V (pσn , ζ

′
n) , (7.33)

after which the action of the projector 〈h12| ⊗ . . .⊗ 〈hn−1,n| is also well
defined. However, it is possible to show that the map ρ must involve
structures other than the scattering matrix Ŝpsu(2|2). While this does
not show that it is impossible to build the multi-particle form factor
from the two-particle one, it does indicate that the map ρ must involve
some sort of novel structure.

7.2.4 Watson equations
The hexagon form factors must also obey the form factor axioms, which
include the Watson equation [148,149]

〈h|Si,i+1|Φ1 . . .Φn〉 = 〈h|Φ1 . . .Φi+1Φi . . .Φn〉 . (7.34)
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For example, in N = 4 SYM this constraints were crucial in the deter-
mination of the scalar factor h12 from (6.78).

In ABJM, the Watson equation for the two-particle form factor is

〈h|Φ̇2
AΦ1

B〉 − (S21)CDAB 〈h|Φ1
CΦ̇2

D〉 = 0 , (7.35)

with S the ABJM S-matrix. The solution to this equation is given by

A21 = SAB0 B21A12 +
1

2
SAB0 C21(B12 − C12) , (7.36)

with B21 and C21 elements of the su(2|2) S-matrix from (6.51), B12

and C12 given in (7.27) in terms of A12, and SAB0 the scalar factor of
the ABJM S-matrix in (6.60). The Watson equation then imposes a
constraint on the scalar factor A12 of the two-particle hexagon

A12

A21
=

1

σ(u, v)
f(u, v) , (7.37)

with f(u, v) a complicated fuction of the two rapidities. This means that
A12 should depend on some sort of square root of the BES phase, which
due to its non-trivial analytical structure might in fact require a new
dressing phase.

Regarding the four-particle Hexagon, there are now two kinds of Wat-
son equations we can impose on 〈h|ΦAΦBΦ̇ȦΦ̇Ḃ〉. One of them relates
it to an hexagon with A and B particles in different positions

(S23)ĊC
BȦ
〈h|Φ1

AΦ̇3
Ċ

Φ2
CΦ̇4

Ḃ
〉 = 〈h|Φ1

AΦ2
BΦ̇3

Ȧ
Φ̇4
Ḃ
〉 . (7.38)

One can show that all six structures in (7.28) are related to each other
by this kind of Watson equation which exchanges A and B particles. The
other two equations are

(S12)CDAB 〈h|Φ2
CΦ1

DΦ̇3
Ȧ

Φ̇4
Ḃ
〉 = 〈h|Φ1

AΦ2
BΦ̇3

Ȧ
Φ̇4
Ḃ
〉 ,

(S34)ĊḊ
ȦḂ
〈h|Φ1

AΦ2
BΦ̇4

Ċ
Φ̇3
Ḋ
〉 = 〈h|Φ1

AΦ2
BΦ̇3

Ȧ
Φ̇4
Ḃ
〉 , (7.39)

and they provide constraints on the three undetermined functions of the
four-particle form factor.

7.3 Tree level checks
All the discussion so far was based on symmetry, so it is important to
validate the results obtained with perturbative data. Unfortunately, with
a few exceptions [155–157] there is very little information on three-point
functions of ABJM, so we will resort to simple tree level considerations.
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7.3.1 Double excitations
Let us consider the case when only the operator at the origin is un-
protected. We saw previously that the elementary excitations cannot
be contracted with any of the rotated vacua. Meanwhile, we have found
well-defined and non-vanishing hexagon form factors even when there are
excitations only in one edge. This is an apparent contradiction which is
resolved by considering the effect of double excitations.

Before we do so, it is important to find the relation between spin-
chain excitations and the fields in the single-trace operators. From the
transformations under bosonic symmetries we can show that we have

(φ1, φ2) = (Y 3,−Y 2) , (χ, ξ) = (ψ1+, ψ1−) ,

(φ̇1, φ̇2) = (Y †2 , Y
†
3 ) , (χ̇, ξ̇) = (ψ4†

+ , ψ
4†
− ) . (7.40)

The solution for the hexagon with two scalar excitations given in (7.26)
is non-vanishing for Y 3Y †3 and Y 2Y †2 . It was shown in (2.86) that these
mix with the double excitations Y 4Y †4 and Y 1Y †1 , which in turn have
non-vanishing Wick contractions with the rotated vacua.

We can also play the same game with the fermionic excitations. From
the two-particle hexagon we see that the only non-vanishing contribu-
tions are from ψ1+ψ

4†
− and ψ1−ψ

4†
+ . Following (2.86) we conclude that

these fields mix with the derivative D2, whose propagator is proportional
to x2. This is exactly the direction along which we supertranslated the
operators, so we see that it also leads to non-vanishing Wick contractions
with the other vacua.

7.3.2 Crossing
In N = 4 SYM the flavour of the excitations changes as we cross them
to other edges of the hexagon. In order to understand how the flavour
of excitations changes under crossing in ABJM we need to look at tree-
level examples and match them with the non-vanishing entries of the
two-particle hexagon form factor.

First, we need to derive the action of the supertranslation on the el-
ementary excitations of the spin-chain, so that we identify correctly the
supertranslated fields that correspond to the (2|2) fundamental repre-
sentation. The flavour of the scalar excitations is unchanged

eaT Y 2(0)e−aT = Y 2(a) , eaT Y 3(0)e−aT = Y 3(a) ,

eaT Y †2 (0)e−aT = Y †2 (a) eaT Y †3 (0)e−aT = Y †3 (a) , (7.41)

while for the fermions we have a non-trivial transformation

eaT ψ1α(0)e−aT = (ψ1α + aψ4α)(a) ,

eaT ψ4†
α (0)e−aT = (ψ4†

α − aψ1†
α )(a) . (7.42)
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If we insert Y 2 or Y 3 excitations at the origin, then the correlation
function is non-vanishing for an operator with Y †2 or Y †3 at infinity. In
terms of the (2|2) excitations, they correspond to the hexagon form fac-
tors

〈h|φ1| |φ̇2〉 , 〈h|φ2| |φ̇1〉 . (7.43)

We conclude that the flavour of the excitations cannot change upon
crossing, otherwise we would obtain vanishing form factors.

Let us now consider the case when the operator at the origin has the
fermionic excitations ψ1± while at infinity we have ψ1†

∓ . This corresponds
to a non-vanishing correlator since the operators are translated along x2

and the fermionic propagator is

〈ψIα(0)ψJ†β (x)〉 ∝ δJI (CΓµ)αβxµ . (7.44)

In terms of hexagon form factors these configurations correspond to

〈h|ψ+| |ψ̇−〉 = 〈h|χ| |ξ̇〉 ,
〈h|ψ−| |ψ̇+〉 = 〈h|ξ| |χ̇〉 . (7.45)

Once again, the hexagon form factors are only non-vanishing if crossing
does not alter the flavour of the excitations.

7.3.3 Tree level data
We will now consider a few explicit examples of tree-level three-point
functions. They are useful for checking the ratios of A, B and C at weak
coupling, but they can also be used as a guide for the multi-particle
case. Ideally, one would consider a single unprotected operator, so that
crossing would not be necessary. Unfortunately, this also corresponds to
a more difficult setup, where we need to excite several levels of the nested
Bethe ansatz in order to obtain a non-vanishing result. We will instead
consider the case of two unprotected operators, and for simplicity we
take them to be in the rank one sectors su(2) and su(1|1).

In the scalar case, we have Y 3 excitations on the operator at the
origin, and and equal number of Y †3 on the operator at infinity. At weak
coupling, the S-matrix in the su(2) sector is

Ssu(2)(u, v) = SAA0 (u, v)A(u, v) −→
g→0

u− v − i
u− v + i

. (7.46)

At tree level the S-matrix then coincides with that of the su(2) sector
of N = 4 SYM. Since the one-loop Bethe states are the same, we can
then recycle the results for correlation functions of N = 4 SYM at tree
level. It is important to consider only X and X̄ excitations of N = 4
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SYM, so that we do not have contractions with the rotated vacuum. The
matrix part of the hexagon becomes the domain wall partition function
of a six-vertex model [158], and so we obtain

hsu(2)({u}, {v}) =
det
[

i
(ui−vj)(ui−vj−i)

]∏
i,j(vi − uj + i)∏

i<j(ui − uj + i)(vj − vi − i)
. (7.47)

These results also apply to ABJM, and so we obtain a tree level predic-
tion for the undetermined function of the two-particle form factor

〈h|φ1(u4γ)φ̇2(v)〉 = A(u4γ , v) =
−i
u− v

. (7.48)

Analogously, we can consider the su(1|1) sector, where we have fermionic
excitations ψ1+ in the operator at the origin and ψ1†

− in the operator at
infinity. The S-matrix in this sector is

Ssu(1|1)(u, v) = SAA0 (u, v)D(u, v) −→
g→0
−1 , (7.49)

which once again correponds exactly to the tree level scattering matrix
in the su(1|1) of N = 4 SYM. At weak coupling this setup is equivalent
to the one considered by Caetano and Fleury [159] where they showed
that the matrix part of the hexagon is a domain wall partition function
on another six-vertex model

hsu(1|1)({u}, {v}) = in
∏
i<j(ui − uj)(vi − vj)∏

i,j(vi − uj)
. (7.50)

This corresponds to the hexagon of ABJM and we can obtain a prediction
for the fermionic part of the two-particle form factors at weak coupling

〈h|ψ+(u4γ)ψ̇−(v)〉 = B(u4γ , v) =
−i
u− v

,

〈h|ψ−(u4γ)ψ̇+(v)〉 = C(u4γ , v) =
−i
u− v

. (7.51)

The ratios with A(u4γ , v) at weak coupling are then

B(u4γ , v)

A(u4γ , v)
= 1 ,

C(u4γ , v)

A(u4γ , v)
= 1 (7.52)

which correspond exactly to the weak coupling expansion of the ratios
obtained in (7.27). Unfortunately, since crossing does not commute with
perturbation theory, we are not able to obtain a prediction for A(u, v).
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8. Epilogue

After the success of integrability in solving the spectrum of N = 4 SYM
in the planar limit, there has also been in recent years a great effort in the
study of its correlation functions. Integrability has played a very impor-
tant role in the determination of structure constants both at weak and
strong coupling and recently an all-loop framework for the computation
of these objects in N = 4 SYM has been proposed. Despite its success,
there is still much to be understood. One would like to resum wrapping
corrections and effectively obtain three-point functions at intermediate
values of the coupling. Besides that, it is important to extend these
techniques to other theories, just like it happened for the spectrum.

The focus of this thesis was the study of correlation functions in in-
tegrable theories. We have studied both the weak and strong coupling
limits of N = 4 SYM and have obtained important data that should
be matched with the Hexagon form factor approach. In the context of
ABJM we have also studied the role of Hexagon form factors in the com-
putation of its structure constants. In what follows we describe the main
achievements of this thesis and also some of the possible directions for
future work.

8.1 Structure constants at weak and strong coupling
In this thesis we have obtained several new results for structure constants
at strong coupling. We have focused on correlators of short operators,
whose dimensions scale as ∆ ∼ λ1/4 and for which one can use a flat-
space approximation. By understanding the map between the gauge
theory operators and the string vertex operators, we have been able to
express three-point functions of N = 4 SYM as superstring amplitudes
in flat space. The main results of Paper I are the structure constants of
the Konishi operator with half-BPS operators, and the realization that
they are exponentiallly suppressed at strong coupling.

In Paper II we have studied correlation functions for short operators
with spin. We were able to perform superstring amplitudes with states
at higher mass levels by considering operators dual to string states in the
leading Regge trajectory. We have also obtained a precise map between
the building blocks of superstring amplitudes and the tensor structures
allowed by conformal symmetry.
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In Paper II we considered also the extremal limit for the three-point
function of Konishi with two half-BPS operators. The fact that the string
coupling does not vanish leads to a pole in the structure constant which
indicates that at the extremal point Konishi does not have a definite
scaling dimension and mixes with the double-trace singlet operator. We
have understood how to correctly renormalize the operators and found
the 1/N corrections to their scaling dimensions.

In this thesis we have also studied correlation functions at weak cou-
pling. By considering a four-point function of protected operators one
can extract the structure constant of the lowest twist operators at five
loops. We used the technique of asymptotic expansions, where conformal
integrals become massless propagator integrals in the OPE limit. The
master integrals obtained were unknown, but we have obtained their ε
expansions without any explicit integration, by considering the allowed
divergences and magic identities of conformal integrals.

Finally, we took the first steps in a generalization of the Hexagon
programme to ABJM. We studied the possible setups for the evaluation
of non-extremal correlation functions and found the residual symmetry
to be su(1|2) × u(1). We used that symmetry to fix the two-particle
hexagon, and found that the four-particle form factors are determined
only up to three scalar functions. We have also argued that it is not
sufficient to use the S-matrix in order to write the multi-particle form
factors in terms of two-particle hexagons. Finally, the Watson equations
indicate the appearance of a square root of the BES dressing factor which
needs to be investigated further.

8.2 Future work
There are several directions of work that should be pursued in the re-
search of structure constants at strong coupling. One could try to obtain
1/N corrections by evaluating the next term in the genus expansion of
superstring amplitudes, where the flat-space approximation should still
be valid. It is also important to find the α′ corrections of the correlators
we studied. A change in the coupling can be seen as a change in the
background geometry, and that effect can be obtained with the insertion
of closed string states in the superstring amplitude. It is however un-
clear what those states should be and if they are compatible with the
flat-space approximation. Perhaps even more important would be to find
the vertex operators for strings propagating on an AdS background. The
most suitable formalism for this endeavour is pure spinor but there are
several difficulties one must overcome. On the technical side, one has to
go beyond the existing expansions for the vertex operators [160], while
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a more conceptual problem is to understand exactly what is the correct
prescription for the zero-mode integration [161].

At weak coupling there are also many points that should be investi-
gated further. In order to claim a good understanding of the wrapping
corrections in three-point functions, one needs to find the Hexagon form
factors at five loops and match with perturbative results. It would also
be interesting to use the technique of asymptotic expansions in order to
study non-planar corrections to structure constants. There are indica-
tions that the Hexagon form factors can be used to find 1/N corrections
to correlation functions, so it is important to obtain perturbative data
relevant to that problem. It is known that for a four-point function of
operators in the 20′ the non-planar corrections appears at four loops [90],
but one can also consider more generic four-point functions for which the
non-planar corrections show up at lower loop order [162].

Finally, it is important to understand if we can extend the Hexagon
form factor programme to other integrable theories. It would be natural
to look at it in the context of AdS3/CFT2. In that case the symme-
try takes the factorized form psu(1|1)2 [163], so one could hope that the
hexagon form factor bootstrap would follow closely the example ofN = 4
SYM. In the context of ABJM, there are many points that need to be
considered further. It is essential to understand if the multi-particle form
factors can be expressed in terms of the two-particle hexagon. Besides
that, it is also important to find if the quantum corrections to the three-
point function of protected operators can be explained with wrapping
corrections of the hexagon form factors. Finally, since some supersym-
metry generators annihilate all three vacua, there is hope that one can
evaluate the three-point function with a localization technique [164].
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Svensk sammanfattning

Kvantfältteori är ett teoretisk ramverk som har varit extremt framgång-
srikt i sin beskrivning av partikelfysik. Men trots alla dess applika-
tioner är det väldigt svårt att gå bortom störningsteori och studera
starkt kopplade system. Förutom detta finns också problemet att vi
inte förstår allmän relativitetsteori då krökningen av rumtiden blir stark,
vilket kräver en teori för kvantgravitation.

Det visar sig att strängteori är ett matematiskt ramverk som kan
hjälpa oss lösa båda dessa frågor. Istället för att betrakta punkt-lika
partiklar, är det fundementala objektet i strängteori ett endimensionellt
objekt, en sträng, som sveper ut en två-dimensionell världsyta i rumti-
den, och olika partiklar är olika excitationer av denna sträng. I en sträng-
teori kan man också betrakta objekt med utbredning i fler dimensioner,
så kallade D-bran, vilka är vad öppna strängar slutar på.

Någonting väldigt speciellt händer när vi studerar vissa konfigura-
tioner av D-bran vid låga energier. Åena sidan beskrivs dynamiken av
öppna strängar av en d-dimensionell konformal fält-teori. Men vi kan
också se branen som en deformering av bakgrundsgeometrin, vilket i
när-horisont regionen blir AdSd+1×M därM är någon kompakt mång-
fald. Från detta kan vi dra slutsatsen att det finns en dualitet mellan den
d-dimensionella konforma fältteorin och en supersträngteori på AdSd+1

bakgrund. Denna dualitet kallas AdS/CFT, och är ett bra exempel på
holografi.

Två av de mest studerade exemplena av AdS/CFT är givna av typ
IIB strängar i AdS5×S5 och typ IIA strängar i AdS4×CP3, vars duala
konforma fältteorier ges av N = 4 SYM i fyra dimensioner och ABJM i
tre dimensioner. Dessa teorier är supersymmetriska, men i den så kallade
"planar limit", vilket är en specifik gräns av teorins parametrar, tror vi
att de blir integrerbara, eftersom de där har ett oändligt torn av gömda
symmetrier. En av de huvudsakliga implikationerna av integrabilitet är
att S-matrisen kan faktoriseras till två-till-två spridningsprocesser, vilket
är en enorm förenkling. Notera att dessa är svaga/starka dualiteter, där
den klassiska regimen av den ena teorin avbildas på den kvantmekaniska
regimen av den andra.

I denna avhandling har vi studerat korrelationsfunktioner av dessa
teorier. Vid stark koppling studerar vi korrelationsfunktioner av så
kallade korta operatorer, vilkas dimensioner skalar som ∆ ∼ λ1/4, och
för vilka vi kan approximera rumtiden som platt. I artikel I förstod
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vi hur man avbildar gaugeteori-operatorer till sträng vertex operatorer,
och vi hittade strukturkonstanterna för Konishi-operatorn med skyddade
halv-BPS operatorer.

I artikel II studerade vi tre-punktsfunktioner av operatorer med spin,
och hittade en exakt funktion mellan byggklossarna av supersträngsam-
plituder och de tensorstrukturer som är tillåtna av konform symmetri.
Vi har också studerat den extrema gränsen av tre-punktsfunktionerna av
Konishi med två halv-BPS operatorer. Genom att renormalisera oper-
atorerna kunde vi göra tre-punktsfunktionerna finita och vi hittade hur
Konishi blandas med en dubbel-trace operator.

I denna avhandlingen har vi också studerat OPE gränsen av fyr-
punktsfunktioner vid svag koppling. För att bestämma strukturkon-
stanterna vid fem loopar använde vi tekniken med asymptotisk serie.
De resulterande integralerna var okända, men vi lyckades finna deras
ε-utveckling utan någon explicit integrering, från enkla överväganden av
tillåtna typer av divergenser och magiska identiteter från konforma inte-
graler.

Slutligen studerade vi en generalisering av Hexagon-projektet för att
hitta formfaktorer, för ABJM. Vi fann en icke-extrem setup med su(1|2)×
u(1) överbliven symmetri. Två-partikel hexagonen är fixerad upp till en
enda skalär funktion, vilket tyder på existensen av en ny typ av "dressing
phase". Slutligen använde vi den överblivna symmetrin också på fyra-
partikel hexagonen, men fann att den inte är totalt fixerad av symmetrin
och att den inte kan uttryckas som en enkel produkt av spridningsma-
triser.
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