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Abstract. In the domain of robotic tutors, personalised tutoring has started
to receive scientists’ attention, but is still relatively underexplored. Previ-
ous work using reinforcement learning (RL) has addressed personalised
tutoring from the perspective of affective policy learning. In this paper
we build on previous work on affective policy learning that used RL to
learn what robot’s supportive behaviours are preferred by users in an
educational scenario. We propose a RL framework for personalisation
that selects a robot’s supportive behaviours to maximize user’s task per-
formance in a learning scenario where a Pepper robot acting as a tutor
helps people learning how to solve grid-based logic puzzles. This work
is relevant for the development of persuasive embodied agents and so-
cial robots used to support users in different scenarios. In particular, this
paper makes a contribution towards the development of algorithms for
human-robot co-adaptation that enable robots and agents to select effec-
tive strategies to establish long-term relationships with human users.

Keywords: Social robots, Reinforcement learning, Personalisation, Tutoring sys-
tems

1 Introduction

Robots are now used to support humans in new social roles, such as provid-
ing assistance for the elderly at home, serving as tutors, acting as therapeutic
tools for children with autism, or as game companions for entertainment pur-
poses [1]. However, human social skills remain unmatched in robots. To meet
the demands of Europe’s citizens in the 21st century, our prospective robotic
companions need to learn to interact socially with humans [5] and adapt to
their needs, preferences, interests, and emotions in order to become highly per-
sonalised to their users. Simulating the tremendous social adaptation abilities
that characterise human interactions requires the establishment of bidirectional
processes in which humans and robots synchronise and adapt to each other in
real-time by means of an exchange of verbal and non-verbal behaviours (e.g.,
facial expressions, gestures, speech) in order to achieve mutual co-adaptation.

In recent years, technical advances in machine learning methods [9] have
opened the door to new ways of building co-adaptive human-robot interactive



systems. In the domain of robotic tutors [3], which are used to support stu-
dent learning in educational scenarios, personalised tutoring has started to re-
ceive scientists’ attention, but is still relatively underexplored, especially when
it comes to build robot abilities enabling robots to interact and adapt to users
over extended periods of time.

In the social human-robot interaction (HRI) literature, personalised tutor-
ing has started to be addressed from the perspective of affective policy learn-
ing: affect and affect-related states such as engagement have been used to build
reward signals in reinforcement learning (RL)-based frameworks to select mo-
tivational strategies [6] or supportive behaviours [8] personalised to each stu-
dent. RL-based approaches have also been proposed to decide how to em-
ploy different social behaviors to achieve interactional goals in task-oriented
HRI [7]. Moreover, dynamic probabilistic models and Bayesian networks have
been used in robotic tutors to model learner’s skills and behaviours and their
relationships with a robot’s tutoring actions [12] and to assess learner’s skills to
deliver personalised lessons [10].

We build on previous work on affective policy learning that used RL to learn
what robot’s supportive behaviours are preferred by users in an educational
scenario [8]. In this work we take a step forward and propose a RL framework
for personalisation that selects a robot’s supportive behaviours to maximize
user’s task performance in a learning scenario where a Pepper 1 robot acting
as a tutor helps people learning how to solve grid-based logic puzzles. This
work is relevant for the development of persuasive embodied agents and so-
cial robots used to support users in different scenarios. In particular, this paper
makes a contribution towards the development of algorithms for human-robot
co-adaptation that enable robots and agents to select effective strategies to es-
tablish long-term relationships with human users.

2 Scenario

We developed a scenario where a Pepper robot acting as a robotic tutor helps
people solve grid-based logic puzzles called nonograms. These have previously
been used to study robot personalisation to people’s learning differences [10].
Nonograms have the advantage of not being well known to most people, thus
ensuring that users interacting with the robot start the task-oriented interaction
with the robot with a similar skill level.

In the task, the user is asked to solve several nonogram puzzles while a
Pepper robot stands in front of the user observing their progress, learning a
user model based on the interaction process, and generating verbal utterances
in order to provide social support to the user during learning. Robot person-
alisation to individual users is achieved by combining a decision tree model
with a Multi-Armed Bandit (MAB) algorithm called Exponential-Weight Algo-
rithm for Exploration and Exploitation (Exp3) [2] to learn which robot’s sup-

1 https://www.ald.softbankrobotics.com/en/cool-robots/pepper



portive behaviors (described in Section 3.2) increase users’ task performance in
the puzzle-solving task.

2.1 Nonograms

Nonograms are puzzles where cells in a grid must be filled with black or left
blank. In these puzzles, the numbers indicate how many black lines are needed
to fill continuous lines for each row or column.

Formally, there are three rules to be followed in this game:

1. Each cell must be colored (black) or left empty (white).
2. If a row or column has k numbers: s1,s2,...,sk , then it must contain k black

runsthe first (leftmost for rows/topmost for columns) black run with length
s1, the second black run with length s2, and so on.

3. There should be at least one empty cell between two consecutive black runs.

By following these three rules, the participant should find a solution specified
by the numbers around the grid.
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Fig. 1. An unsolved nonogram puzzle (left) and its corresponding solution (right).

3 System

The system consists of different components: the nonogram interface, the user
model, and the personalisation module, which consists of the Exp3 module and
an action selection module. Figure 2 shows the relationships between the dif-
ferent components. The robot monitors the user’s progress in the task through
the nonogram interface and builds a user model extracting task indicators that
convey information about whether the user is experiencing difficulties during



the puzzle solving task. If that is the case, the personalisation module selects a
category of supportive behaviour based on a policy learned by the Exp3 algo-
rithm. The selected category will then be passed to an action selection module
using a decision tree, which will choose the most relevant robot action for the
current situation according to the selected category. In the following sections,
we describe the different components of the system.

Fig. 2. System components. Arrows indicate the flow of information. The dotted line
means that User Model and Personalisation Module are integrated together as one soft-
ware system.

3.1 User model

The user model extracts a number of tasks indicators:

– TimeLastMove It measures the time taken to make the last action.
– TimeLastSetOfMoves It measures the time taken to make the last N ac-

tions, where N is a pre-defined arbitrary number.
– CorrectMove It measures whether the last action made by the user is correct

or not.

These are used to define a set of rules that assess whether the user is expe-
riencing difficulties in the puzzle solving task. The rules take the user’s actions
and their corresponding time into consideration. For example, if an action takes
the user more than T seconds to complete, where T is an arbitrary number, then
it may indicate that the user experienced difficulty in the last decision.

The user model combines all the information it gathers from the task indi-
cators to make a final decision whether the robot should generate an action or
not. This decision is then passed to the personalisation module.

3.2 Personalisation module

The personalisation module uses a RL-based approach that learns which sup-
portive behaviours delivered by the robot maximize user task performance. The



latter is defined as the time taken to the user to complete the nonogram puzzle.
This is a problem of policy learning, which in a RL framework means opti-
mising action selection policies to maximise a reward. The general idea here is
for the robot to learn a policy of optimal supportive behaviours that maximise
a user’s task performance. Building on previous work on affect co-adaptation
mechanisms for a social robot [8], we model this problem as a MAB problem
and use an algorithm from the set of MAB learning algorithms – Exp3 [2].

Supportive behaviours We design robot behaviours in the form of verbal ut-
terances by adopting the categorization proposed by Cutrona [4]. We select sup-
portive behaviours belonging to four different categories, namely information
support, tangible support, esteem support and emotional support. It has been
shown that people differ in their preference for social support [11]. In the fol-
lowing table, we give example of different categories of supportive behaviours.

Information support ”Do you need more information about the rules?”
Tangible support ”If you feel it is difficult, I can help you by completing the next one.”
Esteem support ”The game is hard this time.”

Emotional support ”But please don’t worry, I am here for you.”
Table 1. Examples of supportive behaviours implemented in the Pepper robot .

Exp3 The system is modelled as an optimization process of different support-
ive behaviours under a framework of multi-armed bandit problem. In our case,
generating appropriate behaviours for different participants is the goal of the
algorithm. In the following text, we explain how does the Exp3 algorithm opti-
mize the probability distribution over all categories of supportive behaviours.

We connect different category of supportive behaviours with different ac-
tions in Exp3. Considering a process with K different actions, the Exp3 algo-
rithm [2] functions as described in Algorithm 1, where γ is the exploration
factor, and wi is the weight of each action i. pi(t) is the probability of select-
ing action i at round t, while T means the total number of iterations. At the
beginning, the algorithm initializes the exploration parameter γ. This parame-
ter adjusts the possibility that the algorithm attempts to execute other actions
while a certain action already has the highest probability. Next, the algorithm
associates a weight with each action in order to give each action a probability
to form a distribution over all possible actions.

After the exploration, the algorithm iterates T times the learning proce-
dure, in order to learn from the environment and to generate a better proba-
bility distribution to receive more accumulative reward from the environment.
In the learning procedure, the algorithm selects an action i based on the dis-
tribution P , and then receives a reward xit(t) from the environment. There-
after, an estimated reward x̂it(t) is calculated as xit(t)/pit(t) to further include



the influence of the probability on the reward. In the end, the algorithm up-
dates the weight associated with the action, while the weights of other actions
(wj, ∀j 6= it, j ∈ {1, . . . , K}) remain the same. After the algorithm converges, the
eventual probability distribution over different actions is considered to be the
best(and sometimes final) strategy of maximizing the reward.

Algorithm 1 Exp3
1: procedure INITIALIZATION
2: initialize γ ∈ [0, 1]
3: initialize wi(1) = 1, ∀i ∈ {1, . . . , K}
4: for distribution P ,

5: set pi(t) = (1− γ)
wi(t)

∑K
j=1 wj(t)

+
γ

K
, ∀i ∈ {1, . . . , K}

6: end procedure
7: procedure ITERATION
8: repeat
9: draw it according to P

10: observe reward xit (t)
11: define the estimated reward x̂it (t) to be xit (t)/pit (t)
12: set wit (t + 1) = wit (t)e

γx̂it (t)/K

13: set wj(t + 1) = wj(t), ∀j 6= it and j ∈ {1, . . . , K}
14: update P :

15: pi(t) = (1− γ)
wi(t)

∑K
j=1 wj(t)

+
γ

K
, ∀i ∈ {1, . . . , K}

16: until T times
17: end procedure

To well integrate Exp3 in our system, each action in this algorithm is asso-
ciated with a possible category of supportive behaviours, which are described
in Section 3.2. In each iteration, the probability of selecting a certain action is
adapted to the current environment. For instance, there are four actions (K = 4)
in the learning procedure of algorithm by design, i.e., action 1, 2, 3, and 4. Re-
spectively, actions 1, 2, 3 and 4 are mapped to four different categories of sup-
portive behaviours: the robot can choose to select information support, tangible
assistance, esteem support or emotional support.

That is, if the randomly sampled category of supportive behaviours i is 1,
then the robot decides to use information support. After the algorithm receives
the feedback, the weight of the corresponding action (i.e., action 1) is updated
based on:

w1t(t + 1) = w1t(t)e
γx̂1t (t)/4. (1)

The weights of other actions (i.e., action 2 3, and 4) stay the same. In the fi-
nal step, the distribution P is renewed to prepare for the next iteration round



according to the following formula:

pi(t) = (1− γ)
wi(t)

∑4
j=1 wj(t)

+
γ

4
, ∀i ∈ {1, 2, 3, 4}. (2)

Until then, one learning iteration is done. The iteration continues in total T
times. By design, the system’s default T value is set to 200 T = 200, which
means a fixed learning period for 200 iterations.

Action selection module After a category of supportive behaviours is selected
by the Exp3 algorithm, the action selection module, which consists of a decision
tree, checks if the selected category is appropriate to the current situation. If the
latter is not appropriate (for example, when user has played several games and
makes a mistake at the beginning of a new game, the information support of
explaining the rules of the game is not necessary, it is more likely that the user
simply made a mistake), the robot will not perform any action, otherwise the
robot will choose a specific robot’s action (i.e., supportive behaviour) from a
pool of available actions within that category.

4 Methodology

4.1 Experimental set up

As illustrated in Figure 3, the experimental setting includes a Pepper robot, a 27
inches IIYAMA touch screen placed on a table, an ubuntu 14.04 Linux server, a
Microsoft Kinect V2 camera, a Logitech C920 1080p webcam and a laptop. The
user is sitting on a chair in front of the robot, with the touch screen and the table
placed between the user and the robot.

The Kinect V2 camera, placed in front of the user, is used for recording user
behavioural data; the Logitech webcam, positioned on a tripod on the side of
the table, is connected to the laptop to record videos for offline video analysis.
The software runs on a Linux server and consists two parts. One part contains
the nonogram interface that interacts with the user and an algorithmic mod-
ule that updates the parameters for the user model. The other part takes the
responsibility of controlling the robot and generation of verbal utterances.

4.2 Planned experiment

We plan an experiment with a between-group design (Figure 4, where partic-
ipants will be randomly assigned to two different conditions, corresponding
to two different parameterisations of the robot’s behaviour: (1) Personalised
condition, where the MAB-based personalisation module will be used, vs Non-
personalised condition, where the robot’s supportive behaviours will be ran-
domly selected.



Fig. 3. An illustration of the experimental set up.

During the experiment, each group will go through three sessions, namely
a pre-interaction session sp, a human-robot interaction session si and an after-
interaction session sa. In the pre-interaction session, the participants are asked
to solve Np nonogram puzzles (difficulty level l) on their own. In the human-
robot interaction session, the participants are asked to solve Ni nonogram puz-
zles with the assistance of a robot. In the after-interaction session, the partic-
ipants are asked to solve Na nonogram puzzles on their own (difficulty level
l).

Normally, due learning effects, the average time taken to solve nonogram
puzzles in the after-interaction session is shorter than the average time taken
to solve nonogram puzzles in the pre-interaction session. Here, we hypothesize
that personalisation will affect the time taken by people to solve the puzzle, i.e.,
with the personalised robot, the difference in the time taken by people to solve
the puzzle between pre- and after- interaction session will be more obvious.

Procedure The experiment will take place in a laboratory at Uppsala Univer-
sity and will involve a fully autonomous robot interacting with the two groups
of participants (20 for each group). Figure 3 shows the arrangement of the ex-
perimental area. A curtain separates the experimental area from the researcher
running the experiment. The researcher can observe the experiment via web-
cam.

Before the experiment starts, the participant will be given a document that
describes the experiment and tasks that they need to solve and a consent form
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Fig. 4. The Pepper robot applies two different strategies to two groups of people. The
only difference between group A and group B is that group A has the designed person-
alisation algorithm implemented in the human-robot interaction session, whilst group
B only a random strategy.

that they need to sign. After signing the consent form, the participant will be
asked to enter the experiment area.

The experiment will start with pre-interaction session sp. In this session, the
participant will be asked to complete one middle level nonogram. After the
participant completes pre-interaction session sp, the robot Pepper will be acti-
vated and the participant will be asked to solve seven nonogram puzzles with
the help of the robot. We chose to include seven nonograms in the interactive
session because during preliminary tests of the system we found that normally
five to seven nonograms are necessary for the learning process to converge.

Then the robot will be deactivated and the participant will be asked to solve
another nonogram in the after-interaction session sa. After the after-interaction
session, the participant will be asked to walk out of the experimental area. In
the end, a researcher will conduct a very short interview and ask participants to
fill in a set of questionnaires to collect information on the user experience and
perception of the robot.

4.3 Preliminary results and conclusion

To date the system has been tested with five participants who took part in a set
of pilot studies. Initial results indicate that the system personalised to people
over the duration of the study and it did so in a different manner (i.e. con-
verging on the selection of a specific supportive behaviour) for different par-
ticipants. In the future, we will conduct the full experiment to test our main
hypothesis.
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