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Abstract
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Radial basis function methods exhibit several very attractive properties such as a high order
convergence of the approximated solution and flexibility to the domain geometry. However
the method in its classical formulation becomes impractical for problems with relatively large
numbers of degrees of freedom due to the ill-conditioning and dense structure of coefficient
matrix. To overcome the latter issue we employ a localisation technique, namely a partition of
unity method, while the former issue was previously addressed by several authors and was of
less concern in this thesis.

In this thesis we develop radial basis function partition of unity methods for partial differential
equations arising in financial mathematics and glaciology. In the applications of financial
mathematics we focus on pricing multi-asset equity and credit derivatives whose models involve
several stochastic factors. We demonstrate that localised radial basis function methods are
very effective and well-suited for financial applications thanks to the high order approximation
properties that allow for the reduction of storage and computational requirements, which is
crucial in multi-dimensional problems to cope with the curse of dimensionality. In the glaciology
application we in the first place make use of the meshfree nature of the methods and their
flexibility with respect to the irregular geometries of ice sheets and glaciers. Also, we exploit
the fact that radial basis function methods are stated in strong form, which is advantageous for
approximating velocity fields of non-Newtonian viscous liquids such as ice, since it allows to
avoid a full coefficient matrix reassembly within the nonlinear iteration.

In addition to the applied problems we develop a least squares radial basis function partition
of unity method that is robust with respect to the node layout. The method allows for scaling to
problem sizes of a few hundred thousand nodes without encountering the issue of large condition
numbers of the coefficient matrix. This property is enabled by the possibility to control the
coefficient matrix condition number by the rate of oversampling and the mode of refinement.
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2. E. Larsson, S. Milovanović, V. Shcherbakov, L. von Sydow, et al.
BENCHOP—The BENCHmarking project in Option Pricing:
Stochastic and local volatility. Manuscript in preparation, 2017.1

1These two papers are parts of a collaborative project with a large number of participants. Please
note that the authors named here form the executive group of the project and the final list of
authors will be longer.





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Radial Basis Function Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 The Global RBF Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 The Global RBF Method for Nonlinear Problems . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Time-Dependent Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 The RBF Partition of Unity Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Applications in Computational Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1 Pricing Equity Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Valuing Credit Default Swaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Applications in Ice Sheet Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1 Anisotropic Radial Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Summary of Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Paper V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6 Paper VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.7 Paper VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.8 Paper VIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Summary in Swedish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48





1. Introduction

In this thesis we develop radial basis function (RBF) methods for partial differ-
ential equations (PDEs) and apply them to complex problems that have no an-
alytical solution but require accurate approximations. We consider problems
in financial mathematics and glaciology which are both relevant for everyday
life and difficult enough to demonstrate the advantage of RBF methods over
other well established numerical methods such as finite differences and finite
elements.

The first use of RBFs was mentioned by Hardy for cartography, geodesy
and digital terrain models in order to reduce errors in data interpolation [51].
Later it was adapted for partial differential equations by Kansa [63, 64] and
then became intensively researched in late 1990s and early 2000s [32, 36,
88, 99, 106]. Nowadays, RBF methods are used both for interpolation [20,
30, 31] and for solving PDEs [9, 39, 65]. The most attractive properties of
RBF methods are their fast convergence and meshfree nature, which makes
them flexible and easy to apply to problems stated in domains with complex
geometries.

In spite of great theoretical convergence properties, the global RBF method
becomes impractical even for relatively small problems (with a few thousands
of degrees of freedom) because (i) the discretisation results in a system of
equations with dense coefficient matrix, which is computationally expensive
to solve; (ii) the coefficient matrix of the linear system becomes highly ill-
conditioned even for relatively large values of the shape parameter. Potential
remedies are to use (1) a localisation technique to sparsify the matrix; (2) a
stabilisation algorithm that removes or, at least, weakens the dependence on
the shape parameter.

The localisation techniques, which are currently in the most extensive use,
are the radial basis function partition of unity method (RBF-PUM) [19, 21, 68,
87, 91], the radial basis function generated finite difference method (RBF-FD)
[8, 41, 97, 98, 103, 104], and the compactly supported radial basis function
method [100, 107]. The advantage of all these local RBF methods is that
they result in a much sparser linear system of equations, which improves the
computational efficiency, while maintaining high accuracy and flexibility [2,
79, 91]. Moreover, localised methods are suitable for parallel simulations [22,
96, 107].

However, if large problems are solved and high accuracy is required, then
RBF methods need to be stabilised to remove the dependency on the shape
parameter and decrease the condition number of the coefficient matrix. Sev-
eral techniques were developed for this purpose, such as the Contour-Padé
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method [45, 103, 105], the RBF-QR method [40, 42, 44, 69], and the RBF-GA
method [43]. A drawback of such techniques is that the stabilisation comes at
a certain cost, and if only a moderately accurate approximation is required,
the use of a stable method may be unjustified, since the time to obtain a stable
basis may severely dominate the solving time. Nevertheless, we attempt to
overcome this issue in Paper VIII where by the use of a least squares method
we can design an approach that is able to reduce the total computational time
associated with obtaining a stable RBF-QR basis within a partition of unity
framework by reusing computations.

Apart from developing RBF-PUM, in this thesis we study properties and
benefits of the method in applications to computational finance and glaciol-
ogy. The problems in finance are typically stated in domains with simple
geometries, however, require high efficiency to swiftly determine prices of
financial contracts and calibrate models. Therefore, RBF methods are well
suited to these applications since they provide high accuracy with relatively
low numbers of discretisation points. This property becomes extremely impor-
tant when contracts on several assets or under multi-factor models are priced
since formulations of these problems result in high-dimensional PDEs, and
the high accuracy of the methods helps to use fewer discretisation points and,
consequently, lower the storage requirements and computational complexity.
RBF methods were applied to problems in option pricing in [39, 53, 85] and
their advantages over both standard and state-of-the-art methods were demon-
strated in [91, 93]. Also, RBF methods were used for pricing quanto credit
derivatives [62].

In contrast to the problems in finance, the problems in ice sheet modelling
and glaciology are stated in very complex domains. Therefore, the meshfree
flexibility of RBF methods is of the highest relevance here. Due to massive
sizes it is difficult to obtain high resolution on continental ice sheets, for exam-
ple, a resolution of 10–20 kilometres is considered to be sufficient, but more
importantly, even with such a resolution the problem sizes reach a few millions
of computational nodes, which makes the problems very challenging to solve.
In turn, RBF methods allow to reduce the number of nodes while maintain-
ing a similarly high accuracy, hence, reduce the computational effort thanks
to the high order approximation properties. It is also worth mentioning that
RBF methods are formulated in strong form, which makes them more suit-
able for nonlinear problems than finite element methods (FEM) because RBF
methods do not require a full matrix reassembly in every nonlinear iteration.
It was shown in [1] that the cost of matrix reassembly in FEM may seriously
dominate the simulation time. Thus, the advantage of RBF approximation for
finding the velocity field of a glacier was first demonstrated in [2], and later
the method was further developed for synthetic ice sheets of continental size
using anisotropic basis functions in [24].

The remainder of this thesis is structured as follows. In Chapter 2 we intro-
duce the basics of radial basis functions as well as discuss our recent fundings
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and developments of the method based on results from Paper VIII. In Chap-
ter 3 we formulate the problems of computational finance and discuss the ad-
vantages of RBF methods for financial applications observed in Papers I–V. In
Chapter 4 we introduce the mathematical model for simulation of the ice sheet
and glacier velocity field and demonstrate the usefulness of RBF methods for
glaciological applications based on findings from Papers VI–VII.
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2. Radial Basis Function Methods

2.1 The Global RBF Method
Consider an elliptic linear boundary value problem (BVP):{

L u(x) = f (x), x ∈ Ω,

Bu(x) = g(x), x ∈ ∂Ω,
(2.1)

where Ω ∈ Rd is a domain and ∂Ω is its boundary, L is the interior differ-
ential operator, B is the boundary differential operator, and f , g are smooth
forcing functions. In order to approximate the solution we define two sets of
nodes X = {xi}n

i=1, at which the basis functions are centred, and Y = {yi}m
i=1,

at which the RBF approximation is evaluated. If the evaluation node set is
equal to the set of centre nodes, then we refer to this case as pure collocation;
otherwise, if there are more evaluation points than centre nodes it is a least
squares approach. An RBF approximation ũ(x) to the solution u(x) on the
domain Ω has the form of a weighted sum

ũ(x) =
n

∑
j=1

λ jφ(ε,‖x− x j‖), (2.2)

where φ(ε,‖x− x j‖) is a basis function centred at x j and λ j are unknown co-
efficients to be determined. Typical choices of smooth basis functions can be
found in Table 2.1. It is important to notice that the basis functions depend on
the so-called shape parameter ε that determines the width of the basis func-
tions and plays a crucial role in the approximation properties of the selected
finite-dimensional basis. Therefore, it has to be chosen with special care. The
dependence on the value of the shape parameter for some basis functions is
presented in Figure 2.1.

Table 2.1. Commonly used radial basis functions.

RBF φ(ε,r)

Gaussian (GA) exp(−ε2r2)

Multiquadric (MQ)
√

1+ ε2r2

Inverse Multiquadric (IMQ) 1/
√

1+ ε2r2

Inverse Quadratic (IQ) 1/(1+ ε2r2)
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Figure 2.1. Commonly used RBFs for different values of the shape parameter ε .
Left: Gaussian functions. Right: Multiquadric functions.

To simplify the forthcoming derivations we introduce the following nota-
tion: a function evaluated at the node points, u(X), denotes a column vector
[u(x1), . . . ,u(xn)]

T ; a function of two arguments with centres at X and evalu-
ated at Y , φ(Y,X), denotes an (m×n) matrix with elements φ(ε, ||yi−x j||), i=
1, . . . ,m, j = 1, . . . ,n; a function evaluated at a point and a node set φ(x,X) is
a row vector, while φ(Y,x) is a column vector. Thus, we can now rewrite (2.2)
in a matrix-vector form

ũ(x) = φ(x,X)Λ, (2.3)

where Λ = [λ1, . . . ,λn]
T . We can relate the coefficients Λ and the function

values evaluated at the node set X via the interpolation condition

ũ(X) = φ(X ,X)Λ. (2.4)

It has been shown [32, 67, 89] that for smooth RBFs the magnitude of the
coefficients Λ becomes unbounded as ε → 0, while the values ũ(X) remain
well-behaved. Therefore, we prefer to express the problem in terms of the
nodal values ũ(X). For the basis functions presented in Table 2.1, the interpo-
lation matrix φ(X ,X) is nonsingular for distinct node points [77]. Hence, we
can write

Λ = φ(X ,X)−1ũ(X), (2.5)

which provides us with the possibility to reformulate (2.3) as

ũ(x) = φ(x,X)φ(X ,X)−1ũ(X). (2.6)

The formulation (2.6) in its form is well-conditioned, albeit the matrix φ(X ,X)−1

can be highly ill-conditioned, and some stabilisation techniques may be needed
to maintain stability for small values of the shape parameter. In Paper VIII of
this thesis we use the RBF-QR approach [40, 42, 44, 69] that allows for stable
computation and evaluation of differentiation matrices for any small value of ε .
Also, other stabilisation methods, such as the Contour-Padé method [45, 103,
105] or RBF-GA [43], can be applied. However, stabilisation by all the above
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mentioned techniques comes at a certain cost. Therefore, it might be unneces-
sary to employ a stabilisation technique if the desired accuracy can be attained
without it. On the other hand, if a high resolution is required, then such a sta-
bilisation approach is the only way to overcome ill-conditioning and achieve
the desired resolution. Moreover, RBF-QR or another stable method is vital
for convergence in an RBF partition of unity method [68].

Applying a linear differential operator to the RBF approximation (2.6) leads
to

L ũ(x) = L φ(x,X)φ(X ,X)−1ũ(X). (2.7)

Collocation of (2.7) on the set of evaluation points Y results in

L ũ(Y ) = L(Y,X)ũ(X), (2.8)

where L(Y,X) is a differentiation matrix defined as

L(Y,X) = L φ(Y,X)φ(X ,X)−1. (2.9)

Thus, we can discretise the BVP (2.1) and define a linear system of equa-
tions to solve for the function values ũ(X). We enforce the boundary con-
ditions at boundary points Y b and the PDE at internal points Y i, where Y =
Y i⋃Y b. The resulting linear system has size (m×n) and takes the form{

L(Y i,X)ũ(X) = f (Y i),

B(Y b,X)ũ(X) = g(Y b),
(2.10)

where B(Y,X) is the discrete boundary operator B that can be constructed in
a similar fashion as L(Y,X).

2.2 The Global RBF Method for Nonlinear Problems
In the same manner solutions of nonlinear BVPs can be approximated by the
global RBF method. Consider a nonlinear BVP

P [x,u(x),Du(x)] = 0 ⇐⇒
{

P1 = 0, x ∈ Ω,

P2 = 0, x ∈ ∂Ω,
(2.11)

where P1 is the interior nonlinear operator, P2 is the boundary nonlinear
operator, and D is a shorthand notation for differential operators, such as ∂x,
∇, Δ. Applying the nonlinear operator (2.11) to the RBF approximation (2.6),
we obtain a nonlinear system of equations

P [x, ũ(x),D ũ(x)] =P
[
x,φ(x,X)φ(X ,X)−1ũ(X),Dφ(x,X)φ(X ,X)−1ũ(X)

]
= 0.

(2.12)
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Collocation of (2.12) on the set of evaluation nodes leads to a nonlinear system
of equations

P(Y,X) := P [Y, ũ(Y ),D ũ(Y )] = 0. (2.13)

A root of the nonlinear system (2.13) can be sought by a nonlinear solver, such
as Newton’s method [37, 75, 90], fixed point iteration method [2, 24], or trust-
region methods [9, 25], that iteratively solves a linearised problem. Hence, the
problem eventually reduces down to a linear system similar to (2.10). Thus,
for simplicity of notation we consider only linear operators in the future de-
scription.

2.3 Time-Dependent Problems
Solutions of time-dependent parabolic and hyperbolic initial value problems
(IVP) can also be approximated by RBF methods. There are different ways
to approach the time derivative: to employ a finite difference scheme for its
discretisation [2, 39, 87, 91], or to view the time dimension as an additional
space dimension and apply an RBF method to a (d +1)-dimensional problem
[33, 52]. However, in this thesis we adhere to the former approach, which is
more commonly used. Without loss of generality, consider a parabolic IVP of
the following form (the case of hyperbolic problems is identical)

∂u
∂ t

(t,x)+L u(t,x) = 0, x ∈ Ω, t ∈ (0,T ], (2.14)

u(0,x) = f (x). (2.15)

We can apply the method of lines, leaving the time dimension be continuous,
and obtain a system of ordinary differential equations (ODEs), which then can
be solved by, e.g., finite different methods. Assuming that λi = λi(t) we repeat
steps (2.2)–(2.9) and arrive at a semi-discrete system of equations

∂ ũ
∂ t

(t,Y )+L(Y,X)ũ(t,X) = 0, (2.16)

subject to the initial condition

ũ(0,Y ) = f (Y ). (2.17)

2.4 The RBF Partition of Unity Method
Despite some valuable properties, such as high accuracy and exponential con-
vergence for smooth problems [23, 63, 74, 86], the above approach has a major
drawback—the coefficient matrix L(Y,X) is dense, which makes the solving
procedure expensive. In order to overcome this issue localised RBF methods
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such as radial basis function partition of unity methods (RBF-PUM) [19, 21,
68, 87, 91, 101] and radial basis function generated finite difference methods
(RBF-FD) [8, 32, 97, 98, 103] were introduced. Also there is an opportunity
to use compactly supported basis functions [101, 107].

In this thesis we follow and further develop the partition of unity approach
that allows for a significant matrix sparsification. We introduce the method
for and investigate its approximation properties by solving problems of pric-
ing multi-asset vanilla and exotic equity derivatives as well as pricing deriva-
tives whose models involve several stochastic factors. In addition, we design
an RBF-PUM framework for modelling ice sheet and glacier velocity fields,
which in principle can be extended to a more general problem of finding the
velocities of a steady flow. Apart from applied problems we put an effort into
the core method development to improve the method approximation charac-
teristics. We propose a least squares approach instead of collocation and prove
it to be beneficial for the approximation quality and for the method robustness.

The idea of partition of unity was introduced by Babuška and Melenk [5] for
finite elements and was later adopted for RBF methods [21, 38, 87, 91, 101].
The main principle is to subdivide the computational domain into several over-
lapping subdomains, construct a local RBF approximation in each subdomain
and then blend them together by partition of unity weight functions.

Figure 2.2. Left: A partitioning of a domain performed with patches of circular shape.
Right: A partition of unity weight function wi that is compactly supported on the patch
Ωi.

We construct the partition of unity weights w j(x) as functions locally sup-
ported and subordinated to an open cover {Ω j}N

j=1 of the computational do-
main Ω

Ω ⊆
N⋃

j=1

Ω j, (2.18)

and the functions combine into unity at every point x ∈ Ω

N

∑
j=1

w(x) = 1, ∀x ∈ Ω. (2.19)
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Throughout this thesis we select d-dimensional spheres as patches in Rd for
the domain partitioning (see Figure 2.2), except for Paper VII where we use
ellipsoids. The weight function can be constructed by Shepard’s method [92]
from compactly supported generating functions ϕ j(x)

w j(x) =
ϕ j(x)

∑N
i=1 ϕi(x)

, j = 1, . . . ,N. (2.20)

The generating functions must be smooth enough to fulfil the PDE smooth-
ness requirements of the solution, for example, Wendland functions [99] are
C2(Rd) in up to three spatial dimensions

ϕ(r) = (4r+1)(1− r)4
+. (2.21)

In order to map the generating function to the patch Ω j with centre c j and
radius ρ j we shift and scale the function

ϕ j(x) = ϕ j

( ||x− c j||
ρ j

)
, ∀x ∈ Ω. (2.22)

Then the global RBF partition of unity solution ũ(x) can be found as a weighted
sum of the local RBF interpolants ũ j(x) constructed in each patch Ω j and par-
tition of unity weights w j(x)

ũ(x) =
N

∑
j=1

w j(x)ũ j(x), (2.23)

where

ũ j(x) =
n j

∑
i=1

λ j
i φ(ε, ||x− x j

i ||) (2.24)

is a local RBF approximation constructed using n j basis functions centred at
local nodes Xj, and λ j

i are the coefficient to be determined. Similarly to (2.3)
we shorten the notation and write (2.24) as

ũ j(x) = φ(x,Xj)Λ j, (2.25)

where Λ j = (λ j
1 , . . . ,λ

j
n j). Also following (2.5) and (2.6) we can get an ex-

pression for ũ j(x) that excludes the coefficients Λ j

ũ j(x) = φ(x,Xj)φ(Xj,Xj)
−1ũ j(Xj). (2.26)

Thus, applying a linear differential operator L to (2.23) we obtain

L ũ(x) =
N

∑
j=1

L
(
w j(x)ũ j(x)

)

=
N

∑
j=1

L
(
w j(x)φ(x,Xj)

)
φ(Xj,Xj)

−1ũ j(Xj). (2.27)
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For example, if we are to apply the Laplace operator to (2.23) we will get

Δũ(x) =
N

∑
j=1

(
Δw j(x)φ(x,Xj)+2∇w j(x) ·∇φ(x,Xj)

+w j(x)Δφ(x,Xj)
)

φ(Xj,Xj)
−1ũ j(Xj), (2.28)

where the scalar product should be applied to the gradient vectors. To ex-
press (2.28) in terms of differentiation matrices we need to put the partition of
unity weight functions into a proper matrix form

WL
j (Y ) = diag

(
L w j(Y )

)
, (2.29)

where Y is an arbitrary set of evaluation nodes. Then we can write the Lapla-
cian as

Δũ(Y ) =
N

∑
j=1

(
W Δ

j (Y )D
I(Y,Xj)+2W ∇

j (Y ) ·D∇(Y,Xj)

+W I
j (Y )D

Δ(Y,X)
)

DI(Xj,Xj)
−1ũ j(Xj), (2.30)

where DL denotes the corresponding differentiation matrix

DL (Yj,Xj) = L φ(Yj,Xj)φ(Xj,Xj)
−1. (2.31)

2.5 Error Estimates
In order to asses the convergence properties of the method we need to es-
timate the difference between the true solution and its RBF approximation
||ũ−u||L2(Ω). To do so we start by introducing the RBF-PUM interpolant

I =
N

∑
j=1

w jI (u j), (2.32)

where I (u j) is the local RBF interpolant defined in (2.24) satisfying the inter-
polation condition I (u j)(Xj) = u(Xj). We also define the interpolation error
and its derivatives as

EL = L (I (u)−u). (2.33)

Estimates of the interpolation error (2.33), when Gaussian basis function are
used, were studied in [68, 87] with respect to two refinement techniques: (i)
refine the partitioning while preserving the number of nodes in patches, i.e.,
decreasing the patch size Hj; and (ii) refine node sets in patches while pre-
serving the total number of patches in the partitioning, i.e., decreasing the
internodal distance h j. For the former case the estimate is

||EL ||L∞(Ω) ≤ K max
1≤ j≤N

CA
j H

q(n j)+1− d
2−α

j ||u||N (Ω j), (2.34)
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Figure 2.3. Left: The numerically estimated stability norm. Right: The corresponding
error as a function of H for n = 28 (�), n = 55 (�), and n = 91 (©) for the least
squares (solid lines, solid markers) and collocation (dashed lines, open markers). Note
that only selected data points, those that are optimal for collocation, have markers.

where the constants CA
j depend on the problem dimension d, the chosen weight

functions, the number of local nodes n j, and the order of the differential oper-
ator α . The function q(n j) corresponds to the polynomial degree q supported
by the local number of points n j. That is, if nq,d denotes the dimension of the
polynomial space of degree q in d dimensions and the number of local points
satisfies nq,d ≤ n j ≤ nq+1,d , then q(n j) = q. The norm ||u||N (Ω j) is the native
norm in the space generated by the basis functions [38]. Error estimate (2.34)
indicates algebraic convergence in patch size Hj. For the latter case the error
can be estimated as

||EL ||L∞(Ω) ≤ KCE max
1≤ j≤N

eγ log(h j)/
√

h j ||u||N (Ω j), (2.35)

where the constant CE and the rate γ both depend on the problem dimension d
and the order of differential operator α , and CE additionally depends on the
chosen weight function. Error estimate (2.35) indicates exponential conver-
gence with respect to the internodal distance h j. Similar estimates can be
constructed for other types of basis functions, for example for inverse multi-
quadrics [86].

The interpolation error estimates (2.34), and (2.35) will not essentially dif-
fer whether the pure collocation or least squares approach is used. Hence, the
convergence rates will be the same for both approaches since the interpolation
error drives the convergence. However, as we show in Paper VIII the solution
in the least squares sense is numerically more robust due to higher flexibility
in the formation of the set of evaluation points [71]. Thus, we need to look at
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Figure 2.4. Left: The numerically estimated matrix norm ||L(·,X)L+||L∞(Ω). Right:
The corresponding error as a function of −1/h for oversampling β = 1.1 (�), β = 1.2
(�), and β = 1.5 (©) for the least squares (solid lines, solid markers) and collocation
(dashed lines, open markers).

the full error estimate

||ũ−u||L2(Ω) ≤CP||EL ||L∞(Ω) +CP||L(·,X)L+||L∞(Ω)

(
CMδM + ||EL ||L∞(Ω)

)
,

(2.36)
where L stands for L(Y,X), L+ = (LT L)−1LT is a pseudo inverse such that
L+L = I, and δM is the machine precision. We see that the approximation er-
ror estimate is proportional to the interpolation error estimate, which makes
sense, but it also depends on the multiplier ||L(·,X)L+||L∞(Ω) that is similar to
a condition number for the PDE approximation. The value of the matrix norm
correlates with the problem size and problem parameters and is important for
robustness of the methods. However, it can be controlled by oversampling in
the least squares setup, which makes this approach behave more predictably.
We can see in the right panel of Figure 2.3 how the error profiles differ for the
collocation and least squares approaches for similar number of points per patch
when approximating a solution to Poisson’s problem. Although, for some se-
lected partitioning sizes the error values for the two approaches may be close,
the results for the collocation case look much more uncertain. Moreover, we
can notice that the value of the matrix norm ||L(·,X)L+||L∞(Ω) increases alge-
braically under refinement for the collocation approach (see Figure 2.3, left
panel). This makes the collocation approach difficult to apply for large prob-
lems. In contrast, the matrix norm stays constant for the least squares ap-
proach, which allows for scaling to large problem sizes in terms of the number
of patches used. We can also observe an error reduction when decreasing
the internodal distance while keeping the number of partitions fixed (see Fig-
ure 2.4, right panel). The left panel of Figure 2.4 shows that the matrix norm
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increases exponentially for both approaches but can be lowered by oversam-
pling in the least squares case. It is difficult to suggest a unique strategy for
implementing refinements in the least squares RBF-PUM, but based on these
results we could propose selecting a sufficient number of points per patch ac-
cording to an acceptable condition number and then refining the partition size.
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3. Applications in Computational Finance

3.1 Pricing Equity Derivatives
The most common equity derivative is an option. A European option is a
financial contract that gives the buyer the right, but not the obligation, to buy or
sell an underlying asset at a specific strike price on a specified date. Nowadays,
the range of traded options is wide, and some contracts can even be customised
and exist only in a single copy. However, only a small fraction of all option
contracts is traded on exchanges, while the bulk of contracts is traded over-the-
counter. This means that the value of most of the options cannot be determined
through the market trading. That is, some other valuation methods need to be
employed.

Black and Scholes [12] and Merton [76] were the first to suggest a strictly
mathematical approach for the valuation of options. Given the probability
space (Ω,F ,P), the Black and Scholes market consists of a risk-free bank
account Bt and a risky asset Xt , which follow the dynamics

dBt = rBtdt, (3.1)
dXt = μXtdt +σXtdWt , (3.2)

where r is the risk-free interest rate, μ is the return on the asset, σ is the
volatility, and Wt is a Weiner process. The price of an option that at time of
maturity T pays out Φ(XT ) can be found as a discounted expected cashflow

u(X , t) = e−r(T−t)E
Q
t [Φ(XT )]. (3.3)

Note that in order to avoid arbitrage opportunities the expectation is taken
under the risk neutral measure Q that is equivalent to P and under which the
discounted asset price is a martingale [11]. Formulation (3.3) is equivalent to
a partial differential equation by the Feynman–Kac theorem [11]

∂u
∂ t

+
1
2

σ2x2 ∂ 2u
∂x2 + rx

∂u
∂x

− ru = 0, (3.4)

u(x,T ) = Φ(x). (3.5)

Equation (3.4) is a standard parabolic PDE and can be solved by all well-
known numerical methods, such as finite differences, finite elements or radial
basis functions. For some types of payoff functions Φ(x), analytical solutions
can be found. However, if we assume stochastic volatility, stochastic interest
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rate, or if the option contract is written on several assets, then the problem
will grow in dimensionality and its complexity will increase dramatically. An-
alytical solutions for such problems exist very seldom and typically for very
specific stochastic models and payoff functions. If an option has the American
property, i.e., can be exercised at any time before maturity, the valuation prob-
lem turns into a free boundary problem that has no analytical solution, and the
price of such a contract can only be found approximately.

The standard methods that are used for pricing option contracts in the ab-
sence of analytical or semi-analytical solutions are of three kinds: (i) stochas-
tic such as Monte Carlo methods [48, 49, 73] and binomial and trinomial
trees [29, 56], which deal with formulations similar to (3.1)–(3.2); (ii) deter-
ministic methods such as finite difference methods [61, 94, 102], more rarely
finite elements [3, 34] and finite volumes [46], which deal with formulations
similar to (3.4)–(3.5); and (iii) Fourier transform based methods such as Carr–
Madan [18], COS [35], which deal with formulations similar to (3.3). The
third category is the most efficient [93], but requires the existence of either the
density function or the characteristic function of the underlying process distri-
bution, which in some cases does not exist, for example, when the volatility is
determined by a parametric function [93]. Then the methods from categories
(i) and (ii) can be useful. RBF methods belong to the second category and are
gaining in popularity and becoming more and more actively researched in ap-
plications to problems in finance because they are able to cope with problems
with moderately high dimensions efficiently [7, 54, 83].

Practically, the deterministic methods work for problems with up to four
dimensions and often employ splitting schemes to split a higher-dimensional
problem into a set of one-dimensional problems [55, 60]. However, this pro-
cedure is rather complex in presence of nonzero correlations between the
stochastic processes. Therefore, for problems with dimensionality greater than
three, Monte Carlo methods were typically the only choice. In this thesis we
develop and demonstrate that RBF methods can be an alternative to Monte
Carlo methods for moderately high-dimensional problems.

In Paper I we develop an RBF partition of unity method for pricing basket
European and American options [91] and demonstrate its greater approxima-
tion power compared with a standard finite difference method. RBF-PUM re-
quires three times less nodes per dimension than the finite difference method to
achieve the tolerance 10−4 due to a higher order convergence (see Figure 3.1).
Firstly, this leads to a shorter computational time. Secondly, this is crucial for
a transition to higher-dimensional problems since RBF-PUM consumes less
memory to store the data. The combination of the two properties can mitigate
the curse of dimensionality to some extent.

In Paper I we also improve the nonlinear penalty approach for valuing
American options proposed by Nielsen [80] to account for dividend paying
stocks and derive an estimate for the error introduced by the penalty.
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Figure 3.1. Left: Convergence in l∞-norm for a European option on one underlying
asset. Right: Convergence in l∞-norm for a European basket option on two underlying
assets. γ denotes the rate of convergence as in inequality (2.35).

Table 3.1. Computational time to compute a solution that has a relative error < 10−4.
The dash “−” denotes absence of results for the method.

Method European American Up-and-out
FD 1.8e−02 7.6e−02 2.5e−02
FD-NU 9.2e−03 5.8e−02 1.6e−02
FD-AD 9.7e−03 4.3e−02 9.6e−03
RBF 6.2e−02 4.6e+00 1.4e−01
RBF-FD 2.9e−01 1.3e+00 2.8e−01
RBF-PUM 2.8e−02 3.6e+00 5.4e−02
RBF-LSML 4.2e−02 − 3.0e−02
RBF-AD 7.9e−01 1.7e+01 2.4e+01
RBF-MLT 1.6e+01 − 2.4e+02

However, it turns out that the penalty approach is less efficient than another
commonly used technique to handle the free boundary, namely, the operator
splitting method [59]. This was shown in Paper II, where several methods were
tested on a set of benchmark problems with respect to the execution time to
achieve the relative error tolerance level 10−4, and RBF-PUM with a penalty
function was outperformed by all other methods that employed the operator
splitting method (see Table 3.1) [93]. We exclude the possibility of failure of
RBF-PUM itself for the American option pricing problem because the method
performed well for the rest of the benchmark tests. We determined that the
issue was in the selection of a suitable technique for treating the free boundary
as well as in the selection of a proper time integration scheme. In Paper II
we used an implicit-explicit scheme with the nonlinear penalty term being ex-
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plicit, which led to a severe restriction on the time step size and, consequently,
to a long run time. In Paper III we improve RBF-PUM for the American
option pricing problem by combining it with the operator splitting and, for
the sake of science, implement three versions of the penalty method: fully
explicit (PEX), implicit-explicit as was used in Paper II (PIMEX), and fully
implicit with nonlinear Newton iterations (PIM). We also test them within the
framework of Paper II. Surprisingly, the most efficient out of the three penalty
versions was PIM. This was possible thanks to the fast convergence of the
Newton iteration. However, the combination of RBF-PUM and the operator
splitting method, indeed, resulted in a very efficient solver that outperformed
all realisations of the penalty method (see Table 3.2)1.

Table 3.2. Computational time to compute a solution that has a relative error < 10−4.

Method American
PEX 1.5e+00
PIMEX 5.0e−01
PIM 3.8e−02
OS 2.5e−02

In general, the results of Paper II verify RBF-PUM to be a method well
suited for various types of contracts with exotic payoffs and implied volatility
functions and as the most appropriate deterministic solver from category (ii)
for the listed higher-dimensional problems. In Table 3.3 we report computa-
tional time for the node based methods to achieve a relative error lower than
10−4 for problems with dimensionality higher than one as was specified by
the experimental framework in Paper II. We observe that among the methods
RBF-PUM is the most favourable. Moreover, the results of the forthcoming
study [70] demonstrate that RBF-PUM is able to approximate a solution of a
five-asset index option with the accuracy of 10−6 in about four seconds on an
ordinary laptop.

Also, we notice that RBF-PUM performs well for the model with two
stochastic factors, namely the Heston model. Therefore based on this result,
we extend the method formulation for option pricing under models with sev-
eral stochastic factors in Paper IV [78]. There we assume stochastic nature
of the volatility and interest rate, which indeed corresponds to the reality and
to the data observed on the market. It is a well known fact that the volatil-
ity and interest rate are stochastic factors, but they are still often assumed to
be constant in order to avoid raising the problem dimensionality since every
stochastic factor gives a rise to an additional dimension. However, RBF-PUM
is well suited for that type of problems since we can effectively exploit the high
order approximation properties of RBFs. Furthermore, in Paper V we develop

1Note, that a different machine was used here, therefore the run time values in Table 3.2 do not
align with the corresponding values in Table 3.1.
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Table 3.3. Computational time to compute a solution that has a relative error < 10−4.
The dash “−” denotes absence of results for the method.

Method Heston Spread
FD − −
FD-NU 4.3e+00 7.4e+01
FD-AD − 4.7e+01
RBF 1.9e+01 7.7e+01
RBF-FD − 2.2e+03
RBF-PUM 4.3e+00 1.3e+01

an RBF-PUM approach for valuing credit derivatives such as credit default
swaps under a model with four stochastic factors that experience jumps.

3.2 Valuing Credit Default Swaps
A credit default swap (CDS) is a financial agreement that the seller of the CDS
will compensate the buyer in the event of a default. The CDS contract is set
up in such a way that the seller receives periodic payments (coupons) from the
buyer until a default event occurs and the seller is obliged to pay out the pro-
tection upon the default. Entering such contracts helps the investor to hedge
risks and achieve the desired risk exposure. Credit default swaps are the most
common form of credit derivatives and may involve municipal bonds, emerg-
ing market bonds, mortgage-backed securities or corporate bonds. However,
in this thesis we focus on CDS contracts that involve sovereign obligations.

In order to determine the fair value of the contract we need to understand
what payments are being made by each contracting party. The expected cash-
flow received by the seller consists of the periodic payments, which in general
are paid quarterly and stop being paid out after a default event [14, 72]

Lc = Et

[
m

∑
i=1

cNB(t, ti)Δt�{τ≥ti}

]
, (3.6)

and the amount that is accrued from the nearest past payment date until the
time of the default event τ

La = Et

[
cNB(t,τ)(τ − tβ (τ))�{t<tβ (τ)≤τ<T}

]
, (3.7)

where c is the CDS coupon, N is the notional amount, (t0, t1, . . . , tm) are the
predefined payment dates, B(t, ti) is the stochastic discount factor from date ti
to date t, t is the date when the contract comes into force, Δt is the payment
time interval, T is the maturity date of the contract, such that mΔt = T − t,
tβ (τ) is the payment date preceding the default event. The sum of the coupon
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and accrued amounts is called the premium leg. The opposite expected protec-
tion cashflow, also known as the protection leg, is

Lp = Et
[
(1−R)NB(t,τ)�{t<τ≤T}

]
, (3.8)

where R is the recovery rate, which is unknown beforehand, and is determined
at, or right after, the default, e.g., in court. In modern mathematical finance
theory it is customary to consider the recovery rate to be stochastic, see e.g.,
[27] and references therein. However, we assume that the recovery rate is
constant. Thus, we define the CDS par spread s as the coupon which equalises
these two legs and makes the CDS contract fair at time t. Hence, s solves the
following equation

m

∑
i=1

Et
[
sNB(t, ti)Δt�{τ≥ti}

]
+Et

[
sNB(t,τ)(τ − tβ (τ))�{t<τ<T}

]
=

Et
[
(1−R)NB(t,τ)�{t<τ≤T}

]
. (3.9)

The CDS spread is often viewed as an indicator of the riskiness of invest-
ment into the reference entity’s bonds. A large CDS spread value means a
high cost of protection against default, implying a greater risk of that to occur.
In contrast, low CDS spread values demonstrate good credit worthiness of the
reference entity.

In this thesis we consider quanto CDS contracts, which have a special fea-
ture that the payments are set in a different currency to that of the reference
entity. A typical example would be a CDS which has its reference as a dollar
denominated bond for which the premium of the swap is payable in euros.
These contracts are widely used to hedge holdings in bonds or bank loans that
are denominated in a foreign currency (other than the investor’s home cur-
rency).

As far as the value of the quanto CDS is concerned, it is assumed that their
market quotes are available in both domestic and foreign currencies, which we
denote as CDSd and CDS f . Typically the US dollar is viewed as the domestic
currency since the prices and market factors are calibrated under the USD
measure. In this thesis we consider euro as the foreign currency. Also, we
assume that the exchange rate between the foreign and domestic currencies is
1 to Zt i.e., loosely speaking, 1 EUR is worth Zt USD.

In case of default, the foreign currency tends to depreciate, which results in
a discrepancy between CDSd and CDS f . For instance, from the historical data
on five-year Portuguese CDS quoted in USD and EUR (see Figure 3.2) we
observe that the difference can reach as high values as 145 bps (basis points,
1 bp = 0.01%). Recent work [4] presents the term structure of spreads, defined
as the difference between the USD and EUR denominated CDS spreads, for
six Eurozone countries: Germany, Belgium, France, Ireland, Italy, and Portu-
gal, and for maturities 3, 5, 7, 10, and 15 years relative to the 1 year quanto
spread. This difference could reach 30 bps at the time horizon of 15 years
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(France, Ireland). The results presented in [15] indicate a significant discrep-
ancy across domestic and foreign CDS quotes for Italy. A USD CDS spread
quote of 440 bps could translate into a EUR quote of 350 bps in the middle of
the European debt crisis in the first week of May 2012.
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Figure 3.2. Historical data on five-year Portuguese sovereign CDS quoted in US dol-
lars and euro and the difference between the rates.

Quanto effects drew a lot of attention on the modelling side. Various aspects
of the problem were under investigation including the relationship between
sovereign credit and currency risks, the pricing of sovereign CDS, the impact
of contagion on credit risk, see survey in [4] and references therein. But we
primarily focus on pricing quanto CDS, and determining and testing an appro-
priate framework that provides a reasonable explanation of these effects from
a mathematical finance point of view.

Since the underlying security of a CDS contract is a bond, we need to model
the bond prices, but before going into modelling details we need to introduce
a probability space (Ω,F ,Q) satisfying the standard hypothesis, namely:

1. (Ft , t ≥ 0) is a filtration under which the dynamics of the risk factors
are adapted and under which the default time of the reference entity is a
stopping-time;

2. The risk neutral probability measure Q corresponds to the domestic cur-
rency money market;

3. By Et [ · ] we denote the expectation conditioned on the information re-
ceived by time t, i.e. E[ · |Ft ].

Further we consider two money markets: Bt associated with the domestic
currency (USD), and B̂t associated with the foreign currency (EUR), where
t ≥ 0 is the calendar time. We assume that dynamics of the two money market
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accounts are given by

dBt = RtBtdt, B0 = 1, (3.10)

dB̂t = R̂t B̂tdt, B̂0 = 1, (3.11)

where the stochastic interest rates Rt , R̂t follow the Cox-Ingersoll-Ross (CIR)
process [28]

dRt = a(b−Rt)dt +σr
√

RtdW (1)
t , R0 = r, (3.12)

dR̂t = â(b̂− R̂t)dt +σr̂

√
R̂tdW (2)

t , R̂0 = r̂, (3.13)

where a, â are the mean-reversion rates, b, b̂ are the mean-reversion levels,
σr,σr̂ are the volatilities, and W (1)

t ,W (2)
t are Brownian motions. Without loss

of generality we assume a, â,b, b̂,σr,σr̂ to be constant.
We assume that the exchange rate Zt of the two currencies is stochastic with

dynamics driven by the following stochastic differential equation

dZt = μzZtdt +σzZtdW (3)
t , Z0 = z, (3.14)

where μz,σz are the corresponding drift and volatility, and W (3)
t is another

Brownian motion.
As the underlying bond is subject to a potential default we need to account

for the credit risk. We define the hazard rate λt to be a stochastic process given
by

λt = eYt , t ≥ 0, (3.15)

with Yt following the Ornstein–Uhlenbeck process

dYt = κ(θ −Yt)dt +σydW (4)
t , Y0 = y, (3.16)

where κ is the corresponding mean-reversion rate, θ is the mean-reversion
level, σy is the volatility, and W (4)

t is a Brownian motion.
We assume that all Brownian motions W (i)

t , i ∈ [1,4], are dependent, and
this dependence can be specified through the constant instantaneous correla-
tion ρ between each pair of the Brownian motions, i.e., 〈dW (i)

t ,dW ( j)
t 〉= ρi jdt.

Finally, we define the default process (Dt , t ≥ 0) as

Dt = �{τ<t}, (3.17)

where τ is the default time of the reference entity.
Brigo et al. [15] could to some extent explain the discrepancy between the

USD and EUR denominated CDS by introducing a jump-at-default in the FX
rate. However, we believe that a default also impacts the foreign interest rate
and therefore a jump in the interest rate should be taken into account, since
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the default lowers the creditability and dramatically increases the cost of bor-
rowing. Indeed, looking at the historical data of the Russian crisis of 1998,
we can observe a very pronounced jump in the interest rate. The short interest
rate grew from 20% in April 1998 to 120% in August 1998 [84].

To incorporate jumps into the dynamics of the FX rate in (3.14), we assume
the jump to be proportional to the current rate

dZt = γzZt−dMt , (3.18)

where γz ∈ [−1,∞) is a devaluation/revaluation parameter and t− indicates the
time just before a default occurs.

The hazard process Γt of a random time τ with respect to a reference filtra-
tion is defined through the equality e−Γt = 1−Q{τ ≤ t|Ft}. It is well known
that if the hazard process Γt of τ is absolutely continuous, i.e.,

Γt =
∫ t

0
(1−Ds)λs ds, (3.19)

and increasing, then the process Mt = Dt −Γt is a martingale (which is called
the compensated martingale of the default process Dt) under the full filtration
Ft ∨Ht with Ht being the filtration generated by the default process. So, Mt
is a martingale under Q, [10].

It can be shown that under the risk-neutral measure associated with the
domestic currency, the drift μz is, ([15])

μz = Rt − R̂t . (3.20)

Therefore, with allowance for (3.14), (3.18) we obtain

dZt = (Rt − R̂t)Ztdt +σzZtdW (3)
t + γzZtdMt . (3.21)

Thus, Zt is a martingale under the Q-measure with respect to Ft ∨Ht as it
should be, since it is a tradable asset. Certainly, we are more interested in the
negative values of γz because revaluation of the foreign currency in case of its
sovereign default is extremely unlikely.

Similarly, we add jump-at-default to the stochastic process for the foreign
interest rate R̂t

dR̂t = γr̂R̂t−dDt , (3.22)

thus (3.13) transforms to

dR̂t = â(b̂− R̂t)dt +σr̂

√
R̂tdW (2)

t + γr̂RtdDt , (3.23)

where γr̂ ∈ [−1,∞) is the parameter that determines the post-default cost of
borrowing. We are interested in positive values of γr̂ as the interest rate most
likely will grow after a default has occurred. Note that R̂t is not tradable, and
so is not a martingale under the Q-measure.
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Figure 3.3. The difference between the foreign and domestic CDS quotes as a function
of the jump amplitude in the foreign exchange and interest rates.

Thereby, we can derive a set of pricing four-dimensional PDEs, however,
the derivations are a bit lengthy, therefore, we refer the reader to Paper V
and omit the details here. We use RBF-PUM to approximate the solutions
of the set of PDEs, and the numerical solutions is presented in Figure 3.3.
We plot not the CDS value itself but the difference between the spread of the
CDS denominated in US dollar and its counterpart denominated in the foreign
currency as a function of the jump sizes in the FX and interest rates.

In the absence of jumps the domestic and foreign spreads are quoted with a
difference in 3 bps, which would be close to the normal situation if no currency
and interest rate depreciation occurred. In fact, this was the case until recently
when quanto effects were not taken into account. For example, Greek CDS
with payments in dollars and in euros were traded with 1 bp difference in
2006 [95]. However, nowadays the quanto effects are regarded very seriously
by practitioners and the market values are adjusted accordingly. Our model
demonstrates that the largest portion of discrepancies can be explained by the
jumps-at-default in the FX and foreign interest rates. The FX rate is, of course,
the dominant impact factor since the devaluation of the foreign currency has an
immediate effect on the amount of protection being paid out when converted
into the US dollars. Nevertheless, the impact of the jump in the foreign interest
rate in our setup is responsible for about 15 bps difference between the quotes
in dollars and foreign currency.
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4. Applications in Ice Sheet Modelling

Accurate modelling of ice sheets and glaciers is becoming of an increasing
importance since melting ice is one of the main contributors to the sea level
rise [26]. Glacial ice slowly moves and deforms under its own weight, creep-
ing down a valley or spreading over a continent. In this context, glacial ice can
be viewed as a non-Newtonian, incompressible, very viscous fluid. The flow
can be modelled by a set of nonlinear Stokes equations

−∇p+∇ · (η(v)(∇v+(∇v)T )
)
+ρg = 0, (4.1)
∇ ·v = 0, (4.2)

where p is the pressure, v = (vx,vy,vz) is the velocity field, ρ is the density,
ρg is the force of gravity, and η the nonlinear viscosity.

The physics of the ice is determined by the bedrock topography z = b(x,y)
and the ice surface position z = h(t,x,y). The bedrock is often assumed to be
immobile while the surface changes over time and its dynamics are defined by

∂th+ vx|z=h∂xh+ vy|z=h∂yh = vz +as, (4.3)

where as is the net accumulation/ablation at the ice surface, which depends on
precipitation and surface air temperature. Note, the ice-atmosphere interface
is open and constitutes a free boundary.

Numerical solution of the full-Stokes system demands an extensive com-
putational effort. In spite of the fact that the full-Stokes is regarded as the
most accurate model, the glaciologists are still not completely aware of the
exact physical processes taking place in ice. Therefore, one can argue that
the full-Stokes equations may be unnecessary since their modelling capacity
is dispersed by processes which the model does not account for. Hence, there
are approximations to the Stokes model of different accuracy. The least ac-
curate but computationally inexpensive are the Shallow Ice Approximation
(SIA) [57] and Shallow Shelf Approximation (SSA) [16]. They are often used
for simulating dynamics of inner parts of ice sheets since the velocity is low
there and SIA and SSA give a relatively good approximation. However, for
more dynamic parts of ice sheets more accurate approximations have to be
used, such as the First Order Stokes model, also known as the Blatter–Pattyn
model [13, 81]. It gives a second order approximation with respect to the ratio
thickness/length of an ice sheet. The Blatter–Pattyn model is sufficiently good
for capturing the dynamics of ice sheet edges but still less accurate than the
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full-Stokes for simulating the grounding line where ice comes in contact with
water [66].

Some models, such as the Ice Sheet Coupled Approximation Levels (IS-
CAL) [1] or the Ice Sheet System Model (ISSM) produced by NASA [66],
combine several approaches and substitute the full-Stokes equations by SIA
or the Blatter–Pattyn model in regions where this is appropriate, hence, sig-
nificantly reducing simulation time. Most of the current models are built upon
libraries that implement finite element methods. For example, ISCAL uses
Elmer/Ice [47] and ISSM uses PETSc [6].

In this thesis we make a first attempt to develop an RBF solver for simu-
lating ice sheet dynamics. We employ the Blatter–Pattyn model for modelling
the velocity field. As mentioned above, this model is just an approximation
to the full-Stokes equations but recognised as sufficiently accurate [66], while
being much less computationally demanding. It exploits the fact that the ra-
tio between ice thickness and length is small, and under such an assumption
the derivatives ∂xvz and ∂xvz can be disregarded, and ∂x

(
η(∂zvx + ∂xvz)

)
and

∂y
(
η(∂zvy + ∂yvz)

)
are considered negligible in comparison to ∂z(2η∂zvz).

Thus, the system dimensionality can be reduced and the horizontal velocity
components (vx,vy) can be obtain from the following system of equations

∂x
(
η(2∂xvx +∂yvy)

)
+

1
2

∂y
(
η(∂xvy +∂yvx)

)
+

1
2

∂z (η∂zvx) = ρg∂xh, (4.4)

1
2

∂x
(
η(∂xvy +∂yvx)

)
+∂y

(
η(2∂yvy +∂xvx)

)
+

1
2

∂z (η∂zvy) = ρg∂yh. (4.5)

Once the horizontal velocity is found, the vertical velocity vz is given by the
mass conservation equation (4.2) and the pressure is given by

p =−2η(∂xvx +∂yvy)+ρg(h− z). (4.6)

In Paper VI we suggest a numerical approach to this problem based on an
RBF method and the use of immobile nonuniform background node sets [2]
to model the velocity field of the Haut glacier d’Arolla [82]. This allows for
swift and efficient solution of the nonlinear problem and effective tracking of
the free ice surface. We demonstrate that, in contrast to finite element methods,
our approach does not require full matrix reassembly in every nonlinear iter-
ation, and therefore allows for avoiding the most computationally demanding
procedure, which in FEM may take up to 70–90% of the total run time [1].

In Table 4.1 we present the error and execution time values for several num-
bers of degrees of freedom. As the reference solution we use a finite element
solution on a fine mesh with 12167 nodes. We observe that RBF-PUM is
about an order of magnitude faster then FEM, which makes it attractive for
application in problems of finding velocity fields of large ice sheets such as
Greenland and Antarctica [24], where due to large domain sizes and, hence,
large computational problems, highly efficient performance is vital. Moreover,
an important property of the RBF method is conservation of the total volume
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Table 4.1. Error and CPU time for several numbers of degrees of freedom for FEM,
the global RBF method, and RBF-PUM.

FEM RBF RBF-PUM
Error N Time Error N Time Error N Time
0.0033 482 11.4055 0.0045 524 1.2621 0.0045 500 0.3563
0.0024 563 15.1375 0.0028 711 1.6162 0.0027 669 0.4959
0.0022 805 20.9487 0.0023 855 2.4665 0.0025 814 0.8257
0.0018 972 26.8749 0.0016 1101 4.6602 0.0015 1002 2.0894
0.0010 1251 36.4145 0.0010 1505 10.2750 0.0013 1348 3.7643

of the system. In Figure 4.1 among others we plot the relative change in the
total volume over a two-year transient simulation. The difference in volume
diminishes when decreasing the internodal distance.

Figure 4.1. Top: The horizontal velocity (kilometres per year) of the d’Arolla Glacier
after evolving the surface for two years. Bottom: The surface elevation change after a
transient simulation (left). The relative volume change over the two-year period with
respect to different values of the internodal distance (right).

4.1 Anisotropic Radial Basis Functions
The standard RBF-PUM with isotropic (i.e., direction independent) basis func-
tions are well suited for problems that are set on domains with reasonably
low aspect ratios such as glaciers, for example, the Haut glacier d’Arolla.
However, if we are to apply the method for simulating velocity fields of real
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size ice sheets, the method must be capable of dealing with extremely large
length/thickness ratios, since a typical length of an ice sheet is much larger
than its typical height. The ratio may reach 500 : 1. Unfortunately, isotropic
RBF methods cease to give a reasonable approximation under such circum-
stances. Therefore, in Paper VII we modify the formulation to better match
the domain properties [24]. We do it by adapting anisotropic basis functions,
which are not uniform in all directions under the standard Euclidean norm,
but are uniform under the norm || · ||a, which defines the distance between two
points x,y ∈ Ω ⊂ R2 as

||x− y||a =
√

(x1 − y1)2 +a2(x2 − y2)2, (4.7)

where a is the aspect ratio of the domain discretisation with resolutions hx and
hz in the horizontal and vertical directions, respectively,

a =
hx

hz
. (4.8)

Figure 4.2 displays an anisotropic Gaussian basis function in the Euclidean
and || · ||-norm.

Figure 4.2. Top: An anisotropic Gaussian RBF. Bottom: An isotropic Gaussian RBF.
The aspect ratio of the domain discretisation a = 10.

In order to develop the anisotropic approach we select a synthetic ice sheet
with the so-called Bueler profile [17, 50] that is inspired by the celebrated
benchmark EISMINT [58]. The synthetic ice sheet resembles an ice sheet of
continental size with aspect ratio 428 : 1. We use the Blatter–Pattyn model to
simulate the dynamics of ice masses. For that problem we define a as in (4.8)
and scale the basis functions accordingly. Besides scaling the basis functions
we also scale the patches as was suggested in [87]. That is, the patches have
a circular form in the || · ||a-norm but are elliptic in the standard Euclidean
norm.

To compute the velocity fields of the ice sheet we use both structured Carte-
sian nodes and unstructured quasi-random Halton nodes. Using the Halton
nodes we demonstrate the meshfree property of the RBF method that can be
very valuable for simulating velocity fields of real ice sheets. In Figure 4.3
we show the horizontal and vertical velocities obtained by the anisotropic
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Figure 4.3. Top: The horizontal velocity (kilometres per year) of the ice cap com-
puted on the Halton nodes by anisotropic RBF-PUM. Bottom: The respective vertical
velocity (kilometres per year).

RBF-PUM on a Halton set of nodes. The velocities are well recovered and
the reader is referred to [58] to verify that the presented solution behaves as
expected.
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5. Summary of Papers

5.1 Paper I
V. Shcherbakov and E. Larsson. Radial basis function partition of unity meth-
ods for pricing vanilla basket options. Comput. Math. Appl., 71(1):185–200,
2016.

We derive a penalty approach for dividend paying American basket call op-
tions and find estimates of the error introduced by the penalty approach. We
develop a radial basis function partition of unity method for pricing multi-asset
options, and numerically prove that the method converges rapidly for both Eu-
ropean and American style options. We numerically investigate the method
efficiency and show its advantages over global radial basis function methods
and standard finite difference methods. Additionally, we analyse the domain
partitioning for the partition of unity approach and study various partitioning
setups with respect to l∞-error and computational time.

Contribution
The author of this thesis wrote the manuscript and performed the numerical
experiments. The stability analysis for the penalty approach was done in close
collaboration with the second author. The ideas were also developed in close
collaboration with the second author.

5.2 Paper II
L. von Sydow, L. J. Höök, E. Larsson, E. Lindström, S. Milovanović, J. Pers-
son, V. Shcherbakov, Y. Shpolyanskiy, S. Sirén, J. Toivanen, J. Waldén, M.
Wiktorsson, J. Levesley, J. Li, C. W. Oosterlee, M. J. Ruijter, A. Toropov, Y.
Zhao. BENCHOP—The BENCHmarking project in option pricing. Int. J.
Comput. Math., 92(12):2361–2379, 2015.

This project was a large joint effort to produce benchmark tests in option pric-
ing. We designed six benchmark problems with several subproblems in each
and tested different computational methods to solve them. All methods were
compared in terms of time-to-error, and all CPU times to achieve relative error
tolerance 10−4 were reported in tables. RBF-PUM was shown to be compet-
itive among the methods that rely on node discretisation of the domain. It
was the most efficient method in this group for problems with dimensionality
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greater than one. However, there was a clear drop of efficiency for American
style options, which was explained by the use of the nonlinear penalty term to
deal with the free boundary. We had a semi-implicit time integration scheme
with explicit penalty to avoid nonlinear iterations. It resulted in a constraint
on the time step size, which turned out to be quite severe. This issue was re-
solved in Paper III where we switched to the operator splitting approach that
was used by other node-based methods in the benchmarking experiments.

Contribution
The author of this paper was responsible for development and implementation
of the RBF-PUM method for the benchmark problems. The ideas regarding
the paper structure and what problems were relevant for the tests were dis-
cussed in close collaboration between all authors.

5.3 Paper III
V. Shcherbakov. Radial basis function partition of unity operator splitting
method for pricing multi-asset American options. BIT, 56(4):1401–1423, 2016.

In this paper we improve the approach for pricing American style options.
Instead of the penalty method for the free boundary we use an operator split-
ting method. However, we also experiment with different implementations of
the penalty approach. We test fully explicit, semi-implicit, and fully implicit
schemes, with nonlinear Newton’s iterations for the latter version. It turns out
that the fully implicit nonlinear scheme is the most efficient time integration
scheme for the penalty method and Newton’s method converges in a few it-
erations. However, all penalty method implementations are outperformed by
the operator splitting method. Importantly, this advantage increases with the
dimensionality. The operator splitting is the only technique that allows for
solving problems in dimension higher than two in reasonable time within our
experimental framework. We also show that the combination of RBF-PUM
and the operator splitting method is very efficient for calculating the Δ and Γ
Greeks for American options since we can get the solution on the entire span
of the underlying asset spot values.

Contribution
The author of this thesis is the sole author of this paper.
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5.4 Paper IV
S. Milovanović and V. Shcherbakov. Pricing derivatives under multiple sto-
chastic factors by localized radial basis function methods. Available as
arXiv:1711.09852, 2017.

In this paper we introduce two localised RBF approaches, namely, RBF-PUM
and RBF-FD, for pricing derivatives under models with several stochastic fac-
tors. It is well known that asset volatilities and economy interest rates are
stochastic, and therefore, much be modelled accordingly. However, every ad-
ditional stochastic factor gives a rise to an extra dimension in the formulation.
Thus, valuing derivatives under multi-factor models results leads to complex
multi-dimensional PDE problems, which have to be solved numerically. In
this paper we demonstrate how the RBF methods can be used to attack these
problems and give a detailed guideline on how to implement the methods.
Additionally, the paper contains a comparison of RBF-PUM and RBF-FD in
terms of convergence rate and computational efficiency.

Contribution
The manuscript was written and the numerical experiments were performed in
close collaboration between the authors.

5.5 Paper V
A. Itkin, V. Shcherbakov, and A. Veygman. Influence of jump-at-default in IR
and FX on Quanto CDS prices. Available as arXiv:1711.07133, 2017.

In this paper we focus on modelling aspects of quanto credit default swap
values. We develop a model that can explain discrepancies in values of CDS
denominated in different currencies. This is achieved by incorporating jumps-
at-default into the exchange and foreign interest rates. We observe that our
model is capable of explaining the largest portion of the difference between
the domestic and foreign CDS values. The greatest impact factor is the jump
in the exchange rate since the risk of devaluation of the foreign currency makes
the investors willing to pay less for the protection denominated in the foreign
currency. However, the jump in the foreign interest rate is also responsible
for around 15 bps basis between the CDS quotes in the domestic and foreign
currencies. We use RBF-PUM to approximate the solution of a set of four-
dimensional PDEs numerically.

Contribution
The author of this thesis participated in the model development, performed the
numerical experiments, and contributed to writing the manuscript. The ideas
for the paper were developed in close collaboration between all authors.
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5.6 Paper VI
J. Ahlkrona and V. Shcherbakov. A meshfree approach to non-Newtonian free
surface ice flow: Application to the Haut Glacier d’Arolla. J. Comput. Phys.,
330:633–649, 2017.

In this paper we introduce a radial basis function method for solving for the
velocity field of ice flow. The meshfree nature of the method allows for easy
discretisation of the computational domain, that typically has complex geom-
etry, and for efficient handling of the free surface. As a test case we select
the Haut glacier d’Arolla, which is a part of a well-known benchmark ISMIP-
HOM. We compare the RBF method with the standard finite element method
with linear hat functions. The RBF method significantly outperforms the fi-
nite element method in terms of CPU time for a given number of discretisa-
tion nodes even though the convergence rates are similar. The convergence of
the RBF method is limited by the non-Lipschitz continuous domain geome-
try. The method benefits from avoiding the full matrix reassembly within the
nonlinear solver in every iteration, which turns out to be the most expensive
procedure. Additionally, we implement an RBF partition of unity method that
reduces the computational effort even more thanks to sparsification of the sys-
tem of equations.

Contribution
The manuscript was written and the numerical experiments were performed in
close collaboration between the authors.

5.7 Paper VII
G. Cheng and V. Shcherbakov. Anisotropic radial basis function methods for
continental size ice sheet simulations. Available as arXiv:1711.09947, 2017.

We extend the approach from Paper VI to simulate the dynamics of continental
size ice sheets. In order to overcome the numerical issues associated with the
large aspect ratios of the computational domains we modify the basis functions
to match the domain geometry. We achieve this by using anisotropic basis
functions that are scaled accordingly. We implement an anisotropic RBF-PUM
and apply it for finding the velocity field of a large ice cap that is defined by the
Bueler profile that resembles a continental size ice sheet. By the anisotropic
RBF-PUM we can recover the velocity with an error of just a few meters on a
moderate size node sets.

Contribution
The manuscript was written and the numerical experiments were performed in
close collaboration between the authors.

42



5.8 Paper VIII
E. Larsson, V. Shcherbakov, and A. Heryudono. A least squares radial basis
function partition of unity method for solving PDEs. SIAM J. Sci. Comput.,
39(6):2538–2563, 2017.

We advance RBF-PUM by switching the approach from pure collocation to
least squares. Moreover, we use a single template of centre nodes for all par-
titions, that yields an opportunity to discard some computations, such as com-
putations of a stable basis for the RBF-QR method for each patch. This is a
crucial advantage since the computation of an RBF-QR basis is computation-
ally very demanding and otherwise has to be performed for every partition.
Furthermore, the method becomes more suitable for complex geometries due
to the possibility to have centre nodes outside the computational domain. We
experimentally show that the least squares based approach is more robust than
pure collocation and allows for stable computations for problems with large
numbers of degrees of freedom. We derive analytical error estimates for both
collocation based RBF-PUM and least squares based RBF-PUM. Also, we
show how the numerical stability can be controlled by oversampling for the
latter method.

Contribution
The author of this thesis participated in the method development together with
the first author and performed numerical experiments for the two-dimensional
case. The ideas for the paper were developed in close collaboration between
all authors.
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6. Summary in Swedish

I denna avhandling utvecklar vi radiella basfunktionsmetoder (RBF) för par-
tiella differentialekvationer (PDE) och tillämpar dem på komplexa problem
som inte har någon analytisk lösning men kräver noggranna approximationer.
Vi betraktar problem i finansiell matematik och glaciologi som är relevanta för
vardagslivet och svåra nog för att visa fördelarna med RBF-metoder jämfört
med andra väletablerade numeriska metoder, såsom finita differensmetoder
och finita elementmetoder.

Den första användningen av RBF-metoder beskrevs av Hardy för kartografi,
geodesi och digitala terrängmodeller för att minska fel i datainterpolering [51].
Senare anpassades de för partiella differentialekvationer av Kansa [63, 64]
och blev sedan intensivt utforskade i slutet av 1990-talet och början av 2000-
talet [32, 36, 88, 99, 106]. Nu för tiden används RBF-metoder både för in-
terpolering [20, 30, 31] och för att lösa PDE:er [9, 39, 65]. De mest attrak-
tiva egenskaperna hos RBF-metoder är deras snabba konvergens och nätfrihet,
vilka gör dem flexibla och lätta att tillämpa på problem definerade i domäner
med komplex geometri.

Trots goda teoretiska konvergensegenskaper blir den globala RBF-metoden
opraktisk även för relativt små problem (med några tusen frihetsgrader) efter-
som (i) diskretiseringen resulterar i ett ekvationssystem med full koefficient-
matris, vilket är beräkningsmässigt dyrt att lösa; (ii) koefficientmatrisen för det
linjära systemet blir mycket illa-konditionerad även för stora värden på form-
parametern. Potentiella lösningar är att använda (a) en lokaliseringsteknik för
att sparsifiera matrisen; (b) en stabiliseringsalgoritm som avlägsnar eller min-
skar beroendet på formparametern.

Lokaliseringsteknikerna, som för närvarande är popularast, är approxima-
tion med RBF kombinerad med enhetsuppdelning (RBF-PUM) [19, 21, 68,
87, 91], radiella basfunktionsgenererade finita differenser (RBF-FD) [8, 41,
97, 98, 103, 104] och mindre vanliga, men fortfarande förekommande i litter-
aturen, RBF med kompakt stöd [100, 107]. Fördelen med alla dessa lokala
RBF-metoder är att de resulterar i ett mycket glesare linjärt ekvationsystem,
vilket förbättrar beräkningseffektiviteten samtidigt som hög noggrannhet och
flexibilitet upprätthålls [2, 79, 91]. Dessutom är lokaliserade metoder lämpliga
för parallella simuleringar [22, 96, 107].

Dock, om stora problem löses och hög noggrannhet krävs, måste RBF-
metoderna stabiliseras för att ta bort beroendet på formparametern och minska
konditionstalet hos koefficientmatrisen. Flera tekniker har utvecklats för detta
ändamål, såsom Contour-Padé-metoden [45, 103, 105], RBF-QR-metoden [40,
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42, 44, 69] och RBF-GA-metoden [43]. En nackdel med sådana tekniker är
att stabiliseringen har en viss kostnad och om endast en måttligt noggrann ap-
proximation erfordras, kan användningen av en stabil metod vara omotiverad,
eftersom tiden för att beråkna en stabil bas kan dominera lösningstiden. I Ar-
tikel VIII minskar vi istället kostnaden för den stabila basen med hjälp av en
minstakvadratmetod som tillåter att samma bas används för varje partition i en
enhetsuppdelningsmetod.

Förutom att utveckla RBF-PUM, studerar vi egenskaper och fördelar hos
metoden i tillämpningar inom finansiell matematik och glaciologi. Problemen
i finans defineras vanligtvis i domäner med enkel geometri, men kräver hög ef-
fektivitet för att snabbt kunna bestämma priserna hos finansiella kontrakt och
kalibrera modeller. Därför är RBF-metoder väl lämpade för dessa applika-
tioner eftersom de ger hög noggrannhet med relativt få diskretiseringspunkter.
Den här egenskapen blir oerhört viktig när kontrakt på flera aktier eller multi-
faktormodeller prissätts eftersom formuleringar av dessa problem resulterar i
högdimensionella PDE:er och metodens höga noggrannhet hjälper till att an-
vända färre diskretiseringspunkter och därmed minska lagringsbehovet. RBF
metoder tillämpades på problem i optionsprissättning i [39, 53, 85] och de-
ras fördelar över både standard och state-of-the-art metoder demonstrerades
i [91, 93]. Dessutom har RBF-metoder använts för att prissätta quanto kredit-
derivat [62].

I motsats till problemen inom finans defineras problemen i ismodellering
och glaciologi på mycket komplexa domäner. Därför är flexibiliteten hos RBF-
metoder av högsta relevans här. På grund av massiva storlekar är det svårt att
få hög upplösning på kontinentala istäcken, en upplösning på 10–20 kilome-
ter anses till exempel vara tillräcklig, men ännu viktigare, även med en sådan
upplösning når problemstorlekarna några miljoner beräkningspunkter, vilket
gör problemen mycket utmanande att lösa. RBF-metoder tillåter att minska
antalet noder, samtidigt som en lika hög noggrannhet upprätthålls, vilket re-
ducerar beräkningsansträngningen tack vare egenskaperna med hög order ap-
proximation. Det är också värt att nämna att RBF-metoder är formulerade
på stark form, vilket gör dem mer lämpade för olinjära problem än finita ele-
mentmetoder (FEM), eftersom RBF metoder inte kräver fullständig matrisas-
semblering vid varje olinjär iteration. Det visades i [1] att kostnaden för ma-
trisåteruppbyggnad i FEM kan dominera simuleringstiden. Således demon-
strerades fördelen med RBF-approximation för att hitta hastighetsfältet hos
en glaciär i [2] och senare utvecklades denna ytterligare för ett modellprob-
lem med en inlandsis av kontinentalstorlek genom användning av anisotropa
basfunktioner [24].
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