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Abstract—Automated detection of cilia in low magnifica-
tion transmission electron microscopy images is a central
task in the quest to relieve the pathologists in the manual,
time consuming and subjective diagnostic procedure. How-
ever, automation of the process, specifically in low magnifica-
tion, is challenging due to the similar characteristics of non-
cilia candidates, as well as high contextual variance among
the individual cilia candidates. In this paper, a convolutional
neural network classifier is proposed to further reduce the
false positives detected by a previously presented template
matching method. Adding the proposed convolutional neural
network increases the area under Precision-Recall curve
from 0.42 to 0.71, and significantly reduces the false positive
objects.

I. INTRODUCTION

Primary Ciliary Dyskinesia (PCD) is a rare genetic
disorder resulting in dysfunctional cilia - the hairlike
structures protruding from certain cells. Dysfunctionality
of cilia can result in severe chronic respiratory infection,
and infertility in both genders. To diagnose the disorder,
pathologists examine the morphological appearance of
cilia (~ 220-250 nm) using transmission electron mi-
croscopy (TEM). Qualitative analysis of cilia in the TEM
images is still largely subjective; and manual diagnosis is
laborious, monotonous, and hugely time consuming (ca.
two hours per sample in order to diagnose). An expert
pathologist has to zoom in and out at locations of cilia,
which possibly exhibit structural information necessary
for correct diagnosis. Navigation through the huge search
space, together with change of magnification, is very
demanding. Hence, there is an inevitable requisite for the
automation of the cilia detection and diagnosis process.
However, it is not feasible to acquire images which cover
the whole sample at a magnification that allows structural
analysis; such an acquisition would take tens of hours.
Furthermore, objects of interest are rare, very small, and
not spreading over more than a couple of percents of the
total sample. Locating these regions of interest at low
magnification, and acquiring high magnification images
only at selected locations, would therefore be highly
beneficial.

Automated detection of cilia structures (of a quality
sufficient for diagnosis) at low magnification is a chal-
lenging task due to 1) their similar characteristics with
the large number of non-cilia structures, and 2) variance
in the size, shape and appearance of the individual cilia
structures. The task becomes more complicated also due
to noise and the non-homogeneous background at low
magnification, see Fig. 1.

Lately, availability of large amounts of data and strong
computational power have rapidly increased the popu-
larity of machine learning approaches (deep learning).
Convolutional neural networks (CNN) [1] have outper-
formed the state-of-the-art in many computer vision ap-
plications [2]. Similarly, the applicability of CNN is also
investigated in the medical image analysis field [3], [4]. In
particular, their capability to learn discriminative features
while trained in a supervised fashion makes them useful
for automated detection of structures in, e.g., electron
microscopy images. For instance, Ciresan et al. [5] re-
ported a CNN model to segment the neuronal membranes
in electron microscopy images; in [6], a CNN with
autoencoder for automated detection of nuclei in high
magnification (HM) microscopy images was employed.

Previously, a template matching (TM) method to detect
cilia candidates in low magnification TEM images was
proposed [7]. Considering that we aim at locating regions
highly populated by good quality cilia, for further HM
image acquisition and analysis, it is crucial that the
identification of such regions is not misled by a large
number of false positives (FP). In the current work,
we aim at improving the performance by incorporating
a dedicated CNN model in the cilia detection scheme
with the special focus on reducing the number of FP.
A performance benchmark for the proposed model is
presented, and independent validation on an additional
image is performed.

II. IMAGE DATA

Two low magnification (LM) TEM images from dif-
ferent patients, each with ca. 200 cilia structures, are
used for training and independent validation purposes.
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(a) Low magnification TEM image of 4096 x4096 pixels utilized for training purpose with the magnified view of 350x350 pixel bounding

box (marked in red) with indicated ground truth marked by an expert pathologist. Here, cilia candidates marked with green and blue dots are of the
suitable quality. (b) Some examples of patches extracted by previously reported method [7], the first and second rows contain true positives (TP)
whereas patches in the third row are false positives (FP). Note the high similarity between the classes, this makes the problem a serious challenge.

Both images are acquired with a FEI Tecnai G2 F20
TEM and a bottom mounted FEI Eagle 4K x4K HR CCD
camera, resulting in 16-bit gray scale TIFF images of size
40964096 pixels.

For each LM image field, a set of mid magnification
(MM) images are acquired, where the ground truth, i.e,
true cilia candidates of promising quality for diagnosing
at HM (not dealt with in this paper), are manually marked
by an expert pathologist (author AD). Some examples of
extracted patches of marked cilia candidates are shown in
Fig. 1(b). The field of view (FOV) for a MM (2900x)
image is 15.2um and for a LM (690x) image, it is
60.6um.

III. METHOD

The overall detection workflow consists of two stages:
(1) Template matching as described in [7], and (2) further
FP reduction using a 2-D CNN model, which is the core
of this paper.

A. Initial candidate detection

Template matching based on normalized -cross-
correlation (NCC) and a customized synthetic template
is used to detect the initial cilia candidates. The cross
correlation image is thresholded at a suitable threshold,
followed by area filtering and position filtering, meaning
that only the best hit in a local region is kept as a
candidate [7].

B. Data partitioning and augmentation

For each candidate position, we extracted patches of
23x23 pixels centered at a given position p = (x, y). The
patch size was chosen in order to contain a cilia object
(~ 19-20 pixels diameter), and some local background
around the cilia instances (~ 3 pixels) to include sufficient
context information.

A training set of cilia, as well as non-cilia candidates,
was extracted from the training image based on ground
truth markings made by our expert pathologist (author
AD), in MM images covering the same area of the sample.
All true cilia (a total of 136) regardless of their match
score, i.e., their NCC values, were chosen. A set of 272

non-cilia candidates was extracted from different NCC
levels in order to represent non-cilia objects with high
similarity to good cilia (136 randomly chosen non-cilia
objects with NCC values > 0.5) as well as non-cilia
objects more different from true cilia (136 randomly
chosen objects with NCC threshold values between 0.2
and 0.5).

While training a CNN model, an imbalanced dataset
can mislead the optimization algorithm to converge to a
local minimum, wherein the predictions can be skewed
towards the candidates of the majority class, resulting
in an overfitted model. To avoid overfitting, candidates
from both classes (i.e. cilia and non-cilia) are augmented.
Augmentation on test data has shown a considerable
improvement in terms of robustness of the system, as it,
if designed properly for the problem at hand [8].

Prior to the augmentation step, the candidates are
randomly divided into training, validation and test sets.
The training set consists of 82 cilia and 164 non-cilia
candidates whereas the validation and test sets, each
consists of 27 cilia and 54 non-cilia candidates. The
candidates are augmented using affine transformations
(rotation, scaling and shear) and bilinear interpolation.
Horizontal flipping is applied to the cilia candidates to
balance the sets. A fully automated script is created
to perform the combination of seven random angular
rotations (0-360°), six random scalings within £10%
range and five random shearings within 5% range in
both x- and y- directions, resulting in 1050 augmented
variations for each candidate. The augmentation scheme is
applied separately for each subset to ensure independency
of the training set from the validation and test sets.

C. 2-D CNN configuration

The architecture of the proposed CNN model is initially
derived from the LeNet architecture [9]. The motivation
behind this choice is its efficiency, as well as lower
computational cost compared to the architectures such
as Alexnet [2] and VGGnet [10]. These models have
extended the functionality of LeNet into a much larger
neural network with often better performance but at a
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Fig. 2. Performance curves of different configuration: (a) validation
accuracy for different activation functions and pooling layer combina-
tions; (b) Training loss for different optimizers with zero-padding and
kernel of 1x1.

cost of a massive increase in number of parameters and
computational time. Training of such large networks is
still difficult due to the lack of powerful ways to regularize
the models and large feature sizes in many layers [11].
Hence, we decided to empirically modify the LeNet
architecture to fit our application.

In our modified architecture, the default activation
function i.e, hyperbolic tangent (tanh) [12] is replaced
with Rectified linear units (ReLU) [13]. In comparison to
the tanh, the constant gradient of ReLUs results in faster
learning and also reduces the problem of vanishing gradi-
ent. We also implemented the maxpooling layer instead of
average pooling as subsampling layer [2]. A comparative
performance of both activation functions with different
subsampling layers are shown in Fig. 2(a). The figure
shows the accuracy for each configuration at different
number of epochs. It is noticeable that the performance is
better when ReLU was configured with maxpooling layer,
resulting in higher accuracy after 50 epochs.

We also compared the usability of zero-padding and
1x1 convolution filters (as suggested in [11]) for two
different optimizers, Adam [14] and RMSProp [15]. A
kernel of size 1x1 in the first convolutional layer re-
duced the number of parameters (difference of 1120
parameters compared to the zero-padding), thus keeping
the computations reasonable. Comparatively, in either
configuration, RMSProp with zero-padding resulted in
a better training loss, as shown in Fig 2(b). We thus,
selected the configuration with minimum training loss.
Moreover, several parameters (number of layers, kernel
size, training algorithm, and number of neurons in the
dense layer) were also experimentally determined.

In the proposed CNN classifier, the input patches are
initially padded with a three pixels thick frame of zeros
in order to keep the spatial sizes of the patches constant
after the convolutional layers, as well as to keep the border
information up to the last convolutional layer. Next, two
consecutive convolutional layers and subsampling layers
are used in the network. The first convolutional layer
consists of 32 kernels of size 6x6x1. The second con-
volutional layer consists of 48 kernels of size 5x5x32.
The subsampling layer is set as the maximum values
in non-overlapping windows of size 2x2 (stride of 2).
This reduces the size of the output of each convolutional

layer by half. The last layer is a fully connected layer
with 20 neurons followed by a softmax layer for binary
classification. ReLU are used in the convolutional and
dense layers, where the activation y for a given input x
is obtained as y = max (0, x). The architecture of the
proposed CNN model is shown in Fig. 3.

D. Network training

The training of the classifier was performed in a 5-fold
cross-validation scheme. For each fold, the candidates
were randomly split into five blocks to ensure that each set
was utilized as test set once. The distribution of candidates
in each fold was kept as shown in Table I.

TABLE I
THE NUMBER OF CILIA AND NON-CILIA CANDIDATES IN THE
DIFFERENT SETS. CANDIDATES MARKED IN BOLD ARE FINALLY
UTILIZED FOR BUILDING THE MODEL.

Set Training  Validation Test
Cilia 82 27 27
aug (cilia) 172364 561754 56754
Non-cilia 164 54 54
aug (non-cilia) 172364 56754 56754
Final set 344728 113508 113508

On the given training dataset, RMSProp [15] is used to
efficiently optimize the weights of the CNN. RMSProp is
an adaptive optimization algorithm, which normalizes the
gradients by utilizing the magnitude of recent gradients.
The weights are initialized using normalized initialization
as proposed in [16] and updated in a mini-batch scheme
of 128 candidates. The biases were initialized with zero
and learning rate was set to 0.001. A dropout of 0.5
is implemented as regularization, on the output of the
last convolutional layer and the dense layer to avoid
overfitting [17]. Softmax loss (cross-entropy error loss)
is utilized to measure the error loss. The CNN model is
implemented using theano backend in Keras [18]. The
average training time is approximately 48 seconds/epoch
on a GPU GeForce GTX 680.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of the proposed CNN model was
evaluated in terms of Precision, Recall, Area under the
Precision-Recall curve (AUC), and F-score, defined as:

TP
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The AUC is the average of precision P(r) over the
interval (0 < r < 1), and P(r) is a function of recall
r. Additionally, for different NCC threshold levels, the
Free-response Receiver Operating Characteristic (FROC)
curve [19] was utilized to measure the sensitivities at
a specific number of false positives per image. The
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Fig. 3. An overview of the proposed workflow. (a) examples of extracted 2-D patches from the training low magnified TEM image, patches in green
and blue bounding box are true positives whereas patches in black bounding box are false positives. The patches are of 23 x 23 px., extracted from
their center (b) Candidates are detected by template matching method at different normalized correlation coefficient NCC = 0.2-0.5. Augmentation
techniques are applied separately to training, validation and testing sets to ensure the uniqueness of each set. The false positive reduction stage is
implemented using 2-D CNN. (c) Schematic view of proposed 2-D CNN model.

FROC curve is an extension of the receiver operating
characteristic (ROC) curve, which can be effective when
multiple candidates are present in a single image. It plots
the Recall (Sensitivity) against the average number of
false positives per images. FROC is more sensitive at
detecting small differences between performances and has
higher statistical discriminative power [19].

A. Quantitative results

Figures 4(a) and 4(b) show the precision-recall curves
corresponding to cilia detection for the CNN classifier
applied after thresholding the template matching at dif-
ferent NCC levels (0.2, 0.3, 0.4, and 0.5), as well as
the detection when using only template matching (which
includes NCC thresholding at 0.546), as proposed in [7],
for the training and test image, respectively. In the figures,
the AUC is also stated. The results show that adding a
CNN classifier significantly improves the AUC to 0.82
and 0.71 compared to the AUC of 0.48 and 0.42, for
both the training and test image, respectively, at an NCC
threshold level of 0.5.

This observation is supported by the F-Score curves,
shown in Fig. 5. Comparatively for the test image, at an
NCC level of 0.546 (as suggested in [7]), the proposed
CNN model significantly increases the overall F-Score
from 0.47 to 0.59.
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Fig. 4. Precision-recall curves of the CNN classifier at different NCC
threshold levels shown together with the AUC for the template matching
approach(TM) [7] for (a) training, (b) test images
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Fig. 5. F-score curves, for the test image, showing the improvement in
overall performance by adding a CNN classifier with template matching
approach(TM) [7] at different NCC threshold levels
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Fig. 6. Illustration of cilia detection results. (a) The 4096 x4096 test image, (b) a 650x 650 example subregion of the test image, (c) same subregion
after initial template matching method, and (d) after proposed CNN classifier. The numbers are given for the whole image and for the ROI is in
parenthesis. Here, blue circles, red crossed circles, and green squares represent the TP, FP, and FN, respectively.

B. False positive reduction results

Detection results of the proposed CNN model on a ROI
of 650x650 for the test LM TEM image, at an NCC
level of 0.5, are shown in Fig. 6(c)-(d). Fig. 6(c) shows
the detection results of the initial candidate detection
step (template matching method, [7]) whereas Fig. 6(d)
shows the improved results achieved by incorporating the
proposed CNN model as an FP reduction step. In these
images, the blue circles, red crossed circles, and green
squares represent the candidates that have been correctly
detected (TP), the candidates that have been erroneously
detected as cilia (FP), and the cilia that were missed
with respect to the manually ascertained ground truth
delineations and initial detection step (FN), respectively.
These results show the potential of our CNN model for
cilia detection in low magnification TEM images.

Examples of classified candidate image patches in the

test image are shown in Fig. 7. The images marked in the
first row are the TP and FP candidates from both methods

TP (TM) ‘ FP (TM)
TP (CNN) FP (CNN)

0.658 0.536 0.531 0.617
TP(TM)ta' ‘. P e P (TM)
FN(CNN) PR | : TN (CNN)

0.591 0.673 0.538 0.553

Fig. 7. Examples of candidates (with their corresponding NCC values)
detected or missed by the proposed CNN model in the test image at an
NCC level of 0.5. The first row shows TP’s and FP’s of both methods.
The second row shows TP and FP candidates which are missed and
successively classified by the CNN method, respectively.



(i.e., TM and CNN). In the second row, TP candidates
detected by TM but erroneously classified as FN by CNN;
and FP candidates detected by TM, which are successively
classified as TN by proposed classifier.

V. CONCLUSION

In this paper, a CNN classifier is presented as a false
positive reduction step for automated detection of cilia
candidates in low magnification TEM images. The results
suggest that adding a CNN classifier as a FP reduction
step certainly improves the performance and results in
an increased F-Score from 0.47 to 0.59. It was also
investigated whether utilizing a CNN classifier as an
additional refinement step would allow for using a lower
NCC threshold in order to not discard true cilia objects in
the template matching step. This was however, not found
to be practically suitable as lowering the NCC threshold
increases the number of candidates to analyze tremen-
dously while only rather few additional true candidates
are detected. It will be interesting in the future to develop
and investigate a CNN model for the whole automated
cilia detection problem, without relying on a first template
matching step. This is currently not possible as it requires
more training and test data.
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