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Abstract

The price of a fixed-term option is the expected value of the payoff at the
time of maturity. When not analytically available, the option price is com-
puted using stochastic or deterministic numerical methods. The most com-
mon approach when using deterministic methods is to solve a backward
partial differential equation (PDE) such as the Black-Scholes equation for
the option value. The problem can alternatively be formulated based on a
forward PDE for the probability of the asset value at the time of maturity.
This enables simultaneous pricing of several contracts with different payoffs
written on the same underlying asset. The main drawback is that the initial
condition is a (non-smooth) Dirac function. We show that by using an an-
alytical expansion of the solution for the first part of the time interval, and
applying a high-order accurate radial basis function (RBF) approximation
in space, we can derive a competitive forward pricing method. We eval-
uate the proposed method on European call options and barrier options,
and show that even for just one payoff it is more efficient than solving the
corresponding backward PDE.
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1. Introduction

Trading of options is taking place daily in the financial market all over
the world. Current prices must be available at each time, indicating that
pricing methods need to be highly efficient. Pricing is important not only
for trading of options, but also for hedging and calibration purposes.

Different models are considered for the underlying asset(s) as well as
different solution strategies, leading to a rich set of combinations to explore.
In this paper our focus is on the solution strategies. The objective of the
paper is to show that a combination that has mostly been overlooked so
far, deterministic methods applied to the forward partial differential equa-
tion (PDE) for the dynamics, is computationally efficient. In [1] a set of
benchmark problems for a number of different models with state-of-the-art
numerical methods to solve them are evaluated. We use these results for
comparisons.

As a model problem where we have analytical solutions to compare with,
we consider a Black-Scholes market with a deterministic bond and a stochas-
tic asset with price-dynamics Bt and St respectively, given by

dBt = rBtdt,
dSt = µStdt+ σStdWt,

(1)

where r is the risk-free interest rate, and µ and σ are the drift and the
volatility of the asset. For an option issued on St from (1) that at the time
of maturity T pays φ(ST ,K), where φ is called the pay-off function and K
is the strike price of the option, the value u0 of the option today is given by

u0 = e−rTEQ(φ(ST ,K)), (2)

where EQ denotes the expected value under the risk-neutral measure Q.
From this basic formulation, different mathematical models for the op-

tion pricing problem can be derived, that in turn are appropriate for different
types of numerical solution methods.

The risk-neutral expectation (2) together with the dynamics (1) leads to
the stochastic differential equation

St = rStdt+ σStdWt,
S0 = s0

(3)

for the asset price, where s0 is the asset value today. This formulation
is mainly used in Monte Carlo methods [2]. A European option value is
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approximated as the discounted mean value of a large number of simulated
trajectories St(j), j = 1, . . . ,M , as

ũ0 = e−rT
1

M

M∑
j=1

(φ(ST (j),K)). (4)

Monte Carlo methods are flexible with respect to the underlying model and
the option contract. The basic Monte Carlo method has a convergence rate
of O(M−1/2). By applying and combining variance reduction techniques,
quasi random sampling, and multi level Monte Carlo approaches [3, 4], the
convergence rate can be improved. For high-dimensional problems, Monte
Carlo simulation is the standard method. However, for problems in low di-
mensions, when the option is issued on one or only a few assets, deterministic
methods are more computationally efficient [1].

In order to use a deterministic numerical method, we need a different
mathematical model. The most well known deterministic model for option
pricing is the Black-Scholes backward PDE for the option value u(s, t)

∂u

∂t
+

1

2
σ2s2

∂2u

∂s2
+ rs

∂u

∂s
− ru = 0, s ∈ R+, t > 0,

u(s, T ) = φ(s,K).

(5)

independently derived by Black and Scholes [5] and Merton [6]. The solu-
tion value u(s0, 0) is equivalent to the option value u0 defined in (2). Solving
Equation (5), provides the value of the particular option with pay-off func-
tion φ(s,K). However, we get the value of u for all values of s > 0, which
in some sense is unnecessary. We know the value s0 of s today, and the
values of u for s 6= s0 are not useful to us, except for the potential com-
putation of hedging parameters, using values of u in the vicinity of s0. For
the basic case with constant volatility and simple pay-off functions it is pos-
sible to rescale (5) to obtain multiple option values, but this is no longer
true for more general problem-settings. Common methods in relation to (5)
are, e.g., finite difference methods [7, 8, 9, 10, 11] and RBF approxima-
tion [12, 13, 14, 15, 16].

There is also a forward deterministic counterpart to (3), which is the
adjoint of the Black-Scholes equation (5). The probability p(s, t) that the
asset takes the value s at time t when the asset follows the dynamics in (1),
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is described by the Fokker-Planck (or forward Kolmogorov) equation

∂p

∂t
− 1

2

∂
(
σ2s2p

)
∂s2

+
∂ (rsp)

∂s
= 0, s ∈ R+, t > 0,

p(s, 0) = δ(s0 − s),

(6)

where δ(x) is the Dirac delta function. The forward PDE (6) is commonly
used for maximum likelihood parameter estimation from discretely observed
market data [17]. The solution p(s, t) describes the transition probability
density between two observed states. Stochastic and deterministic simula-
tion approaches to approximate transition densities are compared in [18],
and solution methods based on RBF approximation are derived in [19, 20].
In the recent paper [21], the forward PDE is solved using a finite volume
method to calibrate stochastic local volatility models.

To use (6) for option pricing, we integrate the pay-off function φ(s,K)
against the probability density p(s, T ) and discount the result as

u0(K,T ) = e−rT
∫
s∈R+

p(s, T )φ(s,K)ds. (7)

This means that we solve the Fokker-Planck equation (6) once and can then
use (7) to price options with different pay-off functions φ(s,K). This is
useful from a practical point of view as it is common to price many contracts
simultaneously for the same underlying diffusion model.

The question is then why deterministic forward pricing methods are
not widely used. In [22] a forward pricing method was implemented for
a two-dimensional basket option using mesh adaptive FEM for the spatial
discretization. The resulting method was not competitive in terms of com-
putational time due to the effect of the Dirac initial condition. In order to
capture the initial development of the probability density accurately enough
to reach the desired error tolerance in the final solution, adaptive remeshing
had to be performed several times.

In order to preserve the property of only solving one PDE for several
contracts, while avoiding the troublesome Dirac initial condition, there is a
third way to derive a deterministic mathematical model. In [23] it is shown
that for a European call option under the Black-Scholes model, integration

of (6) twice with respect to s and using that ∂2(s−K)+
∂s2

= δ(s−K) gives the

4



Dupire equation

∂u

∂T
− 1

2
σ2K2 ∂

2u

∂K2
+ rK

∂u

∂K
= 0,K ∈ R+, T > 0,

u(K, 0) = (s0 −K)+.

(8)

In this case, given the asset value today, s0, we get the option values for
all values of K > 0 and T > 0. This means that by solving one PDE in
forward time we obtain many option prices. A drawback with this approach
is that a new PDE needs to be derived for each type of payoff. In, e.g., the
articles [22, 24, 25, 26, 27] Dupire-like equations are derived for some other
types of options. In practice, the Dupire equation is used more often for the
purpose of calibrating volatility surfaces, than for pricing options.

Methods that do not fall into the previous categories are binomial tree
methods, where a discrete version of both the forward and backward problem
is solved, and Fourier methods that use the characteristic function of the
underlying dynamics and can avoid the solution of any differential equation.
Fourier methods were shown to be highly efficient in [1].

In this paper, we show that a deterministic forward pricing method where
RBF approximation is applied to (6) can be a competitive approach if spe-
cial care is taken to deal with the initial condition. As a pilot case, we
have implemented the method for options on one underlying asset follow-
ing Black-Scholes dynamics. The success for this case shows that it can be
worthwhile to extend this to higher-dimensional pricing problems as well as
to other types of dynamics. A simple extension that can be applied with-
out additional computational effort is to consider variable interest rate and
volatility such that (3) becomes

dSt = µ(St, t)dt+ σ(St, t)dWt,
S0 = s0.

(9)

In the related work [28], the forward pricing approach is employed for pricing
options where the underlying asset follows a CGMY-process. The idea to
use this approach in [28] originated with the present paper.

The outline of this paper is as follows. In Section 2, the mathemati-
cal model is derived in more detail. In the following Sections, 3 and 4, we
describe the numerical treatment of the initial condition and the time dis-
cretization, while Section 5 is devoted to the description of the RBF-method
for the spatial approximation. Section 6 shows how to compute the expected
payoff using analytical integration, while Section 7 presents the results from
our numerical experiments. Finally, conclusions are drawn in Section 8.
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2. Mathematical model

In this paper we consider options issued on assets that follow the dy-
namics in (1). The different types of options that we use as examples are
European call options of vanilla type with payoff

φ(s,K) = (s−K)+, (10)

and barrier up–and–out options with payoff

φ(s,K) =

{
(s−K)+, 0 ≤ s < B,
0, s ≥ B. (11)

where B is the barrier above which the option becomes worthless. However,
much of the methodology described in the paper can be applied generally
for options of European type. If we for instance consider binary options that
have payoff functions

φ(s,K) =


A, s > K,
A/2, s = K,
0, s < K,

(12)

the probability density function p(s, t) is the same as for the European call
option and hence the solution strategy is identical for this option type. We
refer to the option defined by (10) as a vanilla option and the option defined
by (11) as a barrier option.

For the probability density function that solves (6), it holds that

p(0, t) = 0, t ∈ [0, T ]. (13)

For the vanilla option, it further holds that lims−→∞ p(s, t) = 0. We truncate
the domain and solve for p in s ∈ [0, D], and prescribe boundary conditions
at ∂Ω defined by s = 0 and s = D. For the vanilla option the probability
density function has the analytical solution

p(s, t) =
1√

2πtσs
exp

(
−(log(s/s0)− (r − σ2/2)t)2

2σ2t

)
. (14)

To choose a suitable D, we solve the equation p(s = D,T ) = ε, which gives

D = s0 exp

[
(r − 3

2
σ2)T + σ

√
2σ2T 2 − 2T (rT + log(εs0

√
2πT ))

]
, (15)

where ε is a chosen tolerance.
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The PDE in (6) may be written as a continuity equation,

∂p

∂t
+
∂J

∂s
= 0 (16)

where

J = rsp− 1

2

∂

∂s

(
σ2s2p

)
. (17)

To derive a natural boundary condition at s = D, we interpret (16) and
(17) as Kirchoff’s law, where J is a probability current [29]. To preserve the
total probability density in Ω it is sufficient to require that the probability
current vanishes at the boundary ∂Ω, which is trivially true at s = 0. Thus
we prescribe

J = 0, s ∈ ∂Ω. (18)

For the barrier option, the option value is non-zero if the underlying asset
did not hit the barrier during the time interval [0, T ]. Otherwise, the option
is worthless. Since the probability of hitting the barrier is positive, the
probability density mass that contributes to the option value decreases over
time. This is reflected by a homogeneous Dirichlet boundary condition at
s = B in this case

p(B, t) = 0, t ∈ [0, T ]. (19)

Altogether, this gives us the following initial-boundary value problem to
solve

∂p

∂t
+ Lp = 0, s ∈ Ω, t ∈ (0, T ], (20)

Lbp = 0, s ∈ ∂Ω, t ∈ (0, T ], (21)

p(s, 0) = δ(s− s0), s ∈ Ω, (22)

where

Lp(s, t) =
∂p

∂t
− 1

2

∂
(
σ2s2p

)
∂s2

+
∂ (rsp)

∂s
, (23)

Lbp(0, t) = p(0, t), (24)

Lbp(D, t) = −rsp(D, t) +
1

2

∂

∂s
(σ2s2p(D, t)) (vanilla option), (25)

Lbp(B, t) = p(B, t) (barrier option). (26)

In the following sections we describe how to solve Problem (20)–(22)
numerically.
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3. Approximation of the probability density function for small
times using Hermite polynomials

A major challenge when solving (20)–(22) is the approximation of the
initial condition (22) due to the singularity of the Dirac function. To avoid
this problem, we approximate the probability density function at a small
positive time t0 using the strategy introduced in [30] by Aı̈t-Sahalia. The
idea in [30] is to approximate the density function pS(s, t0) associated with

dSt = µS(St)dt+ σS(St)dWt,
S0 = s0,

(27)

using orthogonal Hermite polynomials. In order to ensure convergence of
the approximation, the original process (27) is transformed into a process

Y ≡ γ(S) =

∫ S

0

1

σS(u)
du,

with dynamics

dYt = µY (Yt)dt+ dWt,

µY (y) =
µS(γ−1(y))

σS(γ−1(y))
− 1

2

∂σS
∂s

(γ−1(y)).

Next, a second transformation is introduced

Z ≡ Y − y0√
t0

,

where for a fixed t0, Z is close to a N (0, 1)-variable. Using this to approxi-
mate pZ(z, t0) it is possible to find

pY (y, t0) =
1√
t0
pZ(

y − y0√
t0

, t0)

and finally

pS(s, t0) =
1

σS(s)
pY (γ(s), t0).

This gives us (for details, see [30])

pS(s, t0) =
1

σS(s)
√
t0
f

(
y − y0√

t0

)
exp

(∫ y

y0

µY (ω)dω

) L∑
`=0

c`(y)
t`0
`!
, (28)
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where

c0(y) = 1,

c`(y) = ` (y − y0)−`
∫ y
y0

(ω − y0)`−1
(
λY (ω)c`−1(ω) + 1

2
∂2c`−1(ω)

∂ω2

)
dω, ` ≥ 1,

y = γ(s), y0 = γ(s0), and finally

ηY (y) = −1
2µ

2
Y (y)− 1

2
∂µY (y)
∂y ,

f(z) = exp(−z2/2)/
√

2π,

λY (y) = −1
2µ

2
Y (y)− 1

2
∂
∂yµY (y).

Using this approach for S in (1), we have

y = γ(s) =

∫ s

0

1

σx
dx =

log(s)

σ
,

µY (y) =
r

σ
− 1

2
σ,

λY (y) = −1

2
(
r

σ
− 1

2
σ)2,

c1(y) = −1

2
(
r

σ
− 1

2
σ)2,

c2(y) =
1

4
(
r

σ
− 1

2
σ)4,

cl(y) =
(−1)`

2`
(
r

σ
− 1

2
σ)2`.

Hence, we can get an approximate solution to (6) at time t0 by taking the
first three terms in (28) to get

p̃(s, t0) =
1

σs
√

2πt0

(
1− 1

2

( r
σ
− σ

2

)2
t0 +

1

8

( r
σ
− σ

2

)4
t20

)
×

×exp

(
− 1

2t0

(
log(s/s0)

σ

)2

+
( r
σ
− σ

2

)( log(s/s0)

σ

))
.

(29)

The properties of this approximation are discussed in detail in [30]. Here we
can note that the error in the approximation e(t0) = maxs(p̃(s, t0)−p(s, t0))
can be estimated through the first neglected term in the expansion (28). By
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forming the term involving c3 and maximizing over the argument of the
exponential function we get

e(t0) ≈
t2.50

48σs0
√

2π

( r
σ
− σ

2

)6
exp

(
−σt0(

r

σ
− σ

2
)
)
, (30)

for the Black-Scholes model. The error estimate has been numerically vali-
dated and it accurately reflects the true error values. The error as a function
of the volatility σ vanishes for σ =

√
2r and increases with the distance from

that point both for larger and smaller values of the volatility. For the bar-
rier option, the density approximation above is valid until the time when
the probability mass at the barrier location B becomes non-negligible. In
both cases, the approximation error grows with the size of the time step t0.

We use the approximation (29) as a new initial condition for the sys-
tem (20)–(22) such that we instead solve

∂p

∂t
+ Lp = 0, s ∈ Ω, t ∈ (t0, T ], (31)

Lbp = 0, s ∈ ∂Ω, t ∈ (t0, T ], (32)

p(s, t0) = p̃(s, t0), s ∈ Ω. (33)

There is a trade-off between the error (30) introduced by the approxima-
tion (29) that grows with t0 and the numerical error in interpolating p̃(s, t0)
that decreases with t0 due to the increasing smoothness of the initial con-
dition. In Section 6 we establish numerically how large the first time-step
should be.

4. Discretization in time using BDF-2

We divide the time-interval [t0, T ] into M time-steps of length km =
tm − tm−1, m = 1, . . . ,M , and let the approximate solution at the discrete
times tm be denoted by

pm(s) ≈ p(s, tm).

The BDF-2 implicit time-stepping method [31] uses a backward Euler step
for the first time interval, and a two-step approximation for the remaining
time intervals. The method is given by

pm(s)− βm0 Lpm(s) = fm, s ∈ Ω, m = 1, . . . ,M

Lbpm(s) = 0, s ∈ ∂Ω, m = 1, . . . ,M,

p0(s) = p̃(s, t0), s ∈ Ω ∪ ∂Ω,

(34)
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where

fm = pm−1 s ∈ Ω, m = 1,
fm = βm1 p

m−1(s)− βm2 pm−2(s), s ∈ Ω, m = 2, . . . ,M,

The coefficients are defined by β10 = k1, and

βm0 = km
1 + ωm
1 + 2ωm

, βm1 =
(1 + ωm)2

1 + 2ωm
, βm2 =

ω2
m

1 + 2ωm
, m = 2, . . . ,M,

where ωm = km/km−1. By choosing ωm such that βm0 = β10 = k1, we obtain
the same operator in the left hand sides of (34) for all time-steps, which
is computationally efficient. In [32] a recursion formula is derived for this
purpose.

5. Radial basis function approximations in space

We solve (34) using approximation with global RBFs in space, see [33]
for more information on RBF approximation methods. Such methods are
meshfree, and approximations are defined on scattered node sets. A stan-
dard RBF approximation p̃m(s) to pm(s) in (34) is given by

p̃m(s) =

N∑
j=1

λmj ϕ(‖s− scj‖), (35)

where ‖ · ‖ is the Euclidean norm, λmj ∈ R for j = 1, . . . , N , m = 1, . . . ,M ,

and Sc = {scj}Nj=1 is the set of center nodes for the real-valued RBFs ϕ(r). In

this paper we use Gaussian RBFs ϕ(r) = e−ε
2r2 , where the shape parameter

ε governs the flatness of the RBFs.
A common approach to determine the coefficients λmj in RBF approx-

imation methods is collocation at the set of node points Sc. However, in
this paper we use a least squares formulation for the approximation which
separates center nodes and evaluation points [34]. We define two sets of
evaluation points, a set of interior points Se = {sej}

Ne
j=1 where we enforce the

Fokker-Planck equation using least squares, and a set of boundary points
Sb = {sbi}

Nb
i=1, Nb + Ne > N , where we enforce the boundary conditions

exactly.
We collect the unknown coefficients λmj at each time level into the two

vectors λ̄m = (λm1 , . . . , λ
m
N−Nb)

T and κ̄m = (λmN−Nb+1, . . . , λ
m
N )T and de-

fine the corresponding subsets of center nodes Sλc = {scj}
N−Nb
j=1 , and Sκc =

11



{scj}Nj=N−Nb+1. By also defining the solution vectors p̄me = p̃m(Se), p̄
m
b =

p̃m(Sb), where p̃m(Se) = (p̃m(se1), . . . , p̃
m(seNe))

T and similarly for p̄mb we get
the following relations

p̄me = ϕ(Se, S
λ
c )λ̄m + ϕ(Se, S

κ
c )κ̄m,

p̄mb = ϕ(Sb, S
λ
c )λ̄m + ϕ(Sb, S

κ
c )κ̄m

(36)

where ϕ(Se, S
λ
c ) is the Ne × (N − Nb) matrix with elements ϕ(‖sek − scj‖),

k = 1, . . . , Ne, j = 1, . . . , N −Nb, and similarly for the other combinations.
Combining (34) and (36) results in the following over-determined system of
equations for the RBF coefficients at each time step:(
ϕ(Se, S

λ
c )− β0Lϕ(Se, S

λ
c ) ϕ(Se, S

κ
c )− β0Lϕ(Se, S

κ
c )

Lbϕ(Sb, S
λ
c ) Lbϕ(Sb, S

κ
c )

)(
λ̄m

κ̄m

)
=

(
f̄m

0

)
,

(37)
m = 1, . . . ,M , where Lϕ(Se, S

λ
c ) is the Ne× (N −Nb) matrix with elements

Lϕ(‖sek − scj‖), k = 1, . . . , Ne, j = 1, . . . , N −Nb, and similarly for the other
matrices with operators. To simplify the notation in the description of the
solution algorithm, we denote the four matrix blocks by Aij , i, j = 0, 1.

In order to enforce the boundary conditions exactly, we eliminate κ̄ from
the first block row in (37) to obtain(

C 0
A10 A11

)(
λ̄m

κ̄m

)
=

(
f̄m

0

)
, m = 1, . . . ,M, (38)

where
C = A00 −A01A

−1
11 A10.

For the collocation of the boundary conditions we use Sb = Sκc , i.e., the
points where we evaluate the boundary conditions coincide with the center
points. This gives that A11 (which is a square matrix) is symmetric and
non-singular for standard choices of RBFs including Gaussians [35].

We summarize the above in the following algorithm to solve (37) with
exact enforcement of the boundary conditions and a linear least squares
solution in the interior:

1. Solve Cλ̄m = fm in the least squares sense.

2. Solve A11κ̄
m = −A10λ̄

m.

Due to the specific choice of time-step to use in (34), the coefficient matri-
ces C and A11 are the same for all time-steps and can be factorized once
prior to the time-stepping. The factorization step consists of the following
computations:
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1. Factorize A11 = LU .

2. Form C using the factorization of A11.

3. Factorize C = QR.

6. Computation of option prices

By the numerical procedure defined in Sections 3, 4 and 5, we can com-
pute an approximation to the probability density at the time of maturity
p̃M (s) ≈ p(s, T ). Using this density in Equation (7), we can compute the
option price for a general pay-off function φ(s,K) by numerical integration.
However, for a large class of pay-off functions, this integral can be computed
analytically when the density is approximated by Gaussian RBFs.

From (7) and the fact that

p(s, T ) ≈ p̃M (s) =
N∑
j=1

λMj e
−ε2(s−sj)2 , (39)

we get

u0(K,T ) ≈ e−rT
N∑
j=1

λMj

∫ ∞
0

e−ε
2(s−sj)2φ(s,K)ds. (40)

Using the properties of the normal distribution (Gaussian) density, we have
that ∫ b

a
e−ε

2(s−sj)2 =

[√
π

2ε
erf(ε(s− sj))

]b
a

.

From the definitions (10), and (11) of the pay-off functions for the options
that we consider, we see that we need∫ ∞

K
e−ε

2(s−sj)2ds =

[√
π

2ε
erf(ε(s− sj))

]∞
K

,

∫ ∞
K

s e−ε
2(s−sj)2ds =

[
− 1

2ε2
e−ε

2(s−sj)2 +

√
πsj
2ε

erf(ε(s− sj))
]∞
K

,

to obtain the vanilla option prices

u0(K,T ) = e−rT
N∑
j=1

λMj

[√
π

2ε (sj −K) (1− erf (ε(K − sj))) + 1
2ε2
e−ε

2(K−sj)2
]
,

(41)
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and the barrier option prices

u0(K,T ) = e−rT
N∑
j=1

λMj

[
− 1

2ε2
(e−ε

2(B−sj)2 − e−ε2(K−sj)2)+

+
√
π

2ε (xi −K) (erf(ε(B − xi))− erf(ε(K − xi)))
]
.

(42)

Similarly, if we are interested in pricing a binary option with pay-off function
(12) we get

u0(K,T ) = Ae−rT
N∑
j=1

λMj

[√
π

2ε
(1− erf(ε(K − sj)))

]
. (43)

Due to the nature of the solution for p(s, t) using the RBF method with
Gaussian basis functions (39), analytical expressions like (41), (42), and
(43) can be derived for many option types.

7. Numerical results

The aim of this paper is to investigate whether forward deterministic
pricing can be competitive compared with other pricing methods, and to
understand how to apply the method to a given problem in the best pos-
sible way. For the evaluation of the method, we use one-dimensional prob-
lems with analytical solution. If the question regarding competitiveness
is answered affirmatively, we can use the understanding gained about the
method to develop forward pricing for multi-asset or multi-factor options as
well as options following other types of dynamics in future work.

The method is implemented in MATLAB and the numerical experiments
are performed using a laptop with an Intel R© CoreTM2 Duo CPU T9550, 2.66
GHz, and 4 GB RAM. The two test cases used are the vanilla option and
the up-and-out barrier option with B = 1.5.

We start by illustrating the properties of the two test problems. The
probability densities at the time of maturity p(s, T ) for an initial asset value
s0 = 1 for the vanilla option and the barrier option are shown in Figure 1.
The two densities are similar, but due to the barrier B = 1.5, the distribution
for the barrier option goes directly to zero, while the unconstrained density
continues smoothly.

Figure 2 shows the option values as a function of K for both options.
The prices are also similar, but the barrier price is lower as expected.
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Figure 1: Probability density function p(s, T ) for a vanilla option and barrier option
respectively. The parameters used are σ = 0.2, s0 = 1.0, r = 0.05, T = 1.0, and t0 = 0.01.
For the barrier option the barrier B = 1.5.
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Figure 2: Value of vanilla option and barrier option as a function of strike price K. The
parameters used are the same as in Figure 1, σ = 0.2, s0 = 1.0, r = 0.05, T = 1.0,
t0 = 0.01, and B = 1.5.

The method described in the previous subsections has the parameters
t0 for the length of the Aı̈t-Sahalia step, ε for the shape of the RBFs, h
for the distance between RBFs, and M for the number of time steps. Each
parameter has an influence on accuracy and computational cost. We will go
through one parameter at a time and see how they can be chosen in relation
to the problem parameters. The accuracy is measured in terms of the errors
in the computed option values. We define the pointwise and maximum norm
errors as

eu(K) = |u(K,T )− uexact(K,T )|,
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Eu = max
K

eu(K),

where K ∈ [0, D] for the vanilla option and K ∈ [0, B] for the barrier option.
The functions uexact and u denote the analytical option price using Black-
Scholes formula (see Appendix A), and its approximation obtained using
our proposed method, respectively.

As target for the error tolerance we have set Eu = 10−4, which is reason-
able for practical applications. For the vanilla option, the size of the com-
putational domain D is determined from (15) using the tolerance ε = 10−8.
The number of least-squares evaluation points should be related to the num-
ber of RBFs N = D/h + 1. We have used Ne = 3N evaluation points in
all simulations. In experiments for parameters that influence the spatial
approximation, we let the number of time steps M = 500, such that the
error due to the time discretization is negligible compared to the spatial
approximation errors.

In the first experiment, we investigate how to choose t0. If we choose a
small t0, the initial condition is sharp, and we may need a small h (large
N) to resolve it in the RBF approximation. The computational cost for
initializing the RBF matrices is O(N3) and the cost for each time step is
O(N2). Hence, in terms of computational cost we want to maximize t0.
On the other hand, the accuracy of the initial approximation decreases with
increasing t0. In Figure 3 log(Eu) is plotted against t0. We can see that
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Figure 3: Error in the option price as a function of t0 for different σ for both a vanilla
option and a barrier option. The parameters used are s0 = 1.0, r = 0.05, and T = 1.0.

when t0 is as large as 0.1, we start getting an error in the option price that
is larger than the target error. We conclude that a reasonable choice of t0
is around 0.01 and use this in the subsequent experiments in this section.
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In [36], our proposed method to advance the first time-step using (29)
was compared with the method suggested in, e.g., [37, 38], where the Dirac
initial condition was approximated using matching of moments. In the pa-
rameter range that we are studying in this paper, our proposed method was
numerically shown to be superior. If we were to consider parameters that
deviate largely from the ones studied here, we believe that by fine-tuning of
t0, our proposed method would still be the method of choice.

For a given h, the choice of shape parameter ε does not influence the
computational cost. However, it can have a significant influence on the
accuracy of the solution. When the shape parameter becomes too small, the
RBF matrices become ill-conditioned and the numerical accuracy suffers,
while for large shape parameters, the approximation accuracy is reduced
leading to larger errors in the option values.

In Figures 4 and 5 we show contour plots of the errors in the option prices
as a function of h and ε. In the same figures red lines that are fitted to the
minimal error are displayed. It is clear that the lines follow the region of
smallest error and that the error grows both for larger and smaller values of
the shape parameter. The optimal shape parameter values are represented
by ε(h) = 0.81

h + 0.15 for the vanilla option and ε(h) = 0.35
h + 0.15 for the

barrier option.
Numerical experiments for the other problem parameters s0, r, σ, T , and

B show that these do not significantly affect the error profiles in Figures 4–5.
The formulas for ε(h) given above are used in the remainder of the paper.
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Figure 4: Error in the vanilla option price for different ε and h using s0 = 1.0, r = 0.05,
σ = 0.2, and T = 1.0. The color values represent log10(Eu).

The next parameter to determine is h. As discussed already when choos-
ing t0, the computational cost grows rapidly with N = D/h+ 1. We should
therefore find the largest h that gives an error less or equal to the target
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Figure 5: Error in the barrier option price for different ε and h using s0 = 1.0, r = 0.05,
σ = 0.2, T = 1.0, and B = 1.5. The color values represent log10(Eu).

level 10−4. The only problem parameter that showed a significant influence
on the error in our experiments is σ, which is expected as the volatility
influences the width of the probability density function. The optimal h for
the given target error is plotted against σ in Figure 6. There is a linear
dependence between σ and h. The fitted lines are h = 0.55σ for the vanilla
option and h = 0.2σ for the barrier option. The size of h alone does not tell
what the final computational cost is, it needs to be related to the size of the
computational domain D, which also grows with σ. As is shown later in this
section the net effect of σ, h and D is that the number of RBFs N is almost
the same for the tested volatilities. This means that the computational cost
is insensitive to the volatility.
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Figure 6: The spatial discretization parameter h needed to obtain an error in the option
value that is less than 10−4 for different σ together with fitted linear functions h(σ) for
both a vanilla option and a barrier option. The parameters used are s0 = 1.0, r = 0.05,
T = 1.0, and B = 1.5 for the barrier option.
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We end this section by comparing our proposed method with the corre-
sponding least-squares RBF method [1] to solve the Black-Scholes equation
(5) for a vanilla option. For the forward pricing method, the parameters
are chosen according to the formulas derived in this section. For the Black-
Scholes solver, we tune the parameters to achieve the target accuracy of
10−4. We use the same relation for the least squares evaluation points
Ne = 3N as for the forward method. The computational domain is given
by s ∈ [0, 3K]. The value of M is for both methods manually determined to
be the smallest value that does not influence the final error in the solution.

The results of the comparison are reported In Table 1. We display the
log of the error, `E = log10(Eu), to show that all the results are close to the
target accuracy. For the forward pricing method, both the time to compute
the option price for one pay-off function, T1, and the time to compute the
option price for 100 pay-off functions, T100, when the underlying asset is
following the same dynamics is presented.

Forward method with s0 = 0.9 B-S with s0 = 0.9

σ `E D h N M T1 T100 `E N M T1

0.1 -4.1 2.05 0.055 38 10 0.039 0.063 -4.2 60 10 0.145
0.2 -4.1 3.54 0.110 32 10 0.031 0.052 -3.7 60 10 0.145
0.3 -4.0 5.94 0.165 36 10 0.034 0.057 -3.7 60 50 0.173

Forward method with s0 = 1.0 B-S with s0 = 1.0

σ `E D h N M T1 T100 `E N M T1

0.1 -4.0 1.69 0.055 32 10 0.031 0.052 -4.1 60 10 0.145
0.2 -4.0 2.92 0.110 27 10 0.028 0.044 -4.0 60 10 0.145
0.3 -3.9 4.91 0.165 30 10 0.031 0.051 -3.9 60 10 0.145

Forward method with s0 = 1.1 B-S s0 = 1.1

σ `E D h N M T1 T100 `E N M T1

0.1 -4.0 1.87 0.055 35 10 0.032 0.055 -4.1 60 10 0.145
0.2 -4.0 3.23 0.110 31 10 0.031 0.052 -3.6 60 10 0.145
0.3 -3.9 5.43 0.165 33 10 0.032 0.053 -3.6 60 50 0.173

Table 1: The logarithm of the error in the computed option value, `E together with the
computational time to obtain the solution for one contract T1 and 100 contracts T100 for
s0 = 0.9, 1.0, and 1.1 and σ = 0.1, 0.2, and 0.3. The other parameters used are r = 0.05,
K = 1, and T = 1.0.

The comparison shows that the forward pricing method is 3.5–5.5 times
faster than solving the Black-Scholes equation with a corresponding method.
For the Black-Scholes results, T100 = 100T1, and if we instead compute the
time retios for pricing 100 contracts, forward pricing is 230–330 times faster
than solving the Black-Scholes PDE for each contract.

Going back to the comparative study [1], we find that the fastest adaptive
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finite difference method was 4.5 times faster than the least squares RBF-
based Black-Scholes solver RBF-LSML, which is the method used in the
comparison with the forward RBF method introduced here. This means that
the new method is as fast as the finite difference method for one-dimensional
problems.

8. Conclusions

Pricing based on the forward equations clearly offers an advantage with
respect to pricing of multiple contracts, as the cost for integrating the payoff
against the probability density is negligible compared with the computations
to approximate the density. However, the numerical experiments show that
even for pricing a single option, our proposed method is faster than the
corresponding backward pricing method.

A key to this success is the analytical advancement of the initial Dirac
function in time such that the PDE solution can start from a smooth initial
condition, together with the application of a numerical method that is highly
accurate for smooth solutions.

By using approximation with infinitely smooth Gaussian RBFs, we can
achieve not only the tolerance of 10−4 used in the paper, but also higher
accuracies, efficiently. The particular choice of Gaussians furthermore allows
us to express the integration of simple payoffs against the density in terms
of known functions, and we do not need to employ numerical integration
schemes.

We have made a structured investigation of how to choose the method
parameters and found simple relationships that provide an understanding of
how errors and parameters interact. These can be used to achieve a desired
tolerance in the option prices.

Further work on how to perform the analytical approximation for multi-
factor dynamics is needed to extend the method to higher dimensions, and
given the promising results in one dimension, this is an interesting direction
for future research.
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Appendix A. Analytical formulas for the option prices

For the European call option, the closed form expression uexact = uC for
the option price is given by

uC(t, s0,K, T, r, σ
2) = s0N (d+(s0/K, T−t))−Ke−r(T−t)N (d−(s0/K, T−t)),

(A.1)
where

d+(x, y) =
1

σ
√
y

(
log(x) +

(
r +

σ2

2

)
y

)
, (A.2)

d−(x, y) =
1

σ
√
y

(
log(x) +

(
r − σ2

2

)
y

)
, (A.3)

and N (x) is the cumulative distribution function for the standard normal
distribution. For the barrier call up–and–out option, the closed form ex-
pression uexact = uB for the option price is given by

uB(t, s0,K, T, r, σ
2) = uC(t, s0,K, T, r, σ

2) − uC(t, s0, B, T, r, σ
2)

−
(
B
s0

) 2r
σ2
−1 (

uC(t, B2/s0,K, T, r, σ
2) − uC(t, B2/s0, B, T, r, σ

2)
)
.

(A.4)
For further details on the analytical expression for the barrier option, see [39,
Theorem 18.12 p. 271].
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