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Abstract

Complex topological K-theory is defined to be the Grothendieck group of stable isomorphism
classes of complex vector bundles. This construction is functorial and it is shown that the
functor can be represented by homotopy classes of maps into a classifying space, for which we
present an explicit model. Morse theory is then introduced and used to prove Bott periodicity.
The consequences of Bott periodicity for K-theory are explored, leading to the conclusion that
complex topological K-theory is a generalised cohomology theory. Finally, the K-theory of the
n-torus and Lens space is computed.
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Chapter 1

Introduction

In this thesis, the basic concepts of topological K-theory are introduced and studied using tools from
Morse theory, homotopy theory and homological algebra. It will be shown that topological K-theory
is a periodic, generalised cohomology theory in which the cocycles have a geometric interpretation
as equivalence classes of vector bundles. The focus is on complex topological K-theory, however
the results can be applied to the real case, with some changes. In particular, the calculations
corresponding to Chapter 4 are significantly more involved in the real case.

The definition of K-theory, which we see in Chapter 2 has several well-known generalisations,
which contribute to the appeal of K-theory as an object of study. One such example is equivariant
K-theory, in which the classes of vector bundles are replaced with classes of vector bundles with a
group action. This machinery is used in the proof of the Atiyah-Singer Index theorem, [1], a famous
result from K-theory, which describes purely analytic data - the index of an elliptic operator - in
terms of purely K-theoretic data. The methods used in this thesis, however, are not applicable to
equivariant K-theory.

The outline of the thesis is as follows:
In Chapter 2 the category of principal bundles over a compact, Hausdorff space is introduced

and the rigidity of this category is exploited to prove a classification theorem, Theorem 2.12; the
presentation broadly follows [9]. In example 2.16 the classifying space of unitary principal bundles
is computed and it is observed that the same space classifies GLn principal bundles. By relating
vector bundles and GLn principal bundles, this agreement is understood to be a consequence of the
fact that any vector bundle can be endowed with a Hermitian metric, Definition 2.21.

The set of isomorphism classes of vector bundles over a compact, Hausdorff space has a canon-
ical semigroup operation, the direct sum. Groupifying this structure yields the K-group of the
space. Although this procedure is quite simple, the theory obtained has deep connections through-
out mathematics. A more algebraic viewpoint of this procedure can be taken, by observing that
isomorphism classes of vector bundles over a compact base space are in bijective correspondence
with isomorphism classes of finitely generated, projective C(X)-modules. From this perspective, it
is natural that an interpretation of the procedure can be applied to the study of more general rings,
see e.g. [2]; we do not investigate this aspect any further.

In Section 2.5 the classification theorem 2.12 is used to show the functor K is representable.
In particular, we find that the product BU×Z is a representative of the functor, K, where BU =
colimnGrn(C∞).

We can probe the properties of the functor, K, by exploring the homotopy type of its representa-
tive. This is done using the tools of Morse theory. This framework allows one to deduce information
about the homotopy of smooth spaces from the critical points of a generic function. By putting a
Riemannian structure on the space, it is possible to apply the theory to the path space of a smooth
manifold, via finite dimensional approximations. The basic results in this direction are presented
in Chapter 3.

These results are then applied to the Lie group U(n) in Chapter 4. Using elementary results on
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the geometry of Lie groups (collected in Appendix A) we are able to relate the homotopy type of
the loop space of this group with Grassmannian spaces. Taking colimits, we will be able to deduce
a homotopy equivalence of the K-representative, BU×Z, with its own second loop space. This is
the phenomena known as Bott periodicity, which is a central result of this thesis. Chapters 3 and 4
heuristically follow [8]. There are some changes from the presentation therein, firstly to correct an
error in Milnor’s presentation, and secondly to reach our aim more directly.

The consequences of Bott periodicity on the functor K are explored in Chapter 5. We can
immediately calculate the value of K on the spheres, but more general spaces require more tools.
The most important tool to understand is the relationship between the K-ring of a closed subspace
with the K-ring of the ambient space. To such a pair can be naturally associated a long exact
sequence of K-rings, (5.11). This exact sequence is very useful in calculating examples, but it is
also theoretically important, for it can be interpreted as satisfying one of the Eilenberg-Steenrod
axioms. In fact, this sequence suggests a sequence of functors, K∗, generalising K and satisfying
the Eilenberg-Steenrod axioms, with the exception of the dimension axiom. Therefore, K∗ defines
a generalised cohomology theory. This theory is periodic, with period two, as a consequence of Bott
periodicity. In particular, the ring Ki is isomorphic to Ki+2, for all i ∈ Z. By calculating some
elementary examples, we see the effect that this periodicity has on computability.

Acknowledgements I would like to thank my supervisor Thomas Kragh, for being full of helpful
advice and encouragement, and always leaving me with more questions than I came in with.
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Chapter 2

Vector Bundles and K-Theory

In this chapter a functor from the category of compact spaces to the category of commutative rings
is developed. This is accomplished by investigating certain equivalence classes of vector bundles,
along with natural vector bundle operations, following the presentation in [4]. Viewing K-theory in
this way makes many structural elements more intuitive, but obscures the periodic property that we
wish to obtain. We aim to understand this property by viewing K-groups in a homotopy-theoretic
context and therefore we begin by reviewing the notion of a principal bundle and its associated
vector bundles, following [9]. The rigidity of principal bundles yields a classification theorem, which
is inherited by associated vector bundles. The classification will eventually yield the main result of
the chapter: that the functor is representable (see (2.18)). In later chapters, this will allow the use
of tools from Morse theory to investigate the properties of these functors.

2.1 Principal Bundles

In this section, G will be a topological group with identity e.
A space, X, is called a left G-space if there exists a continuous map G × X → X, written

(g, x) ↦ gx, such that ex = x and g(hx) = (gh)x, for all x ∈ X, g, h ∈ G. A right G-space is
defined analogously. If we have two left G-spaces X,Y a map φ ∶ X → Y is called G-equivariant if
φ(gx) = gφ(x) for all g ∈ G, x ∈X.

Definition 2.1. Let X be a topological space with trivial G-action (i.e. xg = x for all x ∈X, g ∈ G).
A principal G-bundle over X is a surjective G-equivariant map from a right G-space E to X,
π ∶ E →X, with a local triviality condition. In particular, there exists an open cover {Ui} of X and
G-homeomorphisms π -1(Ui) → Ui ×G; the G-action on Ui ×G is (x, g)h ∶= (x, gh).

Any map p ∶ E →X with a local triviality condition is called a local product and defines a fibre
bundle.

It can be observed that a principal bundle hasG-valued transition functions1 i.e. gij ∶ Ui∩Uj → G;
in a more general fibre bundle with fibre F , it is only required that gij(x) ∈ Homeo(F). It is also
important that the local triviality condition ensures the group action on a principal bundle is
fibrewise-transitive and free. We will sometimes call a principal bundle a G-bundle.2

A morphism of G-bundles with base space X is a G-equivariant map between the total spaces,
which commutes with the bundle surjections. An isomorphism is a bundle morphism that is also
a homeomorphism. The collection of isomorphism classes of principal G-bundles over a fixed base
space, X, is a category with the bundle morphisms as maps. Denote this category by PG(X). The
theory of principal bundles is very rigid, as the next proposition indicates.

1If (Ui, φi) and (Uj , φj) are trivialising neighbourhoods with Ui ∩ Uj ≠ ∅, then the transition function is defined
by the composition φj ○ φi

-1
= IdUi∩Uj ×gij

2Note that this terminology is sometimes used to mean a G-vector bundle in other contexts
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Proposition 2.2 ([9], Proposition 2.1). Let E and F be principal G-bundles over X, and φ ∶ E → F
a bundle morphism. Then φ is an isomorphism.

Proof. We begin by assuming the bundles are both trivial E = F = G ×X. Then φ is of the form

φ(x, g) = (x, f(x, g)) = (x, f(x, e)g) , (2.1)

where f(x, e) ∶ X → G is a continuous map. Set f(x) ∶= f(x, e). The map g ∶ X → G defined by
g(x) = (f(x)) -1 induces a continuous inverse to φ.

More generally, let {Ui, ψi} a cover of X trivialising E, and {Ui, ξi} a cover of X trivialising F .
There is no loss of generality in assuming the cover of X is the same in both cases, for if this is not
the case, taking a common refinement and restricting the domain of the maps gives trivialisations
with a common cover.

The above argument shows that φ∣πE -1(Ui) ∶ πE -1(Ui) → πF
-1(Ui) is an isomorphism for all Ui.

We can conclude that φ is bijective, and the map obtained by gluing together the local inverses is
a continuous inverse to φ. Hence, φ is an isomorphism.

Corollary 2.3 ([9], Proposition 2.2). A principal bundle is trivial if and only if it admits of a
section.

Proof. One implication is obvious. For the other, suppose s ∶ X → E is a section of the principal
bundle π ∶ E → X. As the group action on E is fibrewise-transitive and free we have that every
element e ∈ E can be written e = s(π(e))g for unique g ∈ G. Let E → X ×G be given by s(x)g ↦
(x, g). This is a G-map lifting the identity on X, so it is a bundle morphism. By the above
proposition, it is therefore an isomorphism.

For a given f ∶ X → Y and principal bundle π ∶ E → Y , define the pullback bundle, f∗E to be
the pullback, in the categorical sense, of the maps f and π, i.e. f∗E is the limit of the diagram

E

X Y

π

f

(2.2)

which is (uniquely isomorphic to) the subspace {(x, ε) ∶ f(x) = π(ε)} ⊂ X ×E, with projection
(x, e) ↦ x and G-action (x, ε)g = (x, εg). It is not difficult to check that this is indeed a principal
bundle. The following theorem is a crucial property of pullbacks and will be used many times below:

Theorem 2.4. Let f, g ∶ X → Y such that f is homotopic to g, and P → Y a principal G-bundle
and X,Y are paracompact. Then the pullbacks f∗P, g∗P are isomorphic.

This proof is taken from [4] Theorem 1.6, mildly modified for principal bundles. It is based on
the following lemmas:

Lemma 2.5. Let I = [a, b], I1 = [a, c] and I2 = [c, b] for a < c < b. A principal bundle P → B × I is
trivial if and only if the restricted bundles P1 → B × I1 and P2 → B × I2 are trivial.

Proof Of Lemma. We need only show the condition is sufficient.
Let hi ∶ Pi → B × Ii ×G any two trivialisations. If they agree on the overlap E∣B×{c} then we are

done, so it must be shown that they can be made to agree. Given hi(e) = (π(e), gi(x, t)) one can
define a new trivialisation on P2, h̃2(e) = (π(e), g2(x, t)(g2(x, c)) -1 g1(x, c)) which is a trivialisation
of P2 that agrees with that of P1 on the overlap.

Lemma 2.6. A principal bundle P → B × I, for a closed interval I, admits a trivialising cover of
the form {Ui × I}, where {Ui} is a cover of B.
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Proof Of Lemma. This is a simple consequence of the last lemma.
Without loss of generality, let I = [0,1]. There exists a partition 0 = t0 < t1 < . . . < tm = 1 and

a covering of B, {Ui}, such that π -1(Ui × [tj , tj+1]) is trivial. By the above lemma, we can extend
that trivialisation over the next interval, Ui×[tj , tj+2], or Ui×[tj−1, tj+1]. Finiteness of the partition
means that in finite steps, one has found a trivialisation of Ui × I. Hence {Ui × I} is a trivialising
cover.

Proof of Theorem 2.4. Let F ∶ X × I → Y a homotopy with F0 = f, F1 = g. Then F ∗P → X × I
is a principal bundle and F ∗P ∣X×0 = f∗P, F ∗P ∣X×1 = g∗P . By the above lemmas X has a cover
{Ui} such that F ∗P ∣Ui×I is trivial. The theory of paracompact spaces tells us that there is a
countable, locally finite open cover {Vj}j≥1 such that each Vj is a disjoint union of open sets, each
contained in some Ui, admitting of a subordinate partition of unity, {ξj}. In particular, Vj × I is
a countable cover of X × I, such that F ∗P is trivial over each Vj × I. Set Ψi = ∑ij=1 ξi and Xi

the graph of Ψi, Xi = {(x,Ψi(x))} ⊂ X × I, for i ≥ 1; let Ψ0 = 0 so that X0 = X × {0}. Denote
the restriction of the bundle to these graphs F ∗Pi ∶= F ∗P ∣Xi .Thus, X0 = X × 0 and F ∗P0 = f∗P .
Observe that for all i ≥ 1 we have a natural homeomorphism si ∶ Xi → Xi−1, which is the identity
above X ∖ Vi. As F ∗P is trivial over Vj × I for all j, the homeomorphism si can be lifted to a
bundle isomorphism of hi ∶ Pi → Pi−1, using the trivialisation over Vi × I. Form the composition
h = h0 ○ h1 ○ . . . ∶X × {1} →X × {0}. This is well defined because the cover Vj is locally finite, so in
a neighbourhood of any point only finitely many of the ξi are non-zero, meaning only finitely many
of the hi are not the identity. As X1 = limi→∞Xi, it can be concluded that h is the sought after
isomorphism.

Observe that nowhere in the above did we use anything more specific than local triviality, so it
can be concluded that in fact the statements hold for general fibre bundles.

Proposition 2.7. If E is a bundle E →X × I, with X paracompact, then E∣X×{0} is isomorphic to
E∣X×{1}.

The proof essentially repeats that of Theorem 2.4. It is important to observe that there is
not a canonical isomorphism. Indeed, the isomorphism depends on the trivialisation of the vector
bundle E. However, it can be checked that for a fixed trivialisation of, say E∣X×{0}, the induced
isomorphism is unique up to homotopy.

2.1.1 Associated Vector Bundles

In this section we generalise from principal G-bundles to bundles with arbitrary G-space fibres, and
structure group G. The idea is that a bundle associated to a principal bundle is a locally trivial
map with the same transition functions as the principal bundle, gij ∶ Ui ∩ Uj → G, now acting on
the fibre rather than G. This is formalised below. Associated bundles are key in constructing the
classifying spaces in the next section, but they will also be important to us in that we regard vector
bundles as associated GLn-bundles.

Definition 2.8. Given a right G-space X and left G-space Y , we can define the balanced product
to be X ×G Y =X × Y / ∼, where (xg, y) ∼ (x, gy). Equivalently, we have (xg, g -1 y) ∼ (x, y).

In general, we can consider a left G-space as a right G-space (and vice versa) by defining right
action xg ∶= g -1 x. In this way, we can form the balanced product of two right spaces (or left spaces),
where the equivalence relation above can be formulated as being the quotient of the product space
X × Y by the right group action (x, y)g ∶= (xg, yg) = (xg, g -1 y). Two very useful examples involve
the balanced product of any space with the one-point space, or with G itself:

Example 2.9. Consider ⋆ the one-point space with trivial G-action, then the balanced product with
any right G-space is X ×G ⋆ =X/G.
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Example 2.10. X ×G G = G ×GX =X.

These can both be checked directly from the definition.
Importantly, the balanced product is associative, up to unique homeomorphism. In particular,

let X have a right G-action, Y have a left G-action and right H-action and Z a left H-action, for
some groups G, H. Then the space X ×G Y has a right H-action, and Y × Z a left G-action, so
(X×GY )×HZ and X×G(Y ×HZ) are well-defined. One can check they are naturally homeomorphic
using some basic point-set topology.

Now suppose we have a principal G-bundle π ∶ P → B, and X some right G-space. Let c ∶X → ⋆
the unique map to the one-point space. This is a G-map, and so it induces a map c̃ ∶ P×GX → P×G⋆,
by c̃([p, x]) = [p, cx] = [p,⋆]. By the above, P ×G ⋆ = P /G, and as P is a principal bundle
P /G ≅ B. We call P ×G X the fibre bundle associated to P , with fibre X and structure group
G. The locally trivial structure on P induces a locally trivially structure on X as follows: for
any cover of B over which P can be trivialised, say {(Ui, φi}, we define φ̃i ∶ c̃ -1(Ui) → Ui ×X, by
φ̃i[p, x] = [φi(p), x] ∈ (Ui ×G) ×G X = Ui ×X. This is well-defined, because [p, x] ∈ c̃ -1(Ui) implies
that p ∈ π -1(Ui).

It follows immediately that the fibre bundle associated to a principal bundle has the same
transition functions as the principal bundle, now acting on the G-space X.

Example 2.11. Of utmost importance for us will be the concept of vector bundles. We will work
exclusively with complex vector bundles, though we could equally work over other fields at this stage.
The space Cn is a GLn(C)-space under the defining representation, i.e. A ⋅v = Av, A ∈ GLn(C), v ∈
Cn where the right hand side denotes the group action, and left hand side is matrix multiplication.
A complex vector bundle of rank n is a fibre bundle with fibre Cn, associated to a principal GLn(C)-
bundle. We will soon see that in fact complex vector bundle can equally be consider as an associate-
U(n) bundle.

The fibres of an associated bundle P ×G Cn have a canonical C-linear structure on the fibres,
induced by that on Cn.

2.2 Classifying Spaces

A classifying space enables us to model the set of principal G-bundles as homotopy classes of maps.
The goal of this section is to identify the classifying space of principal U(n)-bundles, which is
achieved in Example 2.16

Proposition 2.12. Let P → B a principal G-bundle, X a right G-space; there is a bijection
HomG(P,X) ≅ Γ(P ×GX → B), where Γ denotes the space of sections of the bundle.

Proof. (This proof is taken from [9], Proposition 6.1) Let φ ∶ HomG(P,X) → Γ(P ×G X → B)
φ(f) ↦ sf , where sf(b) = [p, f(p)], for any p ∈ π -1(b). This is well defined, because G acts freely
and transitively on fibres, so if π(p) = π(p′), we know there is a unique g such that p′ = pg. Then
[p′, f(p′)] = [pg, f(p)g] = [p, f(p)], where we used that f is a G-map. To see that φ is a bijection
we use local triviality.

In the case P is trivial, P ≅ B ×G, we have HomG(B ×G,X) = Hom(B,X); similarly Γ(B ×
G ×GX → B) = Γ(B ×X → B) = Hom(B,X); φ = Id in this case.

To extend to the general case, let {Ui} a cover of B, trivialising P and therefore trivialising
P ×GX; let Uij ∶= Ui ∩Uj , Pi, Pij the relevant restrictions. We have the commutative diagram:

HomG(P,G) ∏iHomG(Pi,X) ∏HomG(Pij ,X)

Γ(P ×GX) ∏Γ(Pi ×GX) ∏Γ(Pij ×GX) ;

φ ∏φi ∏φij (2.3)
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here the horizontal arrows are just restriction. As all Pi, Pij are trivial, we know that the last
two vertical maps are isomorphisms. Further, HomG(P,G) → ∏iHomG(Pi,X) is the equalizer3,
and similarly for the second row. The universal property for equalizers then shows that there are

unique morphisms HomG(P,G) Γ(P ×GX)
φ

such that the diagram commutes. Uniqueness

implies both that these maps are inverse to each other and hence bijections, so in particular, φ is a
bijection.

Theorem 2.13. Let π ∶ P → B a principal G-bundle with contractible total space P . Then for
compact Hausdorff X, there is a bijective correspondence [X,B] → PGX, given by f ↦ f∗P ; here
[X,B] denotes the set of homotopy classes of maps X → B.

Proof. Surjectivity Let q ∶ Q → X be an arbitrary principal G-bundle and suppose there is some
f ∈ HomG(Q,P ). Quotient out the G-action at both ends to obtain a map on the quotient
spaces f̄ ∶ X → B, such that f̄ q = πf . By definition of the pullback, there must be a bundle
morphism Q → f̄∗P , which must be an isomorphism by Proposition 2.2. Consequently, it
suffices to show that HomG(Q,P ) is non-empty to conclude that Q is in the image of the
map. Proposition 2.12 then implies that surjectivity can be deduced from the existence of a
section of the fibre bundle Q ×G P →X, for arbitrary principal G-bundle, Q, which is proved
in the following lemma.

Lemma 2.14. Fibre bundles over compact, Hausdorff base space, with contractible fibre, admit
a section.

Proof Of Lemma. The lemma is clear for a trivial bundle, so we proceed by induction.

Let π ∶ E →X the fibre bundle with contractible fibre, F , {Ui} a cover of X and trivialisations
φi ∶ π -1(Ui) → Ui × F . As X is compact we can assume this cover is finite.

As the basis of induction, observe there is a section for U1. Define Vj = ⋃ji=1Ui and let
Ej ∶= E∣Vj . Assuming there is a section s ∶ Vk → Ek we will construct a section on Vk+1 using
local triviality and contractibility of the fibre.

As a first step, observe that the sets Vk and Uk+1 form an open cover of Vk+1, so there is
a partition of unity subordinate to this cover, say ξk, ξk+1 ∶ Vk+1 → I, with supp(ξk) ⊂ Vk,
supp(ξk+1) ⊂ Uk+1. The section s induces s̃ ∶ Vk ∩ Uk+1 → F in the trivialisation given over
Uk+1, and contractibility of F implies the existence of a homotopy g ∶ (Vk ∩Uk+1)×I → F such
that g0 = f0 ∈ F and g1 = s̃. Define sk+1 ∶ Vk+1 → Ek+1 to be

σ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s(x) x ∈ Vk ∖ (Vk ∩Uk+1)
φ−1
k+1(x, g(x, ξk+1(x))) x ∈ Vk ∩Uk+1

φ−1
k+1(x, f0) x ∈ Uk+1 ∖ (Vk ∩Uk+1)

. (2.4)

Observe that the homotopy continuously interpolates over Vk ∩ Uk+1 between the section s
and the constant map f0, hence the overall section is continuous. By induction, there exists
a section.

Injectivity Suppose we have f∗0 P ≅ f∗1 P , for maps f0, f1 ∶X → B. It needs to be shown that f0 is
homotopic to f1. Let q ∶ Q → X, Q ≅ f∗0 P ≅ f∗1 P , and consider the bundle Q × I → B × I. Set
R = (Q × I)∣X×∂I . The lifts of f0, f1 provide a morphism R → P , which we want to extend to
a morphism Q × I → P ; by doing so, and passing to cosets, we obtain the required homotopy.
Therefore, it suffices to show that the morphism R → P can be extended. By Proposition
2.12, this is equivalent to a section extension problem, which is solved in the following lemma.

3The equalizer of two maps f, g ∶X → Y is the limit of the diagram X Y
f

g
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Lemma 2.15. If E → X × I is a bundle with contractible fibres, and s ∶ X × ∂I → E∣X×∂I is
any section, then s can be extended to a section of the whole base space X × I → E.

Proof Of Lemma. In Lemma 2.6 we saw that a fibre bundle Q→X × I admits of a trivialising
cover of the form {Ui × I}ni=1, where {Ui}ni=1 is an open cover of X. If Q is trivial, the lemma
asserts that there is a homotopy between s0 ∶ B → F and s1 ∶ B → F , which is true by
contractibility of F .

The general case follows the same pattern as the previous lemma. In brief: by induction there
exists a section over Vk × I. A homotopy can be chosen between the maps σ0, σ1 ∶ Uk+1 → F
induced by s0, s1 in the trivialisation of Uk+1. On the overlap, (Vk∩Uk+1)×I we have to worry
that the given section does not agree with the chosen homotopy. However, contractibility
means the homotopies are themselves homotopic, so using the partitions of unity as above,
we continuously pass from the section on Vk to a section on Uk+1, thereby defining a section
on Vk+1. Thus, by induction, there exists an extension on the whole of X × I.

This completes the proof of injectivity and establishes the theorem.

The base space of a contractible principal bundle is the classifying space of G and commonly
denoted BG. The total space of the bundle is often called the universal bundle and denoted EG.

Example 2.16. The classifying space of U(n) bundles will be fundamental in the rest of the chapter;
essentially the same result for O(n) can be obtained by replacing C with R, whenever it appears in
the following. This example is essentially an elaboration of Example 4.53 in [5].

We shall show that the classifying space for U(n) is the Grassmannian space of n-planes in C∞,
Grn(C∞). Here we define C∞ = colimCk as the colimit of the diagram

Cn ↪ Cn+1 ↪ ⋯ ,

i.e. the set ⋃∞k=nCk, with the weak topology.
Let Vn be the space of orthonormal n-bases4 in C∞ and consider the natural projection map

p ∶ Vn → Grn(C∞), mapping an n-basis to the n-plane spanned by it. More precisely, Grn(C∞), Vn
are the colimits of the respective diagrams

Vn(Cn) ↪ Vn(Cn+1) ↪ ⋯
Grn(Cn) ↪ Grn(Cn+1) ↪ ⋯ ,

where the maps are induced by the inclusions Ck ↪ Ck+1.
We topologize Vn(Ck) as a subspace of (S2k−1)×n and induce a topology on Grn(Ck) by imposing

that the projection p is a quotient map. In this way, we see that the limit surjection p ∶ Vn →
Grn(C∞) is continuous. We wish to see that it is in fact a fibre bundle.

Let P ∈ Grn(C∞) some arbitrary plane, k ∈ Z big enough that P ⊂ Ck and πP ∶ Ck → P be
the orthogonal projection with respect to the standard hermitian metric; this induces the orthogonal
projection πP ∶ C∞ → P . Let U ⊂ Grn(C∞) the set containing all those n-planes, Q, such that pP ∣Q
is a surjection. In each finite case, this set is the quotient map image of (S2k−1∖S2k−1−2n)×n∩Vn(Ck)
(where k ≥ n a priori, and S2k−1−2n is the equatorial sphere orthogonal to the plane P ) and hence
an open neighbourhood of P in Grn(C∞). By continuously choosing an orthonormal basis of each
plane in U we can obtain a trivialisation, ψP ∶ p -1(U) → U × Vn(Cn), via the coordinate vectors.
We can make such a choice by first selecting an arbitrary orthonormal basis on P , denoted by
Ξ = (ξ1, . . . , ξn). This induces an n-basis on each Q ∈ U :

(πQ(ξ1), . . . , πQ(ξn)),
4By an n-basis, I here mean a set of n linearly independent vectors. “Orthonormal” is with respect to the standard

hermitian metric
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so applying the Gram-Schimdt procedure yields an orthonormal basis of Q. This is a continuous
procedure, and hence we can continuously identify Vn(Q) with Vn(Cn). Using this, we can concretely
write the trivialisation

ψP (v1, . . . , vn) = (p(v1, . . . , vn), (vΞ
1 , . . . , v

Ξ
n)), (2.5)

for vΞ
i the coordinate vector of vi ∈ Q, corresponding to the choice of basis GS(πQ(ξ1), . . . , πQ(ξn)).

Next, we observe that Vn(Cn) can be identified with U(n) by identifying an n-basis, v, with
the unique element g ∈ U(n) such that eg = v. Under this identification, it can be seen that the
trivialisation (2.5) is a U(n)-map, and hence Vn → Grn(C∞) is indeed a principal bundle.

It remains to show that Vn is contractible. The homotopy is constructed in two steps: the first
uses the right-shift operator and the second is, in essence, a straight-line homotopy. To be precise,
the linear operator r ∶ C∞ → C∞, r(z1, z2, . . .) = (0, z1, z2, . . .) is injective, and repeating n-times
gives an injection rn ∶ C∞ → 0×n × C∞. Next, observe that the map rt ∶= (1 − t) Id+trn is also
injective for each t ∈ [0,1]. This implies that if we start with some v = (v1, . . . , vn) ∈ Vn , then
r⃗t(v) ∶= (rt(v1), . . . , rt(vn)) is a linearly independent n-tuple for all t and hence the Gram-Schmidt
procedure can be applied to obtain a homotopy GS ○ r⃗t ∶ Vn → Vn. Observe that the Gram-Schmidt
procedure is stationary on orthonormal bases, so that GS ○ r⃗0 = Id and GS ○ r⃗1 = r⃗n. Thus, r⃗t induces
a deformation retraction from Vn onto the proper subspace of n-bases with first n coordinates zero.

We can now use that {e1, . . . , en, r⃗
n(v)} is linearly independent and, further, that {(1−t)rn(vi)+

tei}ni=1 forms a linearly independent set for all t ∈ [0,1]. Therefore we can define h⃗t(v) = GS((1 −
t)r⃗n(v) + te), describing a homotopy between r⃗n and the constant map e.

Putting these two homotopies together, we obtain a map

g⃗(v, t) = { r⃗2t(v) t ∈ [0, 1
2]

h⃗2t−1(v) t ∈ [1
2 ,1]

,

continuously depending on v and t, describing a homotopy from the identity on Vn to the constant
point e = (e1, . . . , en). This completes the proof that Vn is contractible, and we can finally conclude
that Grn(C∞) is the classifying space of U(n)-bundles.

Looking carefully at this proof, it can be observed that if we replace Vn with the space Wn

of all (not just orthonormal) n-bases, then the only substantive change in the above would be to
omit the Gram-Schmidt process wherever it appears, implying the fibres of the resulting bundle are
Wn(Cn) ≅ GLn(C). It follows that BGLn = BU(n) = Grn(C∞).

2.3 Vector Bundles

We earlier defined a complex vector bundle as a bundle with fibre Cn, associated to a principal
GLn(C)-bundle, where GLn(C) acts in the defining representation (substituting ”real” for ”com-
plex” everywhere leads to a real vector bundle). 5 It is important to remark that with this definition
all fibres have the same dimension. We call the dimension of this fibre the rank of the vector bundle.
Local triviality guarantees that the rank is locally constant.

A vector bundle morphism is a pair of maps (F, f), where f is a map between base spaces, F
lifts f (i.e. p2F = fp1) and F is a linear map on fibres. An isomorphism of vector bundles over a
fixed space is a continuous lift of the identity, which is a linear isomorphism on fibres. 6 For a given
base space, X, we define the category Vectn(X) with objects being isomorphism classes of vector
bundles over X, and morphisms are vector bundle morphisms. Taking Ṽ ect(X) = ⋃∞n=0 Vectn(X),
with all bundle morphisms, we get a category of constant rank vector bundles over X.

5This is not the common way to define vector bundles, but it can be checked that the category of isomorphism
classes are equivalent, up to the issue of locally constant rank.

6In fact, an isomorphism is usually defined to be a fibrewise-linear homoeomorphism, lifting the identity, however
the definition given here is in fact equivalent, see [4], Lemma 1.1.
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In contrast to the category of principal bundles, these categories are not disconnected, i.e. there
can be morphisms between non-isomorphic bundles. Therefore, this category is more complicated,
however there is a bijection between the objects of Vectn(X) and the objects of PGLn(C)X, i.e. if
two vector bundles are isomorphic P ×G Cn ≅ Q ×G Cn, then the principal bundles are isomorphic,
P ≅ Q. This is not difficult to see, so further details are omitted.

It follows that there is a set bijection Vectn(X) ≅ [X,BU(n)], given by 7

[f] ↦ f∗Vn ↦ f∗Vn ×U(n) Cn ≅ f∗(Vn ×U(n) Cn) . (2.6)

It can be recognised that Vn×U(n)Cn is isomorphic to the tautological bundle EU(n) → Grn(C∞).8
EU(n) has the subspace topology, EU(n) ⊂ Grn(C∞) × C∞, and the isomorphism is given by
Ψ ∶ Vn ×U(n) Cn → EU(n)

Ψ[(v1, . . . , vn), (z1, . . . , zn)] = z1v1 + . . . + znvn . (2.7)

This continuous map lifts the identity IdGrn(C∞) and is a fibrewise-linear bijection, so is indeed a
bundle isomorphism.

We also have the following analogue of 2.3 for vector bundles, which is a consequence of the
bijection (2.6).

Corollary 2.17. Define an n-frame on a vector bundle to be an n-tuple of sections that are fibrewise
linearly independent. A vector bundle of rank n is trivial if and only if it admits an n-frame.

Proof. It is clear that a trivial vector bundle of rank n has an n-frame, so we focus on sufficiency
of the condition. We can mirror aspects of the proof of Corollary 2.3 to obtain the result.

In particular, let σ1, . . . , σn form an n-frame of the rank n vector bundle π ∶ E → X. By
definition, any element v ∈ π -1(x), for any x ∈ X, can be expressed as a unique linear combination
of the basis s1(x), . . . , sn(x), say v = ∑i visi(x), with vi ∈ C. We can therefore define a map to the
trivial bundle Φ ∶ E → X ×Cn by Φ(v) = (π(v), (v1, . . . , vn)). Φ is a continuous lift of the identity,
which is a linear isomorphism on the fibres and is therefore an isomorphism.

Corollary 2.17 can also be understood as a direct consequence of Corollary 2.3, by observing
that an n-frame induces a section of the associated principal bundle. Indeed, let E → X a vector
bundle, and s1, . . . , sn ∶ X → E an n-frame. By the above, we know that E ≅ f∗EU(n), for some
f ∶ X → Grn(C∞) so there is an induced n-frame on f∗EU(n), denoted by the same names. The
pullback comes equipped with a bundle morphism f̃ ∶ f∗EU(n) → EU(n), lifting f and which is
a linear isomorphism on fibres, so there is an induced n-frame f̃(si) ∶ X → EU(n). Applying the
Gram-Schmidt process to the frame, we obtain a section σ̃ ∶X → Vn, satisfying π ○ σ̃ = f .

Therefore, defining σ ∶ X → f∗Wn = {(x, (v)) ∈ X × Vn ∶ f(x) = π(v)} by σ(x) = (x, σ̃(x)) there
is an induced section on the principal bundle f∗Vn, which implies that it is trivial. Finally, using
2.6, we can conclude that E ≅ f∗Vn ×GLn Cn ≅X ×Cn, which is the result.

Given a vector bundle π ∶ E →X of rank n, a subbundle is a subspace S ⊂ E such that:

• S intersects every fibre of E and the intersection is a vector subspace;

• the restriction π∣S ∶ S →X is a vector bundle of rank k ≤ n.

A consequence of Corollary 2.17 is that a global k-frame exists in a bundle of rank n ≥ k if and
only if there is a trivial rank k subbundle.

7The isomorphism f∗Vn ×U(n)Cn ≅ f∗(Vn ×U(n)Cn) is generally true of associated bundles, and can be checked by
observing that the transition functions agree.

8Note that EU(n) denotes the associated fibre bundle, which has elements in a fibre over a plane being vectors
contained in the plane. It is not the universal U(n) bundle
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2.3.1 Operations on Vector Bundles

We can think of a vector bundle as a family of vector spaces continuously parametrised by the
base space, suggesting that vector space operations, such as direct sum and tensor product, can be
carried over to vector bundles. We turn now to these definitions.

Definition 2.18. Given two bundles E,E′ the product space is in fact a vector bundle p × p′ ∶
E ×E′ → B ×B′. The fibre over a point (b, b′) is p -1(b) ⊕ p′ -1(b′), and a trivialising cover is given
by the products of a trivialising cover of E and E′.

Definition 2.19. Given two bundles E,E′ over the same base space, B, we can take the pullback of
the product bundle by the diagonal map ∆ ∶ B → B ×B yielding the direct sum bundle E ⊕E′ → B.

This definition agrees with what we expect of sum of bundles in that ∆∗(E ×E′) = {(b, e, e′) ∶
p(e) = p′(e′) = b}, i.e. the fibres are exactly the direct sum π -1(b) = p -1(b)⊕p′ -1(b). The direct sum
of vector bundles is, up to isomorphism, commutative E⊕E′ ≅ E′⊕E, and associative E⊕(E′⊕E′′) ≅
(E ⊕E′) ⊕E′′.

We define a tensor product of two bundles in a more direct, constructive manner.

Definition 2.20. Given two bundles E,E′ over the same base, consider the set E⊗E′ ∶= ∐b p
-1(b)⊗

p′ -1(b), which comes equipped with a surjection π ∶ E⊗E′ → B,. Choose trivialisations of E,E′ over
a common cover, {(Ui, φi)}, {(Ui, ψi)}, and define maps φi ⊗ φ′i ∶ π -1(Ui) → Ui × Cnn

′
. Declaring

these maps to be homeomorphisms defines a topology on E⊗E′. With this topology, π is continuous,
as can be checked.

One point that was glossed over in the above construction is whether the resulting bundle
depends on the chosen trivialisation. If this were the case, the tensor product would not be well-
defined on isomorphism classes, which would be a problem. However, given two trivialisations
of some vector bundle, which can be assumed to trivialise over the same cover, the composition:
ψi ○φi -1(b, v) = (v, g(b)v), is a homeomorphism. It follows that the topology on E⊗E′ is unaffected
by the choice of trivialisation.

An important observation is that the direct sum and tensor product commutes with pulling
back, i.e.

f∗(A⊕B) ≅ f∗A⊕ f∗B ;

f∗(A⊗B) ≅ f∗A⊗ f∗B ,

which can be checked directly from the definitions.
Furthermore, the tensor product is commutative, and distributes over the direct sum (up to

isomorphism). These facts will be important in the following, and can be checked by simply writing
out the definitions.

It will be of great importance later in the thesis to know that any bundle over a compact
base space, E, is a subbundle of some trivial bundle. In fact, there exists a bundle E′ such that
E ⊕ E′ ≅ Θn, for some trivial bundle of rank n, Θn. This requires a compact base space. A tool
we will use to prove this fact is a bundle metric; this concept also helps clarify the relation between
U(n) bundles and GLn bundles.

Definition 2.21. A metric bundle is a vector bundle, equipped with a continuously varying, fibrewise
hermitian metric. That is, ⟨⋅, ⋅⟩ ∶ E ⊗E → C, v⊗w ↦ ⟨v,w⟩, where ⟨⋅, ⋅⟩∣fibre is an Hermitian metric.
⟨⋅, ⋅⟩ is called a bundle metric.

Given a metric bundle with F ⊂ E a subbundle, the orthogonal complement, F ⊥ ⊂ E, is the
subspace of E consisting of the orthogonal complements of the fibres of F . The restriction of π to
F ⊥ can be checked to be locally trivial, and so F ⊥ is a vector bundle such that F ⊕ F ⊥ = E.
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We will show that every bundle E → B can be endowed with a bundle metric, provided there
exists a locally finite partition of unity subordinate to an open cover of B trivialising E. We will in
fact restrict attention to compact base spaces, but the generalisation is straightforward.

On any trivial bundle, there is a bundle metric induced by the standard metric on Cn. In the
general case, suppose {(Ui, φi)} a trivialising cover of the bundle p ∶ E → B, and {ξi} a partition of
unity subordinate to {Ui}. Define a metric on each E∣Ui , say ⟨⋅, ⋅⟩i and let ⟨⋅, ⋅⟩ ∶ E⊗E → C given by
⟨⋅, ⋅⟩ ∶= ∑i(ξi ○ p)⟨⋅, ⋅⟩i. This is hermitian, non-degenerate and positive-definite, and hence a metric.

Therefore, given any bundle E and subbundle F ⊂ E, there is a metric on E defining a subbundle
F ⊥ such that E ≅ F ⊕ F ⊥. The next step is to see that the bundle F ⊥ is independent of the
choice of metric. Indeed, given two metrics on some bundle E, ⟨⋅, ⋅⟩0,1 the convex combination
t⟨⋅, ⋅⟩0 + (1 − t)⟨⋅, ⋅⟩1 is a metric for any t ∈ [0,1], i.e. the space of bundle metrics is convex. This
combination defines a homotopy of metrics gt ∶ E ⊗ E → C such that g0 = ⟨⋅, ⋅⟩0 and g1 = ⟨⋅, ⋅⟩1.
Consider the bundle E × I → B × I, with bundle metric ⟨⋅, ⋅⟩(t) = gt(⋅, ⋅). Then, the subbundle F × I
yields an orthogonal complement F̃ ⊥, where F̃ ⊥∣0 is the complement in E with respect to the ⟨⋅, ⋅⟩0

metric, and F̃ ⊥∣1 is the complement with respect to the other given metric. Proposition 2.7 then
shows that F̃ ⊥0 and F̃ ⊥1 are isomorphic.

As a consequence, for any subbundle of a trivial bundle, E ⊂ ΘN there exists a vector bundle
E′ ≅ E⊥ such that E ⊕ E′ ≅ ΘN . The next step is to show that any vector bundle on a compact
space is in fact a subbundle of a trivial bundle, of rank say N . The key to this observation is that
a subbundle inclusion E ⊂ ΘN is equivalent to the existence of a fibrewise-linear and -injective map
g ∶ E → RN ([4], Proposition 1.4) . For, if we have an inclusion E ↪ B × RN , then such a map is
induced by projecting the inclusion onto RN . On the other hand, a fibrewise-linear and -injective g
defines the required inclusion, via (p, g), where p is the bundle projection.

So, letting p ∶ E → B a vector bundle over compact B, and {(Ui, φ̃)i}mi=1 an arbitrary, finite triv-
ialising cover of B, set φi the projection of φ̃i onto the fibre. Let ξi a partition of unity subordinate
to Ui

9 and define g ∶ E → Rnm by g(e) = (ξ1(p(e))φ1(e), . . . , ξm(p(e))φm(e)). Observe that φi(e)
need only be defined above the support of ξi, so this well defined. Direct calculation shows this to
be fibrewise-linear and injective. Therefore, we have proved:

Proposition 2.22. For any vector bundle over compact base space, E → B, there exists some vector
bundle E′ → B such that E ⊕E′ is isomorphic to a trivial bundle of some finite rank, N .

2.4 K-Group

We have seen that the set of vector bundles has two natural operations, the direct sum and the tensor
product. A key strategy in algebraic topology has been to assign invariant algebraic structures, such
as a group or ring, to a topological space. This is the key idea behind homotopy and homology
groups. Given this historical background, it seems natural to attempt to use the algebraic structure
on vector bundles to yield invariants of the base space. The existence of the classifying space
BU(n) indicates that this will yield homotopy invariants of the base space. In this section, the
natural operations on vector bundles are used to associate a ring to a compact, topological space
in a functorial manner. From now on, it is not assumed that bundles have constant rank, and let
Vect(X) the category of all vector bundles over X with this definition.

The direct sum is a commutative, associative operation on Vect(X) with identity the (unique)
rank 0-bundle. Therefore, Vect(X) is a commutative monoid.10 For such objects there exists a
group satisfying a universal property, the groupification see e.g. [15].

Indeed, let (M,+; 0) a commutative monoid; there exists an Abelian group GM , and map ι ∶
M ↪ G such that:

1. ι is a monoid morphism;

9We assume for notational simplicity that E has constant rank, say n
10Also known as an Abelian semigroup
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2. For any group G and morphism  ∶M → G, there exists a unique group morphism φ ∶ GM → G
such that  = φ ○ ι.

As is usual with objects satisfying a universal property, the group GM is only defined up to
unique isomorphism. It can be shown that such a GM exists by explicit construction:

GM ∶= {(m,n) ∈M ×M}/ ∼ , (2.8)

where
(m,n) ∼ (m′, n′) ⇐⇒ m + n′ + a =m′ + n + a , (2.9)

for some a ∈M . It can be checked that ∼ is indeed an equivalence relation. Let [m,n] denote the
equivalence class represented by (m,n).

Endow the set GM with the operation [m,n] + [m′, n′] = [m +m′, n + n′], which inherits com-
mutativity and associativity from the monoid operation. The class [m,m] acts as an identity,
because [a, b] + [m,m] = [a + m,b + m] = [a, b], and the class [n,m] is an inverse to [m,n], as
[m,n] + [n,m] = [m + n,m + n]. Therefore GM is indeed a group. The inclusion ι(m) ↦ [m,0] is a
monoid morphism satisfying the universal property. A more suggestive notion for elements of GM
is [m,n] =∶m − n, and henceforth this symbolism is used.

Now apply this formalism to the semigroup Vect(X), so that for any compact X, we have the
group11 K(X) = {E−E′ ∶ E,E′ ∈ Vect(X)}. By definition, E−E′ = F −F ′ if E⊕F ′⊕A ≅ E′⊕F ⊕A
for some vector bundle A. In particular, suppose that E = F in K(X), so that E ⊕A ≅ F ⊕A for
some vector bundle A; let A′ such that A⊕A′ ≅ ΘN , which exists by compactness of X, then adding
A′ to both sides it follows that E ⊕ ΘN ≅ F ⊕ ΘN . In that case, we say that E and F are stably
isomorphic, and we write E ≅s F . Thus, we can view K(X) as generated by stable isomorphism
classes of vector bundles and their (formal) inverses. A strength of this viewpoint is that stable
isomorphism classes satisfy the cancellation property: A⊕B ≅s A′ ⊕B implies A ≅s A′. This again
follows from the existence of B′ such that B ⊕B′ is trivial:

A⊕B ⊕B′ ⊕Θn ≅ A′ ⊕B ⊕B′ ⊕Θn

Ô⇒ A⊕Θn+N ≅ A′ ⊕Θn+N ,

so that A ≅s A′. Thus, for stable isomorphism classes [E] − [E′] = [F ] − [F ′] in K(X) implies
[E ⊕ F ′] ≅s [E′ ⊕ F ], which is conceptually simpler than (2.9). Of course, the only difference here
is notational. In future, we denote elements of K(X) simply by E −E′, meaning [E] − [E′] in an
abuse of notation.

Using a similar trick to above, we can observe that if E −E′ ∈ K(X), and E′′ is a bundle such
that E′+E′′ ≅ ΘN , then E −E′ = E −(E′+E′′)+E′′ in K(X) and E −(E′+E′′)+E′′ ≅ E +E′′−ΘN

and so E −E′ = E +E′′ −ΘN in K(X). It follows that K(X) = {E −Θn ∶ E ∈ Vect(X)}. We call
the elements of K(X) virtual bundles, and the group itself will be called the K-group of X.

Recall that any map between compact topological spaces f ∶X → Y induces a monoid morphism
f∗ ∶ Vect(Y ) → Vect(X). Composing with the canonical injection ι ∶ Vect(X) → K(X), we have
a monoid morphism Vect(Y ) → K(X), so by the universal property for the K groups, we get an
induced group morphism K(f) ∶ K(Y ) → K(X) - we usually denote this map simply by f∗. The
fact that (f ○ g)∗ = g∗ ○ f∗ and Id∗X = IdK(X) implies that K is a contravariant functor from the
category of compact, Hausdorff spaces to Abelian groups.

In fact, K(X) is a ring, as the tensor product of vector bundles induces a multiplication on
virtual bundles

(E −E′)(F − F ′) ∶= (E ⊗ F +E′ ⊗ F ′) − (E ⊗ F ′ +E′ ⊗ F ). (2.10)

11Warning: in the literature, the letter K is frequently used to denote the full sequence of functors describing the
cohomology theory that we describe in Chapter 5. K, as we describe it here, corresponds only to the degree zero
group K0.
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To check this is well-defined assume that E − E′ = F − F ′ ∈ K(X), i.e. there is some n such that
E ⊕ F ′ ⊕Θn ≅ E′ ⊕ F ⊕Θn and suppose D −D′ ∈K(X). The multiplication then gives

(D −D′)(E −E′) = (D ⊗E +D′ ⊗E′) − (D′ ⊗E +D ⊗E′)
= (D ⊗ (E + F ′ +Θn) +D′ ⊗ (E′ + F +Θn)) − (D′ ⊗ (E + F +Θn) +D ⊗ (E′ + F ′ +Θn))
=D ⊗ (F +E′ +Θn) +D′ ⊗ (F ′ +E +Θn) − (D′ ⊗ (E + F +Θn) +D ⊗ (E′ + F ′ +Θn))
=D ⊗ F +D′ ⊗ F ′ −D ⊗ F ′ −D′ ⊗ F
= (D −D′)(F − F ′) ,

implying it is indeed well-defined. This product inherits associativity and distributes over the
addition operation, so that K(X) is a ring, with unit given by [Θ1].

It can be remarked that for any x ∈K(X), multiplying with the class Θn is the same as taking
the direct sum nx = x + . . . + x, for n ∈ N. This is true for n = 0,1 and induction yields the general
case, for if it is true for n = k, then

Θk+1A = (Θk +Θ1)A
= ΘkA +A
= A + . . .A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k

+A,

so it is true for k + 1. Setting Θ−n ∶= −Θn allows us to generalise to n ∈ Z.
Finally, one can see that the morphism K(f) induced from some map f ∶ X → Y is in fact a

ring morphism. Indeed, f∗(E ⊗E′) ≅ f∗E ⊗ f∗E′ implies

f∗((E −E′)(F − F ′)) = f∗ ((E ⊗ F +E′ ⊗ F ′) − (E ⊗ F ′ +E′ ⊗ F ))
= f∗E ⊗ f∗F + f∗E′ ⊗ f∗F ′ − (f∗E ⊗ f∗F ′ + f∗E′ ⊗ f∗F )
= (f∗E − f∗E′)(f∗F − f∗F ′) .

A particularly important map to consider is an inclusion ι ∶ A ↪ X, for A ⊂ X, closed. I
call such an (A,X) a compact pair, following [10]. The inclusion induces a restriction morphism
ι∗ ∶K(X) →K(A)

E −Θn(X) ↦ E∣A −Θn(A) . (2.11)

This will be important in Chapter 5; for now, we restrict our attention to the case A = {x0}, for
some x0 ∈ X. Writing K(x0) ∶= K({x0}), observe that K(x0) = {Θn −Θm ∶ n,m ∈ Z} ≅ Z, and the
kernel of the restriction is ker ι∗ = {E −Θn ∶ n ∈ N, rank(E∣x0) = n}.

Suppose that E − Θn = E′ − Θn′ , where both E − Θn,E′ − Θn′ ∈ ker ι∗. By definition, this
means that E ⊕Θn+m ≅ E′ ⊕Θn′+m for some integer m and therefore we can identify ker ι∗ as the
set of equivalence classes of vector bundles under the equivalence relation: E ∼s E′ if and only if
E ⊕Θn ≅ E′ ⊕Θm. In this sense, we can look at this kernel as being vector bundles with all trivial
factors quotiented out, leaving only non-trivial factors. Denote the kernel by ker ι∗ =∶ K̃(X) and call
it the reduced K-group. Observe that as a kernel of a ring morphism, K̃(X) is an ideal in K(X)
and hence a commutative ring, though not usually with unit. The tensor product in K̃ behaves as
one would expect; let E − n,E′ − n′ ∈ ker(ι∗):

[E] ⊗ [E′] = (E − n)(E′ − n′)
= EE′ + nn′ −En′ − nE′

= [EE′ + nn′]
= [E ⊗E′]

It is important to note that K̃ depends on the chosen basepoint x0, being the kernel of the
inclusion x0 ↪ X. Indeed, a representative E − Θn ∈ ker(x0 ↪ X) need not be in the kernel
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ker(y0 ↪X), if x0 and y0 are in different connected components. Thus, identifying K̃(X) with the
∼s equivalence classes gives an invariant model of the reduced group, which will be helpful.

Given a basepoint preserving map, f ∶ (X,x0) → (Y, y0), the pullback K(f) maps the kernel
of y0 ↪ Y into the kernel of x0 ↪ X, so that there is a well-defined map K̃(f) = K(f)∣K̃(Y ).

Functoriality of K thereby induces functoriality of K̃ from the category of pointed compact spaces
with basepoint preserving maps.

2.5 Homotopic formulation of the K-Groups

We earlier used the machinery of principal bundles to classify vector spaces of constant rank, via
Vectn(X) = [X,BU(n)]. This will be used to find a representative for the functors K, K̃.

It turns out that it is convenient to begin looking at the reduced K-group, initially assuming
X connected. As the objects of K̃(X) can be identified as ∼s equivalence classes of vector bundles,
define functions ιn,m ∶ Vectn(X) → Vectn+m(X), for each n,m ∈ N by ιn,mE ∶= E ⊕ Θm. Observe
that ιn+m,kιn,m = ιn,m+k, and so all the maps can be obtained by repeatedly composing ιn,n+1 =∶ ιn,
giving the diagram

D ∶ Vect0(X) Vect1(X) Vect2(X) . . . Vectn(X) . . .
ι0 ι1 ι2 ιn−1 ιn

This is a directed system in the category of sets, so we can take the direct limit in the standard
way (e.g. [15] p.42) yielding colimD = ∐n V ect

n(X)/ ∼, where Ei ∼ Ej if there is some k such
that ιi,k−iEi ≅ ιj,k−jEj . This is precisely the set K̃(X), so rewriting the diagram D in terms of
the homotopy description of Vectn(X) will lead to the representative of K̃. The first step in this
program is to identify the analogues of the ιn maps.

Specifically, we look for maps n ∶ [X,BU(n)] → [X,BU(n + 1)], such that each of the squares

[X,BU(n)] [X,BU(n + 1)]

Vectn(X) Vectn+1(X)

n

ιn

(2.12)

commute.
An element in BU(n) can be identified as an n-plane in some Ck, identified with its image

under all the embeddings Ck ↪ Ck+1 ↪ . . .. This suggests the map BU(n) → BU(n + 1), P ↦
C⊕P ⊂ C⊕C∞ ≅ C∞. To see this is well-defined, observe that it is induced by the inclusions
Grn(Ck) ↪ Grn+1(Ck+1), given by P ↦ C⊕P ⊂ C⊕Ck. Indeed, we can compose these maps with
the colimit morphisms Grn+1(Ck+1) → Grn+1(C∞), yielding Grn(Ck) → BU(n + 1). Then, because
the following diagram commutes up to homotopy:

Grn(Cn) Grn(Cn+1) . . . GrnCn+k . . .

Grn+1(Cn+1) Grn+1(Cn+2) . . . Grn+1Cn+k+1 . . .

(2.13)

the universal property of the colimit BU(n) induces a map

χn ∶ BU(n) → BU(n + 1) . (2.14)

By construction, χn(P ) = C⊕P . Define n ∶= χn ○ − ∶ [X,BU(n)] → [X,BU(n + 1)]. It remains to
show that with this definition, (2.13) commutes.

Suppose f̃ ∶ X → BU(n + 1) is in the image of n, then we can write f̃ = K ⊕ f ∶= (K × f) ○∆,
where K ∶ X → BU(1) is constant and ∆ ∶ X → X × X is the diagonal map. In general, the
composition (f × g) ○ ∆ =∶ f ⊕ g, where f ∶ X → BU(n) and g ∶ X → BU(m), defines a map
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f ⊕ g ∶X → BU(n+m). Comparing with the definition for the direct sum of vector bundles implies
the isomorphism (f ⊕ g)∗EU(n +m) ≅ f∗EU(n) ⊕ g∗EU(m), and so in particular

f̃∗EU(n + 1) ≅ f∗EU(n) ⊕K∗EU(1) ≅ f∗EU(n) ⊕Θ1 , (2.15)

where it was used that the pullback of a constant map is trivial.
It follows that the square (2.12) commutes, yielding a bijective map between the colimit of the

diagram D and the colimit of the diagram

D′ ∶ . . . [X,BU(n)] [X,BU(n + 1)] . . .
n−1 n n+1

(2.16)

Observing that colimD′ = [X, colimnBU(n)] we have obtained a bijection K̃(X) ≅ [X,BU], where
BU ∶= colimnBU(n). It will later be important to know that BU is path-connected; this is inherited
from path-connectedness of BU(n), for all n.

The identification of K̃(X) with the homotopy classes of maps [X,BU] is a priori a bijection
of sets, however the fact that (f ⊕ g)∗EU(n +m) ≅ f∗EU(n) ⊕ g∗EU(m) implies that the group
operation on K̃(X) corresponds to the operation on [X,BU], (f, g) ↦ f ⊕ g. It follows that the
bijection K̃(X) is a group isomorphism.

What about the ring multiplication? For f ∶X → BU(n) and g ∶X → BU(m) define f ⊗g ∶X →
BU(nm) by (f⊗g)(x) = f(x)⊗g(x). To show that f∗EU(n)⊗g∗EU(m) ≅ (f⊗g)∗EU(nm) we can
use the universal property of pullbacks to find a morphism f∗EU(n)⊗g∗EU(m) → (f⊗g)∗EU(nm)
and then observing that this morphism is actually an isomorphism on fibres. This is sufficient to
conclude that the induced morphism is a bundle isomorphism. I omit the details.

We can conclude that the ring K̃(X) is isomorphic to [X,BU] with the described operations.
Next, we aim to express the unreduced ring K(X) in similar fashion, still assuming X is connected.
By definition, K̃(X) is the kernel of the morphism induced by the point inclusion map, so there is
a short exact sequence

0Ð→ K̃(X) Ð→K(X) Ð→K(x0) Ð→ 0 ; (2.17)

we have seen that K(x0) ≅ Z and, because this is a free Z-module, the sequence splits. Indeed, the
map π ∶ Θn(x0) −Θm(x0) ↦ Θn(X) −Θm(X) is a ring morphism that is a section of ι∗, so implies
a splitting (see e.g. [3], Proposition X.1.5). This implies K(X) ≅ K̃(X) ⊕Z, and therefore

K(X) ≅ [X,BU] ⊕Z ≅ [X,BU×Z] . (2.18)

In fact, the above shows that it is generally true that K(X) ≅ K̃(X) ⊕ Z, independent of the
connectedness of X. For disconnected spaces the definition of K implies that K(X) = ⊕iK(Xi),
where X = ∐iXi and the Xi are connected. Therefore, in general K(X) ≅ ⊕[Xi,BU×Z] =
[X,BU×Z]. Finally, the reduced group for arbitrary compact spaces is the kernel of the restriction
morphism [X,BU×Z] → [x0,BU×Z], which is precisely the set of homotopy classes of maps sending
x0 into BU×{0}. Given that BU is path-connected, this set is precisely the basepoint preserving
maps [(X,x0), (BU×Z, (y0,0)], for any y0 ∈ BU. We write this set as [X,BU×Z]0.

We have learnt that K(X) ≅ [X,BU×Z] and K̃(X) ≅ [X,BU ×Z]0, so that BU×Z represents
the functor, K. In the next chapter we will review the Morse theoretic tools that will be used to
probe the homotopy type of these spaces. Remembering that we wish to identify a cohomology
theory based on K, we will pay particular attention to loop spaces.
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Chapter 3

Morse Theory of Path Spaces

Morse theory uses real-valued, smooth functions to probe the topology of their domain. The basic
results of Morse theory concerning the relation between critical points of smooth functions and the
topology of smooth finite-dimensional manifolds are stated without proof. Assuming these results,
the main task will be to identify a smooth finite-dimensional manifold that models the path space
of a manifold. The results of finite-dimensional Morse theory can then be applied to this non-finite
case. The sweep of ideas follows that of Milnor, [8], however some alterations are made to avoid
an error in that source. In particular, in [8], p.68 a variation is introduced and assumed to be
continuous, which is not true in general. This construction can be avoided by immediately passing
to the finite-dimensional model, thereby avoiding the calculus of variations altogether.

3.1 Introductory Morse Theory

The idea of Morse theory is to probe the topology of smooth manifolds using smooth, real-valued
functions. Therefore, in the following two chapters we will work in the category of smooth manifolds
with smooth functions; unless specified otherwise, “manifold” will mean “finite-dimensional smooth
manifold” and all maps and functions will be infinitely differentiable. Denote the set of smooth
mappings M → N by C∞(M,N) and real-valued smooth functions C∞(M).

Definition 3.1. Let M,N manifolds and f ∶M → N a smooth mapping. A point x ∈M is a critical
point of f if the map f∗ ∶ TxM → Tf(x)N is not surjective. A point y ∈ N is a critical value of f if
there exists x ∈ f -1(y) such that x is a critical point. If y ∈ N is not a critical value, it is said to be
a regular value.

In particular, a point x ∈ M is a critical point of f ∈ C∞(M) if and only if the tangent map
f∗ ∶ TxM → Tf(x)R is the zero map; in local coordinates (x1, . . . , xm) this means that ∂f

∂x1
= ∂f
∂x2

=
. . . = ∂f

∂xm = 0.
Regular values are well-behaved in that the preimage of a regular value is a smooth submanifold

([11], p.21). In fact, topologically speaking, not much happens when passing regular values, however
the critical values contain topological information about the domain manifolds. We begin the study
of Morse theory listing some results which make this precise.

Definition 3.2. For f ∈ C∞(M) and x ∈ M a critical point, there is a symmetric bilinear form,
denoted f∗∗ ∶ TxM × TxM → R and called the Hessian, of f . For X,Y ∈ TxM, we can extend
to vector fields X̃, Ỹ , and then define f∗∗(X,Y ) = X(Ỹ (f)) = Y (X̃(f)). To see that the second
equality actually holds, observe that [X̃, Ỹ ]x(f) = 0, because x is a critical point. This observation
shows that f∗∗(X,Y ) is independent of the extensions of X and Y , and that it is symmetric.

In local coordinates, the Hessian has the matrix form f∗∗ = ( ∂2f
∂xi∂xj

)
ij

. Being a symmetric,

bilinear form, the Hessian has real spectrum. The nullity of a critical point is the dimension of the
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nullspace of the Hessian. Similarly, the index of the critical point is the maximal dimension of a
negative-definite subspace of TxM .

A critical point is called non-degenerate if the Hessian at that point is non-degenerate. A
function is called a Morse function if all its critical points are non-degenerate.

One can show that nondegenerate critical points are isolated. The idea is that there exist local
coordinates around a non-degenerate critical point, x0 in which the function f has the form

f(x) = f(x0) − x2
1 − x2

2 − . . . − x2
λ + x2

λ+1 + . . . + x2
n (3.1)

where λ is the index of the critical point. See [8], Lemma 2.2 for proof.
It is an important result that Morse functions are generic, in that any function can be perturbed

an arbitrarily small amount to yield a Morse function. This will not be made precise here, but the
following lemma is an important corollary.

Theorem 3.3. On any manifold M , there eixsts a smooth function f ∈ C∞(M) with no degenerate
critical points, and for which the sublevel set Ma = {x ∈M ∶ f(x) ≤ a} is compact.

The proof is in [8], Theorem 6.6 and Corollary 6.7.
The next two theorems serve to indicate the topological structure that can be inferred from a

Morse function.

Theorem 3.4. Let f ∈ C∞(M) and suppose the interval [a, b] ⊂ R is such that:

1. f -1[a, b] is compact;

2. f -1[a, b] contains no critical points;

Then Ma is diffeomorphic to M b, and in fact is a deformation retraction of M b.

Sketch of Proof. We give the idea of the proof; for more details, see [8], Theorem 3.1.
A gradient vector field, ∇f , can be defined on M using an auxiliary Riemann metric:

⟨X,∇f⟩ ∶=X(f) .

This vector field is orthogonal to the level sets f -1(c) and vanishes precisely at the critical points.
By multiplying with a properly normalised bump function, we can obtain a compactly supported
vector field that is non-vanishing on f -1[a, b]. This induces a one-parameter family of diffeomor-
phisms φt ∶M →M , which are the identity outside a neighbourhood of f -1[a, b]. The effect of the
diffeomorphisms φt (when ∇f is properly normalised) is, in essence, to pull the sublevel set Ma to
the sublevel set Ma+t; the proper choice of t provides the diffeomorphism in the theorem, and by
varying t we can find the deformation retraction.

This shows that the topology on M is, in a precise sense, constant away from the critical points
of a Morse function M , so it seems inevitable that something does happen at the critical points.
The next theorem shows that not only is this true, but we can deduce what happens based on the
index of the critical point.

Theorem 3.5. Let f ∈ C∞(M) and p ∈ M a non-degenerate critical point of index λ, f(x) = c.
Suppose there exists ε > 0 such that f -1[c − ε, c + ε] is compact, and contains no critical point other
than x. For all such ε, the set M c+ε has the homotopy type of M c−ε with a λ-cell attached.

I here indicate only why this is plausible - [8], Theorem 3.2 gives the detailed proof.

Sketch of Proof. Recalling that there are coordinates (x1, . . . , xn) in which f looks like (3.1) in
neighbourhood of the critical point, the preimage of the interval [c − ε, c + ε] looks locally like a
generalised saddle, see Figure 3.1, with λ decreasing directions. As indicated in the picture, we can
think of the λ-cell as bridging between the (c − ε)-hyperbolae, and the (c + ε)-hyperbolae retract
onto the complex in the manner indicated by the arrows.
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Figure 3.1: The blue hyperbolae represent the preimage f -1(c−ε), bounding the sublevel set depicted
by blue-fill; the red hyperbolae represent f -1(c+ε) bounding the set f -1[c+ε,∞) in red-fill; the thick
green line depicts the λ-cell attached to f -1(c − ε). The dotted red arrows illustrate the retraction
of f -1(c + ε) to f -1(c − ε)∐∂DλD

λ.

Theorem 3.5 will play an important role in what follows. The next theorem takes more of a
background role, but as it is incredibly useful, I state it here.

Theorem 3.6. If f ∈ C∞(M) is Morse, and each Ma is compact, then M has the homotopy type
of a CW -complex, with a cell of dimension λ for each critical point of index λ.

In the light of 3.3, we have the following corollary.

Corollary 3.7. Every smooth manifold has the homotopy type of a CW -complex.

The above results rely on the fact that the real-valued function is Morse, in particular that the
critical points are non-degenerate. We can actually relax the condition and still obtain meaningful
results. In particular, the next two lemmas show that if the set of minimal values form a submanifold,
and the index of all other critical points is bounded from below, then we can deduce the low-
dimensional homotopy groups of the full manifold from the critical submanifold.

Lemma 3.8 ([8] Lemma 22.4). Let K ⊂ Rn compact, and U an open neighbourhood of K. Let
f ∶ U → R smooth, such that every critical point of f has index at least λ; then for small enough
ε > 0, any g ∶ U → R satisfying

∣∂if(x) − ∂ig(x)∣ ≤ ε ∀x ∈K, i = 1, . . . , n ;

∣∂i∂jf(x) − ∂i∂jg(x)∣ ≤ ε ∀x ∈K i, j = 1, . . . , n ;

has the property that every critical point of g has index greater than or equal λ.

The proof is purely technical, and so omitted. The main application of this theorem is the
following lemma.
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Lemma 3.9 ([8] Lemma 22.5). Let M a smooth manifold, f ∶ M → R a smooth function which
attains its minimum at 0, and such that the sublevel sets f -1[0, a] are compact. If f -1(0) =∶M0 is a
topological manifold, and every critical point of f in M ∖M0 has index at least λ, then the relative
homotopy groups πi(M,M0) = 0, ∀i = 1, . . . , λ − 1.

The idea is that there exists a small perturbation of the function which is Morse in a neighbour-
hood of the minimal submanifold and, away from a smaller neighbourhood of the minimal locus,
only adds critical points of index at least λ.

Proof. We start with an arbitrary map h ∶ (Ii, ∂Ii) → (M,M0), with 0 ≤ i < λ, and want to show
that there is a homotopy within (M,M0) to a map h′ ∶ (Ii, ∂Ii) → (M0,M0).

The assumption that M0 is a compact manifold implies that it is a Euclidean neighbourhood
retract ([5], Corollary A.9) and hence, there is an open neighbourhood of M0, U ⊂ M , such that
M0 is a deformation retraction of U in M .

Now, as the hypercube Ii is compact, the set f(h(Ii)) achieves a maximum, which we denote
by c. Similarly, the sets Ma ∖ U are compact, so that f(Ma ∖ U) achieves a minimum, which (for
a big enough) is equal to the minimum of f(M ∖U), call this number 3δ.

Using Lemma 3.9 and the discussion preceding Theorem 3.3 we can deduce the existence of a
map, g ∶M c+2δ → R, such that:

1. The sublevel sets of g are compact;

2. All critical points of g are non-degenerate;

3. For all x ∈M c+2δ, ∣f(x) − g(x)∣ < δ;

4. Every critical point of g in the compact set f -1[δ, c + 2δ] has index at least λ.

In particular, g -1[2δ, c + δ] ⊂ f -1[δ, c + 2δ], and we conclude from Theorem 3.5 that g -1(−∞, c + δ]
has the homotopy type of g -1(−∞,2δ] with cells of dimension at least λ attached. Given that
h(Ii) ⊂ M c ⊂ g -1(−∞, c + δ], we can can think of h having codomain h ∶ (Ii, ∂Ii) → (g -1(−∞, c +
δ],M0) and the given cell structure indicates that h is homotopic in (g -1(−∞, c + δ],M0) to some
h′ ∶ (Ii, ∂Ii) → (g -1(−∞,2δ],M0), using that i ≤ λ0−1. Observe that g -1(−∞,2δ] ⊂ U , and therefore
composing with the retraction yields the requisite homotopy. In particular, πi(M,M0) = 0, for any
0 ≤ i < λ.

In light of the long exact sequence of homotopy groups, we can conclude that the maps induced
by the inclusion, ι∗ ∶ πi(M0) → πi(M), are isomorphisms for all 1 ≤ i ≤ λ − 2, and a surjection for
i = λ − 1.

3.2 Morse Theory on the Path Space

Next, the application of Morse theory to the study of loop spaces is presented. As these spaces are
not generally endowed with a smooth structure, we begin with an approximation of the loop space
that is amenable to Morse theory and aim to see that the approximation is valid. For a specific choice
of real-valued function, we are able to identify the critical points and find a geometric expression
for the index.

A smooth manifold M is endowed with a choice of Riemannian structure1, so that the tools
of Riemannian geometry can be exploited. For x, y ∈ M , define Ω(M ;p, q) the space of piecewise
smooth paths γ ∶ I → M such that γ(0) = p and γ(1) = q. When not likely to cause confusion, I
denote this space by ΩM , or even Ω. A path, γ is “piecewise smooth” if γ is continuous and there

1this is the real analogue of the hermitian structures considered in Chapter 2, applied to the tangent bundle. A
Riemannian structure always exists, following similar reasoning as in the complex case.
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is a finite partition of the unit interval 0 = t0 < t1 < . . . < tn = 1 such that γ∣[ti,ti+1] is smooth, for all
i = 0 . . . , n − 1.

A real-valued function can be defined E ∶ Ω(M ;p, q) → R, with the aid of the metric, g:

E(γ) = ∫
1

0
g(γ̇(t), γ̇(t))dt . (3.2)

E is called the energy functional and will be instrumental in the definition of a finite-dimensional
approximation of the path space. We shall also study its critical points and their index.

3.2.1 Path Space Topology

Given that we have a Riemannian manifold, there is an induced distance function on the manifold,
given by

Λ(p, q) = inf{L(γ) ∶ γ ∈ Ω(M ;p, q)} , (3.3)

where L(γ) = ∫ 1
0

√
g(γ̇(t), γ̇(t)dt is the length of the path. The distance function induces a metric

on Ω(M ;p, q) by
d̃(γ, γ′) = max

t∈[0,1]
Λ(γ(t), γ′(t)) . (3.4)

Following [8] we modify this metric as follows:

d(γ, γ′) = d̃(γ, γ′) +
√

∫
1

0
(γ̇(t) − γ̇′(t))2 dt ; (3.5)

it is straightforward to check that this is positive-definite, symmetric and satisfies the triangle
inequality, so is a metric. The modification ensures that the energy functional is continuous with
respect to the induced topology, as can be checked using the Minkowski inequality. Endow Ω with
the topology induced by d.

The path space commonly employed by topologists is the space of continuous paths inM between
p and q with the compact-open topology, which we denote by Ω∗(M ;p, q) (or Ω∗,Ω∗M , when no
confusion is risked). Obviously, Ω ⊂ Ω∗ as sets. Further, we know that for M a metric space, Y
compact, the space of continuous maps Y →M , MY , with the compact-open topology agrees with
the topology induced by the analogue of (3.4), (see e.g. [5], Proposition A.13). Due to the inequality
d̃ ≤ d, it can be concluded that the inclusion Ω ↪ Ω∗ is continuous. As a matter of fact, the two
spaces are homotopy equivalent:

Proposition 3.10. The inclusion ι ∶ (Ω, d) ↪ Ω∗ is a homotopy equivalence.

The proof is technical and not particularly illuminating, so is omitted, see [8], Theorem 17.1.
In particular, we have the following corollary:

Corollary 3.11. For any smooth manifold, M , with p, q ∈ M , the piecewise smooth path space,
Ω(M ;p, q), has the homotopy type of a CW-complex

Proof. In [7] it is shown that Ω∗ has the homotopy type of a CW-complex, Corollary 2. So,
Proposition 3.10 implies the result.

Proposition 3.10 is encouraging for it indicates that as far as homotopy is concerned, the space
of piecewise smooth curves is a faithful model of the ordinary path space. We now approximate Ω
by finite-dimensional subspaces endowed with a natural smooth structure, which are well-behaved
with respect to the energy functional. The procedure is motivated by the tools of Morse theory,
in particular the sublevel sets. In the following, we fix M to be a geodesically complete manifold,2

and set arbitrary p, q ∈M , with Ω to be understood as Ω(M ;p, q).
2Geodesic completeness means all geodesics can be extended indefinitely
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For c ∈ R, let Ωc ∶= E -1[0, c] and Int Ωc ∶= E -1[0, c). We assume c is chosen so that Ωc ≠ ∅ and
construct a finite-dimensional approximation to this space.

For any partition of the unit interval 0 = t0 < t1 . . . < tn = 1, set P = {t1, . . . , tn−1} and let Ω(P )
denote the space of piecewise smooth curves on M , between p and q, such that the restriction to
the subintervals [ti, ti+1] are geodesic; that is γ ∈ Ω(P ) implies γ(0) = p, γ(1) = q and γ∣[ti,ti+1] is
geodesic for all i = 0, . . . , n − 1. Set Ωc(P ) = Ωc ∩Ω(P ) and Int Ωc(P ) = Int Ωc ∩Ω(P ).

Proposition 3.12 ([8], Lemma 16.1). For M a complete Riemannian manifold, c ∈ R such that
Ωc ≠ ∅, and P a sufficiently fine partition of the unit interval, the set Int Ωc(P ) can be canonically
endowed with a smooth manifold structure.

This statement follows from some technical considerations of complete Riemannian manifolds
and so is only sketched here - more details are found in [8].

Sketch of Proof. We can define a compact set S = {x ∈M ∶ Λ(p, x) ≤ √
c}, and observe that for any

σ ∈ Ωc, σ(I) ⊂ S. By completeness, there exists ε > 0 such that, within S, any two points separated
by less than ε are joined by a unique geodesic contained within the ε-ball, which is minimal, and
depends smoothly on the endpoints. It can then be shown that for any sufficiently fine partition of
I, depending on ε and c so that for any γ ∈ Int Ωc, Λ(γ(ti), γ(ti+1)) < ε and hence the component
γ∣[ti,ti+1] is determined by its endpoints. In particular, any γ ∈ Int Ωc is determined by the (n − 1)-
tuple (γ(t1), . . . , γ(tn−1)) ∈M×(n−1). One can check that this identification is a homeomorphism to
an open subset of the product, and can hence induce a smooth structure on Int Ωc(P ).

It will be important to observe that as Int Ωc(P ) can be identified with an open subset of a
product of M , then the tangent space above any curve, ω can be canonically identified with a direct
sum of the tangent space of M , i.e. TωΩ(P ) ≅ ⊕ti∈P Tω(ti)M . On the other hand, we can observe
that for any a < c, the subset Ωa(P ) ⊂ Int Ωc(P ) is compact. For this, it is sufficient to observe that

Ωa(P ) is diffeomorphic to the (n − 1)-tuples (x1, . . . , xn−1) ∈ S×(n−1) such that ∑n−1
i=0

Λ(xi,xi+1)2
ti−ti+1 ≤ a.

Recalling that S is compact, it follows that Ωa(P ) is compact.
The next theorem will show that for sufficiently fine partitions, the space Int Ωc(P ) is homotopy

equivalent to the space Int Ωc, and we can therefore probe the homotopy of Int Ωc by applying Morse
theory to the smooth manifold Int Ωc(P ).

Theorem 3.13. There is a deformation retraction of the space Int Ωc to Int Ωc(P ), with the property
that the restriction to Ωa, for a < c, is a retraction to Ωa(P ).

Proof. The construction is taken from the proof of Theorem 16.2 in [8]. For convenience, set
L ∶= Int Ωc(P ), and La ∶= Ωa(P ) for arbitrary a < c.

We can define r1 ∶ Int Ωc → L, given by r1(γ)∣[ti,ti+1]= the unique geodesic between γ(ti) and
γ(ti+1). (One can check that this is indeed well-defined, using the explicit definition of the partition
P , which I have omitted (see [8])); as L ⊂ Int Ωc, the map r1 induces r1 ∶ Int Ωc → Int Ωc. Define a
homotopy r ∶ Int Ωc × I → Int Ωc by:

r(γ, s)(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

r1(γ)(t) t ∈ [0, ti]
µ(t) t ∈ [ti, s]
γ(t) t ∈ [s,1]

whenever s ∈ [ti, ti+1] ; (3.6)

here µ ∶ [ti, s] →M is the unique minimal geodesic between γ(ti) and γ(s). It can be observed that
E(r(γ, s)) ≤ E(γ) < c and that r(γ, s) is piecewise smooth for all s, so the map is well-defined. It
can be checked that r is continuous, and because r(⋅,0) = Id and r(⋅,1) = r1, this is a homotopy
between r0 = Id and the map r1, such that r∣L = IdL. Hence, this describes the required deformation
retraction.

The inequality E(r(γ, s)) ≤ E(γ) implies that r restricts to a retraction Ωa → La, for all
a < c.
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The energy functional on the path space induces a function Int Ωc(P ) → R, which by a mild abuse
of notation is also labelled E. Observe that this function is smooth because the distance between
two points smoothly depends on the points. Indeed E(ω) = ∑ni=1

Λ(ωi−1,ωi)2
ti−ti−1 , for any ω ∈ Int Ωc(P ),

where ωi ∶= ω(ti) and distance smoothly depends on the endpoints. Therefore, given any fine enough
partition, P , the differential, critical points and Hessian can be calculated.

Proposition 3.14. Let E ∶ Int Ωc(P ) → R the energy function. Its differential at the path ω is
given by

E∗(X) = −2
n

∑
i=1

g(Xi,∆iV ) , (3.7)

where V (t) = ω̇(t) and ∆iV = limt→t+i V (t) − limt→t−i V (t) =∶ V +
i − V −

i , and we use the decomposition
TωΩc(P ) ≅ Tω1M ⊕ . . .⊕ Tωn−1M to write X = (X1, . . . ,Xn−1).

Proof. By linearity, it suffices to consider tangent vectors of the form X = (0, . . . ,0,Xi,0 . . . ,0),
which shall be denoted by Xi.

To compute E∗(Xi), we need to compute the variation of the energy when we infinitesimally
shift the point ωi in the direction of Xi, i.e.

E∗(Xi) =
d

ds
(Λ(ωi−1, ωi(s))2

ti − ti−1
+ Λ(ωi(s), ωi+1)2

ti+1 − ti
)
s=0

(3.8)

Let Ṽi−1 ∈ Tωi−1M such that expωi−1 (
t−ti−1
ti−ti−1 Ṽi−1) = ω(t), for all t ∈ [ti−1, ti]. By taking the derivative

at t = ti−1 we can conclude that Ṽi−1 = (ti − ti−1)V +
i−1. Define X̃ = (expωi−1,∗)

−1
Ṽi−1

(Xi) ∈ TṼi−1Tωi−1M
and observe that

γs(t) = expωi−1 (
t − ti−1

ti − ti−1
(Ṽi−1 + sX̃)) , t ∈ [ti−1, ti] (3.9)

forms a family of geodesics starting at ωi−1 such that γ0(t) = ω(t) and ∂sγs(ti)∣s=0 =Xi. Therefore,
the first term of (3.8) can be computed:

d

ds
(Λ(ωi−1, ωi(s))2

ti − ti−1
)
s=0

= (ti − ti−1)
d

ds
g ( Ṽi−1 + sX̃

ti − ti−1
,
Ṽi−1 + sX̃
ti − ti−1

)
s=0

= 2

(ti − ti−1)
g(Ṽi−1, X̃)

= 2

(ti − ti−1)
g((expωi−1,∗)Ṽi−1 Ṽi−1,X) = 2g(V −

i ,X) .

The last line used that g((exp∗)V V, (exp∗)VX = g(V,X) (see e.g. [6], Corollary 5.2.3), and the
definition of Ṽi−1.

Performing a similar calculation for the second term of (3.8) yields

d

ds
(Λ(ωi(s), ωi+1)2

ti+1 − ti
)
s=0

= −2g(V +
i ,X) , (3.10)

where the minus sign comes from the fact that the geodesics we introduce get traced in the opposite
direction to ω.

Therefore, E∗(Xi) = −2g(Xi, V
+
i − V −

i ) = −2g(X,∆iV ).

Corollary 3.15. The critical points of the energy functional are the geodesics.

Proof. Suppose ω is such that E∗ = 0. By Proposition 3.14, this means

∑
i

g(Xi,∆iV ) = 0 (3.11)

for all X. By choosing vectors of the form Xi, as above, we find that g(∆iV, ⋅) = 0 for all i. Non-
degenaracy of g implies that ∆iV = 0 for all i, i.e. the tangent vector to ω is continuous, so by local
uniqueness of geodesics, we can conclude that ω is everywhere a geodesic.
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It will be convenient to observe that the tangent space to Int Ωc(P ) over a geodesic can be
identified with the space of Jacobi fields over the curve. Under this identificiation, the vector
(X1, . . . ,Xn−1) maps to the unique vector field over the curve, J such that J(p) = 0, J(ω1) =
X1, . . . , J(ωn−1) =Xn−1, J(q) = 0 and J([ti, ti+1]) is Jacobi.3 This is natural from the point of view
that the tangent space at a point can be considered as the space of derivatives of curves at that
point. In the smooth manifold Int Ωc(P ) a curve is specified by a tuple (ω1(s), ω2(s), . . . , ωn−1(s)),
corresponding in the path space to a map α(t, s) such that α(ti, s) = ωi(s) and α([ti, ti+1], s) is a
geodesic segment. It is known that the derivative ∂sα(t)s=0 is indeed Jacobi (see Proposition A.7).

We now look at the Hessian of the energy functional over a geodesic.

Proposition 3.16. Let γ ∈ Ωc a geodesic. The Hessian E∗∗ ∶ Tγ Int Ωc(P ) ⊗ Tγ Int Ωc(P ) → R is
given by:

E∗∗(X,Y ) = −2∑
i∈P

g(∆iDtX,Y ) , (3.12)

where we identify the vector X with its Jacobi field, and ∆iDtX = limt→t+i DtX(t) − limt→t−i DtX(t)
is the discontinuity in its derivative.

Proof. By definition E∗∗(X,Y ) = X(Y (E))γ , where we extend Y to a vector field in a neighbour-
hood of γ. We have seen that this is in fact symmetric, and independent of the choice of vector field
extension. Using the same notation as for the calculation of the differential, it suffices to evaluate
E∗∗(Xi, Yj), by bilinearity.

The manifold structure of Int Ωc(P ) means we can identify a neighbourhood of γ with a product
of open neighbourhoods of each γi, ∏i∈P Ui. A neighbourhood of γj can be identified with its tangent
space TγjM using the exponential, so we can use this to define an extension of Yj :

Yj(Z) = Z + Yj . (3.13)

More precisely, we have Yj(x) = (expγi,∗)(exp−1γi (x))
(Yj) whenever x ∈ Uj .

With this extension, the expression for the differential obtained in Proposition 3.14 yields
Xi(Yj(E)) = −2Xi (∑k g(Yj +Z, (∆Z)kV )∣Z=0), where (∆Z)kV is the discontinuity in the veloc-
ity of the piecewise-geodesic path from γk−1 to expγk(Z) and from expγk(Z) to γk+1. Observe that
for k ≠ j − 1, j, j + 1, we must have (∆Z)kV = 0, and so we can conclude that Xi(Yj(E)) = 0 unless
i ∈ {j − 1, j, j + 1}. We can evaluate:

Xig(Yj +Z,∆ZV )∣Z=0 = g(DXi(Yj +Z),∆0V ) + g(Yj ,DXi∆ZV )Z=0

= g(Yj ,DXiV
+
Z −DXiV

−
Z ) ,

where it was used that ∆0V = 0. Therefore, the main calculation remaining is DXiV
+
Z −DXiV

−
Z .

Case 1: i = j
As i = j, I will drop the subscripts on Xi, Yi.
Using similar calculations as in the computation of the differential (here, I have suppressed the

correct normalising factors), we have

DXV
−
Z =DX∂t expγi−1(t(V + Z̃))t=ti
=DtX(expγi−1(t(V + Z̃)))t=ti
=Dt

d

ds
expγi−1(t(V + sX̃))∣s=0,t=ti

=Dt(expγi−1,∗)tV (tX̃)t=ti .

Here, Z̃ = (expγi−1,∗)
−1
V (Z) and similar for X̃. It can be checked that (up to the normalisation factors

I omitted) J = (expγi−1,∗)tV (tX̃) is precisely the Jacobi field over γ([ti−1, ti]) such that J(γi−1) = 0
and J(γi) =Xi (see e.g. [6], Corollary 5.2.2).

3This specifies the field uniquely, because the Jacobi field over any geodesic between non-conjugate points is
uniquely determined by its endpoints, see Proposition A.9.
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Repeating the calculation over the interval [ti, ti+1] yieldsDXV
+

0 =DtX
+
i . Putting these together

yields the result.
Case 2: i = j ± 1
I will focus on i = j − 1, the j + 1 case is essentially the same. As in case 1, the remaining

calculation is DXj−1V
+
Z −DXj−1V

−
Z . This case is actually simpler, as only DXV

−
Z is non-zero. Indeed,

DXj−1V
+
Z =Dt

d

ds
expγi(tVi)∣s=0,t=ti = 0.

On the other hand

DXV
−
Z =Dt

d

ds
expγi−1(s)(tṼi−1(s)) . (3.14)

We can recognise the curve as varying the starting point of a geodesic, whilst keeping the end point
fixed. To calculate this we view it from the other end, i.e. with fixed start point, and varying
endpoint. From this viewpoint the calculation is essentially a repetition of DXV

+
Z in Case 1, so we

conclude:
Xj−1g(Yj +Z,∆ZV )∣Z=0 = g(Yj ,∆jDtX)

It should be emphasised that, although the expression g(X,∆iDtY ) does not look symmet-
ric in X and Y , it in fact is by symmetry of E∗∗. Hence, E∗∗(X,Y ) = −2∑i g(X,∆iDtY ) =
−2∑i g(∆iDtX,Y ).

Corollary 3.17. The nullspace of E∗∗ at γ can be identified with the Jacobi fields over γ.

Proof. The proof is very similar to that of Corollary 3.15.
Suppose that X ∈ Null(E∗∗) so that E∗∗(X, ⋅) = 0. By Proposition 3.16 it can be deduced that

g(∆iDtX, ⋅) = 0 (3.15)

and therefore ∆iDtX = 0, i.e. DtX is continuous. A Jacobi field is uniquely specified by its inital
value and initial derivative, so continuity of DtX implies that the Jacobi segments of X piece
together to a Jacobi field over γ.

Before calculating the index of a geodesic, we will want to be sure that it does not depend on
the particular partition chosen. A key ingredient in this will be the following.

Proposition 3.18. E∗∗ is positive semi-definite over minimal geodesics.

Proof. The key idea is that for a minimal geodesic L(γ)2 = E(γ), and therefore, for any other
piecewise-geodesic curve ω:

E(γ) = L(γ)2 ≤ L(ω)2 ≤ E(ω) , (3.16)

which implies that E is minimized on minimal geodesics. From standard calculus, we can conclude
that E∗∗ is positive-semi definite.

Proposition 3.19. Let P,P ′ any two partitions of the unit interval, which are sufficiently fine for
Proposition 3.12 to hold. Then the index of a geodesic with respect to the energy functional is the
same for Int Ωc(P ) and Int Ωc(P ′).

Proof. Firstly, observe that a geodesic, γ, is in Ω(P ) for any partition P , so the proposition makes
sense. For convenience, let λ(P ) denote the index of γ, with respect to E, in the space Int Ωc(P ). It
will be shown that adding a point to the partition P conserves the index, implying that λ(P ) = λ(P̄ )
for all refinements P̄ . This suffices for the general result, since applied to the common refinement
P ∪ P ′ it yields λ(P ) = λ(P ∪ P ′) = λ(P ′).
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Let τ ∈ (0,1) ∖ P , and set P ′ = P ∪ {τ}. For concreteness, let ti < τ < ti+1. There is a canonical
splitting TγΩ(P ′) = TγΩ(P ) ⊕ Tγ(τ)M , where we identify TγΩ(P ) as piecewise-Jacobi fields that
are smooth away from P , and Tγ(τ)M can be identified with the piecewise Jacobi fields that are
zero away from γ(ti, ti+1). This splitting is orthogonal with respect to the bilinear form E∗∗, due
to the explicit formula of the Hessian, (3.12). If it can be shown that E∗∗ is positive-definite when
restricted to this subspace, then the result follows. By definition, γ([ti, ti+1]) is minimal, so the
result follows from Proposition 3.18.

Corollary 3.20. Let γ a geodesic such that E(γ) < c. For any c′ ∈ R such that c′ ≥ c, the index of
γ in Ωc is equal to the index of γ in Ωc′.

Proof. By Proposition 3.19 the index is independent of the partition, so choose a partition, P which
is sufficiently fine to endow a smooth manifold structure on Int Ωc′(P ). As Int Ωc(P ) ⊂ Int Ωc′(P )
is an open subset, the result follows.

We can now compute the index of a geodesic.

Theorem 3.21 (Index Theorem). The index of a geodesic, γ, with respect to the energy functional
has index, λ, equal to the number of points γ(t0), t0 ∈ (0,1), such that γ(t0) is conjugate to γ(0),
counted with multiplicity.

Recall that two points, t0 ≠ t1 are called conjugate if there exists a non-zero Jacobi field, J , over
γ such that J(t0) = 0 = J(t1). The multiplicity of the conjugate pair is the dimension of the space
of such Jacobi fields.

Proof. It is useful in this proof to identify the tangent space at γ with the piecewise-Jacobi fields
over γ. Fix c ∈ R such that E(γ) < c, so we can focus on Ωc(P ).

Let τ ∈ [0,1], and define γτ ∶= γ∣[0,τ]. As γτ is a geodesic between γ(0) and γ(τ) it is a geodesic
in Ω(M ;γ(0), γ(τ)) and hence a critical point of the energy functional Eτ = ∫ τ0 g(γ̇, γ̇)dt < c. Let
λ(τ) denote the index of γτ . It is possible to choose the partition, P , so that ti < τ < ti+1, set
Pτ = {0, t1, . . . , ti, τ} define TΩτ(Pτ) similarly to TγΩ(P ).

The first thing to observe is that λ is monotone increasing: λ(τ) ≤ λ(τ ′) whenever τ < τ ′.
Indeed, suppose that Vτ ⊂ TΩc

τ(Pτ) is a negative definite subspace such that dimVτ = λ(τ). Let Vτ ′

be the vector fields on γτ ′ such that X ∈ Vτ ′ implies X ∣[0,τ] ∈ Vτ and X[τ,τ ′] = 0. Observe that X ∈ Vτ
means Xτ = 0, so the vector field is continuous. As dimVτ ′ = dimVτ and Eτ

′
∗∗ is negative-definite on

Vτ ′ , λ(τ) ≤ λ(τ ′).
Next, observe that λ is continuous from the left, i.e λ(τ − δ) = λ(τ) for sufficiently small δ > 0.

To see this, suppose i is such that ti < τ < ti+1, and Pτ as above. Then, we can use the canonical
isomorphism TΩc

τ(Pτ) ≅ ⊕i
j=1 Tγ(tj)M =∶ Σi. By construction, Eτ∗∗ continuously depends on τ so

E∗∗ ∶ (ti, ti+1] × Σi × Σi → R is continuous. Therefore, if Vτ is a negative-definite subspace of Σi,
with respect to Eτ∗∗, then so too is it a negative definite subspace of Σi for Et∗∗ with t in a small
neighbourhood of τ , N ⊂ (ti, ti+1]. It follows that λ(τ ′) ≥ λ(τ) for all τ ′ ∈ N . But, monotonicity
implies λ(τ − δ) = λ(τ) for small enough δ.

Thirdly, suppose that Eτ∗∗ has nullity n. Then for small enough δ > 0 it is claimed that λ(τ +δ) =
λ(τ) + n. Indeed, the inequality λ(τ + δ) ≤ λ(τ) + n can be seen by similar reasoning to the above.
Indeed, using the same notation, we have dim Σi = idimM = im, and so Σi has a subspace, say
Π, which is positive-definite with respect to Lτ and of dimension im − λ(τ) − n. Again, Π must be
positive-definite with respect to Lτ ′ for τ ′ in a small neighbourhood of τ ; thus, λ(τ ′) ≤ λ(τ) + n.

It remains only to show the inequality λ(τ + δ) ≥ λ(τ) + n. This is the most technical part of
the proof.

Let V ⊂ TΩτ(Pτ) a negative-definite subspace, with basis of vector fields vj , j = 1, . . . , λ(τ).
These can be extended by zero, to yield a negative-definite subspace Ṽ ⊂ TΩ(Pτ+δ); we call the
extended vector fields by the same name.
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Now, we know that the nullspace of Eτ∗∗ corresponds to a vector space of Jacobi fields over
γτ , vanishing at the endpoints, say with a basis J1, . . . , Jn. It is claimed that the vector fields
DtJi(τ) form a linearly independent set. Indeed, if αi is such that ∑i αiDtJi(τ) = 0, the Jacobi
field J = ∑i αiJi satisfies

J(τ) = 0 , (3.17)

DtJ(τ) = 0 . (3.18)

This specifies a Jacobi field going backwards along γ, i.e. a Jacobi field along the curve γ̄τ(t) =
γτ(τ − t), which is equivalent to a Jacobi field along γ. But a Jacobi field is uniquely specified by
its initial points (final, in this case), which implies that J = 0. However, by construction the Ji are
linearly independent and so J = ∑αiJi = 0 only if αi = 0, for all i = 1, . . . , n.

Of course, given any linearly independent set in an inner product space, D1, . . . ,Dk, there exists
a linearly independent X1, . . . ,Xk such that g(Di,Xj) = δij , so applying this to {DtJi(τ)} gives us
a specific linearly independent set in Tγ(τ)M , X̃1, . . . , X̃n such that g(DtJi, X̃j) = δij . Then we can
choose n piecewise Jacobi fields on γτ+δ, X1, . . . ,Xn ∈ TΩτ(Pτ+δ), satisfying:

1. Xi(τ) =Xi ;

2. Xi(τ + δ) = 0 ;

3. Each Xi is smooth except possibly at τ .

Extend the Jacobi fields Ji by zero to γτ+δ, implying that ∆τJi = −DtJi. Directly applying the
formula for the Hessian (3.12) yields:

Eτ+δ∗∗ (Ji, vj) = 0

Eτ+δ∗∗ (Ji,Xj) = 2δij .

Therefore, consider the space spanned by v1, . . . , vλ(τ), Y1 = c -1 J1−cX1, . . . , Yn = c -1 Jn−cXn. With

this basis, Eτ+δ∗∗ has the matrix:

Eτ+δ∗∗ = ( (Eτ+δ∗∗ (vi, vj))i,j c(Eτ+δ∗∗ (vi,Xj))i,j
c(Eτ+δ∗∗ (Xi, vj))i,j −4I + c2(Eτ+δ∗∗ (Xi,Xj))i,j

) . (3.19)

Therefore, choosing c small enough ensures that this matrix is negative-definite, so in particular
λ(τ + δ) ≥ λ(τ) + n.

Finally, we observe that for τ sufficiently small, λ(τ) = 0. Indeed, if τ ∈ [0, t1] then γτ is a
minimal geodesic and hence Proposition 3.18 implies λ(τ) = 0.

Therefore the index can be deduced by counting, with multiplicity, points conjugate to 0 and
this completes the proof of the index theorem.

We now have a convenient geometric expression for the index of the energy functional. Its key
application will be in the following theorem, which is essentially a corollary of Lemma 3.9 and
Proposition 3.10.

Theorem 3.22 (Minimal Geodesic Index, [8], Theorem 22.1). Let M a complete Riemannian man-
ifold, p and q distinct points such that the space of minimal geodesics between them is a topological
manifold and every non-minimal geodesic has index greater than or equal to some λ0, then the rela-
tive homotopy groups πi(Ωmin,Ω) are zero, for all 0 ≤ i < λ0. In particular, the inclusion Ωmin ↪ Ω
induces an isomorphism on the i-th homotopy groups, for all 0 ≤ i < λ0.

Proof of Theorem 3.22. Let
√
l = Λ(p, q), so that Ωl is the manifold of minimal geodesics. For

arbitrary c ∈ R, we know that Int Ωc has a smooth manifold Int Ωc(P ) as a deformation retract, so
that the relative homotopy groups are isomorphic, πi(Int Ωc,Ωl) ≅ πi(Int Ωc(P ),Ωl). If we can show
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that the latter group is trivial for arbitrary c > l, then we are done. We have E′ ∶ Int Ωc(P ) → R
a smooth function almost satisfying the hypotheses of Lemma 3.9, with the problem being that
E(Int Ωc(P )) ⊂ [l, c), as opposed to [0,∞). Being as that these intervals are diffeomorphic this
poses no challenge, and so Lemma 3.9 completes the proof.
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Chapter 4

Bott Periodicity

In this chapter the Morse theoretic technology developed in Chapter 3 is used to calculate the ho-
motopy type of the stable unitary group U = colimU(n) and its classifying space BU. In particular,
it will be shown that the homotopy groups of U have periodicity two, i.e. πi(U) ≅ πi+2(U) for all
i ≥ 0, and similarly, the space BU×Z has periodicity two. The key to the calculation is to realise
that the space of minimal geodesics in U(n), between the identity and its negative, is a smooth
manifold. Therefore we can use Theorems 3.21 and 3.22 to calculate the low-dimensional homotopy
groups of ΩU(n) in terms of the corresponding homotopy groups of the minimal geodesic manifold.
This chapter largely follows the ideas from [8], section 23; where material is from elsewhere, the
source has been indicated.

To begin with, we focus on U(n) for arbitrary n, and look at the piecewise smooth path-
space from the identity to its negative, Ω(U(n); I,−I). The first step is to exhibit a left- and
right-invariant Riemannian metric, which will yield several tools to explore the space of minimal
geodesics with respect to this metric. It suffices to give an inner product on the tangent at the
identity, which we can then extend to a metric on the whole space using the parallellization induced
by left-invariant vector fields. This will automatically be left-invariant, so it will only remain to
check right-invariance.

The tangent space at the identity, TIU(n) is the algebra of n × n antihermitian matrices with
the anticommutator as Lie bracket. For arbitrary X,Y ∈ TIU(n) we can define 1

⟨X,Y ⟩ ∶= Tr(AB†) (4.1)

which is bilinear, positive-definite and symmetric so defines an inner product. We need to check the
induced Riemannian metric is right invariant, which is done using the adjoint action of the group
on its Lie algebra.

Any Lie group acts on its Lie algebra via AdS ∶ g→ g, AdSX = (LSRS -1)∗X, for arbitrary S ∈ G,
LS ,RS are the left (resp. right) action of G on itself and g is the algebra of left invariant vector
fields, which we identify with the tangent space at the identity. As U(n) is a matrix group, we can
use the matrix exponential and deduce

AdSX = d

dt
(LSRS -1 exp(tX))∣t=0 = SXS -1 (4.2)

so in particular, AdSX = SXS -1 for any X ∈ g, S ∈ G.
We can see that the inner product 4.1 is invariant under the adjoint action:

⟨AdSX,AdSY ⟩ = Tr(SXS -1 SY †S -1) = ⟨X,Y ⟩ . (4.3)

Given that the Riemannian metric is left-invariant, it can be concluded that the hermitian metric
is right-invariant:

⟨RS∗X,RS∗Y ⟩ = ⟨LS -1 ∗RS∗X,LS -1 ∗RS∗Y ⟩ = ⟨AdS -1X,AdS -1Y ⟩ = ⟨X,Y ⟩ . (4.4)

1the dagger indicates Hermitian conjugation
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In Theorem A.10, it is observed that the geodesics beginning at the identity are precisely the one-
parameter subgroups. For matrix groups such as U(n) the one-parameter subgroups are given by
the matrix exponential applied to the tangent space at the identity, so that the matrix exponential
coincides with the geodesic exponential.

Therefore, the geodesics starting at the identity of U(n), equipped with the metric induced by
(4.1), are given by γ(t) = exp(tX), for any n × n, antihermitian matrix, X, where

exp(tX) =
∞
∑
k=0

(tX)k
k!

. (4.5)

Elementary linear algebra can tell us that antihermitian matrices are diagonalisable by the adjoint
action of some unitary matrix; closure of the algebra under the adjoint action means the diagonal
entries must be purely imaginary.

In particular, for X ∈ TIU(n) such that expX = −I we can use that, for all T ∈ U(n),

exp(AdTX) = T (expX)T -1 = −I,

so that we can find all the geodesics between I and −I by conjugating certain diagonal matrices.
In particular, if X ∈ TIU(n) is diagonal,

X =
⎛
⎜⎜⎜
⎝

ix1

ix2

⋱
ixn

⎞
⎟⎟⎟
⎠

(4.6)

satisfying
expX = −I . (4.7)

we conclude that exp(ixj) = −1, for all j = 1, . . . , n meaning xj = pjπ, for pj an odd integer.
The length of the geodesic described by X, γX , is given by

L(γX) =
1

∫
0

√
⟨dγX(t)

dt ,
dγX(t)
dt ⟩dt =

√
⟨X,X⟩ (4.8)

by definition of the geodesic. It follows that L(γX) = π
√
∑p2

i , and so the minimal geodesics
correspond to matrices with eigenvalues ±iπ. A matrix X (corresponding to a minimal geodesic, but
not necessarily diagonalised) can be identified with a linear operator Cn → Cn, which is uniquely
specified by its eigenbasis and eigenvalues. Therefore, a minimal geodesic between I and −I is
specified by the space of eigenvectors with eigenvalue iπ (or, equally good, with eigenvalue −iπ)
and this gives an identification between the space of minimal geodesics and the space of k-planes
in Cn, for all k = 0, . . . , n, Ωmin = ∐n

k=0Grk(Cn). Note that the topology of Ωmin as a subspace of
Int Ωa (for any a > π√n) coincides with the topology induced by the tangent space, which follows
from the definition of the topology on Int Ωa and the fact that exp is a local diffeomorphism.

In particular, we can apply the minimal geodesic theorem, Theorem 3.22 to this situation. In
this case, however, the minimal geodesic manifold has many disconnected components with varying
dimensions, which makes for technical difficulties. We can obviate these challenges by restricting
attention to SU(2n), which singles out a single connected component.

Indeed, taking even dimension guarantees that −I ∈ SU(2n), and the Lie algebra is now the
space of antihermitian, traceless 2n×2n matrices. All the above arguments go through, except that
the traceless condition implies that X ∈ TISU(2n) corresponds to a minimal geodesic only if its
eigenvalues are ±iπ and that they sum to zero, in particular dim Eigen(iπ) = dim Eigen(−iπ). As a
result, the space of minimal paths corresponds to Grn(C2n).
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Therefore, the minimal geodesic index theorem, Theorem 3.22, allows us to calculate the lower
dimensional homotopy groups of ΩU(n) from those of Grn(C2n), with the meaning of “lower di-
mensional” dictated by the index of non-minimal geodesics. Thus, the next step is to calculate a
lower bound on the index of any non-minimal geodesic from I to −I in SU(2n). For this, we need
some machinery.

LetKV ∶ TpM → TpM be the linear operator defined byKV (W ) = R(V,W )V , whereR(X,Y )Z ∶=
[DX ,DY ]Z −D[X,Y ]Z and V,W ∈ TpM . Using Theorem A.11, we have that KVW = 1

4[[V,W ], V ],
and KV is adjoint with respect to the Riemannian structure, due to Theorem A.5.

Theorem 4.1 ([8], Theorem 20.5). Let γ ∈ Ω(G; e, q) a geodesic in a Lie group. The points conjugate
to p along the geodesic γ occur at the values t = πk/√ei, for k > 0 integer, ei a positive eigenvalue
of Kγ̇(0). The multiplicity of the conjugate point is the sum of the multiplicities of the eigenvalues
ei such that t is some multiple of π/√ei.

In light of the index theorem, Theorem 3.21, this gives a very explicit method of calculating
the index of non-minimal geodesics. It should be noted that this theorem holds more generally for
“locally symmetric” spaces, but the result as stated here is sufficient for the needs of this thesis.

Proof. Self-adjointness of the operator KV ∶ TeG → TeG implies that there is an orthonormal
eigenbasis, say X1 . . .Xk, KVXi = eiXi. Extend to vector fields along γ by parallel transport, i.e.
left-translation: Xi,g = Lg∗Xi. It can be checked that the Riemannian curvature is left-invariant,so
that

(KVX)g = R(Vg,Xg)Vg = Lg∗R(Ve,Xe)Ve , (4.9)

and therefore, on the eigenvector fields:

(KVXi)g = eiXi,g . (4.10)

In particular, the fields {Xi} form an orthonormal frame of γ, so any vector field over γ, say Y , can
be expanded

Yt =
k

∑
i=1

αi(t)Xi,t . (4.11)

Such a vector field is Jacobi if it satisfies D2
t Y +R(V,Y )V = 0 or, in terms of the coefficients:

α̈i + eiαi = 0 , (4.12)

for all i = 1, . . . , k. Imposing the initial condition that the field vanishes at t = 0, implies the solutions
are of the form:

αi(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

A sin(√eit) if ei > 0

A sinh(
√

∣ei∣t) if ei < 0
At if ei = 0

. (4.13)

Now, γ(t′) is a conjugate point to p if and only if αi(t′) = 0, for all i = 1, . . . , k. Therefore, the
space of Jacobi fields, vanishing at γ(0) and γ(t′) is spanned by the vector fields αiXi, where αi
as above and αi(t′) = 0. Thus conjugate points arise from positive eigenvalues ei, and αi(t′) = 0
implies t′ = nπ√

ei
. Imposing that t ∈ (0,1), gives the result.

Proposition 4.2. The index of a non-minimal geodesic γ ∈ Ω(SU(2n); I,−I) is at least 2(n + 1).

Proof. This is essentially an application of Theorem 4.1.
Using that SU(2n) is a matrix group, the operator KV ∶ TISU(n) → TISU(n), can be expressed

KXY = 1
4[[X,Y ]X], (see Theorem A.11) and the eigenvalues of the right-hand side can be computed

directly. It can be assumed that X is diagonal, as the adjoint action, being induced by a group
action, is a Lie algebra isomorphism,

AdS[X,Y ] = [AdSX,AdSY ] .
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It therefore preserves eigenvalues and induces an isomorphism of the eigenbasis of the operator
[X, [X, ⋅]]. Indeed, let X ′ = AdSX be diagonal and suppose Y ′ is an eigenvector of [X ′, ⋅] with
eigenvalue α implying

αY ′ = [X ′, [X ′, Y ′]]
= AdS[X, [X,AdS -1Y ′]]

Ô⇒ αAdS -1Y ′ = [X, [X,AdS -1Y ′]] .

Thus, assume X is diagonal with entries iπp1 ≥ iπp2 ≥ . . . ≥ iπp2n, and let Y = (yij) ∈ TISU(2n).
Then,

[X,Y ]jl =
2n

∑
k=1

iπpjδjkykl −
2n

∑
k=1

yjkiπpkδkl

= iπ(pj − pl)yjl

and repeating the calculation gives

(KXY )jl = −1
4[X, [X,Y ]] = π

2

4
(pj − pl)2yjl (4.14)

The following constitutes an eigenbasis:

• For any j < l the matrix Ejl which has a +1 in the jl-th entry, −1 in the lj-th entry and zeros

everywhere else; Ejl has eigenvalue π2

4 (pj − pl)2;

• For any j < l the matrix Ẽjl which has +i in the jl-th and lj-th entry, zeros elsewhere; Ẽjl

has eigenvalue π2

4 (pj − pl)2;

• Any diagonal matrix in TISU(2n) is an eigenvector with eigenvalue 0.

Thus, for each pair (j < l) such that pj ≩ pl we have a positive eigenvalue ejl = π2

4 (pj − pl)2 with
multiplicity 2. It follows that for each such pair (j, l) there is a conjugate point of multiplicity 2 at
the values

t = 2

pj − pl
,

4

pj − pl
, . . . ,

2k

pj − pl
, (4.15)

where k is the greatest integer such that 2k
pj−pl < 1. That is, k = pj−pl

2 − 1 and so it follows that each

pj ≩ pl contributes pj − pl − 2 to the index. Thus, for the geodesic γX(t) = exp(tX) we have the
index λ = ∑pj>pl(pj − pl − 2).

Now assuming the geodesic associated to X is non-minimal, the pi are not all ±1. There are the
following two cases to consider:

Case 1: There are exactly n positive pj and n negative pj ; by the ordering convention, we have
pj > 0 for 1 ≤ j ≤ n and pj < 0 for n + 1 ≤ j ≤ 2n, and being non-minimal we have that p1 ≥ 3
and p2n ≤ −3. Therefore, we can estimate:

λ = ∑
pj>pl

(pj − pl − 2) ≥
n

∑
i=1

(pi − (−3) − 2) +
2n−1

∑
j=n+1

(3 − pj − 2)

≥
n

∑
i=1

(1 + 4 − 2) +
2n−1

∑
j=n+1

(3 − (−1) − 2)

≥ 4n ≥ 2(n + 1) .
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Case 2: There are strictly greater than n of the pj that are positive. In this case, the traceless
condition ensures at least p2n ≤ −3. We can make the estimate:

λ ≥
n+1

∑
i=1

(pi − (−3) − 2) ≥ 2
n+1

∑
i=1

1 = 2(n + 1) .

The same conclusion, for the same reason, follows when we take strictly less than n of the pi
positive.

Therefore, all non-minimal geodesics in SU(2n), from I to −I have index ≥ 2(n + 1).

Corollary 4.3. There is an isomorphism of homotopy groups

πi+1(SU(2n)) ≅ πi(Grn(C2n)) ∀0 ≤ i ≤ 2n + 1 , (4.16)

induced by the inclusion of the minimal geodesics Grn(C2n) ↪ ΩSU(2n).

Proof. First of all, recall that the pathspace Ω∗(M ;p, q) is homotopic to the loop space Ω∗(M ;p, p),
both with compact-open topology. To see this, simply let γ any path from p to q, and γ̄ denote
the same path traced backwards, γ̄(t) = γ(1− t). Then the maps F ∶ Ω∗(M ;p, q) → Ω∗(M ;p, p) and
G ∶ Ω∗(M ;p, p) → Ω∗(M ;p, q), given by concatenating paths: F (σ) = γ̄ ∗ σ, and G(τ) = γ ∗ τ are
homotopy inverses.

Using that πi(Ω∗X) ≅ πi+1(X) and the fact ΩM is homotopy equivalent to Ω∗M (by Proposition
3.10), we know that πi+1(SU(2n)) is isomorphic to πi(Ω(SU(2n); I,−I)). Further, by Theorem
3.22, the groups πi(Ω(SU(2n); I,−I),Ωmin) vanish for i ≤ 2m + 1, so the long exact sequence for
relative homotopies implies the groups πiΩ(SU(2n); I,−I) are isomorphic πiΩmin ≅ πiGrn(C2n).

The next step is to make some observations about the homotopy groups of SU(n) and U(n).
We can do this because we have the fibre bundle SU(n) → U(n) → S1. That this is in fact a fibre
bundle is a result of the following theorem and discussion.

Theorem 4.4 ([13], p.30). Suppose B a topological group, G ⊂ B, H ⊂ G closed subgroups. If G
admits of a local section, then the natural map p ∶ B/H → B/G has a bundle structure. The fibre of
the bundle is G/H.

Note that a local section of G in B is a map f ∶ V → B, for V ⊂ B/G a neighbourhood of the
coset eG, such that p ○ f = Id.

The proof is omitted; the idea is that a local section gives us a local trivial principal bundle
structure, which we can transport over B/G via the group action. We can use this result with H
trivial to obtain some well-known bundles. In fact, we will use a stronger result, which states that
for any Lie group B with closed subgroup G, the hypotheses of Theorem 4.4 with H trivial hold,
see [13], p. 33.

In particular:

Lemma 4.5. The following are fibre bundles:

U(n) Ð→ U(n + 1) Ð→ S2n+1 (4.17)

U(n) Ð→ U(2n) Ð→ Vn(C2n) (4.18)

U(n) Ð→ Vn(C2n) Ð→ Grn(C2n) (4.19)

SU(n) Ð→ U(n) Ð→ S1 . (4.20)

Proof. Starting with (4.17), the above discussion implies that it is sufficient to recognise S2n+1 as
the coset space U(n + 1)/U(n). This is a result of the fact that U(n + 1) has a transitive group
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action on S2n+1 with the stabilizer of a point, p, being the U(n) corresponding to the unitary
transformations of the equatorial sphere orthogonal to p. This implies the identification.

The sequence (4.18) is similar. The action of U(2n) on Vn(C2n) has as its stabilizer the subgroup
of U(2n) which fixes an n-basis, and hence corresponds to U(n), implying Vn(C2n) ≅ U(2n)/U(n).

The third case has essentially been dealt with already in Example 2.16, so only (4.20) remains.
The identification of S1 with the quotient U(n)/SU(n) is a result of the fact that the determinant
map is a group morphism det ∶ U(n) → S1 and the kernel is precisely SU(n). Hence the first group
isomorphism theorem immediately gives the result.

These fibre bundles, along with the long exact sequence of homotopy groups allows us to infer
the following isomorphisms, using πi(Sk) = 0 for all i < k, πi(S1) = 0 for i ≠ 1:

πiU(m) ≅ πiU(m + 1) i ≤ 2m − 1 (4.21)

πiGrm(C2m) ≅ πi−1U(m) i ≤ 2m (4.22)

πiSU(m) ≅ πiU(m) i ≠ 1 (4.23)

It follows from (4.21) that πi−1U(n) ≅ πi−1U(n + 1) ≅ πi−1U(n + 2) for all i ≤ 2n and so, for
U = colimU(n) we have πi−1U ≅ πi−1U(n) for i ≤ 2n; we call U the stable unitary group, and
its homotopy groups are the stable homotopy groups of the unitary group. We similarly let SU =
colimSU(n). As (4.22) relates the homotopy groups of the Grassmann spaces and the unitary
group, we can use it in conjunction with (4.21) to observe that the homotopy groups of BU can be
calculated from those of a finite Grassmann space.

Theorem 4.6 (Bott Periodicity Theorem). The stable unitary group is homotopy equivalent to its
second loop space, U ≃ Ω2U , and similarly, the space BU×Z is homotopy equivalent to its second
loop space, BU×Z ≃ Ω2(BU×Z).

The symbol ΩM here means the based loop space, with compact-open topology, in contrast with
the notation of Chapter 3. In light of 3.10, this should not cause any confusion.

Proof. It will be important to the proof that the direct limits U, BU, SU and V = colimVn (where
Vn is the universal bundle, defined in Example 2.16) each have the homotopy type of a CW -
complex, which will allow us to deduce homotopy equivalence from weak homotopy equivalence,
using Whitehead’s Theorem. The demonstration of a CW -structure is similar in all four cases; for
concreteness, I focus on BU. This space was defined as the colimit of the spaces BU(n), but we could
equally well define it to be the colimit of Grn(C2n) (more precisely the colimits are homeomorphic).
It is a fact, which I will not prove here, that these manifolds have a CW -structure with the further
property that the image under the inclusion Grn(C2n) ↪ Grn+1(C2(n+1)) is a subcomplex. The
CW -structure of the colimits is then immediate. This statement also holds for the sequences of
U(n), SU(n) and Vn(C2n) and hence implies the colimits each have a CW -structure.

We will also use the fact that the loop space of a CW -complex has the homotopy type of a CW -
complex (see [7]), and therefore ΩU, ΩBU and ΩSU have the homotopy type of CW -complexes.

To begin with, it will be shown BU×Z is homotopy equivalent to the loop space ΩU .
The inclusion Grn(C2n) ↪ Grn+1(C2n+2) induces a commutative square

Grn(C2n) ΩSU(2n)

Grn+1(C2n+2) ΩSU(2(n + 1))

. (4.24)

Commutativity implies there is an induced map BU→ ΩSU that, as a consequence of Corollary 4.3,
induces isomorphisms on every homotopy group . Therefore BU ≃W ΩSU , and the above remark
imply this is in fact a strong homotopy equivalence.
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Composing with the inclusion ΩSU ↪ ΩU gives a map  ∶ BU→ ΩU , such that the induced map
on homotopy groups, ∗ ∶ πi(BU) → πi(ΩU), is an isomorphism for all i ≥ 1, however π0(BU) = {∗},
while π1(U) ≅ Z, using that π1(U) ≅ π1(S1). Therefore, define ̃ ∶ BU×Z → ΩU by ̃(x, r) = r(x)
and the curve r(x) is defined by r(x)(z) = Dr(z)(x)(z), for z ∈ S1 and Dr(z) is the diagonal
matrix diag(zr,1,1 . . .). We can therefore write r(x) = Dr ⋅ (x), where ⋅ indicates pointwise-
multiplication of loops in ΩU .

The induced map, ̃∗,0, is bijective as ̃∗,0(BU×{r}) ↦ [zr] ∈ π0(ΩU) ≅ π1(U) = π1(S1), where
the last equality used stability of U , (4.21). Therefore, to conclude that ̃ is a weak equivalence
it remains to show that the induced morphisms ̃∗,i ∶ πi(BU, (x0, r)) → πi(ΩU, r(x0)) are isomor-
phisms for each i ≥ 1 and all r ∈ Z, x0 ∈ BU. In fact, since BU is path-connected, it is sufficient to
fix any x0 ∈ BU, and vary r ∈ Z.

Using that the pointwise multiplication of two paths is homotopic to the concatenation of paths,
it follows that for any [f] ∈ πi(BU×Z, (x0, r))

̃∗,i[f] = [Dr] ⋅ ∗[f], (4.25)

where ∗ is an isomorphism for each i ≥ 1 and multiplication by [Dr] has inverse [D−r]. Thus,
we can conclude that ̃∗,i ∶ πi(BU, (x0, r)) → πi(ΩU, r(x0)) is an isomorphism for all i ≥ 1 and a
bijection for i = 0, so Whitehead’s theorem implies that BU×Z ≃ ΩU .

This is half of the result we are aiming at. The other half follows from a general result in
homotopy theory, which states that for a fibre bundle over paracompact base space2 E → X with
E contractible, there is a weak homotopy equivalence between the fibre and the loop space of the
base, ΩX (see e.g. [5], Proposition 4.66). This result is applicable because BU is paracompact,
being a colimit of compact spaces.

In order to use this result, we need to exhibit a bundle over BU with fibre U and a contractible
total space. The näıve approach is to take the colimit of the principal bundles Vn along with the
map induced by the bundle surjections Vn → BU(n). I will sketch the reason that this does indeed
yield a bundle. The key fact is that we can choose trivialisations of the bundles Vn, Vn+1 which are
compatible under the inclusion Vn ↪ Vn+1, in the sense that the following diagram commutes:

Un ×U(n) π -1(Un) Un

Un+1 ×U(n + 1) π -1(Un+1) Un+1

ψn

ψn+1

(4.26)

for trivialising neighbourhoods, Un ⊂ BU(n).
Therefore, choosing arbitrary [P ] ∈ BU, we can define a neighbourhood in BU as the colimit

of these compatible neighbourhoods of representatives, loosely speaking N = ⋃i∈I U i ⊂ BU, with
the index set I defined by the requirement that there exists a representative P ∈ BU(i) for all
i ∈ I (i.e. I is the natural numbers with a some set {0,1, . . . , k} removed). Then we can define
Ψ ∶ π -1(N) → N × U , by choosing a representative in Vn and evaluating using ψn. Thanks to the
compatibility condition, the equivalence class of the result does not depend on the representative
chosen and one can check that the resulting map is indeed a trivialisation.

Therefore, colimn Vn = V → BU is a fibre bundle with fibre U . It remains to show that V is
contractible. In fact, contractibility of each Vn implies that πi(V ) = 0 for all i, so the fact that V is
a CW -complex implies that V is contractible.

We can conclude that there is a weak homotopy equivalence U ≃W ΩBU, and as both of these
spaces are CW -complexes, we can conclude that this is in fact a strong homotopy equivalence.

Therefore:
U ≃ ΩBU ≅ Ω(BU×Z) ≃ Ω(ΩU) = Ω2U (4.27)

2The precise result concerns fibrations, examples of which are fibre bundles with a paracompact base space, see
[12], Chapter 2.7, Corollary 14
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and similarly:
BU×Z ≃ ΩU ≃ Ω2(BU×Z) , (4.28)

which establishes the theorem.

With this periodicity theorem, we now have the tools necessary to return to the study of K-
theory.
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Chapter 5

K-Theory as a Cohomological Theory

We begin this chapter investigating some consequences of Theorem 4.6 on the K-rings, including an
explicit calculation on the spheres. Along the way, we will use some point-set topology operations
to define a negatively-supported sequence of functors, generalising K. Using Bott periodicity we
can extend this sequence to the positive integers, and we will show that this defines a generalised
cohomology theory, based on the Eilenberg-Steenrod axioms. Finally, we can utilise the tools
developed in this chapter to calculate the K-groups of some relatively simple topological spaces.

5.1 Bott Periodicity and K-Theory

Recalling the isomorphism K̃(X) ≅ [X,Z×BU]0, the homotopy equivalences of the previous chapter
have as a consequence the following:

Theorem 5.1. There is an isomorphism K̃(Σ2X) → K̃(X).

Recall that the suspension of a space SX is the quotient of X×I with X×{0} identified to a point
and X×{1} identified with a second point. If (X,x0) is a pointed space, then the reduced suspension
ΣX further identifies the line segment {x0}×I, which has a canonical choice of basepoint compatible
with the basepoint of X, namely the point corresponding to {x0} × I. The reduced suspension will
be seen many times in this chapter, in particular because it is left adjoint to the loopspace functor
in the category of pointed spaces i.e. there is a natural bijection

Hom0(ΣX,Y ) ≅ Hom0(X,ΩY ) . (5.1)

This bijection descends to homotopy classes and makes the above theorem a corollary of Bott
periodicity. In particular

Proof of 5.1:

K̃(Σ2X) ≅ [Σ2X,BU×Z]0

≅ [X,Ω2(BU×Z)]0

≅ [X,BU×Z]0 ≅ K̃(X) .

Bott periodicity also allows for the immediate calculation of the group structure of K̃(Sn),
although the multiplicative structure is not a consequence, and requires more work.
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Corollary 5.2 (The K-groups of spheres). We have the following group isomorphisms, for all
n ∈ N:

K̃(S2n) ≅ Z , (5.2)

K̃(S2n+1) ≅ 0 ; (5.3)

K(S2n) ≅ Z⊕Z , (5.4)

K(S2n+1) ≅ Z . (5.5)

Proof. Recall that a homotopy group, πi(X), for i ≥ 0 denotes pointed homotopy classes of maps
Si → X. Therefore, K̃(Sk) ≅ πk(BU) ≅ πk+1(U) so we need to compute the two distinct homotopy
groups of the stable unitary group, U .

π1(U) = π1(U(1)) = π1(S1) ≅ Z
π2(U) = π2(U(2)) ≅ π2(SU(2)) ≅ π2(S3) = 0 .

By Bott periodicity, we have π2n(U) ≅ 0 and π2n+1(U) ≅ Z, for arbitrary natural numbers, n. In
particular, we have K̃(S2n) ≅ π2n+1(U) ≅ Z, whereas K̃(S2n+1) = 0.

The unreduced K groups follow immediately, using the splitting of the short exact sequence
(2.17).

The generator of K̃(S2) can be found using the isomorphism K̃(S2) ≅ [S2,BU×Z]0 = [S2,CP1]0.
The latter equality follows from (4.22). As CP1 ≅ S2 we know that the generator of the group is the
identity [Id] ∈ [S2, S2]0. Therefore, the generator of K̃(S2) corresponds to the equivalence class
of vector bundles corresponding to the pullback of the inclusion morphism CP1 ↪ CP∞, which is
simply the tautological line bundle H = {(l, v) ∈ CP1 ×C2 ∶ v ∈ l}. That is, K̃(S2) is the subgroup
generated by [H] − 1 in K(S2).1 Now that we have an explicit representative as a vector bundle,
we can compute the tensor product of this bundle and learn about the product in the rings K̃(S2)
and K(S2).

In particular, we will show that there is an isomorphism of vector bundles (H⊗H)⊕Θ1 ≅H⊕H.
We can prove this by recalling that CP1 can be identified as a quotient S3/S1, where we think of
S3 ⊂ C2 and quotient out the S1-action ξ ⋅ (z1, z2) ∶= (ξz1, ξz2). The quotient map h ∶ S3 → CP1

is the famous Hopf fibration. Using this observation, we can work over S3, where the bundles are
trivial. By constructing an explicit, S1-equivariant isomorphism we will be able to conclude that
there is a well-defined isomorphism induced on the quotient bundles.

As a first step, we can identify h∗H = {(z⃗, v) ∈ S3×C2 ∶ v ∈ spanC(z⃗)}, which has a non-vanishing
section, z⃗ ↦ (z⃗, z⃗) and is therefore trivial. We can use this trivialisation to construct a morphism
Ψ ∶ h∗H ⊕ h∗H → (h∗H ⊗ h∗H) ⊕Θ1 by:

Ψ(z⃗, v,w) ∶= (z⃗, v ⊗ z⃗, w/z⃗) ,

where w/z⃗ is the unique complex number, κ, such that w = κz⃗. Observe that Ψ is a lift of the
identity and a fibrewise linear isomorphism, hence a vector bundle isomorphism; it only remains to
check S1-equivariance. The S1-action induced on the respective bundles by the action on S3 is as
follows:

h∗H ⊕ h∗H ∶ ξ ⋅ (z⃗, v,w) = (ξz⃗, ξv, ξw)
(h∗H ⊗ h∗H) ⊕Θ1 ∶ ξ ⋅ (z⃗, v ⊗w,α) = (ξz⃗, ξ2(v ⊗w), α)

so we can check:

Ψ(ξ ⋅ (z⃗, v,w)) = (ξz⃗, ξv ⊗ ξz⃗, ξξ -1w/z⃗) = ξ ⋅ (z⃗, v ⊗ z⃗, w/z⃗) = ξ ⋅Ψ(z⃗, v,w) . (5.6)

1In this chapter, we will often write n for Θn.
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Therefore, Ψ is an S1-equivariant isomorphism and there is an induced isomorphism on S1-equivalence
classes. It can be seen that (h∗H ⊕h∗H)/S1 ≅H ⊕H, and similarly for (h∗H ⊗h∗H)⊕Θ1, so there
is an induced isomorphism H⊕H ≅ (H⊗H)⊕Θ1. It is actually the case that all vector bundles over
S3 are trivial. We can regard this calculation as demonstrating the general fact that the S1-action
on the bundle determines the bundle on the quotient CP1.

In terms of K(S2) this isomorphism translates to [H]2 +1 = 2[H], implying that ([H]−1)2 = 0.
We can therefore conclude that K(S2) ≅ Z[H]/(H − 1)2 as a ring, and K̃(S2) = (H − 1)K(S2). In
particular, the multiplication in K̃(S2) is trivial.

One is able to use these generators to express the generators of higher spheres, K(S2n). A key
ingredient in that calculation will be a product defined between K-rings of different spaces.

Definition 5.3 (External Product). For arbitrary compact, Hausdorff X1,X2, there is a natural
map µ ∶K(X1) ⊗K(X2) →K(X1 ×X2), induced by the projection maps, pi ∶X1 ×X2 →Xi:

µ(x⊗ y) = p∗1xp∗2y ; (5.7)

here, juxtaposition indicates multiplication in K(X1×X2), x, y are virtual bundles in K(X1),K(X2)
respectively and the tensor product between K-rings is the tensor product as Z-modules. This has
the ring structure (x ⊗ y)(x′ ⊗ y′) ∶= xx′ ⊗ yy′. It is straightforward to check that this map is a
well-defined ring morphism.

We sometimes write µ(x, y) = x ⋆ y.

There is a similar product on reduced groups. To see how it works we need to review some
topological constructions and will introduce some exact sequences of K-groups. With these tools,
we will be able to decompose the external product into trivial parts and the sought after reduced
external product.

For now, we restrict attention to the reduced K-rings. Let A ⊂X a closed subspace and consider
K̃(X/A). Observe that as A is closed, the quotient is again compact and Hausdorff, so K̃(X/A) is
indeed defined.

Proposition 5.4 ([4], Proposition 2.9). The inclusion and quotient maps A → X → X/A induce
an exact sequence of rings:

K̃(X/A) q
∗
→ K̃(X) ι∗→ K̃(A) . (5.8)

Proof. This proof largely follows [4]. The inclusion Im q∗ ⊂ ker ι∗ can be seen by observing ι∗q∗ =
(qι)∗ and qι is the composition A→ A/A→X/A, where K̃(A/A) = 0.

Thus, we have to show that ker ι∗ ⊂ Im q∗. Suppose, then, that [E] ∈ K̃(X) is such that
ι∗[E] = 0, i.e. [E∣A] = 0, implying that E∣A ⊕Θn(A) ≅ Θn+m(A). Therefore, in K̃ we may as well
assume that E∣A is trivial, with a trivialisation, say ψ ∶ E∣A → A×Cn. Let E/ψ denote the quotient
space E/ ∼, where ψ -1(x, v) ∼ ψ -1(y, v) for all x, y ∈ A. There are two things to ascertain, firstly
that E/ψ is indeed a bundle, and secondly that q∗(E/ψ) = E.

The first point amounts to showing that there is an open neighbourhood of A, A ⊂ U ⊂ X such
that E∣U is trivial. Let σi ∶ A → E, i = 1 . . . , n a basis of sections over A. Using that E is a bundle
and X compact, we can choose a finite open cover {Uα} such that E∣Uα is trivial for each α. The
trivialisation induces σ̃iα ∶ A∩Uα → Cn, and we can extend this to a map σ̃iα ∶ Uα → Cn, by Tietze’s
theorem, in turn inducing a section σiα ∶ Uα → E. Let ξα a partition of unity subordinate to Uα,
and define σi = ∑α ξασiα. These are n sections over ⋃αUα, which are linearly independent over
A ⊂ ⋃αUα. These sections must therefore be linearly independent in a neighbourhood of A; we
can see this by observing that the determinant is continuous, so det(σ1∣ . . . ∣σn) ≠ 0 at some point2

implies nonzero determinant in a neighbourhood of that point. In particular, E/ψ is a vector bundle
over X/A.

2It is sufficient to calculate the determinant in a local trivialisation, so this notation means the determinant of the
matrix with columns being the coordinate-vectors of the sections.
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Now, to deduce that q∗(E/ψ) ≅ E, we use that the natural map E → E/ψ is a lift of the
quotient map, q, and also an isomorphism on the fibres. This is sufficient to conclude that E is the
pullback.

It is worth remarking on the interpretation of the inclusion ker ι∗ ⊂ Im q∗ in terms of the classify-
ing space picture. The inclusion says that if f is a classifying map of some bundle over X, such that
f ∣A is nullhomotopic, then there is an open neighbourhood U ⊃ A such that f ∣U is nullhomotopic.
Note that all homotopies are basepoint preserving.

Corollary 5.5. If A is contractible, then q∗ ∶ K̃(X/A) → K̃(X) is an isomorphism.

Proof. This can be shown by constructing an inverse.
Indeed, if A is contractible, then for any map f ∶X → BU, the restriction f ∣A is nullhomotopic.

By the above, there is an open neighbourhood U such that f ∣U is also nullhomotopic with, say,
F ∶ U × I → BU, F0 = f ∣U and F1 = b0, for b0 the basepoint in BU. Let χ ∶ X → [0,1] a continuous
function such that χ∣A = 1 and supp(χ) ⊂ U , which exists because X is normal, so Urysohn’s lemma
holds. We can note that the fact that all maps and homotopies are basepoint preserving is important
for uniqueness

Define Q(f) ∶X/A→ BU by

Q(f) = { Fχ(x)(x) x ∈ U
f(x) x ∉ U

which is continuous by the choice of χ and F . As Q(f) is constant on A, we can think of it as
defining a map X/A → BU. It needs to be shown that the homotopy type of Q depends only on
the homotopy type of f . So, suppose that gt ∶ X → BU is some homotopy with g0 = f and g1 = g,
for some g. By contractibility there is a neighbourhood of A × I ⊂X × I, say V × I such that g∣V ×I
is nullhomotopic. Letting G any such homotopy, we can now essentially repeat the construction of
Q to yield a homotopy between Q(f) and Q(g). Namely, let η ∶ X → [0,1] such that η∣A = 1 and
supp(η) ⊂ V , then

Q(gt) = { Gη(x)(x, t) x ∈ V
f(x) gt(x) ∉ V

Therefore, Q ∶ [X,BU]0 → [X/A,BU]0 is well-defined and, by construction, is an inverse to q∗,
implying q∗ is a bijective homomorphism, and hence an isomorphism.

It is in fact true that Vectn(X/A) ≅ Vectn(X), for contractible A, which can be useful, though
more than needed here, c.f. [4], Lemma 2.10.

This corollary allows one to naturally extend the short exact sequence (5.8) into a long exact
sequence. The starting point is to observe that the quotient X/A can be understood as the com-
position X ↪ X ∪ CA → X/A, where CA denotes the cone, which is contractible, and the second
arrow quotients out the cone. In particular, the quotient is the composition of an inclusion, and
the quotient of a contractible space. At the level of K̃-rings only the inclusion is meaningful. This
motivates the long sequence:

A X X ∪CA (X ∪CA) ∪CX ((X ∪CA) ∪CX) ∪C(X ∪CA) . . .

X/A SA SX

(5.9)
where the spaces in the first row are obtained by adding the cone of the space two steps back in
the sequence, and the vertical maps contract out the recently added cone; the S here denotes the
suspension of the space. This construction is known as the cofibration sequence, or Puppe sequence
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([5], p. 398) and induces a long exact sequence on the K̃-rings, by repeated iteration of the short
exact sequence. For our purposes, it is more clearly seen by iterating vertically:

A0 A1 A1 ∪CA0 A2 ∪CA1 . . .

A1/A0 SA0 SA1 SA1 ∪C(A1/A0) . . .

SA1/SA0 . . .
(5.10)

where the dashed arrows mean they are simply the composition of the known horizontal and vertical
maps. Then, applying the K̃ functor:

K̃(A0) K̃(A1) K̃(A1/A0) K̃(SA0) K̃(SA1) . . . . (5.11)

By being careful with the above diagram, one can check that the non-dashed arrows are simply the
relevant inclusion or quotient map, while the dashed arrow is the composition of the map induced
by A1∪CA0 → SA0 and the isomorphism K̃(A1/A0) ≅ K̃(A1∪CA0), and similarly in higher places.
This implies that any sequence of three groups in (5.11) is exact and so the entire sequence is exact.

More over, this construction is functorial: any map between pairs f ∶ (X,A) → (Y,B) induces
a map of complexes on the long exact sequence. This is straightforward to see, though messy to
explicate, so I omit doing so.

Recalling that the reduced suspension is obtained from the suspension by simply contracting an
interval, we can replace the suspension with the reduced suspension and maintain exactness. It is
convenient to do so, because the reduced suspension has several beneficial properties, for instance
there is a homeomorphism Σ(X/A) ≅ ΣX/ΣA and the functor Σ is adjoint to the loop space
functor, as has already been seen. Another property of the reduced suspension is the existence of
the homeomorphism ΣnX ≅ Sn ∧X, which will be useful. Here ∧ denotes the smash product of
pointed spaces, which is the quotient of the product space Sn×X by the subspace X×{y0}∪{x0}×Y .
This latter subspace is denoted X ∨ Y , the wedge sum.

Observe that the space obtained by quotienting one of the factors in the wedge sum is canonically
homeomorphic to the other space, i.e. (X ∨ Y )/X ≅ Y , and (X ∨ Y )/Y ≅ X. Therefore, the pair
(X ∨ Y,Y ) yields a short exact sequence:

K̃(X) → K̃(X ∨ Y ) → K̃(Y ) (5.12)

in which the first map is a composition of the isomorphism K̃(X) ≅ K̃((X ∨ Y )/Y ) and the map
induced by the quotient. This sequence in fact splits, as the sequence obtained from the pair
(X ∨ Y,X) yields a sequence of the same rings, with arrows in the other direction. We can observe
that the maps are inverse to each other. Therefore, K̃(X ∨ Y ) ≅ K̃(X) ⊕ K̃(Y ). This implies
K̃(Σ(X ∨ Y )) ≅ K̃(ΣX) ⊕ K̃(ΣY ), because there is a homeomorphism Σ(X ∨ Y ) ≅ ΣX ∨ΣY .

Now we consider the compact pair (X ×Y,X ∨Y ); by definition (X ×Y )/(X ∨Y ) =X ∧Y , and
so we have an induced long exact sequence:

⋯ K̃(Σ(X × Y )) K̃(ΣX) ⊕ K̃(ΣY ) K̃(X ∧ Y ) K̃(X × Y ) K̃(X) ⊕ K̃(Y ) .
(5.13)

Let p1 ∶X ×Y →X the projection, similarly for p2, and consider the morphism K̃(X)⊕K̃(Y ) →
K̃(X × Y ) given by (x, y) ↦ p∗1x + p∗2y. Observe that for arbitrary points x0 ∈ X, y0 ∈ Y we have a
natural isomorphism p∗1x∣{x0}×Y ≅ x∣{x0}×Y and similarly for p∗2y∣X×{y0}, implying that the morphism

K̃(X)⊕ K̃(Y ) → K̃(X ×Y ) splits in the sequence above. In particular K̃(X ×Y ) → K̃(X)⊕ K̃(Y )
is surjective. The same argument shows that K̃(Σ(X × Y )) → K̃(ΣX) ⊕ K̃(ΣY ) is surjective.
Therefore, the long exact sequence yields a split short exact sequence

0 K̃(X ∧ Y ) K̃(X × Y ) K̃(X) ⊕ K̃(Y ) 0 , (5.14)
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implying the isomorphism:

K̃(X × Y ) ≅ K̃(X) ⊕ K̃(Y ) ⊕ K̃(X ∧ Y ) . (5.15)

We can also observe that the following sequence is exact

0 K̃(Σ(X ∧ Y )) K̃(Σ(X × Y )) K̃(ΣX) ⊕ K̃(ΣY ) 0 , (5.16)

where Bott periodicity is used to show injectivity of the homomorphism K̃(Σ(X ∧Y )) → K̃(Σ(X ×
Y )). The above comments show that this sequence also splits.

With this decomposition in hand we can finally define a reduced external product. To do so,
use the splitting K(X) ≅ K̃(X)⊕K(x0) and recall that K(x0) is a ring isomorphic to the integers,
therefore:

K(X) ⊗K(Y ) ≅ (K̃(X) ⊕K(x0)) ⊗ (K̃(Y ) ⊕K(y0))
≅ (K̃(X) ⊗ K̃(Y )) ⊕ K̃(X) ⊕ K̃(Y ) ⊕Z ,

having used the general fact that M ⊗R R ≅ R, for any ring R, and R-module M .
Combining the external product and these decompositions, we have

K(X) ⊗K(Y ) (K̃(X) ⊗ K̃(Y )) ⊕ K̃(X) ⊕ K̃(Y ) ⊕Z

K(X × Y ) K̃(X ∧ Y ) ⊕ K̃(X) ⊕ K̃(Y ) ⊕Z .

∼

∼

(5.17)

The key observation here is that summand (K̃(X) ⊗ K̃(Y )) maps to K̃(X ∧ Y ). For, recalling the

definition of the reduced groups as kernels, x ∈ K̃(X), y ∈ K̃(Y ), then p∗1xp
∗
2y is in the kernel of the

restriction K(X × Y ) → K(({x0} × Y ) ∪ (X × {y0})), so that µ(x ⊗ y) ∈ K̃(X ∧ Y ). In particular,
the righthand arrow can be decomposed as (µ, IdK̃(X), IdK̃(Y ), IdZ).

This product, as well as the unreduced version, can be used to explicitly compute the Bott
isomorphism as demonstrated by the following two results. Unfortunately, I have no proof of this
fact from the perspective of Bott periodicity developed here, although such a proof should exist and
I aim to find it in the future.

Lemma 5.6. For any compact X, the composition K̃(X) → K̃(X) ⊗ K̃(S2) → K̃(S2 ∧X), x ↦
µ(x,H − 1) is the isomorphism of Theorem 5.1.

Corollary 5.7. The external product K(X) ⊗K(S2) →K(X × S2) is an isomorphism.

Proof. The diagram 5.17 and the discussion following it, along with Lemma 5.6 gives the result
immediately.

Assuming Lemma 5.6, we can explicitly state the generators of the K-rings of the higher spheres.
Indeed, the generator of K̃(S2n) is simply the n-th power external product of the generator K̃(S2),
i.e. K̃(S2n) ≅ ([H]⋆n − 1), and has trivial multiplication. Then, using that K(S2n) ≅ K̃(S2n) ⊕ Z,
we can conclude that K(S2n) ≅ Z[H⋆n]/(1 −H⋆n)2.

5.2 Eilenberg-Steenrod Axioms of a Reduced Cohomology Theory

In this section we use the long exact sequence (5.20) and Bott periodicity to develop a sequence of
functors describing a cohomology theory.
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We begin by reviewing the axiomatic characterisation of cohomology theories, due to Eilenberg
and Steenrod, [14]. Let C some category of pairs of topological spaces A ⊂X. A cohomology theory
is the data of a sequence of functors into the category of Abelian groups

F k ∶ C →Ab, k ∈ Z

along with natural transformations

δ ∶ F k(A) → F k+1(X,A),

(where F k(A) ∶= F k(A,∅)) satisfying the following axioms:

Axiom 1: If f ≃ g ∶ (X,A) → (Y,B), then f∗ = g∗ ∶ F k(Y,B) → F k(X,A) for all k ∈ Z, where
f∗ ∶= F k(f);

Axiom 2: For a pair (X,A), the above maps induce a long exact sequence

. . . F k(X,A) F k(X) F k(A) F k+1(X,A) . . . ; (5.18)

Axiom 3 (Excision): If U ⊂ X is an open subset such that the closure Ū is in the interior of A,
Ū ⊂ Ao, then F k(X ∖U,A ∖U) ≅ F k(X,A);

Axiom 4 F k(∗) = 0, for all k ≠ 0, where ∗ is the one-point space.

Naturality of δ, along with Axiom 2, implies that the maps {F k(f)} form a map of chain complexes
between the long exact sequences induced by any two pairs (X,A), (Y,B).

It is known that these four axioms uniquely specify a cohomology theory, however there are
many inequivalent theories satisfying the first three axioms alone. If we need to distinguish, a
cohomology theory without the dimension axiom is extraordinary, or generalised.

We will use the long exact sequences defined above to show that the groups K(X) give rise to a
generalised cohomology theory. The long exact sequence (5.11) suggests the definition K̃−n(X) ∶=
K̃(ΣnX), for all n ≥ 0. Observe that the Bott periodicity isomorphisms developed in the previous
section imply K̃−2n(X) ≅ K̃0(X), and K̃−2n−1(X) ≅ K̃−1(X). Therefore, we can reasonably extend
the sequence to positive integers by setting K̃2n(X) ≅ K̃(X), K̃2n+1(X) ≅ K̃(ΣX).

This periodicity can be expressed more concretely by wrapping the long exact sequence in on
itself:

K̃−2(A) K̃−1(X/A) K̃−1(X) K̃−1(A) K̃0(X/A) K̃0(X) K̃0(A)

K̃−2(A) K̃−1(X/A) . . .

≃

(5.19)
We can lift these results on the reduced rings to statements about the full K-rings by observing
that K(X) can be identified with the reduced group K̃(X+) = ker(+ → X+) ≅ K(X), where
X+ ∶= X∐{+}. For any closed A ⊂ X, we have an induced A+ = A∐{+}, and X/A ≅ X+/A+. It
can also be shown that K̃(ΣX+) ≅ K̃(ΣX) using the six-term exact sequence obtained from the
wrapped long exact sequence (5.19).

Specifically, the sequence of spaces X ↪X+ → S0 induces the exact rectangle:

K̃(S0) K̃(X+) K̃(X)

K̃(ΣX) K̃(ΣX+) K̃(S1)

q∗ ι∗

(Σι)∗ (Σq)∗
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where K̃(S1) = 0 immediately implies (Σι)∗ is injective. It remains to show surjectivity of this map,
which is equivalent to injectivity of q∗ or, to put it another way, the existence of a left-inverse of
q∗. Such a map is guaranteed by the splitting of the diagram (2.17).

Therefore, the long exact sequence on reduced groups, induced by A+ ↪ X+ → X/A induces a
long exact sequence:

. . .→ K̃(ΣX) → K̃(ΣA) → K̃(X/A) →K(X) →K(A) . (5.20)

Motivated by this sequence, we define the functors Kn(X,A) ∶= K̃n(X/A), whenever A ≠ ∅,
K2n+1(X) ∶= K̃2n+1(X) and K2n(X) ∶=K(X), for all n ∈ Z.3 This implies that we have an induced
exact sequence

K0(X,A) K0(X) K0(A)

K1(A) K1(X) K1(X,A)

. (5.21)

Theorem 5.8. The sequence of functors Kn(X) defines a generalised cohomology theory on the
category of compact pairs.

Proof. The first axiom, homotopy invariance, follows from the interpretation of K as a space of
homotopy classes of maps.

The second axiom is satisfied, due to the exact sequence (5.21), and by construction, the maps
induced by any f ∶ (X,A) → (Y,B) form a morphism of chain complexes.

It remains to check excision. Recalling K−n(X,A) ∶= K̃−n(X/A), and the fact that Ū ⊂ Ao
implies (X ∖U)/(A∖U) =X/A, it follows that the morphism induced by the inclusion (X ∖U,A∖
U) → (X,A) is indeed an isomorphism.

An important component of K-theory is that K∗(X) ∶= ⊕n∈ZK
n(X) is in fact a ring with

product induced by the external product K̃(ΣiX) ⊗ K̃(ΣjX) → K̃(Σi+jX), which is related to
the reduced product defined above. Unfortunately, there is no space here to discuss this aspect in
further detail. Instead, the remainder of the thesis will be spent calculating examples using the
machinery developed.

5.3 Examples

We will calculate the reduced groups of several simple topological spaces; the full groups are then
obtained by adding a copy of the integers onto the even groups.

Example 5.9. The first example we consider is the n-torus, Tn = (S1)×n
The claim is that :

K̃i(Tn) ≅ { Z⊕(2n−1−1) i even

Z⊕2n−1 i odd
, (5.22)

which is proved by induction.
For n = 1, it immediately follows from the identification T1 = S1.
Assume that the claim holds for Tn−1 and consider Tn = Tn−1 ×S1. Comparing with (5.15), the

sequence S1 ∨Tn−1 → Tn−1 × S1 → Tn−1 ∧ S1, induces the isomorphism

K̃i(Tn) ≅ K̃i(S1) ⊕ K̃i(Tn−1) ⊕ K̃i+1(Tn−1) . (5.23)

By the inductive hypothesis we therefore have K̃0(Tn) ≅ Z⊕(2n−2+2n−2−1) and K̃1(Tn) ≅ Z⊕(2n−2+2n−2−1+1),
so the result holds by the fact that 2n−2 + 2n−2 = 2n−1.

3It is reasonably natural to define X/∅ ∶=X+, in which case all these functors can be summarised by the definition
of Kn

(X,A).
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Example 5.10. We next consider the 3-dimensional lens space. This is slightly more complicated,
and will be achieved by applying a CW -structure to the space; this structure is taken from [5], p.
145, applied to the case of dimension 3.

A lens space L(k, l), for k, l ∈ N relatively prime, is obtained from S3 ⊂ C2 by quotienting with a
Zl group action (z1, z2) ∼ (e2πi/lz1, e

2πik/lz2). Set C ⊂ S3 the circle defined by z1 = 0, and mark the
l-th roots of unity 1, λ = e2πi/l, . . . , λl−1. Let A ⊂ S3 the circle defined by z2 = 0 and consider the discs
D2
j formed from the great circles between the marked point, λj ∈ C, and the circle A. Similarly, define

a three-disc D3
j as the points on the great circles starting at any point in the segment between λj and

λj+1. Observe that the discs D3
j cover S3, and that D3

j is bounded by D2
j and D2

j+1. Furthermore,

D2
j ↦D2

j+k (more precisely, (j+k) mod l) under the group action and D3
j ↦D3

j+k. In particular, by
choosing α such that αk ≡ 1 mod l, we can iterate the action α times to obtain a map Dj ↦ Dj+1.
Clearly, λα is a generator of the group Zl, because gcd(α, l) = 1. Therefore, we can obtain L(k, l)
by identifying the bounding discs of D3 under the action λα. This is the key in constructing the
CW -complex.

Start the construction with a 0-skeleton, {x0}, and attach a 1-cell such that X1 is a circle; the
one-skeleton corresponds to A in the above. The attaching map for a 2-cell, S1 → S1, is given by
the quotient map z ∼ λz. Finally, attach a 3-cell, where the attaching map identifies its bottom
hemisphere with the top hemisphere after a twist of λα, which are then identified with X2.

We now want to calculate K̃∗(L) using this CW -structure. The key to this calculation is the
observation that X3/X2 ≅ S3, X2/X1 ≅ S2. In fact, in a general CW -complex, Xn/Xn−1 is home-
omorphic to a wedge sum of n-spheres, for n ≥ 1. We are able to capitalise on this because the
CW -structure of the lens space is quite simple, having only one cell in each level.

Indeed, the six-term exact sequence corresponding to the pair (L,X2) will allow the computation
of K̃∗(L) in terms of K̃∗(X2), and the sequence corresponding to (X2, S

1) will give K̃∗(X2).
Starting with X2, we have the exact sequence:

K̃0(S2) K̃0(X2) K̃0(S1)

K̃1(S1) K̃1(X2) K̃1(S2) .

δ (5.24)

It follows that K̃1(X2) ≅ ker δ and K̃0(X2) ≅ coker δ, so that only the coboundary map δ needs
to be identified. To do so, recall that the generator of K̃0(S2) can be identified with the generator
of π2(S2), which is the suspension of the identity map S1 → S1, cf. the proof of Corollary 5.2.
When we quotient X2/X1 we have the 2-disk D2 with its boundary first identified with X1, and then
shrunk to a point. In our case, the attaching map wraps the boundary of the disk l-times, and thus,
the identity gets mapped to the suspension of zl, implying that δ is multiplication by l. It follows
immediately that K̃1(X2) = 0 and K̃0(X2) ≅ Zl.

Plugging this result into the exact sequence corresponding to (L,X2) gives:

0 K̃0(L) Zl

0 K̃1(L) Z

∂ . (5.25)

Observe that ∂ ≡ 0, because there is no other group morphism from Zl → Z, given that the latter
has no zero divisors. Therefore, K̃0(L) ≅ K̃0(X2) ≅ Zl and K̃1(L) ≅ Z.

We have defined K-theory using vector bundles and their formal inverses. With this geometric
interpretation we were able to represent the functors as homotopy classes of maps into some explicit
models of classifying space. By focusing on this interpretation we were able to use differential
topology to uncover Bott periodicity, enabling us to encounter the essential features of K-theory
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and calculate some examples. This barely scratches the surface of topological K-theory, which has
a number of generalisations and connects with many different parts of mathematics. Interesting
examples include the Atiyah-Singer index theorem, which associates K-theoretic data to the index
of elliptic operators and thus relates topologic and analytic information, as well as applications in
physics, including string theory and condensed matter physics.
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Appendix A

Some Riemannian Geometry

This is a compilation of various results in Riemannian geometry that are used in the main text.
The main reference is [6].

A.1 Basic Definitions

Definition A.1. A Riemannian manifold, (M,g) is a smooth manifold M together with a bundle
metric on the tangent bundle.

Just as complex vector bundles can always be endowed with Hermitian bundle metrics, a real
vector bundle can always be endowed with a symmetric bundle metric - the proof is essentially the
same. Thus, a Riemannian structure exists on any given smooth manifold.

A.2 Covariant Derivatives and Geodesics

Let E → M a smooth vector bundle, Γ(E) the space of sections and Ω(TM) ∶= Γ(T ∗M), where
TM denotes the tangent bundle, and T ∗M its dual.

Definition A.2 (Covariant Derivative). A covariant derivative is a map D ∶ Γ(TM)⊗Γ(E) → Γ(E),
written D(V ⊗ σ) =DV σ and satisfying:

• D is C∞(M) linear in Γ(TM);

• D is R linear in Γ(E), and satisfies a Leibnitz rule:

DV (fσ) = fDV σ + V (f)σ . (A.1)

Thus, a covariant derivative is essentially a means of differentiating sections. We can also use
them to transport a vector over a curve, viz.

Definition A.3 (Parallel Transport). Let V ∈ Ep, and γ any smooth curve starting at p; then we
can define a vector field over γ, such that Dγ̇(t)Vγ(t) = 0, ∀t.

In the text, we will often use the notation Vt ∶= Vγ(t), and Dt ∶=Dγ̇(t).

A geodesic is a curve γ satisfying Dt
˙γ(t) = 0; i.e. the tangent vector is parallel transported along

the curve.
Locally, the geodesics are length-minimizing paths.

Definition A.4. The Levi-Civita connection on a Riemannian manifold is a connection on the
tangent bundle, satisfying:

Torsion-Free DXY −DYX = [X,Y ], for all smooth vector fields X,Y ;
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Metric-Preserving X(g(Y,Z)) = g(DXY,Z) + g(Y,DXZ) for all smooth vector fields X,Y,Z.

A Levi-Civita connection exists and is unique, [6], Theorem 4.3.1.

In this thesis, the connection is always assumed to be the Levi-Civita connection.

A.3 Curvature and Jacobi Fields

Theorem A.5 ([8], Lemma 9.3). For (M,g) a Riemannian manifold, and X,Y,Z,W any vector
fields, the curvature

R(X,Y )Z ∶= [DX ,DY ]Z −D[X,Y ]Z

satisfies the following identities:

R(X,Y )Z +R(Y,X)Z = 0 (A.2)

R(X,Y )Z +R(Y,Z)X +R(Z,Y )X = 0 (A.3)

g(R(X,Y )Z,W ) = −g(R(X,Y )W,Z) (A.4)

g(R(X,Y )Z,W ) = g(X,R(Z,W )Y ) . (A.5)

Let γ a geodesic, V its velocity vector field and X a smooth vector field over γ. We say X is a
Jacobi field over γ if it satisfies the identity:

D2
tX −R(V,X)V = 0 (A.6)

Proposition A.6 ([6], Lemma 5.2.3). For any given X,Y ∈ Tγ(0)M there exists a unique Jacobi
field over γ, W , such that W (0) =X and DtW (0) = Y

Proposition A.7 ([6], Theorem 5.2.1). Let γ a geodesic, and α a variation of α ∶ I × (−ε, ε) →M
through geodesics. Then, ∂sα(t,0) is a Jacobi vector field. Conversely, any Jacobi field over γ gives
rise to a variation through geodesics.

Definition A.8. Let γ ∶ I →M a geodesic. Two points, t0 ≠ t1 are called conjugate if there exists
a non-zero Jacobi field, J , over γ such that J(t0) = 0 = J(t1).

Proposition A.9. If γ(0), γ(1) are not conjugate along γ, then for any X0 ∈ Tγ(0)M, X1 ∈ Tγ(1)M
there is a unique Jacobi field X such that X(0) =X0 and X(1) =X1.

A.4 Lie Groups

Theorem A.10. The geodesics through the identity of a Lie group equipped with a left- and right-
invariant metric are precisely the one-parameter subgroups.

As a result, the covariant derivative DXX of any left invariant vector field vanishes. This is key
in the following:

Theorem A.11 ([8], Theorem 21.3). For G a Lie group equipped with left- right-invariant Rieman-
nian metric and X,Y,Z,W left-invariant vector fields, the following hold:

DXY = −DYX (A.7)

⟨[X,Y ], Z⟩ = ⟨X, [Y,Z]⟩ (A.8)

R(X,Y )Z = 1
4[[X,Y ], Z] (A.9)

⟨R(X,Y )Z,W ⟩ = 1
4⟨[X,Y ], [Z,W ]⟩ . (A.10)
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