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Abstract
Mondal, R. 2017. Relativistic theory of laser-induced magnetization dynamics. Digital
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and
Technology 1558. 115 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0070-2.

Ultrafast dynamical processes in magnetic systems have become the subject of intense research
during the last two decades, initiated by the pioneering discovery of femtosecond laser-induced
demagnetization in nickel. In this thesis, we develop theory for fast and ultrafast magnetization
dynamics. In particular, we build relativistic theory to explain the magnetization dynamics
observed at short timescales in pump-probe magneto-optical experiments and compute from
first-principles the coherent laser-induced magnetization.

In the developed relativistic theory, we start from the fundamental Dirac-Kohn-Sham
equation that includes all relativistic effects related to spin and orbital magnetism as well as
the magnetic exchange interaction and any external electromagnetic field. As it describes both
particle and antiparticle, a separation between them is sought because we focus on low-energy
excitations within the particle system. Doing so, we derive the extended Pauli Hamiltonian that
captures all relativistic contributions in first order; the most significant one is the full spin-
orbit interaction (gauge invariant and Hermitian). Noteworthy, we find that this relativistic
framework explains a wide range of dynamical magnetic phenomena. To mention, (i) we
show that the phenomenological Landau-Lifshitz-Gilbert equation of spin dynamics can be
rigorously obtained from the Dirac-Kohn-Sham equation and we derive an exact expression for
the tensorial Gilbert damping. (ii) We derive, from the gauge-invariant part of the spin-orbit
interaction, the existence of a relativistic interaction that linearly couples the angular momentum
of the electromagnetic field and the electron spin. We show this spin-photon interaction to
provide the previously unknown origin of the angular magneto-electric coupling, to explain
coherent ultrafast magnetism, and to lead to a new torque, the optical spin-orbit torque. (iii)
We derive a definite description of magnetic inertia (spin nutation) in ultrafast magnetization
dynamics and show that it is a higher-order spin-orbit effect. (iv) We develop a unified theory
of magnetization dynamics that includes spin currents and show that the nonrelativistic spin
currents naturally lead to the current-induced spin-transfer torques, whereas the relativistic spin
currents lead to spin-orbit torques. (v) Using the relativistic framework together with ab initio
magneto-optical calculations we show that relativistic laser-induced spin-flip transitions do not
explain the measured large laser-induced demagnetization.

Employing the ab initio relativistic framework, we calculate the amount of magnetization
that can be imparted in a material by means of circularly polarized light – the so-called inverse
Faraday effect. We show the existence of both spin and orbital induced magnetizations, which
surprisingly reveal a different behavior. We establish that the laser-induced magnetization
is antisymmetric in the light’s helicity for nonmagnets, antiferromagnets and paramagnets;
however, it is only asymmetric for ferromagnets.
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Part I:
Introduction





1. Introduction

The ever increasing amount of human-made digital information requires novel
technological solutions that can be summarized in two main keywords smaller
and faster. Smaller refers to the area of a magnetic bit, which needs to be
minimal to achieve high-density information storage, while faster refers to the
speed with which huge data amounts can be processed. Early data storage
devices were slow, large in size, expensive and had a small storage capacity.
For example, the first computer hard disk drives in 1956 used 50 discs each
of 24 inches, however, the total data storage was only up to 5 MB [1]. Over
the last few decades data storage technology has been proceeding according to
Moore’s law prediction which states that the area of a single storage element
decreases by a factor of two in every 18 months [2].

In electronic storage devices the information storage is commonly manipu-
lated by an electric current, which, due to unavoidable resistivity losses, causes
Joule heating and thus puts a limit on achieving smaller devices. Conversely,
magnetic storage devices are non-volatile and based on fundamentally differ-
ent principles. The latter exploit the magnetic “spin”, which can be viewed as
a small vector that is either pointing up or down just like in logic bits (“one”
and “zero”). In order to record digital data, one has then to reverse the spin
from up to down or vice-versa. Now the important, open question is: how
fast can the spins be reversed efficiently? One possible way is to use a mag-
netic field pulse in the opposite direction of the spins alignment [3, 4]. It
is known that the fastest reversal can be obtained by the precession of spins,
where the angular precession frequency, the Larmor frequency, is proportional
to the magnitude of the magnetic field [5–8]. If the magnetic field is infinitely
strong, the switching will be quickest, however, restricted to the magnetic field
pulse duration. It has been shown that if the magnetic field pulse width is less
than 2 picoseconds (ps), the precession leads to unwanted non-deterministic
spin switching [9] which effectively sets an upper limit to the reachable speed
of controllable magnetization reversal.

Another route to achieve fast switching could be to use optical laser pulses
instead of magnetic field pulses, because laser pulses are the fastest man-made
events that can have pulse durations of femtoseconds (fs) down to attoseconds
(10−18 s) [10]. Other important properties of contemporary laser sources are:
monochromaticity (single frequency), coherency (no phase separation), and
collimation (do not diverge over long distances). The very first observation to-
wards ultrafast modification of magnetic information was done in 1996, when
Beaurepaire and co-workers used femtosecond laser pulses and demonstrated
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laser-induced ultrafast demagnetization within a timescale of less than a ps in
ferromagnetic nickel [11]. They used a 60 fs laser pulse on an about 20 nm
thick nickel sample and measured the magneto-optical Kerr effect (MOKE)
signal in a pump-probe ultrafast spectroscopy set-up. Their observation indi-
cated that it could be possible to manipulate magnetization with femtosecond
laser pulses at previously unthought, short timescales. Their discovery initi-
ated moreover the birth of a new branch of solid-state physics, that of ultra-
fast magnetism, which has since then emerged as a burgeoning field of much
current interest. Thenceforth many groups have begun to probe the ultrafast
magnetization dynamics using ultrashort laser pulse sources. Additionally,
the understanding of the fundamental mechanism of ultrafast laser-induced
demagnetization has become a topic of intense debates. A few important
questions that have been raised in the on-going discussion can be summa-
rized as: magnetism or optics or opto-magnetism? [12–21]. At the same time
the microscopic channel that can provide an ultrafast transfer of spin angu-
lar momentum has been hotly debated [22–26]. Understandably, the outcome
of this debate can have far-reaching consequences for the development of the
next-generation ultrafast storage devices.

When the magnetic material is irradiated with a laser pulse, the absorp-
tion of laser light by the electron system leads to the rapid increase of the
electron temperature, after which the received energy dissipates into the other
available degrees of freedom of the system (e.g., the lattice and spins). There-
fore the laser-induced magnetization changes can be of thermal origin, which
limits reaching faster recording because a cooling time is required to reach
again the initial values of the system’s parameters [27]. Also, heating acts as
a non-deterministic process on the magnetization direction. A possible ultra-
fast, non-thermal and all-optical manipulation of spins was shown by Kimel
et al. in 2005 [28], who used circularly polarized laser pulses to excite and co-
herently control the spin dynamics in a magnetic insulator. In particular they
deduced that circularly polarized light pulses of 200 fs could act as the equiv-
alent of a magnetic field pulse with strength of the order of 5 Tesla, by means
of a special non-linear effect, the inverse Faraday effect (IFE). A basic view
on this is that, since the circularly polarized light carries angular momentum,
the interaction between the light’s angular momentum and spins would induce
an effective magnetic field, which is opposite for right- and left-circular polar-
izations of the laser beam. After this first observation the helicity of light has
become an important tool for opto-magnetic recording, as one could employ
one helicity to write deterministically a magnetization direction and erase it
with the opposite helicity, giving birth to an emerging new research field, that
of All-Optical Helicity-Dependent Switching (AO-HDS) [29–33].

Laser-induced demagnetization and switching have become topics of in-
tense discussions, because of their importance for potential applications in
future memory devices. Also, in spite of the numerous experimental observa-
tions the underlying fundamental processes are not yet understood properly,
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leaving many open questions yet to be answered. For example, how does
the angular momentum of light interact with the electron spin? What is the
magnitude of the effective induced magnetic field by the light? How does the
electromagnetic field of the laser light govern the magnetization dynamics on
fast and ultrafast timescales? What is the dissipation channel that leads to
the removal of spin angular momentum on sub-picosecond timescales? What
are the ruling parameters that determine the strength of the dynamical pro-
cesses? What are the relevant expressions of these parameters? Are these ab
initio calculable? Are these microscopic parameters related to a quantity that
is experimentally measurable? To answer these aforementioned questions is
sometimes phenomenologically possible, however, their understanding from a
fundamental theory is largely missing. For example, phenomenologically the
IFE was thought to induce a magnetic field [28], yet it is not completely un-
derstood whether the IFE induces a magnetic field or magnetization. If it is an
induced magnetization, is it only the spins that contribute or also laser-induced
orbital magnetic effects to be considered, too?

A further, related field of current interest is that of magnetization dynam-
ics [34–36]. Traditionally, the time-evolution of a magnetization distribution
in a small volume element is described by the phenomenological Landau-
Lifshitz equation [37–40], which forms the foundation of contemporary mi-
cromagnetic simulations. The Landau-Lifshitz equation, and its extension,
the Landau-Lifshitz-Gilbert equation, which typically are valid on nanosecond
timescales, describe the Larmor precession of the local magnetization around
an effective magnetic field as well as the slow damping of the magnetization
until it is aligned along the magnetic field vector. Although both equations are
extensively used for spin dynamics simulations, they are nevertheless purely
phenomenological, i.e., without an existing derivation from fundamental prin-
ciples. Similarly, the important Gilbert damping parameter is often considered
to be of relativistic microscopic origin, however, this has not been proven ex-
plicitly from relativistic theory and it is not yet unambiguously established
what the microscopic expression for the Gilbert damping is. Furthermore,
there has recently been interest in magnetic inertial dynamics that might con-
tribute to ultrafast deterministic switching [41]. The effect of magnetic inertia
can be phenomenologically introduced as a torque due to a second-order time-
derivative of the magnetization [41, 42]. In spite of potential applications of
inertia, the fundamental origin of magnetic inertial dynamics and the corre-
sponding expression for the inertia parameter are still unknown.

On a similar note, additional terms have recently been added to the Landau-
Lifshitz-Gilbert equation to capture phenomenologically the effects of spin
transport [43–45]. In typical magnetic metallic heterostructures that are used
in magnetic random-access memories (MRAM) there are nonmagnetic metal-
lic layers and ferromagnetic layers [46–48]. The spins of the electrons in the
non-ferromagnet are randomly oriented whereas the spins in the ferromagnet
point overall in the same direction. When an electric current is applied to
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the metallic heterostructure, electrons from the non-ferromagnet enter into the
ferromagnet and can become spin-polarized during the transfer and thus gen-
erate a spin-polarized current flow. The interaction of the spin-polarized cur-
rent with the ferromagnetic magnetization of a further layer provides a spin-
transfer torque which can be employed to switch the magnetization of this
“free” layer [49–51]. Another spin torque which has recently drawn much
attention is the spin-orbit torque, where a relativistic effect, the spin Hall
effect, generates a spin accumulation in a nonmagnetic layer that can then
influence the orientation of the magnetization of an adjacent ferromagnetic
layer [45, 52–54]. The various spin torques play obviously paramount roles in
nanoscale spintronic devices [55–58]. It has recently been shown that laser-
induced spin currents can be used, too, to manipulate ultrafast the magnetiza-
tion in metallic heterostructures [59–61]. In spite of these recent successes, the
origin of spin torques from a fundamental theoretical framework is missing in
the literature.

Along the same line of reasoning, a phenomenologically predicted cou-
pling of the angular momentum density of light and the magnetic moment
could explain several interesting phenomena [62]. This coupling, called angu-
lar magneto-electric coupling, is based on the understanding that in the pres-
ence of a ferro-toroidic order in a multiferroic material, the toroidic dipole
moment (moment of magnetization, expressed as TTT = 1

2
∫

rrr×MMM drrr with mag-
netization MMM and position rrr) can be controlled by crossed electric and magnetic
fields [63]. Such a coupling term has been suggested to be important for the
anomalous Hall effect, planar Hall effect, and anisotropic magnetoresistance
in ferromagnets [64, 65]. However, the mere existence of such coupling term
from fundamental principles has not yet been shown.

This thesis
In the present thesis we establish the missing fundamental origins of several
above-mentioned effects and equations from the Dirac theory, specifically,
from the Dirac-Kohn-Sham framework. The reason for this is that the Dirac
equation is both compact and foundational, as it contains all the information
needed to describe a relativistic particle (and antiparticle) with spin- 1

2 . As we
treat in particular magnetic materials, we also include the effect of the mag-
netic exchange interaction as an effective Kohn-Sham mean field. Although
this might appear as an approximation the underlying Density-Functional The-
ory (DFT) [66–69] in fact provides a formally exact mapping of the ground
state of the correlated many-particle problem onto that of a single particle
moving in an effective mean field. To account for the light-induced relativistic
effects in a magnetic solid we consider the effect of the laser light (an electro-
magnetic field) through the change in momentum by means of the so-called
minimal coupling. The considered Dirac-Kohn-Sham Hamiltonian is a 4× 4
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matrix describing both the particles and antiparticles; to examine in detail its
low-energy excitations, however, the separation of particles and antiparticles is
mandatory for any given momentum [70]. The Foldy-Wouthuysen transforma-
tion has been a successful way to achieve this [71], however, it was previously
only done without accounting for the exchange field. Performing the Foldy-
Wouthuysen transformation we derive a Hamiltonian which describes the rel-
ativistic particles with spin- 1

2 and has terms similar to those of the nonrela-
tivistic Pauli Hamiltonian, but includes as well all the relativistic corrections.
The most important first order relativistic correction is the spin-orbit coupling,
which, in its full form, is shown to be gauge invariant and Hermitian. The
other derived relativistic corrections include the Darwin term (independent of
spin), the relativistic mass correction and previously unknown relativistic cor-
rections to the exchange interaction. The higher-order relativistic correction
terms give higher-order contributions to the spin-orbit coupling, which, as we
show, also play an interesting role for spin dynamics on ultrafast timescales.

Once we have performed the Foldy-Wouthuysen transformation and de-
rived all terms, relativistic and nonrelativistic, of the effective single-particle
Hamiltonian, we proceed to investigate their effects in, and their contribu-
tions to, ultrafast magneto-optics, magnetization dynamics on fast and ultra-
fast timescale, spin torques, the inverse Faraday effect, and the relativistic
spin-photon, or angular magneto-electric coupling. Therefore, the sequence
of the topics addressed in this thesis is as follows:

Chapter 2 discusses the most general relativistic quantum formulation,
starting from the Dirac equation. The separation of particle and antiparticle
is discussed extensively within the Foldy-Wouthuysen transformation. The
discrepancies of the present transformation and other methods are pointed out
and discussed in detail. To this end, we treat the Dirac-Kohn-Sham Hamilto-
nian for the magnetic system of our interest and we derive the extended Pauli
Hamiltonian with relativistic corrections up to the second order in the small
quantity 1

c4 , where c is the speed of light in vacuum.
Chapter 3 discusses magnetization dynamics in the most general relativis-

tic formulation. Within the Heisenberg picture, the dynamical equation of
motion of a local magnetization (or spin) is derived from the Hamiltonian
obtained in Chapter 2. In particular, we focus on the origin of the Gilbert
damping parameter and derive, within the Dirac-Kohn-Sham theory, an exact
new expression for tensorial Gilbert damping, which can easily be calculated
in an ab initio framework. The Gilbert damping tensor is shown to contain,
in general, an isotropic Heisenberg-like contribution, an anisotropic Ising-like
contribution, and a chiral, or Dzyaloshinskii-Moriya-like contribution. In ad-
dition, we show that the magnetic inertial dynamics originates from a higher
order contribution to the spin-orbit coupling, and that it is therefore expected
to play a role only at ultrashort timescales. Utilizing the same platform, we
derive the exact spin current contributions that arise from the nonrelativistic
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and relativistic Hamiltonians as well as the spin torques generated by them in
a generalized theory for magnetization dynamics and spin transport.

Chapter 4 deals with the effects that the derived relativistic Hamiltonian
terms have on laser-induced ultrafast demagnetization processes. We start with
discussing the various proposed mechanisms for ultrafast laser-induced de-
magnetization, where one of these is that demagnetization is due to relativistic
laser-induced spin-flip processes. We implement the derived ultra-relativistic
terms in the conductivity tensor in a Kubo linear-response theory formula-
tion and quantify the difference in the optical conductivity and MOKE spectra
while treating the nonrelativistic as well as all the relativistic terms. Moreover,
we discuss the role of relativistic effects in coherent ultrafast magnetism and
show that the newly derived relativistic spin-photon coupling can explain the
measured coherent ultrafast magnetism [22].

Chapter 5 discusses the theoretical understanding of the inverse Faraday
effect. We start with a classical description, followed by the quantum de-
scription. Within the latter description, we calculate the laser-imparted orbital
and spin magnetizations for a wide range of materials (nonmagnetic, ferro-
magnetic, synthetic antiferromagnetic) within an ab initio framework. To end
with, we discuss the spin-photon or angular magneto-electric coupling. First,
we establish a new relativistic Hamiltonian which describes the coupling of
the light’s angular momentum to the electron’s spin, and thereby, to the mag-
netic moment. We show, furthermore, that the newly derived Hamiltonian can
contribute as well to the inverse Faraday effect.

These main chapters will be followed by further chapters as summary and
outlook, a summary in Swedish (populärvetenskaplig sammanfattning på sven-
ska) and acknowledgements.
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Part II:
Summary of the results





2. Relativistic Hamiltonian Formulation

2.1 Introduction
Quantum theory has been the key to understand the fundamental properties
and dynamics of subatomic particles e.g., electrons, protons, neutrons etc.
The fundamental description of quantum physics starts with the Schrödinger
equation [72, 73] which describes a nonrelativistic quantum particle very ef-
ficiently. It is effectively a single particle theory and the corresponding wave
function bears all the information of that particle. However, there are few
discrepancies in the Schrödinger description: (a) In the quantum nature of a
particle, the concept of “spin” was missing in the Schrödinger equation. (b)
As the atomic number increases in the periodic table, the nuclear diameter is
no longer negligible and the approximation of potential as 1/r, the Coulomb
potential, is not valid anymore. (c) If the particle velocity is comparable to
the speed of light, c, relativity comes into play. (d) Schrödinger theory is not
Lorentz covariant as it involves different orders of space and time derivatives.
(e) Creation and annihilation of particles are not allowed in the Schrödinger
theory as the integration of probability density of the particle all over the space
is unity.

Thereafter, Gordon [74] and Klein [75] attempted to derive a relativis-
tic wave equation to describe a relativistic particle where the difficulties are
eliminated, if not all. The obvious choice was to use the relativistic energy-
momentum relation E2 = p2c2 +m2c4, where ppp is the particle momentum,
m and E define the mass and the energy of the particle, for a Lorentz co-
variant theory [76–78]. Then the classical energy and momentum operators
are replaced by the their corresponding quantum operator as E → ih̄ ∂

∂ t and
ppp→−ih̄∇∇∇ and thus we obtain the Klein-Gordon (KG) equation(

∂μ∂ μ +
(mc

h̄

)2
)

ψ = 0 , (2.1)

for a four-component wave function, ψ , and four-component space-time po-
sition operator rμ = (r0 = ct,rrr) with the definition ∂μ = ∂

∂ rμ . The free par-
ticle solution of the KG equation takes the form of plane waves, ei(Et−ppp·rrr)/h̄,
thus both positive and negative energies are involved as E =±

√
p2c2 +m2c4.

This essentially leads to the transition of particles from positive to low-lying
negative energy states. As the KG equation contains the second-order time-
derivative, the corresponding probability density is not positive definite (see
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the book by J. J. Sakurai [79] or by P. Strange [70] for details), rather for
a strong potential the KG probability density can become negative which is
absurd. Moreover, once again the concept of particle “spin” was not taken
into account in the KG relativistic theory. In accordance with the Schrödinger
and the KG theory, therefore, we have to look for a relativistic equation with
first order time-derivative yet including the spin. In 1928 Dirac [80] derived
such an equation and in 1930 he re-explained the positive and negative energy
states in the KG theory will be occupied by the particles and antiparticles re-
spectively [81] such that the creation and annihilation of particles are allowed
- which is the main theme in many-particle theory.

2.2 Dirac theory
The KG theory was interpreted properly by Dirac. However to include the par-
ticle spin, the search for a new relativistic equation led to the Dirac equation
[80, 82] which is first order in the time-derivative and according to Lorentz co-
variance the spatial derivative has to be first-order as well. The main objective
of Dirac was to derive a equation that describes electrons i.e., spin- 1

2 particles.

2.2.1 Towards the Dirac equation
Dirac considered once again the relativistic energy relation and put it in a
different form to obtain a first-order time-derivative

Eψ =
√

p2c2 +m2c4 ψ . (2.2)

As the right-hand side should also be first order in space-derivative and the
momentum operator is exactly the one that fulfills this condition, Dirac sug-
gested to write the equation as

ih̄
∂ψ
∂ t

=
[
c(α1 px +α2 py +α3 pz)+βmc2]ψ , (2.3)

where α and β are the Dirac variables. At this point, the forms of αi and β
are not known, however, they can not be scalar quantities as it would violate
KG theory [83]. They can not be functions of time, t or position as all points
in the space-time are equivalent [80]. To satisfy the KG equation the character
of the Dirac matrices can be revealed as

α2
i = β 2 = 1 ,

αiβ +βαi = {αi,β}+ = 0 ,
αiα j +α jαi = {αi,α j}+ = 2δi j . (2.4)
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The condition that the Hamiltonian has to be Hermitian leads to the fact that
αi and β must be Hermitian. To construct the 4× 4 matrix representation of
the Dirac equation, Dirac introduced Pauli spin matrices as

ααα =

⎛
⎝ 0 σσσ

σσσ 0

⎞
⎠ β =

⎛
⎝ I2 0

0 −I2

⎞
⎠ . (2.5)

Here the vectors are represented by the bold characters. σσσ are the 2×2 Pauli
spin matrices, I2 represents the 2× 2 unit matrix. Finally, the Dirac equation
is written in the appropriate form

ih̄
∂ψ
∂ t

=
(
cααα · ppp+βmc2)ψ , (2.6)

with ψ as a four-component Dirac bi-spinor. Now we look at the success of the
Dirac equation by solving the discrepancies as we stated in the beginning of
the chapter. The effect of quantum spin has been included through Pauli matri-
ces. It describes the relativistic particle. It is Lorentz covariant as is demanded
from special relativity. As the Dirac equation is similar to the Schrödinger
equation, the probability density is always positive definite. In the presence
of an electromagnetic (EM) field, the momentum of the Dirac particle (elec-
tron) will be changed by the minimal coupling (gauge-invariant substitution)
as ppp→ ppp−eAAA, where AAA(rrr, t) is the vector potential and e < 0 is the electronic
charge.

2.2.2 Nonrelativistic limit
Even though Dirac equation describes a relativistic particle with spin effi-
ciently, in the nonrelativistic limit it should converge to the Schrödinger equa-
tion. For a spin- 1

2 Dirac particle, the four-component wave function can be
written in the two-component wave function

ψ(rrr, t) =

⎛
⎝ Ξ(rrr, t)

ξ (rrr, t)

⎞
⎠ . (2.7)

The upper two-components Ξ define the positive energy solutions (spin-up and
spin-down) and the lower two-components ξ are for negative energy solutions.
Therefore, the 4× 4 Dirac equation essentially becomes two coupled 2× 2
equations as

ih̄
∂Ξ(rrr, t)

∂ t
= cσσσ · pppξ (rrr, t)+mc2Ξ(rrr, t) , (2.8)

ih̄
∂ξ (rrr, t)

∂ t
= cσσσ · pppΞ(rrr, t)−mc2ξ (rrr, t) . (2.9)
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For a free particle at rest, we have two decoupled first order differential equa-
tions, which can be solved easily. However, when the particle is in mo-
tion (momentum), the positive and negative energy solutions are coupled. In
the nonrelativistic limit (c → ∞) the upper components, Ξ are considered as
“large” and the lower components, ξ as “small”. In this case as the rest energy,
mc2 is the largest energy, the free particle Dirac solutions are given as

ψ(rrr, t)≈ e−
imc2

h̄ tψ(rrr) . (2.10)

This follows for the small components as

ih̄
∂ξ (rrr, t)

∂ t
≈ mc2ξ (rrr, t) . (2.11)

Insert this equation back in Eq. (2.9), the lower components are approximated
as

ξ (rrr, t) =
cσσσ · ppp
2mc2 Ξ(rrr, t) . (2.12)

Putting this back in Eq. (2.8) to get the equation for the upper components
gives

ih̄
∂Ξ(rrr, t)

∂ t
=

1
2m

σσσ · pppσσσ · pppΞ(rrr, t)+mc2Ξ(rrr, t) . (2.13)

Here we use the Dirac identity: (σσσ ·aaa)(σσσ ·bbb) = aaa ·bbb+ iσσσ ·(aaa×bbb), for any two
vectors aaa and bbb. At the end we obtain

ih̄
∂Ξ(rrr, t)

∂ t
=

p2

2m
Ξ(rrr, t)+mc2Ξ(rrr, t) . (2.14)

This is an interesting result as in the nonrelativistic limit, the Dirac equation
takes the form of the Schrödinger equation which is expected. However, a new
rest-mass energy, mc2 is introduced. Thus, to describe electrons, we have to
redefine the energy and now in the Dirac Hamiltonian, we will use the shift
in rest-mass energy as (β − 1)mc2 [84]. By doing so we do not lose any
information about electrons, just that the energy levels are shifted.

Until now, we have not discussed the effect of a potential on a relativistic
Dirac Particle. A significant difference is noticed between the Schrödinger
and the Dirac theory when a particle is not free, e.g., the particle moves under
the influence of an EM field. As we have pointed out before, the momentum
will go through minimal coupling, thus Eq. (2.13) will be re-written as

ih̄
∂Ξ(rrr, t)

∂ t
=

1
2m

σσσ · (ppp− eAAA) σσσ · (ppp− eAAA) Ξ(rrr, t) . (2.15)

Note that the rest-mass energy term is dropped for obvious reasons. Using a
similar formalism, and the exact form of the Dirac equation in the presence of
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a EM field, the nonrelativistic limit can be expressed as

ih̄
∂Ξ(rrr, t)

∂ t
=

[
(ppp− eAAA)2

2m
− eh̄

2m
σσσ ·BBB

]
Ξ(rrr, t) . (2.16)

Here, the associated magnetic field BBB = ∇∇∇×AAA. This equation is called the
nonrelativistic Schrödinger-Pauli equation while in the Schrödinger descrip-
tion only the first term of Eq. (2.16) is obtained. The second term in Eq. (2.16)
describes the interaction of the electron’s spin with the external field, which
is known as the Zeeman coupling. We will come back to it later in a detailed
discussion in section (2.5.1).

To summarize, in the nonrelativistic limit, the momentum of a particle be-
comes small compared to the rest-mass energy, then, the upper two-components
of the Dirac bi-spinor describe the Pauli theory in the lowest order. However,
this is not valid anymore for any given momentum of the particle. Moreover,
when we go beyond the lowest order approximation, the Hamiltonian terms
(e.g., spin-orbit coupling) associated with the upper components become non-
Hermitian [71, 85]. Furthermore, in the Dirac theory the momentum operator
is mcααα while in the Pauli theory the momentum operator is ppp in the lowest or-
der. As the Pauli spin matrices do not commute with each other, different com-
ponents of the momentum operator in the Dirac theory can not be measured
simultaneously. In contrast, different components of momentum do commute
in the Pauli theory and they can be measured at the same time [71]. These dis-
crepancies create a question mark of converting four-components Dirac theory
to two-components Pauli theory. In what follows, Foldy and Wouthuysen in
1950 provided a way out in separating two-components from four-components
[71]. In this context, we also mention that an alternative route towards achiev-
ing the nonrelativistic limit, using exact operations, was employed by Kraft et
al. [86]

2.3 Foldy-Wouthuysen transformation
Separating the particles (upper two-components) from antiparticles (lower two-
components) is not assured in the Dirac equation because they are coupled by
the off-diagonal components of the 4× 4 Dirac Hamiltonian. However, the
Foldy-Wouthuysen (FW) transformation provides us with a sufficient tool to
separate the particles from antiparticles for any given momentum. Note that
for any given momentum we can not use the notation of “large” and “small”
components as we had done in the nonrelativistic limit. The essential idea of
FW transformation is to find a new representation of the Dirac theory where
the off-diagonal i.e., the odd operators become negligible so that the upper and
lower two-components can be separated. The FW transformation has exten-
sively been used in condensed matter physics [87–90], optics [91–93], quan-
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tum field theory [94], and many others including electrodynamics [95] and
gravity [96].

2.3.1 Characteristic features
The general features of the FW transformation are discussed in the following
[70, 71, 97, 98]:
◦ It is a unitary and canonical transformation of the Dirac Hamiltonian.
◦ It transforms the four-component Dirac equation into two decoupled

two-component equations. First two-components (upper) describe posi-
tive energy states and the other two-components (lower) describe nega-
tive energy states.

◦ For a free Dirac particle, the FW transformation is exact. Otherwise, the
transformation must be achieved by an infinite sequence of transforma-
tions.

◦ For a Dirac particle in the presence of any external field, the transforma-
tion is not exact. The associated field has to be sufficiently weak to have
finite numbers of terms in the sequences of transformations. For strong
fields, the FW transformation is of doubtful value as the series will be
poorly convergent to incorporate higher order terms.

◦ In the nonrelativistic limit, the first part of the FW transformed Hamil-
tonian resembles Pauli Hamiltonian and the rest can be identified as the
relativistic corrections of the order 1/c2 or more.

2.3.2 Original FW transformation
The Dirac Hamiltonian for a relativistic particle is given as [80]

H = (β −1)mc2 +O +E . (2.17)

The second term in the Hamiltonian is odd as it contains only the off-diagonal
components in the matrix representation and E represents all the even terms
i.e., the diagonal components. Although, the Hamiltonian described in Eq.
(2.6) does not have even terms because of being a free particle, but as soon as
the Dirac particle experiences an external field, the even terms will be impor-
tant. We will discuss this further in Sec. 2.5. We have deliberately used the
shifted energy in order to describe electrons within the Pauli theory [99].

Investigating the commutation relation between the operators β and O , it is
observed that they anticommute with each other i.e., βO = −Oβ . However,
β and E commute with each other i.e., βE = E β .

Now, we seek for such a transformation that makes the odd parts smaller
and smaller as we move up higher orders. In a consequence, the transformation
decouples the upper and lower components of the Dirac bispinor, ψ . Follow-
ing a unitary and canonical transformation, the transformation of the bispinor
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takes the form ψ ′(rrr, t) = eiUFWψ(rrr, t) with the operator UFW which has to be
Hermitian [71]. By doing so, we note that the probability density remains the
same |ψ(rrr, t)|2 = |ψ ′(rrr, t)|2. UFW represents the unitary operator which has to
be chosen suitably. In general, UFW can be time-dependent as is the case for
our formalism through the presence of the magnetic vector potential AAA(rrr, t).
Following the Dirac equation in Eq. (2.6) we can write down

ih̄
∂ψ
∂ t

= H ψ . (2.18)

The left-hand and right-hand sides can be expanded using the transformed
bispinor as

ih̄e−iUFW
∂ψ ′

∂ t
+ ih̄

∂e−iUFW

∂ t
ψ ′ = H e−iUFWψ ′

⇒ ih̄e−iUFW
∂ψ ′

∂ t
=

(
H e−iUFW− ih̄

∂e−iUFW

∂ t

)
ψ ′ . (2.19)

Multiplying both sides by eiUFW from the left-hand side and using the property
of unitary operators, we arrive at

ih̄
∂ψ ′

∂ t
= eiUFW

(
H e−iUFW− ih̄

∂e−iUFW

∂ t

)
ψ ′

=

[
eiUFW

(
H − ih̄

∂
∂ t

)
e−iUFW + ih̄

∂
∂ t

]
ψ ′

≡ HFWψ ′ . (2.20)

Thus, the FW transformed Hamiltonian takes the form [71, 95, 100]:

HFW = eiUFW

(
H − ih̄

∂
∂ t

)
e−iUFW + ih̄

∂
∂ t

, (2.21)

or

HFW = eiUFWH e−iUFW− ih̄ eiUFW
∂e−iUFW

∂ t
. (2.22)

This can be expanded in a series which will involve the commutators of UFW
and the terms present in the considered Dirac Hamiltonian.

2.3.3 Time-independent FW transformation
As seen in the previous section, there are time-derivatives involved in the fi-
nally transformed Hamiltonian in Eq. (2.21) or (2.22). Hence, it is obvious that
for a time-independent FW (TIFW) transformation, one only works with the
expansion of the first term in Hamiltonian (2.22). This is the case for a par-
ticle where the particle does not experience any time-dependent fields (e.g.,
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see Refs. [70, 98] for more details). In fact, for a free particle, it is possible
to find an exact transformation [98], otherwise one has to work with the se-
ries expansion in powers of 1/m. However, it is possible to find an exact FW
transformation for new classes of external fields those are static [101–103].

For TIFW transformation, the unitary operator has to be chosen in a way
such that the following condition is satisfied [71, 101, 104]

HFW = eiUFWHD e−iUFW = β
√

m2c4 + p2c2 , (2.23)

where HD = βmc2 + cααα · ppp is the free particle Dirac Hamiltonian. A few
simple algebraic steps will result in the obvious choice of the operator [101]

UFW =− i
2|p|β ααα · ppp tan−1

( |p|
mc

)
. (2.24)

It should be noted that the derived UFW is odd as it contains ααα matrices which
are Hermitian and most importantly time-independent. Consequently, we get

e±iUFW = e±
1

2|p|β ααα·ppp tan−1
( |p|

mc

)
= cosφ ± βααα · ppp

|p| sinφ , (2.25)

where φ = 1
2 tan−1

( |p|
mc

)
. It is easy to prove that this operation is, indeed,

unitary by evaluating eiUFWe−iUFW = 1. The last equation (2.25) involves the

expansion of eβ ααα·ppp
|p| φ and the use of following properties,

(
βααα · ppp
|p|

)n

=−1 ∀ n ∈ even (2.26)

=−βααα · ppp
|p| ∀ n ∈ odd . (2.27)

One can easily prove that the Eriksen condition is satisfied [101] for an exact
TIFW transformation for spin 1/2 particles,

βeiUFW = β
(

cosφ +
βααα · ppp
|p| sinφ

)

=

(
cosφ − βααα · ppp

|p| sinφ
)

β = e−iUFWβ . (2.28)
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Using the FW transformation in Eq. (2.22) if one evaluates the Hamiltonian,
the subsequent steps will be as follows,

HFW = eiUFW
(
βmc2 + cααα · ppp)(cosφ − βααα · ppp

|p| sinφ
)

= eiUFW

(
cosφ +

βααα · ppp
|p| sinφ

)(
βmc2 + cααα · ppp)

=

(
cos2φ +

βααα · ppp
|p| sin2φ

)(
βmc2 + cααα · ppp)

= βmc2
(

cos2φ +
|p|
mc

sin2φ
)
+ cααα · ppp

(
cos2φ − mc

|p| sin2φ
)
.

(2.29)

Note that, the second term is odd here. Since the original idea was to remove
the odd terms in the transformation, the required condition to eliminate second
term is

tan2φ =
|p|
mc

. (2.30)

This follows to find the corresponding sin2φ and cos2φ which take the value

sin2φ =
|p|c√

p2c2 +m2c4
and cos2φ =

mc2√
p2c2 +m2c4

, (2.31)

and thus the transformed Hamiltonian will take the form

HFW = βmc2

(
mc2 + p2

m√
p2c2 +m2c4

)
= β

√
p2c2 +m2c4 . (2.32)

Finally, the Hamiltonian is diagonalized with the energy of the KG equation.
Due to the presence of Dirac matrices β in the final energy, the Hamiltonian is
four-component - two components for the positive energy of +

√
p2c2 +m2c4

and the other two for the negative energy of −
√

p2c2 +m2c4.

2.3.4 Time-dependent FW transformation
When time-varying fields are involved in the description a Dirac particle, the
time-dependent FW (TDFW) transformation is introduced. The fields are usu-
ally taken as weak fields such that the kinetic and potential energies are smaller
than 2mc2 and the fields act as a perturbation. However, if the fields are strong,
the positive and negative energies can be equivalent to 2mc2. Therefore, for
strong fields the separation of positive and negative energy states are not guar-
anteed [71] and we encounter the so called “Klein Paradox” [105].
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Such a transformation is not exact and thus, we have to rely on the series
expansion in powers of 1/m. For a TDFW transformation one has to keep the
second term in Eq. (2.21) for obvious reasons. Expanding the time-dependent
part and using the Baker-Campbell-Hausdorff (BCH) formula [106–108], one
obtains a series of commutators as

eiUFW

(
H − ih̄

∂
∂ t

)
e−iUFW = H − ih̄

∂
∂ t

+ i
[
UFW,H − ih̄

∂
∂ t

]

+
i2

2!

[
UFW,

[
UFW,H − ih̄

∂
∂ t

]]
+

i3

3!

[
UFW,

[
UFW,

[
UFW,H − ih̄

∂
∂ t

]]]
+ .... . (2.33)

From Eq. (2.21), the transformed Hamiltonian can be expressed as a series of
commutators as following,

HFW = H + i
[
UFW,H − ih̄

∂
∂ t

]
+

i2

2!

[
UFW,

[
UFW,H − ih̄

∂
∂ t

]]

+
i3

3!

[
UFW,

[
UFW,

[
UFW,H − ih̄

∂
∂ t

]]]
+ .... . (2.34)

Essentially, the FW transformation leads the Dirac equation towards the non-
relativistic Pauli Hamiltonian plus all the higher order relativistic corrections.
Following the operator given in Eq. (2.24), tan−1

( |p|
mc

)
is expanded in a Tay-

lor series and only the first term is retained which is |p|
mc . Thus, the unitary

operator will be expressed as

UFW =− i
2mc2 β (cααα · ppp)≡− i

2mc2 βO . (2.35)

This choice of operator is justified because it is Hermitian and also the Eriksen
condition is satisfied as β and O anticommute [101].

Now, we have to evaluate commutators in Eq. (2.34) by using the operator
from Eq. (2.35) and the appropriate form of the Dirac Hamiltonian in Eq.
(2.17). These commutators will generate higher order terms in 1/m. We have
already seen before that the kinetic and the Zeeman terms are of the order 1/m
within Pauli theory (see Eq. (2.16)). In what follows, we will restrict ourselves
up to the second order of relativistic correction i.e., we evaluate all the terms
up to the order 1/m3. We mention that more higher order terms will only be
important for stronger fields [71, 95, 109–113].

♣ First transformation

We consider the Dirac Hamiltonian in Eq. (2.17) and thus it is obvious that
both the terms E and ih̄ ∂

∂ t transform in a similar way. In the following, we
consider the definition F = E − ih̄ ∂

∂ t [100]. With these considerations, we
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evaluate the appearing commutators in the series expansion of Eq. (2.34) as
follows

i
[
UFW,H − ih̄

∂
∂ t

]
=−O +

1
mc2 βO2 +

β
2mc2 [O,F ] . (2.36)

At this point, already, it is important to notice that the first term −O in the
right-hand side already cancels with the odd terms in the Hamiltonian H . Our
goal to eliminate the odd terms is hence achieved, although new odd terms are
generated of higher orders. Calculations of next commutators go as follows

i2

2!

[
UFW,

[
UFW,H − ih̄

∂
∂ t

]]
=− 1

2mc2 βO2− 1
2m2c4 O3

− 1
8m2c4 [O, [O,F ]] , (2.37)

i3

3!

[
UFW,

[
UFW,

[
UFW,H − ih̄

∂
∂ t

]]]
=

1
6m2c4 O3− 1

6m3c6 βO4

− β
48m3c6 [O, [O, [O,F ]]] , (2.38)

i4

4!

[
UFW,

[
UFW,

[
UFW,

[
UFW,H − ih̄

∂
∂ t

]]]]
=

1
24m3c6 βO4 . (2.39)

We have only kept up to the terms 1/m3 and therefore, only one term is re-
tained for the last commutator. Having all these commutators derived, we
write down the new Hamiltonian after first transformation as

HFW = (β −�)mc2 +β
(

O2

2mc2 −
O4

8m3c6

)
+E − 1

8m2c4 [O, [O,F ]]

+
β

2mc2 [O,F ]− O3

3m2c4 −
β

48m3c6 [O, [O, [O,F ]]]

= (β −�)mc2 +E ′+O ′ . (2.40)

This is the expression of the Hamiltonian after first FW transformation up
to the order 1/m3. Looking through the new Hamiltonian in Eq. (2.40), one
notices that the transformation has already eliminated the previous odd terms
of 1/m0. However, new even and odd terms are generated, which we denote as
E ′ and O ′ respectively and they have the order 1/m or higher. Thus, one has
to perform another second transformation to eliminate the higher order odd
terms.

♣ Second transformation

Now, the new odd operator, O ′ will be used to form the new unitary operator

U ′
FW =− i

2mc2 βO ′ , (2.41)
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where the odd operators are collected from Eq. (2.40) as

O ′ =
β

2mc2 [O,F ]− O3

3m2c4 −
β

48m3c6 [O, [O, [O,F ]]] . (2.42)

Following the similar prescription, after the second transformation the Hamil-
tonian becomes

H ′
FW = HFW + i

[
U ′

FW,HFW− ih̄
∂
∂ t

]
+

i2

2!

[
U ′

FW,

[
U ′

FW,HFW− ih̄
∂
∂ t

]]

+
i3

3!

[
U ′

FW,

[
U ′

FW,

[
U ′

FW,HFW− ih̄
∂
∂ t

]]]
+ .... . (2.43)

With the help of the new unitary operator in Eq. (2.41) and the first transformed
Hamiltonian in Eq. (2.40), we have to evaluate the further commutators that
are involved in the second transformation i.e., Eq. (2.43). We keep the terms
only up to the order 1/m3, while the higher order terms have been dropped.
Considering that, the commutators can be evaluated as

i
[
U ′

FW,HFW− ih̄
∂
∂ t

]

=− β
2mc2 [O,F ]+

1
3m2c4 O3 +

β
48m3c6 [O, [O, [O,F ]]]

− β
8m3c6

{
[O,F ] ,O2}− i

6m4c8 O5− β
4m3c6 [O,F ]2

+
1

4m2c4 [[O,F ] ,F ]− β
6m3c6

[
O3,F

]
, (2.44)

i2

2!

[
U ′

FW,

[
U ′

FW,HFW− ih̄
∂
∂ t

]]
=

β
8m3c6 [O,F ]2 . (2.45)

The higher order commutators have the order of 1/m4 or more and therefore,
those are not taken into consideration further. After the second transformation,
the new transformed Hamiltonian is written as

H ′
FW = (β −�)mc2 +β

(
O2

2mc2 −
O4

8m3c6

)
+E − 1

8m2c4 [O, [O,F ]]

− β
8m3c6 [O,F ]2− β

8m3c6

{
[O,F ] ,O2}+ 1

4m2c4 [[O,F ] ,F ]

− β
6m3c6

[
O3,F

]
= (β −�)mc2 +E ′′+O ′′ . (2.46)

Note that, the odd terms have been eliminated up to the order 1/m2 in the
above Hamiltonian. However, by doing so, the new odd terms have been gen-
erated and those are of higher orders i.e., 1/m3 or more. The newly generated
even and odd terms are denoted as E ′ and O ′.
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♣ Third transformation

Following the same procedure, a new odd operator O ′′ is formed so that the
corresponding unitary operator is given by

U ′′
FW =− i

2mc2 βO ′′ , (2.47)

where the odd operator can be expressed as,

O ′′ =− β
8m3c6

{
[O,F ] ,O2}+ 1

4m2c4 [[O,F ] ,F ]− β
6m3c6

[
O3,F

]
.

(2.48)

Notice that the newly formed odd operator has already the order 1/m3 or more.
This indicates that less commutators have to be evaluated as we restrict the
series only up to 1/m3. In fact, only the following commutator will contribute
as,

i
[
U ′′

FW,H ′
FW− ih̄

∂
∂ t

]

=
β

8m3c6

{
[O,F ] ,O2}− 1

4m2c4 [[O,F ] ,F ]+
β

6m3c6

[
O3,F

]
+

β
8m3c6 [[[O,F ] ,F ] ,F ] . (2.49)

The evaluation of the other commutators results in the terms of order 1/m4 or
more and those are dropped. The newly transformed Hamiltonian is given as

H ′′
FW = (β −�)mc2 +β

(
O2

2mc2 −
O4

8m3c6

)
+E − 1

8m2c4 [O, [O,F ]]

− β
8m3c6 [O,F ]2 +

β
8m3c6 [[[O,F ] ,F ] ,F ]

= (β −�)mc2 +E ′′′+O ′′′ . (2.50)

At this point, one can notice that only the last term in the Hamiltonian of Eq.
(2.50) is odd, all the rest have already been transformed to be even.

♣ Fourth transformation

A further transformation is needed as we see that the new odd operator, O ′′′ is
formed. The new unitary operator is given as

U ′′′
FW =− i

2mc2 βO ′′′ , (2.51)

with

O ′′′ =
β

8m3c6 [[[O,F ] ,F ] ,F ] . (2.52)
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The commutator that contributes, is evaluated as,

i
[
U ′′′

FW,H ′′
FW− ih̄

∂
∂ t

]
=− β

8m3c6 [[[O,F ] ,F ] ,F ] , (2.53)

that is odd. Notice that, this term exactly cancels with the existing odd term in
Eq. (2.50). Hence, the final transformed Hamiltonian will be given as

H ′′′
FW = (β −�)mc2 +β

(
O2

2mc2 −
O4

8m3c6

)
+E − 1

8m2c4 [O, [O,F ]]

− β
8m3c6 [O,F ]2 . (2.54)

This is the correct form of the FW transformed Hamiltonian up to the order
1/m3 and we see that all the terms are even. The odd operators up to the same
order are eliminated, in addition, the higher orders are neglected. This gives a
semirelativistic expression where the zeroth order Hamiltonian reveals exactly
the Schrödinger Hamiltonian. Comparing with the Dirac Hamiltonian for a
crystal, O = cααα · ppp and E = V , the crystal potential, the second and fourth
term of Eq. (2.54) lead to the kinetic and potential energies of the Schrödinger
equation.

This method of the FW transformed Hamiltonian was proposed by using
“step-by-step” transformations or an iterative method and calculating the com-
mutators. Although Foldy and Wouthuysen took the weak fields into account,
the higher orders are of doubtful value. In fact, they derived only the first or-
der relativistic correction terms i.e., up to the terms 1/m2 for spin-1

2 particle
strictly [71]. The calculations of second and higher order terms do not derive
all the necessary relativistic correction terms. Therefore, a correction in FW
transformation is needed. We mention that, in 1954, Case generalized the idea
of FW transformation and extended it to include particles with integral spin as
well as arbitrary half-integral spin [114]. Furthermore, the FW operators have
been found for any arbitrary spin and it has been a research topic of current
interest [115–117].

In the next section, we provide other methods to recover the correction
terms in higher order expansion of FW transformation.

2.4 Corrections to the FW transformation
The fact that the original FW transformation is based on a series expansion to-
wards a semirelativistic Hamiltonian, renders the higher order terms of doubt-
ful value. Furthermore, the original method fails when the relativistic correc-
tions i.e., the higher orders diverge. Note that the exponential operator eiUFW

in each step of the FW transformation should have the property that it is odd
and Hermitian [101, 118].
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2.4.1 Eriksen’s method
In 1958, Eriksen developed a general form of the unitary operator, UFW and
subsequently the FW transformation which is single step, not “step-by-step”.
Within Eriksen’s method, the FW transformation can uniquely be defined if the
exponential operator eiUFW is odd and Hermitian [101, 118]. These conditions
are equivalent to

βeiUFW = e−iUFWβ . (2.55)

Eriksen found an operator which is non-exponential in contrast to the original
FW transformation. The search for such an operator which commutes with
H and it has eigenvalues either +1 or −1, results in a sign operator λ in
the following way λ = H√

H 2 . Thereby, the operator βλ or λβ are unitary

given the fact that λ 2 = 1. The operator 1+ βλ has the property that for β
matrix elements equal to 1 or -1, the operator cancels either the lower or upper
components of the Dirac spinor. Instead of an exponential operator, Eriksen
proposed the following operator for an exact FW transformation [100, 101]

eiUFW = SFW =
1+βλ√

2+βλ +λβ
. (2.56)

It is appealing to test the convergence of the operator. Let us consider an
eigenfunction, uδ of βλ such that βλuδ = eiδ uδ . From the left multiplying
with e−iδ λβ in both the sides results in e−iδ uδ = λβuδ . Taking the sum of
both we get

(βλ +λβ )uδ =
(

eiδ + e−iδ
)

uδ = 2cosδ uδ . (2.57)

The denominator in the Eriksen operator in Eq. (2.56) becomes

(2+βλ +λβ )uδ = 2(1+ cosδ )uδ . (2.58)

The convergence condition will be given by 2+ 2cosδ > 0 or cosδ > −1.
A few other properties of the operator has to be noted: S2

FW = βλ , S†
FW =

λβSFW and then SFWS†
FW = 1. Once the Eriksen operator is constructed, it is

interesting to see whether the original FW transformation operator is achieved
(see Appendix A for details).

The Eriksen operator for the FW transformation can be used for a particle
with any spin [100]. The FW transformation within Eriksen’s method will be
given as following for the time-independent case [101],

H Erik
FW = SFWH S†

FW . (2.59)

Note that this transformation is not iterative because it does not involve the
exponential operators, unlike the original FW transformation.
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♣ Free Dirac particle

For a free Dirac particle, the following Eriksen operator is derived

λ =
βmc2 +O√
m2c4 +O2

, (2.60)

with the fact that E = 0 and O = cααα · ppp. Since, β and λH commute with each
other and λH = H λ , we get (1+βλ )H = H (1+λβ ). This implies that
H S†

FW = SFWH and the Eriksen condition is satisfied. The transformation in
this case is rather easy and will be given as

H Erik
FW = SFWH S†

FW = S2
FWH = βλH = β

√
m2c4 +O2 . (2.61)

This result is exactly the same as the result presented in Sec. 2.3.3. Again, it
is important to note that Eriksen’s method is not “step-by-step”, rather it is a
single transformation.

♣ Dirac particle in a potential

When a Dirac Particle experiences a potential then E �= 0. Thus, we have to
calculate the λ operator carefully, and that involves the determination of

√
H 2

in the denominator. The latter will be written as
√

H 2 =
√

m2c4 +O2 +E 2 +2βmc2E +{O,E }

= βmc2

√
1+

O2 +E 2 +2βmc2E +{O,E }
m2c4 . (2.62)

Now this has to be expanded in a Taylor series and the transformation will
have the relativistic correction terms in the powers of O/m and E /m. The an-
alytic expansion is non-trivial and rather cumbersome. However, by using an
analytic computer program E. de Vries and J. E. Jonker derived all the correct
relativistic terms up to the order 1/c8 [85]. To include the time dependency,
one works with F = E − ih̄ ∂

∂ t instead of E and finally the results up to the
order 1/m3 will be given in a compact form as [85, 100, 110]

H Erik
FW = (β −�)mc2 +β

(
O2

2mc2 −
O4

8m3c6

)
+E − 1

8m2c4 [O, [O,F ]]

+
β

16m3c6 {O, [[O,F ] ,F ]} . (2.63)

Again, this approach does not need any subsequent iterations. Let us verify
the two Hamiltonians - one obtained by the original FW transformation in
Eq. (2.54) and the other obtained by Eriksen’s method in Eq. (2.63). All the
Hamiltonian terms are the same in both cases except the last term which has
the order 1/m3c6. This proves that the original FW transformation does not
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produce the correct terms in the higher order, as already discussed earlier. We
can write down the last term in Eq. (2.63) in the following way

β
16m3c6 {O, [[O,F ] ,F ]}= β

16m3c6

[[
O2,F

]
,F

]− β
8m3c6 [O,F ]2 .

(2.64)

Thus, we see that the original FW transformation could capture only one term
e.g., only the last term in Eq. (2.64). However, the first term in Eq. (2.64)
has the same order of the coefficient and even term that was not present in the
original FW transformation. The reason is discussed in the next Section.

2.4.2 Other methods
In the original FW transformation, the first unitary operator UFW is of the order
of 1/c2 and during the iterative process, any subsequent operator is 1/c2 times
smaller than the previous one. The expansion with the BCH formula thus
generates errors which was pointed out by Eriksen and Kolsrud [118]. The
correction of errors can be performed in the following ways [100].

Let us take two preceding exponential operators as eiUFW and eiU ′FW in two
successive transformations. The main problem underlies the fact that, the com-
mutator [UFW,U ′

FW] �= 0. Neglecting the higher order commutators, we arrive
at1

eiU ′FWeiUFW = ei(U ′FW+UFW) e
1
2 [UFW,U ′FW] . (2.65)

Notice here that the first exponential term in the right side, is odd and Hermi-
tian. However, the correction term, the second one is even and of the order
1/c6. This is the reason that the original FW transformation is only able to
produce correct terms up to the order 1/c4 (see the Eqs. (2.54) and (2.63)).
Therefore, the correction term does not add any odd terms of higher order,
however, adds even “missing” terms. Calculating the latter commutator we
find,

[
UFW,U ′

FW
]
=− β

8m3c6

[
O2,F

]
. (2.66)

As this is of the order 1/c6, the correction term will add the leading even
“missing” terms of the same order or higher to the original FW transformation.
Following the original FW transformation the correction term will be used as

1For two exponential operators, the product is defined as

eAeB = e(A+B) e
1
2 [A,B] e

1
12 ([A,[A,B]]−[B,[A,B]]) ...
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following:

H corr
FW = e

1
2 [UFW,U ′FW]

(
H ′′′

FW− ih̄
∂
∂ t

)
e−

1
2 [UFW,U ′FW] + ih̄

∂
∂ t

= H ′′′
FW−

[
1
2
[
UFW,U ′

FW
]
,

(
H ′′′

FW− ih̄
∂
∂ t

)]
. (2.67)

Thus, the leading order correction will be the given by the commutator,[
1
2
[
UFW,U ′

FW
]
,E − ih̄

∂
∂ t

]
=− β

16m3c6

[[
O2,F

]
,F

]
. (2.68)

This is exactly the “missing” even term, that was not obtained by the original
FW transformation (see Eq. 2.64). Hence, we have shown that up to an order
1/c6, the Eriksen method and the corrected FW method result in the same
transformed Hamiltonian i.e.,

H corr
FW = H Erik

FW . (2.69)

For the higher orders, one needs to take into account the other commutators
for corrections e.g., [UFW,(U ′

FW +U ′′
FW)] (see Ref. [100] for details).

To summarize, the original iterative method proposed by Foldy and Wouthuy-
sen [71] does not produce all the correct even terms in higher order and there-
fore it is not trustworthy. The fact that the different unitary operators do not
commute with each other leads to the “missing” even terms in the original FW
transformation. The correct FW transformation can be achieved by two meth-
ods that are described above. One of them is to consider the corrected even
operator in each iterative process that will produce the missing even terms in
the first place. On the other hand, Eriksen’s method is not iterative rather a sin-
gle step towards the direct FW transformation and can capture all the higher
order even relativistic terms. However, the Eriksen method cannot be used in
practical purposes because it involves the square root of different Dirac ma-
trices (see Eqs. (2.56), (2.62)). Thus, the most applied methods are based on
the correction of the FW transformation and the use of exponential operators.
The intermediate operators in the successive transformations are odd and Her-
mitian in the FW transformation. However, the correction operators are even
and Hermitian, and compensate with the “missing” terms in the original FW
transformation. Let us also mention that the series obtained by semirelativistic
methods diverge when p > mc [100, 111, 117].

Once we have all the relativistic correction terms to the nonrelativistic Pauli-
Schrödinger Hamiltonian, we apply those terms in more physical (e.g., mag-
netic) systems in the next Section.
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♣ Summary of FW transformation
The unitary operators and the corresponding Hamiltonians in each steps of the
original TDFW transformation are given below (these are in agreement with
Ref. [100]):

UFW =− i
2mc2 βO

HFW = (β −�)mc2 +β
(

O2

2mc2 −
O4

8m3c6

)
+E − 1

8m2c4 [O, [O,F ]]

+
β

2mc2 [O,F ]− O3

3m2c4 −
β

48m3c6 [O, [O, [O,F ]]]

U ′
FW =− i

4m2c4 [O,F ]+
iβ

6m3c6 O3 +
i

96m4c8 [O, [O, [O,F ]]]

H ′
FW = (β −�)mc2 +β

(
O2

2mc2 −
O4

8m3c6

)
+E − 1

8m2c4 [O, [O,F ]]

− β
8m3c6 [O,F ]2− β

8m3c6

{
[O,F ] ,O2}+ 1

4m2c4 [[O,F ] ,F ]

− β
6m3c6

[
O3,F

]
U ′′

FW =
i

16m4c8

{
[O,F ] ,O2}− iβ

8m3c6 [[O,F ] ,F ]+
i

12m4c8

[
O3,F

]
H ′′

FW = (β −�)mc2 +β
(

O2

2mc2 −
O4

8m3c6

)
+E − 1

8m2c4 [O, [O,F ]]

− β
8m3c6 [O,F ]2 +

β
8m3c6 [[[O,F ] ,F ] ,F ]

U ′′′
FW =− i

16m4c8 [[[O,F ] ,F ] ,F ]

H ′′′
FW = (β −�)mc2 +β

(
O2

2mc2 −
O4

8m3c6

)
+E − 1

8m2c4 [O, [O,F ]]

− β
8m3c6 [O,F ]2

H Erik
FW = (β −�)mc2 +β

(
O2

2mc2 −
O4

8m3c6

)
+E − 1

8m2c4 [O, [O,F ]]

+
β

16m3c6 {O, [[O,F ] ,F ]}
= H corr

FW
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2.5 FW transformation for a magnetic solid in an
electromagnetic field

We have already pointed out that the free particle Dirac Hamiltonian is given
by the Eq. (2.6). Such a theory has been used to describe the ground state
properties of any system by using the concept of particle density, n(rrr) in DFT
[66, 67]. To describe a relativistic particle within relativistic DFT, the Dirac-
Kohn-Sham (DKS) Hamiltonian is written as [70, 119, 120]

H KS
D = cααα · (ppp− eAAAeff)+βmc2 +Veff , (2.70)

where the effective scalar and vector potentials are the functions of external
potentials, exchange-correlation energies [121]. To account for the magnetic
solids, the magnetic exchange interaction is of particular interest as the ex-
change interaction can give rise to an exchange field of the order of 103 T.
The magnetic exchange interaction arises due to the Pauli exclusion principle
which says that two electrons with same spin cannot have the same ‘position’
in a specific orbital. The exchange interaction is responsible for the different
types of spontaneous ordering of atomic magnetic moments occurring in mag-
netic solids e.g., ferromagnetism, antiferromagnetism and ferrimagnetism.

The detailed discussion of different exchange interactions are beyond the
scope of this thesis, however, we stress the point that the corresponding ex-
change field, BBBxc is different from the one of usual Maxwell’s fields, or in
other words, BBBxc does not obey the Maxwell’s equations [122]. The reason
is because BBBxc couples only to the spin degrees of freedom, not to the other
degrees of freedom [122]. Thus, this field is not a proper magnetic field and
cannot be included as a vector potential, AAAxc. Instead, we have to treat the
effect of exchange field in a separate term within the DKS Hamiltonian as
follows [123, 124]

HDKS = cααα · (ppp− eAAA)+(β −�)mc2 +V + eΦ−μBβΣΣΣ ·BBBxc . (2.71)

The electromagnetic field is taken care by the vector potential as minimal cou-
pling and scalar potential energy eΦ, V defines the unpolarized crystal po-
tential and the exchange field is separately accounted. Now, following the
description of the FW transformation, the Hamiltonian in Eq. (2.71) contains
odd terms and even terms. The Dirac matrices ααα have off-diagonal elements
in the matrix formalism and therefore, they form odd operators and β contains
diagonal elements constructing even operators. Following Eq. (2.71), the odd
and even operators can be written as below

O = cααα · (ppp− eAAA) , (2.72)
E =V + eΦ−μBβΣΣΣ ·BBBxc . (2.73)

Therefore, the Hamiltonian can be expressed as in the form of Eq. (2.17).
As the vector potential, AAA(rrr, t) depends on time, a TDFW transformation is
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performed for the separation of particles from antiparticles. The next step will
be to substitute these odd and even operators in Eq. (2.63) and calculate the
Hamiltonian. The corrected FW transformation gives the Hamiltonian terms
discussed further below, which describe spin- 1

2 particles.
Putting together all the derived Hamiltonian terms, we write down the ex-

tended Pauli Hamiltonian including the relativistic effects up to an order of
1/c4:

H extn.
Pauli =

=
(ppp− eAAA)2

2m
+V + eΦ−μB σσσ · (BBB+BBBxc

)
︸ ︷︷ ︸

Pauli Hamiltonian

− (ppp− eAAA)4

8m3c2︸ ︷︷ ︸
mass correction

+
eh̄

8m3c2

{
(ppp− eAAA)2 ,σσσ ·BBB}︸ ︷︷ ︸

indirect field−spin coupling

− eh̄2

8m2c2 ∇∇∇ ·EEE tot︸ ︷︷ ︸
Darwin term

− eh̄
8m2c2 σσσ ·

[
EEE tot× (ppp− eAAA)− (ppp− eAAA)×EEE tot

]
︸ ︷︷ ︸

spin−orbit and spin−photon coupling

+
μB

8m2c2 σσσ ·BBBxc
corr +

iμB

4m2c2 [(ppp×BBBxc) · (ppp− eAAA)]︸ ︷︷ ︸
relativistic corrections to the exchange field

− ieh̄2

16m3c4 σσσ · [∂tEEE tot× (ppp− eAAA)+(ppp− eAAA)×∂tEEE tot]︸ ︷︷ ︸
higher−order spin−orbit coupling

(2.74)

These relativistic Hamiltonian terms seems to be complicated, however,
their physical meanings are immediately explained.

2.5.1 Pauli Hamiltonian
The second and fourth terms in Eq. (2.63) constitute the nonrelativistic Pauli
Hamiltonian, however, yet including the magnetic exchange field. The Pauli
Hamiltonian is written as,

HP =
(ppp− eAAA)2

2m
+V + eΦ−μB σσσ ·BBB−μB σσσ ·BBBxc, (2.75)

where the external magnetic field is given by BBB = ∇∇∇×AAA and μB = eh̄
2m , defines

the Bohr magneton. The last two terms of the Pauli Hamiltonian explains the
Zeeman coupling with the external magnetic field and exchange field respec-
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tively. We choose for simplicity a gauge such that

AAA =
BBB× rrr

2
, (2.76)

which fulfills the Coulomb gauge (∇∇∇ ·AAA = 0) for the uniform magnetic field2.
It is important to note that with this Pauli Hamiltonian one can show how the
different magnetic contributions arise. Incorporating the gauge choice, the
Pauli Hamiltonian can be rewritten as

HP =

(
p2

2m
+V

)
+ eΦ− e

m
BBB · (LLL+gSSS)+

e2

8m
(BBB× rrr)2− e

m
SSS ·BBBxc , (2.77)

with g the Landé g-factor, which is approximately 2 for spin degrees of free-
dom. The spin angular momentum is represented by SSS = h̄

2 σσσ and the orbital
angular momentum is defined by LLL = rrr× ppp. The first term of Eq. (2.77) is ob-
viously the unperturbed Hamiltonian - the Schrödinger terms, the third term is
the dominant perturbation - the paramagnetic contribution and the fourth term
is recognized as the diamagnetic contribution [125].

Note that, the external magnetic field couples to both the spin and the orbital
angular momentum operators, as it should be. However, the exchange field
only couples to the spin degrees of freedom as discussed earlier.

2.5.2 Relativistic mass correction
The very first relativistic correction appears in the form of relativistic mass
correction that is derived from the third term of Eq. (2.63) as

HRMC =−(ppp− eAAA)4

8m3c2 . (2.78)

In the same context, we note that in special relativity, the mass correction
arises from the relativistic momentum-energy relation in Eq. (2.2) such as

E = mc2
(

1+
p2

m2c2

) 1
2

≈ mc2 +
p2

2m
− p4

8m3c2 . (2.79)

As the relativistic mass correction does not concern us about the electron spin,
this will not be considered in our discussions in this thesis which will mostly
focus on the magnetic systems. The expansion of third term of Eq. (2.63)
includes two more terms but those belong to the indirect field-spin coupling
[90]. The spin dependent indirect field-spin coupling term is derived as

Hindirect =
eh̄

8m3c2

{
(ppp− eAAA)2 ,σσσ ·BBB} . (2.80)

2 ∇∇∇×AAA = 1
2 ∇∇∇× (BBB× rrr) = 1

2 [BBB(∇∇∇ · rrr)− rrr(∇∇∇ ·BBB)+(rrr ·∇∇∇)BBB− (BBB ·∇∇∇)rrr] = 1
2 [3BBB−BBB] = BBB

∇∇∇ ·AAA = 1
2 ∇∇∇ · (BBB× rrr) = (∇∇∇×BBB) · rrr−BBB · (∇∇∇× rrr) = 0
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2.5.3 Darwin term
The expansion of the fifth term in Eq. (2.63) gives the so called relativistic
Darwin terms as

HDarwin =− eh̄2

8m2c2 ∇∇∇ ·EEE tot . (2.81)

The corresponding total electric field has two components, the intrinsic electric
field arises from the crystal field and is denoted as EEE int =−1

e ∇∇∇V , however, the
external electric field is derived as EEEext = −∂AAA

∂ t −∇∇∇Φ. This is a relativistic
contribution to the energy which does not have any nonrelativistic analogue.
Within the Darwin theory, the electron cannot be considered as a particle,
rather its position is spread out of the order Compton wavelength h̄/mc, thus
producing a peculiar motion of electrons - Zitterbewegung [70, 126]. As we
are mostly focusing on the magnetic systems, the Darwin terms will not be
discussed furthermore in the following thesis.

2.5.4 Spin-orbit and spin-photon coupling
The other term which also comes from the expansion of the fifth term in Eq.
(2.63), is so-called spin-orbit coupling and has the form

HSOC =− eh̄
8m2c2 σσσ ·

[
EEE tot× (ppp− eAAA)− (ppp− eAAA)×EEE tot

]
. (2.82)

We notice that there exist two different types of spin-orbit coupling: One cou-
ples to the intrinsic crystal electric field which is usually taken as time inde-
pendent - intrinsic spin-orbit. The other one couples to the external electric
field which is time-dependent - extrinsic spin-orbit.

In the same context, we note that in special relativity, when a particle moves
in an electric field, EEE, with velocity vvv, it experiences a magnetic field in its
reference frame, which has the expression BBB =− 1

c2 vvv×EEE. If the particle is an
electron and it moves in a spherically symmetric potential, this magnetic field
will be proportional to the orbital angular momentum, lll, as

BBB =
1

ec2
1
r

dV
dr

vvv× rrr =− 1
mec2

1
r

dV
dr

rrr× (mvvv) =− 1
mec2

1
r

dV
dr

lll . (2.83)

When this magnetic field couples to the electron spin, the interaction energy
is then recognized as the spin-orbit coupling, ∼ σσσ · lll [78]. Thus, it is clear that
the traditional spin-orbit coupling has the following form σσσ · (EEE× ppp) and it is
neither gauge invariant nor Hermitian [127].

However, our derived spin-orbit coupling Hamiltonian in Eq. (2.82) is gauge
invariant by the introduction of minimal coupling and notably Hermitian. Fol-
lowing the Hamiltonian in Eq. (2.82), we denote the traditional spin-orbit term

41



as σσσ · (EEE tot× ppp), however, the spin-photon coupling as σσσ · (EEE tot×AAA). Alter-
natively, we mention that such spin-orbit coupling terms can also be derived
using Møller’s idea in special relativity together with the Schrödinger Hamil-
tonian [128].

Throughout this thesis, we will show that the relativistic spin-orbit and spin-
photon coupling is very much important in explaining many complex physical
phenomena in condensed matter magnetic systems.

2.5.5 Relativistic corrections to the exchange field
The fifth term in Eq. (2.63) also provides the derivation of relativistic correc-
tions to the exchange field while considering the exchange field as the even
terms in the FW transformation. These terms can be written as3

HRCXC =
μB

8m2c2 σσσ ·
{[

p2BBBxc
]
+2(pppBBBxc)·(ppp− eAAA)+2(ppp ·BBBxc)(ppp− eAAA)

+4[BBBxc·(ppp− eAAA)](ppp− eAAA)
}
+

iμB

4m2c2 [(ppp×BBBxc) · (ppp− eAAA)] . (2.84)

The terms within {} can be recognized as the effective Zeeman-like field due
to the exchange field which are relativistic corrections, they can be written as

BBBxc
corr =

[
p2BBBxc

]
+2(pppBBBxc)·(ppp− eAAA)+2(ppp ·BBBxc)(ppp− eAAA)

+4[BBBxc·(ppp− eAAA)](ppp− eAAA) . (2.85)

These terms can be explained as the spin-orbit coupling due to the exchange
field. This is more apparent with the substitution of momentum operators
in the Eq. (2.84) as radial and angular parts: ppp = eeer p̂r − rrr×LLL

r , where p̂r =
−ih̄∂/∂ r is the radial part of the momentum operator and eeer is the unit radial
vector. As the exchange fields are usually very strong for magnetic systems
(ferromagnets), their relativistic corrections cannot be ignored at all.

Apart from the last term in Eq. (2.84), as pointed out, the rest can be written
together to form an effective exchange correction field as BBBxc

corr and the same
can be re-written as

HRCXC =
μB

8m2c2 σσσ ·BBBxc
corr +

iμB

4m2c2 [(ppp×BBBxc) · (ppp− eAAA)] . (2.86)

Notice that, these terms contain all the informations of the interaction among
the spins, the electromagnetic fields and the exchange fields. We also state that
the inclusion of BBBxc in the Dirac equation is not the same as the inclusion in the

3The following vector identity is used for any three vectors aaa, bbb and ccc

(σσσ ·aaa)(σσσ ·bbb)(σσσ · ccc) = (σσσ ·aaa)(bbb · ccc)+(aaa ·bbb)(σσσ · ccc)−aaa(σσσ ·bbb) · ccc+ i(aaa×bbb) · ccc
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Pauli equation. There have been attempts to derive the relativistic correction
terms of exchange fields, however, only a component of the exchange field
was used [86]. Here, in our derivation, we use a general exchange field and
use the corrected FW transformation to obtain the relativistic correction terms
- this has not been done before.

2.5.6 Higher-order spin-orbit coupling
The last term of Eq. (2.63) is a higher order in the transformation as it is of
the order 1/c6. The expansion of the last term gives the Hamiltonian which is
recognized as the higher order spin-orbit coupling that takes the form,

H higher
SOC =− ieh̄2

16m3c4 σσσ · [∂tEEE tot× (ppp− eAAA)+(ppp− eAAA)×∂tEEE tot] . (2.87)

Note that, the difference between Eq. (2.82) and Eq. (2.87) are: (i) the latter
is 1

c2 times smaller than the usual spin-orbit coupling Hamiltonian and (ii)
a first-order time-derivative of the electric field is present in the latter one
while no time-derivative is involved in the usual spin-orbit coupling. But it is
interesting that both of them have similar formulation and they are Hermitian
and gauge invariant. The intrinsic electric field is time independent, thus, their
contributions will be zero in the higher-order spin-orbit coupling, restricting
to the external electric field which only contributes. These higher order spin-
orbit coupling have not often been discussed in the literature but they can have
much importance as well [90]. We note that, the expansion of the last term in
Eq. (2.63) further gives another term which is spin independent and thus we
do not intend to it include here [90].

To summarize, we have used the DKS Hamiltonian in an electromagnetic
environment, however, treated the exchange field separately. Using the cor-
rected FW transformation, we have derived the extended Pauli Hamiltonian
that includes all the relativistic correction terms up to an order 1/c4. In the
next chapters, we will describe how these derived terms contribute to many
physical phenomena in magnetic systems.
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3. Magnetization Dynamics: Precession,
Damping, Nutation, Torque

3.1 Introduction
Magnetism was known since ancient ages; it was probably the ancient Greeks
who first reflected upon the unusual properties of magnetite (iron ore) [129]. It
was used in devices, for example the most common use were the compasses in
navigation. Despite of being used in the ancient times, the fundamental origin
of magnetism in a material was mysterious and concealed. In the middle of
19th century James Clerk Maxwell compiled the theory of electromagnetism,
which was the greatest step in explaining the electricity and magnetism [78].
In particular, the Maxwell equations establish a relationship between the elec-
tric systems (charge density and electric field) and the magnetic systems (cur-
rent density and magnetic field) and they describe how the change of electric
field produces a magnetic field and vice-versa. These equations provide the
cornerstone for understanding electromagnetic phenomena and are even heav-
ily used today [130].

Although magnetism and electricity can be expressed through the Maxwell
equations, the origin of spontaneous magnetism (presence of magnetic field
without any application of an electric field) in some materials cannot be un-
derstood from the Maxwell equations. To this end, the analysis of magnetism
from a quantum theory is required. Here, in the following, first the classi-
cal theory of magnetic moment is given, followed by the quantum theory and
theory of magnetic ordering.

3.2 Magnetic moment
In the classical theory of electromagnetism, when a charged particle moves
in a current loop, it produces a magnetic dipole moment. The magnitude of
the moment is proportional to the amount of current and the area of the loop.
Similarly, when the electron orbits around a nucleus (atom), it gives rise to
an angular momentum. The Einstein-de Haas effect1 could explain that mag-
netism is related to angular momentum, specifically, the magnetic moment is
proportional to the angular momentum of the orbiting electron as

μμμe =
e

2m
LLL . (3.1)

1A freely unmagnetized suspended rod starts to rotate to compensate the angular momentum
when a magnetic field is induced in it.
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The orbital angular momentum of the electron is LLL = rrr× ppp and due to the
negative electronic charge, e = −|e|, the magnetic moment and the angular
momentum are antiparallel to each other [125].

However, the classical explanation of arising magnetic moment is not suf-
ficient, because of the following reasoning. The partition function (describes
the statistical properties e.g., energy, entropy etc. of a system under thermo-
dynamic equilibrium) of N classical particles each of charge q can be written
as

Z =

∫ ∫
...
∫

Exp
[
− E{rrri, pppi}

kBT

]
drrr1drrr2...drrrN d ppp1d ppp1...d pppN , (3.2)

where E{rrri, pppi} is the energy associated to the N charged particles with posi-
tions and momentum rrri and pppi respectively. When a magnetic field (defined
by the vector potential AAA(rrr, t)) is applied to the system, the momentum gets
changed by pppi → (pppi− eAAA) (see the end of Sec. 2.2.1). Therefore the free
energy of the system, F =−kBT logZ is not a function of magnetic field. The
corresponding magnetization is MMM = −∂F/∂HHH is then expected to be zero,
which indicates that considering the ensemble of classical charged particles,
one cannot explain the spontaneous magnetization of materials. The afore-
mentioned statement is known as Bohr van-Leeuwen theorem. The theorem
justifies that the magnetic properties of materials can be properly accounted
only when we go beyond classical physics, into quantum mechanics.

The intrinsic property of an electron is spin, a purely quantum mechani-
cal concept. The electrons not only move in an orbit around the nucleus, but
also precess around their own axes, leading to the origin of spin angular mo-
mentum. For electrons, the spin quantum number, s takes the value 1

2 and the
spin algebra is connected to the Pauli spin matrices σσσ = (σ̂x, σ̂y, σ̂z) in spinor
space. The spin angular momentum is then denoted by SSS = h̄

2 σσσ . Similar to Eq.
(3.1), the spin moment is expressed as

μμμs = g
e

2m
SSS , (3.3)

where g≈ 2, is the Landé g-factor for electrons.
The values of any component of spin angular momentum are discrete and

can take only one of the 2s+ 1 values, provided that the normal component
is determined by the quantum number ms = ±1

2 (corresponding to spin up
and spin down). This is in accordance with the orbital angular momentum
which can also take any of 2l + 1 values, where the orbital quantum number
is l and the z-components are determined by ml = ±l,±(l − 1) and so on.
The magnitude of the total spin angular momentum for atoms with several
electrons is found as S = ∑ms, while the orbital angular momentum is L =

∑ml . The total magnetic moment is then the sum of the orbital contribution
and the spin contribution.

For determining the total moments of electrons on atoms the filling of elec-
tron shells is important. These values of the moment and angular momentum
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Figure 3.1. Hund’s rules for the electrons in a d orbital. S, L and J represent the spin,
orbital and total angular momentum, respectively. A d orbital can contain a maximum
of 10 electrons. According to the Hund’s rule, the filling of electrons in the available
shells dictates the angular momentum in the ground state configuration.

can be calculated from the ground of the electronic configuration of an atom.
The ground state can be obtained from the Hund’s rules that have three main
statements:
(a) Maximize S: this means the spin up electrons will be arranged first in the
available shells and then the spin down, or the other way around. For ex-
ample, if there are two electrons, the total spin angular momentum will be
S = 1/2+1/2 = 1. The blue plot in Fig. 3.1 refers to such an arrangement for
d orbital (l = 2).
(b) Maximize L: this means once S is maximized, the choice of l has to be
such that L is maximized. For example, a d orbital has the z-component of
angular momentum as ml =±2,±1,0 and therefore for two electrons the val-
ues of ml is chosen as +2 and +1 so that the total orbital angular momentum
is L = 2+ 1 = 3. The red plot in Fig. 3.1 refers to such an arrangement for
electrons filling the d orbital.
(c) Maximize J: this means if the shell is more than half-filled, the total angu-
lar momentum is taken as J = L+ S, otherwise, the total angular momentum
can be calculated as J = L−S. For example, the d orbital can have maximum
of 10 electrons, therefore the availability of two electrons follows the less than
half filled arrangement. The total angular momentum will be J = 3− 1 = 2.
The green plot in Fig. 3.1 refers to such an arrangement for the d orbital.

Therefore, using the Hund’s rules, one can conclude that the partially filled
shells give rise to nonzero magnetic moment in the ground state and thus can
explain the origin of magnetism.

47



♣Magnetic ordering

Depending on the orientation of the magnetic moments, the magnetic sys-
tems can be classified into mainly three classes: ferromagnet, antiferromagnet
and ferrimagnet. The ferromagnetic order is obtained when the magnetic mo-
ments are aligned in parallel to each other, producing a finite (nonzero) value
of net magnetization. The antiparallel alignment of the magnetic moments
gives rise to the antiferromagnetic orders resulting a net zero magnetization.
The ferrimagnetic order arises when the magnetic moments are antiparallel to
each other but the magnitude of the magnetic moments are not equal. As a
consequence, the net magnetization is nonzero. Apart from these three usual
magnetic ordering, there exist many complex orders such as the noncollinear
magnetic moments.

Microscopically, the ordered magnetic structure is the result of correlation
among the direction of electrons (spins). This correlation is due to the fact that
the space symmetry of the wave function depends on the magnitude of the re-
sultant spin of the system of electrons. Thus, different values of the energy of
the system in general correspond to wave functions with different space sym-
metry. This effect is called exchange effect and the dependence of energy on
the magnitude of spins i.e., the dependence of energy on the symmetry proper-
ties of the wave functions, is referred to as being due to the exchange interac-
tions. The exchange interaction is mainly responsible for the long-range order
in a ordered magnetic structure. The exchange interaction can be modeled by
the Hamiltonian following the simple Heisenberg prescription [125, 131].

3.3 Magnetization
The magnetization is defined by the magnetic moment per unit volume. There-
fore, one must take the expectation value of the total magnetic moment μμμ as
[131]

MMM =
∫

ψ�μμμψ ∏
i

drrri , (3.4)

where ψ is a many-body wave function. But, the main problem lies with the
fact that the exact many-body wave function is never known for a particular
system. To approximate it, one introduces a set of eigenfunctions of the sys-
tem so that the wave function can be written in a superposition of the eigen
functions (φk) of the system as ψ(rrr1,rrr2, ...,rrrN , t) = ∑k ak(t)φk(rrr1,rrr2, ...,rrrN).
The magnetization can then be recast as

MMM(rrr, t) = ∑
k,k′

a�k(t)ak′(t)μμμkk′ , (3.5)

where μμμkk′ defines the magnetic moment matrix elements. Finally, taking a
time-average and realizing the fact that the statistical density matrix ρkk′ =

48



a�k(t)ak′(t), the magnetization of the entire system becomes

MMM = Tr [ρμμμ] . (3.6)

However, if one is interested in defining a magnetization at the point rrr, we
have to introduce the magnetic moment density as follows

μμμ(rrr) =
1
2 ∑

j

[
μμμ j δ (rrr− rrr j)+δ (rrr− rrr j)μμμ j

]
. (3.7)

For the orbital moment, as it is a function of position and momentum opera-
tor, the symmetrized expression has been used. But, for the spin moment, the
symmetric product is not mandatory because the spin moment and the den-
sity operator commute with each other. Note that, the δ -function defines the
density operator which has the dimension of inverse volume. For a strong fer-
romagnet, the orbital moment is usually quenched because of the cubic crystal
field and the magnetization is largely given by the spin moment only. Thus,
throughout the dynamics, we consider the spin moments, the orbital moments
are ignored. However, it is important to note that a full magnetization de-
scription, including orbital and spin contributions, is necessary to describe the
dynamics for other systems (e.g., lanthanides). We write the magnetization as

MMM(rrr, t) =
gμB

h̄ ∑
j

Tr [ρ SSS j δ (rrr− rrr j)] , (3.8)

where μB is the Bohr magneton which serves as a unit of the magnetic mo-
ment. Once the magnetization is defined for a system, the magnetization dy-
namics can be analyzed appropriately.

3.4 Magnetization dynamics
The time evolution of a magnetization element has been successfully described
within the phenomenological Landau-Lifshitz (LL) equation of motion [37].
The corresponding dynamics involves a precession of the magnetization vector
around an effective field and a subsequent transverse relaxation of magnetiza-
tion that is called damping. Because of the form of the transverse damping, the
magnitude of the magnetization does not change during the LL dynamics. The
proposed phenomenological LL equation for a magnetization element, MMM(rrr, t)
(magnetic moment per unit volume at each point) is defined as

∂MMM
∂ t

=−γMMM×HHHeff−λMMM× (MMM×HHHeff) , (3.9)

where γ is the gyromagnetic ratio, HHHeff is the effective magnetic field and
λ is the scalar isotropic damping parameter that dictates the rate at which
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Figure 3.2. Magnetization dynamics has been schematically depicted. The red ar-
row shows the magnetization vector. It precesses around the effective field and the
damping curves are shown in red color as well.

the z-magnetization direction is dissipated. The effective field includes the
externally applied field, demagnetizing field, magnetocrystalline anisotropy,
spin-spin exchange interaction etc. [132, 133].

However, to include the effect of large (anomalous) damping for real fer-
romagnets, Gilbert modified the preexisting LL equation, accounting for the
Gilbert damping parameter α in the Landau-Lifshitz-Gilbert (LLG) dynamics
[38–40]

∂MMM
∂ t

=−γ ′MMM×HHHeff +αMMM× ∂MMM
∂ t

. (3.10)

This LLG equation of motion can be re-written in the form of LL dynamics
and both the LL and LLG equations are shown to be mathematically equivalent
to each other with the fact that γ = γ ′/(1+α2M2) and λ = αγ ′/(1+α2M2).
The corresponding two dynamics (precession and transverse damping) are
schematically depicted in the Fig. 3.2. Originally the damping parameters
were attributed to the relativistic origins and predicted to be scalar quantities
[37].

For practical purposes, the extension to the LLG equation has been useful to
describe several other dynamical effects. For example, to include the effect of
magnetic inertia (spin nutation), the LLG equations have been extended with
an inertia term. Nutation means a continuous change of the precession angle
of the magnetization vector while it precesses around an effective field. This
effect has been predicted to be observed in ultrashort timescales i.e., sub-ps
[134, 135]. While the Gilbert damping effect enters into the LLG equation
as a first order time-derivative of the magnetization, the nutation dynamics has
been related to the second order time-derivative of the magnetization [42, 135].
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Another extension of the LLG equation is to include the effect of spin cur-
rents, which naturally appear in the spin continuity equation [43, 44]. These
spin currents can be of nonrelativistic and of relativistic origin. By includ-
ing the effect of spin currents in the extended LLG equation, it is possible
to describe phenomenologically the current induced phenomena such as spin-
transfer torque, spin-orbit torque etc.

The derivations of the LLG equations and their extension have been purely
phenomenological and lack the footing obtained from a fundamental equation.
Here, in the below, we provide the origin of all the dynamical motions from
the DKS theory and the extended Pauli Hamiltonian that has been derived in
Chapter 2. Before proceeding to the details of magnetization dynamics, we
point out that using the the Hamiltonian in Eq. (2.74), it is possible to derive
the single Dirac particle spin dynamics (see paper VII for details).

3.4.1 Our approach towards magnetization dynamics
To find the magnetization dynamics, it is important to define the magnetization
properly. In this regard, we note that the magnetization is defined for a many-
body Hamiltonian in Eq. (3.8). However, as our starting point is the DKS
Hamiltonian which is a single particle theory, one cannot use the definition in
Eq. (3.8). Instead, the definition of magnetization for a single particle theory
can be written as the expectation value of the spin density

MMM(rrr, t) =
gμB

h̄
Tr
[
ρ ŜSS(t)δ (rrr− r̂rr(t))

]
. (3.11)

Next, we use the dynamical evolution of magnetization within the Heisenberg
picture where the operators are time-dependent, however, the states do not
evolve in time. Thus, the magnetization dynamics will be given by taking the
time-derivative in the both sides of Eq. (3.11), we arrive to

∂MMM(rrr, t)
∂ t

=
gμB

h̄
Tr

[
ρ

∂ ŜSS
∂ t

δ (rrr− r̂rr)+ρ ŜSS
∂
∂ t

δ (rrr− r̂rr)

]
. (3.12)

In a next step, we employ the Heisenberg equation2 of motion for the time
evolutions of the operators. At the same time, we use the charge continuity
equation such that ∂

∂ t δ (rrr− r̂rr) = −1
e ∇∇∇ · ĵjje, where ĵjje being the charge current

density operator. Therefore, the same dynamics as in Eq. (3.12) can further be

2The Heisenberg equation of motion is defined for any operator Â as

∂ Â
∂ t

=
1
ih̄

[
Â,H

]
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written as

∂MMM
∂ t

+
1
e

gμB

h̄
Tr
[
ρ ŜSS (∇∇∇ · ĵjje)

]
=

gμB

h̄
Tr
[

1
ih̄

ρ
[
ŜSS,Hspin

]
δ (rrr− r̂rr)

]
. (3.13)

Notice that, the associated Hamiltonian on the right-hand side of the last equa-
tion can, in principle, be the full extended Pauli Hamiltonian that has been
derived in Eq. (2.74). However, in practice, only the spin Hamiltonian con-
tributes, otherwise the commutator vanishes. In addition, we consider that the
space derivative of the spin angular momentum is zero. This enables one to
write the Eq. (3.13) in a compact way as 3:

∂MMM
∂ t

+
1
e

gμB

h̄
Tr
[
ρ ∇∇∇ · ( ĵjje⊗ ŜSS)

]
=

gμB

h̄
Tr
[

1
ih̄

ρ
[
ŜSS,Hspin

]
δ (rrr− r̂rr)

]
.

(3.14)

Now, we define the spin current tensor as JS = 1
e

gμB
h̄ Tr

(
ρ( ĵjje⊗ ŜSS)

)
, where ⊗

is the tensor product. In order to calculate the trace, we further employ the
separation of fast and slow variables. The orbital degrees of freedom (current
densities) are usually the fast variables, where as the spin degrees of freedom
(magnetization) are the slow variables. Now, due to the spin-orbit coupling
present in a system, one cannot separate the fast and slow variables because
neither the orbital nor the spin degrees of freedom are conserved. However,
in this case, magnetic systems are being treated where the exchange energies
are much larger than the available relativistic spin-orbit coupling. Therefore,
one can approximate the density matrix to write it in the form as: ρ = ρo⊗ρs,
where ρo and ρs define the reduced density matrix for orbital and spin parts,
respectively. In particular, if Ô define the orbital degrees of freedom and Ŝ
are for the spins, the trace in Eq. (3.14) can be approximated as following
Tr
(
ρÔŜ

)
= Tr

(
ρoÔ

)
Tr
(
ρsŜ

)
. One has also to remember that, in the out-of-

equilibrium dynamics, the orbital degrees of freedom (electric motion) are
much faster than the dynamics of spin (magnetization). With this assumption,
one can write the spin current tensor as JS = 1

e ( jjje⊗MMM) [136].
The associated current density has to be calculated from the Hamiltonian

in Eq. (2.74). One can notice that, as the Hamiltonian contains nonrelativistic
and relativistic terms, the separation of nonrelativistic and relativistic current
densities can be written as jjje = jjjNR

e + jjjR
e . Similarly, the involved spin Hamil-

tonian in Eq. (3.14) can be written as a sum of relativistic and nonrelativistic

3For any two vectors aaa and bbb the divergence of their tensor product is expressed as

∇∇∇ · (aaa⊗bbb) = (∇∇∇ ·aaa)bbb + (aaa ·∇∇∇)bbb
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terms. These contributions can be recovered from the Eq. (2.74) as:

H NR
spin =−μB σσσ · (BBB+BBBxc) , (3.15)

H R
spin =

μB

8m2c2 σσσ ·BBBxc
corr +

eh̄
8m3c2

{
(ppp− eAAA)2 ,σσσ ·BBB}

− eh̄
8m2c2 σσσ · [EEE tot× (ppp− eAAA)− (ppp− eAAA)×EEE tot]

− ieh̄2

16m3c4 σσσ · [∂tEEE tot× (ppp− eAAA)+(ppp− eAAA)×∂tEEE tot] . (3.16)

Therefore, it is possible to write down the magnetization dynamics due to non-
relativistic and relativistic contributions. In the following, we describe the ef-
fects of the spin Hamiltonian terms and current densities in the magnetization
dynamics i.e., Eq. (3.14).

3.5 Precession
We have described the origin of magnetic moments in Sec. 3.2. It is also
interesting to note that when a magnetic moment, μμμ is kept in a magnetic field
BBB, the energy of the magnetic moment is given by E = μμμ ·BBB. This means that
the energy will be minimized when the angle between the magnetic moment
and magnetic field is zero. As a result, if the angle is nonzero, there will be a
torque acting on the magnetic moment and the torque is the rate of change of
angular momentum, given by

dμμμ
dt

=−γ μμμ×BBB . (3.17)

Thus, the existence of precession of a magnetic moment around a magnetic
field is realized. Note that, this scenario is exactly analogous to the case of a
classical symmetric spinning top [137].

In our approach of the magnetization dynamics, the precession of magne-
tization derives from the Zeeman-like coupling terms in Eq. (3.15) and their
commutators with the spin momentum in Eq. (3.14). The derivations are ex-
plicitly carried out in the paper IV. With an effective Zeeman field BBBeff the
precession dynamics becomes [124]

∂MMM
∂ t

=−γ MMM×BBBeff . (3.18)

Using the linear relationship of magnetic induction and magnetization as BBB =
μ0(HHH +MMM), the precession dynamics can be written in the conventional form
as in Eq. (3.9). In addition, the relativistic counterpart of the precession is
derived from the first two terms in the Hamiltonian Eq. (3.16).

It is also important to note that the intrinsic spin-orbit coupling [third term
in Eq. (3.16)] also contributes to the relativistic precession for the symmetric
crystal potential (see paper IV for details).
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3.6 Damping
The dissipation of energy during the precession of magnetization, is known
as damping. The traditional LLG damping is in the transverse direction as
shown in Fig. 3.2. However, there are other types of damping effects reported
in the literature e.g., exchange relaxation of Bar’yakhtar type [132, 138, 139],
longitudinal relaxation of Bloch type [140, 141]. Here, in the below, we focus
on the Gilbert damping and its derivation from the DKS Hamiltonian.

3.6.1 Our theory
Already in the original proposition of Landau and Lifshitz, they attributed the
damping processes to relativistic effects. In accordance, within our approach,
the Gilbert damping derives from the relativistic external spin-orbit coupling
and their commutator with the spin momentum in the right-hand side of Eq.
(3.14). The explicit derivation is not provided here as it has been nicely carried
out in paper IV. Importantly, the Gilbert damping parameter that we derive
is not a scalar, rather a tensor. We mention that the original Gilbert parameter
has been proposed as a scalar. For a system driven by a harmonic (ac) field,
our derived Gilbert damping dynamics and the damping parameter read as

∂MMM
∂ t

= MMM×
[
A · ∂MMM

∂ t

]
, (3.19)

Ai j =− eμ0

8m2c2 ∑
l,k

[
〈ri pk + pkri〉−〈rl pl + plrl〉δik

]
× (1+χ−1)k j . (3.20)

The details of the involved parameters are immediately described below. We
found that the damping parameter has two main contributions:
♣ Electronic: This involves the expectation value of the matrix elements

of the product of different components of position and momentum operators.
This contribution is present in the first part of Eq. (3.20) within [...]. The
expectation value can be calculated with the states from e.g., the DKS Hamil-
tonian in Eq. (2.71). As provided in Appendix C of paper IV, the interband
matrix elements can be calculated as

〈ri p j〉=− ih̄
2m ∑

n,m,kkk

f (Enkkk)− f (Emkkk)

Enkkk−Emkkk
pi

nm p j
mn , (3.21)

where f (Enkkk) defines the Fermi-Dirac distribution function and Enkkk represents
the band energy. For an intraband contribution of the electronic contributions,
the gradient of Fermi-Dirac distributions with respect to the band energy, has
to be taken into consideration. Importantly, these contributions can be cal-
culated ab initio using Eq. (3.21). The interband and intraband contributions
of the damping parameter has been found from first principles calculations
within the torque-torque correlation model as well [142–144]. These contri-
butions reflect as a tensor, however, the off-diagonal matrix elements have
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been found to be symmetric. Therefore, the electronic contribution provides a
Gilbert damping parameter as a tensor which is symmetric.
♣Magnetic: This involves the magnetic susceptibility tensor, χ , for a har-

monic field. Here is the reason: for a ferromagnet with uniform magnetization,
MMM, the following relation holds MMM = MMM0 +mmm(t), where the ac magnetization,
mmm(t), is driven by an ac field as mmm(t) = χ · hhh(t) and MMM0 is the spontaneous
magnetization that would be present without any applied field. This linear
relationship of field and magnetization through the susceptibility, is only lim-
ited to the case where hhh(t) ∼ eiωt ; so that the susceptibility depends on the
frequency of the driving field χ = χ(ω). Therefore, the presence of suscepti-
bility is only valid for the excitation field hhh(t) which is a single harmonic. For
a general time-dependent field, the LLG equation will have additional torques.
We will come back to it in Sec. 3.6.4. Nonetheless, the susceptibility tensor
can be calculated from e.g., the spin-spin response function. Different ex-
pressions of χ have been discussed in the context of Gilbert damping tensor
[145–147]. These expressions would be suitable for the ab initio calculations
of χ from a DFT framework. From Eq. (3.21), we notice that the electronic
contribution is imaginary (the complex number i present in the expression).
Therefore, only the imaginary part of the susceptibility will contribute to the
energy dissipations. These results are in agreement with other findings as well
[148–151].

Note that, the tensorial form of the damping parameter has been found
in agreement with other recent findings [145, 149, 152–154]. However, we
provide the microscopic derivation while starting from the fundamental DKS
Hamiltonian [124].

Now, any tensor can be decomposed in a symmetric and an antisymmet-
ric part. These parts will take the form as Asym

i j = 1
2 (Ai j +A ji) (symmetric)

and Aantisym
i j = 1

2 (Ai j−A ji) (antisymmetric) respectively. The latter can fur-
ther be written as a product of a Levi-Civita tensor, εi jk, and a vector, DDD as:
Aantisym

i j = εi jkDk. This contribution to the damping parameter, we recognize
as the Dzyaloshinskii-Moriya (DM) terms. However, the symmetric part can
be decomposed in two different contributions as Asym

i j = αδi j + Ii j, where α
contains the diagonal components i.e., isotropic Heisenberg-like and Ii j de-
fines the Ising-like contributions. We mention here that if the Heisenberg con-
tributions are such that α = 1

3 Tr(Asym
i j ), the trace of Ising-like contributions

will become zero. With the aforementioned descriptions, the derived Gilbert
damping dynamics can be split into three parts as

∂MMM
∂ t

= α MMM× ∂MMM
∂ t

+MMM×
[
I · ∂MMM

∂ t

]
+MMM×

[
DDD× ∂MMM

∂ t

]
. (3.22)

It is important here to point out that the DM terms can be expanded using the
usual vector identities. Since the local magnetization length is conserved i.e.,
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MMM ·∂MMM/∂ t = 0, the dynamics in Eq. (3.22) can be recast as

(1+MMM ·DDD)
∂MMM
∂ t

= α MMM× ∂MMM
∂ t

+MMM×
[
I · ∂MMM

∂ t

]
. (3.23)

Therefore, one can see that the DM-like damping parameter only contributes
to the renormalization of the LLG equation. Nonetheless, the presence of DM-
like damping can become important for magnetic textures (e.g., domain wall
motion, skyrmion dynamics etc.). Overall, we notice that Eq. (3.23) provides
more insight to the the LLG equation and particularly the Gilbert damping.
Phenomenologically it was thought that the latter is only a scalar quantity.
However, we derive that apart from the scalar and isotropic Gilbert damping
(the first term in the right side of Eq. (3.23)), there exists a tensorial Gilbert
damping which is anisotropic (the second term in right side of Eq. (3.23)). We
also point out that often for simulations of LLG equations, the LL form of the
spin dynamics is sought. Thus, a transformation of LLG to LL is needed. For
a scalar damping parameter, this transformation is rather simple and straight-
forward. However, the transformation is much more involved for the case of
anisotropic and tensorial Gilbert damping (see Appendix B of paper IV). In
the context of Gilbert damping, in the following, we present one of the im-
portant models that has been extensively used to evaluate the ab initio damp-
ing parameter and to this end a comparison is made between our derived mi-
croscopic theory and the existing theory - so called torque-torque correlation
model.

3.6.2 Torque-torque correlation model
In 1976, Kamberský [155] computed the damping parameter from the ac sus-
ceptibility, his theory was initially called the breathing Fermi surface model
and later refined and termed torque-torque correlation model. It was suggested
that the source of damping is a combined effect of the spin-orbit interaction
and the scattering of electrons by the lattice or defects [156, 157]. The theory
describes that the damping originates due to two processes [142]:
(i) A magnon decays into an electron-hole pair.
(ii) The scattering of electron and hole with the lattice.
The physical arguments are described in the following: the spin-orbit torque
(variation of spin-orbit energies of the states as the magnetization changes di-
rection) produces a “breathing Fermi surface”, which in turn annihilates an
uniform mode of spin wave (magnon) and creates an electron-hole pair. The
electron-hole pair then travels through the lattice with scattering and eventu-
ally collapses. The electron and hole go through lattice and are thought to be
a single quasiparticle with a lifetime given by the electron-lattice scattering
time, τ . If the electron and hole occupy the same band, one names it intra-
band transition. However, the transition between two different bands is called
interband.
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The torque-torque correlation model predicts that the damping rate (the
damping parameter divided by the scattering time) can be written as [142,
143],

λ = π h̄
γ ′2

μ0
∑
n,m

∫ dk3

(2π)3 |Γ−nm(k)|2Wnm(k) , (3.24)

with the redefined gyromagnetic ratio γ ′ = gμ0μB
h̄ . The matrix elements Γ−nm(k)

are given as Γ−nm(k) = 〈n,k| [σ−,Hsoc] |m,k〉. This measures the transition
matrix elements between band indices m and n by the spin-orbit torque, where
σ− = σx− iσy. The nature of the scattering events are measured by the weight
of the spectral overlap integral

Wnm(k) =
∫

dεη(ε)Ank(ε)Amk(ε) . (3.25)

Obviously, n �= m (n = m) determines the interband (intraband) contributions.
η(ε) is the first order derivative of Fermi function with respect to energy -
d f/dε . The electron spectral distribution function is represented as Ank(ε)
and they follow Lorentzians profile in energy space.

The ab initio damping rates by torque-torque correlation model produces
qualitatively the experimental behavior for ferromagnets e.g., iron, cobalt,
nickel, however, quantitatively the calculated damping rates are off from the
experimental values [142, 143, 145, 158–161].

♣ Physical understanding of the scenario

As the magnetization precesses around an effective field, the energies of the
states change through variations in the spin-orbit coupling energy and transi-
tions between the states. These two effects, (a) changing energies of the states,
(b) transitions between the states, contribute to the total effective field [143].
If the energy of a single electronic state is denoted by εnk and the population
of the state is ρnk, the total electronic energy of the system will be given as
E = ∑nk ρnkεnk. Therefore, the effective field is calculated as the variation of
the energy with respect to the the magnetization direction (the magnitude of
magnetization does not change within LLG formulation, only the magnetiza-
tion direction changes) as [143]

HHHeff =− 1
μ0

∂E
∂MMM

=− 1
μ0

∑
n,k

[
ρnk

∂εnk

∂MMM
+

∂ρnk

∂MMM
εnk

]
. (3.26)

The first term determines the changes of spin-orbit torque energy. Spin-orbit
coupling mainly causes the Fermi surface to swell and contract as the mag-
netization precesses around. This effect is extensively called “breathing” of
the Fermi surface. It has been also shown that the spin-orbit torque is the rea-
son for intraband contributions in the Gilbert damping. On the other hand,
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the second term refers to the transition between states when the magnetization
precesses and accounts for changes in energy due to the transitions. This latter
process does not change the energy of the states, but create electron-hole pair
by exciting an electron from lower to upper bands. This produces a “bubbling”
of individual electrons on the Fermi surface. It has also been shown that these
bubbling contributes to the interband terms of the effective field [143].

3.6.3 Comparison of our theory and torque-torque correlation
model

Essentially, our derivation of Gilbert damping from the DKS Hamiltonian
and the torque-torque correlation model, both are derived from the spin-orbit
coupling, a relativistic contribution. In fact, the matrix elements of the com-
mutators between Pauli spin matrices and spin-orbit coupling Hamiltonian is
considered in both cases, where interband and intraband contributions are
present. However, a fundamental difference is that the torque-torque correla-
tion model is phenomenologically derived but we derive the Gilbert damping
parameter from the fundamental Dirac equation. In the torque-torque model,
the Gilbert dynamics is assumed and the corresponding parameter is calculated
by the commutator of spin angular momentum with the spin-orbit interaction
Hamiltonian, however, our theory does not assume the damping dynamics, it
has been derived from the aforementioned commutator [124]. Moreover, the
torque-torque correlation model relies on the Fermi surface based calculation,
thus it is only applicable to the metals. The semiconductor or insulator sys-
tems cannot be treated within this model. In contrast, our derivation does not
take into consideration of the Fermi surface, so in principle, our derivation
should equally be valid for any systems which are not metallic. It is important
to mention that our derivation does not include the spin relaxation effects due
to the the interaction with the lattice or magnons or scattering with the de-
fects. Therefore, we do not anticipate the scattering time (in the torque-torque
correlation model) within our derived theory. However, we point out that the
influence of the electron interaction with quasiparticles can be treated by in-
troducing finite relaxation time through δ , which can be used to evaluate the
electronic contribution in Eq. (3.21).

3.6.4 Field-derivative torque
So far the discussion of Gilbert damping and its derivation has been considered
in the case when the system is driven by an ac harmonic field which is single
harmonic. In many experiments, the system is driven by a pulse (e.g., THz
pulse, pulsed laser excitation) which can be nonharmonic. In those cases, the
above-mentioned Gilbert damping dynamics will not be adequate to capture
the involved physics. To be more specific, as argued before, the definition and

58



introduction of susceptibility is valid only for the ac field. Once the ac field
is switched off, the relation between the magnetization and the magnetic field
does not hold anymore (see paper IV for details). For a general (nonharmonic)
time-dependent field, the Gilbert damping dynamics and the damping tensor
will thus be given as follows

∂MMM
∂ t

= MMM×
[
Ā ·
(

∂MMM
∂ t

+
∂HHH
∂ t

)]
, (3.27)

Āi j =− eμ0

8m2c2 ∑
k

[〈ri p j + p jri〉−〈rk pk + pkrk〉δi j
]
. (3.28)

Notice that the time-dependent field generates a torque which we name - field-
derivative torque (FDT). If we consider the corresponding parameter as a
scalar, the FDT becomes: MMM× ∂HHH

∂ t . The existence of this torque, therefore,
leads to the modification of traditional LLG equation for a nonharmonic and
time-dependent field. In particular, considering a field pulse which is initially

Figure 3.3. The possible shape of the field-derivative term (∂HHH/∂ t) for a nonharmonic
field pulse is shown.

very steep and relaxes slowly back to the initial value or a step-like field pulse
for a ultrashort time (see Fig. 3.3), the time-derivative of such a field will ini-
tially be a δ -function. Therefore, this very short but large time-derivative will
exert a torque which might initiate the switching. We are the first to report the
existence of this torque in the literature and it has to be studied in more de-
tails to understand the underlying physics of what it might offer. For example,
atomistic simulations of the LLG equation including the FDT would be very
interesting. In this regard, we mention that, for a scalar damping parameter, α ,
the LL form of magnetization dynamics including FDT adopts the form (see
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Appendix A of paper VIII):(
1+α2M2) ∂MMM

∂ t
=−γ0MMM×

(
HHHeff− α

γ0

∂HHH
∂ t

)

− γ0 αMMM×
[

MMM×
(

HHHeff− α
γ0

∂HHH
∂ t

)]
. (3.29)

Finally, we point out that any nonharmonic field can be written as the linear
combination of several harmonic fields, where the harmonic fields can have
several frequencies. In this case, the appearance of FDT is still valid because
the susceptibility can only be introduced for a single harmonic field; when two
or more harmonics are present in a field, one has to treat it as a nonharmonic
field.

3.6.5 Optical spin-orbit torque
We have already discussed that the external spin-orbit coupling is responsible
for the Gilbert damping and field-derivative torque. However, the gauge in-
variant part of the spin-orbit coupling in Eq. (2.82) is also important. This part
of the Hamiltonian can be written in the form as σσσ · (EEE×AAA). Now, within the
paraxial approximation, the spin angular momentum of an EM field is equal
to jjjs = ε0(EEE×AAA) [113, 162]. In consequence, the corresponding interaction

Figure 3.4. Schematic illustration of the possible effect due to optical spin-orbit
torque. The material magnetization is shown by the red arrow, the right and left circu-
lar polarized light exerts opposite torque on the existing magnetization.

Hamiltonian can be written as σσσ · jjjs. This interaction is quite similar to the
one of the usual spin-orbit coupling. However, the angular momentum of light
interacts with the spin here [163, 164]. This implies to a new route of manip-
ulating the spins with light. In the magnetization dynamics this term can be
written within the LLG equation as (see paper IV)

∂MMM
∂ t

=− e2

2m2c2ε0
MMM× jjjs . (3.30)
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This torque is called optical spin-orbit torque. Eq. (3.30) explains the torque
by the optical angular momentum acting on the electrons’ spin moment, which
has been depicted in Fig. 3.4. The manipulation of magnetization using the
optical angular momentum has been attempted recently in experiments [32,
165, 166].

3.7 Nutation
In classical mechanics, when a symmetric top is spinning, it shows three dif-
ferent dynamics: (a) precession, (b) nutation and (c) spinning. On top of that
if the body is not driven by a constant force, eventually the dynamics will
be damped and will come to rest after a certain time. Nutation describes the
continuous change of the precession angle as the dynamics progresses. The
nutation arises because of the rigid-body dynamics i.e., the inertia of the body.
In the same connection, when an electron spin has precession around an effec-
tive field, it shows nutation [167]. This effect has been schematically shown
in Fig. 3.5. The reason of this motion is known as magnetic inertia.

M

Heff

Nutation

M × ∂2M
∂t2

Figure 3.5. The nutation effect has been schematically depicted. The yellow arrow
shows the magnetization vector. It precesses around the effective field and the yellow
curve shows the nutation on top of the precession plane.

As mentioned before, to include the nutation dynamics, one has to ex-
tend the LLG equation to incorporate a torque due to the second order time-
derivative of magnetization as [42]

∂MMM
∂ t

=−γ MMM×HHHeff +α MMM× ∂MMM
∂ t

+ ι MMM× ∂ 2MMM
∂ t2 , (3.31)

where ι is the magnetic inertia parameter which is scalar. The origin of mag-
netic inertial dynamics have not been understood from a fundamental point of
view. Nonetheless, there have been efforts to simulate such a dynamics which
indicate that the effect is much prominent in shorter timescales e.g., sub-ps
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[134, 135]. It was shown that the extension of breathing Fermi surface model
could lead to the inertial dynamics as well [151, 168, 169]. Alongside, the
magnetic inertial dynamics has been discussed in the case of slow manifold
and Hannay angle that the inertial dynamics is rather fast on top of the slow
precession dynamics and the nature of nutation angle depends on the slowness
variable [170–173]. Experimental observations of inertial dynamics have been
reported recently in Fe-Ni permalloy and Co films, confirming its importance
in ultrashort timescale [174]. The possible future applications of inertial dy-
namics have been illustrated by Kimel et al. [41] that when a particle does
not have inertia, a continuous driving force is needed in order to pull it over a
potential barrier and eventually to switch. In contrast, the particle with inertia
does not need any continuous deriving force, just an ultrashort pulse is enough
to acquire adequate linear momentum for overcoming the potential barrier.
Therefore, the magnetic inertia could be of great interest for switching.

Despite of so much interest and possible potential applications, the fun-
damental understanding of magnetic inertial dynamics was missing until re-
cently. In paper VII, we rigorously derive the corresponding dynamics start-
ing from the DKS Hamiltonian and thus giving a strong fundamental origin.
In particular, we find that the inertial dynamics derives from the higher-order
spin-orbit coupling (the last term in Eq. (3.16)) and its commutator with the
spin angular momentum in Eq. (3.14). Similar to the Gilbert damping, for a
harmonic field, the inertial dynamics can be expressed as

∂MMM
∂ t

= MMM×
[
I · ∂ 2MMM

∂ t2

]
, (3.32)

where the inertia parameter, I , is a tensor given by the following expression

Ii j =
γμ0h̄2

8m2c4

(
�+χ−1

m
)

i j . (3.33)

Notice that the phenomenological parameter ι and our derived parameter Ii j
are fundamentally different because our derived inertia parameter is a ten-
sor while the original proposition considered it as a scalar quantity. The ten-
sorial behavior of this parameter was also predicted in other studies as well
[150, 151]. Notably, the inertia parameter will be given by the real part of the
susceptibility because no complex number is involved in the expression of the
inertia parameter. As it is shown that the magnetic inertia is a higher order rel-
ativistic effect, it is expected to be significant only at the ultrashort timescale.
At the same time, the magnitude of the magnetic inertia is much smaller than
the Gilbert damping parameter because the former is a second-order relativis-
tic correction (∼ 1/c4) while the latter is a first-order relativistic correction
(∼ 1/c2). For a harmonic field, the inertial dynamics can be described by the
Eq. (3.32), however, for a nonharmonic field, the inertial dynamics will be
complicated because it will involve a second-order field-derivative torque (see
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paper VII for details), in contrast to the first-order field-derivative torque that
appeared in the derivation of Gilbert damping parameter.

At this point, it is worth to make a comparison table of the Gilbert damping
parameter and the inertia parameter as we have derived them on the same
footing i.e., from a relativistic formulation.

3.7.1 Comparison of Gilbert damping parameter and inertia
parameter

Our derivations reveal the respective expressions of the Gilbert damping and
inertia parameter for a harmonic field as [175],

Ai j =−ζ ∑
n,k

[〈ri pk + pkri〉−〈rn pn + pnrn〉δik

ih̄

]
×Im

(
χ−1

m
)

k j , (3.34)

Ii j =
ζ h̄

2mc2

[
�+Re

(
χ−1

m
)

i j

]
, (3.35)

with ζ ≡ μ0γ h̄
4mc2 . The real and imaginary parts are related to each other by the

Kramers-Kronig relation, which means that both the parameters are interre-
lated. However, the Gilbert damping parameter is ∼ c2 times larger than the
inertia parameter as revealed in our derivation. Their strengths can nonetheless
be comparable depending on the real and imaginary parts of the susceptibility.
In fact, if the real part of the susceptibility is much higher than the imaginary
part, the existence of 1 in the inertia parameter will play a major role. A com-
parison table is made between Gilbert and inertia parameters in the following
Table 3.1.

Subjects Gilbert damping (A) magnetic inertia (I )

Contributions � magnetic
� electronic

� magnetic

Susceptibility � imaginary part � real part

Timescale � fast (ns, ps) � ultrafast (ps, fs)

Dimension � dimensionless � time

Relation I ∝−Aτ̄ with τ̄ = h̄
mc2

Table 3.1. A comparison table of Gilbert damping parameter vs. inertia parameter.

As discussed in paper VII, while deriving the inertial dynamics, a Gilbert
damping parameter is also found of order 1/c4. However, the dominant con-
tribution to the Gilbert damping will be of order 1/c2. In this connection, it
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is worth mentioning that the Gilbert damping parameter and inertia parameter
can be seen as a series of higher orders of 1/c2. This will be visible if one
derives the higher order terms in the FW transformation. The corresponding
terms will have higher order time derivatives of electric and magnetic field
which will then follow our derivations.

We note that the Gilbert and inertia parameters that we derive are intrinsic
and applicable to a pure and isolated system. There are several other extrin-
sic factors that can contribute to these parameters as well. For example, the
environmental effects, radiation, interactions of spins with other quasiparti-
cles (phonons), interfacial effects, spin pumping in magnetic multi-layers can
modify these parameters [161, 176–179].

3.8 Spin currents
So far, in the discussions, the spin currents have not been considered. To
explain many dynamical phenomena (e.g., domain wall motion, skyrmion dy-
namics etc.) in magnetic systems, one has to incorporate the spin current terms
[52]. These spin-polarized currents can induce a local torque on the magne-
tization that has been proposed by Slonczewski [43] and Berger [44]. This
effect is called spin-transfer torque (STT) which only requires the flow of an
electrical current. This is realized in a multilayer system where the two fer-
romagnetic layers are separated by a nonmagnetic layer. The possible effect
of STT is pictorially described in Fig. 3.6. To account for the current-induced

Figure 3.6. Schematic diagram for STT. First, an electrical current je enters into a fer-
romagnetic layer, the electrons get spin-polarized when they leave the first layer. This
generated spin-polarized current then travels to the next ferromagnetic layer causing a
torque to the pre-existing magnetization.

STT, the LLG equation has to be extended and these torques has been written
as [44, 45, 136]

∂MMM
∂ t

=−γ MMM×HHHeff +α MMM× ∂MMM
∂ t

−bJ MMM× [MMM× ( jjje ·∇∇∇)MMM]− cJ MMM× ( jjje ·∇∇∇)MMM , (3.36)
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where the last two terms explain the STT. bJ is termed as adiabatic STT pa-
rameter, while cJ defines the nonadiabatic STT. These torques account for the
action of a spin-polarized current on the magnetization gradient.

In the theory of magnetization dynamics, these torques derive from the
nonequilibrium spin density (nonequilibrium conduction electrons) which ex-
erts a torque on the pre-existing local magnetization [136]. These current in-
duced torques can also be derived by using a symmetry considerations [180].
However, in our formalism, the corresponding continuity equation of Eq. (3.14)
provides deep insight into the torques. Following the discussion of Sec. 3.4.1,
one can write down the nonrelativistic magnetization dynamics as

∂MMM
∂ t

∣∣∣
NR

+
1
e

[
MMM
(
∇∇∇ · jjjNR

e
)
+
(

jjjNR
e ·∇∇∇)MMM

]
=−γ0MMM×HHHeff . (3.37)

The nonrelativistic dynamics precisely shows the precession of magnetization
and the effect of nonrelativistic current on the dynamics. Now, as there are
no source or sink available in the system, the divergence of the current den-
sity must go to zero, implying the second term in the left-hand side of Eq.
(3.37) vanishes. The other current term in the left-hand side of Eq. (3.37)
takes into account the inhomogeneous magnetization and the corresponding
torque can be written as the current induced adiabatic torque that takes the
form ∼ ( jjjNR

e ·∇∇∇)MMM [45, 136, 181, 182]. Therefore, the adiabatic STT can be
recovered within the nonrelativistic magnetization dynamics.

However, the relativistic magnetization dynamics shows completely differ-
ent dynamical behavior. We have extensively discussed that the Gilbert damp-
ing originates from the relativistic spin-orbit coupling. Alongside, there is a
relativistic correction to the precession term that is coming from the intrinsic
spin-orbit coupling as well. The relativistic magnetization dynamics can be
written as

∂MMM
∂ t

∣∣∣
R
+

1
e

[
MMM
(
∇∇∇ · jjjR

e
)
+
(

jjjR
e ·∇∇∇

)
MMM
]
=−γ ′0MMM×HHHeff +MMM×

(
A · ∂MMM

∂ t

)
,

(3.38)

where γ ′0 parameter corresponds to the relativistic precession, Ai j is the Gilbert
damping tensor and jjjR

e is the relativistic current density that has to be derived
from the relativistic Hamiltonian. The latter contains the effect of spin-orbit
coupling plus the additional contributions from the relativistic corrections to
the exchange field (see Sec. 2.5.5) as jjjR

e = jjjsoc + jjjother. The current density
due to the spin-orbit coupling can be written as jjjsoc = κ MMM×EEE tot which de-
pends on the magnetization; the parameter κ = −e/(2m2c2gμB). Using this
relativistic current density one can see that the corresponding conductivity is
proportional to the magnetization which is at the heart of the anomalous Hall
effect. Moreover, if the electric field is directed in a certain direction, the
current points along the plane to that is perpendicular to the direction of the
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field and magnetization. Therefore, the effect of current density due to spin-
orbit coupling will be more significant in the interfaces where the spin-orbit
coupling is strong (see Fig. 3.6). Nonetheless, the effect can also be equally
visible for a single heavy metal where the spin-orbit coupling is strong and if
it has magnetization inhomogeneity. As discussed in paper VIII, accounting
that the curl of the magnetization is zero (magnetization profile is irrotational),
the relativistic magnetization dynamics in Eq. (3.38) results in

∂MMM
∂ t

∣∣∣
R
+

κ
e

MMM× [(EEE tot ·∇∇∇)MMM] =−γ ′0MMM×HHHeff +MMM×
(

A · ∂MMM
∂ t

)
. (3.39)

We have not incorporated the effect of the current density due to other rela-
tivistic effects than spin-orbit coupling. We know that, the electric field and the
current are proportional to each other through the conductivity tensor, there-
fore, the torque (second term) in the left side of Eq. (3.39) can be shown to
adopt the form ∼ MMM× [( jjje ·∇∇∇)MMM]. This exactly resembles to the torque of
nonadiabatic STT that has been discussed earlier. Here, the nonadiabaticity
parameter comprises the strength of spin-orbit coupling and the conductivity
tensor. Now, due to spin-orbit coupling, the spin-flip processes are possible,
those spin-flip relaxation times can be accounted through the calculation of
conductivity tensor. Hence, we derive the current-induced STT within the
spin continuity equation, while starting from the DKS Hamiltonian.

To summarize, the LLG and extended LLG terms have been derived from
the fundamental DKS Hamiltonian. Within the magnetization dynamics, the
precession of magnetization comes from the Zeeman-like couplings between
spins and effective field. The intrinsic spin-orbit coupling also contributes to
the relativistic precession when a spherically symmetric potential is assumed.
On the other hand, the Gilbert damping derives from the extrinsic spin-orbit
coupling. The corresponding Gilbert damping parameter has been shown to
have two-fold origin: electronic and magnetic which can be calculated from
first principles. More importantly, the damping parameter is a tensorial quan-
tity while it has been known previously to be scalar. The damping tensor has
also been shown to contain an isotropic Heisenberg-like damping, anisotropic
Ising-like damping and a chiral DM-like damping. Furthermore, for a system
driven by nonharmonic fields, an additional torque is generated - field deriva-
tive torque. This torque can become important for pulsed shaped external
fields which will exert an instantaneous but huge torque on the magnetization
that might lead to the switching of magnetization. On the same path, we have
derived the optical spin-orbit torque that accounts for the manipulation of spins
using the angular momentum of light. We have also derived the magnetic in-
ertial dynamics within an extended LLG equation and the origin of magnetic
inertia relates to the higher-order spin-orbit coupling. Finally, deriving the
spin-currents in the spin continuity equation, we have derived the origin of
adiabatic and nonadiabatic spin transfer torques within extended LLG equa-
tion.
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4. Relativistic Effects in Ultrafast Magnetism

4.1 Introduction
The study of magnetization dynamics is an exceedingly vast research area
with the involvement of profound physics as discussed in the previous chap-
ter. However, realizing these dynamics in technological devices have been
proven to be challenging. Importantly, the unanswered question remains: how
fast can the magnetization be manipulated? For example, it has been shown
that the magnetization reversal by an applied magnetic field pulse occurs in
a nondeterministic way if the pulse duration is less than 2 ps [9]. Therefore,
the possibility of manipulating the spins in an ultrashort timescale appears un-
achievable with the application of a magnetic field pulse. The use of an optical
field pulse (laser) is another option. The main advantage of the latter is that the
contemporary laser pulses are available in the laboratory with a wide range of
pulse durations, where the pulse width can be as low as up to a few attoseconds
[10].

Recent advancements of new techniques using optical laser pulses in pump-
probe experiments have made it possible to access the sub-picosecond dynam-
ics. In a typical pump-probe set up, an ultrashort laser beam is split into two
separate beams, among which, one acts as pump (higher intensity) and the
other acts as probe (lower intensity). First, the pump pulse is directed towards
the sample to excite and the probe consequently detects the modification (that
has been caused by the pump) within the sample. The pump stimulates the
optical excitations which are very short-lived, therefore, an ultrashort probe
pulse is needed to measure the modification of the sample. The pulse dura-
tions of the pump and probe are usually kept in about a few tens of fs. Thus,
the set up allows one to detect a temporal as well as a spatial resolution of the
dynamics, given the fact that the probe pulse is delayed with respect to the
pump pulse.

Ultrafast demagnetization was discovered more than two decades ago by E.
Beaurepaire and co-workers in such a pump-probe magneto-optical Kerr effect
(MOKE) experiment on a nickel (Ni) thin-film of ∼ 20 nm. In particular, a
sudden loss of magnetization was observed within an ultrashort timescale less
than a ps after the laser pulse hit the sample. The magnetization response of
Ni was measured in pump-probe ultrafast spectroscopy as a function of pump-
probe time delay (Δt) as shown in Fig. 4.1 [11].

The above-described effects have been roughly accounted for using the phe-
nomenological extension of the so-called two temperature model (electrons
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Figure 4.1. Ultrafast demagnetization is shown. The black dots represent the experi-
mental observations and the smooth line shows the follow up of the experimental data
points. Taken with permission from Beaurepaire et al., Phys. Rev. Lett. 76, 4250
(1996). Copyright c© 1996, The American Physical Society.

and lattice) including the spins. Thus the system has three different reservoirs
and they evolve according to three coupled differential equations (taking into
account their specific heat and the transfer of energy from one to another).
The solution of the equations resembles the experimentally observed electron
temperature evolution within the ultrashort timescale [11].

The experiment was followed by several others leading to a similar trend of
ultrafast demagnetization [15, 17, 23, 183–185]. Among the metals, mostly
the transition metals (Fe, Co, Ni) have been extensively studied [18, 186–
188]. Other systems like ferrimagnets, antiferromagnets and ferromagnetic
insulators have shown much more complicated dynamics [189–192]. Many
theoretical investigations have been made till the date, however, the underlying
mechanisms are not properly understood in the ultrashort timescales as yet. In
the following, we provide a few of the important proposed mechanisms during
ultrafast demagnetization processes.

4.2 Mechanisms of ultrafast demagnetization
4.2.1 Direct spin-photon coupling
The prime aspect during ultrafast demagnetization is the transfer of angular
momentum within different available degrees of freedom within a material.
It has been predicted that the direct coupling of laser photons with the spins
could lead to the transfer of angular momentum from light to the magnetic
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moments and thus to the demagnetization [16, 193]. However, the estimations
on Ni reveal that the direct photo-quenching can only change the magnetic
moments by 10−4 μB per Ni atom [194]. Therefore, this negligible amount
of photo-quenching cannot be the reason behind the experimentally observed
ultrafast demagnetization [195].

4.2.2 Electron-electron interaction
The Coulomb interaction among the electrons might also be another mecha-
nism of ultrafast demagnetization as the electron-electron interaction is a very
fast process [23]. Krauß et al. investigated the effect of electron-electron
interaction within Elliott-Yafet (EY) like mechanisms that was originally pro-
posed for spin-lattice relaxation [196]. The ultrafast demagnetization is pos-
sible in EY theory because the spin-orbit interaction does not conserve spin
momentum and any momentum dependent scattering mechanism transfers the
momentum from the spins to another reservoir. It has been found that the
electron-electron EY-type scattering mechanisms are very important in ultra-
fast demagnetization [197]. Model calculations have also been performed in-
cluding the electron-electron and electron-phonon scatterings within the spin-
resolved Boltzmann equation. The study suggests that the electron-electron
scattering is required for demagnetization, while the electron-phonon scatter-
ing is responsible for remagnetization [198].

4.2.3 Electron-phonon interaction
Spin-flip due to EY electron-phonon scattering mechanism has been discussed
as the key issue for demagnetization [199, 200]. The main idea is the transfer
of angular momentum from spins to the lattice. Carva and co-workers have de-
veloped an ab initio theory to calculate the effect of spin-flip due to electron-
phonon scattering where they have concluded that the effect is too small to
explain the amount of observed demagnetization [24, 25]. However, the ques-
tion of angular momentum has not been addressed properly as the calculations
with electron-phonon scattering considers the linearly polarized phonon states
(they do not carry angular momentum). This consideration assumes the lat-
tice to be a perfect sink of angular momentum. In the following, we provide
explanations of the debate over the angular momentum conservation.

Angular momentum conservation
After the fs laser pulse hits the ferromagnetic sample, the microscopic mech-
anisms of the angular momentum transfer from spins to other degrees of free-
dom are important and have often been debated. One way to recognize the
conservation of angular momentum is that the magnetic sample is not free in
the space, but it is often mounted on a sample holder which then connects to a
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table on the floor. Thus, the total system is isotropic as a whole and the angular
momentum is conserved, but not the angular momentum of the sample (part
of the total system) [201]. One also has to note that, during demagnetization
there are emissions of electromagnetic waves which are linearly polarized and
they carry the energy of THz regime [202, 203]. These THz waves are able
to interact with the phonon and they can be re-absorbed in the sample. There-
fore the strict conservation of angular momentum during fs demagnetization
is arguable [201].

4.2.4 Superdiffusive spin transport
A conceptually different approach than the usual sub-atomic interactions has
been employed by Battiato et al., that is called superdiffusion theory. Within
the superdiffusive spin transport, the majority spins travel faster into the sub-
strate as compared to the minority spins leading to the demagnetization in the
sample [26, 204]. Experimental measurements have been performed in mag-
netic multi-layered system of Au/Ni, where the Au layer was hit by the fs
laser pulse generating a non-equilibrium hot electrons. Those hot electrons
travel through the Au/Ni interface towards the Ni region and efficiently ex-
plain the demagnetization in ferromagnet [187]. Similar experiments reveal
the importance of ultrafast spin transfer current that directly indicates that the
superdiffusive spin-transport as the key mechanism for ultrafast demagnetiza-
tion [205–207]. The superdiffusion theory, however, depends critically on the
composition of the sample [208] and it has not been the dominant effect in
single ferromagnetic thin films on insulator substrates [209].

4.2.5 Spin-orbit coupling and excitation
Within this framework, a full ab initio time-dependent DFT formalism has
been used to propose an explanation of the observed ultrafast demagnetiza-
tion [210]. The ultrashort laser-induced demagnetization has been proposed
as a two step process: (1) the laser excites a fraction of electrons, and (2) the
spin-orbit coupling of the remaining localized electrons helps in spin-flip tran-
sitions. Thus, the spin-orbit coupling is shown to take a fundamental role. The
latter has been included in the Pauli Hamiltonian taking into account the vector
potential from the laser pulse to explain the amount of observed demagnetiza-
tion [211]. However, in the calculations a very short pulse has been used with
a duration of ∼ 2.2 fs and a very high laser intensity (2-3 orders of magnitude
higher than experiments) has been employed. Moreover, the demagnetization
time has been found to be very short about ∼ 20 fs in bulk Ni in comparison
to the experimentally observed time [210]. In a recent study, a comparison
is made between bulk and thin films demagnetization using ab initio TDDFT
[212].
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4.2.6 Relativistic spin-flip processes
To understand the effect of relativistic spin-flip processes in ultrafast demag-
netization, a single 50 fs duration of laser pulse has been used in a pump-probe
ultrafast spectroscopy experiment [22]. From the experimental observations,
it has been proposed that the laser field couples to magnetism in the ferro-
magnetic Ni film efficiently during its propagation [22]. The mechanism is
described in the following: the fs laser pulse interacts coherently with the
charges and spins of the magnetic Ni thin film, inducing a demagnetization.
This coherent step is followed by the incoherent step due to thermalization of
charges and spins and their interactions with the lattice. A linear decrease of
complex Kerr rotation and ellipticity has been found in Ni, which was sug-
gested to have its origin in relativistic quantum electrodynamics involving the
spin-orbit coupling, beyond the ionic potential [22].

To verify the above-described processes, we need to use the spin density
functional theory with the charge and spin correlations, yet including the ef-
fective exchange field terms with lowest order relativistic corrections up to
1/c2 that includes the proper description of spin-orbit coupling (which was
missing in Ref. [22]). In other words, we have to use simply the Hamiltonian
in Eq. (2.74) that has been derived throughout the Chapter 2. This will be
discussed in more details in Sec. 4.3.

In connection to the previous discussion, it is worth mentioning that Vonesch
and Bigot used a similar Hamiltonian, however, they considered a strong static
homogeneous magnetic field, BBBM, which was given by the vector potential
AAAM = 1/2 BBBM×RRR, with RRR as the position of electrons. They also separately
used an electric field, coming from laser EEEL and the corresponding vector po-
tential AAAL [213]. Once again, we emphasize that the consideration of homoge-
neous magnetic field to account for the exchange fields cannot be included as
a vector potential [122]. Therefore, the minimal coupling can only be used for
the vector potential from laser light as (ppp− eAAAL). In their work, they found
a significant contribution in the transition matrix elements of the interaction
AAAL ·AAAM, while this interaction does not appear in our formulation derived from
the DKS theory (see Eq. (2.74) for details).

To summarize, the fundamental processes during the ultrafast demagneti-
zation in shorter timescale are still debatable and do not have any accurate
description [21, 184, 214, 215]. It is mainly because of the fact that at the
ultrashort timescale, the electrons immediately become non-thermal. There-
after, the electrons gets heavily excited in or out of the Fermi sea. In this situa-
tion, the description of electron or spin temperatures is not strictly valid as the
temperatures are usually defined for thermalized reservoirs. Moreover, at the
ultrashort timescale, the classical descriptions become invalid and the quan-
tum effects become prominent. Along the same line, the transfer of angular
momentum has been a long standing question during the process of ultrafast
demagnetization.
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Despite of the debate on underlying mechanisms, one can conclude that
there is not a single mechanism that could explain the huge magnetization
loss. It is probably the combination of several mechanisms that could explain
the experimental observation. Nonetheless, in the following, we describe the
influence of relativistic spin-flip effects in the demagnetization processes.

4.3 Relativistic magneto-optics
MOKE is itself a relativistic effect due to its direct relation with the spin-orbit
coupling [216, 217]. To be specific, when MOKE is calculated in ab initio
electronic structure theory, the wave functions correspond to the relativistic
Hamiltonian that includes the spin-orbit coupling. MOKE spectra have been
calculated for uranium [86, 218] and transition metal compounds [219–223]
and these have been found to be fully satisfactory. The Kerr spectra can be
directly obtained through the diagonal and off-diagonal parts of the optical
conductivity tensor (σαβ ) by the following relation [224]

ΦK(ω) = θK(ω)+ iεK(ω) =
−σxy(ω)

σxx(ω)
√

1+ 4πi
ω σxx(ω)

, (4.1)

where θK and εK are the Kerr rotation angle and ellipticity respectively. Note
that the above expression is particularly valid for polar MOKE where the mate-
rial magnetization is perpendicular to the reflection surface and parallel to the
plane of incidence. These optical conductivity tensors are calculated within
Kubo linear response formalism that can be expressed as a current-current or
momentum-momentum response function [224, 225]. To derive the response
function, the first order interaction Hamiltonian is taken into account (see Ap-
pendix B of paper I). We know that the effect of an intensive laser pulse is
considered through the vector potential, AAA(rrr, t). Now, within an uniform mag-
netic field (see Eq. 2.76) and Coulomb gauge one finds rrr ·AAA = 0. A simple
formulation of its time derivative gives:

d
dt

(rrr ·AAA) = 0⇒ drrr
dt
·AAA = rrr ·EEE

⇒ e
m

ΠΠΠ ·AAA = errr ·EEE . (4.2)

In this case, we only retain the transverse part of the electric field, EEE = − ∂AAA
∂ t

for the choice of Coulomb gauge. The left-hand side in Eq. (4.2) defines the in-
teraction Hamiltonian, which is the product of momentum operator ΠΠΠ and the
vector potential [226]. Thus, we show that the first-order interaction Hamilto-
nian can equally be written as the product of positions of electrons (rrri) and the
electric field acting upon them. This formulation is true for the nonrelativis-
tic, semirelativistic or fully relativistic case [123]. The conductivity tensor is
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thereafter derived from the commutators of current density and the first-order
interaction Hamiltonian. The conductivity tensor adopts the expression of a
momentum-momentum response function (see Appendix B of paper I) as

σαβ (ω) =− ie2

m2h̄V ∑
nn′kkk

[
f (εnkkk)− f (εn′kkk)

ωnn′(kkk)
Πα

n′n(kkk)Π
β
nn′(kkk)

ω−ωnn′(kkk)+ i/τ

]
, (4.3)

with the optical energy h̄ω , Fermi-Dirac distribution functions f (εnkkk) and the
difference between the band energies h̄ωnn′(kkk) = εnkkk−εn′kkk. The involved mo-
mentum operator can be taken as ΠΠΠ = ppp for the nonrelativistic case, ΠΠΠ = mcααα
for the fully relativistic case. In our case, we derive the corresponding mo-
mentum operator from the Hamiltonian in Eq. (2.74) that involves the non-
relativistic momentum operator plus the additional contributions coming from
the relativistic correction and can be as expressed by

ΠΠΠ = ppp+
1

4mc2

[2p2

m
ppp+ iσσσ × (pppV )+μB

{
σσσ · (pppBBBxc)+(ppp ·BBBxc)σσσ

+2BBBxc(σσσ · ppp)+2σσσ(BBBxc · ppp)+ i(ppp×BBBxc)
}]

. (4.4)

Within relativistic magneto-optics, one calculates the diagonal and off-diagonal
conductivity tensors and the complex MOKE spectra of Kerr rotation and Kerr
ellipticity [224].

4.3.1 Relativistic spin-flip effects in ultrafast demagnetization
In this section, we discuss the contribution of relativistic spin-flip effects dur-
ing ultrafast demagnetization. We have calculated ab initio the real and imag-
inary part of the conductivity tensors (diagonal and off-diagonal components)
using the relativistic four component extension of the augmented spherical
wave (ASW) method [227], within local spin density approximation in DFT.
To do so, we have solved numerically the DKS Hamiltonian in order to find out
the electron spinor wave function which includes the effect relativistic correc-
tions e.g., spin-orbit interaction. The momentum matrix elements have been
calculated using the relativistic wave functions. The momentum operator in
Eq. (4.4) includes the spin-orbit coupling and thus accounts for the spin-flip
effects because the spin-orbit interaction and other relativistic effects do not
conserve the spin angular momentum. To quantitatively account for the spin-
flip effects, we calculate the conductivity and complex MOKE spectra of Ni
and Fe in the following taking into consideration the relativistic and nonrela-
tivistic momentum operator. The contributions due to the relativistic spin-flip
effects can be captured by taking their difference.

As described in paper I, the calculations of conductivity spectra and com-
plex MOKE overlap with each other while taking the nonrelativistic momen-
tum matrix elements in contrast to the relativistic momentum matrix elements
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for Ni. In particular, we have also calculated the difference between the contri-
butions of relativistic momentum and nonrelativistic momentum and the dif-
ference has been found to be of the order of 10−3 for Ni, showing the effect of
relativistic spin-flip contributions are of ∼ 0.1% [123]. Henceforth, we have
concluded that the relativistic photon-spin interactions are present during an
ultrafast pump-probe measurement, however, they do not provide a significant
channel of laser-induced magnetization loss.

Figure 4.2. Calculated relativistic MOKE in bcc Fe. (a): (top left) the real part of
diagonal conductivity matrix elements are shown for relativistic and nonrelativistic
momentum. (b): (top right) The imaginary part of off-diagonal conductivity matrix
elements are shown for relativistic and nonrelativistic momentum. (c): (bottom left)
The Kerr angle and Kerr ellipticity have been calculated for relativistic and nonrela-
tivistic momentum operator. (d): (bottom right) The absolute value of the difference in
σxy (ΦK) normalized to the quantities |σxy,nr| (|ΦK,nr|) calculated by the nonrelativistic
momentum operator.

It is important to point out that, we have used the linear response theory
here, while neglecting the nonlinear effects. The reason is that, when the pump
laser intensity is of the order of 1011 W/cm2 (corresponding fluence is of the
order 1 mJ/cm2 with a pulse duration ∼ 50 fs), the number of electrons that
are removed from below the Fermi surface is of the order of 0.01 [15]. We do
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not expect the role of additional many-body effects for such a small number
of electrons in the exited states, thus the normal linear response theory within
DFT will be reasonably enough to capture the experimental evidences. How-
ever, we note that for a higher intensity (∼ 1014−1015 W/cm2), alternatively
higher fluence (intensity per second), one has to consider nonlinear effects,
beyond linear response theory [210].

In connection to the magneto-optics in Ni, we furthermore show the calcu-
lated relativistic magneto-optical effects for bcc Fe in Fig. 4.2.

We find the similar conclusion for Fe as in the case of fcc Ni. It is seen from
the plots in Fig. 4.2 that the relativistic and nonrelativistic contributions of mo-
mentum matrix elements to the MOKE spectra almost overlap with each other.
Additionally, we find that their normalized differences are very small and the
order is 5× 10−4(×1015 s−1) for both the conductivity response and MOKE
spectra. Therefore, we conclude that the relativistic photon-spin interactions
are present (and also the relativistic spin-flips) during the magneto-optical phe-
nomena, however, their contributions are negligibly small to explain the large
loss of magnetization within ultrashort timescales.

4.4 Coherent ultrafast magnetism
The ultrafast demagnetization is experimentally determined by using a pump-
probe spectroscopy technique for the MOKE spectra. In this experiment, the
magnetic sample is being exposed to the pump pulse and consequently the
magnetization is probed by measuring the Kerr rotation angle of the outgoing
probe pulse. The intensity of the pump pulse is much higher than the probe.
The differential Kerr angle in Ni is plotted against the pump-probe time-delay,
τ , in the left panel of Fig. 4.3, nicely showing the behavior of ultrafast demag-
netization within ∼ 250 fs range. The differential Kerr angle is defined using
the following relation:

Δθ(τ)
θ

=
θ pu

pr (τ)−θ pr
none

θ pr
none

. (4.5)

We mention that θ pu
pr (τ) is measured as the Kerr rotation angle of the reflected

probe beam, once the pump has hit the sample and the angle is expressed as
a function of pump-probe time delay. θ pr

none obviously determines only the re-
flected probe Kerr rotation without the pump beam and thus it is not a function
of time-delay.

As shown in Fig. 4.3(a), the MOKE measurements in Ref. [22] have been
carried out with two different configuration set ups of pump and probe: (i) the
pump and probe polarizations are parallel to each other i.e., θPP = 0o that has
been marked with red solid dots and (ii) the pump and probe polarizations are
perpendicular to each other i.e., θPP = 90o that has been marked with blue hol-
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Figure 4.3. Coherent ultrafast magnetism in Ni. (a) (left panel) The normalized dif-
ferential Kerr angle is plotted against the pump-probe delay in fs for two set ups.
The red data is for when the pump polarization is parallel to the probe polarization
and the blue corresponds to pump polarization being perpendicular to the probe. (b)
(right panel) The difference between the two plots in the left panel is presented, which
clearly shows the coherent pump-probe contribution only. [Reproduced with permis-
sion from Bigot et al., Nat. Phys. 5, 515 (2009). Copyright c© 2009, Macmillan
Publishers Limited. All rights reserved.]

low dots. One can observe that the two configurations produce the same mea-
surements (overlap with each other) in longer timescales showing the ultrafast
demagnetization and remagnetization, however, a non-negligible difference is
observed within first 100 fs. This is more clear from the plot in Fig. 4.3(b),
showing the difference between two Kerr rotations, θ pu

pr
∣∣
PP=0o−θ pu

pr
∣∣
PP=90o as

a function of time-delay, where a dip within 100 fs is observed. Now it is ob-
vious that the latter plot completely depends on the polarization of pump and
probe. This observation is known as the coherent ultrafast magnetism [22].

Already in their work, Bigot et al. [22] proposed the microscopic origin
to be the relativistic quantum electrodynamics, beyond spin-orbit interaction
involving ionic potential. To account for the relativistic Hamiltonians, efforts
have been made to derive the FW transformation of the Dirac Hamiltonian
and finding the higher-order relativistic correction terms, that can be useful to
describe the experimental observation [90]. Under the extreme light-matter
conditions, the modification of electron-electron interactions has been studied
with the Dirac-Breit Hamiltonian and the corresponding FW transformation,
where it has been shown that the electric field from the light can coherently
modify the two electron interactions [228]. There have also been attempts
to classically model the observed coherent ultrafast experiments by using the
self-consistent mean-field approximations, which includes the nonlinear ef-
fects [229–233]. There, the consideration is to use the nonlinear Drude-Voigt
model and include the effective magnetic field inside the material, together
with up to the third order polarization created by the bound and free charges.
The total mean-field is considered as the combination of the static molecular
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mean field (that exists without the light perturbation) and the light-induced
mean field of Weiss type. The latter includes the spin-orbit interaction of elec-
tric field from light with the material spins. However, the set of electric field
and vector potential are considered within the material as (EEEmat, AAAmat) and
from the laser as (EEE,AAA) and different possible combination of interactions
e.g., EEEmat×AAA, EEE×AAAmat etc. have been treated [233].

It should be noted that, our approach is different as we argue that the ma-
terial’s magnetic field is very large (order of 103 Tesla), which comes from
the exchange field. It has been concluded that the material’s magnetic field is
about 510 Tesla in Ref. [233]. Therefore, it is clear that AAAmat is nothing but
a measure of the exchange field. We have already pointed out earlier (in Sec.
2.4) that the consideration of vector potential within the material (AAAmat) as a
minimal coupling, is not strictly valid for exchange field and the correspond-
ing magnetic magnetic field can not be written as BBBmat = ∇∇∇×AAAmat. Instead,
we have found in Eq. (2.74), a quadratic interaction term of fields from light,
which is recognized as the gauge invariant part of the spin-orbit coupling. The
corresponding Hamiltonian which we call spin-photon coupling Hamiltonian,
is found to have the expression [163, 164]

Hspin−photon =
e2h̄

4m2c2 σσσ · (EEE×AAA) , (4.6)

where the electric field is defined as EEE = −∂AAA/∂ t. Using the plane wave
solutions to the Maxwell’s equations, the corresponding Hamiltonian can be
written as

Hspin−photon =
e2h̄

8m2c2ω
σσσ ·Re

[
− i
(
EEE0×EEE0�)] , (4.7)

where ‘Re’ defines the real part and general elliptically polarized light fields
are assumed as EEE0 = E0/

√
2(eeex +eiηeeey) with the ellipticity parameter η . Now

in a typical pump-probe experimental set up, the above-mentioned electric
fields can be due to pump or probe or both. The energies of both the pump and
probe have been accounted to have the same ω in Eq. (4.7), however, the same
expression is not valid if the photon energies of pump and probe are different.
A detailed calculation of the Hamiltonian with different frequencies of pump
and probe has been presented in paper VI. In the following, we discuss the
effect of such a Hamiltonian in explaining the coherent ultrafast magnetism
that has been observed in the experiment.

4.4.1 Induced optomagnetic field
As discussed in earlier Sec. 3.6.5, the Hamiltonian in Eq. (4.7) can be under-
stood as the coupling of light’s angular momentum to the spin. Therefore,
the Hamiltonian provides new insight to optically manipulate the spins. In
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the same context, considering a Zeeman-like coupling as −gμBσσσ ·BBBopt, the
induced optomagnetic can be expressed as

BBBopt =
e2h̄

8m2c2ωgμB
Re
[
i
(
EEE0×EEE0�)] . (4.8)

We should note here that the electric fields involved are purely from the laser
light. To explain the origin of coherent ultrafast signals, we argue that during
the first 100 fs, pump and probe beams interact with each other, given the fact
that their pulse duration is of the order of 50 fs. Therefore, we consider all the
possible interactions between pump and probe as described by the following
terms: EEE0

pu×EEE0�
pu (pump-pump), EEE0

pr×EEE0�
pr (probe-probe), EEE0

pu×EEE0�
pr (pump-

probe) and EEE0
pr×EEE0�

pu (pump-probe) [164]. It is worth to mention here that,
the pump-pump and the probe-probe interactions will only contribute if they
have nonzero ellipticity, for linearly polarized pump and probe, their contri-
bution will become zero. However, the pump-probe interaction will always
contribute even for linearly polarized pulses. Considering the linearly polar-
ized pump and probe beams, traveling towards z-direction, if the polarizations
of pump and probe are parallel to each other (θPP = 0o); the electric fields can
be taken as, EEE0

pu = (E0
pueeex,0) and EEE0

pr = (E0
preeex,0). In this case, the induced op-

tomagnetic field will be zero as all the above-mentioned contributions will be
zero. On the other hand, if the pump and probe polarizations are perpendicular
to each other (θPP = 90o); the electric fields can be taken as, EEE0

pu = (E0
pueeex,0)

and EEE0
pr = (0,E0

preeey). In this case, the induced optomagnetic field will not be
zero as all the pump-probe interaction contributions will be non-zero. In par-
ticular, the magnitude of the optomagnetic field that we have derived has the
expression [164]:

Bopt =
eh̄

4mc2

|E0
pu||E0

pr|
h̄ω

. (4.9)

Therefore, the strength of the optomagnetic field depends on the amplitudes
of the pump and probe beams. Considering the experimental values of pump
and probe electric field amplitudes, the optomagnetic field has been found to
be as large as few μT upto mT.

Along with the magnitude, we also mention that the induced optomagnetic
field depends on the pump-probe delay; if the delay time is longer, the pump
and probe do not interact with each other and the corresponding optomagnetic
field will be zero. A full picture involving different interactions to the induced
optomagnetic field, is summarized in the following Table 4.1 for linearly po-
larized pump and probe beams.

It is important to mention that, in pump-probe experiments, the pump can
be elliptically polarized to capture the effect of light’s helicity. This is em-
ployed for helicity dependent investigations e.g., AO-HDS. For example, we
can mention the study of light-induced spin oscillations in DyFeO3 by Kimel
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Contributions to induced optomagnetic field

Pump
beam

Probe
beam

EEE0
pu×EEE0�

pu EEE0
pr×EEE0�

pr EEE0
pu×EEE0�

pr EEE0
pr×EEE0�

pu

(E0
pueeex,0) (E0

preeex,0) 0 0 0 0

(0,E0
pueeey) (0,E0

preeey) 0 0 0 0

(E0
pueeex,0) (0,E0

preeey) 0 0 �= 0 �= 0

(0,E0
pueeey) (E0

preeex,0) 0 0 �= 0 �= 0

E0
pu(eeex,eeey) E0

pr(eeex,eeey) 0 0 �= 0 �= 0

Table 4.1. All possible configurations of pump and probe for linearly polarized light.

et al. [28], where circularly polarized pump pulses have been used and probed
by linear polarized light. As discussed in the last paragraph, the impact of
pump-pump interaction will become important in this case and will have larger
impact on the induced optomagnetic field because of the fact that the intensity
of the pump beam is about 103 times higher than that of the probe. Such con-
tributions have been listed for possible configurations of elliptically polarized
pump and linear polarized probe in Table 4.2. Considering the experimental
values of pump electric field amplitude, the pump-pump interaction produces
an optomagnetic field of the order of few mT [164].

For elliptically polarized light, η defines the ellipticity parameter which
takes the value η = 0 for linear polarization, while η =+π/2 and η =−π/2
for right and left circular polarized light, respectively. Needless to say that,
when both the pump and probe are elliptically or circularly polarized, all the
above four interactions will become non-zero and thus they all will contribute
to the induced optomagnetic field.

Contributions to induced optomagnetic field

Pump beam Probe
beam

EEE0
pu×EEE0�

pu EEE0
pr×EEE0�

pr EEE0
pu×EEE0�

pr EEE0
pr×EEE0�

pu

E0
pu(eeex,eiηeeey) (E0

preeex,0) �= 0 0 �= 0 �= 0

E0
pu(eeex,eiηeeey) (0,E0

preeey) �= 0 0 �= 0 �= 0

Table 4.2. All possible configurations of elliptically polarized pump and linearly po-
larized probe light.
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Using the experimental parameters of the pump-probe intensity, wavelength,
photon energies, pulse durations, we can estimate the induced optomagnetic
field numerically. We have found that the optomagnetic fields are small and
range from the order of few mT to μT depending on the pump and probe in-
tensities that have been used in the experiments. Such small fields can not be
neglected at all, in fact they can be very much important for thin films. For ex-
ample, here we mention that a magnetic field of about 10-20 mT of magnetic
field is able to switch the magnetization of a thin film [234].

To summarize, in the first part of this chapter, we have quantitatively stud-
ied the effect of relativistic spin-flip processes in laser-induced ultrafast de-
magnetization. We have carried out ab initio calculations of optical conduc-
tivity and MOKE spectra with relativistic and nonrelativistic momentum ma-
trix elements. Due to the spin-orbit coupling and other relativistic effects,
the relativistic momentum should capture all the possible relativistic spin-flip
processes. We have found that the modification of the optical conductivity
and MOKE spectra due to the relativistic momentum matrix elements are very
small (∼ 0.1%) in Ni and Fe. Therefore, we conclude that although the rela-
tivistic spin-flip processes do exist during ultrafast demagnetization, they do
not provide a notable channel for the huge magnetization loss that has been
observed in the demagnetization experiments.

In the later part of the chapter, we have explained the origin of coherent ul-
trafast magnetism with the help of a novel relativistic Hamiltonian which effi-
ciently couples the electron’s spin to the angular momentum of light. The cor-
responding Hamiltonian stems from the gauge invariant part of the spin-orbit
coupling. We have rewritten this Hamiltonian in order to explain a Zeeman-
like coupling between the electron’s spin and an optically induced magnetic
field which is proportional to the ellipticity and the intensity of light. Using
the relativistic optomagnetic field expression, we have evaluated its strength
during the interaction of pump and probe within the first 100 fs of the dy-
namics. We have found that the optomagnetic field strongly depends on the
polarization of pump and probe; for linearly polarized pump and probe, if
the polarizations are parallel to each other, the optomagnetic field becomes
zero. However, if the polarizations are perpendicular to each other, the in-
duced optomagnetic field becomes non-zero and it is directly proportional to
the amplitude of pump, amplitude of probe, however, inversely proportional
to the frequencies of both. For the latter case, the optomagnetic field depends
on the pump-probe time delay as well. It is however worth to note that, if the
time delay is large then the interactions between pump and probe cannot be
accounted. Finally, we remark that similar optomagnetic fields can be antici-
pated for the elliptically polarized laser pulses.
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5. Inverse Faraday Effect

5.1 Introduction
The Faraday effect (FE) is a magneto-optical phenomenon, which describes
the rotation of the plane of polarization of linearly polarized light, while it
passes through a magnetic medium [235]. If the medium does not possess any
intrinsic magnetic moment, the medium should be kept in a magnetic field.
In contrast, the inverse Faraday effect (IFE) occurs when circularly polarized
light propagates through a nonabsorbing or absorbing crystal, where it induces
a magnetic moment [236]. The induced magnetization due to the IFE changes
sign when the circular polarization is changed from right to left circular polar-
ization. Now, as linearly polarized light can be considered as the superposition
of equal amounts of right and left circularly polarized rays, it was thought that
linearly polarized light cannot induce IFE. However, using the orbital angular
momentum of light, it has been shown that linearly polarized light can induce
a magnetization as well [237]. The IFE is observed in paramagnets [238, 239]
and plasmas [240–243] with circularly polarized light. In the same context,
various models for the IFE have been proposed in the last decades [244–247].
However, there are many open questions. For example, it is not properly un-
derstood whether the IFE induces a magnetic field or a magnetization within
a material.

Here, we describe the IFE in a way that it induces a magnetic moment
(magnetization), ΔMMM which is proportional to the cross product of electric
fields, ∼ EEE×EEE� i.e., the intensity of the incident light. This induced magneti-
zation behaves differently for nonmagnetic systems and for magnetic systems
as illustrated in Fig. 5.1. The induced magnetization can exert a torque on
the preexisting magnetization and thus can assist to the magnetization switch-
ing in a magnetic material [248]. Therefore, the IFE has been instrumental
to achieve all-optical switching in the ultrafast regime [28, 29]. This shows
that the microscopic understanding of the IFE is potentially very rich. In the
following, we describe the classical theory of the IFE followed by its quantum
description, however, including the effect of light absorption.

5.2 Classical description
The classical description of the IFE starts with the assumption of a free elec-
tron gas, neglecting their quantum effects [249]. In the free electron model,
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Figure 5.1. A schematic view of the inverse Faraday effect. (Left) For nonmag-
netic and antiferromagnetic systems, where the net magnetization is zero, the opposite
light’s helicity induce same but opposite magnetizations (ΔMMM). (Right) For magnetic
systems, where there is a net magnetization, MMM present, the opposite light’s helicity
induce asymmetric magnetizations.

the collisions of the electrons with the other electrons and ions are neglected.
Moreover, in the absence of any external electromagnetic field, the electrons
move freely on a straight line unless they collide with the others. While mov-
ing inside the metal, the electrons can collide with each other. These collisions
are instantaneous and as a consequence, the electrons abruptly change their
velocity and momentum. The probability of an electron having a collision
within a time interval dt is γdt and that does not depend on the position of the
electrons (γ is the collision rate, which takes into account the absorption of
light). The electrons are assumed to have achieved thermal equilibrium with
the surroundings after the collisions. With these assumptions, and according
to Newton’s second law, the dynamics of the electrons can be modeled by the
Drude-Lorentz theory [245, 250]

m
d2rrr(t)

dt2 +mγ
drrr(t)

dt
+mω2

0 rrr(t) = FFF(t) . (5.1)

rrr(t) denotes the instantaneous position of the electron and the electromagnetic
force FFF(t) = eEEE, acting on the electron. γ accounts for energy loss processes
i.e., dissipations (γ = 0 for the nonabsorbing materials) and ω0 is the angular
frequency of the electron, which represents the electrons are bound by poten-
tial ω2

0 rrr(t). To obtain the IFE induced effects, the electric field is taken as cir-
cular polarization EEE = E0 (sinωt eeex + cosωt eeey), with ω , the frequency of the
incident light while the light is propagating towards the z-direction. The next
step is to solve Eq. (5.1) for the position, rrr(t) and the velocity vvv(t) = drrr(t)

dt .
Now, we know that for a classical magnetization in materials, the magnetic
moment is proportional to the function rrr× jjj, where jjj = nevvv defines the cur-
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rent density [251]. The induced orbital magnetization is then computed as
rrr(t)× drrr(t)

dt [250]. For the asymptotic solution the induced magnetization can
be explicitly calculated and will be given as

MMMIFE =−Ne3

2m2
ω

(ω2−ω2
0 )

2 + γ2ω2 E2
0 eeez , (5.2)

where N is the electron density. Note that the magnetization is induced in the
same direction of the light’s propagation. We notice that the induced mag-
netization is proportional to the intensity (square of the amplitude of electric
field) of the light, as originally proposed by Pitaevskii [236]. However, the
effect of absorption was not considered in the thermodynamic description by
Pitaevskii. Therefore, the consideration of the parameter γ underlines the main
difference between the above-given classical Drude-Lorentz description and
the approach of Pitaevskii [250]. This is realized by the following relation
between the parameters ruling FE (νFE) and IFE (νIFE) [250, 252]:

νIFE−νFE

νIFE +νFE
=− iγω

ω2−ω2
0
. (5.3)

These parameters are called Verdet constants for FE and IFE. As the deriva-
tion by Pitaevskii [236] was based on the dissipationless media (γ = 0), the
equivalence of two parameters ruling FE and IFE was concluded. In the clas-
sical theory, however, only if one considers γ = 0, this equivalence is realized.
The classical treatment thus provides a first step to understand the IFE while
it accounts for the light’s absorption. However, for realistic and more material
specific calculations of the IFE, the quantum effects have to be included.

In the following, we present the quantum theory of the IFE and the imple-
mentation of the theory to calculate the IFE induced parameters.

5.3 Quantum description
The microscopic theory of IFE was described in the context of the possibility
of achieving ultrafast optical control of magnetism [253]. The proposal was
that IFE is an effect stemming from a Raman-like coherent scattering mecha-
nism which generates an ultrafast and efficient magnetic field. When the laser
pulse hits the sample, an electron is excited to a higher quantum state. This
leads to the transition of the electron back to an another quantum state. How-
ever, if the transition is driven by an electric dipole, the spin state cannot be
changed because within the electric dipole approximation spin does not in-
teract with the electromagnetic field of the laser light. On the other hand, a
magnetic dipole transition allows the spin-flip due to the interaction between
the electron spin and the magnetic field. Therefore, first the electric dipole
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transition followed by a magnetic transition would leave the electron in a fi-
nal magnetic state that is different than the initial one. The whole process is
schematically described in Fig. 5.2.

Figure 5.2. The Λ-like transitions for three level system. The laser light causes the
transition from initial state, |i〉 to a intermediate state | j〉 and then finally back to the
final state | f 〉 which has different magnetic state from the one in initial. Adapted with
permission from Hansteen et al., Phys. Rev. B 73, 014421 (2006). Copyright c© 2006,
The American Physical Society.

First, an optical excitation of h̄ω1 initiates the transition of an electron from
an initial to a higher virtual state (intermediate), with a large spin-orbit cou-
pling. As the spin is not conserved, the spin-flip becomes allowed. Radiation
at the energy h̄ω2 then stimulates the relaxation of the electron back to the
final ground state. Note that, due to a spin-flip in the intermediate state, the
electron will be in a different magnetic state. During the final transition a radi-
ation of h̄(ω1−Ωm) energy will be released and a magnon of energy h̄Ωm will
be created to compensate the energy. To account for the Raman-like processes
and population of the different states during the IFE, an effective Hamiltonian
approach has been considered, including the electron-electron interactions and
spin-orbit coupling [246, 254].

In a further study by Battiato, Barbalinardo and co-workers [204, 250, 252],
they employed the second order density response of the states to the circularly
polarized light. In their work, the quantum Liouville-von Neumann equation
was solved along with the perturbation from the circularly polarized light. The
perturbation was treated as the interaction Hamiltonian V (t) = e∑i rrri · EEE =
e
m ∑i pppi ·AAA, where rrr and ppp are the electron position and momentum operators
respectively, EEE and AAA define the time-varying electric field and corresponding
vector potential from the light. As discussed in Ref. [204], the static part of
the second order density matrix response, ρ̂ [2], has been shown to contribute
to the inverse Faraday effect. The induced magnetization is calculated as the
contributions from the orbital and the spin angular momentum and they are
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evaluated as

MMMIFE = μBTr
[
(L̂LL+gŜSS)ρ̂ [2]] , (5.4)

where L̂LL and ŜSS denote the orbital and spin angular momentum operators re-
spectively. The static part of the second order response has three terms and
their complex conjugates. This means that the optically induced magnetiza-
tion has three contributions which can be written as

MIFE = (Ko +KdA +KdB + c.c.)E2
0 , (5.5)

with E0 the amplitude of the light’s electric field. These three contributions can
be expressed in terms of the momentum and magnetization matrix elements as
follows [255]

Ko =
e2

m2ω2 ∑
n�=m;l

Mmn

p+nl p−lm( fm− fl)
El−Em+ih̄Γlm−h̄ω −

p−nl p+lm( fl− fn)
En−El+ih̄Γnl−h̄ω

En−Em + ih̄Γnm
,

KdA =
e2

m2ω2 ∑
n,l

Mnn

(
p+nl p−ln( fl− fn)

(El−En + ih̄Γln− h̄ω)2 −
p−nl p+ln( fn− fl)

(En−El + ih̄Γnl− h̄ω)2

)
,

KdB =
e2

m2ω2 ∑
n,l

Mnn

h̄ω
p+nl p+ln( fn− fl)(ih̄Γln− h̄ω)

(El−En)2 +(h̄Γln + ih̄ω)2 . (5.6)

Here, pnl are the matrix elements of the momentum operator. These are calcu-
lated with the relativistic electronic states |nkkk〉 corresponding to the energies
Enkkk. For shake of brevity the momentum kkk has been suppressed in Eq. (5.6).
fn = f (Enkkk) are the Fermi-Dirac distribution functions. To account for the
right and left circular polarization of the light, we have introduced the raising
and lowering momentum operator as p̂pp± = ( p̂ppx± ip̂ppy), remembering the fact
that the light propagates towards the z-direction. The laser photon energy is
h̄ω , and the line-widths are taken into account through Γnl matrix elements
and those are taken as positive parameters, usually chosen to be state indepen-
dent.

The above-mentioned expressions of the laser-induced magnetization con-
tributions seems mathematically complicated, however, their physical mean-
ings are immediately explained. The first term, Ko, arises from the off-
diagonal components in the second order perturbed density matrix. Therefore,
it includes all the possible optical transitions among different states - electronic
Raman-like scattering. First the circular laser light is absorbed by the system
under study, bringing the system into a virtual excited state. At this stage, the
excited state can couple to the other available electronic or vibrational states of
the system and therefore finally the system reaches to a state that is different
from the initial one. These transitions involve the absorption and the emis-
sion of light but not by the equal amount. The second and third terms, KdA
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and KdB, arise from the diagonal components in the second order perturbed
density matrix - electronic Rayleigh-like scattering. In these cases, upon the
absorption of light, the system reaches to an excited state. But at this stage,
the excited states do not couple to the other available states of the system and
consequently, the initial and final states are the same. These transitions, thus,
involve the absorption and emission of light by same amount.

Notice that, in particular, all the terms in Eq. (5.6) diverge when ω → 0 be-
cause of its appearance in the the denominator. Hence, it is expected that the
induced magnetization may also diverge at ω → 0. To understand this unusual
result, it is important to keep in mind that the treated field is that inside the
material. For metals, the reflectivity approaches 100% when ω → 0, implying
that the field in the material is strongly reduced. While the laser-induced mag-
netization is calculated, eventually it induces a corresponding optomagnetic
field that can be obtained from the susceptibility of the material as HHH = MMM/χ .
We note that, this approach would be valid if both induced spin and orbital
magnetizations behave in the same way, that is, behave as a response to an
applied Zeeman field.

5.3.1 Ab initio calculations
We have implemented these contributions to the induced magnetization in an
ab initio relativistic DFT framework. The effect of absorption which was ig-
nored in previous theories [236, 256], is included in our calculation. The im-
portant point here that we address is that, there are contributions from the
orbital and the spin parts to the induced magnetization. Our configuration set
up is such that the laser light travels towards the z-direction, thus for circularly
polarized light the electric field components will be in the x- and y-directions.
This means that the induced magnetization will only have the z-component.
Therefore, following the definition of laser-imparted magnetization in Eq.
(5.4), we get

Mz
IFE = μBTr

[
L̂zρ̂ [2]

]
+2μBTr

[
Ŝzρ̂ [2]

]
,

=
[
KL

IFE(ω)+KS
IFE(ω)

] I
c
. (5.7)

The laser intensity is denoted by I = cε0E2
0/2 and the frequency dependent

orbital and spin IFE parameters are KL
IFE(ω) and KS

IFE(ω) (see paper V for
details). In this way, the parameters KIFE(ω) have the dimension of inverse
Tesla.

In practice, when the circularly polarized light hits on a magnetic or non-
magnetic system, depending on their magnetic ordering, the absorption of
the light and all the possible excitations (transitions) happen differently for
right and left circularly polarized light. Therefore, it is not possible to predict
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clearly the behavior of the light-induced magnetizations for two circular polar-
izations, unless they are calculated ab initio. In the following, we present ab
initio calculations of the IFE which consist of the contributions of the orbital,
spin and total induced magnetization in a photon energy span of 0 - 4 eV.

♣ Detail of the calculations

In particular, we calculate the given three expressions in Eq. (5.6) starting from
ab initio calculations. To calculate those, we need informations of the several
parameters involved in the expressions. The momentum matrix elements (pnl)
are calculated with the relativistic electronic states which are the solutions
of the DKS equation, solving the electron spinor equations for the large and
small components numerically. The corresponding relativistic band energies
are given by En. The magnetization matrix elements are also calculated simi-
larly with the relativistic electronic states. The calculations are performed with
the Fermi-Dirac distributions ( fl) taken as a heavy-side step functions because
the current calculations do not account for temperature effects. The parameter
for the consideration of broadening or line width is taken as, h̄Γ = 0.03 Ry.
This value has been known to give a very good description of ab initio calcu-
lations of linear-order optical response of metals [224]. The polarization of the
electric field is considered for the right circularly polarized light (we denote it
as σ+) as EEE = E0 (sinωt eeex + cosωt eeey). Such polarization for a ray, the wave
propagating along −z-direction corresponds to a left circular polarization (we
denote it as σ−). In general, the space and time dependent electric field has
the following form

EEE(rrr, t) = E0 Re
[
i|Ψm〉ei(kz−ωt)

]
. (5.8)

Here |Ψm〉 are the vectors in the x− y plane. For the right and left circular
polarization, we define those vectors as

|ΨR〉= 1√
2

⎛
⎝ 1

−i

⎞
⎠=

1√
2
(eeex− ieeey) ,

|ΨL〉= 1√
2

⎛
⎝ 1

i

⎞
⎠=

1√
2
(eeex + ieeey) . (5.9)

The momentum matrix elements of the contributions in Eq. (5.6) are calculated
within the augmented spherical wave (ASW) method with the relativistic band
energies and wave functions. The calculations of momentum matrix elements
use the Bessel and Hankel functions as nicely described in the Ref. [220].

♣ Results

The calculated induced magnetization is shown for σ+ and σ− and separately
for the contributions from orbital, spin and total magnetization.
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Nonmagnetic metals:
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Figure 5.3. Calculated different contributions to the IFE for nonmagnetic metals as
a function of photon energy. (Top panels): The orbital, spin and total IFE effects are
shown for Au (black and yellow dashed lines) and Cu (red and blue solid lines). (Bot-
tom panels): The orbital, spin and total IFE effects are shown for Pd (black and yellow
dashed lines) and Pt (red and blue solid lines). Adapted with permission from Berritta
et al., Phys. Rev. Lett. 117, 137203 (2016). Copyright c© 2016, The American
Physical Society.

In Fig. 5.3, we show the IFE induced magnetization for nonmagnetic met-
als (net magnetization is zero) in Cu, Au, Pd and Pt. The calculations show
the existence of finite contributions to not only the spin IFE, but also the or-
bital IFE. Note that, the orbital IFE was unknown previously and also was
ignored in the original work by Pitaevskii [236]. In addition, we note that the
magnitude of the orbital IFE is 10 times larger than the spin IFE. However,
these contributions are in the opposite directions for a particular helicity, and
therefore they compete with each other to the total IFE.

The IFE contributions are visibly materials specific. We notice that the in-
duced magnetization is larger in Au than the one in Cu in both cases of orbital
and spin IFE. A similar behavior can also be concluded for the case of Pt and
Pd, where the induced magnetization in Pt is much higher than Pd. All to-
gether, the total induced magnetization in Pd and Pt is larger than the one in
Cu and Au. We can anticipate the fact that the IFE induced magnetization
diverges at ω → 0 as there are 1/ω2 in the prefactor of the set of Eqs. (5.6).
More importantly, the IFE induced effects are antisymmetric in the light’s he-
licity which means right circularly polarized light induces exactly the same
and opposite orbital (spin) IFE as left circular polarized light [255].

Ferromagnetic metals: Notably, the ferromagnetic metals show a completely
different behavior for the induced IFE than the nonmagnetic metals. The cal-
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culated induced magnetizations are shown for the 3d transition metals, namely,
bcc Fe, hcp Co and fcc Ni in Fig. 5.4.
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Figure 5.4. Calculated different contributions to the IFE for ferromagnetic metals.
The red dashed and blue solid lines show the contributions induced by left and right
circularly polarized light respectively. (Top panels): The orbital, spin and total IFE
effects are shown for bcc Fe. (Middle panels): the orbital, spin and total IFE effects
are shown for hcp Co. (Bottom panels): The orbital, spin and total IFE effects are
shown for fcc Ni. Adapted with permission from Berritta et al., Phys. Rev. Lett. 117,
137203 (2016). Copyright c© 2016, The American Physical Society.

In the following, we analyze the obtained results for each material [255].
Bcc Fe: The contribution to the spin IFE does not depend on the helicity

of the light, for right and left circularly polarized light, the spin IFE curves
fall on top of each other. However, the orbital IFE depends on the helicity of
the circularly polarized light. The right and left circular polarization induce
an orbital magnetization in the same direction, except in a span of photon
energies 2 - 4 eV. Therefore, the induced total magnetization also points in the
same direction for both helicities. Unlike the nonmagnetic metals, the spin
and orbital IFE have the similar order of magnitude and they contribute to the
total IFE.

Hcp Co: The behavior of induced spin IFE is the same as for bcc Fe, they
almost overlap with each other for opposite light helicities. The orbital IFE
shows a different scenario than bcc Fe. Except for the low energies, the right
circularly polarized light induces orbital IFE in the opposite direction of that
induced by the left circularly polarized light and they are asymmetric in the
light’s helicity. Unlike bcc Fe, the right circularly polarized light induces or-
bital and spin IFE in the opposite direction, hence, the total induced magneti-
zation is less. On the other hand, the left circular polarized light induces spin
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and orbital IFE in the same direction, increasing the total induced magnetiza-
tion.

Fcc Ni: The effect of spin IFE is effectively the same as Fe or Co. However,
the orbital IFE are approximately antisymmetric in the light helicity. As seen
in hcp Co, a similar behavior of spin and orbital IFE for the right and left cir-
cularly polarized light are anticipated. A reason of the asymmetric behavior is
that, for ferromagnets where the net magnetization is nonzero, the time rever-
sal symmetry is notably broken already and thus a full antisymmetric behavior
is not expected.

Antiferromagnetic materials:
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Figure 5.5. Calculated different contributions to the IFE for antiferromagnetic Fe
and ferromagnetic Fe without spin-orbit coupling. The red dashed and blue solid lines
show the contributions induced by left and right circularly polarized light respectively.
(Top panel): The orbital, spin and total IFE effects are shown for synthetic antiferro-
magnetic Fe. (Bottom panel): The orbital, spin and total IFE effects are shown for bcc
Fe computed without spin-orbit coupling. Adapted with permission from Berritta et
al., Phys. Rev. Lett. 117, 137203 (2016). Copyright c© 2016, The American Physical
Society.

For antiferromagnetic materials, the net magnetization is zero and once
again the IFE is expected to have antisymmetric nature with respect to the
light’s helicity. The calculations are presented in Fig. 5.5, for synthetic anti-
ferromagnetic Fe. Note that, the spin IFE is about 10 times smaller than the
orbital IFE, as was also concluded in the nonmagnetic case. Similar to the
nonmagnetic materials, the orbital and spin IFE is induced in opposite direc-
tion for a particular helicity. Thereby, the total induced magnetization is also
antisymmetric in the light’s helicity. In addition, antiferromagnetic Fe shows
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an photon energy dependence that is different from that of ferromagnetic Fe
[255].

To summarize, the ab initio calculations reveal that the IFE is more complex
at the fundamental level than it was thought. It is found that the induced mag-
netization is antisymmetric in the helicity for the magnetic system with zero
net magnetization. The same is expected for paramagnetic materials as well.
However, for ferromagnetic and ferrimagnetic systems, where a net magne-
tization exists, the induced magnetization is shown to be asymmetric in the
helicity of the light. Furthermore, in Fig. 5.5, the calculated IFE effects are
shown without spin-orbit coupling for ferromagnetic Fe. We see that the with-
out spin-orbit coupling, the spin IFE is zero irrespective of the photon energy
of the light. This reveals that the spin-orbit coupling is purely responsible for
the laser-imparted magnetization in the spin components.

5.4 Angular magneto-electric coupling
There exist mainly four classes of ferroic orders in a multi-ferroic material.
These are: ferroelastic, ferroelectric, ferromagnetic and ferrotoroidic orders.
These can be classified in terms of the space inversion and time reversal sym-
metry considerations [257]. For example, the space inversion and the time
reversal symmetry is conserved for the case of ferroelastic materials because
only mechanical processes (stress, strain) are involved. On the other hand, fer-
roelectric materials are electrically polarizable means they have spontaneous
electric polarization which comes from the charge density. Now, as the charge
density depends on the spatial coordinates, the space inversion symmetry is
broken for ferroelectric materials, however, the time reversal symmetry is con-
served. The opposite picture is realized for ferromagnetic materials. In this
case, the the magnetism arises due to the current density which changes sign
under the time reversal, however, stays invariant under space inversion. Both
the symmetries are broken for the ferrotoroidic materials, where the alignment
of the magnetic vortices gives rise to a toroidal moment. The observation of
ferrotoroidic order has been reported recently [258]. These different ferroic
orders are pictorially classified in Fig. 5.6.

In this part of the chapter, we are mostly interested in the ferrotoroidic sys-
tems and the eventual manipulation of the toroidal moments using electric and
magnetic fields. In the multipole expansion of the magnetic vector potential,
the toroidal dipole moment arises from the second order term in the expansion
[257]. The toroidal moment can be seen as the cross product between position
and magnetization, MMM. According to the definition, the toroidal moment has
the following expression [257]

TTT =
1
2

∫
rrr×MMM d3r . (5.10)
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Figure 5.6. The classification of the various ferroic orders according to space and time
symmetry considerations.

In a toroid, the current flowing perpendicular to the toroid creates the moment
(see bottom-right part of Fig. 5.6). These current loops will be shifted by
the application of a magnetic field, inducing a polarization - a magnetoelectric
coupling [258]. This manipulation of the toroidal dipole moment is potentially
important for technological purposes e.g., in data storage [257, 259]. The
manipulation has been studied by using a static inhomogeneous field [260],
however, the crossed electric and magnetic fields (EEE ×HHH) can also be used
[63]. The reason is that the crossed electric and magnetic field breaks both the
time reversal and space inversion symmetry. Therefore, both fields are needed
for manipulation of the toroidal moment. The coupling between the toroidal
moment and the crossed electric and magnetic fields leads to the introduction
of a physical energy [62]

E =−1
2

∫
ξ [rrr× (EEE×HHH)] ·MMM d3r . (5.11)

The electric and magnetic fields are considered as EEE and HHH and ξ is the mate-
rial dependent strength of the coupling parameter which is unknown. Notice
that, rrr× (EEE×HHH) exactly measures the total angular momentum density of an
EM field. Therefore, essentially, the above energy describes the coupling of
angular momentum of an EM field with the electron spin, however, is only put
forward from a phenomenological basis and simple symmetry considerations.
Nonetheless, the energy can be useful in describing many complex phenom-
ena e.g., the anomalous Hall effect [64], spin current model in multiferroics
[62], the planar Hall effect and anisotropic magnetoresistance [65].

As of now, the physical energy in Eq. (5.11) is very useful, however, it
is phenomenologically described. On the other hand, the energy expression
vaguely resembles to the one of well-known spin-orbit coupling, but with only
the difference that the angular momentum of light (∝ rrr× (EEE×HHH)) couples to
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the spin. This energy has been called angular magneto-electric (AME) cou-
pling energy [62].

Here, in the below we provide the microscopic derivation of the AME en-
ergy in the optical regime while starting from the relativistic DKS Hamilto-
nian.

5.4.1 Microscopic derivation
In paper II and paper III, we rigorously derive the physical energy of Eq.
(5.11) from the gauge invariant part of the spin-orbit interaction in Eq. (2.82).
Thus, we name the corresponding Hamiltonian as the spin-photon coupling
that has the expression [163]

Hspin−photon =
e2h̄

4m2c2 σσσ · (EEE×AAA) (5.12)

Note that, here in contrast to the AME consideration in Eq. (5.11) with static
applied fields, we consider general time-dependent photon fields. As already
discussed in Chapter 2, there are two electric fields present, the internal and
external. Therefore, the spin-photon coupling Hamiltonian can be split in an
intrinsic part, caused by the microscopic field generated by the crystal poten-
tial (EEE int =−1

e ∇∇∇V ), and an extrinsic part that is linked to the external electric
field (EEEext =−∂AAA/∂ t) such that EEE = EEE int +EEEext. Now, within a material, the
internal electric field will be changed by the perturbation from the external
field. Within the linear response framework, we write

EEE int = EEE0
int + γ ·EEEext , (5.13)

with EEE0
int, the internal electric field which exists even without applying any

field and γ is a material linear response to the applied field. The parameter γ
is usually a tensor, however, for a cubic system can be considered as a scalar
quantity. With this simplification, the Hamiltonian in Eq. (5.12) can be ex-
pressed in two terms:

Hspin−photon =
e2h̄

4m2c2 σσσ · (EEE0
int×AAA)+

e2h̄(1+ γ)
4m2c2 σσσ · (EEEext×AAA) . (5.14)

The first term, here, can be dropped because the microscopic field does not
exist in the bulk of a solid when it is averaged over an unit cell. Therefore, we
proceed while taking the second term into account.

We point out that, the derivation of the Eq. (5.11) from the second term of
Eq. (5.14) is based on several strong assumptions. First, the magnetic field is
assumed to be uniform that is taken into account through the choice of gauge as
AAA = BBB×rrr/2. This is because we assume that the skin depth of the applied EM
field is much larger than the thickness of the system being studied. Second,
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the results are derived within the Coulomb gauge that means ∇∇∇ · AAA = 0, in
accordance with the Maxwell equations. With the choice of gauge, we insert
the vector potential in second term of Eq. (5.14) and taking its expectation
value results in

EAME =
ξ
2

∫
MMM · [EEEext× (BBB× rrr)] drrr , (5.15)

where ξ is a material dependent parameter which can be realized due to the
fact that ξ ∝ (1+ γ). Third, we have used a linear proportional relationship
between the magnetization and magnetic field. As we stressed in Chapter 3,
this is typically not true in ferromagnets, where only a small component of
the magnetization, the induced magnetization, is proportional to the applied
magnetic field, in contrast to the spontaneous magnetization existing even at
zero field. Nonetheless, we expand the expression in Eq. (5.15) and use the
proportionality relationship in the second term of the expansion to interchange
BBB and MMM so that we get [163]

EAME =
ξ
2

∫ [
(MMM ·BBB)(rrr ·EEEext)− (MMM ·EEEext)(BBB · rrr)

]
drrr

=−ξ
2

∫
MMM · [rrr× (EEEext×BBB)] drrr . (5.16)

Noticeably, this is exactly the physical energy of the phenomenologically pro-
posed AME coupling (see Eq. (5.11)) [62]. We thus provide the microscopic
derivation of manipulation of magnetization by the angular momentum of
light; it straightforwardly derives from the DKS Hamiltonian, in particular,
from the gauge invariant part of the spin-orbit coupling - the spin-photon cou-
pling.

As there are assumptions involved in the derived AME energy in Eq. (5.16),
this expression is not general. Instead, we use, in the following, the general
spin-photon coupling Hamiltonian of Eq. (5.12) and discuss how it derives the
relativistic correction to the IFE.

5.5 Relativistic contributions to the inverse Faraday
effect

In the discussions of earlier sections (Sec. 5.3), the IFE has been attributed
to the second order density response to the circularly polarized light. The
interaction Hamiltonian of light and electrons that derives IFE is taken as non-
relativistic as ppp ·AAA. In this way, the IFE induces a magnetization in a material.
On a different note, the essence of IFE was thought to reside on the induced
optomagnetic field [28, 30, 261]. The latter defines the IFE in a magnetic ma-
terial as an effective Zeeman field - optomagnetic field as BBBopt ·MMMi, acting on
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the atomic spin moment MMMi with conserved length (see the discussion of op-
tomagnetic field in the Sec. 4.4.1). As the IFE is a quadratic response of the
applied electric field, the corresponding Hamiltonian has the following form
[30]

HIFE = ζ Re
[
i(EEE×EEE�)

] ·σσσ , (5.17)

where ζ is a material dependent parameter. If the electric fields are taken as
the plane wave solutions of the Maxwell equations i.e., EEE = EEE0ei(kkk·rrr−ωt), only
the amplitude of the electric field contributes to the IFE induced optomagnetic
field. Comparing with the Zeeman field, the optomagnetic field (BBBopt) will be
proportional to the real part of the crossed electric field amplitudes such that
the Eq. (5.17) can be written in the form: HIFE =− ζ

gμB
BBBopt ·σσσ .

Here, in the following, we show that the spin-photon coupling Hamiltonian
naturally derives the relativistic optomagnetic field of IFE. We use the trans-
verse part of the electric field EEE =−∂AAA/∂ t, such that the vector potential can
be calculated with

AAA =−Re
[

i
ω

EEE0ei(kkk·rrr−ωt)
]
. (5.18)

Using these considerations, the second term of the spin-photon coupling Hamil-
tonian in Eq. (5.14) takes the form

Hspin−photon =−e2h̄(1+ γ)
4m2c2ω

σσσ ·Re [i(EEE0×EEE�
0)] . (5.19)

The derived Hamiltonian thus provides precisely the energy related to the IFE
(see Eq. 5.17). Considering that the IFE induces a relativistic optomagnetic
field, the latter will be given by [163]

BBBopt =
e2h̄(1+ γ)

4m2c2ωgμB
Re [i(EEE0×EEE�

0)] . (5.20)

We see that the relativistic optomagnetic field is material dependent and strong-
ly depends (inversely proportional) on the angular frequency of the incident
light, however, linearly proportional to the intensity of the light. Note that,
a similar optomagnetic field has been used to describe the coherent ultra-
fast magnetism in pump-probe spectroscopy in ultrashort timescales (see Sec.
4.4.1). In particular, if we consider an elliptically polarized light of amplitude
E0 and ellipticity parameter η so that

EEE0 =
E0√

2

(
eeex + eiηeeey

)
, (5.21)

the magnitude of the induced optomagnetic field in Eq. (5.20) takes the simpler
form in terms of the intensity of light I = cε0E2

0/2 and ellipticity as

Bopt =
e2h̄(1+ γ)

4m2c3ε0ωgμB
sinη I . (5.22)
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Again, we point out that as the incoming light has the electric field compo-
nents in the x- and y-directions, the optomagnetic field will be induced in the
z-direction. This way, the induced field is zero for linearly polarized wave be-
cause η = 0 or π leads to sinη = 0. For circularly polarized light (η =±π/2),
the induced optomagnetic field is maximal (sinη =±1). The magnitude of the
induced field is equal but opposite for the case of right (η = +π/2) and left
(η =−π/2) circularly polarized light, for the same intensity and same angular
frequency. Now, the linearly polarized light is a combination of equal amounts
of right and left circularly polarized light and thus the effective induced field
will be zero for the linear polarization.

In order to estimate the strength of the induced relativistic optomagnetic
fields, we use the experimentally used values of the intensity and wavelength
of the contemporary laser source which are largely available. We consider
circularly polarized light of intensity I = 10 GW/cm2 and wavelength centered
about 800 nm (angular frequency, ω = 2.35×1015 Hz). The magnitude of the
IFE induced field in this case will be Bopt = 8×(1+γ)sinη μT. For circularly
polarized light and in the limit γ → 0 (no screening response of the system to
the applied field) the relativistic optomagnetic field is of the order of 8 μT.
However, this value is the lowest determined in the zero response limit, and it
will be increased once we include the response of the system. As discussed
towards the end of paper II and paper III, the value of γ would possibly be
high leading to an induced optomagnetic field of mT up to Tesla. Lastly, we
stress that the induced field strongly depends on the intensity of the incoming
light and more intense light would induce higher optomagnetic fields.

To summarize, the gauge invariant part of the spin-orbit coupling i.e., the
spin-photon coupling Hamiltonian has been shown to explain the microscopic
origin of the phenomenologically predicted the angular magneto-electric cou-
pling. The latter coupling defines the interaction of angular momentum of
a EM field and the electron spin. The spin-photon coupling Hamiltonian
has been overlooked for many years, however, we show that this relativistic
coupling could explain many important physical phenomena. Although, the
derivation involves mainly two assumptions, the true origin of the AME cou-
pling energy is revealed. Nonetheless, the spin-photon coupling derives from
the DKS Hamiltonian and it is exact. Later, considering elliptically polarized
light, we show that this spin-photon coupling leads to a Zeeman-like field,
which in turn defines the physical energy behind the explanation of the rel-
ativistic correction to the IFE. As we have discussed in the first part of this
chapter that main IFE is a different effect, this relativistic spin-photon cou-
pling only serves as a relativistic contribution to the IFE. Although, the main
IFE is described as the induced magnetization, whereas in this way, the IFE
correction has been described as an induced optomagnetic field. Finally, we
also comment that the strength of the optomagnetic field strongly depends on
the intensity and frequency of the incident light and the material’s response to
the light.
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6. Summary and Outlook

Relativistic quantum mechanics has been the main cornerstone of physics that
can describe massive particles propagating at any velocities, limited only by
to the velocity of light. Relativistic theories have been proven to be very much
useful in describing many complex phenomena in high-energy physics, par-
ticle physics, and atomic physics. Throughout this thesis, it has been shown
that relativistic theories are equally important in condensed matter physics as
well. In particular, we have investigated the relativistic effects within a general
magnetic system excited by an electromagnetic field pulse.

To elucidate the relativistic effects in magnetic systems, we have considered
the Dirac-Kohn-Sham Hamiltonian which efficiently describes the particle and
antiparticle simultaneously. We have included a spin-polarized Kohn-Sham
potential to account for the magnetic exchange interactions. In the low en-
ergy excitation, the separation between particle and antiparticle is necessary
because only the particles can be described within the extended Pauli Hamil-
tonian. This separation is realized by the so called Foldy-Wouthuysen trans-
formation that is exact for a free Dirac particle. However, if the relativistic
particle experiences a time-dependent field, this separation is not exact and
the transformed Hamiltonian needs further corrections. Nonetheless, using a
corrected FW transformation, the true form of the extended Pauli Hamiltonian
is revealed up to an order of 1/c4. The latter Hamiltonian includes the nonrel-
ativistic Schrödinger-Pauli Hamiltonian and other relativistic corrections (e.g.,
relativistic mass correction, Darwin terms, spin-orbit coupling, relativistic cor-
rections to exchange field, higher-order spin-orbit coupling). These relativistic
correction terms bear plenty of enlightenment in the area of laser-induced rel-
ativistic magnetization dynamics.

We have extensively derived the Landau-Lifshitz and Landau-Lifshitz-Gilbert
magnetization dynamics from the extended Pauli Hamiltonian. As we focus on
the spin dynamics, the spin Hamiltonian is taken into account in this case. Our
results reveal: the Zeeman-like coupling with the external field and exchange
field gives the magnetization Larmor precession. The intrinsic spin-orbit cou-
pling contributes to the relativistic correction to the precession. Furthermore,
for a system driven by a harmonic external field, the extrinsic spin-orbit cou-
pling exactly provides the Gilbert damping but here the damping parameter is a
tensor. Along with the isotropic Gilbert damping, we have shown the existence
of anisotropic Ising-like and chiral Dzyaloshinskii-Moriya-like damping. On
the other hand, for a system driven by nonharmonic fields, the Gilbert damping
alone is not adequate to describe the dynamics; we have derived the existence
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of the field-derivative torque that might lead to the switching of magnetization
when a sharp ultrashort laser pulse is employed. Moreover, we have derived
an additional torque - the optical spin-orbit torque which suggests new ways to
manipulate spins using the angular momentum of light. From the higher-order
spin-orbit coupling, we derive the magnetic inertial dynamics that could be
significant at the ultrashort timescales. We have made a comparison between
the derived Gilbert damping parameter and inertia parameter; they scale with
the imaginary and real part of the magnetic susceptibility, respectively. How-
ever, the inertia parameter is in general much smaller than the Gilbert damping
(by 1/c2). We have derived the spin-current tensors within our description and
we have established the adiabatic and nonadiabatic spin-transfer torques in our
extended magnetization dynamics. In particular, we show that the adiabatic
spin-transfer torque of Berger form arises within the nonrelativistic magneti-
zation dynamics, however, the nonadiabatic spin-transfer torque derives from
the relativistic magnetization dynamics.

Using the relativistic momentum operator, we have calculated ab initio the
relativistic magneto-optical Kerr rotation and ellipticity of Ni and Fe, and the
results underline that the relativistic spin-flip effects can modify the complex
Kerr spectra by only ∼ 0.1%. This small amount of modification does not ex-
plain towards the huge loss of magnetization in an ultrafast demagnetization
experiment. However, using the relativistic spin-photon coupling, we have
explained the origin of the experimentally observed coherent ultrafast mag-
netism that depends on the polarization of light.

In the last part of the thesis, we have presented the coherent laser-imparted
magnetization (inverse Faraday effect) in metals using a second order density-
matrix response. The latter includes the Raman-like and Rayleigh-like scatter-
ing matrix elements. Our ab initio calculations show that the inverse Faraday
effect is much more complex than it was earlier described in the literature.
For nonmagnetic metals, we find that the induced magnetization is exactly an-
tisymmetric in the light’s helicity. However, the imparted magnetization in
spins is very much smaller than that in orbitals. The total induced magnetiza-
tion thus resembles to the orbital inverse Faraday effect. On the other hand, we
show that for ferromagnetic metals, the spin inverse Faraday effect does not
depend on the helicity of light. However, the induced orbital magnetization is
asymmetric in the light’s helicity, therefore, the total induced magnetization is
asymmetric. Also, antiferromagnetic materials show a similar behavior to that
of nonmagnetic case.

In a future work, the magnetization dynamics including the field-derivative
torque and optical spin-orbit torque has to be explored in more detail in order
obtain a better understanding of its physical importance. As in the experi-
ments of ultrafast magnetization dynamics, often an ultrashort laser pulse is
used, this field-derivative torque might be interesting for switching applica-
tions. On the other hand, there have recently been attempts to experimen-
tally manipulate the spins in a material using the light’s angular momentum
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that leads to first experimental evidences for the optical spin-orbit torque. At
the same time, the tensorial Gilbert damping has to be implemented within
the atomistic spin dynamics simulation to elucidate the underlying physics of
anisotropic damping and chiral, Dzyaloshinskii-Moriya damping. The latter
can become useful in the case of magnetic texture dynamics e.g., domain-wall
motion. The anisotropic damping can be realized in a ferromagnetic resonance
experiment because when the magnetization vector rotates around a field, the
direction of magnetization continuously changes which serves as anisotropy to
the damping. The anisotropic damping can have importance for the skyrmion
dynamics as well on the size and velocity of skyrmions [262]. It has to be
noted that as we have done, it is possible to show that the Gilbert damping
parameter can be expressed as a series of higher-order relativistic terms. To
realize that, one has to evaluate the higher-order relativistic corrections and
derive the magnetization dynamics taking into account those terms. As the
Gilbert damping parameter is notably relativistic, the higher-order terms will
be smaller and they will have less impact. Nonetheless, it is important to know
the exact expression for the Gilbert damping parameter.

In our formulations of the Landau-Lifshitz-Gilbert magnetization dynam-
ics, we have not considered the orbital contributions, only the spin dynamics
has been accounted. However, the orbital angular momentum too contributes
to the magnetization of the material. Therefore, another aspect is to include
the orbital contributions in the magnetization dynamics; this is very important
for the materials where the spin-orbit coupling is strong. In particular, one
can obtain the spin and orbital angular momentum dynamics with the Hamil-
tonian which we have derived, in the form of Heisenberg operator dynamics.
In the components form, one then has to solve six first-order differential equa-
tions which are coupled to each other. Then the transfer of angular momentum
from spins to orbitals, and to lattice will become clearer from such relativistic
theory. In this way one achieves the complete spin and orbital angular momen-
tum dynamicswithin the Dirac-Kohn-Sham theory, which would be sufficient
to describe the involved many-particle interactions.
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7. Relativistisk teori om ljus-spinnsamverkan
och inverterad Faradayeffekt (Svensk
sammanfattning)

Ljuset (solen) är den huvudsakliga källan av energi i vårt dagliga liv. I termer
av klassisk- och kvantfysik, har ljus våg-partikeldualistisk natur som betyder
att ljuset består av många partiklar (fotoner) och att flödet av fotoner bildar en
elektromagnetisk våg. Varje elektron bär med sig ett enskilt energikvanta och
därför har ljuset en energi som är proportionell till inversen av våglängden av
ljusvågen. Fastän fotonen är en partikel utan massa, är det också känt att ljuset
bär på en rörelsemängd i form av spinn och bandelar. Å andra sidan, är materia
uppbyggt av atomer (kärnor) och subatomära partiklar (elektroner). Enligt
Bohrmodellen, rör sig elektronerna runt atomerna i bestämda omloppsbanor
och de har energi och bär på ett moment i form av spinn och bankvanttal
också.

När ljuset samverkar med materian, kan energin hos ljuset absorberas av
elektronerna och de exciteras till en högre energinivå, “till slut” kommer elek-
tronerna avge energikvanta (strålning) och hoppa ner till en lägre energinivå.
Det här hör samman med många olika fenomen som beror på intensiteten hos
det infallande ljuset, om intensiteten är hög (t.ex. röntgenstrålning) kommer de
innersta elektronerna bli exciterade och relativistiska effekter gör sig gällande.
De relativistiska effekterna blir mer avgörande när spinnet hos elektronerna
kopplar med frihetsgraderna från bankvanttalen - spinn-bankoppling.

I den här avhandlingens härleder vi möjliga relativistiska effekter under
ljusets samverkan med materian och hur de påverkar de dynamiska processerna.
För att undersöka den relativistiska ljus-materiesamverkan startar vi från en
Dirac-Kohn-Sham-Hamiltonian. Eftersom den beskriver både partikel- och
antipartikelteorin samt deras samverkan inom energiexcitationer med låg en-
ergi, vill vi gärna sortera ut partiklarna från antipartiklarna. Vi använder oss
av en transformation, en så kallad Foldy-Wouthuysentranformation, för att
koppla loss partikelvågfunktionen från antipartikelversionen. Partiklarna kan
beskrivas med den härledda utökade Pauli-Hamiltonianen, vilken innehåller
alla möjliga relativistiska korrigeringar av första ordningen och den mest be-
tydelsefulla är den totala spinn-bankopplingen (gaugeinvariant och Hermitsk).
De relativistiska effekterna är: masskorrigering, Darwinterm, spinn-bankopp-
ling (gaugeinvariant och Hermitsk), högre ordningens spinn-bankoppling och
relativistiska korrigeringstermer för utbytessamverkan (de här är nyheter och
härledda för första gången). I stort sätt är spinn-bankopplingen av tvåtyper:
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den ena är den vanliga spinn-bankopplingen av elektroner som beror på den
interna potentialen, den andra uppstår när rörelsemängden hos ljuset kopplar
med det elektroniska spinnet. Vi såg, intressant nog, att de här relativistiska
termerna täcker upp en stor del av fysikaliska fenomen.

Den relativistiska spinn-bankopplingen (Hermitsk) ger oss en inblick i ur-
sprunget till Gilbertdämpning i snabb Landau-Lifshitz-Gilbertmagnetiserings-
dynamik; vi härleder den exakta Gilbertdämpningsparametern från Dirac-Kohn-
Shamekvationen. Vi kommer fram till att Gilbertdämpningsparametern är en
tensor, vilken förklarar uppkomsten av topografisk dämpning. Vi härleder
också förekomsten av det nya och tidigare förbisedda fältderiverade momentet,
vilket kanske kan spela en stor roll för magnetisk omkopplingsmekanism drive-
n av en optisk puls.

Den gaugeinvarianta delen av spinn-bankopplingen förklarar det okända
ursprunget till den relativistiska kopplingen mellan spinn och ljus. Den till-
hörande relativistiska Hamiltonianen har visat sig vara samverkan mellan rörel-
semängden hos ljuset och elektronspinnet. Dessutom visar vi också att den
sistnämnda samverkan kan ses som det verkande magnetiska fältet från laser-
pulsen. De verkande fälten har undersökts i olika konfigureringar av pump-
probeundersökningsutrustningar i ultrasnabba avmagnetiseringsexperiment.
Genom att göra så, har vi visat att den här samverkan förklarar den koherenta
ultrasnabba magnetismen i den femtosekundslånga avmagnetiseringen. Föru-
tom det kan det verkande fältet från ljuset ses utöva ett moment på spinnen -
det optiska spinn-banmomentet.

Högre ordningens spinn-bansamverkan härleds och de förklarar uppkom-
sten av spinnutation (magnetisk tröghetsdämpning) i ultrasnabb magnetism-
dynamik. Den tillhörande Gilbertdämpningsparametern och tröghetsparame-
tern är tensorer och de proportionella med de respektive imaginära och reella
delarna av susceptibilitetstensorn i ett harmoniskt fält.

I fortsatta studier behandlas spinnströmmar inom utökad magnetismdynam-
ik och vi ser att ickerelativistiska spinnströmmar naturligt leder till strömin-
ducerade spinnförflyttningsmomenten, medan de relativistiska spinnströmmar-
na (p.g.a. spinn-bansamverkan) leder till de fältinducerade momenten - spinn-
banmomenten. De här spinn-banmomenten verkar väldigt lovande för att driva
switchningen hos magnetismdynamiken.

Med ab-initio-beräkningar har vi beräknat storleken på laserinducerad mag-
netisering i flera klasser av magnetiska material med hjälp av cirkulärpolaris-
erat ljus - den så kallade inverterade Faradayeffekten (inverse Faraday effect,
IFE). Vi beräknar den inducerade magnetiseringen med frihetsgrader från både
bankvanttal och spinnkvanttal, vilket konstigt nog visar på olika resultat. Vi
ser att magnetiseringen inducerad av IFE är antisymmetrisk i ljusets helicitet
för ickemagneter, antiferromagneter och paramagneter, men helt osymmetrisk
för ferromagneter.
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Appendix A.
FW operator from the Eriksen operator

Here, we provide derivation steps that lead to obtaining the original FW oper-
ator while starting from the Eriksen operator. From Eqs. (2.55) and (2.56) one
has

eiUFW = cosUFW + isinUFW =
1+βλ√

2+βλ +λβ
, (8.1)

e−iUFW = cosUFW− isinUFW =
1+λβ√

2+βλ +λβ
. (8.2)

Thus, by adding and subtracting the last two equations, and the corresponding
tangent function can be expressed by

2cosUFW =
√

2+βλ +λβ , 2isinUFW =
βλ −λβ√

2+βλ +λβ
, (8.3)

tanUFW =− i(βλ −λβ )
2+βλ +λβ

. (8.4)

Now, with the Hamiltonian expressed in Eq. (2.17), one derives

βλ −λβ =
2βO√
H 2

, βλ +λβ =
2
(
mc2 +βE

)
√

H 2
. (8.5)

With these two expressions we write Eq. (8.4) in the following way

tanUFW =− iβO√
H 2 +mc2 +βE

. (8.6)

In the nonrelativistic limit, mc2 is the highest energy and within the approxi-
mation

√
H 2 ≈ mc2, we arrive at

tanUFW =− iβO

2mc2 . (8.7)

Thus, within the approximation and expansion of tan−1 series keeping only
the lowest order term, one obtains exactly the same original FW operator

UFW =− iβO

2mc2 . (8.8)

We observe that the Eriksen operator is more general and robust for FW trans-
formation and within the approximation, the original FW operator is obtained.
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