

IT Licentiate theses
2007-002

UPPSALA UNIVERSITY
Department of Information Technology

Students working with a Large
Software System:
Experiences and Understandings

JONAS BOUSTEDT

Students working with a Large Software System:
Experiences and Understandings

BY
JONAS BOUSTEDT

May 2007

DIVISION OF SCIENTIFIC COMPUTING
DEPARTMENT OF INFORMATION TECHNOLOGY

UPPSALA UNIVERSITY
UPPSALA
SWEDEN

Dissertation for the degree of Licentiate of Philosophy in Computer Science with
specialization in Computer Science Education Research

at Uppsala University 2007

Students working with a Large Software System:
Experiences and Understandings

Jonas Boustedt
jonas.boustedt@it.uu.se

Division of Scientific Computing
Department of Information Technology

Uppsala University
Box 337

SE-751 05 Uppsala
Sweden

http://www.it.uu.se/

© Jonas Boustedt 2007
ISSN 1404-5117

Printed by the Department of Information Technology, Uppsala University, Sweden

Abstract

This monograph describes an empirical study with the overall aim of produc-
ing insights about how students experience the subject Computer Science
and its learning environments1, particularly programming and software engi-
neering.

The research takes a start in the students’ world, from their perspective,
using their stories, and hence, we have chosen a phenomenographic ap-
proach for our research. By interpreting the students’ descriptions and ex-
periences of various phenomena and situations, it is possible to gain knowl-
edge about which different conceptions students can have and how teaching
and the learning environment affect their understanding. In this study, we
focus specifically on students’ conceptions of aspects of object-oriented
programming and their experiences of problem solving situations in connec-
tion with object-oriented system development.

The questions posed enlighten and focus on the students’ conceptions of
both tangible and abstract concepts; the study investigates how students ex-
perienced a task concerning development in a specific software system, how
they conceived the system itself, and how the students describe the system’s
plugin modules. Academic education in programming deals with abstract
concepts, such as interfaces in the programming language Java. Hence, one
of the questions in this study is how students describe that specific abstract
concept, in a context where they are conducting a realistic software engi-
neering task.

The results show that there is a distinct variation of descriptions spanning
from a concrete to-do list to a more advanced description where the interface
plays a crucial role in order to produce dynamic and adaptive systems. The
discussion interprets the results and suggests how we can use them in teach-
ing to provide an extended and varied understanding, where the educational
goal is to provide for and strengthen the conditions for students to be able to
learn how to develop and understand advanced software.

1 The study started as part of the research project Learning, Learning Resources and Learning
Environments in Computer Science – a collaborative project between Uppsala University and
University of Gävle (Högskolan i Gävle), funded by the Swedish Research Council 2002-
2004.

 ii

 iii

Acknowledgements

I wish to thank all of my advisors, above all Michael Thuné, my inspiring
main advisor who is always very interested, patient and supportive; Shirley
Booth who guided me during my first two years, sharing her valuable exper-
tise in phenomenography; and Roy Nilsson at University of Gävle, who
gives me good advice using his deep commitment and knowledge in didac-
tics.

Some persons at Uppsala University are special to me because of their
devotion to educational research, and their willingness to discuss these mat-
ters with me. I wish to thank Anna Eckerdal, Anders Berglund, Liselott
Dominicus van den Bussche, Mats Daniels, Arnold Pears and Mattias Wigg-
berg.

At my place of work, the Computer Science Department in University of
Gävle, where I am teaching, only a few persons meet me in my role as a PhD
student and researcher. I want to thank Eva Carling for persuading me into
graduate education; Magnus Blom and Carina Pettersson for their interest;
Anders Jackson for standing his roommate; Peter Walander and Tony Malm-
qvist for their warm personal concern; Anita Hussénius for encouraging me
to make my PhD come first; Douglas Howie for his linguistic support, and
Goran Milutinovic for just being Goran. Moreover, I wish to thank Thorleif
Cederqvist and Lars-Göran Eriksson for guiding me through bureaucracy. I
am also very grateful to the students who participated in this study.

I met Josh Tenenberg at the SIGCSE conferences in 2006 and 2007. He
took the time to read a draft version of this text and we discussed it on tele-
phone for over one hour. He was the first person outside our research group
that read my work, and when he told me he liked it, he really made my day,
week, and month! Thanks Josh!

The funding for my research comes from the Department of Information
Technology at Uppsala University, the Swedish Research Council, and the
Committee of Teacher Training at University of Gävle.

My family is the most important thing in my life and I want to thank my
dear and beloved wife Ann-Louise, our wonderful children Tova, Simon and
Liselotte, for all their sacrifices and support. I hope I can pay back, some
way, and lay back, some day.

 iv

 v

Contents

1 Introduction ...1
1.1 The research interest...1
1.2 The research questions ...2
1.3 Research approach and methods ..2
1.4 Object-orientation and the Java Interface.....................................3
1.5 Outline ..5

2 Related work..6
2.1 Computer Science Education Research..6

2.1.1 Phenomenographic studies in CS ..6
2.2 Learning to program...7

2.2.1 The awareness of cultures and communities7
2.2.2 A constructivist approach on learning to program...................9
2.2.3 A cognitive perspective on learning to program....................10

2.3 Educating for a professional career in industry11
2.3.1 Apprenticeship ...13
2.3.2 System maintenance is important ..16
2.3.3 Dialogue between university and industry.............................16
2.3.4 Companies’ strategies for obtaining education......................17

2.4 The interface concept ...18

3 Phenomenography ...21
3.1 The research process ..23
3.2 Phenomenographic analysis of interviews24

3.2.1 A definition of inclusive categories26
3.3 Questions of trustworthiness ..26
3.4 Will the outcome space become complete?................................29

4 Conducting the empirical study ...30
4.1 Who are the students?...30
4.2 Data collection – the experiment ..32

4.2.1 Description of the system ..32
4.2.2 Carrying through the experiment ...34

4.3 Data collection – the interviews ...35
4.3.1 Doing the interviews..36
4.3.2 Transcription..36

 vi

4.4 Analysis of the collected data...37
4.4.1 Expected results ...37
4.4.2 Conducting the analysis ...37

5 Descriptions of the concept Interface ..40
5.1 Interface is described as a to-do list ...42
5.2 Interface is described as a declaration of contents44
5.3 Interface is described as a data type ...46
5.4 Interface is described as an open connection..............................48

6 Descriptions of the concept plugin ..54
6.1 Plugin is described as a small program56
6.2 Plugin is described as part of a conceptual model......................57

7 Descriptions of the system...61
7.1 The system is described in terms of what it can do62
7.2 The system is described as integrated parts................................65
7.3 The system is described as adaptable and dynamic....................67

8 The outcome of the assignment ...71
8.1 Traces left by the participants and their view.............................71
8.2 Types of problem solvers ...74

9 Stories about the assignment ...76
9.1 To get started ..77
9.2 About reading the documentation ..79
9.3 Descriptions of the task ..82
9.4 The need to give the application a trial run83
9.5 Some created a documentation of the source code.....................86
9.6 Strategies to get along with the coding.......................................87

9.6.1 About getting stuck..87
9.6.2 Delimitation and trust ..87
9.6.3 To study and copy similar files..88
9.6.4 To compile and test ones code...90

9.7 How the situation was experienced ..91
9.7.1 Satisfactory, fun and interesting ..92
9.7.2 Not knowing what to do was frustrating................................93
9.7.3 Not being left alone was annoying...93
9.7.4 Not being able to finish the task was frustrating....................94

9.8 What the students thought they had learnt..................................95

10 Discussion..97
10.1 An interpretation of the results ...97
10.2 Widening the perspectives – a further interpretation..................98
10.3 Thoughts on the structure of the outcome space102
10.4 The intended and the lived object of learning107

 vii

10.5 The voice of the individual...108
10.6 Discussion on the students’ approaches111

11 Implications for teaching and learning ..114
11.1 Creating connections to realistic situations114
11.2 Opening possibilities to discern interfaces115
11.3 Awareness of the industrial history and software engineering.119
11.4 The voice of the researcher and the teacher120

12 Conclusions ...122
12.1 Experiences and understandings of concepts122

12.1.1 Interface...122
12.1.2 Plugin ..123
12.1.3 The System..123

12.2 Successful strategies...123
12.3 The outcome of the task ...125
12.4 Implications for teaching and learning125
12.5 Plans for future work..126

13 References ...127

14 Appendix A..131
14.1 Word list ...131

15 Appendix B..134
15.1 About object-oriented programming ..134

15.1.1 The concept of an object ...135
15.1.2 The concept of a class ...135
15.1.3 The concept of interface..136

16 Appendix C..139
16.1 Interview questions and themes..139

17 Appendix D..141

18 Appendix E ..146
18.1 Visible traces of the participants designs146

 viii

 1

1 Introduction

This monograph presents a study aimed at Computer Science students at
university level, who are somewhere in the middle of their studies. The pur-
pose of the study is to gain insights into how students experience and under-
stand object-oriented thinking and programming and some related concepts
of importance.

The overall concern has to do with how we can improve teaching and
learning, and how well we prepare the students for a professional life.
Hence, one of the driving questions is what happens when students have to
deal with programming in larger software systems. Our goal is that this work
will help us to answer some of our questions, and that it will contribute to
the didactics of Computer Science.

1.1 The research interest
I have taught object-oriented programming for years, and still I often think it
is hard to explain and motivate some of the advanced concepts that are typi-
cal for the object-oriented way of thinking.

As in all learning there is some fundamental knowledge that must be
gained, which involve things such as syntax, program flow, classes, objects,
references, procedure calls, et cetera. It takes time and effort to learn these
things and in the introductory programming course, the students are very
absorbed into mastering these fundamentals. I use the term programming in
the small (Dalbey, 1998; DeRemer, 1975) to address what beginners in pro-
gramming are doing, regardless of the “objects first or procedures first” de-
bate.

However, nowadays, in professional contexts and programming commu-
nities, it is common that software developers use integrated sub-systems to
build large and complex systems, and programmers more rarely develop
small and self-contained programs.

In order to design such systems or develop new applications, a compre-
hensive view is required. This includes an understanding of the interaction
between different parts of the system, an ability to see consequences of dif-
ferent design decisions, a comprehension of the need of documentation for
future use and an ability to interpret documentations. Besides, it is usual that

 2

companies assign new employees to work with system maintenance or de-
velopment of smaller parts in existing systems.

Even if the work with maintenance and smaller parts to some extent is a
limited activity, it claims high standards of the understanding of the large
system’s structure and mechanisms. We can designate these activities pro-
gramming in the large (Dalbey 1998; DeRemer, 1975).

The conceptual differences between programming in the small and in the
large may constitute a potential problem in the education, namely that the
students, who strive for a professional career within the area of system de-
velopment and programming, might not get enough opportunities to work
with programming in software systems in the wider sense. This is why I
want to study how the students handle programming in the large.

1.2 The research questions
How can we improve teaching in object-oriented programming with a spe-
cial aim at programming in the large? Although, it is a justified and interest-
ing question, it is too broad and unspecific to be able to answer. We can
make the question operational by asking the following questions:

1. How do students experience and describe concepts that relate to pro-

gramming in the large?
2. Are there typical behaviours when students face problems of this type?
3. Are there connections between conceptual understanding and the practi-

cal abilities to program in the large?
4. Are the students well prepared for working with extensive software, in

other words, is the education relevant for the profession?
5. If we can find any answers to the questions above, how can we use them

in our teaching?

1.3 Research approach and methods
Phenomenography (see Chapter 3) is a qualitative research approach that is
well suited for this kind of empirical investigations, as it especially focuses
on learning and education. A researcher who takes this approach wishes to
get deeply into how people view things, the underlying causes, the nuances
and the details. The ambition is that a reader who takes part of the results of
a qualitative inquiry will understand the world as the participants see it, as
interpreted by the researcher, and it is their view of the reality that is the
research subject.

In order to provide feasible conditions for the collection of information on
how students experience concepts and how they work with large object-

 3

oriented software, an experiment was prepared (see Chapter 4): a realistic
development task in a realistic software system, more extensive than the
programs the students have seen in their previous studies. The purpose with
this experiment was to put the students in a realistic programming in the
large problem-solving situation, where the concepts studied in a previous
course would appear in a natural context. By these means, we could gather a
rich amount of data by interviewing the students, and by recording their ac-
tions, both as manifested on the computer screen and as in the files stored on
the computer.

• The first question about conceptions can be investigated by phenomeno-

graphic analysis of the students’ descriptions of the concepts in the tran-
scriptions of the interviews. We want to shed light upon in which qualita-
tively different ways the students experience the concepts interface2 and
plugin3 in context of a system4 where the first two concepts stand out as
relevant. The concept “interface” is especially interesting as it is a part of
the instruction of programming with Java.

• We search for evidence of the students’ view of the task and their ap-
proach for solving it in the interviews and in the practical results of their
work.

• It should be possible to address the connection between understanding
concepts and practical abilities through a discussion about the results of
the first two questions.

• The character of question 4 and 5 has a different nature compared to the
first three and we will try to address them in the discussion.

1.4 Object-orientation and the Java Interface
This section provides a short introduction to object-orientation and the con-
cepts object, class, reference and interface, and it is intended for the readers
who are not already well acquainted with the subject. The purpose is to cre-
ate opportunities for the reader to benefit more from the rest of this work.

Object-orientation and object-oriented programming represent a special
way of thinking. In this paradigm, various systems are described in terms of
interacting objects, where every object is regarded as a unit having a limited
area of responsibility. Each object can offer certain services and it has a
memory of its own. The information (or data) in such a system is essentially
constituted and controlled by the objects themselves. This way of thinking

2 Interface refers to a specific language construct in the programming language Java. It is
further described in section 1.4.
3 A adaptive code module that can extend an existing software
4 The students worked with an administrative software system. See Appendix D.

 4

goes both for systems in the real world and their reflections in a model im-
plemented in software. The object-oriented paradigm differs considerably
from, as for example, the procedural paradigm, where the systems are rather
described in terms of data flows, where information is passed to and treated
by various procedures.

The program code for object-oriented software (the text that the pro-
grammer writes) consists of a number of so-called classes and each class
describes a unique type of object. A class often describes a model of some
concept taken from the real world, such as a person. One of the fundamental
properties of a class is the possibility to create instances (objects) of its own
type. If there is a class that defines a model of a person, it is possible to cre-
ate an unlimited amount of person objects, each representing an individual
person of its own. Each person object holds and manages its own name, ad-
dress, et cetera. When the software is executed on the computer, a number of
objects are created, and taken all together; the objects and their interactions
constitute the program’s behaviour.

Interaction between an object (A) and another object (B) takes place by
means of object A passing a message to object B. This message contains a
request for B to execute a service (operation). In order to pass the message
(call the operation) it is required that A is in contact with B through a named
reference variable5. We can imagine a scenario where A is an object of the
type person which has a reference variable of the type CD_Player, named
player, referring to the object B, which is an object of the type CD_Player.
In this case A can pass a message to B: player.play(). Using this message,
object A requests object B to execute the operation play(), that is to say,
“play a CD, please.” The reference variable’s type always determines the
messages that are possible to pass.

The programming language Java is strongly typed, which (amongst other
things) implies that a reference variable must have the same basic type as the
object that it wants to refer. Consequently, a reference variable of the type
CD_Player can only refer to objects descending from the class (type)
CD_Player. If we assume that a new type of object is introduced, for in-
stance an MP3_Player, then our person, from the example above, cannot use
the MP3-player since the reference variable player only can refer to objects
of the type CD_Player. This is true even if the desired operation, play(),
exists also in the class MP3_Player.

In the programming language Java, we can still handle the need for dy-
namic behaviour in its strongly typed environment, for instance by using a
so-called interface6. In a Java interface, a limited set of operations are speci-
fied. However, the interface omits the operations’ implementations, that is to

5 In the programming language Java, a reference variable is an object handle which can refer
to objects.
6 Using interfaces is one way. Another way is by using inheritance. See Appendix B.

 5

say, their behaviour is not defined – only the operations’ specifications are
included. The interface actually defines a type that can be used to declare
reference variables, and such a variable can be used as a handle towards all
objects which classes implement the actual interface respectively. The im-
plementing classes are actually forced to define (implement) behaviour for
all of the specified operations in the interface. We assume that we have cre-
ated the interface playable that defines the operation play(), and furthermore
that both classes CD_Player and MP3_Player implement the interface play-
able. Suppose that the reference variable player now has the interface type
playable. Then the person can play both CD records and MP3 files. More-
over, in the future the same person can play all kinds of media without hav-
ing to adapt to their specific technical implementations. The only require-
ment for this to work out well is that they are all playable, that is to say, they
all implement the interface playable. The following quote expresses this line
of argument as a general advice to programmers: “Program to an interface,
not an implementation” (Gamma et al., 1995, p.18).

1.5 Outline
We have given the background of the study, and a definition of the research
questions, followed by some methodological considerations, and finally a
brief introduction to object-orientation. Chapter 2 gives an overview of re-
lated work and Chapter 3 describes the phenomenographic research ap-
proach. Chapter 4 describes the empirical study and its conduct. Chapters 5
to 9 present the results and supporting evidence. Chapter 10 and 11 discuss
the results, their interpretations and implications for teaching, and Chapter
12 outlines the conclusions. In the appendices you can find a word list and a
more elaborate and personal presentation of object-orientation. In addition,
you can find some of the materials referred to in the text there.

 6

2 Related work

This chapter describes other studies that relate to this work in various ways,
how they are related and why they have relevance to this study. We have
selected four themes: (1) Computer Science Education Research (CSER), (2)
learning to program, (3) educating for a profession in industry, and (4) the
interface concept in Java.

2.1 Computer Science Education Research
This is a study within the wide area of CSER. There are some examples of
literature providing general overviews of the field of Computer Science
Education Research. A number of researchers has put an effort into it and
have managed to contribute with descriptions of what is going on and what
has been done in this young discipline. Clancy et al. (2001), describes mod-
els and areas for such research, and Holmboe (2001), presents a research
agenda. Pears and Daniels (2003) suggest a model for how such research can
be achieved. Berglund, Daniels & Pears (2006), describe examples of quali-
tative research projects in the area.

2.1.1 Phenomenographic studies in CS
There are many possible approaches to study aspects of learning in computer
science and it is important to formulate an outlook on the research and get
familiar with that research tradition. This study takes mainly a phenomeno-
graphic perspective (see Chapter 3) and it is inspired by other studies that
use the same research approach. These studies are good examples of how to
conduct such investigations and how to interpret and discuss their results.

Shirley Booth is one of the pioneers who took a phenomenographic ap-
proach in order to tackle pedagogical issues within computer science educa-
tion. In her classic work in the area (Booth, 1992), she investigated how
students learn and approach programming through a study where the stu-
dents’ descriptions of their conception of several related phenomena and
situations were analysed. The students learned a functional programming
language, and it is interesting to reflect on similarities and differences com-
pared to object-oriented programming.

 7

Anna Eckerdal (2006) has studied how a group of students, involved in a
Java programming course, in different ways experience the object-oriented
concepts class and object. Her work is close to my research interest, and it
has been very valuable to take part of how the students experienced this type
of programming.

Anders Berglund (2005) studied how students describe concepts related to
computer communication protocols. He also studied the students’ activities
in groups. The context was an internationally distributed project course
where students from USA and Uppsala worked together in an advanced
software engineering (SE) project. This setting has connections to my study
as it also has complex software as a theme for the study of students’ experi-
ences of concepts.

Chris Cope (2006) investigated how students learn and experience the
concept of information systems. In my study, the students worked with pro-
gramming in a database system, and therefore it was interesting to see how
the students in his study viewed these types of systems.

2.2 Learning to program
Even though we have chosen a phenomenographic approach on “learning to
program in the large,” we are interested in other perspectives to get a broader
view of the area of programming education and learning. Naturally, all per-
spectives contribute to the picture of how learning comes about and it is
important to understand how other researchers are reasoning. Moreover, how
researchers try to widen their perspectives and combine their research ap-
proaches with other traditions.

2.2.1 The awareness of cultures and communities
One of the conclusions in Shirley Booth (2001a) is that there is a tendency
within the universities to move away from the traditional pedagogy where
knowledge is transferred from the teachers to the students. Now they ap-
proach a way of teaching where the students take an active part of their
learning by working in groups and projects.

However, she notices, there is a lack of a theoretical foundation for this
way of approaching learning and therefore she suggests a phenomenographic
perspective, where teachers can establish their view of learning and teaching
and then learn from how their students learn.

Booth also investigates various approaches to learning and learning stud-
ies. She starts from two different research approaches. Firmly rooted in the
phenomenographic tradition and perspective, she discusses the possibility to
combine it with a socio-cultural perspective in such a way that both tradi-
tions could benefit and learn from each other (Booth, 2001b). In this paper,

 8

she discusses how she would like to take on this new perspective and re-
examine a previous study by adding new questions to it. She is interested in
what it takes to enter a “datalogical” culture, and if the answers have connec-
tions to the previous results. She identifies three essential cultures: the in-
formal (amateur) culture, the academic culture, and finally the professional
culture.

An interesting observation is that advocates for the academic and profes-
sional cultures are debating the purpose, the practice and the contents of the
“datalogical” education. She concludes that it seems both possible and en-
riching to extend the phenomenographic terminology and theoretical ground
to include cultural aspects of learning. The text thoroughly covers the phe-
nomenographic research approach. When it comes to learning in cultures,
she uses the concept Community of Practice (CoP), coming from the socio-
culturist Etienne Wenger. Then she goes about and argues for a connection
between cultures and her previous results, namely the categories of descrip-
tion of programming and how learning how to program takes place.

The preliminary result shows that there are such connections and she tries
to make a mapping between cultures (CoPs) and her categories. The stu-
dents’ datalogical (cultural) identity before the studies affects their learning.
At the same time, their cultural identity is influenced by the studies and of
course, they are gradually incorporated in the academic culture (for better or
worse).

In summary, a tenable vocabulary of concepts must be constructed and a
new theory must be developed before valid conclusions can be drawn from
this combined research approach. In any case, both phenomenography and
socio-culturism should benefit from an exchange of ideas. A preliminary
conclusion from this theoretical research attempt is that the educational insti-
tutions should consider and use the datalogical cultures that exist outside the
academia.

Yiffat Ben-David Kolikant (2004) describes the clash between the infor-
mal culture of technology users and the academic culture and CoP. Under
the assumption that the educational goal is to help the students to enter the
academic CoP, she noticed that it is possible to regard a specific course as an
entry point to the community of computer science practitioners. She claims
that students will experience the practice of CS if they work with a certain
type of assignments and when they do, they can “cross the boundaries from
the User CoP”. Within concurrent programming, there is a rich set of prob-
lems to deal with and one of them is the synchronization problems. She sug-
gests how to design an assignment that motivates the students to enter the
academic culture. In the study, she follows the students and investigates how
and when they cross borders.

 9

2.2.2 A constructivist approach on learning to program
Said Hadjerrouit (1999) suggests a constructivist approach to learning ob-
ject-oriented design and programming. He claims that passive learning,
where knowledge is transmitted from the teacher to the learner, is not ade-
quate for most students when it comes to the object-oriented paradigm. The
concepts are far more abstract than in procedural programming.

Instead, the learners’ minds must be deeply involved, and the learners
themselves must construct their knowledge about object-oriented concepts,
which implies that they must play an active role in the learning process. The
object-oriented concepts, the programming language and the problem spe-
cific knowledge must be strongly linked together in order to create good
grounds for being able to construct knowledge.

To get students involved, we must provide for realistic and motivating
problems for them to work with. Teachers should transform passive lectures
into student activities that aim towards construction of knowledge that
agrees more with the expert’s view on programming, such as the importance
of skills in analysis, design, analogical thinking, and reflexive and critical
thinking.

Hadjerrouit suggests guidelines and appropriate activities. We must know
and adapt to the students prior knowledge. The concepts should be listed
explicitly. Moments of reflection should be part of the activities. Examples
of activities are, design by adapting existing solutions (patterns), study the
Java API and find code to reuse, study experts’ solutions, organize knowl-
edge by similarities and differences, develop alternate solutions, and finally,
reflect on the solution process.

In a more recent publication (Hadjerrouit, 2005), he brings this approach
further and describes a general model for how constructivism can be applied
to teaching within software engineering. He refers to some of the central
figures of constructivism (Bruner, Piaget, Vygotsky and Van Glaserfeld)
who claim that knowledge cannot be directly transferred to learners. Instead,
learning is an active process of construction.

He suggests a set of pedagogical guidelines that should be followed: con-
struction, cognitive skills, authentic tasks, related cases, cooperation, and
information technology. By authentic tasks, he means assignments that build
on experiences and contain relevant concepts and principles of software en-
gineering. The students will understand and appreciate the connection with
reality if the tasks are connected to external organisations or private compa-
nies. The tasks should contain all the relevant information that is needed to
be solved, and they should have the intrinsic property of being interesting
and motivating. The students should be the initiators of the assignments, and
the tasks should be designed in consultation with the teachers.

 10

2.2.3 A cognitive perspective on learning to program
Anthony Robins, Janet Rountree and Nathan Rountree (2003) have compiled
a literature overview on studies of learning programming. They are mainly
interested in how beginners learn to program, and they take a cognitive per-
spective. They notice that the research has focused on understandings and
development of programs, mental models, and knowledge and skills that are
required to be able to program.

They claim it takes 10 years for a novice to become an expert, and they
classify five developmental levels: novice, advanced beginner, competent,
skilled, and expert. Five overlapping domains are involved in learning,
namely: orientation, the concept of machine, notation, structures and practi-
cal skills.

As examples of alternate methods of instruction, they mention that the
students should learn to use a new vocabulary and that more weight should
be put on understanding and using named patterns. A different point they
have is that abstract representations not can be learned in a direct way, they
can only be learned by using and working with the practical operations from
which the abstractions are derived.

This way of reasoning have a direct connection to Anna Sfard’s (1991)
way of explaining learning within mathematics as a duality between concep-
tual and operational understanding, and to Orit Hazzan (2003) who uses
Sfard’s model applied to learning in Computer Science.

Another way to approach learning in programming is through problem
solving, where the details of a programming language are introduced succes-
sively through the needs by a given problem. However, there is a complica-
tion; the students have difficulties to formulate the solutions to the problems
as programs.

In the end of the literature review, the authors point out four trends within
the research. The first is the tendency to divide novices from experts, focus-
sing on the novices’ shortcomings. The second trend is to separate knowl-
edge from strategies, and the third trend is to distinguish between under-
standing programs and the ability to generate programs. The fourth is com-
parisons between object-oriented languages and procedural languages. Even
though object oriented languages give a more distinct way to structure and
plan programs, it is required to put a big effort on procedural aspects, espe-
cially for the weaker students.

The authors comment their review by claiming that it is more important
to study differences between efficient and inefficient novices, rather than
studying the differences between experts and novices. The focus should be
set on what can promote students to perform as efficient novices. Some po-
tential factors could be motivation, self-reliance, how students are treated,
aspects of specific and generic knowledge, and finally, strategies and mental

 11

models. Strategies for how to get, gain and apply knowledge when it comes
to understanding and construction of programs are critical for the learning.

Researchers should look for which strategies the effective students use
and teach this to the beginners whenever possible. Teachers should give
many explicit examples of programs under development and strategies, per-
haps by writing programs together with the students during the lessons. An
important question is why useful knowledge and strategies are well known,
but still not are used.

2.3 Educating for a professional career in industry
One of the main issues in this study concerns “programming in the large”. It
deals with the question of how well prepared the students get for a profes-
sion as developers and programmers, and I have chosen to study this by ana-
lysing how students experience related concepts and how they approach a
problem-solving situation.

The research interest driving our study takes its starting point in the pre-
sumption that a considerable portion of the students that follow programmes
in computer science or computer engineering strives for profession in the IT
industry. The education should prepare the student for a wide spectrum of
professional roles. To be a good system developer or a software engineer, a
comprehensive view is required, that amongst other things includes knowl-
edge about computer systems, programming, databases, project methodol-
ogy, test methods, and good treatment of customers. The object-oriented
paradigm and its related system development methods deals with all of the
topics mentioned above.

Knowledge in academic educational systems is traditionally specialized
and divided into pure subjects, and what typically characterizes experts and
researchers is the tendency to know very much about very little (deep but
narrow). Perhaps this is the only way to obtain new knowledge and manage
the heritage of from the past. The thought behind study programmes that
prepare for a profession and therefore include several subjects is that the
knowledge should be integrated within the students’ minds and that is will
result in competence and professionalism. However, there is a potential con-
flict of interest between, on one hand, the study programmes that account for
the task to produce educated, skilful and professionally trained citizens, and
on the other hand, the institutions role to maintain and develop the subjects
and their duty as guardians of the free and independent academia.

One way out of this dilemma is to organize the educational institutions as
professional schools, such as institutes of technology that specialize towards
certain professions. The content of the subjects is considered from a profes-
sional perspective and is adapted and integrated to suite specific professional
purposes and applications. An unconventional variant is project-based edu-

 12

cations, or at least courses that introduce realistic or even authentic projects
where the students themselves choose which knowledge are required to fulfil
the commissions. For an example, see Jacceri (2001).

I have found support for my thoughts about learning for the professional
life. Several studies show that the educational systems have some shortcom-
ings in this area, and there are suggestions about how we can improve the
education in this regard.

In their longitudal study, Madeleine Abrant Dahlgren, et al. (2006), inves-
tigate the transition from higher education to professional careers within
social science, psychology and engineering. Earlier results had shown that
not only the content, but also the socio-cultural context contributed to stu-
dents’ learning in various educational programmes.

There were clear differences between teacher types, teaching methods and
demands on students. However, not much research had been done on transi-
tions between academia and working life. A starting-point for their research
was consequently, how participation in these communities of practice (CoP)
changes with time. In this context, they also studied reification, that is to say,
how abstract concepts are embodied in these CoP.

Their results show that the psychology programme met the demands and
needs of professional life in a rational manner. This programme used a the-
matic structure of the content and integrated academic and professional fo-
cus. The social science programme was driven in a traditional academic way
and was organized sequentially, giving generic knowledge that must be
transformed in order to be used professionally. The engineering programme
was also driven with an academic focus using a parallel structure. Much of
what was learned within the engineering programme was characterized as
knowledge that plays a ritual role for the profession.

Timothy Lethbridge studied 168 professional software developers and tri-
ed to find out how relevant their formal education had been for their profes-
sional careers. He concluded that there were important subject areas not
given enough room in the education, such as project methodology, real-time
systems, user interface design, maintenance, re-factoring, leadership, ethics
and professionalism. However, chemistry and mathematical analysis were
given too much emphasis according to their relevance for practising the pro-
fession. The shown results led to a revision of the educational programme in
order to improve upon the indicated shortcomings.

John Tvedt, Roseanne Tesoriero and Kevin Gary suggest a Computer Sci-
ence Curriculum that in their view is better adapted to the needs of the in-
dustry (Tvedt, 2002). They point out that contemporary educational systems
produce students with good technical skills, but unfortunately, the students
lack the required practical software engineering of the profession. Their so-
lution to this problem is their own proposed educational model, Software
Factory. The students will learn more and consolidate more of their knowl-
edge by applying their new skills in an authentic development environment.

 13

It would accordingly be of advantage to the students, the teacher staff, the
academic institution, and the industry. Their model has been adapted and
implemented.

David Parnas (1998) claims that educational programmes within software
engineering are not, and should not be, computer science programmes. He
reveals an on-going a tug-of-war between different educations in the sense
that the computer science educations wants to embrace the concept of soft-
ware engineering and make it a part of their programmes, whilst there has
evolved a new specialization within the technical educations that are entirely
focused on software engineering. He points out the necessity of programmes
focussing on software engineering that also follow the structure of traditional
engineering education. He comes up with the following conclusions:

• Software Engineering and Computer Science are different
• Programmes within Software Engineering must be accredited and

ascribed a status in level with civil engineering educations
• There is a need for new courses in SE, not combination of existing

ones, such as programming courses with elements of SE
• The teaching style and the organisation of the courses must change
• Staffing of teachers is the most critical problem
• Computer Science has matured, and the numerous results allows

for an education devoted to Software Engineering
• It takes a genuine commitment. Both researchers in Computer Sci-

ence and staff from the traditional engineering educations must ac-
knowledge the eligibility for treating new field seriously.

2.3.1 Apprenticeship
The idea of apprenticeship inspired the way this study was designed, both as
a way to put the students in a state of realism when they solved the task, and
as a particular way of learning that might be something to consider in teach-
ing programming in the large. In the following, I will point out some related
work in this area.

Lave and Wenger started from the idea to try preserving apprenticeship -
the traditional and ancient way of learning (1991). They tried to investigate
and explain its relation to the concept situated learning. From this perspec-
tive, they created a sociologic and cultural epistemological theory based
upon the presumption that learning takes place in social forms.

They mean that the modern view of learning totally has left out the social
aspect and that it incorrectly focuses on the individuals’ learning of facts. On
the contrary, learning in their view is all about a process of taking part in
new cultures, communities of practice (CoP).

In the beginning, the learners are allowed to take limited part of the cul-
ture, which is called legitimate peripheral participation (LPP). Gradually,

 14

the commitment gets deeper and more complex. In their rather radical publi-
cation, they give example of five different cases of apprenticeship.

Naturally, one could argue that our systematic way of educating new gen-
erations in schools and universities could be regarded as a variant of LPP
since the schools are allowed to be peripheral to the modern society’s pro-
duction apparatus and that the students are gradually introduced to the new
culture. However, it is more likely that the students approach a more aca-
demic culture than the culture of the profession that the study programme
aims for, which is certainly not in line with LPP.

Mordechai Ben-Ari (2004) examines situated learning (LPP) in context of
Computer Science. A common example of learning, which can be described
as LPP in CS, is the concept of Open-Source Software Development (OSSD)
and especially the success story of how the operative system Linux was de-
veloped. Ben-Ari admits that this really was a case of LPP and that there was
a clearly defined Community of Practise (CoP) in the project. At the same
time, he argues, there are branches within CS where this form of learning
would not be appropriate, especially within pure, theoretical CS (non-
applied).

He concludes that LPP in its proper sense is not applicable for the entire
chain of learning that must precede the high-technological knowledge that
Computer Science Education aims for. Generalization and models must be
utilized in order to make the education effective. On the other hand, it is
possible to make use of and be inspired of LPP when the content of the edu-
cation is designed and the literature is chosen. The teachers should be well
aware of the different CoP that the education aims for and they should de-
sign courses that reflect authentic situations taken from these CoPs.

Ben-Ari is therefore sceptical to the effectiveness of an entire education
formed as an apprenticeship. Yet, for suitable courses, he appreciates the
idea of creating authentic environments and situations. This attitude was
actually an inspiration for him when he designed a new course book and
chose to base the entire book on authentic documents.

“Professional programmers and software engineers rarely have the luxury of
learning from textbooks. They are routinely required to work from formal
definitions of protocols, interfaces, languages and architectures” (Ben-Ari,
2004).

Ben-Ari argues that learning activities must be relevant to the intended
CoP and he strengthens this reasoning by referring to previous results shown
by Shirley Booth (1992). Her results show that the best learning outcomes
(within programming) are achieved by those students who take a structural
approach, where the programming problems are interpreted in the problem
domain rather than in the coding domain. Her advice to programming teach-

 15

ers is to design assignments that force the students to focus on the applica-
tion domain.

John Dalbey describes an educational project where he used a different
way of conducting teaching in a programming course (Dalbey, 1998). The
pedagogic idea in this project built on learning inspired by apprenticeship;
the students were supposed to learn about programming through working
immediately with far more authentic software systems compared to the
small problems used in the traditional courses. Instead of learning how to
write small programs of their own, the teachers introduced the students to the
software by giving them simple tasks that did not require extensive knowl-
edge in programming, such as testing and evaluation of the software. Gradu-
ally, the students were asked to carry out programming tasks in the software.

The interesting thing in Dalbey’s study is the fact that the students were
provided with an authentic context and that they got the opportunity to work
with programming in the large and could therefore study the structure and
behaviour of a completely developed system.

Michael Kölling and David Barnes (2004) suggest an integrated model
for teaching that combines apprenticeship with problem based learning and
case studies. They describe how to do this in a first programming course in
Java.

The first student activity is to be acquainted with a software system,
which is a game designed by experts. The students explore the software in-
teractively by running it and studying the code using the development tool
BlueJ, and they describe the software to peer students. In the next activity,
the students discuss design of alternate versions of the game and improve-
ments to the existing software.

The discussion soon moves from details in the code into code quality and
maintenance and the students develop the skill of being able to evaluate code
critically. Then the students work with exercises that gradually extend the
software in different ways. Finally, the students make their own versions of
the game as an assignment. During this activity, tutors discuss the solutions
with the students with focus on aspects such as maintenance and extendibil-
ity.

Two important properties of this way of teaching are the problem driven
approach where the interesting concepts appear naturally, and the apprentice
approach, that gives the learner opportunities to learn from experts and from
doing small changes in the code. It is also important that the exercises and
assignments are well defined and at the same time are open to variation and
individual extensions. The students should take control and ownership of the
tasks and the system they develop.

 16

2.3.2 System maintenance is important
Regarding the professional learning in society, Lave and Wenger are proba-
bly correct. A newly employed will not get the same tasks as a more experi-
enced colleague, trainee programmes are often used to introduce becoming
managers, and in certain branches, the ancient apprentice model is still used.
At some companies, the inexperienced are assigned to some typical begin-
ners tasks. Unfortunately, these assignments are not always selected on basis
of their suitability for learning. On the contrary, the choice can rather be
based on the low status of the job.

Mirja Kajko-Mattson et al. (2002) have pursued research on education
within software engineering and its relevance for the industry. In particular,
they focus on software maintenance and conclude that system maintenance
is a job for the beginners, whilst the experienced take care of system devel-
opment. They claim that maintenance has low status and quote Gunderman:

“Maintenance has been viewed as a second class activity, with an admixture
of on-the-job training for beginners and low-status assignments for the out-
cast and the fallen” (Gunderman, 1988).

However, are the inexperienced able to become acquainted with the soft-
ware, are they capable to get intimate knowledge of the existing source code
and can they understand the underlying design of the system?

“A trivial change of one line of code to a module implementing common
functionality may alter the internal processing of the whole system” (Kajko-
Mattsson, 2002).

On the contrary, they argue that software maintenance is an important
business that requires high competence in form of skills and formal training.
To achieve the needed competence they suggest an education in large-scale
software.

 “A highly skilled maintainer is the most important organisational asset piv-
otal for achieving quality software, strategic for improving maintenance and
development processes, essential for remaining competitive and critical for
business survival. This requires that universities properly prepare students to
enter the maintenance workforce and that maintenance organisations actively
build and maintain their human knowledge and skill base” (Kajko-Mattsson,
2002).

2.3.3 Dialogue between university and industry
Letizia Jacceri and Sandro Morasca (2006) point out the importance of a
dialogue between the industry and the educational institutions teaching SE.

 17

In other words – there is a need for an exchange of ideas between different
CoPs having a shared interest.

The authors identify five possible roles that the industry can take towards
the education and that it is very important to make use of them. The role as
students implies that the universities can arrange continuation training for
the employees in the industry. The role as alumni (former student) facilitates
direct communications channels between the companies and the universities.
The role as researchers means that companies are interested of sharing the
results of empirical research within the education and the industry. The
companies can also act as more or less authentic customers in student pro-
jects.

Finally, the industry acts as teachers when its experts share their experi-
ences with students in guest lectures or in other situations. In addition, it is
my personal opinion, that the two latter roles connects to the idea of learning
in apprenticeship, and that they would contribute to reinforce legitimacy for
the education and help both students and teachers to gain insights in the pro-
fessional view of the subject field.

Experiments with educational collaboration between industry and univer-
sities can be found at several places. For example, the CS department at
University of Gävle has good experiences from a one-semester course where
the first half of the course contained studies of advanced applications using
Java, project methodology, and guest lectures from various consulting agen-
cies in the IT business. The second half consisted of independent student
projects with advisors from both academy and industry. The tasks were pri-
marily authentic orders from customers from the IT-sector, but also from
other enterprises.

Rayford Vaughn (2001) reports results and experiences from a similar
model at Mississippi State University, where students work in authentic pro-
jects towards authentic customers in an industrial environment. Their experi-
ences are mainly good and both the students and the customers are happy
with this way of working. The deliverables that was the basis for examina-
tion was a conceptual model of operations, a specification of system re-
quirements, a design document, a test plan, system documentation, and a
formal delivery to the customer.

2.3.4 Companies’ strategies for obtaining education
Eskil Ekstedt (1988) means that the early IT-companies have moved on from
being manned by computer nerds that focus on technical solutions and nowa-
days the companies concentrate on supplying overall IT-solutions that aim to
increase the efficiency within corporations. This requires knowledge that
reaches far beyond the horizon of pure programming, since the developers
must be familiar to the various processes in different organizations. In addi-

 18

tion, the companies must constantly maintain their knowledge base in a
never-ending process.

In these companies, the educational level is exceptionally high and they
recruit staff from people with academic degrees or long professional experi-
ence. The companies use three principal recruitment strategies. The first
strategy is to look for well-educated professionals, mainly engineers. The
second strategy is to search for persons with good skills in programming and
computers in general, but this tendency has decreased because the companies
offer in-service education with extensive programming courses anyway. The
third strategy is to employ young inexperienced people having an academic
degree. In this case, the companies regard the education process as a filter; a
person with an academic degree has proven his capacity and in addition, he
contributes to the company’s status. Regardless of the chosen strategy for
recruitment, the internal education is very important for these companies and
also the internal research and development (Ekstedt, 1988).

2.4 The interface concept
I have chosen the students descriptions of the Java interface concept as the
central phenomenon in this study. I consider this concept most interesting
and important when it comes to aspects of programming in the large. There
is support for this view in other studies that deals with conceptual under-
standing of object-orientation.

Miguel-Ángel Sicilia (2006) has analysed his experiences from teaching
object-oriented programming with Java during the period from 1997 until
2003. He concludes that there are problems in the understanding of the con-
ceptual knowledge layer regardless if the teachers take a modern approach
such as objects first, or the more traditional attitude procedural first.

With the conceptual knowledge layer, he considers problems within ob-
ject-oriented design, in contrast to the problem of learning the specific Java
syntax. He claims that when teachers use the Unified Modelling Language
(UML) to model the design of software, the principle should be to use in-
stances first and focus on groups of objects and relations between objects,
and then later generalize them to classes. If teachers and novices model us-
ing class diagrams, the solutions often tend to be too abstract for a smooth
transformation from the model into computer programs. Modelling with
objects also gives a better understanding of what happens in run-time.

Later, when the students have conceived the fundamental principles for
the object-oriented way to structure programs, it is feasible to introduce new
concepts such as inheritance and interfaces, motivated by their possibility to
extend, reuse and generalize the existing software. Teachers should intro-
duce polymorphism as generalization and as a way to solve the absence of
built-in generic types in Java.

 19

Although it is possible to argue for or against them in an introductory
programming course, Java interfaces are very important in order to explain
one of the principal lessons of object oriented programming; the separation
between specification and implementation.

“It is difficult to provide novice students with a full understanding of the role
of a professional designer, but it is at least possible to describe design situa-
tions that emphasize producing design structures with certain quality charac-
teristics, such as reusability or minimal coupling” (Silica, 2006).

Sicilia points out that it is difficult to construct good pedagogical examples
of how to use interfaces. However, he gives general guidelines and gives
some examples from his own experience.

Schmolitzky (2004) argues for an introduction of Java’s interfaces before
starting with sub-types and inheritance. He summarizes three good reasons
for his standpoint:

• To emphasize that a server’s interface seen from the client’s per-
spective should be independent of its implementation and that a
built-in feature of the programming language Java supports this
principle.

• To (earlier) introduce and practise the powerful concept: “program
to an interface, not an implementation” (Gamma et al., 1995, p.18).

• To learn avoiding the common mistake to include private members
of classes in the documentation since there are no private members
in an interface.

In summary, he concludes, that interfaces should be introduced as soon as
possible in the courses. After an evaluation of accomplished courses, there is
evidence for that the students have gained a better understanding of the con-
cept interface and that they are more confident in the use of the mechanism
interface.

Friedrich Steimann, Wolf Siberski and Thomas Kühne (2003) call atten-
tion to the fact that the Java interface is often (mis)conceived as a means to
utilize multiple inheritance. They claim this explains why the Java interface
is used so sparsely in teaching despite of its potential to design highly inde-
pendent code.

Programmers should use interfaces to declare reference variables to ob-
jects instead of using the explicit class types. Using this method, the pro-
grammer will attain the advantage of being independent of specific imple-
mentations. Thus, the dependency is limited to a mere specification, which
allows a variation in how the specifications are implemented. This principle
is especially important for developing frameworks and in component based
design. In this context, the application programmers’ classes can be com-
pared to specially designed plugs (plugins) that must fit in the corresponding
sockets. The interfaces correspond to the sockets and they specify partial

 20

types that describe some aspects that can be implemented by one ore more
classes. In this way, using an interface variable, it is possible to connect to
several different class instances, which all have the specified aspect. On the
other hand, one class instance could be connected to several interface vari-
ables and be used from their specific aspects.

After an analysis of software, it is concluded that interfaces are not used
to the expected extend. This fact is explained by the considerably large effort
that is required of the programmer. Moreover, the intuitive conception of the
interface is still weaker than the class concept. Therefore, they advocate a
different conceptualization of the notion of interfaces.

In programming courses, the concept of roles should be emphasized over
the idea of natural types since roles are possible to identify in the problem
domain in the same way as natural types (classes). Roles are partial types
and they have a natural connection to interfaces. The authors give a distinct
method to separate the cases for when to declare variables as roles (inter-
faces), when it is proper to declared them as concrete types (classes) and
when it is more feasible to declare them as polymorphic types through in-
heritance. In addition, they provide a set of rules for how code can be refac-
tored to utilize interfaces and they give a suggestion for how to measure the
soundness of the utilization of interfaces in specific software (Steimann,
2003).

 21

3 Phenomenography

Ference Marton and Shirley Booth point out that people do things differ-
ently, and they learn to do these things in different ways; some do it worse
and some do it better (1997). Phenomenography originated in educational
questions of how learning comes about and how it is possible to improve the
learning process. Amongst other things, Marton and Roger Säljö were inter-
ested in deep and surface approaches to learning and gave contributions to
that field of research (e.g., Marton and Säljö, 1976a, and 1976b).

It gradually evolved and matured into a research tradition that concerns
how different aspects of the world appear to some group of people. Essen-
tially, the studies within this approach are explorative and use empirical data,
and they all take a second order perspective on some phenomena. That is to
say, the phenomenographer does not study the phenomena as what they are
(the first order perspective), but the variation of what they are as experienced
and expressed by people (the second order perspective). Ference Marton,
one of the pioneers of phenomenography, gives the following definition of
this research specialization:

“Phenomenography is a research method adapted for mapping the qualita-
tively different ways in which people experience, conceptualise, perceive,
and understand various aspects of, and phenomena in, the world around
them” (Marton, 1986b, p.31).

Consequently, the object of study is the relation between a certain phenome-
non and a group of people and the variations of the relation. It is neither the
phenomenon nor the people it tries to explain; it is the group’s experience of
the phenomenon. The ontology of phenomenography is non-dualistic, which
means that it does not separate the observer from the observed (object and
subject). Marton (2000) explains it in the following way:

“There is only one world, a really existing world, which is experienced and
understood in different ways by human beings. It is simultaneously objective
and subjective. An experience is a relationship between object and subject,
encompassing both. The experience is as much an aspect of the object as it is
of the subject” (Marton, 2000).

In this non-dualistic world, the set of different ways to experience an object
is what actually constitutes it. Moreover, because the experiences all relate to

 22

this constitution, they are all logically related. A prominent feature of phe-
nomenography, compared to other qualitative research traditions, is thereby,
the way in which the results are structured.

Experiences from earlier studies had shown that different people de-
scribed phenomena in only a few different ways, and that led to the funda-
mental epistemological assumption, namely that there are only a limited set
of qualitatively distinct ways to experience and describe a phenomenon.
Each qualitatively distinct way to experience forms a category of descrip-
tion. In addition, there are always a set of logical relations between the cate-
gories, and the logical structure in combination with the categories of de-
scription constitute the outcome space. In this way, the outcome space con-
tains a rich set of information of how the phenomenon is experienced and
how these experiences relate to each other.

Moreover, there is no explicit connection to the experiences of any indi-
vidual person in the outcome space. Each category describes a particular
way to experience a certain phenomenon, observed in the collective, and is
thereby constituted by merged fragments of meaning found in the individ-
ual’s description of the phenomenon. The collective outlook is a quality that
distinguishes phenomenography from qualitative research in general, which
is often described as taking the individual’s perspective (Denzin, 1994).

Marton (2000) actually refers to the outcome space as a synonym for the
phenomenon, and this emphasizes his non-dualistic view. However, there are
researches from other traditions that do not appreciate this presupposed on-
tology. John Richardson believes that the non-dualism in phenomenographic
research is problematic and advocates a closer association to the constructiv-
ist approach (Richardson, 1999, p.68).

As in its origin, the most common application for the research approach is
still to study different aspects of learning and teaching. However, phe-
nomenography is not restricted to that area only. John Bowden (2000) di-
vides the research approach into two forms: the applied (or developmental)
form, and the pure form, separated from institutional learning environments.

“Phenomenographic research methods of data collection and analysis can be
used to study a range of issues, including approaches to learning, approaches
to teaching, understanding of scientific phenomena learned in school, or un-
derstanding of general issues in society unrelated to educational systems”
(Bowden, 2000).

Marton and Booth emphasize that all of the frequently used terms in phe-
nomenographic publications, such as “conceptions”, “conceptualizations”,
“ways of understanding”, “ways of comprehending”, are all synonyms for
“ways of experiencing”. One should not understand them as referring to the
internal mechanisms in the human brain. The phenomenographic researchers

 23

always allude to the experiential sense of the words, all in line with the non-
dualistic approach (1997).

3.1 The research process
John Bowden (2000) outlines the phenomenographic research process as
having the four stages: plan, data collection, analysis and interpretation. In
all of these stages, the researcher must maintain focused on the purpose of
the study. This is important to consider for obtaining trustworthy results. As
in all research, it starts with a plan that defines the purpose and the strate-
gies. Naturally, what drives the research is an underlying question that the
research activity tries to answer. Students’ difficulties in coping with physics
gave Bowden a good reason to try to make sense of the students’ understand-
ing of important concepts in physics.

The input data for a phenomenographic investigation is essentially peo-
ple’s statements of experiences of a phenomenon. The predominant method
for collecting this data is through interviews with people, and the researcher
must select the persons carefully and consider why they are a good choice.
Another issue is who the interviewer should be. The interviews pose open-
ended questions that address the problem area or ask the subject to explain
what the phenomena X is.

Even though the interviews should be planned on beforehand, they can
take different directions and follow the spontaneous thoughts that might
appear differently from case to case. The next phase is the analysis of the
data, which often starts by transcribing the recorded interviews. The texts are
then sought for different meanings and the contexts they appear in. Some-
times phenomenographers de-contextualize the fragments of meaning, and
sometimes not. In either way, the meanings constitute a pool, from which the
categories are condensed.

The categories should relate to each other logically. If not, the researcher
should reconsider the data again. Section 3.2 elaborates more on the analysis
process. Finally, the results should be interpreted according to the purpose of
the study. In applied, developmental phenomenography, the interpretation is
a natural consequence of the posed research question. If the result tells how
students experience phenomena in an educational context, the teachers can
use the results to enlighten their pedagogy and instruction. They can adapt
their way of how they present new concepts, or they can get a better under-
standing of why students fail to do certain tasks.

A pure phenomenographic study, on the other hand, might have only the
purpose to describe the experience of a phenomenon, without any further
implications. In all cases the results of the study must be seen in the light of
its purpose, and if a researcher wants to use the results in a different context,
this issue must be taken in consideration.

 24

3.2 Phenomenographic analysis of interviews
In phenomenographic analysis, the researcher refines the primary source of
data by transcribing recorded interviews into a textual form where the par-
ticipants’ quotes are anonymous. However, it is still possible to separate
individuals by using pseudo names. The next step is to search the texts for
different expressions of meaning that relate to a certain phenomena.

“Phenomenographic analysis – whether it is seen as construction or discovery
– focuses on the relationship between the interviewee and the phenomenon as
the transcripts reveal it” (Walsh, 2000).

These manifestations of meaning can be identified in several places and dif-
ferent forms in the text. Meanings are found where the interviewee explicitly
describes her experience of the phenomenon as such. However, implicit de-
scriptions can also reveal meanings, as in descriptions of how she uses the
phenomenon, or which purposes, advantages or drawbacks this phenomenon
brings about.

The meanings are expressed by quotes that form a large collection of fur-
ther refined data. The quotes are usually de-contextualized from the text, but
the reference to their context should be kept, to maintain the possibility to re-
interpret their meaning. The purpose of making the de-contextualisation is to
be able to, on a collective level, find qualitatively different meanings, ex-
periences and understandings of the focused phenomena. Some meanings
stand out from others, whilst some have something in common with other
ways to experience.

The fragments of meaning are in this way condensed into clusters of
meaning that are abstracted and outlined in categories of description. It is
important to understand that the categories do not express any particular
individual’s understanding; rather they are the result of an analytical catego-
rization of the meanings found on the collective level. In the process of
forming categories, one should search for different dimensions in such a way
that each category opens a new dimension of understanding the phenomena
and its meaning. This avoids categories that are instances or variations
within the same dimension.

The phenomenographic outcome space is distinguished by the categories
of description and their mutual logical relations, usually the hierarchic inclu-
siveness which implies that the meaning of the categories include each other
in the sense that a certain understanding also includes or implies a similar,
more elementary understanding. As phenomenography originated in studies
that in one way or another aimed to understand or improve institutionalized
learning, it is reasonable to range the outcome space in a hierarchy where the
quality of each category is valued by some measure of compliance to the
educational goals.

 25

 “Thus, we seek an identifiably hierarchical structure of increasing complex-
ity, inclusivity, or specificity in the categories, according to which the quality
of each one can be weighted against that of the others” (Marton & Booth,
1997, p.126).

Consider the structured and interrelated outcome space in contrast to socio-
logical research traditions where it is usual to make categories without any
requirement of internal logical relations. It is important to emphasize the
clear and inevitable relation between the result and the subject field that in-
cludes or views the phenomenon. This is an argument for taking a phe-
nomenographic perspective in educational research within a specific subject
field.

On the other hand, it is vital to make clear that the analysis is not a matter
of sorting the subjects’ conceptions into a predefined structure. One of the
fundamental epistemological assumptions within phenomenography is the
relations between the categories of description. The various ways in which a
phenomenon can be experienced are logically connected to each other
through the phenomenon itself and the structure of the logical relations is
typically hierarchically inclusive.

Another property of the outcome space is the collective level of descrip-
tions constituted in the categories. It is not the case that all individuals or a
specific individual have a certain structure of their way to experience.
Rather, the analyst tries to constitute the categories on a collective level and
if successful, the well-founded categories can be structured and interrelated.
This is what the phenomenographic researchers are striving to achieve.

Marton and Booth (1997) describe three principal criteria for the expected
properties of an outcome space constituted of categories of description. The
first criterion is that each category should have a distinct and unique relation
to the phenomenon according to a distinguished way of experiencing it. This
is motivated by the fact that phenomenography is a pedagogical research
specialization, focused on learning, with the goal to obtain a clear picture of
qualitatively distinct ways to experience phenomena that have a connection
to learning.

The second criterion is that the categories must have a logical relation to
each other that often is hierarchical and often is inclusive as well. From a
pedagogical perspective there is a norm that defines which ways of under-
standing (experiencing) a certain phenomenon is preferable before others.
The pedagogical goal is often that the learner should be able to experience
phenomena in a more extensive, complex or specialized way and therefore a
hierarchical structure of the categories is sought that corresponds to this
goal.

The third criterion is that the system of categories should be as compact
as possible. This implies that there should not be more categories than neces-

 26

sary to express the critical experiences and the differences between them.
(Marton & Booth, 1997, pp.124-126).

3.2.1 A definition of inclusive categories
As discussed in the previous section, the hierarchic structure of the outcome
space can be explained by inclusiveness of conceptions. Inclusiveness in this
context means that a certain way to experience a phenomenon also includes
another way of experiencing it.

However, the description of inclusiveness is a bit vague and we need to
consider what it means to say that one way of experiencing also includes
another way. I propose the following definition of inclusiveness for this
study. Given that there is a category, A, that codes a particular way to ex-
perience and describe a phenomena. Then category A is included in another
category, B, if their relation fulfils the following conditions:

• There is a non-contradictionary relation between category A and B,

and
• The relation is of the type B consists of A, or B is an augment of A,

or
• Something in B assumes A.

During the data analysis, we used this definition to study and establish the
categories’ internal relations and plausibility related to the other categories
in the outcome space.

3.3 Questions of trustworthiness
As in all research, the phenomenographic researcher wants to be heard and
believed by other researchers and receivers. The fundamental condition to
achieve this goal is to uphold trustworthiness and to deliver credible results.
In qualitative research, it is crucial to show that the chosen research methods
reflect the goals for the research in a suitable manner, and to show how to
use the results.

In her dissertation, Shirley Booth (1992) discusses these matters through
accounting for her own long experience of programming and her familiarity
and good relations with the students who participated in her study. She de-
scribes the exhaustive and open-ended interviews and declares that the tran-
scripts are open for other researchers to read. In this research, there are no
absolute truths and therefore, she claims, the researcher must argue convinc-
ingly for the chosen methods, the results, and the interpretations. This can
take place in seminars, presentations and by peer-reviewed articles within
the research tradition.

 27

She explains that, due to the collective level of the results, the interview-
ees seldom confirm credibility; the individual’s experience is not traceable,
and the researcher’s interpretations goes further than the individual’s under-
standing at the time of the interview (Booth, 1992, pp.64-69, 90-92).

The phenomenographic analysis has a subjective nature since it reflects
the researcher’s way to discover and experience the meanings within the text
material. For instance, Eleanor Walsh (2000) discusses openly and critically
concerning the logical relations between categories and whether the catego-
ries are discovered or constructed and what the difference is between these
approaches within the phenomenographic analysis.

Gerlese Åkerlind (2005) has analysed what is common and what is vary-
ing in the conduct of phenomenographic analysis. She pursued this by study-
ing other researchers’ descriptions of data analysis in their publications. The
purpose of this investigation was to collect descriptions of the analytical
processes and the methodological procedures used to ensure quality and
consistency in interpretation of data, in a single place.

Åkerlind points out that there is a prevalent ignorance of the variations
within phenomenography and this fact could strengthen the arguments from
sceptics. In addition, there are only a few explicit descriptions of how to
accomplish the phenomenographic data analysis and this is one of the rea-
sons for the critique7 of phenomenography. In her study of applied phe-
nomenography, She finds a common conduct in the analytical process when
it comes to keeping an open mind, suppress own preconceptions, focus on
the whole, the search for variations in meanings and relations between them
and the iterative process using re-structuring and tentative categories.

However, Åkerlind identifies areas within the analysis where there are
variations in the practice. Some use de-contextualized fragments of meaning
and others do not. The collected data is handled in different manners and the
principle of letting the logical structure follow the data as close as possible is
sometimes compromised by the desire to reflect the researcher’s professional
classifications. The collaboration with other researchers varies from individ-
ual analysis to collaborative analysis (Åkerlind, 2005).

Yvonne Lincoln and Egon Guba discuss trustworthiness within qualita-
tive research and argue that this research, in contrast to positivistic traditions,
is inevitably associated with subjective values (Lincoln and Guba, 1985, pp.
37-38). Hence, in order for the researcher to be trustworthy, in the sense that
the audience thinks it is worthwhile to take part of the results, it is of great
importance to communicate how the researcher is reasoning and to account
for both the data and the researcher’s interpretations. They point out that
trustworthiness cannot be judged by the same measures as in the positivist

7 See for example Richardson (1999) who critically scrutinizes phenomenography from a
constructivist’s perspective.

 28

science tradition. Instead, they suggest four alternate terms that replace the
traditional terminology.

“The four terms ‘credibility,’ ‘transferability,’ ‘dependability’ and ‘confirm-
ability’ are, then, the naturalist’s equivalents for the conventional terms ‘in-
ternal validity,’ ‘external validity,’ ‘reliability’ and ‘objectivity’” (Lincoln
and Guba, 1985).

The credible researcher should persist long enough to ensure that a sufficient
and unbiased amount of data is gathered. The critical aspects should be stud-
ied in depth using different angles, various data sources, methods, research-
ers and theories (triangulation). The raw data must be available for re-
examinations and the informants should comment on the results.

The descriptions should be so rich and thick that someone who is inter-
ested in making a transfer to another context should be able to decide if that
is possible or not. The data sources should be selected to maximize varia-
tions.

The dependability of the results can be increased if the research group is
split and each sub-group deals with data independently and compare the
results (stepwise replication), or an auditor could examine the data, the proc-
ess and the produced results and then see if the conclusions are similar (in-
quiry audit).

It should be possible to conduct a confirmability audit trail by reviewing
the raw data, the analysis and synthesis, and the documentation of the proc-
ess and other documents. This ensures that the results are products of the
conducted investigation and are not products of the researcher’s preconcep-
tions (Lincoln and Guba, 1985).

Mulholland and Wallace (2003) suggest a method to present results from
narrative studies in a legitimate and trustworthy manner, by dividing the
presentation in three stories. The first story shows the strength and credibil-
ity of the study. It contains a story told by the subject of the research – the
data. The second story is told as the researcher’s interpretations of the first
story. The third story adds a theoretic model to the first two stories. The re-
searcher give suggestions for how the experiences of the inquiry can be use-
ful, for example, how they can improve educational matters for the partici-
pant, the researcher and the reader. Finally, the researchers account for how
the study has influenced them selves and their view on teaching. Moreover,
the first two stories can be re-read using the new perspectives gained from
the third story.

We can conclude that a very important asset in obtaining trustworthiness in
qualitative research is a rich set of data that can be shared with the reader in
various ways, together with the researcher’s interpretations and conclusions.

 29

3.4 Will the outcome space become complete?
The outcome space of a phenomenographic study is a categorization of sev-
eral descriptions of a phenomenon, regarded at a collective level. What it
shows is a model of descriptions of how people experience something – a
second order perspective. It does not describe what the phenomenon is in it
self - a first order perspective. Gerlese Åkerlind claims that the outcome
space always will be a subset of the hypothetic complete set of ways to ex-
perience a phenomenon, and that in reality; there are only more or less com-
plete spaces. However, every single outcome space can provide an important
contribution to the big picture of how certain phenomenon is experienced
(Åkerlind, 2005, p.10).

The present study focuses on students’ experiences of phenomena in a
context that will emphasize some aspects and perhaps suppress other possi-
ble aspects. Thus, it can be expected that the conceptions will be influenced
by the context – a bias that actually is intended. We know that the context
probably will affect the students’ descriptions simply because some aspects
will not be considered as relevant in the prepared setting. We do not search
for a complete picture that reflects the universal view of the phenomena. We
search for the conceptions as they appear in a specific context. Hence, these
circumstances must be considered when the results are interpreted.

 30

4 Conducting the empirical study

The study reported herein, concerns how students describe their experiences
of working with a realistic software engineering task. The purpose of putting
the students in such a situation was to supply them with a context where a
number of interesting concepts appeared naturally, and was part of the sys-
tem design. In this manner, we could gather information about how students
conceive concepts that we believe are important for their future professions.
In addition, it is of interest how they interpret their commission, how they
act during their work and if they have learnt anything by their participation.

This chapter describes the design of the empirical experiment; the people
involved in it, the task, data collection and analysis.

4.1 Who are the students?
The participants in this experiment were all students at three-year study pro-
grammes at University of Gävle8 in Sweden. The students were at their sec-
ond year in either the Computer Science programme or the Computer Engi-
neering programme. From the point of view of content, these educations are
relevant to study because they both emphasize programming and system
development.

Furthermore, we assume, most of the students from these programmes
aim at industrial careers starting as programmers, system developers, com-
puter engineers, or something similar. This assumption is motivated by the
fact that only a few students stay in academia, and by the informal feedback
that we get from alumni. Accordingly, in contrast to students from other
study programmes who are forced to take a mandatory programming course,
we expect that the selected students will get professional use of their knowl-
edge and skills in programming.

Many of the courses are given to students from both study programmes,
and this was the case for the course Object-Oriented Programming I. This
course deals with the concepts of which we want to investigate the students’
experiences. Earlier during the autumn semester, the chosen students had
studied this course and for the majority this was their second or third course
in programming. During the experiment and the data collection, many of the

8 The Swedish name is Högskolan i Gävle.

 31

participating students studied the course Algorithms and Data Structures in
which they also used an object-oriented language for their assignments. Dur-
ing the first year, the contents relating to Computer Science are the same for
both programmes, and it is partly true for several courses in year two and
three.

The differences lie mainly in the subsidiary subjects, where the engineers
study more mathematics and technical courses, such as digital design and
embedded systems, whereas the Computer Science students gets a classical
bachelor degree with a higher degree of freedom when it comes to the sub-
sidiary subject, which for example could be economics, psychology or geo-
graphical information systems.

Most of the students study quite a few courses that, one way or another,
contain programming. The Computer Science programme has a clear direc-
tion towards information systems with courses in data-bases, system devel-
opment, system maintenance, whereas the computer engineers often choose
to get deeper in for example operative systems or compiler theory.

In this type of qualitative study, based on interviews, it is appropriate to
select individuals that represent different groups of students in order to get
the opportunity to maximize the variation of ways to experience and describe
experiences (Booth, 1992, p.58; Marton & Booth, 1997, p.124). The selec-
tion process started by giving information about the study to all of the stu-
dents that completed the previously described course Object-Oriented Pro-
gramming I, and asking them to take part of the study.

From the 32 students who completed the course, 11 students in total
agreed to participate, and therefore, it was not possible to make a selection.
Still, the volunteers represented both of the described study programmes.
Their study achievements in the course were evenly distributed; half of them
passed, and the other half passed with distinction. Hence, their ability to
solve programming problems and design problems should vary, but still have
a lower bound.

There were only two female students among the interviewees, and two of
the participants were first generation immigrants speaking fluid Swedish.
However, this approximately reflected the proportions of these groups in the
class, both between males and females, as well as between native and immi-
grated Swedes.

To protect the participants, their real identities are not revealed in the text.
Nevertheless, they are provided with fictitious names in order to give the
readers a more personal impression. You are now going to be acquainted
with Alf, Bea, Cia, Dan, Eva, Fia, Git, Hal, Joe, Ken and Leo9, who so gen-
erously lent their voices to this study. We hope that you will get an under-
standing of the world of programming as they described it.

9 In the text, quotes by the interviewer will be preceded by the abbreviation: Int.

 32

4.2 Data collection – the experiment
The purpose of the experiment was to investigate how a group of students
experience (conceive) and handle various aspects of object-oriented pro-
gramming in a situation where they act as system developers committed to a
realistic (“authentic”) software engineering task.

What constitutes the novelty of this situation is how they should tackle a
problem in a piece of software that is larger, less arranged, and more realis-
tic, compared to the normal examples in traditional programming courses.
The engagement in the work with this system gives the students and the re-
searcher the possibility to contrast interesting aspects against a common
background.

The complexity of the software environment motivated the use of abstract
concepts, such as polymorphism and interfaces. Would their natural appear-
ance stimulate to discussions with the students about abstract concepts in
concrete terms, or would the system‘s complex environment “conceal” the
abstractions? We hoped that the experiment would stimulate to a compre-
hensive and varied experience of different concepts. One of these concepts is
the notion of plugin modules, which the system utilized extensively.

The Java interface is an example of a concept full of nuances; people
probably experience (conceive) it in many different ways. A course that in-
volves object-orientation often treats the interface concept theoretically, and
it can be problematic to supply the students with a larger context that they
can relate to the concept. Our intention is to focus on the understanding and
use of interface in a situation where students are working with relatively
extensive and complex software. In this context, the students cannot avoid to
relate to the interface concept, one way or another, since the software mainly
was designed using interfaces as a bearing idea.

Hence, the purpose of this study is not only to understand how students
experience and describe certain concepts alone; it is also how the students
experience their purpose and role in a situated context. Through the prob-
lem-solving situation, the students should be stimulated to try to grasp an
entire object-oriented system where the use of abstract concepts such as in-
terface is an important part of the construction and functionality of the sys-
tem.

4.2.1 Description of the system
Exclusively for this investigation, we designed a flexible software system
with a dynamic behaviour that taken together with its structural complexity
motivated a consistent use of the Java interface.

 33

The architecture constitutes a framework10 that builds on a fundamental
design principle for how to handle new functionality dynamically through an
extensive use of various interfaces. Partly, the system consists of a server
(software on a machine) that is connected to a database, which contains ad-
ministrative information about courses and students in a school. An unlim-
ited amount of users can connect themselves to the server through a client
software.

The principal idea of the design of the system is that the client software
should be kept as independent from the server software as possible, which
implies that both parts should be robust to changes. A potential change in-
troduced to the server software, should not impose a corresponding change
in the client software, even if its run-time behaviour could change drasti-
cally.

As mentioned earlier, Java interfaces are used frequently in the software,
and the theme of purpose in common is to separate the implementation from
the specification. The following text will give some examples of how inter-
faces were used in the system and explain the underlying ideas.

The first type of use of interfaces defines the possible communication be-
tween the client and the server parts of the software, that is, a specification
of a number of operations that the server offers. Such an interface used to-
gether with Java’s Remote Method Invocation protocol (RMI), enables that
calls, to any of the operations specified by the interface, can be initiated (in-
voced) from the client machine, and that they are actually executed on the
machine that runs the server software.

The second way to use interfaces is partly to reduce the dependency to
specific implementations, and partly to delimit the clients’ authority to affect
data objects. It is important to consider data integrity of objects and the idea
is that entities that derive from the database should be created exclusively by
the code that handles the database. No other part of the system should be
able to access that code, due to object data consistency. For example, by
giving public access to the interface Person, but only giving a restricted (pri-
vate) availability to the implementing class PersonImpl, it is secured that
only the owner of the class can create its object, since interfaces cannot be
instantiated. The creation of data objects is thereby well defined and strictly
localized. On the other hand, all parts of the system are free to use the cre-
ated objects. An essential property for a person object is to define its iden-
tity11 only in connection with its creation, and to inhibit all attempts to
change it later on. This technique prevents unauthorized production of fake
persons, and it assures that every person object is reflected by the database.

10 A framework is an underlying software system that offers developers the possibility to use
its components, functionalities and strategies
11 For example the Swedish “Birth Number,” the British “National Insurance Number,” or the
“Social Security Number” used in the USA.

 34

The third way of how interfaces are used in the system is to achieve poly-
morphism and dynamic behaviour. When the client software begins to exe-
cute, it connects to the server and fetches a number of objects from it. The
common aspect of the plugin objects is that they all implement the interface
PluginPanel, and that they all implement user interfaces for various use
cases of the client program. The client side is not aware of the concrete type
of the received objects; rather, it regards them only as PluginPanel-types
through using the associated interface. In this manner, it is possible to handle
completely new use cases to the system by designing new plugins. These can
be added to the system without having to change or affect the client software
at all – only its appearance to the user is affected. There is no need to recom-
pile the client software, and there is no need at all to restart the client pro-
grams – it is even possible to add new functionality during operation.

The students’ task was to use the dynamic properties of the system in or-
der to introduce new functionality to the system. To be specific, they should
design a new plugin that was supposed to handle registration of students on a
certain course instance.

4.2.2 Carrying through the experiment
The data collection was accomplished during three months from December
2003 until February 2004, and for this sole purpose, a particular office room
was reserved throughout the whole period.

The workroom was prepared and furnished with a swivel chair and a desk
on which there was a computer display and a keyboard. The computer unit
was placed behind a bookshelf in order to reduce the background noise and
to conceal the tangle of cables that connected the computer’s graphic card,
its sound card, the videocassette recorder, the minidisc recorder and the mi-
crophone.

Thus, the videocassette recorder could capture anything displayed on the
computer screen and record all sounds in the room during the experiment. In
the room, there were also materials at hand, such as a writing-pad, pencils,
and technical literature on Java. The room was also equipped with an extra
chair for the interviewer.

When the students, the subjects of the experiment, had presented them-
selves at the intended office, they were informed about the experiment and
its character of a role-play where they were expected to act as a newly em-
ployed developer (programmer) at an IT-company. Furthermore, they were
informed that they were about to accomplish a software development task at
the computer and that they could spend at most two hours.

In addition, this would be followed by an interview that would take about
one hour. Each student was provided with two help vouchers that could be
used to get help from a senior colleague (acted by the experiment leader).
The purposes of this procedure was to prevent students from being totally

 35

stuck, at the same time prevent them to ask questions to soon and encourage
them to keep going on their own as far as possible.

One of the task’s major difficulties to the students was to understand what
the mission was all about, and hence, it was very important that the student
were not prepared in any way. Therefore, the student was asked to be dis-
crete and not reveal to other participants what was going to happen during
the experiment.

After the information, the role-play started as soon as the student had
taken place in front of the desk and the experiment leader had started the
recording equipment. A letter from the manager, that informed the newly
employed about the present situation, lay on the desk. Apparently, a senior
programmer had taken ill and the work he was presently doing had to be
completed as soon as possible.

In the letter there were instructions for how to get on, starting by finding a
document on the computer that described the project and the system in de-
tail. This documentation also made clear what was already implemented and
what remained to be accomplished before the software was complete.
Appendix D contains parts of this technical documentation.

The video recordings give a precise picture of what activities took place
on the computer and in which order they were executed. This information
will not be further analysed in the present study, but we hope to be able to
process it in a continued study.

4.3 Data collection – the interviews
Immediately after the role-play and the work with the task, the experiment
leader made an interview with the student. At that time, all of the circum-
stances surrounding the experiment were still fresh in the students’ memory.

During the two hours of hard labour, there were many opportunities for
the student to encounter different concepts, such as interface. It was hoped
that the student had noticed them and perhaps even reflected upon them.
Since the purpose was to investigate how the students described their experi-
ence of these concepts in connection to a situation of programming or prob-
lem-solving, it should be appropriate to accomplish the interview as soon
after the process as possible.

The interviews were semi-structured and based on a few prepared themes
and questions. In this interview technique, it is vital for the interviewer to be
sensitive to the interviewee and to come up with follow-up questions in re-
sponse to answers, and it is not possible to make a detailed plan for this
(Marton & Booth, 1997, pp. 129-132). The interviewer must be prepared to
rearrange the order of the questions and to catch the student’s spontaneous
reflections. Appendix C describes the planned themes and questions.

 36

4.3.1 Doing the interviews
When the student had accomplished the imposed programming task, the
interview was carried out at once. There was a predetermined time limit of
two hours for the mission, and therefore it was interrupted even if it was not
fully completed. In the end, it turned out that all students used their full two
hours, and that some of them would like to continue until completion. In
order to maintain the context from the job, the interview was carried out at
the very same office where they had worked, and the computer was kept on
as a resource that could be utilized during the interview when the student
wanted to show or discuss something, such as source code and other docu-
ments.

The interviews were fairly extensive and their length varied between 45
and 60 minutes. Only the interviewer and one interviewee participated in the
interview, and the conversation was recorded on a minidisc recorder. As
described above, the interviews were semi-structured, and in most cases, the
interviews took detours towards topics that were not planned at beforehand.
Sometimes the discussions took interesting turns, and sometimes it led to
dead-ends that treated irrelevant matters.

The interviews were thereby very dynamic in the sense that they did not
cover exactly the same questions; however, all interviews covered the pre-
pared set of themes. During the interviews, the students expressed that it had
been fun and stimulating to do the assignment, but it required much of hard
work.

4.3.2 Transcription
The interviews were recorded on minidisks. However, the recordings them-
selves are not suitable to use when the researcher wants to analyse what the
students said in the interviews, at least not in the phenomenographic research
tradition where it is preferred to analyse data in a textual form. For this pur-
pose, a transcriber must first listen to the recordings carefully, and then tran-
scribe them into text as faithfully to the original as ever possible. In this
study, the interviews contained many technical terms that were possibly hard
to interpret for a person who was not familiar with the technical knowledge.
Hence, I decided to transcribe the interviews myself, and in return, I became
familiar with their contents before reading them.

The transcriber aimed at representing the linguistic expressions that came
out in the interviews by imitating sounds and using spoken language as ex-
tensively as possible. Hence, there are often grammatical errors, logical er-
rors, and incomplete sentences in the transcribed quotes.

 37

4.4 Analysis of the collected data
The most clearly defined questions in this study are the ones that illuminate
the students’ experiencing of various concepts; both commonly used terms
within object-orientation, as well as concepts that were specific for the stu-
dents’ mission. The phenomenographic analysis is well suited for this type
of questions, and how this analysis was accomplished is described in section
4.4.2.

When it comes to the analysis of the students’ course of action and which
strategies they used, it was not feasible to use a phenomenographic ap-
proach. A process like the one the students have lived through during the
experiment consisted of a long series of thoughts and actions, which not in
any way could be described as a phenomenon. This analysis was therefore
achieved by a scrutiny of the collected data and the reasonable conclusions
that could be made from it.

4.4.1 Expected results
One of the purposes of this study was to establish an image of the qualita-
tively different ways of how the students experienced different concepts,
related to the commission in which they were involved. The selected con-
cepts were: (1) the commonly used concept interface in Java, (2) the concept
plugin (not covered in programming courses), and (3) the specific system
that the students tried to complete.

The primary results of the phenomenographic analyses are expected to be
outcome spaces consisting of categories of description and their interrela-
tions. These results will then be further analysed, interpreted and discussed
and we hope they will contribute to a deeper understanding of how students
experience these concepts and perhaps why they have these ways to experi-
ence. The results and the study per se could also promote for a discussion on
how teachers could use the results when they teach the concepts or other
similar concepts within the subject area.

4.4.2 Conducting the analysis
The first step of the analysis was to read all of the transcribed interviews two
times to get an apprehension of the whole context, and thus, to get a broader
perspective. During the reading, all text sections that related to the selected
concept, interface for instance, was marked.

The next step was to collect all of the marked text sections and copy them
into a separate document, and then we imported the document to the com-
puter based analysis tool Atlas.ti (Muhr, 2004). This tool did not automati-
cally analyse the data in any sense; however, it made the work with the text
easy. It enabled us to browse through the text, to add comments, and to mark

 38

those quotes that in some sense ascribed a meaning to the phenomena in
question. One or more labels to identify the interpretations of the underlying
type of meaning then coded each marked quote, and it was convenient to use
the software to consider the data from several perspectives. For instance, it
was easy to find and overview all quotes coded with a certain label. On a
higher level it was possible to study the various codes of meaning through an
alternative view, where the labels was represented as graphical symbols,
structured as nodes in a graph.

In addition, the software allowed us, to insert logical relations between
the nodes in the graph, such as “depends of,” “is an,” and “is part of.” The
various codes of meaning were analysed from a perspective of finding quali-
tative similarities and differences between them, and hence, different clusters
of meanings were condensed. Before these groups were eventually trans-
ferred into categories of description, they were further scrutinized using an-
other perspective, namely the requirement that each category should open up
a new dimension in the phenomenographic outcome space.

In the notion of “qualitatively distinct categories,” it is understood that
each category should open up a new dimension of ways to understand the
phenomena at question (Marton & Booth, 1997). That is to say, that it is not
desirable to have categories that constitute values along the same dimension;
The new category should rather describe a dimension of meaning that ex-
presses something qualitatively different from the other categories.

To illustrate this, we can imagine that we are analysing transcripts of in-
terviews about different persons’ experiences of food. We find many inter-
esting utterances, such as: “I think pizza tastes nice,” “fish are repulsive,”
“potatoes are nutritious,” and “fast food is no good for you.” In this case
”tastes nice” and ”are repulsive” could be regarded as values along the di-
mension taste/smell, whilst the values represented by ”nutritious” and ”no
good” could reside along the dimension wholesomeness. When we establish
the categories of description, we use these dimensions as a starting point
rather than from the individual values of meaning found in the text. In this
manner we present our results, namely that food is described as “something
that has taste and smell” and “something that affects our bodies and wellbe-
ing”.

The analysis process included the reciprocal relations between the catego-
ries, and the preliminary categories, synthesized after the early text analysis,
and now regarded from the relational perspective, was now arranged in a
logical structure based on two criteria.

Criteria for the logical structure:
• One criterion is based on an evaluation of the categories’ compli-

ance to the educational goals. The objective of the education that
the students are undergoing is to obtain competence within the sub-

 39

ject; and therefore, experts in the subject, can accordingly estimate
and compare the categories.

• The categories are related to each other hierarchically. Inclusive-
ness and dependence are examples of such relations. See section
3.2.1.

Seen from a phenomenographic perspective, the outcome of the analysis

is potentially successful if the same structure is obtained when both of these
criteria are applied.

 40

5 Descriptions of the concept Interface

This chapter deals with how the students described the interface concept in
Java. As accounted for in the previous chapter, we interviewed the students
after their work with an extensive piece of software, and we did a phe-
nomenographic analysis of the transcribed interviews, which lead to a cate-
gorisation of the ascribed meanings of interfaces, identified in the text.

The result – the outcome space – is a structure that shows the qualitatively
distinct ways in which the students described their experiences of interfaces.
There has been much consideration about the categories’ names, their char-
acter, and their internal relations such as hierarchic inclusiveness. This sec-
tion outlines the categories with summary descriptions in textual and tabular
form (see Table 1). The following sections give a more exhaustive descrip-
tion of the categories and their relations.

Table 1. The descriptions of the concept Interface – the outcome space
Category How the concept Interface is described

(its meaning, and purpose)

1
To-do list

The Interface is a text, in form of a to-do list, that tells the programmer
what to do; what operations he or she should write. It is an uncompleted
program, skeleton code, or a template, to start from when a new class
should be written.

2
Content decla-
ration, specifi-
cation of
operations

The Interface is certainly defined by a text; however, the text constitutes an
abstract “thing” that can be bound to a class by referring to the interface’s
name. The class is thereby obliged to have implementations for all the
operations specified by the interface. In this way, the interface becomes a
forcing contract. The programmer must implement the interface, and the
interface has a name.

3
Data type and
reference

The interface is a data type for reference variables and thereby indirectly for
objects. The interface, defined by text, has a name for the data type it repre-
sents. The data type can be used to create variables that can handle those
objects that fit the content declaration. This is an expression of a meaning-
ful relation between interface, class and object.

4
Open connec-
tion

The interface is an open connection to new and unknown objects. The
purpose of interface type handles is that they represent an open connection
towards arbitrary objects that implement the same interface. Hence, the
same handle can connect to several objects, defined by different classes.
According to the descriptions, it is possible to replace object and use differ-
ent object types without having to change the rest of the software. Using
interfaces allow objects to communicate with each other even though they
are “strangers”.

 41

The analysis of the data has divided the conceptions of the Java interface,
as expressed in the interviews, into four qualitatively separated categories.
The least advanced category, “interface as a to-do list,” describes a way of
experiencing where the interface is a text that programmers can copy and
start out from, when they are going to write code of their own. Partly, the
interface is described as supports for the memory, and partly, as a framework
to further continue to build code on.

Compared to the first category, the second category, “interface as a con-
tent declaration,” expresses a more advanced and abstract understanding of
the interface concept. The interface is described as a contract, between ac-
tors, that defines what the code must comply with, regarding its form and
partially its contents. In this view it is understood that a class and its objects
can have a relation to an interface in the sense that the class, that through
declaration syntax commits itself to implement an interface, guarantees that
the specified operations always are accessible in its objects. A metaphor for
this could be an article (the class) in the supermarket; the third pie soup can
on fourth shelf for instance (the object), having a label with a printed decla-
ration of ingredients (the interface).

 The third category, “interface as a data type,” is characterized by the
experience of the interface as a named data type that can be used to declare
reference variables; and, the reference variables are used as handles to ob-
jects. The interface is described as a specific data type that, as for classes and
primitive types such as integers and floats, is intended for a particular type of
data. The declared variables of the interface type can handle precisely those
objects which fulfils the content declaration, i.e., the instances of classes that
is declared as implementations of the interface.

 The fourth category that expresses the most advanced understanding, “in-
terface as an open connection”, the interface is described as something that
lets objects communicate when the program is executed, in spite of the fact
that they are unfamiliar to each other. Reference variables of interface type
are described as connectors to arbitrary objects, if only they fulfil the stipu-
lated “contract”; and this is expressed as polymorphism. In this manner, new
objects can be inserted into the program that handles them “as is”, without
any changes in the existing source code; the program does not even have to
be restarted. Hence, this facilitates for a convenient maintenance and further
development of the software. Thanks to the separation of specification and
implementation, the new objects can be introduced – even in run-time. The
category represents a comprehensive view that includes all the the other
categories’ perspectives. In addition, the fourth category considers what is
going on in the interface connections between the objects in run-time, and
the positive consequences they have for the functionality and system main-
tenance.

The following sections elaborate and motivate the categories of descrip-
tion further, and they show how the categories relate to each other. I the dis-

 42

cussion (Chapter 10) we return the categories and discuss other aspects as
for example what was in focus when the various meanings appeared.

5.1 Interface is described as a to-do list
The first category ascribes the interface a meaning as a textual tool for pro-
grammers themselves to use as a to-do list and as a foundation to write code
upon. The interface is a text file that helps the programmers to achieve their
goals faster in a programming situation because it is a skeleton, scaffolding,
or a framework that is the beginning of the program. It is something to start
out from and continue when they write the code for their Java class.

In practise, you copy the textual contents of the interface, the text file,
into another text file that is supposed to contain the complete source code,
i.e., the class you are going to create. By doing it in this way, the program-
mer avoids to type in a number of necessary code lines, which makes it eas-
ier, and will in addition get them into his or her program without any mis-
spellings. This pragmatic way of seeing interfaces – that they in practise are
skeleton codes to copy and paste from – appears in some of the interviews.
The following excerpt from the interview with Cia exemplifies that view:

Cia: […] “So, then I copied the interface, and I removed what was only the
interface, so I only had left what one must have in the class. And then I built
from that.”

Alf was asked to describe how he worked with programming assignments
in the courses he had studied. In his answer, he described text editors, how
he compiles his classes, how files are put in various directories, and then he
starts talking about interfaces:

Alf: […] “Now there are those half-finished programs there, which you con-
tinue to implement. Eh, what’s the name? Interfaces and you know, to write
methods and such. It is kind of, only to implement them and trial and error.
Compile loads of times before one sees that it works.”

One of the meanings that Alf described was that the interfaces are half-
completed programs that one should use to write complete code. There was a
vaguely outlined understanding that the meaning of interfaces was to know
what one should write, and he accentuated this understanding later in the
interview:

Int: “What is the purpose of having interfaces?”
Alf: “Well, but it is terrific to have interfaces, isn’t it? I think so; it is only
because when you start, you know, you think a little about what should I
have? I shall have a client. What should it be able to do? And you write what

 43

it should be able to do, and then it becomes very good. It is only to imple-
ment all of that and not forget anything, and then you can add more if you
want and you avoid writing a lot… avoid writing a lot? Or once you have
thought something through, you don’t have to think a lot about what you
should have.”
Int: “So, interface is kind of a list of what to…”
Alf: “Yes, kind of, something to… prepare for something else.”

Here, Alf expresses the conception that interface is something that you
can use in a planning stage, in order to remember what has been worked out
later. The meaning “to-do list” gets a deeper meaning, as something that
carries ideas, about how someone has thought out how things should be done
in the future, to somebody who is going to do it. Later in the interview, inter-
faces were discussed again:

Int: “In ‘algorithms and data structures’, how far have you reached in that
course?”
Alf: “Eh, until, let’s see, eh, what have we…? We have done this about
linked lists, and now we are doing a linked list again, but not the one that we
should do on our own… Gosh what is it? We are implementing a queue for,
well, anything… for queues, for heaps.”
Int: “Do you use interfaces then, somewhere?”
Alf: “Yes, everywhere, all the time! I really think it is terrific, I do, but it’s
just that there are so many of them.”

Obviously, Alf thinks that the teachers in the course Algorithms and Data
structures have used interfaces to communicate, to the students, which op-
erations the various objects (abstract data types) must have. In this case, the
teachers have provided the students with interfaces (to-do lists) which have
made an impression on the student’s understanding of interfaces.

The fact that the teachers’ purpose probably was something quite different
is not apparent in this interview. On the contrary, Alf expresses an under-
standing that the program does not actually use the interfaces. When Alf was
asked to describe the software, he suddenly recalled that there were inter-
faces there:

Alf: “… but… I thought there was something else, those interfaces, the ones
that you don’t have at all.”

The interpretation of this way to see interfaces is that they are understood
as something that you do not use in the software; they are only used when
you do the programming, merely as a tool that helps you to know what to
write. Bea explains interfaces in a similar way:

Int: “I asked you during…, when you were working, what an interface is.
Can you repeat that, can you elaborate on that?”

 44

Bea: “Well, you know, a trunk or something, or what should I say, that con-
tains the method names and what they should return and the values they sho-
uld receive. So that you later should not miss some method, or something to
make sure that all are there. Well, you make an interface then, before you
start with the actual implementation in order to, eh, well, get a structure of it
all, to make it easier to, if you are many that work, or something to make it
possible for all to work towards the same, well, eh, I don’t know really…”

Bea says that the interface contains an enumeration of method names (op-
erations), what input these operations should receive and what output they
must return. The enumeration is there in order to make you not forget any of
the operations, and to enable you to communicate this to others; thus, more
people could work with “the same”. In Bea’s description, we can se a nu-
anced understanding and a slight shift towards the way to experience inter-
faces as described by the second category of description.

5.2 Interface is described as a declaration of contents
The second description category of interface is constituted by expressions
that take a different perspective, opening a new dimension, and at the same
time, it includes the meaning of the first category. The second category de-
scribes interfaces as something more than merely the concrete text, or to-do
list, that tells you what operations you must remember to write. In addition,
the interface is understood as a content declaration that can be applied to
classes12, that is to say, a formal specification for how something should be
constituted; something that offers and guarantees a certain protocol of func-
tionality.

The interface is not only described as a text, it is also thought of and de-
scribed as an abstraction; it has a name, and it symbolizes something. Hence,
it is ascribed a meaning that reaches further than the textual properties. The
experiences that form this category can be summarized by saying that the
interface is a forcing contract that the programmer agrees to comply with by
implementing the interface in a class.

When it is time to transform the written source code into executable code
for the machine, the complier will verify whether the class conforms to the
contract, or not, and if the compiler does not approve, it will not generate
any code. Hence, the interface is not only a textual to-do list, it is a specifica-
tion of how new code should be constituted; which operations that must be
defined by the new code. And as Fia describes below, the programmer cho-
oses to accept the interface, the contract, when he or she types a special

12 This takes place in the class definition where the content declaration (interface), I, is tied to
the class, X, through opening the class definition with the text statement:
class X implements I

 45

keyword in the class definition, which consolidates the relation between the
interface and the class in its declaration.

Int: “The interface is used…, you said that one should implement an inter-
face. Does that suggest that one should write a class when one implements?”
Fia: “Yees…, I think it does.”
Int: “And then, can you see it somewhere that you have…, that I choose to
implement an interface?”
Fia: “Yes, ‘implements’, very logical!”

The programmer binds a class to an interface by explicitly typing in the
name of the class, the keyword “implements,” and the name of the interface
in the first text line of the class definition, and thereby the programmer is
committed to fulfil the agreement; that certain named operations are avail-
able in the produced code. The declaration is forcing since the compiler will
not accept the class unless it implements all of the specified operations. The
interface hereby represents an abstraction in the form of a contract that is
defined by the interface, is fulfilled by a class, and is finally to be verified by
a third party, the compiler. Eva has something to say about this:

Int: “So, in this case for instance, was there something that forced you to
write certain methods?”
Eva: “Mmm…, yes, the interfaces.”
Int: “Can you tell me about that?”
Eva: “Well, I did not look so much at the interface itself, I looked in the
other plugins instead. And I used, as in…, changed these implementations of
the interface.”

Or as Cia puts it:

Cia: “An interface is kind of something that tells you what you should use or
have to use to make it work.”

In the following quote, Cia expresses her experience of an interface as a
“content declaration” that in a summary form tells a programmer what can
be done with a class that implements that particular interface:

Int: “Do you think that your own understanding of what an interface is in any
way made it easier for you to get on the track to solve the problem?”
Cia: “Yes, because then I could find out how I could use it to communicate
with the client, or work with the client. Otherwise, one would have to go
through the client code, and see, ‘well I need that one, and that one’. That
would take more time, but it would work, you know.”

This category of description includes the first category since the content
declaration certainly is described in a text file, and the content declaration
could be regarded as a to-do list as well. In the first category, the name of the

 46

interface is not relevant; however, the text file’s name has some importance.
In the second category, the interface’s name is significant because the pro-
grammer chooses to implement a specific named interface. The notion of
implementation is in this context, a relation between the interface and the
class, which precisely means to fulfil the contract. Whenever the contract is
complied with, we can always expect that the specified operations are acces-
sible in the objects of the implementing classes. The following excerpt
shows that Leo understands the interface as expressing something that the
other parts of the program are expecting. To make it work, he must imple-
ment the interface according to the contract.

Int: “And the Java Interface, do you get the hang of that? Could you for in-
stance explain this ‘PluginPanel’, what’s the big idea of that interface, in your
opinion?”
Leo: “Well, I guess it is because…, other ways it could go wrong when you
don’t have the proper functions and all that. I rather must, kind of, bring in
what the program expects to come.”
Int: “So, if you are going to write a new of these tab panes, what would you
do with this interface then?”
Leo: “Then I would implement it and write code for the functions.”

5.3 Interface is described as a data type
The third category describes interfaces in terms of references, reference vari-
ables, and data types. Unlike the first two categories, this category takes the
point of view from the client side, that is, the part of a code that uses another
code or components ready to use. Here is a short introduction to the back-
ground. If you plan to use an object in your program, you must choose which
individual object you want to handle and its type.

This works since every object has a unique reference (address or handle),
and these references can be stored in reference variables. These variables can
refer to various individual objects, one at a time; however, in Java, the con-
dition is that the types of the object and the variable are compatible. A class
represents a type and in order to handle its instances (objects), you have to
use a reference variable of the same or a compatible type. This implies that
the code, that wants to communicate with an object of type X (class X), must
use a compatible handle. The obvious type for the handle would be the ac-
tual class X, but a compatible type is sufficient. What is a compatible type
then?

In this category, the students describe how a class that implements an in-
terface is compatible with the interface. The transcriptions revealed an
awareness of the fact that an interface is a data type, and that it, just like the
class type, can be used to declare reference variables. In the source code of

 47

the system, there is an interface called Registration, and Fia recalls it when
she expresses her understanding of interfaces used to create variables:

Fia: “Well, yes, you can use that ‘Registration’ as a reference!”

In the interviews, there are descriptions of how these reference variables –
declared by an interface – can be used to handle (refer to or point at) those
objects which classes implement the same interface that declared the vari-
able’s type. Bea describes the interface as a reference variable’s type, and
accordingly, how that variable can point to compatible objects:

Int: “So, how can it be that it still can display your program, or your class as
one of these tab panes?”
Bea: “Oh, well, but yes…, yes, because it knows what a ‘PluginPanel’ is, I
suppose, or what the interface is. It can have a pointer of the type ‘Plugin-
Panel’ and then it can point to all that implement it, ‘PluginPanel’, and there-
fore it can put it up…, although it does not know what a ‘StudentPlugin-
Panel’ is, it can put it up anyway.”

If you use this type of variable, the only thing you can do with the object
it refers to, is to call those operations that the interface specify – even if the
object itself offers many more operations. This implies that we can use the
unchanged client code generically, to handle various objects that stem from
different classes that represent disparate implementations of the same inter-
face. Bea expresses this in a less complicated way by saying that the variable
just does not care about how the object implements the interface:

Int: “What can it do with that then?”
Bea: “Well, it can do all of the methods that are defined in ’PluginPanel’.”
Int: “So, you did not include that in your description of interfaces, because it
is another aspect of interfaces, that there can be different implementations
behind the same interface, or?”
Bea: “Yes, but that is…, because it…, well, it does not care about how they
are implemented, only the…”

In this category, there is a connection between the meaning of what the
word “interface” represents and what the concept represents in Java. The
interface seems to be a border or an intersection between the client code that
uses objects, and the objects that comply with the interface. The objects can
behave as they please, defined by the code in their class, as long as they pro-
vide implementations for the specified operations.

This category includes the second category because the descriptions in-
clude names for the interfaces, and in order to use it as a type and as a com-
patible type, someone must have implemented the class and have used a
compiler to verify the content declaration contract. Another difference com-
pared with the first two categories is that the interface’s name constitutes

 48

more than a just an identifier. In this category, it has become a type. Ken
expresses that he in fact regards the interface as a data type and that an im-
plementing class is compatible with that type:

Ken: “And, once I had realized it, that I had to create a completely new class,
of this specific type, plugin, well ‘PluginPanel’…”

Later, Ken describes how he looked for an existing implementation, avail-
able to start out from when solving the problem. He mentions a plugin that
an interface described (formally), but here he also connects the type to an
implementation, that is, a class:

Ken: “… and then I started to look around in the other panels and I noticed
that this panel, ‘CourseInstances’, that, that it probably was pretty well suited
for this kind of plugin. But of course, that you had to modify it, and that was
what I was trying to do now.”

When Eva describes how the system uses the so-called plugin modules,
she points out how the client side only depends on the interface:

Int: “So, in other words, you mean that one who uses these… the client pro-
gram, what does it have to know about plugin?”
Eva: “It must have the interface.”
Int: “Only?”
Eva: “Yes.”

5.4 Interface is described as an open connection
The fourth category reflects descriptions of the interface concept that have a
more profound meaning than in the previous categories. In addition to the
descriptions of interfaces as types for variables, the descriptions emphasize
that these reference variables can refer to arbitrary, concrete objects, if their
classes implement the interface.

The criterion is that the implementing methods have exactly the same sig-
natures as the interface prescribes, while the program code inside the meth-
ods, their “inner life”, is not part of the agreement. This implies a degree of
freedom for the programmer to decide how to define the functions, and the
programmer can even provide several alternating versions of implementa-
tions.

Thus, an interface can have any implementation; one or more program-
mers can write different versions, and they are exchangeable. The under-
standing described in the third category is a prerequisite for the understand-
ing in this category; a common variable type that can refer to all of the vary-

 49

ing implementations is required. Now we come back to Fia, who may unfold
the thoughts that she indicated earlier in the description of Category 3:

Int: “Speaking of interfaces, how would you like to describe what an inter-
face is and what use one can get from it?”
Fia: “Well, yes, what should I say? An interface is something that one can
implement and use for several different implementations, one can say. Well,
what should one say? It is a bit like a template one could say. Of course, you
cannot use a pure interface to run something; you always have to implement
an interface. That is to get hold of the functions that you want in the program.
They are in the interface, you know. And then you have to redefine them in
the application that you are doing.”
Int: “Why should you have an interface? Why can’t you write the application
directly, so to speak, without the interface?”
Fia: “Well, yes, but then it isn’t certain that the applications support each
other, that they become alike. When you make a program from scratch, you
have decided what it should look like and what should be included in it, and
then it is better to write an interface for that and you don’t have to make the
implementation at the same time.”
[…]
Fia: “Well, yes, you can use that ‘Registration’ as a reference!”
Int: “Yes, that’s right, so, that’s one way to use it!”
Fia: “Yes, sure, that is what you can do, and you have to point at an object.”
Int: “Yes, exactly, the one that implements it?”
Fia: “That implements the particular interface.”
Int: “If you think about the reference variable, which are the concrete objects
it can point to?”
Fia: “It can point at all those objects that implement the interface.”
Int: “Ok, so it doesn’t matter which the implementing class is, if only it im-
plements that interface?”
Fia: “Yes.”
Int: “Do you know of any fancy word?”
Fia: “Polymorphism.”
Int: “So, polymorphism, what does that mean to you?”
Fia: “It means that you can call a function without knowing what it really
does. You only know that it is there, and then what you call is executed.
That’s polymorphism to me!”
Int: “Can you get any practical advantages from that, so what interpretations
can you make from that?”
Fia: “Well, you can do… The advantage is that you can add more classes af-
terwards without any need to remake the program and compile the rest of the
program. You only have to add what you need, if you have to expand the pro-
gram for instance.”

The benefits of having this property in a software is described as that it is
possible to exchange objects with new modified ones later, and that there is
no need to re-design or re-compile the existing program. This was funda-
mental for the application that the students worked with, since it used plugin
modules and enabled an independency at the client side. One effect of this
was that the users on the client side did not have to re-install the software if

 50

the developers upgraded the system. In fact, they did not even have to restart
it. In the following quote, Eva says something that tells us about her insights
of plugins:

Int: “About this plugin thing, what does it mean to you?”
Eva: “That you extend the program…, enlarging it with more functions with-
out actually making changes in old functions.”

A similar way to experience interfaces is expressed more elaborately by
Joe, who explicitly connects the concepts “interface” and “plugin” to each
other. Moreover, he is capable of making clear how he values things, and
what his opinions are concerning interfaces:

Int: “… interface, what is that?”
Joe: “Interface, that is, ha, ha…, by having an interface here, the client
doesn’t have to know really, what, what it gets from the server. Because all
these plugins implement the same interface, then … then there are a certain
number of methods defined that always are included in the interface, that you
just simply can call. But you want to know…, should I explain what an inter-
face is…? It is, well, I really know what it is, kind of.”
Int: “Yes, but I thought that it was a good explanation of what an interface is.
So, the client doesn’t know exactly what the objects are then – is that what
you mean?”
Joe: “Yes, exactly.”
Int: “Behind the interface, but it knows that it always can call these?”
Joe: “Yes.”
Int: “What’s the big deal about that then, or what is it that could be good?”
Joe: “In this case, it is super smart, it is really a proof of that it is smart be-
cause, ehh, i is only to create a new plugin and implement the interface, and it
will work, painlessly!”
Int: “Hm, and if you for instance imagine that…, you said that this software
was intended for teachers, and 500 teachers are sitting here at the university,
and there is this server running, and you want to add a new function. What do
you have to do then, really?”
Joe: “Well, it is only at one place in the server where you need to build this
new plugin class, and you have to go to the database and specify who should
have access to it as well, I guess. And then it will happen automatically, that
all 500 clients, or all who should have access to it, will get it. You don’t have
to update each client.”

Joe seems to think of the system from a run-time perspective when he an-
swers the questions, and he can account for what happens to the object when
the computer executes the program. From this point of view, he can describe
the advantages of using interfaces when he explains how the server sends
objects to the clients, and that the client software can use the objects without
knowing anything more than the interfaces they implement. He realizes that
this implies, for him as a programmer, that he can modify the server system

 51

without any need for re-installations of the software at the user’s computers,
and that this works thanks to polymorphism through interfaces.

A characteristic insight that distinguishes Category 4 from Category 3, is
that there is no need to re-compile the client code when reference variables
of interface type refer to newly implemented objects, provided that they are
compatible. Static bindings between types require re-compilation after
changes in the code because it is already determined at compile time, which
explicit object types that the client refers and calls.

However, the descriptions in Category 4 reveal an understanding of dy-
namic binding, a crucial property of Java. When reference variables in Java
refer to objects, as in the case for interface variables, run-time mechanisms
determine which methods to bind to method calls. The interface type con-
tains no information about where an object’s methods “are”. The advantage
of this is consequently that one part of a program can create objects of which
the explicit type is unknown to another part of the program. Nevertheless,
the unaware part can still handle the objects, and can make use of the opera-
tions that the interface specifies.

Thus, without having to re-compile or restart it, a program in operation
can handle new object types. It is thereby possible to design a system that
has a weak dependency between different parts of the software. The system
that the students met utilized this fundamental idea when the server distrib-
uted new types of objects to the clients.

Moreover, the students could see yet another aspect, namely, that the sys-
tem was designed for being distributed on several physical machines. The
server part was located on a dedicated server machine, and the client part
was supposed to be distributed to several user machines. The server machine
would hand out a number of objects to the client machines that would use
them without knowing the concrete types.

The experiences of interfaces in this category are that it is a means to
achieve the behaviour described above. The descriptions explain that it is
possible to create a new class that implements a certain interface, and that
the server can distribute the corresponding objects to the clients in the sys-
tem, where they will appear to the users. In fact, this is a paraphrase of the
students’ task in the role-play, but there was no explicit description of how
this works or how they could achieve it.

In particular, there was nothing in the written text about the mechanisms
of Java interfaces. The descriptions concern courses of events and mecha-
nisms in the run-time dimension, and they reveal an overall view on the in-
terfaces’ range of application with a clear connection to the software system
that the students worked with before the interview.

There is an obvious connection between the concepts interface, class, ob-
ject, and plugin in this category. This insight is the first that comes up to
discussion in the interview with Cia, and this indicates that some of the par-

 52

ticipants have learned something from the experiment, and that they are
aware of this learning:

Int: “You have been sitting here for two hours and three minutes, and have
been working so hard that the sweat was dripping. And we are having a small
interview afterwards to find out how you experienced this.”
Cia: “To see if one has learnt something.”
 Int: “Yes, we can start with that. Have you learnt something, from this?”
Cia: “Yes, well, it is this about plugins, I guess, how you can use these in a
good way.”
Int: “Can you describe what it is?”
Cia: “It is this kind of small programs, you know, that you insert. So that you
don’t have to recompile the main program. Rather, it is just this little pro-
gram. That’s a good thing to know. I hadn’t tried that before.”
Int: “Did you see any description of that in the documentation?”
Cia: “Well, there was one of these plugin classes…, interface that was not
implemented.”
Int: “Can you see any use of not have to recompile the client program?”
Cia: “Yes, if you are adding certain stuff, sort of, if you have made a save
function that you didn’t have before. Then it is just to send the plugin in-
stead.”

In the following excerpt, Eva connects the interface concept to something
forcing, and she comes into plugins when she describes interface, and then
she continues with a description of how a new plugin can be made from an
existing one. Finally, she returns to the purpose of using interfaces and
plugins in the system; that the plugins can be inserted transparently as addi-
tional programs, or as a replacement for other plugins:

Int: “So, in this case, for instance, there was something that forced you to
write certain methods?”
Eva: “Mmm, the interfaces, yes.”
Int: “Can you tell me about that?”
Eva: “Well, I didn’t look so close at the interface it self, I looked at the other
plugins instead. And used as in…, changed these implementations of the in-
terface.”
Int: “Can you explain how you view this, about what an interface is, and for
what it can be used?”
Eva: “An interface is, you know, that you specify which methods a, well a
class should have, an object, or what should I say? Well, yes, it can be used
very favourable when you write plugins, you know.”
Int: “Because…?”
Eva: “Because then the plugins will get the functionality that they are sup-
posed to have. It can do these things. So that, the program itself, that runs the
plugins can send it…, the same thing to all plugins and get the same things in
return as well.”

Thanks to their property as constituting a common data type that pro-
grammers can handle in a polymorphic way, the use of interfaces enables the

 53

interchangeability of objects – the plugins. In addition, a consequence is that
the specific implementations of the plugins are irrelevant to the structure:

Eva: “An advantage of interfaces…, well, if you should not use it, then
the…, well, you know, it…, the advantage is also to treat all of the plugins as
one plugin. You don’t have to treat them as their particular implementations.”

In summary, we conclude that the fourth category expresses a deeper un-
derstanding of the interface concept, where the understanding of interface
relates to something that lies far beyond the circumstances of writing code
for a certain class (the first and second categories).

Thanks to the requirements imposed on all classes that implement a spe-
cific interface (the second category), it is possible to handle all of their de-
scending objects with variables of interface type (the third category). Hence,
it is possible to achieve a structural property of a software system that,
within certain limits, enables and allows dynamic changes.

This facilitates conditions for a system that is capable of, and prepared
for, development and maintenance. The fourth category expresses an ability
to discern different aspects of interfaces simultaneously, and this way to
understand synthesizes all of the approaches described by the other catego-
ries. This argument makes it seem reasonable to claim that Category 4 in-
cludes all of the previous categories.

 54

6 Descriptions of the concept plugin

This chapter presents the students’ experiences of plugins as they appeared
in the interviews. As accounted for in the previous chapter concerning inter-
faces, the result of the analysis is an outcome space that consists of descrip-
tion categories.

From the point of view of an educational context, the notion “plugin” dif-
fers from the concept “interface” in the sense that the former represents in-
formal knowledge, while the latter is part of the formal studies. It is not to
expect that the Computer Science students should have a profound under-
standing for the “plugin” concept, because it is not (a salient) part of the
terminology used in course literature, nor is it part of the undergraduate pro-
gramming courses as an explicit term or technique.

It is possible that the design courses, on the more advanced level, use the
concept informally, but then only in classroom discussions, and not in lec-
ture notes. Hence, it is possible that the concept has no meaning at all for
some students. Certainly, a quick search on the Internet resulted in many hits
on “plugin”, but the connection to academic education was very modest.
Instead, we find the concept in various concrete contexts where it is possible
to expand existing software with additional modules or extensions that often
have the common name “plugin”. It is therefore most improbable that the
students’ conceptions of plugins, as expressed in the interviews, would
originate from teaching. Rather, the students established it during the ex-
periment or it was already part of their previous experiences, or a combina-
tion of the two.

Evidently, for most of the students who took part in the experiment, the
concept plugin was very vague or completely unknown before the they
started to work with the task, and for some of them, even after the two hours
of work, the term was still very hard to define. This was the case for Dan:

Int: “For example, there was a concept there – plugin. Did you get a feeling
for what that was?”
Dan: “No, I don’t think so. I read about it, and read again, and there was
texts and stuff. But I never really understood what the particular word plugin
meant.”
Int: “Have you encountered that word somewhere else?”
Dan: “Plugin, I don’t know. No, I cannot say so straight off, no, not that I
know of. I might have come across it, but not as I recall.”
Int: “Can you make a guess about what it could be, what it sounds to be?”

 55

Dan: “A plug, a plug in, well, I don’t know. You have a plug and then in, I
don’t know.”

However, other students describe how they already had a good understand-
ing of the concept as something they brought with them from the world out-
side the university, connected to their experiences of computers and pro-
gramming. Here Eva and Joe confirm that they had a preconception about
plugins before they participated in the experiment:

Int: “Then, did you have a full understanding of what a plugin was, you
know, what was the meaning of a plugin?”
Eva: “Yes, because I already knew that from before.”

Int: “And the concept plugin itself, is that something that you had experience
of, that ‘aha, a plugin’, did you know what it was?”
Joe: “Well, kind of, it usually…, yes, I did.”
Int: “I don’t know, maybe I have misused the word plugin in this case? This
is what I have called it.”
Joe: “Well, yes, but I felt it was logical that it was called plugin. I thought
so.”

As we could see already in Chapter 5, the plugin concept appears in dif-
ferent contexts in the interview excerpts. The analysis of interview data re-
sulted in two qualitatively distinct description categories, accounted for in
Table 2. Because of its absence in the education, it happened that students
could not describe the concept plugin – as in Dan’s statement above – in
other terms than the literal meaning of the word. Descriptions that we classi-
fied as guesses, or as having tautological features, did not form a category of
their own, because they did not actually describe the phenomenon. Neverthe-
less, it was a very interesting result; that there are individuals who did not
succeed to obtain any “proper” understanding of the concept, despite their
hard work during the experiment.

Table 2. The descriptions of the plugin concept – the outcome space
Category How the concept plugin was described
1
Small program

A plugin is described as a small program that contains what should be
done; it is the code for a “tab sheet” – a part of a graphical user interface
that is responsible some operations. The concept is described as a tangi-
ble implementation.

2
Part of extensible
structure – a
concept

A plugin is described as a small program – a module – that can be in-
serted or removed to a program. It is part of a conceptual model that
enables the system behave in an adaptive and dynamic manner. The
remaining parts of the system do not have to be re-compiled, or restarted.
The notion of plugin is described on a conceptual, abstract, level.

 56

6.1 Plugin is described as a small program
The characteristic features of this category are that it describes the concept
plugin as a specific type of classes that are part of the graphical user inter-
face. They all work as a “tab sheet” that displays an input form, in which the
user can type in the intended information, and in addition, the “tab sheet”
can display output data. This was exactly what was going to be developed by
the students – an additional “tab sheet” that could handle students’ registra-
tions on courses. In Alf’s description, it is evident that the plugin classes
were something different compared to the other classes, and that their task
was to handle user input data and pass it on to the system:

Int: “All right then, if we look at the actual program, well, you have noticed
that not all code is, kind of, in the same class. There is not only one class, but
there are plenty of them, you know. Do you have an idea of which classes
that deals with what? How the structure of the classes looks like, kind of?”
Alf: “Eh, what classes, OK, these plugin classes, they receive everything and
later calls others to register, but… thought there was something else, those in-
terfaces, those that you don’t have at all. And then it was this thing, that there
was no kind of, that there was no sort of ‘putting up class’, so that you know,
kind of, that here’s a central class that puts it all together. But that would not
be smooth13, would it?”

Alf also describes his experience of how there was no central class that
“puts it all together” – that, if so, it would be easier to understand, but on the
other hand, it would not be a smooth and easy solution. It seems like Alf
conceives the system as constituted by parts that call each other, however,
when he uses the term plugin during the interview, he do not associate it
with their origin and how they come to appear in the graphical user interface:

Int: “From where do these plugins come, how does it work?”
Alf: “What do you mean by that?”

In Ken’s description, we can clearly see how he feels uncertain when it
comes to plugins. He probably did not bring with him any preconceptions
about the term to the experiment; rather, he made up his understanding dur-
ing the work. At first, he thought that everything in the system was already
well worked-out and complete, and that the only thing he had to do was to
pick out which of the existing classes he should use. Later, he understood
that he had to program a new plugin class of his own. Then, to get started, he
“borrowed” code from a similar class. However, in his descriptions, the con-
cept plugin itself appears rather vague.

13 This is a translation from the Swedish word “smidigt” that means something like “come in
handy”, convenient, smart, flexible, and smooth.

 57

Int: “… could you explain what the big idea is, what really is the meaning of
a plugin?”
Ken: “The big idea of a plugin?”
Int: “What do you consider special about the concept plugin? Do you get any
associations, or a sense of what it could be?”
Ken: “In this case, everything seemed to be complete. The only thing that
was not finished was that they did not have this graphical interface to do this
particular registration. Therefore, a plugin, I guess, is a kind of, this is a long
shot again, you know, that you try to get at functions that are not available. I
mean, they are available, but not available to use.”

Hal describes that it took him a while to understand how it all worked. He
had to wait until he executed the program and he could actually see the “tab
sheets” in the graphical user interface. Only then did he apprehend the mean-
ing of the term plugin:

Int: “This concept ‘plugin’, did you understand what was meant by that, at
once?”
Hal: “Well, yes, I guess it took some…, I mean, perhaps I did not understand
it right away as I was reading it, rather it was when I started the implementa-
tion, when I saw the various tab sheets in from of me, the panels. Then I un-
derstood the purpose, and why it was in that way.”

In our interpretation of this quote, the tactile input given by the trial run of
the software allowed him to make the connection between the “tab sheets”
and the plugin concept. The formal descriptions of the concepts in the docu-
mentation were too abstract to make this clear.

6.2 Plugin is described as part of a conceptual model
In addition to the previously discussed way to experience, the descriptions of
plugins comprise the importance they have on the system’s internal structure
and functionality. Eva describes how it is possible to augment the system in
a way that does not affect the parts that already exists. Of course, this affects
the appearance of the system’s “whole”, but none of the “old parts”. In prin-
ciple, the plugins build up the entire system, and if they should all be re-
moved, there would be nothing left:

Int: “About this plugin thing, what does it mean to you?”
Eva: “That you extend the program…, enlarging it with more functions with-
out actually making changes in old functions.”
Int: “What…, do you know what…, in this program, if you should remove
all the plugins, what could this program do then?”
Eva: “Well, it’s built upon plugins, so if you should start it without those plu-
gins, there would be nothing. Because all the things there were plugins, you
know.”

 58

Int: “Hmm, I think the only things you could do is more or less logging in
and logging out. Eh, if you imagine…, in relation to this system with plugins,
eh, do you see an advantage of having it built up in this way, or, what advan-
tages do you see then?”
Eva: “I see one advantage, that…, as in this situation, that someone else
could get familiar with how to write a plugin, and really wouldn’t have to
bother about the rest of the code.”

Eva describes how a programmer, who is about to make a new plugin, do not
have to bother about the rest of the system – it is sufficient to know how to
write the plugin. Hence, the advantage of having a system that utilizes
plugins is the independency between the system’s parts.

The descriptions that form the present category concerns how the system,
in a formal sense, is independent of how the specific plugin behave, which
implies that the system’s code is independent and thereby does not require
any re-programming or re-compilation. Eva describes yet another advantage,
namely that there is no need to shut down the server when new plugins are
installed, which makes the system free from operational disturbances during
an upgrade – a profound insight.

Int: [Describes a system in operation with many users] “With this system, do
you see any advantages there, have you thought about that?”
Eva: “Yes, exactly, that you can activate new plugins without restarting the
program, the main program. Otherwise, it could get a bit awkward if there
were many users working with it, and then you are putting in a new plugin.”

Cia tells us how the plugins are loaded to the clients from the server (see
page 68). In the following, she describes that the client is unaware of which
specific plugins it receives; it only knows that they are objects of plugin
type. If a programmer wants to add something new to the system, she or he
only has to write and compile a new plugin, and install it in the system.

Int: “Yes, we can start with that. Have you learnt something, from this?”
Cia: “Yes, well, it is this about plugins, I guess, how you can use these in a
good way.”
Int: “Can you describe what it is?”
Cia: “It is this kind of small programs, you know, that you insert. So that you
don’t have to recompile the main program. Rather, it is just this little pro-
gram. That’s a good thing to know about. I hadn’t tried that before.”
…
Int: “Can you see any use of not having to recompile the client program?”
Cia: “Yes, if you are adding certain stuff, sort of, if you have made a save
function that you didn’t have before. Then it is just to send the plugin in-
stead.”
…

 59

Int: “So how can it come that…, if one of those ‘UserAdminPlugin’ comes
from the server to the client, how does the client itself regard the plugin that
is coming?”
Cia: “Well, it regards it as a quite normal program…, or one of these poly-
morph…”
Int: “Ok, so polymorphism…?”
Cia: “Well, you don’t know if it is, kind of…, which plugin it is, rather ‘he’
only knows that it is a plugin that ‘he’ can use.”

Git follows the same line of argument as Cia and Eva, when she describes
how the development of new plugins can be separated from the system soft-
ware, and that the new plugins can be introduced without system stops. She
compares it with the alternative – which would force the customer to wait for
two weeks during the system upgrade:

Int: “Is there anything special that you think you have learnt?”
Git: “Eh, well, I think this plugin part was interesting, just because I like it
when it’s… Well partly to separate the developing of it, then if you want to
release this to some client that you have created it for, and then you only
want to extend it with further functionality… That it should be easy and that
you don’t have to, kind of, that you don’t get entangled, kind of. Well, that
you don’t have to take back the entire package, and then they would have to
wait for two weeks while I’m making something new. That I can simply put
in something extra, and then it works right away, kind of, without having
them to shut down the application, kind of…”

Now, we let Leo give the concluding evidence of this category of descrip-
tion. He describes his way to see plugins, what he had learnt, and he tells the
interviewer that he never had thought of the possibility of doing it in this
way before. By saying that, he refers to the dynamic way to handle new ob-
jects (plugins) in the software. He describes how a system administrator can
install a new plugin, by adding a file and type in its path to the administra-
tor’s “tab sheet”. Apparently, when he says that the plugin design was
“smart”, he believes the described advantages are important and meaningful.

Int: “Perhaps you could describe what you have accomplished?”
Leo: “Well, it didn’t become more than, an…, I haven’t managed to get any-
thing out from the database yet. But I have figured out how it works with
plugins and all that. So, there is not so very much left to do really. If only you
figure out how it works with the database and those things.”
Int: “This thing about plugins, could you explain?”
Leo: “Well, it was that you…, well you could simply, you only had to com-
pile a file, and then the administrator, I have it here…, then he could type in
the path to the file, and then it appeared in the program, a new tab sheet.”
…
Int: “Do you think you have learnt something today?”

 60

Leo: “I think it was very smart to use plugins in this way. I have never
thought of that you can do it. You can add a file, and then it turns up in the
program without recompiling it.”
Int: “What advantages could one get from that?”
Leo: “Well if you define and have this on results instead, you know. I don’t
know exactly how it works, this with the server/client, but perhaps that was
intended. Then you can simply update the server and then the clients get up-
dated right away. And the clients don’t have to…, you don’t have to distrib-
ute the program again and they don’t have to reinstall what they should have,
because the upgrade takes place automatically.”

The data analysis revealed several points in common between the descrip-
tion categories of the two concepts interface and plugin, and the students’
work with the system was the context that connects them. The relation be-
tween the most advanced categories, respectively, are obvious, and they are
in a way two faces of the same coin.

 61

7 Descriptions of the system

This chapter deals with how the students describe their experiences of the
system they were working with. For most of the students, the programming
task was a big challenge. The documentation of the administrative software
system “StudAdmin” was brief, and the description of the task was even
shorter, and the explicit description for how to do it was almost insufficient.
When the student had managed to install the project on the computer, it was
only to discover that the numerous source code files were scattered into sev-
eral directories in a tree structure.

Considering a person that wants to get things in order, and understand
what, where and how to get things done, it is reasonable to suppose that it is
significant to realise the meaning of it all, the why. In order to get an opinion
and see the meaning, it is probably important to create a picture, or model,
for how the system is constructed. We wanted to find out in which ways the
students considered and explained the system. We were interested in what
they had managed to get out of the documentation, the source code and its
comments, and the trial runs.

Naturally, there were many circumstances that influenced the students’ in-
terpretations of the system, for example their previous experiences and
knowledge about programming, design and information systems. While
some of the students had experiences from the IT business, and some had
been active as hobbyists, others had obtained their experiences from the uni-
versity courses only. How did the students experience this IT system, after
two hours of labour with reading its documentation, dealing with its soft-
ware, and running it?

The starting-point for the analysis was the built-in complexity in the sys-
tem’s design and technical construction, and it was mainly in this dimension
of complexity we interpreted and compared different expressions of mean-
ing.

The analysis of the interviews and the identified ways to describe the sys-
tem resulted in three qualitatively different categories of description. Each
category represents a particular quality in various expressions of meaning in
the students’ descriptions and that way it groups a set of statements from the
interviews.

The categories are logically associated to each other in a hierarchy, based
on inclusivity, where each category on the “higher level,” includes or pre-
sumes the underlying ones. At the same time, they are distinct in the sense

 62

that each category opens a new dimension; a new way of seeing that is not
present in the underlying categories. Table 3. shows the results of the analy-
sis.

Table 3. The outcome space of the students descriptions of the software system that
was the subject of their work during the experiment.
Category How the system was described
1
What the
system can
do

The system is what it can do and what its purpose is; a unity that provides a
number of services that someone outside can use, e.g., register students to
courses. The descriptions have an operational association to the system.

2
How its
collaborat-
ing parts do
it

The system is a unity that provides services, and it is constituted by logically or
physically separated parts, that collaborate and delegate tasks between them. In
the descriptions, there are often associations between the system’s parts and the
corresponding source code. The descriptions have a structural association to
the system.

3
How it can
do new
things

The system is a multi-user system with different levels of authorization. The
design is “interesting” and “smart” because of the lightweight clients and the
dynamic plugin loading. The descriptions associate technical solutions and
strategies (framework) that go beyond the “user’s view” or the functionality of
the software itself. The way to structure its parts is important.

The following sections allow the reader to take part of the students’ own

voices. We elaborate on each description category by giving examples of the
students’ descriptions of the system, and our interpretations.

7.1 The system is described in terms of what it can do
During the interviews, the interviewer asked the students to describe the
system they had worked with. One way to interpret the question and a corre-
sponding way to describe the system was to focus on what the system could
“do” or what one could “do” with the system.

This category of description synthesizes the various expressions of mean-
ing which associates towards how the system appears to a user, and this es-
pecially involves what the user can do with it. The term “system” is not as-
sociated with inner structure and properties; rather “the outer” – what you
see or what you do with the system, what discerns it from the surrounding
world. This operational way of describing the system is a means to abstract
the inner complexity of the system, into a “black box”. To encircle and de-
limit the system from its surroundings by describing the general, the com-
mon and the obvious, seems to be a natural way to start a description (see
Figure 1).

In the following quote, Bea describes the system by explaining its pur-
pose and use:

Int: “How would you like to describe this system?”

 63

Bea: “How do you mean, the actual…?”
Int: “Yes your conception of the system, what it is.”
Bea: “Eh, mm, well a system where you can register students and courses
and connect relations between the students and the courses, which courses
they take. What was I saying? And then this about instances, that there are
different, well that the courses run at different occasions and concurrent…, at
different speeds and such. Well…”

The students also speculate about where the system is supposed to be
used. Alf describes an outer context where “the program” has its place and
its tasks:

Int: “Let’s continue with this. Could you try to describe this system?”
Alf: “The system, the program then, how, what you are supposed to do, or?”
Int: “No, describe what kind of program it is, what it does and how it works.”
Alf: “A program, kind of, that you could use in a university. And add new
students and set up which courses that exist and then type in which students
are taking which courses. Hm, then it does no more.”

The fact that the term “program” is used to describe the complex structure
of components that are parts of the system, emphasize the aspect “what the
system does”. In our opinion, the term “program” has more of an operational
character, rather than a structural. In addition, it indicates a view that refers
to a unity, rather than to a integrated whole.

Teachers are supposed to use the system, Joe guesses. Using it, they could
administrate their courses and keep track of the students who follow the
courses. He also gives his opinions of the suitability of the system:

Int: “Could you try to give a description of the system in your own words,
how it works and how it is built up…, in your opinion?”
Joe: “Yes, ok, it’s…, I suppose it is teachers who are going to use the system.
You can set up your courses, eh, and create own instances of courses and reg-
ister students to these courses. But you cannot put in grades or something. So,
eh, but you can keep track of which students that are taking ones courses, and
which courses you have. It would require some more information in order to
be really good, and that. Anyway, I guess a teacher is the one who should use
it, not the entire school. It is more for a teacher sort of, it feels like that. Oth-
erwise, it would be very much.”

The interviewee Dan describes the system by referring to the kind of in-
formation that was to read in the documentation. Moreover, he describes
what the program displayed. When he mentions “a third tab sheet”, he al-
ludes to the various “tab sheets” in the graphical user interface.

Int: “Can you try to describe this system. The system that you have been
working with and studied now; what is it all about?”
Dan: “It’s a database system, with students, courses, among other things, I
guess. And I should be able to see which… I could see which students and

 64

which courses, you know. And then there was something ‘course’, a third tab
sheet that said ‘course’… I don’t remember what it said. Those three.”

Input

System
Has functionality

Black Box

Response

Service

Service

Service

Service

Service

Course

Student

Teacher

School

Figure 1. You can do things with the system, which in this sense “is what it does”.
Teachers can record the students who follow their courses, for instance.

In this situation in the interview, Dan seems to be focused on his own idea
of what the system could or should do, but he does not pay attention to how
it is done. The interviewer hints that there is a possibility to get different
functionality depending of who you are as user of the system, but instead
Dan focuses on what functions that should be useful to a student, such as the
ability to see who the teacher at a specific course is:

Int: “It said something about that there were different user categories. One
could log in as ‘root’ or as ‘admin’ or as ‘user’. And you have logged in as
‘user’ now, and you can see that these buttons are greyed, so you can only
look at…”
Dan: “Yes, exactly. But if I should go in here as a student, then it would be
interesting to see which courses…, as I was saying. And in the same time, I
would like to see which teachers that are giving the courses. That is actually
very important to me, if I want to apply for a course. Because I think, it is so
different with different teachers that I’ve had, and therefore it is important,
for my part, to see which teachers I have.”

The documentation at hand during the experiment described the system’s
purpose and possibilities, fairly well. All of the participants in the study read
the documents that described the system, and should have made a clear pic-
ture of what a user of the system could do. The descriptions that belong to
this category do therefore not necessarily reflect a deep understanding of the
system, obtained from activities concerning the system’s design and source
code. They could rather be a depiction of the general description in the tech-

 65

nical documentation. Nevertheless, it is possible to describe and conceive the
system in this way, and still have different, perhaps more advanced, ways to
understand it.

For the students, it seemed to be very important to get a basic understand-
ing of how the system acted towards the surrounding world before they
could continue. They needed something to act from – a context and an out-
line of the system. In spite of the fact that the documentation describes the
system, the majority tried to run the software in order to understand how it
behaved “for real”. Perhaps the urge for an operational understanding is a
first fundamental step towards an understanding at a different level.

7.2 The system is described as integrated parts
In the second category, the students describe the system partly from the per-
spective that it performs services to users, as in the first category; however,
what the descriptions emphasize is the system’s internal structure, and there-
fore the focus changes from the surrounding world into the interior. The
system is described as a client/server system consisting of relatively inde-
pendent parts: a client, a server, and a database, which are logically or physi-
cally separated from each other (see Figure 2). There seems to be a clear
model that shapes the parts and ascribes them with meaning. The parts are
separate, but still they can communicate and thereby share and delegate the
workload. In the following, Fia describes two aspects of the system in one
sentence:

Int: “How would you like to describe this system, what is your image of it?”
Fia: “I understand it as a client/server system that should, well, take care of
administrative tasks concerning students and courses.”

The first aspect is what the system can do, which belongs to the first cate-
gory. However, the second aspect introduces something new; the system is
descried as a client/server system, in other words, she describes the internal
organization of the system, and which parts it consists of. Later, the inter-
viewer asked Fia to tell more about how the system was constructed, and
then she came back to the client and server parts again:

Int: “Do you have any idea about how it is built up?”
Fia: “That, well anyway, it was built up by a client part and a server part that
will…, then, with the client part you should be able to call the parts on the
server, so that they will be independent of each other, and then you have the
database that is connected too. I guess the intention is that the small part is
the client part, and that the big one is the server part.”

 66

An interesting contradiction takes place when Fia describes how the parts
use each other when the client calls upon the server, and in the same sen-
tence, she says that the parts should be independent of each other. A reason-
able interpretation of what she says is that the one part should not have to
concern what the other part will do when it calls it. In other words, that the
client can rely on the specification of the operation it calls on the server. For
example, this would enable developers to work on different parts of the sys-
tem independently, without consequences for other parts of the source code.

This has implications for how to compile the system’s source code; it
should be easy to compile the files, belonging to a certain part of the system,
separately. This is actually the case for the designer has organized the source
code for this system. The directory structure separates the client code in one
sub tree, and the server in a parallel tree.

Fia also discerns the database as a part of the system. She describes it as a
separate part that connects to the rest of the system. In addition, Fia suggests
that the parts should have different sizes, which implies that the client mostly
should delegate tasks to the server’s more extensive software instead of do-
ing them itself.

System
Collaborating parts

Client
mediator

Input

Response

Server
Provides
services

Database
Stores data

Implicit

Physical
border

Figure 2. The system is described as a structure consisting of collaborating parts.

Later, when Fia tells what she has learnt, she returns to the system’s divi-
sion in parts and points out how they “work towards each other”. We can
also see how Fia describes her preconception that the server and the client
can be separated in the room and be connected through a network. Hence,
the system is something that is not restricted to a certain place; on the con-
trary, it can be distributed over long distances:

Int: ”Have you learnt something today?”
Fia: “Yes, I think so. First of all, I have learnt how to do this kind of experi-
ments. Then I think I have come to somewhat of a deeper insight into how

 67

client/server systems work, actually. It was just more that you… previously,
you knew that the client was at one place, and the server was at another place,
but now I think I have more understanding of how they work with one an-
other. Therefore, it was good for me, this exercise. I think.”

Bea describes her learning from working with the task similar to Fia’s
way of putting it. In addition, she thinks the way to divide the system is
“smart”, and she will bring this in mind if she is going to build a large sys-
tem sometime:

Int: “Do you think you have learnt something about the system, or is there
something that you think you can make use of yourself? Is there something in
the system itself that you think you have learnt from, is there?”
Bea: “Well, this thing with the division in server and client, and such, that’s
smart, isn’t it? So, that’s perhaps one thing that you will think about some
time if you are making a large…, a large program in the future, but…,
well…, and then there are many interfaces and all is built on, upon them, and
I suppose that is something that you will learn sometime…, to start out from
them. Especially, if you are working in a group or something, it can be useful
to know how it works.”

7.3 The system is described as adaptable and dynamic
In the quote that finished the previous section, Bea seems to connect the
system’s parts to interfaces when she describes that there were many (Java)
interfaces and that everything built upon them. As we have already discussed
in Chapter 5, interfaces can facilitate a division of a large system into sepa-
rate and independent parts. Bea’s way to think of interfaces and parts ap-
proaches the description category elaborated on in this section.

This category introduces a new meaning – the system’s dynamic nature,
and the smartness and usefulness of that property, which Bea also appreci-
ates in the quote. In the descriptions belonging to this category, there are
examples of opinions that indicate self-confidence, and an intimate relation
to programming.

This way to describe the system embraces the other two categories, how-
ever it is distinguished from them because the descriptions gives evidence of
deeper insights about detailed solutions, such as how the system uses “thin
clients” and plugin modules, and how these are loaded from the server to the
clients. The software for the clients, providing the graphical user interface, is
described by Cia as something that does not contain very much itself; how-
ever, when it is started, it can request components from another program, the
server:

 68

Int: “Did you think it was confusing that the classes was placed on the server
side, so to speak?”
Cia: “No, not really, because the client itself only had the ‘login’ and the
‘logout’. But then, all of these ‘tabs’ are plugins, as I get it. Therefore, it gets
everything from the server, kind of, through the client node.”

And Git confirms that this feature is the interesting part of the system:

Int: “I was thinking…, could you describe…, you can have one minute to de-
scribe this system, how it is built, what you can recall from it?”
Git: “Eh, hm, the whole application is supposed to be a client/server business
where you have a…, working with a database, now this was, I guess a, what’s
the name, Microsoft’s own thing?”
Int: “Access?”
Git: “An Access database, with some set up tables. The one that concerned
this was the registration part, which you had to work with. But now there
was, there was you know, in order to set up students and courses and course
instances, and whatever. And then, I guess, the interesting thing was to set
up, eh, these, I don’t know the name, tab sheets, in order to put in windows in
the application, where you could load up new, eh, new tabs so to speak, or
plugins, in runtime. Eh, and what should I say? It was supposed that you
could store students and courses and stuff there, and handle the relations be-
tween them. That’s it, kind of.”

This quote gives implications to believe that those who can describe the
system in this manner really have devoted themselves to understanding the
code, and have created a good model for their understanding of what really
happens. The concept “plugin” is related to a situation where there are sev-
eral clients involved, and that the users can have different levels of authori-
zation that could affect the functionality. This means that a user’s client pro-
gram, only receives the particular plugins that the user is authorized to use,
and furthermore, that this facilitates changes and extensions to the system:

Int: “If I ask you to describe the system as such…, essentially you have al-
ready done that, but could you give a short description, and if you can see
any particular advantages or disadvantages?”
Hal: “No, you mean what the system is all about, do you?”
Int: “Partly, what the system is all about, and if you can see any particular
advantages or drawbacks, in a multi user point of view …”
Hal: “Well, it is a tool for administration of courses and students in a school.
And it is very user friendly, both for the end user and for the programmer. If
the programmer wants to add a panel, a new function, it was very easy. You
log in as ‘root’ and you decide which users that should have access to it. You
can create new users as well, with new levels of security, I guess, and which
plugin panels that should be displayed. And this makes it very extendible,
polymorph. And as yet, I have not seen any drawbacks.”

 69

Figure 3. This is an image how the system is described in the third category.

These descriptions unveil an image of comprehensions that reaches far
beyond understanding the system’s functions, the operations the users need,
or the individual programmer’s situation – a new dimension that has room
for circumstances that apply to the developers and maintainers during the
system’s entire life cycle.

Indeed, the students describe the system from a technical point of view,
but at the same time, the technical solution has an inherent meaning that
affects the surrounding circumstances. In this context, the students touch,
explicitly or implicitly, aspects of the system’s maintenance, such as how
convenient it is to manage upgrades and additional modules, or the admini-
stration of user authorities.

Figure 3 shows several user roles and we can see that they have different
configurations of plugins. Some of these actors could be a system adminis-
trator with high authority that allows for modifications in the system con-
figuration. In the following quote, Hal descries how to go about if the system
needs an upgrade:

Hal: “You only have to make the changes in the server… There was a client
application, you know, and that connected to the server. And I guess it is
from there it gets its information and that was also where you should register
the new plugin panels. Therefore, you only have to change the actual server,
and that’s almost kind of an requirement, these days. In a large school…, to
run around to each of the clients…”

According to Hal, it is sufficient to put in a new or modified plugin on the
server, which makes the work easy for the administrator. He indicates that

 70

this is a “must” these days. We interpret this as if he considers the system
modern. Joe describes this aspect of the system in a similar way:

Int: “A little bit more technical about how the system is built here, please.”
Joe: “Well, this is a client. Ant then there is a server, also, running. The client
asks the server for… plugins, when it starts … according to this interface, so
the client…”
…
Joe: “Well, it is only at one place in the server where you need to build this
new plugin class, and you have to go to the database and specify who should
have access to it as well, I guess. And then it will happen automatically, that
all 500 clients, or all who should have access to it, will get it. You don’t have
to update each client.”

Again, we saw a description of how the clients request a set of plugins from
the server, and hence, the changes imposed on the server will automatically
be transferred to the clients. To Leo, this was something new. From his own
learning perspective, he explains that this is what he learnt from his work
with the system, and that he realizes that it is smart to use plugins in this
manner:

Int: “That sounds object-oriented, doesn’t it? Dou you think that you have
learnt something today?”
Leo: “I think it was very smart with plugins in this way. I have never thought
that you can do it. You can add a file, and then it turns up in the program wi-
thout recompiling it.”
Int: “What advantages could one get from that?”
Leo: […] “Then you can simply update the server and then the clients get
updated right away. And the clients don’t have to…, you don’t have to dis-
tribute the program again and they don’t have to reinstall what they should
have, because the upgrade takes place automatically.”

 71

8 The outcome of the assignment

This chapter presents a compilation of the students’ descriptions of how they
approached the task and their course of action, as expressed in the inter-
views. After an analysis of these descriptions, and the evidences left behind
in the computer’s file system, we suggest characteristic features of the stu-
dents’ ways to handle the specific assignment in the experiment. The last
section in this chapter identifies and describes three qualitatively distinct
problem-solving types: “hands off,” “waterfall,” and “prototype”. The result
is not an outcome from a phenomenographic analysis and the types are not
description categories in that sense. However, the phenomenographic ap-
proach inspired the way to do the analysis in the sense that we searched for
the students’ way to describe how they worked, and the meaning they saw.

8.1 Traces left by the participants and their view
The students got started with their mission without any major difficulties,
with few exceptions. In one case, the student required a little guidance to get
started with finding the paths in the computer’s file system. After they got
started, most of the students worked intensively and independently for two
hours. Occasionally, during their work, a “curious colleague” came in to the
“office” and asked the “newly employed” to explain what he or she was
doing. The underlying thought behind that was to record descriptions of ap-
proaches and ways to see the mission and the system under construction. The
curious colleague and the interviewer were the same person, who could use
the collected information as an inspiring input to the following interview.

When the time was up eventually, some of the students were very close to
being finished with their assigned task, and at least, most of the students had
understood their mission and had started to work with the actual program-
ming routine. However, others had not quite understood the task in a proper
way, or could not find out how to get started with the problem in practise.

When the experiment and the interview were finished, we filed the stu-
dent’s entire project environment in a single Java Archive file (JAR) file,
and if the student left any notes or sketches, we filed them too. The filed
material has been analysed to make clear which activities that the students
carried through during their work, and how they planned their solutions. The
archived file systems contained much valuable information to study, and

 72

naturally, it was in some cases possible to give the students executables a
trial run in order to see how far they had come. Their source code files reveal
what they had accomplished, and to some extent, how they had done it. It
was possible to see whether they had complied the system and their source
code or not, and what information that was registered in the database.

In Table 4, we have compiled notes of what the students told us about
their way to tackle the problem and what information we could gather from
their produced materials.

Table 4. Notes of the students’ descriptions of how they got started, and notes on
what was found when their file systems were analyzed.
Person Summary of the student’s de-

scription of the approach.
Conclusion drawn from evidence in the
file system and trial runs whenever pos-
sible.

Alf Got stuck on jar and script files.
Read docs and ran the program but
was unsure if he was supposed to
write a class of his own. Got help
with this, and then he could get on
with the job, and he created a
“working” plugin.

Has compiled, deployed, and tested the
system. Has done the HTML docs. Has
created “MyOwnPluginPanel” by copying
“CourseInstancePluginPanel”. Has not
inserted much code, but have changed two
labels. Has compiled and inserted his
plugin, and it is visible. Not complete.

Bea Was confused at first and needed to
run the program to see how it
worked. Did the HTML docs, and
found and understood the interface
“PluginPanel”. Created an empty
class, copied the interface and parts
from similar plugins.

Has compiled, deployed, and tested the
system. Has done the HTML docs. Has
created a class “StudentCoursePlugin-
Panel” that implements the interface with
dummies and some copied code from other
plugins. Has compiled and inserted her
plugin, ant it is visible. Not complete

Cia Understood the code by tracing a
client’s calls to the server’s meth-
ods, and located where to put her
code. Started from an interface to
cut down on the coding, but did not
make any dummies. Never com-
piled or ran anything.

Has not compiled, deployed, or tested the
system. Has not done the HTML docs. Has
created a class “RegstudcoursePlugin-
Panel” and has written lots of code. Has
designed layout for the user interface. Has
not compiled her klass. Not complete.

Dan Struggeled to grasp the task and
repeatedly read the documents, but
was stuck on what a “registration”
involved. Looked in the code.
Never realized the ready to use
operations.

Has compiled, deployed, and tested the
system. Has done the HTML docs. Has not
created any code or file. Not complete.

Eva Ran the program once, and read the
documentation to get an idea of
how it worked and what to do.
Focused on GUI layout, begun to
write method stubs in her class,
checked with other plugins, and
filled in code gradually. Wrote lots
before she tested her plugin.

Has compiled, deployed, and tested the
system. Has not done the HTML docs. Has
created “RegisterAdminPluginPanel”. Has
not compiled or deployed her own class.
Compile errors occur. Has coded much and
have combo boxes for student and courses.
Not complete.

 73

Fia Wanted an overview of the system
and what was already there. Ran it,
checked the code, focused on the
task, and returned to the documen-
tation. Asked for help on where to
write the code. Got frustrated and
could not get started in time.

Has compiled, deployed, and tested the
system. Has not done the HTML docs. Has
not created any class or file. Not complete.

Git Read the documents. Unpacked and
checked the project’s tree structure.
Finally ran the program after some
fuss. Missed a graphical model for
the system. Misunderstood the
HTML docs.

Has compiled, deployed, and tested the
system. Has not done the HTML docs. Has
created a class “RegistrationPluginPanel”.
Has inserted her class in the system and it
shows, but is still only a copy of
“CourseInstances”. Not complete.

Hal Read everything and focused on
what was mentioned about database
tables to register students. Ran the
program. Started from an existing
class and begun to design the user
interface.

Has compiled, deployed, and tested the
system. Has not done the HTML docs. Has
created a class “RegisterStudentPlugin”.
The class is put in the wrong directory and
is not possible to compile. Has sketched the
layout in the comments. Not complete.

Joe Read the documents and did the
HTML docs. Found out how to run
and see the program, played around
in it, and understood plugins. Cop-
ied an existing plugin and registered
it in the database. Started with
designing the user interface and
then examined how he could use the
service object. Copied much code
from other plugins.

Has compiled, deployed, and tested the
system. Has done the HTML docs. Before
but not after his class. Has created and
compiled a class “RegisterStudentPlugin-
Panel”. Has used combo boxes for students
and course instances. The plugin is intro-
duced in the system and it is possible to
register and deregister students at course
instances. Complete.

Ken Skimmed through the documents,
explored the file structure, tried to
get something started, and runs the
program. Understood that a “tab
sheet” was missing. Needed to see
the database and its relations. Found
a class to build on and thought
about the GUI design, which com-
ponents he needed. Did not try to
compile his class.

Has compiled, deployed, and tested the
system. Has done the HTML docs. Has
created a class “RegistrationPluginPanel”
and has started to code. Compile errors
occur. Has sketched the layout in the com-
ments. Not complete.

Leo Read and sorted out what was
relevant. Relied on what “was
already there”. Compiled and ran
the program. Did the HTML docs
and looked in it. Searched files
using “find”. Copied and started
from another plugin, but removed
lots of its code.

Has compiled, deployed, and tested the
system. Has done the HTML docs. Has
created a class “CourseMembersPlugin-
Panel”. Has inserted the plugin in the sys-
tem. It loads and is visible, but it has no
functionality. Not complete.

Table 5 shows the results of the analysis of the students’ traces in the file

system in a summarized form. It shows the progression in time, starting on
the left hand side with how the students examined the software, followed by
what contributions the students made, and the right hand side shows infor-
mation about the new plugin. ‘Y’ denotes “Yes”, ‘N’ means “No” and ‘-’

 74

implies that this was not an option due to earlier decisions, actions or omis-
sions.

Table 5. Conclusions of activities and results after an analysis of the traces that was
left by the students in the file system on the computer they used
 Examining software

N – Took notes on paper
C – Compiled the software
X – Deployed and executed
D – Documentation in HTML

Contribution
F – Created source file
S – GUI-sketch in file
P – GUI-sketch on paper
C – Wrote code

The new Plugin
C – Compiles OK
R – Installed and running
W – Works as it should

Who N C X D F S P C C R W
Alf a Y Y Y Y Y1 N N N Y Y N
Bea N Y Y Y Y2 N N Y Y Y N
Cia Y N - N Y1 Y Y Y N3,5 - -
Dan Y Y Y Y N N N - - - -
Eva N Y Y N Y1 N N Y N3,6 - -
Fiaf Y Y Y N N N N - - - -
Git N Y Y N Y1 N N N Y Y N
Hal Y Y Y N Y1,4 Y Y Y N4,5 - -
Joe Y Y Y Y Y1 N Y Y Y Y Y
Ken Y Y Y Y Y1 Y Y Y N3,6 - -
Leo Y Y Y Y Y1 Y Y Y Y Y N

a Asked for help and was led to the directory that contained the source code for the plugin classes.
f Asked for help about where the registration of a student to a course instance really should take place.
1 Copied a file with a similar implementation of a PluginPanel.
2 Copied from a file containing the interface.
3 There were compile errors.
4 The source file was placed in the wrong directory.
5 Never tried to compile the own file.
6 Did try to compile the new file.

8.2 Types of problem solvers
In combination with the students’ own description of their work, the analysis
of what the students had done on the computers, gave a basis for a tentative
characterisation of qualitatively different ways to tackle the problem, and we
distinguish three problem-solving types:

Hands off
At first, both Dan and Fia read the documentation closely. Then, they gave
the program a trial run, and then again, they returned to the documentation,
but they could not figure out what to do or how to get started. They did not
take any initiatives to do something concrete. For instance, they did not ex-
periment with the code at all. The situation seemed to be a blockage for

 75

them, which partly paralyzed them. Perhaps they were too cautious and inse-
cure to dare doing it or perhaps they had insufficient knowledge and training.

Waterfall
Cia, Eva, Hal, and Ken all wrote code, however, it seems they preferred to
finish all of the coding work before they would (or could) compile and trial
run the software – one sequential step at the time, as using the Waterfall
model. Three of them sketched a design of the graphical layout as a com-
ment in the corresponding source file (see Appendix E).

Our analysis shows that their code was not entirely correct, and hence, it
generated quite a few compiler errors. It is remarkable how Cia never even
tried to compile her code, not even the existing code she was provided with
in the beginning, and therefore she could never execute the program. Hal
could not compile his code because he put it in the wrong directory. Eva and
Ken tried to compile their code, and they were in this way, in “dialogue”
with the compiler.

Regarding the nature of the task’s requirements, writing lots of program
code, more or less from scratch, was not an efficient method, and none of
these students could execute their code when the time was up. None of them
was close to succeed; however, they made a serious attempt.

Prototype
Alf, Git, Joe, and Leo got started by selecting a plugin module similar to the
one they were supposed to develop, and then they copied its source code into
a new file. Then they could easily make a prototype for their plugin by doing
some simple changes, such as changing the name of the class, and then they
could install it in the system.

Bea took a slightly different approach. Instead, she copied the specified
operations from an interface and she was thereby forced to write a minimal
implementation, using dummies, before she could test her plugin. Having
this as a starting point, they could continue with the development and con-
tinuously see the effects of changes in their code by running it (see Appendix
E). In this form of iterative development, the programmer gradually builds
up the new code using already working code as scaffolding. This approach
was successful indeed, but in the end, it turned out that Joe was the only
participant in the experiment who managed to develop a functioning and
complete plugin that complied with all of the requirements.

This approach required an understanding of the polymorphic aspect of the
plugins, and that it was the use of interfaces that made it possible. Since all
plugins in the system implemented the same interface, “PluginPanel”, the
students could copy any of the existing plugins, and then they could change
the implementation as they pleased.

 76

9 Stories about the assignment

The interviews with the students contain many interesting stories that can
bring valuable information to those who are interested in didactic matters in
Computer Science. One of the posed research questions concerns how the
students handle the unfamiliar situation exposed to them, and the specific
problems that might appear. The transcripts reveal what the students thought
they did, and how they approached the task. However, it is also interesting to
consider what they thought and felt, and why they did things in a certain
manner.

This kind of information is difficult to handle with a phenomenographic
approach, as there is no obvious way to analyse the data. Still it is valuable,
and hence, inspired by a “narrative approach”, we have tried to find an easy
to grasp way of structuring the evidence the students have provided. An ap-
propriate way to present the data that preserves the spirit and tension from
the students own words, was to structure their stories in a summarizing
“story” arranged as logical sequence of themes. The story takes its start in
how the students experienced to get started with the project, and it continues
to describe the progress of the students’ work. In the end, the story tells what
emotions the students have felt, and what they believe they have learned
from participation in this experience. Essentially, the story is data driven
through the students’ own voices, but our descriptions and interpretations set
the course.

When the students had made themselves comfortable in the “office”, the
researcher gave only a very short introduction to the general conditions of
the role-play and the experiment, and it contained no detailed description of
what the students, acting as employed programmers, were supposed to carry
out during their commission. This was the situation for the “recently em-
ployed”, who now was alone in the office. On the desk, someone had left a
note that read: “c:\jobs”. This message pointed out a directory in the com-
puter’s file system. The employee explored this directory, only to discover
yet another message in the text file “info_boss”. In this file, “the letter from
the manager,” there was a clearly formulated mission: “our expert has taken
ill,” “complete the system in his place!” The letter was written in an abrupt
manner, and between lines, you could sense some impatience and tension –
the customer wanted to get the ordered system, and it was a great hurry. The
letter described how to get started with the task, and obviously, the manager
was not an expert in the field himself, because he only passed on what the

 77

expert had told, through the letter. Among other things, it referred to the
system’s technical documentation (see Figure 4).

Subject: Concerning the STUDADMIN project

Bengt, who is responsible for the student administration project
has taken ill and will be on the sick-list for a considerable time.
It is of great importance that this project is completed on time.
Hence, I want you to take over and finish it.

The project’s mission is to develop a system that schools can utilize
for administration of courses and students in a database. Next term
soon begins and the customer needs the system in short order.

Bengt says, it is possible to create all neccesary documentation of
the code in HTML format using a script. Besides, he has started to
write a system description in the document ”tech.doc”. Everything
is stored in the file "project.jar" which evidently is some kind
of (zip alike) archive file. He says that you can unpack it in the
DOS shell by issueing the following command:
>jar -xf project.jar

According to Bengt, the system’s current status is that it can create
courses, course instances and students, but yet, it is not possible
to register students at course instances. This must be working before
we can pass it on to the system testers.

Good luck!

/ The manager

PS
It is possible that one of our new newly employed will come and sit
with you to learn as much as possible. It is eligible that you are
accomodating and helpful.
DS

Figure 4. The letter from the manager to the “newly employed programmer” came
straight to the point. This is a translation from the Swedish original.

9.1 To get started
The manager’s letter gave a short outline of the system. It described the first
required step to get started; namely, to unpack a file archive, and hence,
make all the documentation of the system and its source code available on
the computer. This seems to be a simple task for a Computer Science stu-
dent, who should be familiar with file archives. Nevertheless, the extraordi-
nary in this situation was the used archive format, namely the Java plat-

 78

form’s JAR14 format. In contrast to other usual archive formats, such as the
well-known ZIP format, the JAR format was not supported through the op-
erative system’s graphical interface or any similar built-in application. In
order to unpack the JAR archive, the students had to start the command ba-
sed DOS shell, and not all of them were well acquainted with this environ-
ment. For Alf, it was problematic to handle JAR files in this way, and this
was the first issue he brought up to discussion:

Int: “First, ‘like this’, you said.”
Alf: “Well, no, but the first thing is when you came here, and it was JAR
files, you know. I would sit down and read about JAR files first, how you do
it and where are they put up. It was written, it was, but then I would, sort of,
really have gotten in to everything that was written in these documents and
read through everything, really, and then reflect about it, and then I would sit
down and start to think about what I should do with the code, and the pro-
gram and all that.”

Not knowing how to manage the JAR files was very frustrating to Alf, and
he was stuck on this first stage. Later during his work, the problems reoc-
curred because in many of its parts, the technical documentation referred to
JAR files. For Alf, it was not sufficient to get the literal command that would
unpack the archive, as the letter described it. It seems as though he wanted to
get a deeper understanding for how the JAR archives and the corresponding
commands worked, and therefore he could not accept to follow the instruc-
tions, passively. Without this obstacle, Alf argues that he would have been
able to be more acquainted with the documentation, and as he continues, he
explains that the mere fact that things are written literally is not enough. He
would rather learn by experimenting and practicing by doing JAR files of his
own:

Int: “Hm, do you think that we should make it clearer in any way, for the fu-
ture? Should there be an appendix about JAR files, or?”
Alf: “Well, yes, I think that one should read about JAR files before this, be-
cause that is not the essential thing to know about, is it?”
Int: “No.”
Alf: “The essential thing is to find, or kind of, be able to continue, and you
should know what JAR files are, how you create them, and where they are
put, and… because you spend unnecessary time on that, kind of.”
Int: “That is to read in the text, for sure, but you could have an…”
Alf: “It says pretty much, kind of, but still. I would have tried to make my
own JAR files, to see what…, where they go, what will happen.”

14 The Java Archive, JAR, software is included in the Java development kit, and among other
things, it is used to assemble a “program” that consist of several class files and libraries into a
single “executable” file. It is possible to use it as general archive software.

 79

Cia was not stuck on the JAR files, and she seems to have gone straight
forward after having read the manager’s letter. She describes a top-down
approach to get her understanding. Obviously, she had no difficulties with
unpacking the archive, and to get started with reading the documentation and
then to examine the file structure:

Int: “Can you point out, in some way, what it was that immediately made
you realize what you were going to do?”
Cia: “Well, I guess it was when you read this first ‘info boss’ thing, that you
were supposed to make a plugin. Then, first, you kind of, had to look at the
big picture, what it was and then break it down into steps.”
Int: “And what made you realize how you should do it, eventually?”
Cia: “Well, that was after I had gone through these files and read through,
and looked how they communicate with one another, and that. In order to,
kind of, be able to build something of my own later that could communicate
with the others, without colliding, for instance.”

9.2 About reading the documentation
When the archive was unpacked, the JAR software created a directory tree in
the computers file system. The directory contained many files, including the
technical documentation, heaps of source code files, and other resources. At
the top level, there was a directory named “project”, and this folder con-
tained the technical documentation of the system, in a file named “tech.doc”.
This document described the system, “STUDADM,” on a conceptual level
(see Figure 5). It pointed out some principal features, as for example the
mechanisms that enabled a dynamic handling of new functions in the sys-
tem. It described the development environment in terms of how the source
code files were structured, how to compile the software, how to generate
various versions of the system, and how to execute the programs.

The documentation did not describe the specific task that the students
were supposed to do. On the other hand, it described the task indirectly, as it
accounted both for the implemented functionality, and for what remained to
do. Neither did the document point out the places where the students could
put their additions and changes to the system.

Eventually, when the picture of the system and the mission became clea-
rer to the students, the complexity of “the whole” appeared as well. As Alf
puts it, the system was “large” and there were “files all over the place”. He
experiences the project as closer to a “real situation” compared with the or-
dinary programming assignments; however he believes, it is probably even
worse in reality:

 80

Int: … “But, eh, what was your first impression when you got started here
and begun to read the documentation?”
Alf: “Well, I don’t know, it was big, kind of… big. It was, you know… files
everywhere and, yes, larger than I had expected, ha, ha, yes, that’s how it
was. But I realize that it’s like this in reality… that it isn’t sort of tiny and fid-
deling… that it is even worse in reality for sure.”

Documentation of the system
STUDADMIN
(under construction)

1 Current status (version 0.5.1) 2
1.1 Yet not implemented functionality in the user interface 2

1.2 Implemented functionality in the user interface (verified) 2

2 System description 2
2.1 General description 2

2.1.1 The Server 2
2.1.2 The Client 2

2.2 PluginPanel 3

3 Development 3
3.1 Creating the documentation 3

3.2 Compiling 3

3.3 Making executable archives (JAR files) 4

4 Execution 4
4.1 Local mode 4

4.2 Client/Server mode 4
4.2.1 Client 4
4.2.2 Server 4

4.3 Semi - Client/Server mode 4

5 Database 5
5.1 Test database 5

5.1.1 Inserted users in the database 5

Figure 5. The table of contents gives an overview of the documentation. This is a
translation from the Swedish original. Appendix D contains the full documentation.

All of the participants read the technical documentation of the system;
however, they read it in different ways. One way to read it was to read eve-
rything through, from cover to cover, and several times in some cases. It
seems as though Dan did not feel comfortable enough to leave the documen-
tation and turn his focus towards other activities. Evidently, he had a hard

 81

time to capture the information in the document, and he had to reread what
he already had read several times:

Int: “But you also said that you read through the entire documentation…, I
believe you said three times?”
Dan: “Yes, and then there was a fourth time, to be honest.”
Int: “Wasn’t there something special that you thought that ‘I’m picking this
thing now’?”
Dan: “No, first of all I thought about what it said at the beginning, that you
should be able to add and remove, you know. I guess, I thought that was a
problem, and I kept that in mind because I wrote down some notes on a pa-
per.”

The other way was to read the document gradually, one piece at the time,
and alternate reading with other actions, such as for example, looking around
in the source code files, trying to compile the software, or executing the sys-
tem.

Int: “Do you think that the documentation…, I mean, there was a letter from
the boss and also some ‘tech.doc’, or something. Do you think that is enough
for a person of normal intelligence to get started?”
Bea: “Yes, it should I guess, perhaps it…, well, if you are used to program-
ming and have done this several times, then it is surely enough. I guess it
does. But I am not so experienced, and having to read, kind of, that a long
text, and divided, and… there is no real explanation, or, well, I don’t know.”
Int: “How would you describe that document, what sort of document is it in
your opinion?”
Bea: “Eh, well, an explanation of how this system works, how all the parts
collaborate and after all, perhaps…, well, now I don’t know really…”

The students faced a task that in itself was rather narrow and did not re-
quire any advanced skills or knowledge for the actual programming. How-
ever, the complexity of the system and its context, forced them to get the big
picture of how it all worked before they were able to find the proper place to
write the code in. They also had to inform themselves about which system
operations they could use. As expressed by Alf, this situation was confusing:

Int: “How…, do you remember when you got on track with the solution, I
mean how. When did you get a feeling that ‘now I roughly know what to
do’?”
Alf: “I got that when I started reading, I guess. When I started reading that…
‘tech’ or whatever its name was. Here, kind of, ok, it isn’t this, and it is that,
so, and this, when you read this ‘create and remove, register courses and
course instances’, ok, but not that I should write a class of my own. I didn’t
really know if there was something that you could alter so it takes a course
instance, or if you had to write one yourself. And then I started, kind of, to
‘am I really going to write a tab sheet of my own?’, kind of, ‘are you sup-
posed to make changes in the GUI?’, ha, ha”.

 82

We deliberately designed the task in a goal-referenced manner in order to
create conditions for a variation in the ways to solve it. The task was to fin-
ish the software by adding a missing function to the system. On the com-
puter screen, this would appear to the users as an additional form, or tab
sheet15, in the program’s graphical user interface. There were already several
tab sheets that could manage information of students and courses, and in the
new sheet, the users should be able to connect registered students with regis-
tered course instances (see Figure 6).

Figure 6. The graphical user interface consists of pages, or sheets. Here it displays
“Course Instances”. A user can select a different sheet by clicking on its tab.

9.3 Descriptions of the task
It is interesting to see how the students conceived the task. Some focus on
the “thing” they should make (the plugin) and what features it should have,
while others tends to see it more from the user’s point of view. Here are
some of the students’ descriptions of what they believed were their mission:

15 Med skärmbild menas här en sida, eller ett formulär som kan innehålla textfält, knappar och
liknande kontroller.

 83

Int: “Could you describe your task, please?”

Bea: “Eh, yeah, to insert a new of these plugin panels, see, then you can reg-
ister students at certain course instances. I guess you should continue to work
on what was already there.”

Cia: “Well it was to make a plugin that registers students at course instances.
And I had planned that I…, that you choose a course instance and then you
type in the student’s identity number, and take that and compare it with the
first name and the surname, to make sure that it’s the right student and the
right course.”

Eva: “To write a plugin that should link courses and students, course in-
stances and students together.”

Fia: “The idea was to complete the program into something working. Well,
client/server-ish, that is. Then there’s something missing for registrations that
existed on the server side, but not on the client side. And that’s what I should
add to it.”

Git: […] “Well…, first I read this ‘boss note’ where he said what you should
do. And, well, there was nothing exciting in particular, I guess, apart from
that you should fix and store a student and a course together, kind of.” […]

Hal: […] “why, that was what he had written at the end, the boss, that you
should add students and course instances, and then it was described in greater
detail in the document description, create and remove registrations. That’s
what the task was all about.”

9.4 The need to give the application a trial run
It turned out that most of the students had a great need of a tangible experi-
ence of how the application behaved when they executed it on the computer.
For that reason, the majority soon focused on how they could run the pro-
gram. It is true that the technical documentation described how to achieve
this, but it was rather a complicated recipe.

First, the student had to compile the scattered source code files, and for
this purpose, there was a DOS command file16 prepared in one of the directo-
ries. Nevertheless, that was not enough; in order to run the system, the stu-
dent must first pack the compiled class files into JAR file archives, and then
distribute these packages to the directories that contained the start scripts.
The student should accomplish this through issuing a specific command file
that would make different versions of the JAR files and then copy them to

16 The script file “compile.bat” compiles all of the source code files and puts the compiled
class files in a parallel tree structure.

 84

three separate directories. One directory for the server’s package and start
script, another for the client respectively, and finally a test directory that
could run both the server and the client on the local host. All together, this
meant that the students had to find out which of the system’s parts that they
should start, and the names of the command files. Most of them realized it
was easier to use the test version on the local host, but some used the live
version with separate server and client processes. Bea describes her urge to
see the program in action, and her difficulties to get it running:

Int: “But if I put it like this then, what did you try to focus on first, and what
did you try to focus on then, and what did you try to focus on then, do you
remember some chain of…?”
Bea: “Well, yes, at first I wanted to see, get the program running and see
what it did and how it looked, so that you could get some picture of how it
worked. So, well, I compiled and tried to find… so I could run it, you know,
and then I produced the html documentation of it, and then I didn’t look in it
so close in the beginning, ha, ha.”
Int: “How…, so the focus was on how you could get the program going. You
kind of kept that in your awareness that ‘how can I get this running?’.”
Bea: “Yes, because it said so…, that it should be able to start, so then, yes, to
get some kind of general view, that’s what I wanted.”
Int: “Was it hard to get it running?”
Bea: “Eh, it said, it said how to do it, but you read all to fast and don’t think
about looking for it, that ‘deploy’…, that one I missed the first time and I
thought ‘why doesn’t anything happen, why can’t I start it?’, but then…”

Although there was a relatively high threshold to cross over to get the
program running, most students managed to do it eventually, and that em-
phasizes its importance to the students. Let us hear Hal’s opinion:

Int: “Is my understanding correct, that you felt it was important for you to
trial run the application?”
Hal: “Yes, you have to do that, because it is important to know how it works
too, and not just the code, but you want to see the results, what happens when
I do something. I think that’s important.”

There was an exception to this rule, however. Cia never even tried to start
the program. Instead, she focused on the source code files, and through
them, she tried to understand how the system worked. She found the place to
put the new source code file and started the coding by copying code from a
similar file:

Int: “This system… you haven’t tried to run it, have you?”
Cia: ”No.”
Int: “Could I ask why?”
Cia: “I read the code instead.”
Int: “So you rely on that it works, kind of?”

 85

Cia: “Yes, more or less. If I have had more time, I would have tried to run
it.”

How can it be that it seems to have been of such great importance to try
out the program before the programming begun – was it mere curiosity?
Naturally, it could be a matter of poor documentation of the system and what
remained to be done, but we could also speculate about our curiosity in the
tangible aspects of the world that surrounds us.

In the world of computers and their user interfaces, designers have made
an effort to meet the want for recognition, and they imitate the reality by
using metaphors. It is true, that the written documentation formally de-
scribed the system, but there were only a few pictures showing the design of
the user interface, and therefore the experience of doing the trial run could
probably help the students understand better. One important “tangible” fea-
ture of the program, perhaps hard to learn by reading, was the tabbed panes,
which allowed users to select different use cases.

After running the program, the students could return to the documents and
try to understand the task better. Fia describes how she wanted to get a pic-
ture of it by both reading the documents and running the program:

Int: “Once you had tried to run the program and had made an opinion of how
it worked. What came in focus then?”
Fia: “Well, when I had got it started, then it came in focus, what I really
should do. Then I hade made myself a picture of how it looked like. Then I
went back to the documentation to see what really should be done…, and,
that’s it. First, I wanted to create a picture of what it looked like, and then
you find out more about what needs to be done. I had already read the docu-
mentation before, but that was also just to form an opinion.”

Ken describes it would have been impossible for him to solve the problem
without the possibility to run the program and see its intended functionality.
However, he appreciated the comments in the source code that sketched the
graphical layout for each plugin:

Int: “Did you feel that it was important to get the application running?”
Ken: “The full application, you know, to get the application running whether
it is finished or not, you get a good overview of what the person really is try-
ing to do. And, had I not been able to start the application, one could say it
would have been the end of it, because I mean, if I’m going to look through
all of the code, in order to understand what the program is all about – it
would have been impossible. Certainly there was in some of this codes…,
there was in these panels…, they had done a…, they had sketched, I liked
that, thought that you get a picture of how this particular panel is supposed to
look like, then if it looks like this it’s something completely different.”

 86

9.5 Some created a documentation of the source code
In the technical document, there were instructions for how the students could
make an automated documentation of all the system’s source codes in
HTML format, using the utility program “JavaDoc”. It creates a tree struc-
ture of hyperlinked HTML files that describes each class and interface in
detail, and it documents them by listing their methods’ signatures together
with comments imported from the source code files.

This would provide the students with a documentation of the system’s
source codes similar to the well-known Java API reference that many teach-
ers and students use as an important help in their programming courses. The
procedure of doing this was simplified by a easy to use script, and it is re-
markable how often the students seemed to miss this information. Or did
they deliberately ignore it? Alf reveals his reluctant attitude to this:

Int: “This html documentation… you did not like the idea of doing that, in
my experience.”
Alf: “Well, yes, I’m kind of completely anti to that. I don’t know. I never use
to do any sort of…, never go into sort of. Not really… it’s kind of really neat.
We never did any of these ourselves, we didn’t – in algorithms.”

However, as Bea confirmed, some of the students thought it was valuable,
or at least, they did not neglect to do it:

Int: “And then later, how has focus changed during the process here?
Bea: Eh, well, then I got in and read the documentation, you know, the one
that I had created, and watched a bit how they looked like, and when I found
the classes there, that it was built on. Then I opened those java files to see
what the code looked like, and tried to get something sensible out of that.”
Int: “Could you make any sense?”
Bea: “Ha, ha, that’s the question, isn’t it. Well it took a while, I guess, but
yes, you saw how the interface, ‘plugin panel’, looked like and how, well,
‘students plugin’ panel for one thing, which had implemented that, how they
had built up the methods, and to get some help, anyway.”

Ken told how he associated the term “documentation” with something he
would have to write himself – not as something that he could use. Could this
be an effect of how teachers use the word in their assignment instructions –
“hand in well documented code”? In the interview, he suddenly realized the
intended meaning of it:

Ken: “Do you know what I’m laughing about now? If you had ran this in the
beginning then I think that you had got started much faster, I think so. But in
most cases when you think about documentation… it’s true that documenta-
tion is there for, if this kind of situations would arise. Someone gets ill and
you have to complete this work, someone else must take over. And therefore
the meaning with a documentation is that the next person should read though

 87

the documentation and understand all this. But I didn’t think when I started,
instead I thought that when I’m done with this I will make a documentation
in order for other people to understand what I have written. Not that I should
understand what other people have written.”

9.6 Strategies to get along with the coding
The following subsections tell stories about some typical situations and
strategies for how the students got along with the task.

9.6.1 About getting stuck
The participants knew they could get help, however, they had to pay for it
with one of their help vouchers, and as they possessed only two of them,
they had to be economical. Otherwise, no one would help them when they
really needed it. The limited means for help prevented the students’ asking
for help due to convenience reasons. Nevertheless, Alf, Dan and Fia really
got stuck, and without any hints, they could not get on with the task. One of
the major difficulties was to find the very place where they were supposed to
insert their code. Were they supposed to write code in an existing class’
source file, or should they make a new file, and in that case, where should
they put that file, they asked themselves.

Int: “You took out a help note. Before that, did you sit there feeling unhappy
for a long time?”
Fia: “Not very long.”
Int: “Lucky, I came at that time. Your question, if I remember rightly, you
knew that you should register students, but it was not obvious where you
should do it, and how you should do it?”
Fia: “Yes, exactly, that was my question.”

9.6.2 Delimitation and trust
Some of the students were confused and bothered by the huge file structure,
and the numerous source files that were scattered in many directories. It was
a question of finding the right places to work. Leo described how he limited
his focus only to the parts he absolutely needed to use, and he trusted in the
other parts’ abilities to make the whole system work.

Int: “Can you describe the system’s structure; do you have a grasp of how it
all sticks together and how it is divided?”
Leo: “Divided, you mean the files, the codes so to speak, or?”
Int: “Well, you can take the classes as a starting point for example.”

 88

Leo: “Well, actually, I did not have time to look so much at that, instead it
was…, well I can…, it was the documentation. I didn’t look at the other clas-
ses, see. I only looked in the files that were relevant for what I was supposed
to do, but in the documentation, it said that it was divided in server and client
and such. I don’t know if I looked so much at that really, I focused at the task
and what was supposed to be done. Then I didn’t care about…, I relied on
that he had done his job and that is would work. It was kind of in this way I
thought on...”
Int: “But you focussed on what must be done, what is expected from me?”
Leo: “Yes, I checked what the task was and then what was relevant, those fi-
les that were relevant, I looked in these and didn’t care about the rest.”

9.6.3 To study and copy similar files
A strategy that turned out to be effective in order to get going quickly, was
to take a look in a source file that was similar to the one the students should
develop, and then reuse parts of that code. The looks and functionality of the
various tabbed panes that could be selected in the program’s user interface
were similar to each other, and consequently, the underlying source codes
were also similar with respect to their fundamental structure. Hence, the
students could learn and utilize much from them.

Int: “What did the focus look like then, when you came there?”
Bea: “Eh, I, well right then when I realized that I should make a class entirely
of my own, then I started to look and compare with the others, you know, that
also are these kind of implemented ‘plugin panels’, and checked how they
were planned. I guess it was, well, to get some idea from them, how it should
look like.”
Eva: […] “However, it can be a help, to look at other plugins. I did that very
much.”
Eva: “Well, I didn’t look so close at the interface it self, I looked at the other
plugins instead. And used them as in…, changed these implementations of
the interface.”

However, they could go even further with this approach than just looking in
files and copying parts. With some swift changes, the students could use a
similar source file in its whole, and then it could be a prototype for the new
plugin. Ken used this approach:

Ken: “And, once I had realized it, that I had to create a completely new class,
of this specific type, plugin, well ‘PluginPanel’, then I started to think about
what it should look like, graphically. Because I think it is easier to view
things graphical before I start to get on with the work. And then I started to
look around in the other panels and I noticed that this panel, ‘CourseIn-
stances’, that, that it probably was pretty well suited for this kind of plugin.
But of course, that you had to modify it, and that was what I was trying to do
now.”

 89

Int: “So, you took the code as a starting point?”
Ken: “I started from the code in ‘CourseInstances’. Because, really, it’s best
to keep with the design that the person has tried to make, you know, tried to
accomplish, instead of that you yourself come up with a completely different
design. Then they would not fit in this particular program, at all. But I was
really on the way there.” […]

Joe did the same thing, but as he describes it, he actually used the prototype,
“as is”, when he installed it as a plugin:

Int: […] “Joe, what came in focus when you started, what happened?”
Joe: “The first thing I did? Well, I read through the document, I did. Tried to
understand something at all. Find out how you start and see the program,
overall. Then I went around in the program…, what it looked like, and then I
understood this thing, that is was plugins. From the server you got these tabs,
if you implement this ‘plugin panel’ interface. So, I copied a plugin that al-
ready existed. And it said here that you should put it in the database, so I
found that table in the database. And added the one I created in test, to see
that it showed up and to understand how it worked. Then I started to do the
real thing, kind of. I started with the user interface. Didn’t think about the
other stuff at all, actually. Only the interface until it was finished and I got it
working. Then I started to look at how you do, really, to use the service ob-
ject.”

What Joe described was a simple and wise way to produce an executable
prototype version, simply by first copying a file, then renaming some names,
and finally registering it. After this it was possible to test run the “new”
class. However, he needed a good understanding of the whole to realize
which file he should copy and where it was. This turned out to be a major
obstacle for Fia, who had trouble to find the right paths in the file structure,
and because of this, she never got time to write or copy anything at all:

Int: “If we take a look at writing code. You never got on to write any code.
Can you tell me something? Do you have any principals or some particular
way or method for writing code?”
Fia: “Copy as much as possible! That is my philosophy, and you change
whatever needs to be changed. The most of the classes and interfaces are ac-
tually pretty much the same, so, that’s how I usually do it.”
Int: “Could you refer to that as building skeletons that you later get back to
and change?”
Fia: “Well, to use skeleton code maybe, or alter what is needed in an existing
program that looks similar.”

The act of copying sometimes seems a bit shameful. Teachers constantly
remind the students that they must not copy their classmates’ code when
they do their assignments. In addition, there is a continuous debate about
plagiarism on the Internet, going on. It is a bit surprising though, that Hal
expresses this feeling in this situation. He said that it perhaps was the wrong

 90

way to do it, and that it is easy to make mistakes. Indirectly, he motivates the
copying with his purpose to extend the code until it fulfils the goals. He also
describes that there are methods, ready to use, that he can call on the server
side:

Hal: “Yeah, right, well it is kind of the wrong way to go, I guess. It is easy to
make mistakes, but… I took a copy of your ‘CourseInstancePluginPanel’ and
was going to make a new panel for registering students, and what I intended
to do was to extend it with an extra ‘combo box’ where you first choose the
courses and then there is one where you choose the course instances. And
then also to extend it with a list. First you have a list where you can see the
registered students for the course instance you have picked, and then all the
students in a list beneath. And then you can mark them in the list in the bot-
tom, and add them to the selected course. And that’s what I was doing in this
‘plugin panel’, I tried to fix it. Because I saw in this interface ‘service.java’,
there was already complete…, well, the method names were there, ‘findStu-
dentsTaking’ some course, so when I choose that combo box, I can update
the list with the proper students for the selected course. And that’s what I was
changing in these action listeners for these combo boxes. Well, that’s about
it.”

Unfortunately, Hal put his copy in the wrong directory, and hence he never
managed to run, or even compile, his new plugin class.

9.6.4 To compile and test ones code
Most of those students, who managed to create a source code file for their
plugin, tried to compile it and tried out if it was possible to get it working in
the system. Appendix E shows screen shots of the students’ plugins as they
appear in the user interface.

A strategy that provided the students with the opportunity to be able to
compile and test run the system at all times, was to build a skeleton, or scaf-
folding, using method stubs. Eva described her view of stubs and their pur-
pose:

Int: “Good, then we are going to look at the actual process. Your focus, kind
of, if you can remember and recall what immediately came into your focus?”
Eva: “After I had a bit of an understanding about how I should build it, you
mean? Well, the first thing I started to do really was to think about what the
user interface should look like. Because when I had thought, when you had
thought it out, kind of, how the program should work, and wrote in a way that
it at least is an interface, that perhaps not does anything, then you can insert,
well, so that it isn’t just stubs anymore.”
Int: “Stubs, what is that?”
Eva: “Well, methods without…, without code.”
Int: “Explain!”
Eva: “Em, you could say like…, if the button ’add’ should run a method that,
you know, adds a student to a course instance, but you don’t… If you know

 91

that it’s going to be used and it’s called ‘add’, you can write the name of that
method, but not write any complete code, just a little bit, whatever you can
come up with at the time. And then when everything is finished…, if you
want it to happen…, I mean that should add that student, then you can start
thinking about it.”
Int: “What advantages do you see, working like that?”
Eva: “Advantages, well, I haven’t reflected about that, really. It’s how I usu-
ally do.”
Int: “There must be a reason.”
Eva: “Hm, well, it’s that you can test your methods, I guess. At once when
you have written them”
Int: “You can simply test your program.”
Eva: “Mm, to test if it crashes totally or just a little bit.”

Most of the students strived to compile and run the code, but there were
two exceptions from the mainstream. First, Cia, who did not compile the
original code in the first place, and neither did she compile her own code
later on, even though she explained how easy it would be to get it running:

Int: “But then there were four, five, six methods that you should write, I sup-
pose. Let’s say that you wanted to try to run the program. Then, how much
would you really have to implement in that…, in those methods.”
Cia: “Well, you need that ‘getFocus’. The client calls ‘getFocus’ and that you
know, so I took that from this ‘CourseInstance’. In fact, I have kind of, built
the skeleton that makes it able to work.”

Then, Ken, who explained that he could not compile his code due to all of
the things he had to finish first:

Ken: […] “And then I haven’t got a clue whether it should be compiled or
not.”
Int: “You didn’t try to compile it?”
Ken: “I didn’t even try to compile, ‘cause I wasn’t even half ways through.
‘Cause once I had got it all together about this design stuff, how I had imag-
ined it to look like… If I had come to that, I would have to, for each…, if I
had selected a course, I would have to fetch all students that were registered
on that course, and put them in this particular list. And then I had imagined
that student…, a combo box with the available students…”

Working with gradually evolving prototypes seemed to be an effective
and popular method, but it did not come natural for everyone.

9.7 How the situation was experienced
All of the students described how the scheduled time was too short in order
to finish the entire mission, and hence they could feel that they worked under

 92

pressure. Apart from this sensation, there were other experiences of the lived
situation, such as satisfactions, frustrations and disturbances.

9.7.1 Satisfactory, fun and interesting
Most of the students appreciated to participate in the study and said it was
worthwhile, which in fact is a noteworthy opinion, as the experiment and the
following interview occupied almost three hours of their time. Eva, Joe and
Cia thought it was joyful:

Int: “What do you think about getting into this situation?”
Eva: “What I think about getting into this situation? I think it’s fun, but that’s
because I’m interested in programming. Well, and it depends… If it feels
completely impossible, or not. Because then it is not always as fun.”

Int: “Was it fun?”
Joe: “Yes, I think it was groovy. Really fun.”

Int: “Hey, now we have been here for three hours. Perhaps I should apolo-
gise for saying it, but I have enjoyed watching your working. Do you think it
has been worthwhile?”
Cia: “Well, I guess it was fun to do this kind of thing.”

Fia and Hal expressed spontaneously, it was interesting to try working
with the mission:

Int: “Is there something you would like to add?”
Fia: “No, I don’t think so. I just think it was interesting to see how something
like this works.”

Int: “Anything to add?”
Hal: “No, well, that it was an interesting task to try out.”

When we asked Eva if she believed she could get into a similar situation
in the future, her answer revealed a hopeful attitude to the prospects in her
coming profession, and hence, the task was worthwhile for her.

Eva: “I have never been in live situations in this way, but, well, it feels realis-
tic. It could happen, I guess. I have not been out there yet and worked in
this…, well, in this field. But, if it’s like this it would…, it probably will get
rather fun.”

 93

9.7.2 Not knowing what to do was frustrating
On the other hand, it was not very joyful for those who did not get started
with the programming. Dan described how he felt overstrained, pressed and
blocked, and that was not good for his self-esteem:

Int: “If we return to this situation, you said that one feeling you had was
stress, or what did you say, you felt…?”
Dan: “I felt, sort of, that here I am in front of the camera, and perhaps I have
to achieve something. But, one should not feel that way, ‘casue that’s what
you said, just do your best, right?”
Int: “I guess one could say so indeed.”
Dan: “Well, so I thought about it, but it didn’t become…, I don’t grasp it, but
I kind of know…, I was kind of blocked.”
Int: “Can you perceive or remember other feelings?”
Dan: “Yes, at the same time as you feel stress, you feel a bit bad when you
don’t cope with it. It doesn’t connect, it feels worthless, you know.”
Int: “It feels a bit, what should you call it, feelings of low self-confidence
then?”
Dan: “Yes, in this situation, you know. In this situation, I felt low self-
confidence in the situation.”

Fia’s experiences are similar to what Dan described. She did not feel
comfortable with the programming language Java, and she described her
frustration about the “hard to grasp” system that made her return to the
documentation several times, to find something to focus:

Int: “If we may look into your emotions during the time here, could you find
some descriptive words for various moods that you felt?”
Fia: “Well, you got a bit frustrated for a while before you had built yourself
this conception about what you really should do when you saw how large the
program really was. That was a bit hard to take in, and you haven’t been do-
ing java programming for a while. Forgot a bit how everything looks like and
then you feel some frustration there, that it… [sigh] was quite much to deal
with at the same time. So, but, well, I went back to the documentation a
number of times and simply tried to limit myself to what I should do.”

9.7.3 Not being left alone was annoying
It can be very difficult to be acquainted to another programmer’s code, and it
requires an ability to screen out the surroundings and become absorbed in
the work, and for this, some people need solitude. During their work, we did
not leave the students alone at all times, and this disturbed and embarrassed
some of them, Bea in particular:

Int: “How did you feel about this?”

 94

Bea: “How, well it…, I’m very uncomfortable about sitting like this. I prefer
to sit at home where I calmly can check through things without having the
feeling that someone is watching you. I get nervous and I don’t know what
I’m doing, ha, ha, sort of. That’s how I feel, but, well, it’s a bit difficult to get
into something that another person has done, it is. Before you get a general
view, it’s tough.”

Now and then, a person came in to the office and started to ask questions
to the student. This was the “newly employed” (curious colleague), men-
tioned in the manager’s letter, who wanted to know what was presently go-
ing on in the project. The purpose with this was to capture more data to the
enquiry, and to start a dialogue that also could inspire the following inter-
view. In despite of the good intentions, Bea felt that “looking over her
shoulder” was very disturbing:

Int: “Ok, that was about focus. If we talk about the emotional then… if you
relate to your own feelings, starting from when you came here, and, well, un-
til now, how have you…, could you describe them?”
Bea: “Eh, well, I was pretty nervous when I came here; one thought ‘what is
this, is it huge?’ and you have no idea about what you are supposed to do.
And then you sit down and start reading and realise that it is huge and, ha, ha,
I still don’t know what I should do. And, well, and then one have you sitting
there, and that doesn’t help very much, ha, ha. Then you get even more…,
’cause I really have a hard time when somebody is standing behind my back
and is looking at what you are doing. And, eh, it works better when you get
out through the door, sort of.”

Eva had the same experience as Bea and described it as a general prob-
lem. However, she saw an advantage in making a break:

Int: “How did you feel when I came in, and when I left?”
Eva: “Mm, well, it don’t get at all as…, I can’t concentrate so very well
when I’m not left alone, getting really disturbed then. I could just as well quit
instead – for a while. But it can be a good thing to take a break too.”

9.7.4 Not being able to finish the task was frustrating
Only Joe completed his mission on time. Most of the others wanted to con-
tinue after the stipulated deadline. The following quotes from Ken’s inter-
view exemplify this, as they describe how devoted he was to the task and
how disappointed he was when he could not complete the job and see the
result of it:

Ken: “The only thing that you kind of, you get a bit disappointed of now, is
that you have devoted yourself to a problem and now I have to finish this,
you know, I will have to quit without having solved the problem. And then

 95

you get frustrated. I mean, you want to see what it will look like when it’s
finished.”
Int: “You’re the kind of person that wants to finish things?”
Ken: “I’m not a person that gives up in a hurry. I happens that I sit up all
night, you know, just to solve it, and…, yes.”

9.8 What the students thought they had learnt
All experiences involve learning in some form, and one cannot escape from
it; learning is something that constantly takes place. Nevertheless, this as-
sumption does not imply that the individual necessarily is aware of her learn-
ing. Due to our attention’s selective nature, we can choose, consciously or
not, what we want to perceive. This selection process is not accidental and
there is naturally some kind of priority of what is desirable to experience, or
what we acknowledge to see. Hence, some form of valuation takes place
when we describe experiences and learning from some situation. The inter-
viewer asked the students17 to describe what they had learnt from their par-
ticipation in the experiment. Four identified aspects of the situated learning
in the experiment have grouped the descriptions in a summarized form.

Personal aspects and reflections

Dan: “Good to be exposed to a shock, perhaps it will turn out better next ti-
me”
Eva: “To search more careful before one starts”
Fia: “How to do this kind of experiments”
Joe: “Never give up!”
Ken: “To use ‘JavaDoc’ in the future, and use good method names that asso-
ciate”

The reality for developers

Bea: “Much larger than anything else”
Hal: “That this is a realistic scenario”

Technical aspects, the separation of clients and the server

Bea: “The separation between client and server”
Fia: “How client/server works; before this, it was only the different loca-
tions”

17 We never asked Alf this question in the interview.

 96

Technical aspects, the dynamic nature of the system’s design

Bea: “Many interfaces that everything is based on”
Cia: “This about plugins, how they are used in a good way”
Git: “Plugin, to develop independently, to build out with further functional-
ity”
Joe: “To send classes between client and server”
Leo: “Plugin is smart”

One kind of experienced learning concerned the technical solutions in the
system, and another type of learning was the experiences of the situation and
that it perhaps resembled the future as professionals. The third kind of learn-
ing is a reflective personal introspection where conclusions are made about
own reactions and behaviour, and perhaps about how to change the future
behaviour.

 97

10 Discussion

In this chapter, I will bring out and discuss some different aspects of the
conducted research. Partly I want to widen the perspective and try to inter-
pret the results, and partly I want to share my personal reflections with the
reader. Section 10.1 gives a short summary of my interpretation of the re-
sults and in Section 10.2 continues the discussion with an attempt to widen
the results from the descriptions of the Java Interface. Section 10.3 treats the
structure of the outcome space regarding the Java interface, from different
angles.

In this mainly phenomenographic study, we certainly have heard individ-
ual statements from different persons. However, the study uses quotes pri-
marily to give evidence for the categories of description on a collective level.
Many utterances from the students do not belong to the core of the study, but
still they are valuable and worth to consider if we want to gain a better in-
sight into the students’ individual situations. Hence, we have reserved space
for “the voice of the individual” in section 10.5.

Chapter 8 described how the students approached their task. An interest-
ing reference is Shirley Booth’s dissertation and her analysis of some stu-
dents’ approaches, in a study on how students learn programming (Booth,
1992). Section 10.6 discusses the similarities and differences between the
studies.

10.1 An interpretation of the results
My phenomenographic results concerning concepts reflect that the more
advanced description categories connect to each other. The uniting link is the
expressed overall view. The “high quality” descriptions of the concepts in-
terface, plugin, and system, all express an integrated understanding for im-
portant principles within object-oriented programming. These descriptions
elucidate a purpose of using interfaces and plugins in the system; the pur-
pose is to get an adaptable and smart system that facilitates for the work with
maintenance, installations and further development. In this manner, there is a
clear connection to the professional reality and its perspectives.

While the more advanced categories converge, the less advanced catego-
ries diverge from each other and get more specific and concrete. An imagi-
nary student, hypothetically equipped with only the concrete way to under-

 98

stand, would not have the apprehensive perspective that ties the concepts
together. This understanding is more fragmented and it does not comprise a
professional point of view! I claim this is one of the obstacles for a student to
experience a concept in a more advanced way. Largely, the wholeness point
of view is what carries on the understanding. Influences from other concepts
and situations widen the perspectives and help to lift the understanding to a
higher quality. For a beginner, who cannot relate the phenomenon to other
situations and experiences, it is more difficult to abstract and realize general
advantages.

10.2 Widening the perspectives – a further interpretation
The phenomenographic terminology distinguishes the following two aspects
of experiencing: “the referential aspect” and “the structural aspect” (Marton
& Booth, 1997, pp.86-88). The description categories in an outcome space
give expressions for various ways of describing and understanding the mean-
ing aspect of a concept, that is, descriptions of what the concept means per
se; denoted as the referential aspect of experiencing. The structural aspect of
experiencing a phenomenon alludes to what persons focus on while they
describe it, and comprises both the phenomenon’s internal and external hori-
zon. The phenomenon’s contour and its inner parts constitute the internal
horizon, while the external horizon includes the entire surrounding context
that makes the background of the particular way to experience.

The concept “interface” is particularly interesting as it has an immediate
connection to teaching object-oriented programming. Since the first analysis
focused on the referential aspect and I could see that the collected data con-
tained untreated and valuable information, I wish to bring forward and dis-
cuss what the students discerned and focused in the background, based on
interpretations of interview data, implications of the description categories,
and my own understanding and experiences from the experiment. Table 6
shows elements of the structural aspect of the interface concept related to the
description categories. We identified the following elements that illuminate
the external horizon of experiencing the interface concept:
• How the students see the usefulness of the interface as an artefact in the

programming process, or in a wider perspective of software development.
• The immediate or indirect associations to various phases in a software

development process that the categories imply. One way to define a dis-
tinction is to divide the software development process into five phases:
“design-time,” “implementation-time,” “compile-time,” “run-time,” and
“the future”.

• The actors, artefacts and roles that the students associate in connection to
the various ways they see the meaning in interface, and the context to
which they belong.

 99

In the first category in Table 1 (page 40), focus is set on that the pro-

grammer should solve a task by writing code in a textual form. The interface
can provide help to do this easier as it constitutes a to-do list and a text to
start from (a skeleton). There is a relation between text files, in the sense that
the students focus on writing a class in a specific text file with help from
existing code from the text file that defines the interface. From a time point
of view, the students focus on the short-term goal (now), with their atten-
tions entirely bound to the phase where you type in code (implementation-
time).

Table 6. An extension of the outcome space
The structural aspect – what was focused on and discerned in the surround-
ing situation

The referential
aspect of how
the Java inter-
face was de-
scribed. See
Table 1.

Advantages and benefits for
a programming situation

The time perspective Actors, artefacts
and roles

To-do list for
operations.

A convenient way to write
code, copy and paste. The
interface can be used as a
template when a class is
about to be coded. To know
what to write.

Implementation time;
here and now.

Focus is on me and
my program, the
class. The interface
plays the role of
being a text. The
editor.

Declaration of
contents,
specification of
operations.

Correct code: the imple-
mentations of the operations
are verified. The specifika-
tion and implementation are
separated but still connected
by the contract: class X
implements I.

Several phases are
involved: design-
time, implementa-
tion-time, and
compile-time.

I, the team, and the
client. The inter-
face plays the role
of being an ab-
stract contract. The
implementation is
verified by the
compiler.

A datatype for
reference
variables, and
implicitly for
objects.

The interface is a type
which can be used by a
client to refer to compatible
object types. These are
different implementations
that fulfil the declaration of
contents. The specified
operations can always be
invoked through this refer-
ence.

Several phases are
involved: design-
time, implementa-
tion-time, compile-
time, and run-time.
The run-time per-
spective reveals the
inner life of the
program.

Objects, refer-
ences, variables,
datatypes, classes,
client and server.

An open con-
nection to-
wards new and
unknown
objects.

Polymorphism, low cou-
pling and low dependency
between code and develop-
ers, ability to introduce
modifications, and reuse of
code.

Design-time, run-
time and also the
future administration;
updates, corrections,
system management
and maintenance.

New and unfamil-
iar objects, mod-
ules, users, the
outer world, and
the professional
role.

The second description category introduces abstract properties to the in-

terface concept in addition to its textual appearance. A relation between the

 100

interface and the class stands out on a higher level that resides above the
pure textual level. The interface constitutes an agreement, or a contract, be-
tween involved parts. The class depends on the interface that imposes the
class with a prescribed behaviour. This way of understanding shows an
awareness of various phases in time: design, coding, and compiling. The
descriptions implicitly put the interface in relation to the time when the con-
tracts were formulated as result of a planning effort (design-time). At the
same time, the descriptions associate to the phase where the contract is
“signed” by the binding between the interface and the class, using the key-
word “implements”, and the actual implementation of the specified methods
(implementation-time). Finally, the descriptions refer to the time when the
compiler verifies the code stipulated for in the contract and the contract itself
(compile-time). Focus is not only set on the individual programmer, and how
he or she can use the interface. The descriptions implicitly point at other
actors, artefacts, and roles, and how their corresponding perspectives can
view the interface: the designer who has defined the interface (the contract),
the programmer who implements the interface (signer of the contract), and
the compiler that verifies that the contract is fulfilled.

The third category expresses insights into a software’s “inner life” when
the program is executing, and here the object, the interaction between ob-
jects, and references are central concepts. At this level, the descriptions in-
troduce the “data type” as a concept and abstraction. Objects of various types
exist in run-time, and the program must treat them with handles in the form
of reference variables that have compatible types. The interface provides one
such kind of compatible type that the program can utilize as reference vari-
ables to handle all the objects that implement the interface. The reference’s
type determines which methods are callable in an object, and in this way, the
interface defines and delimits how the program can use the objects. This
insight expresses a higher abstraction that is close to the idea of polymor-
phism. In this category, focus shifts between the part that uses an object (the
client) and the object that provides the operations (the provider or server). In
addition, focus is shifting between the discerned phases design-time, imple-
mentation-time, compile-time, and run-time.

The fourth category lifts the level of abstraction further as it expresses and
emphasizes the polymorphic property of reference variables of interface
type. It is obvious that the interface can be used to create polymorph refer-
ence variables that can refer to various objects, all having compatible types
as their corresponding classes implement the interface. Compatible and ex-
changeable types are central components for the understanding of the con-
cept polymorphism in object-oriented programming languages. Using inter-
faces as a systematic principle in the design reduces the degree of depend-
ence and bindings between objects in a program, as well. The relations be-
tween the parts in the program become purely abstract, as the parts do not
rely literally on other part’s specific implementations. The interfaces de-

 101

scribe the “naked” abstract semantics in a way that is free to realize, and in
this manner, the designer separates the specification from the implementa-
tion. Systems, which already from the start have a modularized character and
a need for exchangeable components, can utilize this technique. To realize
the advantages of this requires a deep understanding of building systems and
the consequences that can appear without a similar way to work. A perspec-
tive of the future maintenance is apparent and the descriptions foresee a need
for improvements, additions and upgrades in the system, and a crucial aspect
is to provide for the possibility to handle this in a smooth way. The descrip-
tions reveal an awareness of the consequences for the involved parts and that
one must consider the user perspective. This category of description takes a
professional perspective and characterizes a mature approach to program-
ming and software development.

We can recognize this pattern of widened perspectives within the descrip-
tion categories in other studies. Shirley Booth (1992) showed several results
with a similar structure. The students’ experiences of programming varied
from a computer-oriented activity, to a product-oriented activity (p.94,
p.101), and their conceptions of learning to program varied from learning a
programming language, to becoming part of the programming community
(p.119). In Christine Bruce et al. (2004) we can see the same tendency,
where the lowest level focus on assignments and deadlines, but the most
advanced level focuses on the programming community (p.148).

What conclusions can we make from this second analysis? There are sev-
eral different foci involved, and clearly, we can see the increasing complex-
ity in what the students associate with the interface concept. The advanced
levels of understanding integrate several related factors at the same time, and
motivate the way to structure the software by the benefits it gives consider-
ing the whole enterprise: maintenance, customers, users, and business. I
would say that the advanced ways to think about software reveals a mature
attitude and a professional perspective on software development.

Certainly, we can consider software from different levels of abstraction,
all having a meaningful purpose. For example code as text, syntax, variables,
functions, data structures, system operations, classes and objects, runtime
machinery, modules and components, version control, maintenance, lifetime
cycle and economic aspects. For a rich understanding, it is important to be
able to move unhindered between the abstraction levels and see the effects of
a change in code from different perspectives. In my view, the Java interface
is an artefact that is a manifestation of a professional perspective. To be able
to understand it in depth, the learner should be aware of the underlying mo-
tives for its existence.

 102

10.3 Thoughts on the structure of the outcome space
One of the criteria for establishing qualitatively distinct categories in a phe-
nomenographic analysis (see Chapter 3) is that the categories should have a
logical relation to each other, often hierarchic and inclusive.

The person who makes the analysis should have good subject skills and
should be well acquainted with the learning goals for the educational con-
text. Otherwise, it would be difficult and almost impossible to assess the
complexity of the individual categories and to range them in a meaningful
hierarchy during the analysis.

In the following discussion, I will relate my results to other frameworks
and perspectives, in order to support the way in which I have structured the
outcome space. I will focus on the outcome space concerning the concept
“interface” (see Table 1, Chapter 5), as it is a central concept in object-
orientation, which should be of general interest for programming teachers.

First, I will discuss how that outcome space relates to two general and
well-established educational taxonomies, comparing the complexity and
depth of the categories’ meanings with “corresponding” levels in the tax-
onomies. Secondly, I take a completely different approach, and speculate
from an “object/process duality” point of view.

Educators often use taxonomies in educational situations to formulate and
rank learning outcomes and to support construction of questions for exami-
nations and tests. Two examples of such taxonomies, are for example the
Bloom taxonomy (Bloom, 1984), and the SOLO-model, Structure of the
Observed Learning Outcome (Biggs & Collis, 1982).

Lars Owe Dahlgren points out (in Marton, 1986a, pp. 45-49) that Bloom’s
taxonomy is a theoretical construction that has not evolved from studies of
actual outcome of learning. However, the SOLO taxonomy bases its attempt
to classify levels of outcome on empirical studies, and it has a versatile ap-
plication area. Entwistle and Marton also claim that SOLO can enlighten the
categories in the phenomenographic outcome space:

“The different outcome levels, if they exist, can be in many cases described
in terms of an SOLO taxonomy, or simpler as an attempt to either explain, or
describe, or merely mention aspects of what has been learned” (Marton,
1986a, pp. 290)18.

The present discussion aims its interest towards the theoretical subject
field perspective as well as the empirical perspective, and hence, it is inter-
esting to see what happens when we relate the categories of description to
both of the classifications. The taxonomies define categories for different

18 The reference points to a book written in Swedish. This is our own translation of the quote
from Swedish to English.

 103

levels of learning and learning outcomes. Bloom’s taxonomy defines goals
for learning in six levels:

1. Knowledge – is the ability to recall and recognize information.
2. Comprehension – is the ability to, express understanding of

meaning in one’s own words; to interpret, translate, and extrapo-
late.

3. Application – is the ability to apply information, rules, and prin-
ciples, to achieve a result, in other words, problem solving.

4. Analysis – is the ability to identify parts, partial functions, and
structural principles, to understand inner relations and to identify
motives.

5. Synthesis – is the ability to develop new unique structures, sys-
tems, models, approaches, and to combine ideas.

6. Judgement – is the ability to evaluate the wholeness of the con-
cept in relation to the world and external conditions, to make
judgements and strategic comparisons.

Now, we attempt to connect this taxonomy to our study’s outcome space

for the interface concept, and we will do it by trying to relate each category
of description to the levels of Bloom’s taxonomy.

The first category, “to-do list,” does not express analysis, synthesis or
relevant judgements. The set of values that appear in the interviews focus on
that it is good to have an interface due to practical reasons, from a personal
point of view. The applications of interfaces and the achieved results are
trivial. However, there is a clear conception and recollection of the concept
and there is a subjective understanding, although it is not very deep. Hence,
this corresponds to level one and two in Blooms taxonomy, with a weak
connection to level tree.

The second category, “content declaration,” includes knowledge, a
deeper understanding, an application with connection to classes, and the
understanding of the contract relationship between the class and the interface
that implies a certain ability to see structural principles and good motives.
This relates well to Bloom’s level three, and has some of the properties of
level four.

The third category, “data type and reference,” further deepens the mo-
tives and principles, combining the interface concept with reference vari-
ables and the various objects they can refer to, and this puts the interface in
an “outer” frame of reference. These descriptions reveal an analysis of the
use of the interface concept (Bloom level four), and to some extent the de-
scribed consequences reflect a synthesis (Bloom level five).

The fourth and final category, “open connection,” is characterized by its
clear motives, approaches, judgements and a comprehensive view on soft-

 104

ware development, which can be related to Bloom’s level six, where judg-
ment and the wholeness are desired.

The SOLO-taxonomy suggests five categories that Dahlgren (in Marton,
1986a, p.47) summarizes in the following list19:

1. In the prestructural category, the answers are denying, tautologi-

cal, transductive, and bound to the concrete, in relation to the
given conditions in the question.

2. In the uni-structural category, the answers contain “generalisa-
tions” only using one aspect.

3. In the multi-structural category, the answers contain generalisa-
tions only using few independent aspects.

4. Characteristic features of the relational category are induction
(the ability to make conclusions from experiences) and generali-
zations within a given or lived context by the use of related as-
pects.

5. The category extended abstract, has elements of both induction
and deduction (the ability to make conclusions from premises).
One characteristic feature is the ability to generalize the current
context to situations that are not part of the question’s prerequi-
sites.

This taxonomy describes a classification of characteristic features identi-

fied in answers from real persons in empirical studies, and this makes it suit-
able to compare with our categories of description in this study. As previ-
ously with Bloom’s taxonomy, we attempt to connect the SOLO taxonomy
with the outcome space of the interface concept.

The first category, “to-do list,” is certainly bound to the concrete and tan-
gible, however, it does not express tautological nor transductive reasoning.
The descriptions in this category makes a generalization as they imply that
interfaces in general can be used as to-do lists from which text can be cop-
ied. Hence, we can exclude the pre-structural classification, and rather, we
classify the “to-do list” category as uni-structural.

The second category, “content declaration,” describes the interface richer,
and it is ascribed a meaning that comprises and influences other concepts,
and in the third category, “data type and reference,” even more relations to
other concepts are involved. These categories clearly have a relational char-
acter.

Finally, the fourth category, “open connection,” expresses induction, de-
duction, and generalizations to a considerably wider perspective, and hence,
we can relate it to the SOLO category “extended abstract”. This category
ascribes features to the interface concept that not in any way are evident

19 Translated from Swedish.

 105

from the mere syntax of the Java programming language, on the contrary, an
understanding of these properties build on experiences and understanding of
the possibilities given by the language related to things outside Java.

Table 7 summarizes the attempts to relate the taxonomies to the interface
concept’s description categories. One interpretation of this reasoning is that
the categories in the outcome space mainly follow the taxonomies’ levels
and stages, which is an argument for that the hierarchic structure of the out-
come space is meaningful and relevant.

Clearly, we have seen how the SOLO taxonomy has an inclusive and hi-
erarchic character in itself. This leads us to a discussion of the inclusivity of
our outcome spaces, and again, we will focus on the results for the interface
concept. The second category is an obvious augment of the first category, as
the second category extends the meaning of the list as the literal program
text, into a list of content in a wider, more abstract sense, which includes the
insight of a commitment between parties. The third category presupposes an
understanding of the connection between interface, class and object, since it
views the interface as a data type for reference variables that can connect to
precisely those objects that implements the interface. A fundament for that
understanding resides in the second category. The fourth category represents
an understanding of interface in relation to polymorphism, modifiability, and
exchangeability, which in many object-oriented languages require the type
of relation between references and objects that the third category describes.

Table 7. This shows the attempt to map the levels in the taxonomies to our catego-
ries of description.
Outcome space for interface Connection to SOLO category Connection to Bloom level
To-do list S2 B2
Content declaration S3 B3
Datatype and reference S4 B4
Open connection S5 B6

Thus, we can summarize our argument by concluding that there exists an
inclusive relation between the first two categories, and that it has the type “B
is an augment of A.” The relations between the second and third category,
and between the third and fourth, have the type “B assumes A.” Hence, using
my definition of inclusivity (see chapter 3.2.1), it can be concluded that the
structure of the outcome space is inclusive20.

A different way to view the hierarchy of the outcome space and its inclu-
siveness could be to use a perspective that considers learning as a particular
form of gradual evolvement. My interpretation and conclusion of the follow-

20 An outcome space is not necessarily linearly inclusive; it can have ramifications and other
kinds of relations (Åkerlind, 2005, p.12).

 106

ing unconventional theory of learning is speculative, nevertheless, I find it
interesting and thought-provoking.

Orit Hazzan points at similarities between learning in mathematics and
computer science, as for example programming, and she uses Anna Sfard’s
perspective on learning which means that there is a dual relation between the
operational (process) and the structural (object) understanding (Hazzan,
2003; Sfard, 1991). Sfard, identified this relation by studying the history of
mathematical development and she claims that we can find it in the individ-
ual’s learning process, as the operationalization, the objectification, and the
abstraction are interwoven in an interacting process, where the learning
gradually reaches higher levels. Sfard argues that the operational understand-
ing always comes first. This phase of learning is what Sfard calls interoriza-
tion. The meaning of the learning that the learner can see is to master the
processes.

After a while, a sensation of structure come into existence in the under-
standing of what they are processing, and that is a manifestation of generali-
zations, in other words abstractions. It is during this condensation phase that
the learners begin to get a comprehensive view; the wholeness of the proc-
esses they conduct. The condensation phase lasts until the learner begins to
see “the abstract” as a unit of its own, entirely disengaged from the processes
in which it originally appeared, when the abstract has become an object,
through reification21.

The reification process is the last phase in the present iteration of learn-
ing, and it involves a fundamental ontological shift in the view of what the
learner is doing, from a procedural perspective into a structural point of
view. Now this newly constituted object can be involved in new procedures,
at a higher level. However, Sfard indicates, it is necessary that the new ob-
ject is part of new operations (in the next interorization) before it can be
fully reified by the learner.

Finishing off the discussions on the structure of the outcome space, I will
attempt to enlighten the categories for the interface concept taking a proc-
ess/object perspective. We could consider the “to-do list” conception of the
interface as procedural stage, where the focus is set on doing something
practical with the textual contents of the interface, which would be an in-
terorization. The “content declaration” represents something more than what
the students can see literally, they discern an abstract meaning, which would
indicate a condensation. In the description category “data type and refer-
ence,” the students have reified the interface into an “object” in form of a
tangible data type that is used in other processes. Finally, in “open connec-
tion,” the reified object is used in a wider context where new abstractions
possibly could be crystallized, as for example design patterns (Gamma et al.,
1995), which would lead to a new interorization phase, on a higher level.

21 The term reification means that something abstract becomes materialized, e.g., a model.

 107

10.4 The intended and the lived object of learning
The intended object of learning is the teacher’s perspective on what the stu-
dents should learn, whereas the lived object of learning is the object of learn-
ing from the learner’s perspective; what is actually learnt (Marton & Tsui,
2004, p.4-5). When I compared the outcome space for the concept “inter-
face” with how interfaces appear in the experiment’s software and in course
materials, I noticed some differences in the intended and the lived object of
learning. The aspects I missed (as being a teacher) were certainly nuances of
what appeared in the outcome space; nevertheless, the students never articu-
lated them explicitly.

The filter property and the multiple interface property, relate to interfaces
and classes. Since classes can have more operations than the implemented
interface specifies, we can use interfaces as filters to limit clients’ access to
operations. If a class has a number of operations that we can group logically
in some way, such as read and write operations, and we want to allow full
read and write access only to a few trusted clients, the programmer could
create two different interfaces; one that specifies all methods and another
that specifies the read operations only. Since classes in Java can implement
multiple interfaces, the programmer would only have to change one single
line of code in the class and “hand out” the appropriate interfaces. The client
with the read interface can only call the read operations, while “trusted”
clients can call all operations.

We can use a variant of the Abstract Factory pattern (Gamma et al., 1995)
combined with interfaces to control the creation of objects and to restrict the
dependence on specific implementations. In the experiment’s software, an
intermediate layer between the database and the rest of the application con-
trolled the creation of all data objects, and their specific class names were
restricted to (hidden in) this layer. The code outside this layer, handled all
data objects only through interface type references, which made it impossi-
ble to create faulty objects or alter data in an inappropriate way.

Other aspects are interface inheritance and multiple inheritances. In Java,
classes can only inherit from one ancestor; however, interfaces can in fact
inherit from an arbitrary number of ancestor interfaces. In the example
above, the “read and write interface” could be a subtype to the pure “read
interface”, and hence, it would be feasible if the read interface was defined
first, and then the read and write interface could inherit the read interface
and simply add the write operations.

Even though the programming courses and the experiment’s software
covered these aspects, they did not appear in the interviews. One explanation
is that the students’ foci were set on their particular task and they associated
only to the aspects that were significant in that particular context. On the
other hand, for that particular purpose, the students reflected very important
features of the intended object of learning.

 108

10.5 The voice of the individual
The phenomenographic results apply to a collective level. However, it is
important to remember the individual and the individual’s experiences of
programming and studying. The interviews revealed much information that
partly was outside the subject that the study intended to investigate, but still,
this information is valuable.

All participants in this study contributed to the results in a positive man-
ner, and there were no serious “misconceptions” of the studied concepts.
From an educational point of view, each description and expression of rele-
vant understanding can contribute, more or less, to a learning of the concept.
The most successful person, who actually was the only one to complete the
mission into an operational application, had a broad comprehension of the
interface concept. He brought experiences from programming with him to
his studies, and he had now and then worked as a developer, but he had
never used Java in those circumstances.

It is significant to know that there are students who, in their own experi-
ence, are having a hard time to obtain skills in programming, and they are
having difficulties to turn abstract descriptions of programming principles, in
practise into real applications. In the following, we will provide space for
two individuals and let them tell their own stories. In the first quote, Dan
tells us how he experienced the new situation when he started the mission.

Dan: […] “It became a bit, I don’t know, it became too much, I felt I was
stressed you know. I begun to not understand and then I became stressed and
it didn’t work, as I see it.”
Int: “Could we talk about that? You say you are under stress.”
Dan: “I feel stressed and at the same time I feel that now I’m going to fix
this, and I reread and read again and it doesn’t really work I think, and I feel a
certain stress the you ought to accomplish something, and I get cramped in
some way. I think, things that I normally cope with, maybe, if I sit by myself,
I cannot do now. It seems to me that I reread and reread and then I feel that I
must make it. Compared to me sitting at home, it would be different I think.
Sit at home in peace and quiet, you know.”

After a while in the interview, we discuss the same theme. Dan relates to
other students, and he tells how they also experience the same feelings as he
has when it comes to programming. He expresses a feeling of low self-
esteem and he compares himself with those students in the class who already
know how to do22.

Dan: […] “You almost believe that… yourself, you have the image that you
are the worst in some way, see. I’ve also heard that from others that are not
so good at programming, they have that image too, you know.”

22All names in the quotes are fakes and they are in italics.

 109

Int: “How can we change that here at school?”
Dan: “I’d say like this… we start at so many different levels. […] Uncon-
sciously, we compare ourselves with the good ones. You should compare
only with yourself. That’s what I say, and that’s what Anna says, but you still
do it. You watch them, say, Charlie and another chap. When you run the pro-
ject that they did so very well, then you get such a bad image of yourself, you
know. And about tackling the problem, I don’t know if it is the pupils or the
teacher. Perhaps you could have a group and solve it, but I don’t know. Many
that haven’t programmed before have that image of themselves. Because it‘s
not just Anna and I, there are many others. […]. They think they are so bad,
but I don’t think they are that bad. If only they will spend more hours, they’ll
make it too. That’s what it’s all about, isn’t it? Some pick it up after a couple
of hours, others may need some extra hours, you know. But they have such a
poor… They don’t think they’ll make it. And that’s a drawback, see. And I
don’t know … It is the poor self-esteem that it all comes to in the end, I
guess. And mentally manage to struggle on and try not to give a damn about
those who maybe have programmed for five, six years. And you have taken
one course in programming yourself. You can’t compare yourself with them,
but unconsciously you do. Even though I’m a bit older than him, I do it any-
way, see.”

Later, Dan makes an interesting remark about those he regards to be
clever in programming, namely, that they are not among the top students in
mathematics, and he seems to use this as a comfort to some extent. He de-
scribes how he managed to succeed with mathematics by hard methodical
work and by participating in the practical tutorial lessons.

Dan: “No, I did well with the maths, but I went there anyway. I was not so
confident in the beginning but I managed with the maths. Absolutely no
problems, but I went there. I absolutely didn’t feel that way when I went
there, and neither did the others. Because I saw that we, the ones that went
there taking it seriously, were the ones that did well in maths. At the same
time, I notice that many of those who are clever in programming have not set-
tled the maths. I’m thoughtful about that. I see those who are very clever and
still they have still not finished the maths. I can’t see why, but perhaps you…
Some programmers are very clever at programming – particularly program-
ming – but then perhaps, as I see it, they are not so social with others. But
they are incredibly clever with computers. On the other hand perhaps, but
that’s varies from one individual to another, but as in my opinion perhaps are
not so…”
Int: “Perhaps there’s something in that.”
Dan: “But I’m surprised that they don’t manage the maths of all things. I
thought they were superb in every subject.”

Could it be, that the cause of the advantage that Dan experienced in his
clever fellow students, was in fact their private interest in computers and
programming and their background? Moreover, does their being hobbyists
and autodidacts automatically imply they are better students? Personally, I
ask my self to which extent the “clever” student group decides the culture in

 110

the classroom, and if it has an effect on the level, content and objective of
the courses – in worst case at the expense of the possibility for the novice
programmer to succeed.

Some individuals described ways to understand the phenomena that cov-
ered all of the qualitatively different categories in the collectively obtained
outcome space. However, some persons only gave a limited view of the phe-
nomenon. For a teacher who teaches programming, it could both be interest-
ing and valuable to have the following example as something to think about.
In spite of the interviewer’s attempts to stimulate for a variation in the ways
of experiencing interfaces, Alf persists with his conception that interfaces are
only used as “to-do lists,” and he finishes off by saying, you never care
about them after they have been implemented:

Int: “But if you may call it the client side, that is to say, the one that uses a
queue for instance, then it uses an interface instead of using the concrete
class?”
Alf: “Mm, you mean the one that… has…”
Int: “Well you know the code that tests or uses a queue in someway. Then it
uses an interface type to get at the queue, or?”
Alf: “Yes, or one of these priority, well, but that’s you know, interface, that
you never have to care about. That’s kind of…, you implement it and then
you don’t care about it anymore.”

Perhaps Alf established his understanding during a course where the
teachers handed out interfaces to the students in order to define what opera-
tions they should implement. While the students really experienced that it
was meaningful and useful, this way to understand made a deep, persistent,
impact on Alf, who did not have much previous experiences of programming
compared to many of his fellow students. A certain motivated way to use the
concept established an understanding of what the concept was, and it all
made sense:

Int: “In ‘algorithms and data structures’, how far have you reached in that
course?”
Alf: “Eh, until, let’s see, eh, what have we…? We have done this about
linked lists, and now we are doing a linked list again, but not the one that we
should do on our own… Gosh what is it? We are implementing a queue for,
well, anything… for queues, for heaps.”
Int: “Do you use interfaces then, somewhere?”
Alf: “Yes, everywhere, all the time! I really think it is terrific, I do, but it’s
just that there are so many of them.”

Dan’s story tells us that we should be aware that what seems to be the
“dominating culture” in the class might not be representative for all of stu-
dents. He gives evidence for the gap between the “beginners” and the stu-
dents who already “know” programming. There is an obvious risk that

 111

teachers adapt their level only to the “clever” students, and forget about the
others.

Alf’s story indicates that his understanding came from a situation where
the teachers probably did not intend to teach about interfaces. Their intention
was to make sure that all the students knew what to do, and what method
names they should use. This shows the strength of learning in situated con-
texts; how our learning often comes as a side effect of doing. However, it
also reflects the potential “danger” of using concepts in a one-sided way;
once we see a “meaning”, it takes an effort to change our understanding.
Obviously, Alf did not change his mind about interfaces during the experi-
ment.

10.6 Discussion on the students’ approaches
The original intention was to study the students’ approaches though an
analysis of the video recordings and the recorded dialogues with the “curious
colleague”. I have not yet accomplished that goal and the reason for this is
primarily a lack of time to establish a proper theoretical framework for this
kind of analysis, witch is something I want to get deeper into in my future
work. I was also uncomfortable with the type of data that the recordings
contained and I was uncertain how to approach it. This data is a set of two-
hour sequences of the students’ actions as they appeared on the computer
screen and it does not reveal the students’ thoughts, during their work. To
get to that aspect, I considered using a method called stimulated recall
(Bloom, 1953; Haglund, 2003), where I could ask the participants to view
the video recordings as a stimulus for their memory, and discuss their
thoughts about how they approached the task and how they thought in par-
ticular situations. Another idea was to let students solve the same problem in
pairs, and record their discussion as they did their job. The recordings from
these discussions would be a very rich data source for a further analysis.
However, I decided to abandon these ideas in this study, due to the limited
time and the estimated effort to accomplish it. Instead, I decided to use the
data I already had, and to see what results we could get from that.

What I did was a thorough analysis of the transcripts, and I tried to find
all statements that concerned the approach and the process. Then I investi-
gated the students’ stored data files and searched for evidence that confirmed
what they actually had been doing, such as which files they had edited and
compiled, and what code they had written, et cetera. I compiled the results
into Table 4 and further summarized it as an overview in Table 5 (see Chap-
ter 8.1). These results give a rich description of what the students did and
what problems they encountered. However, they do not tell us much about
the students’ intentions, why they acted in certain ways, and how they
thought.

 112

I wanted to describe typical approaches that the students used, using the
results and my impressions from what I saw during the experiment and in the
interviews, and I suggested the three categories: “Hands off,” “Waterfall,”
and “Prototype” (see Chapter 8.2). My intention was not to reduce and sim-
plify the complex reality into some general model. I wanted to point at dif-
ferent behaviours that I could observe in the material that are critical for the
ability to handle the type of problem that the students struggled with during
their work.

There were a number of reasons for why I could not use a phenomeno-
graphic analysis to find out how the students experienced their approaches,
in this study. First, the interviews did not primarily address the students’
thoughts about how they approached the problem, which is an essential re-
quirement for this kind of analysis. Secondly, the posed question does not
address experiences of a limited phenomenon to which the students relate,
rather, it asks for the process, a chain of actions. Thirdly, it is hard to identify
and assess logical relations between different patterns of behaviour, espe-
cially as we did not explicitly ask the students to explain their way to ap-
proach the problem, in the interviews.

However, it is possible to use a phenomenographic approach to study how
students solve programming problems. Taking this perspective, Shirley
Booth investigated how students learned to program and she followed a
group of students during a programming course in SML and interviewed the
fourteen students six times (Booth, 1992). In two of these interviews, the
students’ approach to writing programs was an explicit topic. She came up
with the conclusion that, within the present setting, there were four qualita-
tively distinct approaches to (learn how to) program (see Table 8).

Table 8. The four approaches to programming identified in the study conducted by
Shirley Booth (1992, p. 207).
Expedient approach, in which focus is on producing a complete program from the outset by
making use of an existing program or by adapting some known program to the demands of the
problem.
Constructual approach, in which focus in on recognizing details of the problem in terms of
features of the programming language – constructs, functions and keywords – which can be
used to build a program.
Operational approach, in which focus is on writing a program based on an interpretation of
the problem within the domain of programming; the problem is considered from the point of
view of what operations the program has to perform.
Structural approach, in which focus is on writing a program based on an interpretation of
the problem within its own domain; the structure of the problem is considered and on that
basis a program is devised.

Booth divides the approaches in pairs and groups them in two dimen-

sions. The first dimension grades the character of meaning. The approaches
operational and structural aims towards understanding and interpretation,
whilst expedient and constructual are more devoted to an opportunistic atti-

 113

tude. The other dimension spans between focus on the program and focus on
the problem, and hence, the approaches operational and expedient focus on
the program code, whilst structural and constructual rather focus on the
underlying problem.

It is tempting to use the term expedient approach for the strategy that
most of the students in our study used; once they had understood that they
were supposed to write a class of their own in a new file, they quickly copied
a similar file to build on. However, this would be to misinterpret Booths
intentions. We need to understand what she means with complete program
and what environment she refers to. In her case, the students used a func-
tional (declarative) programming language, and the programming assign-
ments (problems) that her students worked with were, clearly defined and
rather mathematical in their nature, consisting of recursive problems. Booth
means that both the expedient and the constructual approaches were oppor-
tunistic approaches to solve the whole problem. My interpretation of what
Booth means is that the students start from a construct in the programming
language, or from a copied program text, instead of analysing the problem.

In our case, the students who used the approach “prototype” copied the
files as a conscious and intentional strategy in order to get things right, and
save time and work, and hence constructual approach is a better classifica-
tion for that particular strategy. However, there are examples of students in
our study who were searching for something to copy, but as they did not
fully understand the purpose and the wholeness, as in Fia’s case, they could
not find out what to copy, which relates closer to an expedient approach,
using Booth’s terminology.

The classification of approaches as being advanced, appropriate or shal-
low, et cetera, must be seen in relation to the situation where the approach
was taken. In contrast to Booth’s study, our students used Java, which is an
object-oriented and imperative programming language. Their main problems
was to understand the structure and the principle of a particular software
system and how to fit in pieces of their own code (programming in the large)
in a limited time, rather than to understand the underlying “problem” that the
program should solve.

This difference makes it difficult to compare the outcomes of these stud-
ies. The “prototype” approach that we identified was an efficient way to
solve the task and it certainly required a good understanding of the structure
of the software, and we should therefore not regard it as an “opportunistic”
approach.

The conclusion of this discussion is that we can study approaches to pro-
gramming in many ways, and that different types of programming languages
and problem types perhaps require different approaches. There is much more
research to do here and for future work I have suggested two methods to
stimulate and capture students’ thoughts and reflections: stimulated recall
and programming in pairs.

 114

11 Implications for teaching and learning

This chapter deals with the “so what” aspect of this study, why we should
care about outcome spaces, and how can we utilize the results and experi-
ences of this work in teaching.

Who are the students, what do they already know and what do they want
to achieve? What do we want to achieve with our teaching, what learning do
we strive for, which educational aims do we and our “customers” have, and
besides the students, who are our “customers”?

These questions concerning the relation between student, teachers, the
subject, and the outside society, are not easy to answer and are not free from
contradictions. In the academic tradition, we want to create conditions for
free, associative, and critical thinking and learning. At the same time, we
need to educate novices into persons who are well suited for a future profes-
sional career. Tight time schedules and economical resources delimit the
educations, and at some point, there must be a compromise made. What we
want our students to achieve is a basic competence with a potential for a
variety of professions.

11.1 Creating connections to realistic situations
In the following discussion, I assume that we strive for an education where
students, teachers, and the industry, all have an interest in the students be-
coming well prepared for a professional career in the IT business. This pre-
paredness includes a good understanding of object-orientation, in a wider
perspective than what it takes to pass in a beginner’s course in programming.
An education that targets people who want to work with system development
and programming, or perhaps with administration of such activities as a
manager, needs to give the students profound insights in software develop-
ment (software engineering).

I suggest that teachers should consider these aspects and think more about
how we can establish and strengthen approaches to programming that help
the students to widen their perspectives from the “here and now,” towards
the outer world and the professional role and conditions, involving studies of
communities, open source and APIs, companies, endurance, modifiability,
efficiency and economy, et cetera.

 115

For a student who wants to be a software developer in the future, every
new experience of working with software will contribute to learning, skills
and competence. Every new situation gives incentives for the individual to
widen perspectives, reconsider previous experiences, and create learnings
that she can add to her knowledge bank. In my experience from doing the
interviews, most of the participants showed a constructive attitude to the
situation during the experiment and most of them said that they had learned
something from participating.

A hypothesis of mine is that some mechanisms of the object-orientated
programming languages are easy to understand if we can explain them in a
situated context, where the advantages they involve appear as natural and are
well motivated. The experiment has shown that it is possible to let students
work with large and advanced software, that they can get into it and achieve
tasks in a limited timeframe, and learn things. Why not let them spend more
time as software engineering apprentices (Dalbey, 1998) and do the same
kind of things as the professionals do, and actually elaborate on authentic
software from the industry, or other communities?

However, I believe an explorative learning using the “real thing” requires
good basic skills and certain self-confidence. Not all students have the same
prerequisites, and as the mission in our experiment required the students to
solve the demanding problem independently, it turned out that not everyone
succeeded. We, who are interested in similar settings, as a method for learn-
ing, must carefully ensure that the students have a constructive attitude, and
that they have the required basic knowledge. Making this the wrong way
could discourage the students and affect their self-esteem negatively. A way
to neutralize this could be to let the students work in pairs.

My conclusion is that we should discuss these matters with the local com-
panies, which sincerely want us to produce highly skilled software develop-
ers, and try to find good examples of authentic software that we can use in
educational settings. The discussions should lead to a definition of important
learning outcomes that both industry and academia share, and a set of tasks
and exercises that would be encouraging and instructive for the students. In
the best of worlds, representatives from the companies could give guest lec-
tures and tell the real story about the software that the students will work
with.

11.2 Opening possibilities to discern interfaces
How can it be that certain ways to understand sometimes tend to cement in
the learner, and how can we change these ways to see?

Beginner’s courses often take a start focusing on explicit implementations
of some codes, and then by doing many examples, the learner should gain a
number of wisdoms on design principles. However, if the learner already

 116

considers himself as knowing how to program, new fancy principles might
not be motivating to the “stubborn” learner, as it often is possible to just
keep doing it the same way as before. For instance, I have met students at
advanced level, who never realized that they actually could use the Java
interface as a data type, and thereby use it to declare variables.

How can we provoke these students to reconsider their point of view?
Continuous assessment and feedback naturally, but it is also important to
consider how we introduce, motivate and discuss new concepts, and how we
construct exercises. According to Ference Marton, the learner can discern
something only if the learner can contrast it against its background, and we
can help the learner by providing variations in the background, or variations
of the viewing angle.

Marton och Tsui (2004) tell us that we should not only focus on what
learners learn. We must also pay attention to in which ways they learn and
we must be aware of the many different ways of seeing things that can be
possible. We must consider how learners are able to discern parts from
wholes, and how they can understand the whole. They claim that:

[…] variation enables the learners to experience the features that are critical
for a particular learning as well as for the development of certain capabilities.
(Marton & Tsui, 2004, p. 15).

They argue that it is necessary to consider variations in different learning
situations and analyse what varies and what is held invariant. This would
give information about what is possible to learn, which they call the space of
learning. From empirical studies, they have identified four critical patterns of
variation, which they describe in detail. In Marton and Pang (2006), these
patterns are described in a more formal and condensed way:

Patterns of Variation
1. Contrast: A quality X cannot be discerned without the simultaneous

experience of a mutually exclusive quality ~X.
2. Separation: A dimension of variation, which can take on different val-

ues, cannot be discerned without other dimensions of variation being in-
variant or varying at a different rate.

3. Generalization: A certain value, Xi in one of the dimensions of variation
X cannot be discerned from other values in other dimensions of the
variation unless Xi remains invariant while the other dimensions vary.

4. Fusion: The simultaneity of two dimensions of variation cannot be ex-
perienced without experiencing the two dimensions varying simultane-
ously (Marton & Pang, 2006, pp. 199-200).

How can we utilize these patterns when it comes to learning about the

Java interface? Let us consider the patterns of variation combined with the

 117

empirical results from this study. Starting from the four qualitatively differ-
ent categories of description, I will attempt to exemplify how we can design
exercises and examples using the variation patterns applied to the dimen-
sions that the categories open. Naturally, there are many possible approaches
to this, and this example should be seen as an attempt to inspire other teach-
ers’ creativity and give an opportunity to reflect about how they can use
similar results and ideas in their teaching.

The first category opens a dimension that concerns textual content, in
which the interface is experienced as a text that constitutes a memo or a
shopping list for the students to use in order to know what operations to im-
plement. On this level, the contrast pattern is feasible to use. Let the students
experience the effort of writing up a class from an informal specification on
the black board, then give them the specification as an interface file, and
show them how they can use the text in it as a skeleton, through copy and
paste or by changing the keyword “interface” to “class”. Be explicit and let
the students verify that the compiler will not accept code in the interface –
only in the implementation. Concentrate on the textual aspect of specifica-
tion and separate this from other aspects during this exercise. At the end of
this part of the lesson, the students could be asked to write a specification of
their own in form of an interface, which can be used later.

The second category describes the interface as a contract between an in-
terface and a class (or programmers) that forces the class to implement the
interface. The new dimension of understanding considers various agreements
between two parties and possibilities to manifest, verify, and maintain them.
We can use the contrast pattern to bring out the contract quality of inter-
faces. First, the students can be instructed to implement a class, following
the specification in the interface they wrote previously, without the keyword
implements (not signing the contract), and compile it. If they are lucky, it
will compile without errors. The agreement is in this case only informal.
Then they should “sign the contract” and let the compiler be the judge who
determines if the class fulfils the agreement. If the students introduce
changes in the specification, they will see the effect. The physical appear-
ance of the interface, the content in the text file should be put in contrast to
its synthesis with the class through the contract that is signed by the keyword
implements. In this way, the content and text dimension is held constant
(separation pattern) and the focus would be set on the implementation of
this precompiled interface and the keyword implements. The compiler will
tell which methods that remain to be implemented. Another variation is to
vary the number of methods in the class and see that it can have an unlimited
number of methods as long as it implements the ones specified by the inter-
face that is held constant (generalization pattern).

An alternative is to let two students make an agreement about the specifi-
cation of a class. One of them implements the class and the other student
makes a client class that uses the features of the specified class, and let them

 118

try to run their joint “program”. Before the client can even be compiled, the
client designer has to wait until the specified class are implemented and
compiled. If the client designer gets compiler errors that is caused by misin-
terpretations of the agreement, they have to decide who made the errors and
correct them. In a second attempt, the students should put their agreement in
an interface which should be seen as a formal specification. Now we can use
the contrast pattern and let the students do the same thing using an interface
that manifests their specification. The client uses the interface as a data type
for the reference to the object and the server uses the interface as a contract.
The effect is that both can work in parallel and compile their code.

The third category expresses a way of seeing the interface as a data type
from which it is possible to create reference variables. The dimension of
understanding regards the reference type’s relations to interfaces, classes,
objects, and reference variables. Let the students create such variables and
let them try to create an object. First using the interface, then using a class
that has the proper methods but did not sign the contract, and last using the
class that actually implemented the interface (contrast pattern). They will
discover that they can create objects only from classes and never from inter-
faces. Moreover, that the interface reference only can refer to objects that
explicitly implements the interface. The students will see that if the reference
variable is of interface type, they only can call the methods described by the
interface regardless of which object types it refers to (generalisation pat-
tern). However if the reference variable is of class type, all of the operations
can be called (contrast pattern).

In the most advanced category, the interface represents an open connec-
tion towards any object that implements the interface. The dimension is
about exchangeability and polymorphism. Naturally, we could use the con-
trast pattern and show examples on what is polymorphic and what is not. In
addition, we can use the generalization pattern by keeping the polymorphic
quality of interfaces constant and vary the other dimensions. Let the students
use objects from different classes that share the same interface; objects that
their friends have written, objects from last year students, and the teacher’s
version. Then pass them to a method using method parameters declared as
interface type. Such a method can receive and handle any implementing
object and it will lead towards a deeper understanding of polymorphic be-
haviour, especially if the code calls the objects’ methods and they explicitly
give some kind of evidence for their distinctive character. Here the reference
variable is held invariant while the implementation varies. This variation
shows the possibility to delimit the services of objects, and it will reveal the
polymorphic aspect. It is important to show aspects of dependency between
parts of a program and what the effects are when the dependency is reduced.

One important feature of interfaces is that they constitute a barrier for the
compiler. Changes in the implementing side (the server) can be done without
having to recompile the client side. In order to show these aspects, the appli-

 119

cations must have a critical mass. Otherwise, the discussion will have no
meaning to the students.

One aspect of interfaces we could not find in the data was the possibility
for a class to implement multiple interfaces. This means that the object ful-
fils several specifications that could be overlapping or exclusive. This could
apply for a product object that is handled by several clients in a program. A
client might not be allowed to call all of the operations of the product, and
not the same operations as the other clients. Rather, they should only have a
limited access. The producer might only call the operation makeProduct, the
salesman might only call the operation setPrice, and the user should only
call the operation useProduct. This can be achieved by using different inter-
faces that are handed out to the corresponding clients. The implementing
class for the product implements all of the interfaces. At the same time, there
can be many classes that implement different products but they use the same
interfaces. This is a situation where there is a variation in two dimensions at
the same time. One object can be referenced by different interface variables
and at the same time, the object’s concrete type can vary though the many
possible implementations. This is an example of the variation pattern fusion,
and I suggest that this kind of exercises should not be introduced before the
students have a rich understanding of the different aspects as they appear
while the other aspects are held invariant. After that, they are prepared to
understand the simultaneous variations.

Marton and Tsui (2004) describe learning studies and lesson studies, in
which teachers iteratively plan their lessons together, and in that way im-
prove their way of conducting teaching according to experiences from ac-
complished lessons. The results from studies, such as the one you are read-
ing right now, could widen the intellectual horizon and give important inputs
to the discussion. The categories of description combined with the teachers
experiences can reveal ways of understanding, and ways of how to discern,
the different dimensions involved in the learning process.

11.3 Awareness of the industrial history and software
engineering

The concept “interface” is a phenomenon full of nuances. Certainly, we can
conceive it concretely, but we can also understand it in considerably more
advanced and abstract ways. Discussions of how we could utilize interfaces
would be an example of “object-oriented programming philosophy,” and we
should consider if, and when, we should introduce such a philosophy discus-
sion in our courses. We can discuss and understand the principle to “program
to an interface” by the industry’s needs and long experience of standardiza-
tion and control.

 120

The industrial history witnesses of several crises and revolutions that in
one way or another relate to control (Beniger, 1985). During the end of the
twentieth century, the use of computers accelerated at a raging speed, and
this accentuated the need for a control over the process of software devel-
opment. The object-oriented paradigm took one leap towards a better way to
structure, standardize, and communicate software. An interface in Java
represents standardization in mini format, and it provides the ability to sepa-
rate components from each other and make them as independent as possible.

In a historic perspective, this can be compared with how Henry Ford
turned the automobile industry from its craftsmanlike production into an
industrial production, where the knowledge that previously was a trade se-
cret was systematically distilled, analysed and then built-in to artefacts and
the entire production machinery. The students, who in the beginning of their
education take a personal and craftsmanlike approach to programming, quite
naturally, need an understanding of the consequences the industry (or pro-
gramming community) would suffer if we do not produce software in a pro-
fessional (standardized) manner. We cannot allow software to be personal
secrets that only the individual programmer can understand and explain. We
must make sure that we do not teach programming in a “pre-Ford” manner.
Java’s interface is one of the artefacts we can use to shed light upon and
emphasize the connection between system analysis and design on one hand,
and programming on the other.

“Design patterns” (Gamma et al., 1995) are named, “smart” standard so-
lutions of design problems that often occur in software development proc-
esses. I suggest that we involve them early in the courses, as they can be a
good basis for discussions and an intellectual challenge for both students and
teachers, and we need more of discussions in programming education. An
example of a basic pattern is the “Bridge Design Pattern”, which describes
the technique to use an interface between a client and a server, so often re-
ferred to in this text.

11.4 The voice of the researcher and the teacher
The work with this study has affected me in many ways. The interviews with
the students were worthwhile, and I wish that all teachers would get a chance
to discuss with their students in a similar way. Now, I am more aware of the
variation within and between student groups, and the different ways students
consider and approach programming. My view of the studied concepts has
changed, and my view of how others experience them has changed, and
naturally, it will affect how I will teach these topics in the future. For one
thing, it is crucial to make a serious effort to help students understand the
real benefits, the smartness, and the reasons for many of the concepts we
teach, which we often take for granted that the students understand.

 121

I have learnt much from what the students told me. Especially Cia, Dan
and Joe gave me many moments of thought. Cia with her many clever ideas,
who was hindered by her stubbornness when she never even wanted to run
the software. Joe with his smart, elegant and complete solution of the prob-
lem, who, as it turned out, had experience from working professionally in the
field. Finally, Dan gave me much to consider when he told me of his feeling
of being outside the “programming culture”.

Many Swedish universities are currently adapting their courses according
to the “Bologna model”. This revolutionary process transforms the course
plans from being content-oriented towards a focus on the desired learning
outcomes. John Biggs, the founder of the SOLO taxonomy, claims that the
courses and all teaching activities should be designed using “constructive
alignment” (Biggs, 2003). This means that we should align the assessments,
examinations and all other activities, with the goals for the learning out-
comes. It would then automatically follow that the students’ activities would
focus on what really matters. The key is hence to make the learning out-
comes very clear and to adapt all the activities accordingly. For instance, in
relation to the Java interface in this study, this means that the learning out-
come for that particular concept must be made explicit, and that the students’
activities and understanding are controlled by assessment and examination.
In this case, it is important to formulate the expected learning outcomes on
empirical results, and therefore studies that concern students’ experiences
are valuable.

 122

12 Conclusions

In Chapter 1, I formulated a number of research questions, which repre-
sented the starting-point of this study. Throughout the work, I have tried to
answer these questions, and in this chapter, I will summarize my conclu-
sions.

12.1 Experiences and understandings of concepts
How do students experience and describe concepts that relate to program-
ming in the large?

On a collective level, we have seen that students are aware of several dif-
ferent dimensions of understanding interfaces, plugins and the software sys-
tem. The surface level of understanding relates interfaces with texts, plugins
with small programs, and the system with a black box. These understandings
do not have many connections with each other. However, the deep levels of
understanding are integrated with each other, as they all are aspects of a
holistic view of the software and related concepts that reflects a professional
view on software development. This view involves the motives for using
interfaces and plugins in the system.

12.1.1 Interface
The students, on collective level, describe the concept interface as:

• To-do list
• Content declaration
• Data type and reference
• Open connection

The results show that there is a depth in the interface concept and that
there are several qualitatively different ways to understand it. At least three
of the four categories of description contribute with something fruitful to the
understanding of object-orientation, and we should take advantage of them
in the computer science education.

There are aspects of interfaces that did not appear in the interviews. One
example of this is Java’s way to gain the advantages and avoid the disadvan-
tages of multiple inheritance, and an explanation for the absence could be

 123

that the courses only covered it theoretically, and neither was it a salient
feature of the experiment’s software.

12.1.2 Plugin
The plugin concept is not treated explicitly in our courses (at the present),
and thereby, the concept’s meaning to the students probably originated from
informal learning environments, or the students’ own experiences of their
mission assigned a meaning to the concept. The students described the
plugin concept in two different ways:

• As a small program
• As a part of a conceptual model

There are points in common with the descriptions of the interface concept,
and the way to describe plugin as “a part of a conceptual model” has strong
relations to the description of interface as an “open connection.” This is no
surprise, as the plugins in the system utilize interfaces in the “open connec-
tion” sense and thereby interweaves with each other.

12.1.3 The System
The analysis of the students’ descriptions of the software system has resulted
in three qualitatively distinct categories:

• The system is described in terms of what an end-user can do, and
what the system can do for her (the purpose expressed from the
end-user’s point of view)

• The system is described as constituted by collaborating parts, cli-
ent, server, and database, which together can do the above.

• The system is described as dynamic, adaptable, extendable, and
maintainable, due to the way the parts are structured.

The third description category combines the most advanced ways to ex-
perience the interface and the plugin concept to a holistic view of the system.
The descriptions consider the design of the system and its consequences for
the various involved roles associated with the system.

12.2 Successful strategies
Are there typical behaviours when students face problems of this type?

We have tried to find typical behaviours, and we saw that the students be-
haved in three typical ways. Some used what we call a “hands off” approach,
in which the students tried to understand only by reading, and they did not
start to program (some did not even run the software). Others used a “water-
fall” approach. They read and started to sketch design and wrote some code.
But they could never run their code. Those who used a “prototype” approach

 124

copied a plugin, inserted the copy in the system, they could see what hap-
pened, and could gradually modify their code.

Working with prototypes, and gradually developing them seems to be a
successful and effective strategy in a task like the one in this study. The al-
ternation between making some changes in the code on one hand, and exe-
cuting it to see the effects, on the other hand, motivates, and stimulates for
an understanding of the system. In addition, the system confirms that the
students have understood it the right way. For most students, it was very
important to try to run the system in order to “see” how it worked and get a
better understanding of what they were supposed to do. Besides, a customer
would probably appreciate to see an executable and visible prototype, at any
time.

Trying to complete the mission by writing program code only, not even
trying to compile the code, turned out to be an unsuccessful method. Al-
though these students had come a long way in their coding, the presumed
time-estimate for error corrections would be unreasonably high, due to the
many compile errors they probably would get if they should compile every-
thing in one big chunk. In this way, they neglected to use the compiler as a
valuable resource in an early stage, as they only used it as a code translator
in the final stage.

Naturally, yet another strategy was to ask for help, and in a real situation
it is important to dare to ask for it, when it is legitimate. However, admitting
that one cannot do it by oneself would imply a loss of prestige. To accentu-
ate this feeling, it was only possible to get help at two times during the ex-
periment, and only two persons used this possibility.

Are there connections between conceptual understanding and the practical
abilities to program in the large?

One conclusion of this study is that concept comprehension connects to
the practical skills that are required to be successful in programming. On an
individual level, we can conclude that those who almost completed the mis-
sion also expressed a good understanding of interfaces, plugins, and could
explain how the system really worked. The only student who actually com-
pleted the mission described the involved concepts in a way that reflects a
comprehensive view. Those individuals, who only expressed their experi-
ence of interface as in the first category, did not manage to solve their task.

On the other hand, without having expressed the most advanced under-
standing, some students managed to solve much of the task anyway, thanks
to a successful strategy. Without an effective strategy, they failed.

 125

12.3 The outcome of the task
Are the students well prepared for working with extensive software, in other
words, is the education relevant for the profession?

It is reasonable to conclude that some students were well prepared. Only
one student managed to complete the mission to obtain a working solution,
which was something of an achievement. However, this student had worked
with programming before he started to study. Some of the students used an
ineffective strategy and some did not give comprehensive descriptions of the
concepts. Two students were stuck and seemed to have poor skills in Java
programming and witnessed of low self-esteem, and poor skills.

Five out of eleven came up with a visual (executable) result, and they had
started to implement the logical functionality. In a couple of cases, the stu-
dents had started to write code, but they could not execute it.

I conclude that the students need more training in reading software, docu-
mentation, and in seeing practical use for theoretical concepts.

12.4 Implications for teaching and learning
If we can find any answers to the questions above, how can we use them in
our teaching?

I agree with Schmolitzky (2004), who advocates that we should introduce
interfaces early in programming courses because it is a powerful concept that
enables teachers and learners to reflect on dependency, responsibility and
flexibility without the machinery of inheritance and subtypes. These topics
are central features of a professional perspective on software development
and it is important to address them explicitly. Moreover, as Sicilia (2006)
points out, we should describe design situations where the use of interfaces
stands out as a motivated concept to use.

One conclusion from the experiment is that the students probably would
benefit from more training in dealing with this kind of situations. The stu-
dents liked to participate in the role-play, and were really engaged in the
work. They thought that the experiment gave them a deeper understanding of
software and involved concepts, such as using interfaces as bridges towards
plugins. Therefore, using various tasks in large-scale software could be a
stimulating and fruitful element in programming courses (see Dalbey, 1998).

I suggest that we explicitly can use the description categories and the di-
mensions they open for the theoretical part of teaching. For instance, we can
ask the students to discuss and reflect on these ways to understand interfaces.
In the practical parts we can design exercises that makes students discern the
dimensions of understanding interfaces, by variations (Marton and Tsui,
2004) of how interfaces are used and not. Plugins could be a topic in a

 126

course that could be an interesting experience for students, especially if they
design their own.

If we follow the hierarchic structure in our outcome spaces, we can see
how focus shifts from being aimed at writing a certain code, via various se-
mantic meanings in design-time and run-time, and finally aiming towards
how the program’s structure affects the surrounding world. It is this under-
standing of the wholeness we want to promote, and the experiment has
shown us that if we provide students with a realistic and complex task, they
will try to understand it, and in most cases, abstract concepts will get mean-
ing in a situated context.

To make it a lasting and meaningful experience, I suggest that we cooper-
ate with the industry to get ideas and perhaps even sample software from
them. Concepts are easier to understand and remember if the students can
relate them to situations where they appear as meaningful and efficient tools
for writing great code.

12.5 Plans for future work
This study gave some answers concerning students’ behaviours and ap-
proaches, but I think there is much more to learn about how students act
when they solve programming in the large problems. It is also interesting
how students use and reason about strategies, concepts and terminology in
order to improve teaching in these regards.

In a continuing study, I would like to video tape students working in
pairs, and follow up their work with stimulated recall interviews. It would be
very interesting to integrate this technique for data collection in a course and
follow how the students evolve during the course.

What is software and what does it mean to work with software? It would
be interesting to study how students answer these questions in different study
programmes and in different stages of their education. How do the descrip-
tions change as the students are affected by their studies and the cultures
they meet?

The third question I would like to investigate is what alumni students, at
work, think were the most valuable lessons the learnt from their studies. In
addition, what lessons they did not learn, what knowledge or skills they
lacked when they started to work. Is that something we can improve in our
education of professional software developers?

 127

13 References

Abrandt Dahlgren, M. (2006). From senior student to novice worker: learning trajec-
tories in political science, psychology and mechanical engineering. Studies in
Higher Education. Vol. 31, No. 5, pp. 569-586.

Ben-Ari, M. (2004). Situated Learning in Computer Science Education. Computer
Science Education. Vol. 14, No. 2, pp. 85-100.

Ben-David Kolikant, Y. (2004). Learning Concurrency as an Entry Point to the
Community of Computer Science Practitioners. Journal of Computers in
Mathematics and Science Teaching. 23(1), pp. 21-46.

Beniger, J. R. (1985). The Control Revolution: Technical and Economic Origins of
the Information Society. Cambridge, MA: Harvard University Press.

Berglund, A. (2005). Learning computer systems in a distributed project course.
Department of Information Technology. Uppsala, Sweden.

Berglund, A., Daniels, M., & Pears, A. (2006). Qualitative Research Projects in
Computing Education Research: An Overview. In D., Tolhurst and Samuel
Mann (Eds.) Conferences in Research in Practise in Information Technology,
Vol. 52. Australian Computer Society, Inc.

Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning. The SOLO
Taxonomy (Structure of the Observed Learning Outcome). New York: Aca-
demic Press.

Biggs, J. B. (2003). Teaching For Quality Learning At University. What the Student
Does. Milton Keynes, UK: Open University Press.

Bloom, B.S. (1953). Thought Processes in Lectures and Discussions. Journal of
General Education. Vol. 7, No. 3, pp. 160-169.

Bloom, B. S. (Ed.) (1984). Taxonomy of Educational Objectives. Book 1: Cognitive
Domain. The Classification of Educational Goals. New York: Longman.

Booth, S. (1992). Learning to program: A phenomenogaphic perspective. Acta Uni-
versitatis Gothoburgensis 89:1992. Göteborg, Sweden: Acta Universitatis Got-
hoburgensis.

Booth, S. (2001a). Learning Computer Science and Engineering in Context. Com-
puter Science Education. Vol. 11, No. 3, pp. 169-188.

Booth, S. (2001b). Learning to program as entering the datalogical culture: a phe-
nomenographic exploration. Unpublished paper presented at the 9th EARLI con-
ference, Fribourg, Switzerland, August 2001.

Bowden, J. (2000). The nature of phenomenographic research. In J. Bowden and E.
Walsh (Eds.) Phenomenography. Melbourne: RMIT University Press.

Bruce, C., Buckingham, L., Hynd, J., McMahon. C., Roggenkamp, M., & Stoodley,
I. (2004). Ways of Experiencing the Act of Learning to Program: A Phe-
nomenographic Study of Introductionary Programming Students at University.
Journal of Information Technology Education. Vol. 3, pp. 143-160.

Budd, T. A. (2002). An Introduction to Object-Oriented programming (3rd ed.).
Boston: Addison Wesley.

 128

Clancy, M., Stasko, J., Guzdial, M., Fincher, S, & Dale, N. (2001). Models and areas
for CS Education Research. Computer Science Education. Vol. 11, No. 4, pp.
323-341.

Cope, C. J. (2006). Beneath the surface: The experience of learning about informa-
tion systems. Santa Rosa: Informing Science Press.

Dalbey, J. (1998). The Software Engineering Apprentice. Computer Science Educa-
tion. Vol. 8, No. 1, pp. 16-26.

Denzin, N., & Lincoln, Y. S. (Eds.). (1994). Handbook of qualitative research. Lon-
don: Sage Publications.

DeRemer, F., & Kron, H. (1975). Programming-in-the large versus programming-in-
the-small. In Proceedings of the international conference on Reliable software,
Volume 10 Issue 6, pp. 114-121. New York: ACM Press.

Eckerdal, A. (2006). Novice Students´ Learning of Object-Oriented Programming.
Department of Information Technology. Uppsala University, Sweden.

Ekstedt, E. (1988). Humankapital i brytningstid: kunskapsuppbyggnad och förnyelse
för företag. Stockholm: Allmänna förlaget, Publica.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns – Ele-
ments of Reusable Software. Addison-Wesley.

Gunderman, R. E. (1988). A glimpse into a program maintenance. In G. Parikh
(Ed.), Techniques of program and system maintenance (pp. 55-59). Wellesley,
MA: QED Information Sciences Inc.

Hadjerrouit, S. (1999). A constructivist approach to object-oriented design and pro-
gramming. ACM SIGCSE Bulletin, Vol. 30, No. 3, pp. 171 – 174.

Hadjerrouit, S. (2005). Constructivism as Guiding Philosophy for Software Engi-
neering Education. ACM SIGCSE Bulletin. Vol. 37, No. 4, pp. 45-49.

Haglund, B. (2003). Stimulated Recall. Några anteckningar om en metod att genere-
ra data. Pedagogisk Forskning i Sverige. 8th Year, No. 3, pp. 145-157.

Hazzan, O. (2003). How Students Attempt to Reduce Abstraction in Learning of
Mathematics and in the learning of Computer Science. Computer Science Edu-
cation. Vol. 13, No. 2, pp. 95-122.

Holmboe, C., McIver, L., & Carlisle, G. (2001). Research agenda for Computer
Science Education. In G. Kadoda (Ed.), Proceedings of the 13th Workshop of the
Psychology of Programming Interest Group, pp. 207-223. Bournemouth. UK.

Jaccheri, L., & Morasca, S. (2006). On the Importance of Dialogue with Industry
about Software Engineering Education. In Proceedings of the 2006 interna-
tional workshop on Summit on software engineering education, Shanghai,
China, pp. 5-8. ACM Press.

Jaccheri, L. (2001). Software quality and software process improvement course
based on interaction with the local software industry. Computer Applications in
Engineering Education, Vol. 9, No. 4, pp. 265-272. John Wiley and Sons.

Kajko-Mattsson, M., et al. (2001). Developing CM3: Maintainers’ Education and
Training at ABB. Computer Science Education. Vol. 12, No. 1-2, pp. 57-89.

Klein, H. K., & Meyers, M. D. (1999). A Set of Principles for Conducting and
Evaluating Interpretive Field Studies in Information Systems. MIS Quarterly,
Vol. 23, No. 1, pp. 67-93.

Kölling, M. & Barnes, D. J. (2004). Enhancing Apprentice-Based Learning of Java.
ACM SIGCSE Bulletin. Vol. 36, No. 1, pp. 286-290.

Lave, J., & Wenger, E. (1991). Situated Learning: Legitimate peripheral participa-
tion. Cambridge: Cambridge University Press.

Lethbridge, T. C. (1998). A Survey of the Relevance of Computer Science and
Software Engineering Education. In Proceedings of the 11th Conference of Soft-

 129

ware Education & Training. IEEE Computer Society Press, February 1998, pp.
44-55.

Lincoln Y. S., & Guba E. G. (1985). Naturalistic inquiry. Newbury Park, CA: Sage.
Marton, F., and Säljö, R. (1976a). On Qualitative Differences in Learning – 1: Out-

come and Process. British Journal of Educational Psychology. Vol. 46, pp. 4-
11. British Psychological Society.

Marton, F., and Säljö, R. (1976b). On Qualitative Differences in Learning – 2: Out-
come as a function of the learner’s conception of the task. British Journal of
Educational Psychology. Vol. 46, pp. 115-127. British Psychological Society.

Marton, F., Hounsell, D., & Entwistle, N. (Eds.) (1986a). Hur vi lär. Stockholm:
Rabén & Sjögren.

Marton, F. (1986b). Phenomenography – a research approach to investigating differ-
ent understandings of reality. Journal of Thought. Vol. 21, No. 3, pp. 28-49.

Marton, F. (2000). The structure of awareness. In J. Bowden and E. Walsh (Eds.)
Phenomenography. Melbourne: RMIT University Press.

Marton, F., & Pang, M. F. (2006). On Some Necessary Conditions of Learning. The
Journal of Learning Sciences. Vol. 15, No. 2, pp. 193-220. Mahwah, New Jer-
sey: Lawrence Erlbaum Associates, Inc.

Marton, F., & Booth, S. (1997). Learning and Awareness. Mahwah, New Jersey:
Lawrence Erlbaum Associates, Inc.

Marton, F., & Tsui, A. B. M. (2004). Classroom discourse and the Space of Learn-
ing. Mahwah, New Jersey: Lawrence Erlbaum Associates, Inc.

Muhr, T. (2004). User’s Manual for ATLAS.ti 5.0, 2nd Edition. Berlin: Scientific
Software Development.

Mulholland, J., & Wallace, J. (2003). Strength, Sharing and Service: restorying and
the legitimation of research texts. British Educational Research Journal. Vol.
29, No. 1, pp. 5-23.

Parnas, D. L. (1998). Software Engineering programmes are not computer science
programmes. Annals of Software Engineering 6. pp.19-37.

Pears, A., & Daniels, M. (2003). Structuring CSEd Research Studies: Connecting
the Pieces. ACM Conference on Innovation and Technology into Computer Sci-
ence Education, Thessaloniki, Greece, June 2003.

Richardson, J. T. E. (1999). The Concepts and Methods of Phenomenographic Re-
search. Review of Educational Research. Vol. 69, No. 1, pp. 53-82.

Robins, A., Rountree, J., & Rountree, N. (2003) Learning and Teaching Program-
ming: A Review and Discussion. Computer Science Education. Vol. 13, No. 2,
pp. 137-172.

Schmolitzky, A. (2004). Educators’ symposium: “Objects first, interfaces next” or
interfaces before inheritance. In Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applica-
tions, pp. 64-67. OOPSLA 2004. ACM Press.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on
processes and objects as different sides of the same coin. Educational Studies in
Mathematics. Vol. 22, No. 1, pp. 1-36.

Sicilia, M-Á. (2006). Strategies for Teaching Object-Oriented Concepts with Java.
Computer Science Education. Vol. 16, No. 1, pp. 1-18.

Skrien, D. (2003). Learning Appreciation for Design Patterns by Doing it the Hard
Way First. Computer Science Education. Vol. 13, No. 4, pp. 305-313.

Steimann, F., Siberski, W., & Kühne, T. (2003). Programming techniques: Towards
the systematic use of interfaces in JAVA programming, In Proceedings of the
2nd international conference on Principles and practice of programming in
Java PPPJ '03. Computer Science Press, Inc.

 130

Stroustrup, B. (1997). The C++ Programming Language (3rd ed.). Reading, Massa-
chussets: Addison Wesley.

Tvedt, J. D., Tesoriero, R., & Gary, K. A. (2002). The Software Factory: An Under-
graduate Computer Science Curriculum. Computer Science Education. Vol. 12,
No. 1-2, pp. 91-117.

Vaughn, Jr, R. B. (2001). Teaching Industrial Practices in an Undergraduate Soft-
ware Engineering Course. Computer Science Education. Vol. 11, No. 1, pp. 21-
32.

Walsh, E. (2000). Phenomenographic analysis of interview transcripts. In J. Bowden
and E. Walsh (Eds.) Phenomenography. Melbourne: RMIT University Press.

Åkerlind, G. S. (2005). Variation and commonality in phenomenographic research
methods. Higher Education Research & Development. Vol. 24, No 4, pp. 321-
334.

 131

14 Appendix A

14.1 Word list
Abstraction Abstraction is the fundamental concept within object-orientation. A soft-

ware object can be an abstraction of some real phenomenon, e.g., an
invoice, and its corresponding class is a meta abstraction that describes
the object. The class is a model of what characterizes the invoices in the
system that is developed. A class can also model less tangible phenom-
ena, such as equations, or internal parts of the machinery like controls or
object factories. Abstraction can also involve levels of abstraction in the
code, starting from general and easy to use classes, and ending in special-
ized, concrete classes, and similarly for calls to operations. One strives to
write code in abstract manner, as it gets less dependent of the circum-
stances in the specific case. For instance, in a fruit store software, the
class Fruit can be designed at abstract level, and the parts of the program
that only use the general fruit aspects should only be aware of this meta
abstraction of fruits, and its code will be short and robust. Other parts of
the program, which need to use the specific fruits, use subtypes of the
Fruit class, e.g., Banana and Orange. One of the advantages is the possi-
bility to add new fruits, such as Apple and Kiwi, with minimal or no
changes in the program. See also polymorphism and dynamic binding.

Attribute An object has various properties with values, e.g., speed, height, width,
temper. Properties that are visible from outside the object is called attrib-
utes (or properties), and are internally implemented in the class as vari-
ables and usually have designated access methods.

Class A class is a definition of a family of objects. Its written program text
defines a list of the attributes (data) and methods (program code that does
something) needed for the objects of this type. Normally, a programmer
defines a class statically in design-time.

Client We use the term client to denote the user perspective or the outside view
of something. The client is someone or something that uses something
that a server provides. The client can be another class, another part of the
system, another programmer, and so forth.

Compile To compile something refers, in our context, to the process that takes
place when a compiler program analyses the source code that a program-
mer has created in text files. If the source code is correct and all the re-
sources it refers to are valid, the compiler translates it in a form that the
computer can execute, and the result is stored in a binary file. In Java, the
Java Virtual Machine (JVM) executes the code virtually.

Compile-time This is the space of time, the specific conditions, and circumstances,
which are associated with the compilation process. See dynamic and
static binding.

Design-time This is the space of time, the conditions, and circumstances, which are

 132

associated with the sketching and planning of a program or system, as the
solution for some need. Usually the result of this work is part of the soft-
ware or documentation. Sometime design-time and implementation-time
are concurrent, as in the case of extreme programming.

Dynamic bind-
ing

Dynamic binding, or late binding, means that the logical bindings be-
tween elements of the program (client and provider) are undefined until
their actual use in run-time, i.e., when a specific method is called. This
implies that an object handle (a reference variable in Java) can be bound
to an object without being bound to its specific type. Nevertheless, there
is a static binding between the abstract types of the handle and the object,
which implies that the compiler verifies their compatibility. For example,
a Vehicle handle can refer to all objects that descend from that Vehicle
type by inheritance. Via the handle, we can call only the specified meth-
ods in the super type, but the different types of descending objects can
implement of these methods differently, provided they have the same
signature. Hence, the run-time situation decides which specific method is
bound to the method call. Normally in Java, all method calls use dynami-
cal-binding.

Entity object An entity object represents something “real” and includes some form of
data. It is commonly associated with a row in a database table. Entity
objects have a passive role, in contrast to the control objects that defines
the program flow in a program.

Implement To implement something is to make it happen, to pursue the program-
ming job, often according to a plan or algorithm.

Implementation In this context, implementation means to write code that defines behav-
iour and representation, i.e., program code for classes, coder for their
operations and declaration of variables, et cetera.

Implementation-
time

In my definition, it is the time space, or stage, when the programmer
explicitly implements the design in form of program code. However, the
activities could be scattered, depending on the way people work.

Inheritance Inheritance in Java means that a class can include all of the declarations
and contents in another class, simply by saying that it wants to “extend”
the other class. Naturally, the extending class can define an unlimited
number of own methods and attributes. It can also choose to override on
or more methods that descend from the inherited class. This would con-
ceal the old version and replace it with the new version. In other words,
that is how to utilize polymorphism. The extended class (the original) is
called a super class, and the extending class is called a sub class. Note-
worthy is, that a reference variable of super type is compatible with both
types, while a reference variable of sub type only would be compatible to
the subclass or its sub classes.

Interface Interface can have many meanings, but in this context, it generally refers
to the accessible methods in an object that an extern client can call. Java
puts the concept in concrete form, as it is a construct of its own in the
language. Java suggests the keyword interface to define an incomplete
type that specifies a set of operations. All classes that implement this type
by explicit declaration and implementation surely have the specified
methods, and are therefore to regard as implementations of the type. See
polymorphism.

Method In the object-oriented paradigm, the word “method” is synonymous with
the words operation, function, and procedure, stemming from other para-
digms. A public method is a sub-program that a client can issue, or a
private method that only methods in the same class can call. Methods are
specified by interfaces or classes, and are implemented only in classes.

Object An object is an encapsulation of data and functionality (methods) that
exists in run-time only. The object is a run-time representation for a

 133

“thing” that might have a correspondence to the real world, or be an
internal abstraction. The object is an instance of its class, which defines
all of its structure, but not the data contents. The objects do all of the
action in an executing program, as it is their calling methods between
themselves, that actually is what “is alive” during run-time.

Polymorphism The word polymorphism comes from the Greek words poly (several)
and morph (shape), and it represents a very important form of abstraction
in object-oriented languages. It means that a piece of program code that
use general or abstract variables can handle various types of concrete
object, without having to consider their specific implementations. This
would imply that an unchanged line of code, can cause an unlimited
variation of actions in run-time, due to what is on “the other end.” In
Java, this is utilized by inheritance of classes, or by implementation of
interfaces. If the programmers use a super-type to declare their handle,
they can use it to handle various versions of objects.

Reference A reference in Java is the association to an object, and we often inter-
prete this as the object’s address in memory.

Reference vari-
able

A reference variable is a variable that can store references to objects of a
specific type. I Java, this is the only way to access and handle objects.
The term handle is often used both for references and reference variables.

Reification The term reification denotes the process of when something theoretical
or abstract materializes. A novice probably understands the concept equa-
tion as something abstract and undefined, but the experienced mathemati-
cian has reified the concept into a mathematical object, something with a
clear structure. Nevertheless, it is still an abstract concept of course.

Run-time This is the space of time, the conditions, and circumstances, which are
associated to the execution of a program. It comprises the notion of the
objects’ existence in the memory, how they are structured, what methods
that are used, and in which order objects call them, et cetera.

Server The term server denotes something that provides for a client. What it
provides can be any kind of services or operations. As it is a flexible
notion, the server can be a computer, but it could also be a running pro-
gram, a piece of code, or an object.

Signature A method’s signature consists of the method’s return type, its name, and
its ordered set of declared parameters. It is the signature, which makes the
particular method uniquely identifiable, together with its class scope. In
Java, an interface is actually a set of signatures. All classes that imple-
ment the interface have at least a set of operations that matches the signa-
tures specified by the interface.

Static binding Static binding, or early binding, denotes the bindings between elements
in a system that the compiler does, and unless the program is recompiled,
the bindings remain unchanged. The more the occurrences of static bind-
ings that exist between the parts of a system, the harder it gets to change,
adapt, and modify the system at a alter stage. Certainly, a program that
extensively utilizes static binding may execute faster, however it will not
be robust to changes and new conditions.

 134

15 Appendix B

15.1 About object-oriented programming
A central problem in programming and software development is that the
dependencies between different logical parts in a system become too exten-
sive and intertwined, and hence, changes in one part can lead to a need for
compensational actions in many other parts of the system, having large costs
as an unwanted effect. Moreover, when a part allows a misuse, not aligned
with the designer’s intentions, changes in it can lead to malfunctions in other
parts. Such faulty often remain undiscovered until the system is tested. Natu-
rally, it is possible to design systems in a way that avoids these problems,
but the old imperative programming languages have few support mecha-
nisms and structures to compensate for the problems, which demand a very
thorough planning and individual discipline. The lack of clear structures and
delimitations lead to programs that are too hard to grasp for uninitiated per-
sons. These problems are always present, but in a historic point of view,
something happened during the seventies. As the software industry expanded
and the complexity of the software systems grew, and the demands on the
productivity raised, the problems became so serious that it led to a crisis in
the industry; the software crisis. The costs for development had become too
high, and the time for delivery too long, which the customers experienced as
having to pay all too much for a product that was already out of fashion.

The object-oriented paradigm arose as an evolutionary step and it was a
natural consequence of the complexity problems, and experiences from ear-
lier programming abstractions. The object-oriented languages, or anyway the
popularity of them, came from a need to structure the software better than
before. The language provides features that connect certain parts hard to
each other. The programmers use these features when they encapsulate data
and its associated operations into unities called objects. All data resides in
objects, and the only way to manipulate an object’s data is by using the ob-
ject’s own intrinsic operations, which means that it is only possible to ma-
nipulate data in a controlled manner. In addition, this reduces the semantic
gap between the reality and its representation in the software, as the encapsu-
lated objects can represent objects in the real world. This allows many more
persons to understand the software, also non-technicians. It is possible to

 135

group objects that are naturally involved with each into sub systems, which
follow the principle of high cohesion. Between the sub systems, we can ob-
tain low coupling to minimize the degree of dependency, and in this way, it
is easier to modify or exchange parts of the system. The reinforced, imposed
structure makes it easier to reuse the code in other projects, especially using
inheritance. The object-oriented view makes it possible to increase the ab-
straction level from program code and functions, to something that in a very
powerful way can capture and describe concepts and processes.

15.1.1 The concept of an object
Objects are the things that an object-oriented program handles, and the pro-
gram “is” all about objects asking each other to do things for them, or just
holding other objects “by the hand”. An object represents a model of some-
thing that can be inspired from the real world, such as a person, or something
abstract, such as the Swedish “birth number” (comparable to NIN23 and
SSN24). As there are many persons out there, and many birth numbers, there
would be several objects of the same type in the program. The objects’ tasks
are partly to store information, such as the sequence of digits in the birth
number, but also to provide the operations that can manipulate the informa-
tion. As for an example, there can be an operation to verify if the number is
correct using a checksum algorithm, and an operation to decide whether the
number belongs to a male or a female, and when he or she was born.

The object exists only when the program executes, and when it is born,
using its class as a mould, it is assigned with a reserved area in the memory
at its own disposal, to store its information. To get access to an object, and
actually to keep it alive, you need a handle of some form that keeps track of
the object, similar to a dog’s leash. Through this handle it is possible to
communicate to the object by calling some of its methods according to the
following syntax: “handle.operation().” In strictly typed programming lan-
guages like Java, it is required that the handle, the reference, is compatible
with the object, otherwise it cannot “hold” the object. Namely, the handle
informs the compiler of which are the callable operations, not the object.
Hence, the type of the handle must be the same as for the object, or be a
subtype. This makes it impossible to issue calls to operations that does not
exist in the object, and the compiler verifies it is true.

15.1.2 The concept of a class
A class is what defines a common type for a family of objects. In Java, the
programmer puts the definition of a class in a text file according to a specific

23 The British National Insurance Number
24 The USA’s Social Security Number

 136

syntax, which involves its name, its need for information storage, and its
implemented operations. The definition of the class actually creates a new
data-type that the software can utilize to make handles and objects, and when
a class is complete and tested, we can reuse it repeatedly. In this way, an
abstract model of a real life phenomenon turns into a component we can use
to construct new software.

In the object-oriented languages, there are mechanisms that enable us to
create derived classes, or sub-classes. Derived types inherit their base con-
figuration from an existing class, which means that a sub-class declares that
all content in a super-class also is part of the sub-class. However, this does
not literally copy the source code content into the derived class, as this is an
entirely abstract mechanism. When the programmer continues to implement
the derived type, he or she can choose to refine some of the inherited opera-
tions or take them all as they come. The derived class, modified or not, is
still compatible with the inherited class, and the advantage is that it is possi-
ble to exchange components with new derived versions and use it exactly in
the same way as before, which means that you do not have to make any ad-
justment in other parts of the system. In this manner, it is possible to isolate
changes so that they give a minimal effect on existing code.

Well-designed software can handle heterogeneous object types. Programs
designed for that purpose usually introduce base classes that represent the
least common denominator for a whole hierarchy of classes belonging to the
same group. Imagine that we are to develop a piece of software that handles
a motor-vehicle register, which can handle many different types of vehicles.
It is appropriate to create a base class Vehicle that has all the common fea-
tures of vehicles. Now we can use this type when we implement the greater
part of the system. Then, whenever the need occurs, it is possible to create
new classes that inherit the base class, such as Automobile, Lorry, or Motor-
bike, and the system would accept them immediately. When a program is
expected to handle different object types in a common manner, and therefore
does not have to know about the explicit types of the objects, it is a good
reason to introduce this polymorphic technique.

15.1.3 The concept of interface
The everyday meaning of interface is the features of something’s connec-
tions to the rest of the world. Related to the world of computers, people
probably associate the word with graphical user interfaces (GUI), or the
parts of a program that communicate with users or other machines. We can
also relate it to communication protocols and physical interface, such as the
USB interface. However, when we enter the world of software and pro-
gramming, we rather allude to the abstract links between different parts on
the “inside” of computer programs, and hence, it is something that concerns
programmers, not end-users. A software component’s interface is an abstrac-

 137

tion that alludes to the collection of operations that are available to others on
“the outside.” When programmers speak about an object’s interface, they
mean “the public interface,” which involves precisely the parts of the objects
code that others are allowed to call. However, programmers have used the
concept long time before the object-oriented languages entered the scene.
Also in older languages, there are mechanisms that can separate the public
and the internal parts in a module. A convenient way to keep the information
about external module’s accessible functions and variables is to put these
declarations in special file that can be loaded by any module that needs to
use the specified operations.

Authorities in literature, emphasize that we should separate our plans for
the system from its implementation (which would imply that we actually
have plans for our work…). We can separate the two terms specification and
implementation by using the concept interface, in the sense that it is some-
thing that specifies which operations the code can offer, while the class con-
stitutes the implementation that explicitly defines the operations. The part
that wants to use the specified operations should never bind immediately to
the supplier. Instead, it should always go through the interface. We should
use this as a general guidance, and always “program to an interface” (Budd,
2002; Gamma et al., 1995, p.18).

The programming language Java has two principal syntactic units, the
commonly known class, and the interface, which is a modern reification of
the abstract interface concept, introduced as a new keyword in the language.
The interface structures its code similarly to the class, but it does not have
any variables or method bodies. A class implements and defines explicitly
the objects’ constitution, and it defines a data type. With the interface con-
struct, we can separate the “what and how aspects” and only specify the sig-
natures of a number of operations, that is to say what is included but not how
to implement the operations; the public interface of an object. In addition,
we can say that the interface enables a refined version of the polymorphism
concept by its feature of inheritance of specification instead of inheritance of
implementation.

This becomes even more interesting when we realize that the interface
also defines a data type, and that is as with the class is possible to declare
reference variables of this type. These variables can handle any object that
has a compatible public interface, but having the proper set of operations is
not enough. In addition, the class of the object in question must declare that
it implements the interface. The class makes this declaration by the keyword
implements in the class definition, and hence, the class has pledged itself to
contain the operations that the interface specifies. In this way, we split up
tight connections between objects and we insert the interface in between, as
a “proxy” or “middleman”, which conceals the “real” object behind the cur-
tain, and this makes it possible to exchange the objects (see Figure 7). By
using interfaces and implementations of them, we can now achieve poly-

 138

morphism without code inheritance. It also leads to looser connections be-
tween the objects that we want to use polymorphic, as they do not need to be
part of a hierarchy where all classes inherit from a common base class. In
inheritance hierarchies, all classes normally are of “the same kind” as the
code accumulates in the specialized classes. When we use interfaces, the
implementing classes can be very different, because they all provide their
own unique implementations, and what accumulate are the method proto-
types, not code. We should mention that we could utilize this technique in
other languages, as for instance with purely abstract classes in C++, but there
is no support in the language in form of an artefact, we only have the mental
metaphor.

Figure 7. The Java interface encourages programmers to program towards specifica-
tions, instead of being dependent of specific implementations.

 139

16 Appendix C

16.1 Interview questions and themes
The following is a compilation of the themes and questions that we planned
for the interviews. We prepared ourselves for a variation in the individual
interview’s context and theme, and therefore we intentionally did not formu-
late the questions literally.

Theme – the mission
• Describe what you were doing when we stopped the experiment
• Describe what you focused in the beginning… and then…
• Describe how you experienced the entire situation
• Describe your mission
• Describe how the system works and how it is built
• Describe the software’s structure, the packages
• How did you experience my absence, and presence?
• About the documentation of the system
• About the documentation of the code

Theme – interface
• Describe interface
• Describe the ides of using interfaces
• Describe where you use interfaces
• Describe plugin

Theme – learning and problem solving
• What have you learnt from this experience?
• Where did you get your problem solving skills?
• Describe what you would like to learn more about
• Do you like to solve problems – do you approve to take a leap in

the dark?
• Describe how you do when you solve problems. Are there princi-

ples or methods?
• Describe how you go about to write program.
• Describe your experiences of programming and problem solving

 140

• Which obstacles and problems did you meet?
• Tell me of previous experiences of getting stuck
• What got you on the track? Describe your plan to solve the problem
• Describe aha-experiences
• Describe how you usually work, the facilities, the compiler …
• Do you think it is plausible that you will get in a similar situation in

the future?

 141

17 Appendix D

 142

 143

 144

 145

 146

18 Appendix E

18.1 Visible traces of the participants designs
This appendix accounts for the visible evidence that the students left behind.
Some of the students had succeeded to install their plugin to the system, and
where appropriate, we could execute their programs and analyse them, as
their plugins was part of the system’s graphical user interface.

However, among the students who did not make it all the way to an ex-
ecutable plugin, some still left evidence that reveal how they had planned the
graphical layout. Most of those who started to program had copied a similar
plugin’s source code, which contained a sketch of its layout in a comment
block, and hereby, some students were inspired to plan their own layout in
the comment block. Hence, we can study their intended design, also.

Figure 8. Alf copied a class in order to create a plugin of his own, but did not have
time to change much of its design.

Alf was stuck and asked for help to get going, and he was suggested to
look at code in the directory where all the other plugins resided. With this tip
he managed to create the class “MyOwnPluginPanel” by taking a copy of the

 147

existing class “CourseInstancePluginPanel” and then changing some identi-
fier names the code. Then he could compile and execute the program and
install the new plugin module (see Figure 8). After that step was taken, we
can see that he had started to adapt the code to the desired functionality by
changing two of the text labels, in the lower left, to “Person nr:” and “Kur-
skod:”, where it used to say “Instance Code:” and “Instance Speed.” This
was the only changes Alf had time to do, and without the help, he probably
would not have reached this far.

Figure 9. Bea started from the interface PluginPanel, and that is why her plugin
looks so empty.

Bea worked was completely independent in her working and managed to
create a plugin class that was she installed in the system. Apart from the
others who reached as far as to write code, she started from the interface
“PluginPanel” instead of using a class. She copied the list of method specifi-
cations in the interface and completed them into “dummies” in her new
class. This explains why her implementation looks so empty; she has not
even put the title on the tab (see Figure 9). However, she has started to work
on the implementation, as we evidently can see how she has planned for two
combo boxes. Presumably, they are supposed to show data that are con-
nected, one for students and one for course instances. That is a good start,
but it still needs some extra components to make it a well-working solution;
buttons to execute registration and deregistration, for one thing. In addition
to this, there is a logical problem with the two combo boxes. It will work
fine for a registration, as it is easy to select a course instance and one of all
available students. However, for deregistration, it would be much easier if
the combo box listed only the registered students. These wants contradicts
each other and are hard to meet using this design.

 148

Cia’s way to work was unique as she never tried to run the program or
even tried to compile her code. In spite of this, she managed to get fairly
well ahead through her using the interface “PluginPanel” and copying se-
lected parts from other classes. We can see how she designed the layout of
her plugin by looking at her code. In a comment block in the class, she has
sketched how the components should be located in the GUI (see Figure 10).
Here is all we need to select course, select course instance, register, and de-
register. However, it is noteworthy that Cia defined text fields for social
security number, name, and surname for a student, as those data are handled
in a separate part of the program (“StudentsPluginPanel”). The only required
input is to define the student’s social security number, from selecting it in a
list or a combo box, or by entering it manually, which is what uniquely iden-
tifies a student in the database system, and hence the name and surname is
just redundant information for the registration.

/**
 * <p>
 * This {@link studadmin.common.interf.PluginPanel} handles operations on
 * course instances. A combo box shows all available courses.
 * A list shows all existing instances for the selected course.
 * The registrations to course instances can be administered by operations (buttons).
 * <p>
 * Operations:
 *
 * register a student to a new course instance
 * unregister a student to a course instance
 *
 * <p>
 * Layout description:

 * <pre>
 * |---|
 * | (JLabel) select course |
 * | (JComboBox) courses |
 * | (JLabel) course instances |
 * | |-------------------------------------| |
 * | | (JList) | |
 * | | course instances | |
 * | | | |
 * | | | |
 * | | | |
 * | | | |
 * | | | |
 * | | | |
 * | | | |
 * | | | |
 * | |-------------------------------------| |
 * | (JLabel)SSN (JTextField) SSN |
 * | (JLabel)Fname (JTextField) Fname |
 * | (JLabel)Lname (JTextField) Lname |
 * | |
 * | (JButton)register (JButton)unregister |
 * |---|
 * </pre>
 */

Figure 10. Cia made a sketch of the layout in the comments.

Git copied “CourseInstancePluginPanel” precisely as Alf, but did not
make any visible changes as all (see Figure 11).

 149

Figure 11. Git copied an existing plugin but did not change the copy.

Figure 12. Hal planned for a smooth design of the user interface.

Hal never managed to get his class to run even though he copied from the
existing class “CourseInstancePluginPanel”. However, he made a thorough
description of the planned layout in the source file’s comments, and it seems
very well considered (see Figure 12). He saw two combo boxes where you
choose course and course instance. Below the combo boxes, the uppermost
list shows the registered students for the selected course instance. The other
list shows all of the students in the system. To make a registration, you select
a student in the lower list and select a course and its instance. Then you press

 150

the register button, and the student is “moved” to the upper list, which con-
firms the registration. When you want to deregister a student, you select
course and instance as before and then you selects an already registered stu-
dent from the upper list and press the deselect button, and as a confirmation,
the student is moved back to the lower list. This was a very convenient solu-
tion, but sadly, Hal never saw it working.

Joe was the only student who made a complete and working implementa-
tion on time (see Figure 13). He started his work with the code similar to the
most of the students by taking a copy of an existing class, and then started
from the copy by removing parts of the code and by making changes and
additions to it. His solution for the layout was to put a combo box at top, in
which he would list every available course instances in the database. Below
was yet another combo box that in a similar way listed all the students. A list
below the combo boxes showed all registered students. To register a student
you should simply select the course instance and student in the combo boxes
and then press the “add student” button. Rather, if you want to deregister,
you select the course instance in the combo box and the registered student in
the list, and then press the “remove student” button. We have tested Joe’s
solution, and it works precisely as is it supposed to do, all the way to the
database.

Figure 13. Joe’s plugin is operational (we have “blurred” all authentic names).

Ken never could trial run his plugin, but he sketched the layout in the
comments (see Figure 14). His solution has all required components. Two
combo boxes select course and instance, and under them, he locates a list
that shows registered students to the course instance and in the bottom, yet a
combo box containing every available student and buttons for registration
and deregistration.

 151

Figure 14. Ken’s design as shown in the comments.

Leo made comments in the comments, and his plugin “CourseMember-
sPluginPanel” is running. Moreover, when the program executes, the real
thing matches his layout in the comments (see Figure 15 and Figure 16).

/**
 * <p>
 * This {@link studadmin.common.interf.PluginPanel} handles operations on
 * course members. One combo box shows all existing course instances, and
 * another shows all existing students.
 * The course instances can be administered by operations (buttons).
 * <p>
 * Operations:
 *
 * Register a new student on the course instance
 * Remove a student from a course instance
 *
 * <p>
 * Layout description:

 * <pre>
 * |---|
 * | (JLabel) |
 * | (JComboBox) Course Instances |
 * | |
 * | |-------------------------------------| |
 * | | (JList) List of course members | |
 * | | | |
 * | | | |
 * | | | |
 * | | | |
 * | | | |
 * | | | |
 * | | | |
 * | | | |
 * | | | |
 * | |-------------------------------------| |
 * | |
 * | (JLabel) |
 * | (JComboBox) Students |
 * | |
 * | (JButton) (JButton) (JButton) |
* |---|
 * </pre>
 */

Figure 15. Leo’s design as he sketched it in the comments.

 152

His solution of the graphical user interface consists of a combo box that
holds all course instances. Below it, a list shows all the “course members”.
Below the list, yet another combo box contains all of the students in the sys-
tem. If you want to register a student to a course instance, the intention is
that you choose course instance and student in the combo boxes, and then
presses a button. To deregister a student, you choose course instance as pre-
viously, select the student in the list, and press the other button. This solution
would work fine. Unfortunately, he did not implement any of the underlying
functionality in his plugin.

Figure 16. Leo’s plugin as it is seen in the running application.

Recent licentiate theses from the Department of Information Technology

2007-001 Manivasakan Sabesan: Querying Mediated Web Services
2006-012 Stefan Blomkvist: User-Centred Design and Agile Development of IT Systems
2006-011 Åsa Cajander: Values and Perspectives Affecting IT Systems Development and Usability

Work
2006-010 Henrik Johansson: Performance Characterization and Evaluation of Parallel PDE Solvers
2006-009 Eddie Wadbro: Topology Optimization for Acoustic Wave Propagation Problems
2006-008 Agnes Rensfelt: Nonparametric Identification of Viscoelastic Materials
2006-007 Stefan Engblom: Numerical Methods for the Chemical Master Equation
2006-006 Anna Eckerdal: Novice Students’ Learning of Object-Oriented Programming
2006-005 Arvid Kauppi: A Human-Computer Interaction Approach to Train Traffic Control
2006-004 Mikael Erlandsson: Usability in Transportation – Improving the Analysis of Cognitive Work

Tasks
2006-003 Therese Berg: Regular Inference for Reactive Systems
2006-002 Anders Hessel: Model-Based Test Case Selection and Generation for Real-Time Systems
2006-001 Linda Brus: Recursive Black-box Identification of Nonlinear State-space ODE Models
2005-011 Björn Holmberg: Towards Markerless Analysis of Human Motion
2005-010 Paul Sjöberg: Numerical Solution of the Fokker-Planck Approximation of the Chemical

Master Equation
2005-009 Magnus Evestedt: Parameter and State Estimation using Audio and Video Signals
2005-008 Niklas Johansson: Usable IT Systems for Mobile Work
2005-007 Mei Hong: On Two Methods for Identifying Dynamic Errors-in-Variables Systems
2005-006 Erik Bängtsson: Robust Preconditioned Iterative Solution Methods for Large-Scale

Nonsymmetric Problems
2005-005 Peter Nauclér: Modeling and Control of Vibration in Mechanical Structures

Department of Information Technology, Uppsala University, Sweden

