
IT Licentiate theses
2006-006

Novice Students’ Learning of
Object-Oriented Programming

ANNA ECKERDAL

UPPSALA UNIVERSITY
Department of Information Technology

Novice Students’ Learning of
Object-Oriented Programming

BY

ANNA ECKERDAL

October 2006

DIVISION OF SCIENTIFIC COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

UPPSALA UNIVERSITY

UPPSALA

SWEDEN

Dissertation for the degree of Licentiate of Philosophy in Computer Science with
specialization in Computer Science Education Research

at Uppsala University 2006

Novice Students’ Learning of
Object-Oriented Programming

Anna Eckerdal
Anna.Eckerdal@it.uu.se

Division of Scientific Computing
Department of Information Technology

Uppsala University
Box 337

SE-751 05 Uppsala
Sweden

http://www.it.uu.se/

c© Anna Eckerdal 2006
ISSN 1404-5117

Printed by the Department of Information Technology, Uppsala University, Sweden

Abstract

This thesis investigates students’ experiences of learning to program. Learn-
ing to program is a complex activity. It involves elements of learning ab-
stract concepts as well as both learning and using advanced resources like
computers and compilers. The learning experience is affected by factors like
students’ motives to learn and their general understanding of what learning
to program means. These issues form the basis for the four research themes
addressed in this thesis, specifically: students’ experiences of what learning
to program means; how students understand central concepts in program-
ming; how students use and experience help from resources; and students’
motives to learn to program.

The thesis presents a qualitative study on novice students’ experiences
of learning object-oriented programming. Data was collected via semi-
structured interviews. The interviews were analysed mainly using a phe-
nomenographic research approach. The analysis resulted in the formulation
of categories of description of students’ qualitatively different ways to under-
stand what learning to program means. In addition, categories describing
different ways to understand the concepts object and class in object-oriented
programming were formulated. From an educational point of view, these re-
sults can be used to identify aspects of learning to program that are critical
from the students’ perspective.

The analysis of students’ use of resources revealed that some resources
were mainly used in a search-for-meaning way that promotes good learn-
ing, while another group of resources were mainly used in a superficial way.
The two groups of resources seem however to interact with each other when
students take responsibility for their own learning, which in particular char-
acterizes their work with the larger computer assignments. When working
with those, the students describe that both groups of resources were impor-
tant for the learning.

The analysis of students’ descriptions of their motives to learn pinpoints
motives that can enhance learning.

In the study there were students who expressed that they had problems
to know how to go about to study computer programming. This might
indicate problems about knowing how to use available resources efficiently.
Students who do not know how to use resources like the compiler in an ef-
ficient way, will have difficulties to perform assignments, which is expressed
by the students as very important for the learning of concepts. The results
also indicate the importance for educators to provide a learning environment
with a variety of resources which can connect to students’ different motives
to learn, pointed to in the study. In this way all four aspects of the learn-
ing experience examined in the present study are important for students’
learning of object-oriented programming.

ii

Parts of the work presented in this thesis have appeared in publications
after peer review:

• The results in Chapter 4 have been published in a shorter version:

(Eckerdal and Berglund, 2005)

• The results in Chapter 5 have been published in a shorter version:

(Eckerdal and Thune’, 2005)

iii

iv

Acknowledgements

I want to thank my supervisors, Michael Thuné, Uppsala University and
Shirley Booth, Lund University for their support and advice during the pro-
cess that lead to this thesis. I am particularly happy for their encouragement
to try new ideas and methods, still scaffolded to stay within the academic
domain, characterized by a rigorous way to think and work.

I also want to thank my colleagues in the research group at the depart-
ment, particularly Anders Berglund, who has given valuable feedback and
encouragement.

The work behind the thesis would never have been fulfilled without sup-
port from my family, Per, Nils and Olof. In this thank I also include my
mother Anne-Mari Sundin who has encouraged me through the whole work,
and to start it by saying:

Bättre lyss till den sträng som brast än aldrig spänna sin b̊age.

The work with the thesis has been financed by The Swedish Research
Council, and Faculty of Educational Sciences, Uppsala University.

v

vi

Contents

1 Introduction 1
1.1 The research questions . 1
1.2 Descriptions of terms used in the study 2
1.3 Overview of the thesis . 3
1.4 Related work . 3

1.4.1 Students’ learning to program 3
1.4.2 Students’ learning of central concepts 4
1.4.3 Students’ understanding of what it means to learn to

program . 4
1.4.4 Students’ use of resources 4

2 The phenomenographic research approach 8
2.1 The experience of phenomenon 8
2.2 Phenomenography and learning 11
2.3 Data collection, analysis and trustworthiness in phenomeno-

graphic studies . 13

3 The empirical study 17
3.1 The course . 17
3.2 Data collection . 17
3.3 The interviews . 17
3.4 The analysis . 18
3.5 Reliability, validity, and generalizability 19
3.6 Interview technique, some examples 20

4 What does it mean to learn to program? 24
4.1 Introduction . 24
4.2 Phenomenographic analysis 24

4.2.1 Learning is to understand some programming language,
and to use it for writing program texts 26

4.2.2 Learning a way of thinking, which is experienced as
difficult to capture, and which is understood to be
aligned with the programming language 26

4.2.3 Learning is to gain understanding of computer pro-
grams as they appear in everyday life 28

4.2.4 Learning a way of thinking, which enables problem
solving, and which is experienced as a ”method” of
thinking . 29

4.2.5 Learning is a skill that can be used outside the pro-
gramming course . 30

4.3 Discussion on students’ understanding of what it means to
learn to program . 32

vii

4.4 Related work . 36

5 On the understanding of Object and Class 40
5.1 The object-oriented paradigm 40

5.1.1 Background . 40
5.1.2 Central concepts: class and object 42

5.2 Phenomenographic analysis 43
5.2.1 The concept of “object” 43
5.2.2 The concept of “class” 45
5.2.3 The purpose of using objects and classes 48
5.2.4 Discussion on the analysis 51

5.3 Enhancing the learning process 53
5.3.1 Learning in a context 53
5.3.2 Identification of critical aspects 55
5.3.3 Implications for education 57

6 Students’ use of resources when learning to program 63
6.1 Background . 63
6.2 The resources . 64
6.3 Research approach: Content analysis 64
6.4 The interviews . 65
6.5 The analysis . 66
6.6 How the resources were used 67
6.7 How the resources were perceived to support learning 72
6.8 Discussion on students’ use of resources for learning to program 79

7 Students’ motives for learning to program 85
7.1 Background . 85

7.1.1 Data analysis . 85
7.1.2 Related work . 86

7.2 Case students . 86
7.3 Discussion on students’ motives for learning to program . . . 91

8 Conclusions and Future work 95
8.1 Conclusions . 96
8.2 Future work . 101

A Interview questions 112

viii

1 Introduction

Computer programming is one of the core areas in computer science edu-
cation. Even many non-major computer science students in technical and
natural science education at Swedish universities take at least one compul-
sory computing course where they gaining an introduction to programming.
This can involve basic knowledge of what programming means in general, a
conceptual understanding in the subject area and a knowledge of complex
resources like compilers and how computers work.

There is an ongoing debate among educators on how to introduce pro-
gramming to novice students (Joint Task Force on Computing Curricula,
2001) where several different approaches have been suggested. My interest
is to investigate how students go about learning to program, and what they
learn, from the students’ perspectives. Students’ own experiences of learn-
ing fundamental programming is interesting to study and can inform the
dealing with programming education.

The focus of this thesis is on novice students’ learning of object-oriented
programming. The research presented aims to give a broad picture of stu-
dents’ experiences of their learning including both learning outcomes and
the way in which the students go about learning.

1.1 The research questions

This thesis builds on empirical data concerning novice students’ experiences
of learning to program. Learning to program differs in some aspects from
many other subjects students met at university level (Daniels et al., 1999).
Many students have little or no previous knowledge of the complex resources
like compilers and how computers work. These resources play a significant
role in learning the subject. Furthermore many students have not encoun-
tered the subject before their first university course.

The main focus of the research presented in the thesis is students’ experi-
ences of their learning in a programming course. This involves the students’
experience of what learning to program means in a specific course. Other
aspects of this experience taken into consideration are students’ conceptual
understanding, students’ experience of their learning environment, and stu-
dents’ motive to learn.

Aspects of students’ experience of the learning environment focused on
in the thesis are students’ use of resources in the learning process. The
reason for this is twofold. Some resources used in the course are part of
learning the subject itself, and are thus an important aspect of the learning
experience. The learning environment, as defined by Entwistle (2003, p. 7)
spans too broad a research area to be covered in this work and motivates a
limitation.

The research questions posed are thus:

1

• How do students understand what learning to program means?

• How do students understand abstract concepts in object-oriented pro-
gramming?

• How do students use resources when learning computer programming
and what are their experiences of the support they provide?

• What motives to learn computer programming can be found among the
students?

The four research questions mentioned are studied, analysed and dis-
cussed separately in the thesis, but the way in which they relate to each
other is also considered. In this way a broad picture of novice students’
experiences of learning object-oriented programming is painted.

1.2 Descriptions of terms used in the study

This section gives a list of terms used frequently in the thesis and describes
the way in which they have been used. Other terms are defined when they
are introduced in the text.

Code refers to the instructions which tell the computer what to do, written
by a programmer. These instructions follow rules from the particular
programming language used.

Software includes the computer programs, associated documentation and
configuration data that is needed to make the programs work correctly.
The purpose of producing software systems is to make computers solve
problems.

Computer science is defined in a wide sense including “theories and meth-
ods that underlie computers and software systems” (Sommerville, 2004)

Software engineering “is an engineering discipline that is concerned with
all aspects of software production from the early stages of system spec-
ification to maintaining the system after it has gone into use. [...]
Some knowledge of computer science is essential for software engi-
neers” (Sommerville, 2004, p. 7)

Programming paradigm. There exists several fundamentally different ways
to tackle a problem for a program developer. Consequently there are
different programming paradigms available. This thesis will discuss the
object-oriented paradigm which is the dominate paradigm currently
used in industry and university education. Examples of programming
languages within the object-oriented paradigm are Java and C++.

2

1.3 Overview of the thesis

The thesis has the following outline. Chapter 1 discusses the research ques-
tions and related work. The research approach is described in Chapter 2,
and the study performed is presented in Chapter 3. Chapter 4 describes stu-
dents’ understanding of what learning to program means in a first course in
object-oriented programming. Chapter 5 presents the results from the anal-
ysis on students’ understanding of the concepts object and class in object-
oriented programming. In Chapter 6 the analysis of the students’ use of
resources is evolved, it describes how the resources were used and how the
students experienced that the resources supported them in learning to pro-
gram. Students’ motives for learning to program are discussed in Chapter
7 by presenting a few, from an educational perspective interesting students’
motives to learn. All chapters include discussions and implications for edu-
cation, concerning the specific topic in the chapter. The last chapter in the
thesis presents conclusions drawn from the whole study and discusses future
work.

1.4 Related work

This section reviews previous research on students’ learning of programming,
and investigates research related to the research questions on students’ un-
derstanding of concepts, students’ understanding of what it means to learn
to program and students’ use of resources.

1.4.1 Students’ learning to program

Examples of studies that give nice overviews of the research within program-
ming education are Booth (1992) and Robins et al. (2003), where Booth
covers a somewhat older spectra of the literature than Robins et al.

Many papers have been written on students’ difficulties to learn to pro-
gram (Ben-Ari, 1998; Fleury, 1999; Fleury, 2000; Fleury, 2001; Kölling,
1999a). A study much referred to is McCracken et al (2001), a multi-
national, multi-institutional study showing that first year students do not
know how to program after their first programming course. Other multi-
national, multi-institutional studies are Lister et al. (2004) who showed that
novice students have problems to predict what a short piece of code would
do, and also to put in the right piece of missing code when asked to select
from a small set of codes, and Eckerdal et al. (2006) who investigated senior
students’ ability to design computer programs and found that only few stu-
dents have a satisfactory design ability at the end of their computer science
education.

These studies give a solid foundation for the statement that students,
both at novice and higher levels, have difficulties to learn to program.

3

1.4.2 Students’ learning of central concepts

Many studies point at the necessity of good understanding of central con-
cepts within object-oriented programming. Some of these concepts are nec-
essary for students to learn at an early stage of the programming education.
Holland, Griffiths and Woodman (1997) claim that misconceptions of basic
object concepts “can be hard to shift later. Such misconceptions can act as
barriers through which later all teaching on the subject may be inadvertently
filtered and distorted.”

Fleury (2000) found that students constructed their own understand-
ing of concepts when they worked with programming assignments, and that
those constructions were not always complete and correct. “Because stu-
dents construct their own meanings during instruction, it is not surprising
that students possess only partial conceptions even when provided with com-
plete and accurate information.” writes Fleury.

Holmboe (1999) discusses how to reach good understanding in program-
ming: “To reach understanding based on theoretical definitions, will mean
trying to understand the formal aspects without a frame of reference due
to lack of personal experience.” And later in the article: “Both practi-
cal skills and conceptual understanding are necessary, and interconnection
between these two preferable.” Box and Whitelaw (2000) argue from a con-
structivist learning theory, that more abstract types of learning are required
by the student for object-oriented software technology than for structured
software technology.

1.4.3 Students’ understanding of what it means to learn to pro-
gram

The question how students understand what it means to learn to program
has been investigated in previous studies. Booth (1992) studied undergrad-
uate engineering students’ experience of what it means and what it takes
to learn to program. Bruce et al (2004) investigated first year university
students’ early experiences of computing, with a focus on revealing differ-
ences in how they go about learning to program. Both indicate that it is
important for students to get an overall understanding of what learning to
program means.

1.4.4 Students’ use of resources

Resources for learning to program are frequently discussed topics in confer-
ence papers and journal articles. This section first discusses related work
on resources that are not mentioned, or only slightly touched upon by the
students in the present study, but frequently discussed in the computer sci-
ence education community. After that follows a discussion on related work
on the use of the resources presented in this study.

4

Examples of resources that are not mentioned in the study presented in
this thesis are technology supported resources like visual programming tools,
and collaboration methodologies like extreme programming/pair program-
ming collaboration and collaboration used in Problem Based Learning. The
students in the present study do not discuss technology supported resources
other than the compiler. A few students also mention internet as a resource
for finding information, and one student discusses that he or she would pre-
fer a more advanced software development environment in the course. Many
students discuss collaboration as an important resource in the learning, but
they do not put labels on it, like ’peer programming’.

A reason why students in my study do not mention technology supported
resources or collaboration methodologies much, is probably because many of
them have not programmed before, and thus are not aware of other resources
and terminology than what is offered by the teacher. Below I will mention
some examples with references from each area as they are well researched
and much used in programming education at higher level.

Technology supported resources

In 2004 the ACM Education Board appointed the Java Task Force. The mis-
sion was to develop a stable collection of pedagogical resources that would
support the use of Java in first-year computer science courses. The problems
focused on the increasing complexity and instability students encounter in
new programming languages like Java, which give negative effect on peda-
gogy. The Task Force has designed new Java packages1 that for example
eliminate the need for a static main method and simplify the development
of graphical applications in an object-oriented way (Roberts, 2006). The re-
ports from the Java Task Force with associated material are available from
http://www.acm.org/education/jtf/.

According to Powers et al. (2006), software resources developed to help
novices to learn to program can be divided into narrative tools, visual pro-
gramming tools, flow-model tools, specialized output realizations and tiered
languages tools. Narrative tools “support programming to tell a story ”. An
example of such software is Alice (Moskal et al., 2004). Visual programming
tools “support the construction of programs through a drag-and drop inter-
face” as examplefied by JPie (Goldman, 2004). Flow-model tools “construct
programs through connecting program elements to represent order of com-
putation”, with the example Iconic Programmer (Chen and Morris, 2005).
Specialized output realizations “provide execution feedback in non-textual
ways”. Lego Mindstorms is a well-known tool (Kay, 2003). Finally tiered
languages tools “in which novices can use more sophisticated versions of a

1Java packages are sets of classes in the programming language, designed for specific
tasks, and ready to use.

5

language as their expertise develops” where ProfessorJ is an example (Gray
and Flatt, 2003).

Ellis et al. (1998) report on technology supported resources for Prob-
lem Based Learning. For example, the authors discuss resources to provide
subject guidance and information access, and resources to assist scaffolding.
In the former group reference material like CD-ROM and the web is men-
tioned. In the latter group visualization and experimenting systems, with
references are mentioned. The authors further discuss that “Communication
and collaboration tools are often classified according to the pattern of com-
munication that they support.” The classification techniques are one-alone,
one-to-one, one-to-many and many-to-many. Examples of the techniques
are databases, electronic mail, bulletin boards and computer conferences re-
spectively.

Collaboration methodologies as resources

Pair programming has been greatly discussed in the computer science com-
munity during recent years. Studies on the results of pair programming,
and how pairs best are selected have been performed. Examples of this are
VanDeGrift (2004) and Katira (2004). The fundamental thoughts behind
pair programming are described as “students sit side-by-side at one com-
puter to complete a task together, taking turns ’driving’ and ’navigating.’
” (VanDeGrift, 2004).

Extreme programming (XP) has been discussed and used in industry,
and to some extent in higher education. In XP planning, analyzing, and de-
signing is done a little at a time, throughout software development. The XP
practices also include other factors like pair programming and programmers’
collective ownership of the code in the system (Beck and Andres, 2004).

Resources mentioned in the present study

Research on students’ use of resources when learning to program has an
emphasis on technology supported resources. Research on the resources
students mention in the study presented in this thesis is found, but mostly
in discussions on single resources in the programming education. Some
research on how individual resources are used in programming education is
discussed below.

Jenkins (2001) discusses the role of the teacher in programming courses.
He discusses teachers’ reflections on their teaching in terms of qualitatively
different levels. Teachers’ roles in computer science education are discussed
by Lister et al. (2004) from a phenomenographic perspective. There is
plenty of research and literature found on teaching in higher education in
general, including discussions on the teachers’ role (Ramsden, 1992; Marton
et al., 1984).

6

The role of projects and programming assignments are discussed for
example by Daly (2004) and Newman (2003) .

The roles of the programming language and programming environment
are discussed in Kölling (1999a) and Kölling (1999b) where the author dis-
cusses where different programming languages and different programming
environments are suitable.

7

2 The phenomenographic research approach

Phenomenography was first developed in the 70’s in Gothenburg, Sweden
by a group of researchers. Ference Marton, Lars Owe Dahlgren, Lennart
Svensson and Roger Säljö performed a study on students reading a text.
Aimed at understanding differences in outcome of understanding the text,
they found clear qualitative variation in what the students understood, as
well as how they went about studying the text. These findings have been
used as a point of departure for research in various subject areas in higher
education, and have led to insights, such as the distinction between deep
and surface approach to learning (Marton et al., 1984). From this empirical
basis the phenomenographic research approach emerged.

Numerous phenomenographic studies have since been carried out in dif-
ferent parts of the world, and in different subject areas, and the theoreti-
cal separation of learning experiences in what students learn and how they
learn, has shown to be a useful tool to get a better understanding of stu-
dents’ learning experiences. Phenomenography has developed and is now
described as a research approach into learning.

2.1 The experience of phenomenon

Phenomenography aims at describing the variation of understandings of a
certain phenomenon found in a group of people. Phenomena is described
by Marton and Booth (1997) as the units that exceed a situation, bind it
together with other situations and gives it a meaning. In this thesis I discuss
phenomena in terms of central concepts that are critical to understand in
order for the learner to progess further with the subject area. It is not
limited to single words like ’object’, ’class’ and ’encapsulation’. It includes
aspects of the learning like ’what does learning to program mean?’. In this
sense ’phenomena’ are something that can bear meaning, relevant for the
subject studied.

Marton and Booth discuss the idea of phenomenography:

The unit of phenomenographic research is a way of experiencing some-
thing, [...], and the object of the research is the variation in ways of
experiencing phenomena. At the root of phenomenography lies an in-
terest in describing the phenomena in the world as others see them,
and in revealing and describing the variation therein, especially in an
educational context [...]. This implies an interest in the variation and
change in capabilities for experiencing the world, or rather in capa-
bilities for experiencing particular phenomena in the world in certain
ways. These capabilities can, as a rule, be hierarchically ordered. Some
capabilities can, from a point of view adopted in each case, be seen as
more advanced, more complex, or more powerful than other capabil-
ities. Differences between them are educationally critical differences,

8

and changes between them I consider to be the most important kind
of learning. (Marton and Booth, 1997, p. 111)

And later:

[...] the variation in ways people experience phenomena in their world
is a prime interest for phenomenographic studies, and phenomenogra-
phers’ aim to describe that variation. They seek the totality of ways in
which people experience, or are capable of experiencing, the object of
interest and interpret it in terms of distinctly different categories that
capture the essence of the variation, a set of categories of description
[...] (Marton and Booth, 1997, pp. 121-122)

The object of interest in a phenomenographic study is thus how a certain
phenomenon is experienced by a certain group of people, and the variation in
the way the phenomenon is experienced (Marton and Booth, 1997, p. 110).
It focuses on the students’ perspectives and conceptions, not on misconcep-
tions. It does not take the researcher’s perspective as the point of departure,
but endeavours to adopt the student’s perspective on learning. Marton and
Svensson claim that in this perspective, the world as the student experiences
it, becomes visible.

[The student] experience of the world is a relation between him and
his world. Instead of two independent descriptions (of the student on
one hand and of his world on the other) and an assumed relation-
ship between the two, we have one description which is of a relational
character. (Marton and Svensson, 1979, p. 472)

A fundamental assumption in phenomenography is that there exist only
a limited number of qualitatively different ways in which a certain phe-
nomenon can be understood. The understandings of a certain phenomenon
can be described in hierarchically ordered qualitatively different categories
of description which form the outcome space of the phenomenographic anal-
ysis.

The analysis is done at a collective level, not aiming at putting indi-
viduals in certain categories. An individual can hold several of the under-
standings expressed in the categories of description, but mapping between
individuals and categories is not the aim of the analysis. It is unlikely that
the collected data can reveal all the different ways in which each individual
student understands the concepts of interest. However, when statements
from different students are brought together, that collective “pool of mean-
ing” reveals a rich variety in understandings. When quotes are taken out
of their contexts and compared to each other, the individuals are put in
the background, and the collective understandings of the group are in the
foreground.

Marton and Booth (1997) have developed a model for analysing and
describing the experience of learning, see Figure 1. The model can be used

9

as a tool in the analysis to cover central aspects of the learning experience,
and to unfold the complex pattern of the experience.

The experience of learning

 How
 aspect

What
aspect

Act of
learning

Indirect object
of learning

Direct object
of learning

Figure 1: The experience of learning (Marton and Booth, 1997)

According to Marton and Booth, a learning experience can be analyti-
cally divided into a what-aspect and a how-aspect. The what-aspect relates
to the content of what is being learnt, the phenomenon studied. In phe-
nomenographic research this is often referred to as the direct object. The
how-aspect refers to the learners’ approach to his or her task, or how the
learning is accomplished.

Marton and Tsui write about the analytical separation:

The learners’ focus is normally on what they are trying to learn (the
direct object of learning), whereas the teacher’s focus should be on
both; not only on that which the learners are trying to learn, but also
on the way in which the learners are trying to master what they are
trying to learn. (Marton and Tsui, 2004, p. 4)

The how-aspect can be further analysed into an act of learning and an
indirect object. The latter is, according to Berglund (2005), often referred
to as the learners’ motives to learn. Berglund describes the former aspect:

The term “act” should here be interpreted in a broad sense, beyond
the physical acts that a student performs in order to learn, such as
reading a book, solving a problem and asking a friend. The term “act
of learning” also includes abstract aspects, such as how students go
about achieving their aims. (Berglund, 2005, p. 42)

The different aspects of the experience the model-based analysis gives,
bear useful and educational critical information to the researcher. It is still
important to hold in mind what Berglund writes about the two aspects, the
“what” and “how”:

[...] it must be remembered that the students experience the learning
as a whole. The distinction is entirely analytical – the two aspects can

10

only be thought apart – and aims to be a tool for the researcher in
his efforts to understand, analyse and describe the students’ learning.
(Berglund, 2005, p. 40)

2.2 Phenomenography and learning

According to the phenomenographic tradition, the learning process is about
experiencing, or seeing something in a new or different way, to open up
aspects previously taken for granted or invisible for the learner. Marton
and Tsui (2004) write:

[...] the way that something is seen or experienced is a fundamental
feature of learning. If we want learners to develop certain capabilities,
we must make it possible for them to develop a certain way of seeing
or experiencing. (Marton and Tsui, 2004, p. 8)

Marton and Tsui continue to discuss what it takes to “develop learner’s
eyes”. Human beings have limited capacity to process information. We
can only discern certain aspects of a phenomenon simultaneously. Different
ways to see something means to discern partly or wholly different aspects
of that thing, or phenomenon. “A particular way of seeing something can
be defined by the aspects discerned, that is, the critical features of what is
seen.” (Marton and Tsui, p. 9). It is important for a learner to be able to
discern new critical features in the subject of learning. The authors continue:
“we not only discern features, but also discern different qualities (i.e., values)
in the relevant dimensions such as “blue”, “ray of light”, “very short”, and
so on.” (Marton and Tsui, 2004, p. 11). Discerning a phenomenon thus
includes discerning features, or aspects2, with different values, together with
the ability to discern the relation of parts within the experience of the whole
phenomenon, and the whole from the context and how the whole relates to
the context.

A specific aspect of a phenomenon cannot however be discerned without
experiencing variation in a “dimension” corresponding to that aspect. These
dimensions are characteristic for the specific aspects, and the variations
make the aspects visible. When aspects of something are discerned, values
in the corresponding dimensions of variation thus are experienced. Marton
and Tsui give an example:

In order to experience the object as a blue, cylindrical, ceramic mug,
all these aspects must be discerned and related to potential dimensions
of variation. And because these aspects are necessary for defining the
object in question, they are also called its critical features. (Marton
and Tsui, 2004, p. 15)

An example is presented below to illustrate this. How is a circle defined?
One aspect of the experience of a circle is that is has a size.

2In this context, feature and aspect are used in the same way as part, that is, part of
an experience of a certain phenomenon.

11

Figure 2: How is a circle defined?

To be able to discern size as an aspect, circles of different sizes are
needed. If a person only observes one circle, he or she might not discern
that size is one aspect when describing circles.

Figure 3: The aspect that a circle has a size is possible to discern when
showing many circles with different sizes.

A variation in a dimension corresponding to the aspect that circles have
sizes creates the opportunity for the person to focus on this aspect, and to
discern it. This opens for the possibility to learn - a new way of seeing is
opened.

Marton and Tsui have identified patterns of variation in learning situa-
tions:

1. Contrast. In order to experience something, then something to com-
pare with must be experienced.

2. Generalization. Variation of values of the aspect is necessary to discern
the aspect.

3. Separation. To be able to experience an aspect and to be able to sep-
arate the aspect from other aspects, it must vary while other aspects
remain invariant.

4. Fusion. Several critical aspects need often to be experienced at the
same time in everyday life. Separating the aspects first and then fusing
them together is efficient for the learning. “[T]his fusion will unavoid-
ably take place through the simultaneous variation in the dimensions
of variation corresponding to the critical aspects.” (Marton and Tsui,
2004, p. 17)

For a further analysis of the experience of learning, and in order to
identify the variation necessary for learning, an extension of the theoretical
model presented in Figure 1 is presented by Marton and Booth (2005),
see Figure 4. The what-aspect in the model can be further analysed into

12

two aspects. The focus of the awareness, its parts and their relationships,
and its surroundings, is called the structural aspect. Since the focus has
had such direction, a certain meaning is discerned. This meaning is called
the referential aspect. A further distinction of the structural aspect of an
experience is made into the internal horizon, the aspects that are in focus of
the awareness, and the external horizon, the aspects “which surrounds the
phenomenon and to which it is related and of which it is a part” (Berglund,
2005, p. 41). The model is illustrated in Figure 4.

The experience of learning

 How
 aspect

What
aspect

Act of
learning

Indirect object
of learning

Direct object
of learning

 Structural Referential
 aspect aspect

Internal horizon External Horizon

Figure 4: The experience of learning, including the referential and structural
aspects with its’ internal and external horizons (Marton and Booth, 1997)

The structural aspect describes the focal awareness of the learner. Vari-
ation in critical aspects thus refers to the structural aspect.

The reason for choosing the theoretical framework to analyse under-
standing is thus twofold. The framework gives a tool to get an overall
picture of an experience, with the what- and how-aspect. The what-aspect
can be further analysed into referential and structural aspects. The struc-
tural aspect then provides a basis for the analysis to find the dimensions of
variation, necessary for the learning process.

2.3 Data collection, analysis and trustworthiness in phenomeno-
graphic studies

Phenomenography builds on an empirical, qualitative research tradition.
Data gathering, analysis, the questions of validity, reliability and general-
izability are inspired from this tradition, even if “these notions need to be
reframed within the context of [...] the research approach” (Åkerlind, 2005,
pp. 329-220).

13

In phenomenographic studies, data are often gathered in the form of
interviews. Aiming at selecting a theoretical sample for the interviews, sub-
jects are chosen with the aim to cover as broad range of relevant charac-
teristics of the subjects as possible. Relevant characteristics could mean
e.g. background knowledge in the subject area, sex and age. This strive
for a broad representation, instead of finding what characterises an average
subject, is fundamental for phenomenographic research. The pool of mean-
ing gathered from the data aims at representing the whole group studied,
through the selected subjects.

The interviews are transcribed verbatim. In this way data, in the form
of text are analysed. The results, the different understandings found in the
data, are presented in an outcome space. In phenomenographic analysis, the
understandings are found when the data are read and reread and patterns
of distinctly different understandings are looked for. Individual, decontex-
tulised quotes illustrating certain understandings are compared with each
other, grouped and regrouped, and eventually different categories of under-
standing emerge. The quotes are also read and reread in their own context
to make subtle distinctions to the researcher’s understanding of the data.
The researcher formulates the essence of the understandings found with his
or her own words in the categories of description. In this iterative analysis,
by again and again going back to the data, the categories of description
finally emerge.

Validity in qualitative research is, according to Åkerlind (2005) a ques-
tion of “the extent to which a study is seen as investigating what it aimed
to investigate, or the degree to which the research findings actually reflect
the phenomenon being studied.” In the phenomenographic tradition on the
other hand, this is not so much the question . Åkerlind writes

However, a phenomenographic researcher asks not how well their re-
search outcomes correspond to the phenomenon as it exists in ’real-
ity’, but how well they correspond to human experience of the phe-
nomenon. [...] the focus of research quality shifts to ensuring that the
research aims are appropriately reflected in the research methods used
(Åkerlind, 2005, p. 330)

According to Åkerlind, two types of validity checks are commonly used
within phenomenographic research. Communicative validity checks includes
the researcher’s ability to argue for his or her interpretation of the data. It
also includes “ensuring that the research methods and final interpretation
are regarded as appropriate by the relevant research community.” (Åkerlind,
2005, p. 330) The pragmatic validity checks on the other hand, have to do
with whether the research outcomes are seen as useful and meaningful for
the intended audience.

14

Åkerlind discusses, with reference to Kvale (1996) and Guba (1981) reli-
ability in qualitative research in terms of “reflecting the use of appropriate
methodological procedures for ensuring quality and consistency in data inter-
pretation”. With reference to Kvale (1996) Åkerlind describes two forms of
reliability check3 commonly used with qualitative, interview-based research
such as in phenomenography:

1. Coder reliability check, where two researchers independently code all
or a sample of interview transcripts and compare categorizations

2. Dialogic reliability check, where agreement between researchers is reached
through discussion and mutual critique of the data and of each re-
searcher’s interpretive hypotheses.

Alternatively, Åkerlind discusses reliability in terms of researchers who
“make their interpretive steps clear to readers by fully detailing the steps,
and presenting examples that illustrate them.”

There is however a discussion within the phenomenographic research
community on how reliability of the results should be established, see e.g.
Sandberg (1997). Sandberg discusses that coder reliability check can draw
the attention from more fundamental checks of the research reliability, in-
cluding a description of how the researchers “have adopted a critical attitude
towards their own interpretations”. (Åkerlind, 2005, p. 332).

The question of generalizability in qualitative studies has been discussed
by e.g. Kvale (1996). Kvale points out three different ways of generalizabil-
ity:

1. Naturalistic generalization rests on personal experience: It develops for
the person as a function of experience; it derives from tacit knowledge
of how things are and leads to expectations rather than formal predic-
tions; it may become verbalized, thus passing from tacit knowledge to
explicit propositional knowledge.

2. Statistical generalization is formal and explicit: It is based on subjects
selected at random from a population [...]

3. Analytical generalization involves a reasoned judgment about the ex-
tent to which the findings from one study can be used as a guide to
what might occur in another situation. Is is based on an analysis of
the similarities and differences of the two situations. (Kvale, 1996,
pp. 232-233)

3The word check is in this thesis interpreted not as proving something, but rather as
one of several concerns of the issue of trustworthiness.

15

Of these methods, the naturalistic and analytical generalization seem to
be most useful in phenomenographic studies, where a small sample of sub-
jects are selected from a larger group with the intention to get a theoretical
sample.

16

3 The empirical study

3.1 The course

The informants chosen for the present study are students from a degree
course where programming knowledge is not a major goal. Programming
courses are compulsory in most technical and natural science university
study programmes in Sweden, not only in programmes within the computer
science area. The group selected is thus representative for a large number
of students studying programming.

The students had just finished their first programming course in Java, a
compulsory course giving 4 Swedish credit points. (At Swedish universities
one credit point represents one week’s full-time study and 40 credit points
one full academic year.) The study programme the students attend is called
Aquatic and Environmental Engineering. It is a 4.5 years graduate engineer
education, demanding good previous knowledge in mathematics, physics,
chemistry and biology. The study programme has an emphasis on environ-
mental issues, and the students are likely to get highly qualified jobs after
the education. One of the students in the study attended a degree course in
Chemical Engineering.

A programming course for the present study was chosen where the author
was not the teacher. In this decision, I followed the recommended rules of
ethics, established by the Swedish Research Council and used at universities
throughout Sweden (http://www.vr.se, 2003).

3.2 Data collection

The study took place at Uppsala University, Sweden in May 2002. A ques-
tionnaire was given to the student group. 22 of the 45 students answering
the questionnaire were willing to participate in a one-hour tape-recorded
interview. 14 students were selected with the intention to get a theoretical
sample, see Section 2.3. The students participated voluntarily in the study,
but were each given a movie ticket as symbolic remuneration.

3.3 The interviews

The interviews (see Appendix A) were semi-structured (Kvale, 1997, p. 117).
Kvale describes a semi-structured interview as a human interplay. This
interplay is not as anonymous and neutral as when a person answers a
questionnaire. If necessary, it is possible in a semi-structured interview to
dynamically change the form and order of the questions, in response to the
answers given by the students. On the other hand, the interview is neither
as personal and emotional as in a therapeutic interview.

The present interview had four themes following the four research ques-
tions, see Section 1.1. The interviewer had prepared a small number of

17

questions on each theme, intended to approach the themes from different
perspectives. In addition to the prepared questions, follow-up questions
were given. These questions served as starting points for discussions to
clarify students’ statements, and for helping students to verbalise their ex-
periences. The aim was to encourage the students to demonstrate as much
as possible of their understandings and experiences within the themes.

The interviews were tape-recorded and transcribed verbatim to text files.
In the quotes cited in the thesis, a pronounced pause has been denoted by
three dots with no brackets round, ..., while three dots in square brackets
denote that text has been cut away [...]. The latter applies also for quotations
from books and other written material refered to. In some quotes expressions
from the students are explicitly marked since the author found them relevant
for the context. These expressions are put in parentheses, like (giggle) and
(laughter). In the transcriptions of the interviews each student was given
his or her letter of identity, A,B,C etc. with no connection to his or her real
name, and the interviewer was labelled I.

3.4 The analysis

The research questions in the present study attempt to cover a broad spec-
trum of the students’ experiences of learning object-oriented programming.
Since the aim of my research is to understand more about these experiences,
a phenomenographic research approach has been chosen. Learning experi-
ences are complex and can be difficult to grasp and describe as a whole. The
researcher can benefit from doing an analytical separation of aspects of the
experience, as described by the students. The analytical separation of the
experienced learning in What- and How-aspects has proved to be useful in
this study.

The phenomenographic model for describing and analysing experiences
of learning, see Figure 1 in Chapter 2, shows the theoretical framework for
the analysis. This section aims at showing how the research questions posed
in the thesis are in line with this model.

The main focus of the thesis, the learning outcome of a programming
course, can be discussed in different ways. One way to discuss is to say that
the learning outcome is correlated to

1. the understanding of what programming means

2. the understanding of concepts in the programming paradigm

3. the programming capability, or level of programming skill achieved

The first two items in the list correspond to the first two research ques-
tions investigated, How do students understand what learning to program
means? and How do students understand abstract concepts in object-oriented
programming?. The last item is not within the scope of this thesis. With

18

the focus to investigate learning outcomes of the course, two phenomena are
studied, the first two research questions. These two questions are analysed
with a phenomenographic approach. The results of the analysis of these
questions constitute the What-aspect of the phenomenon investigated, see
Figure 1. The two direct objects investigated are thus understanding of what
programming means, and understanding of central concepts in the course.

Students’ understanding of the computer and other central resources is
another aspect of the learning outcome. I have, however, decided to look
at the role of the resources from another angle, how the students’ have ap-
proached the learning by means of the resources. The questions of students’
use of resources thus belong to the How aspect of the phenomenographic
model, see Figure 1. The question How do students use resources and expe-
rience support of such in the learning? is a part of the Act of Learning in
the model. I do not claim that students’ experience of the resources cover all
aspects of the Act of Learning. This would demand a much larger study of
the students’ whole learning environment (Entwistle, 2003), which is beyond
the scope of this study. Still the questions of students’ use of resources is
an interesting part of the Act of Learning, and few studies have been found
that investigate more than one or a few resources students use.

Finally, the Indirect Object of Learning as the second part of the how
aspect, corresponds to the question What motives to learn computer pro-
gramming can be found?. Berglund (2005) writes “[t]he motive is frequently
referred to as the indirect object of learning in phenomenographic research.”
This thesis presents a limited analyses of the Indirect Object in the sense
that only positive motives to learn to program are presented. The reason
for this is a decision to make the chapter of students’ motive to learn mainly
a discussion on implications for teaching. I plan to investigate students’
motive to learn further in later studies.

As discussed above, the phenomenographic model is a theoretical tool to
analyse the complex picture of students’ experience of learning. This thesis
aims at using this tool to make this picture more accessible for educators
and contribute to better understanding of how students experience their
learning situation.

3.5 Reliability, validity, and generalizability

In the present study reliability checks have been performed, following Kvale’s
suggestions (Kvale, 1996). Two of the research questions were analysed in
the phenomenographic tradition. In the first phenomenographic analysis
two researchers independently read all data and made preliminary categories
before meeting and discussing. The results from the two researchers were
very similar, and the final categories were easily agreed upon.

In the second analysis one researcher read the data and made preliminary
categories. A second researcher checked the categories by matching chosen

19

quotes from the students to the categories. In a discussion between the
researchers on the quotes and categories, the categories were adjusted and
agreed upon.

For the validity check, communicative validity checks (Åkerlind, 2005)
have been used and the content of the thesis has been discussed with educa-
tion researchers. These discussions on some of the content have included
phenomenographic and computer science education research conferences,
some of which has been published in conference proceedings after peer re-
view. In this way the relevance of the study has been scrutinised both
concerning methods used and the relevance of the results in the research
community. Furthermore, the question discussed by Åkerlind in terms of
researchers “make their interpretive steps clear to readers by fully detailing
the steps, and presenting examples that illustrate them” is considered in
the thesis. I have interpreted this as giving a detailed description of data
gathering and analyses, and a detailed description of data in order to make
it possible for the reader to judge the outcome space.

As discussed in Section 2.3 naturalistic and analytical generalization are
close to how generalizability is discussed in this study. My intention is to
present as carefully as possible the group of students interviewed and the
course the students have taken. There are advantages if the reader knows
the subject area, object-oriented programming, and has some experience
in teaching. Since phenomenographic research in general requires subject
knowledge of the researcher this affects the results, and thus the reader’s
ability to judge to which extent the results are generalizable. I have nev-
ertheless added a section describing the specific knowledge of the subject,
required for judging the results and this is presented in Chapter 5.

3.6 Interview technique, some examples

Some examples from the interviews are presented below to illustrate how
a semi-structured interview technique can elicit students’ understanding by
coming back to the same questions over and over again, but from slightly
different angles.

An example is student G, who can express many different ways to un-
derstand the concept object with only a few questions from the interviewer.

I: I would like you to tell me how you think about what an object is.
G: An object I see as a thing in a way that has different characteristics.
Eh... it is something that you can touch, it feels so to speak, that is
something that contains different information of how it behaves, that
thing. That is the simplest explanation I think. That I see as an
object.
I: Yes.
G: That is to say objects in programming of course. (laughter)
I: That’s right (laughter). That is the question.

20

G: But it is really something that... it’s an object you can touch, this
is how it works and in the object there are characteristics of how it
behaves.
I: Yes. Characteristics, yes. Okay. You can draw or write or something
that you think associates with object.
G: (draws)... so... it’s an object...
I: Mm.
G: Somewhere in the memory so to speak Java saves, or like a space,
that’s what an object looks like. Then in there you can so to speak
put in things where you want to put in it in some way.

Student H needs many questions before he/she can find a way to formu-
late an understanding of the concept object. Although the interviewer asks
many different questions to find what aspects of the concepts the student
has grasped, the student can only express a few aspects of the concept.

I: [...] then I want you to tell me, write an example, draw, talk about
how you think about what an object is.
H: Well, it is that which is a little like that.
I: It may willingly be like that, it doesn’t matter.
H: Because I don’t know really what it means with an object. I haven’t
really any idea of it. An object for me is very fuzzy.
I: That’s okay. (laughter)
H: (laughter) So I don’t know really, it’s so to speak difficult and
(laughter)... well...
I: So you might not have an image so to speak...
H: No I don’t really have that.
I: Any example.
H: (giggle) Any example, well... an object, I really don’t know what
to...
I: What would you say then to a friend who doesn’t know anything
about programming and who asks, what does it mean with object
oriented programming.
H: ... well (giggle) I would be rather, yes, would..., no, actually I don’t
know really. Well, it is programming that... well the difficulty is that
I don’t really know it either what’s the difference of object orientation
and so to speak what it is otherwise.
I: Well. That you couldn’t know since you haven’t programmed before.
H: No I have never programmed non-object... that much I know about
programming.
I: Precisely. It exists but that I can’t ask you about since...
H: No, I don’t know, unfortunately.
I: You don’t have an example from the exam of something you would
do or from some assignment or lecture that got stuck, a special case...
H: No, yes... no nothing that I can...
...
I: Yes. How do you think of so to speak what an object and a class
are.
H: Well... yes... it’s a difficult question.

21

I: What do they have to do with each other so to speak.
H: Yes the class is so to speak, in some way it is, if you now will write
some program then it is practically so to speak built up of classes, it
is kind of that you... so an object is, well in that case a part of a class,
or something like that. If you can say it like that, perhaps you can’t.
It is like a sublevel maybe. A class it feels like it is the top if you think
in levels. First it is so to speak classes and then methods and they also
lie underneath the classes.

The example below shows that some students, like student J, have ex-
pressed several understandings of the concept object, but the interviewer
needs to draw attention to the various aspects of the concept to make the
student express his/her different understandings:

I: [...] what do you think about what an object is...
J: What an object is. When I have discussed and so on then I have
said that an object is a class or can be a class, or can be a method in
a class. Eh, when I have been studying I have tried to think of if you
have a programme, I don’t remember but... which consists of a couple
of objects and the objects can be different classes which contain meth-
ods. In that way I tried to get a picture of what an object is, because
it is easier for me to think that if I have a class and in the class we
have a lot of objects.
I: Although now you drew it the other way around...
J: Yes because it was like that I thought about it when I read the
book, so I don’t know really which is right. It’s different when you
ask different persons, yeah but, class is that an object. Yes it is an
object but a method was also an object. Is it the class which contains
different objects or is it an object that contains different classes? So
that I don’t know.
I: Precisely.
J: But you get a little bit more grips that it is so to speak... (long
pause)... if you think of the Java programme, that it will be built up
with different objects and that it is the object which we modify in
order to get what we want out of it, something like that I try to think
of instead of trying to divide it into different classes and so on.
I: Okay, okay. You think of it a little from the user side like that.
J: Mm.
...
I: Okay. Then you talked about methods too.
J: Mm. Eh... in the methods so... uses to write it the way we want
them to do, like will happen so to speak. What will happen in the
programme, what you will do or like that.
I: How is it connected with the object then.
J: (Sigh, giggle) Well, that is the question, it depends on in case the
method itself is an object or... if object is something else but, eh,
method, well, you can use different methods, in a method you can call
another method and get them to cooperate in that way. So then, or
call another class or.

22

I: And the objects.
J: I don’t know if, because I feel so to speak that I don’t really under-
stand what object is then it feels more like that methods are parts in
the object.
...
I: Eh, what do you think is the point of having objects and classes?
J: Well, that you can ask. (laughter) I think the point of having ob-
jects and classes is that it will be easier to think of what it is you shall
do and what the programme shall contain so that you will try to get
some reality picture of it but I don’t manage with that so...

The three examples from the interviews above show that in a semi-
structured interview the aim is to help the student to talk as freely and
as much as possible, avoiding leading questions, but to stick to the subject
of the interview. A variation in understandings of the concepts object and
class is found in the group. An individual student can express a certain
way to understand the concepts in the beginning of the interview, but when
attention is lead towards another aspect of the concept, when new questions
are asked, the student might express other types of understandings too, see
the excerpt from the interview with student J above. There might also be
different needs to encourage the students to talk and express his/her un-
derstandings; compare the excerpts from the interviews with student H and
student G above. The researcher’s goal is to help the student to articulate
his or her different ways to understand the phenomena of interest. However,
there is no claim that the interview reveals all the different ways in which the
individual student understands these phenomena; this is something which
is not possible to know. Consequently, the analysis has its focus on the
variation of the understanding within the collective, not on individuals.

23

4 What does it mean to learn to program?4

4.1 Introduction

The main focus of the study presented in this thesis is on the learning and
the learning outcomes of the course studied. The research question in this
chapter

• How do students understand what it means to learn to program?

corresponds to one aspect of this focus. The interview questions on this
theme serve as a background for a discussion on students’ understanding of
concepts and their use of resources. My data show that a general under-
standing of what learning to program means is important for the learning
of the subject.

A phenomenographic analysis was performed. The students’ answers in
the interviews reveal five qualitatively different ways to understand what it
means to learn to program, where some are more valuable for learning than
others. In this chapter the phenomenographic analysis is described, and the
results presented as an outcome space. The analysis is taken further by
comparing with research in Mathematics education and this is followed by
a discussion on implications for education.

4.2 Phenomenographic analysis

This chapter aims at shedding light upon the students’ understanding of
what it means to learn to program. The primary interview question on this
theme is:

• What do you think learning means (involves) in this course?

Other questions in the study that appeared to shed additional light on
the subject of interest were:

• What do you experience this course to be about?

• What has been most important to you in this course/Why has this
course been good for you?

• What do you think was the aim for you when learning to program?

• What has been difficult in the course?
4This work has earlier been presented in a shorter version: What Does It Take

to Learn ’Programming Thinking’?, Proceedings of the 2005 international work-
shop on Computing education research, (October 01 - 02, 2005) c© ACM, 2005.
http://doi.acm.org/10.1145/1089786.1089799

24

Students’ answers to these questions were therefore added as a source of
relevant information.

One researcher read and analysed the transcribed interviews, looking
for qualitatively different ways to understand the phenomenon what does it
mean to learn to program expressed in the data. For a reliability check, see
Section 2.3, a second researcher studied quotes from the students and the
categories identified by the first researcher. Five different ways to under-
stand the phenomenon found in the data were agreed upon.

The different understandings, expressed as categories of description, are
presented in Table 1. The categories are inclusive. This means that an
understanding expressed in one of the later categories includes the under-
standing expressed in the former categories. The categories are furthermore
hierarchical in the sense that the new understandings expressed in the later
categories are more advanced.

Five qualitatively different ways to understand what it means to learn
to program were discerned. Three of these are directed towards the com-
puter, the programming language, and programming in general, while two
are directed outwards, towards society with its programmed artefacts and
the world of the programmer. The five categories are described in Table 1.
Each category is described and illustrated with excerpts from interviews.

1. Learning to program is experienced as to understand some pro-
gramming language, and to use it for writing program texts.
2. As above, and in addition learning to program is experienced as
learning a way of thinking, which is experienced to be difficult to
capture, and which is understood to be aligned with the programming
language.
3. As above, and in addition learning to program is experienced as to
gain understanding of computer programs as they appear in everyday
life.
4. As above, with the difference that learning to program is experi-
enced as learning a way of thinking which enables problem solving,
and which is experienced as a ”method” of thinking.
5. As above, and in addition learning to program is experienced as
learning a skill that can be used outside the programming course.

Table 1: Categories describing the different ways to understand the phe-
nomenon What does it mean to learn to program?.

All students in the study expressed an understanding that can be de-
scribed as in category 1 in Table 1. Many students also expressed the
understanding described in category 2. Fewer students expressed the un-
derstandings described in the last three categories.

25

4.2.1 Learning is to understand some programming language,
and to use it for writing program texts

The first category summarizes an understanding that is directed towards the
programming language itself, to understand it and to be able to use it. It is
commonly expressed in such a way that students describe that learning of
syntax details gives the feeling of knowing how to program. Other students
focus on the ability to write short pieces of programs, ’program chunks’, as
characterising what learning means. To sit by yourself and code is desirable
and appreciated. The skill to code in Java and to remember details in the
language summarize this understanding and is presupposed in the other
understandings the students express.

Student N emphasizes the importance of detailed knowledge of the syn-
tax, and learning by heart. Answering the question what it means to learn
in this course, student N answers:

N: (giggle) Yes, but to learn must mean to understand and... But it
doesn’t mean that, because we have done the mandatory assignments
in pairs, so it doesn’t mean to sit beside and look when the other person
does it, of course. Yeh, but to pick up what it’s about, to understand
what it’s about and hopefully remember something.
I: What is it about then?
N: Well (giggle), don’t know... difficult to say.
I: [...] what is your opinion of what it is all about? [...]
N: What it is all about, I think it is all about learning, partly the
commands, fundamental commands I use, I have to remember them
[...]

Student D expresses an understanding that is directed toward the lan-
guage. He/she is talking about being able to read and find errors in the
code. Student D answers the question what it means to learn in this course:

D: Yes, it’s probably to understand the language of the program. That
is for example to see a program and see that, okay, this will happen
and this is what the computer will do, this will be performed. And
then also to see what’s wrong in the language, to discover errors when
you program and to see that this will not work because this can’t be
written like that.

4.2.2 Learning a way of thinking, which is experienced as difficult
to capture, and which is understood to be aligned with the
programming language

A common way to express what it means to learn to program, or what is
missing in their understanding of programming, can be described as ‘pro-
gramming thinking’. Half of the students in the study talk about the actual
thinking behind programming as something specific, an ability one has to ac-
quire to be able to program. Many of these students seem to have problems

26

identifying what ’programming thinking’ involves. Some express themselves
as if it is something magic, difficult to catch.

Category two in Table 1, Learning to program is experienced as learning
a way of thinking, which is experienced as difficult to capture, and which is
understood to be aligned with the programming language, summarizes this
understanding. This second category includes the first one, Learning to pro-
gram is experienced as to understand some programming language, and to
use it, but is more developed. An example that illustrates that the first con-
ception is included in the second is when student D says: “you’re supposed
to get an understanding of the actual thinking when you program.” The
student discusses programming, but the focus is on the special thinking that
is required. The understanding is, like in the first category directed toward
the programming language but also toward the logic and thoughts behind
the language. In this spirit some students discuss the differences between
human beings and computers as something crucial to grasp in the learning
of programming.

Student C talks about what is most important in the course:

C: ...it’s probably the way of thinking, that is when you program, how
you are supposed to think and computer code and how it is interpreted,
that’s the difference to how human beings think.

Some students use the word ’logic’ when they discuss how to think when
they learn to program. This ’logic’ is discussed by student A when he/she
is asked what is most important in the course:

A: It is the understanding of how the programming language is built
rather than the specific command, if you want to do this, it’s more the
thinking itself, the logical thinking. Everything you need to know you
must think of when it comes to programming. It’s kind of, yes, it’s
very exclusive, everything is simply very detailed and you’ve kind of
got a small insight into what it’s like to program and how the computer
works like that, or the software.

Student A articulates that the problems with the logic are the precise
demands of the syntax of the programming language. Student A also con-
nects this special thinking to how the computer itself works, not only the
features of the programming language.

Student E expresses ‘programming thinking’ as different choices to reach
a specific goal. He/she answers the question what it means to learn in this
course:

E: Well it’s like thinking programming I think. Understanding things,
putting together and how you make things work sort of and accom-
plishing what you want yourself. There are also many roads to take
yourself to the goal.

27

Student D describes that this special way of thinking makes it difficult
to know how to construct a program, to understand concepts, and that it
also causes problems in knowing how to go about studying. Student D talks
about programming thinking in a way reminiscent of magic. On the question
what has been difficult in the course student D says:

D: Yes, I think it has been difficult with concepts and stuff, as to
understand how to use different, how one should use different things
in a program. And I actually think that most of it has been difficult,
but this very thought behind, it feels as some people just understand
programming, it’s something they... but I also think that some people
who have been programming before have probably learned to think
like that. But I still think the course, it’s difficult for a novice to sort
of get a grip of how to study when you implement the programs and
like that. (Giggle)...

Ben-Ari’s (1998) discusses problems computer science students may have
if they lack an effective model of a computer. They may believe that there is
some ’hidden mind’ within the programming language that possesses intelli-
gence. The problems in the process to discern the differences between human
logic and capabilities, and the computer with its compiler’s way of ’thinking’
may be one reason for the students’ strong emphasis on and struggling with
this special ‘programming thinking’.

4.2.3 Learning is to gain understanding of computer programs
as they appear in everyday life

Some students talk about the programming they come across in the everyday
life. Category three in Table 1, Learning to program is experienced as to
gain understanding of computer programs as they appear in everyday life,
summarizes this understanding. The understanding in category three is
close to the understanding in category one in the respect that students
mention it in connection to the ability to understand computer programs in
general. This is expressed by student B when answering the question what
the course has been about:

B: It has mostly been about learning, for me it has been about how a
lot of things are built up. That is to say that I’ve understood a lot of
things, how banc programs works and such. I knew absolutely nothing
before, so to speak.
I: Exactly programming, is that what you mean?
B: Yes exactly, yes. How, only such simple things that a question comes
up on the screen and then I’m supposed to answer or something like
that. I knew on a rather low level so to speak. But, I don’t know what
the course has been about exactly. I guess it’s been about learning to
understand and learning programming.

28

Student D answers the question what was most important in the course:
(Förkortat i eng. översättningen)

D: [...] You just think of things like when you withdraw money from
a cash point, kind of, then you start to think, okay, it’s these steps,
figures and the sum and kind of... if there is money in the account and
so on. No but those things that one starts to think a little about how
certain things are built and exactly, yes, such things as when you’re
going to withdraw money or different games or such.

Student C answers the same question:

C: Yes, no I don’t know. It probably will be useful perhaps now and
then or the understanding of how devices work in general. And ma-
chines. [...] No but there are many things that are run by computers
today undeniably so that, it’s some kind of understanding how things
work. It’s in cars, computers, lifts and everything. So that, yes, no, a
good overview.

Student N discusses the goal and motive for learning to program:

I: What did you think was your goal when learning to program?
N: For doing it at all? (laughter) It’s probably because it’s in the
program. But also, of course, it’s rather ... I can’t imagine that I will
be programming in the future really but surly it’s good to have seen it
and tried it a little bit actually.
I: Why do you think so?
N: I don’t know, but there are computers everywhere, aren’t there and
everything that’s in the computers is programmed, isn’t it, so just to
have looked at it a bit I think can be rather important anyway.

The quotes from the students above express a vague and shallow un-
derstanding of programming as something they meet in everyday life that
might be of some use, because of the wide spread of computer programs. The
third category includes the first two categories in Table 1 because it discusses
computer programs and the thinking when building programs. Despite the
superficialness of the understanding expressed in category 3, it bridges to
the last two categories found in the data when reaching out beyond the pro-
gramming language and the course itself. The last two categories in Table
1 express understandings that are richer than the understandings expressed
in the first three categories.

4.2.4 Learning a way of thinking, which enables problem solving,
and which is experienced as a ”method” of thinking

The understanding expressed in category four in Table 1, Learning a way
of thinking, which enables problem solving, and which is experienced as a
”method” of thinking, talks about learning to program in terms of problem

29

solving. It is closely related to the understandings expressed in category
one and two. Programming knowledge is more or less presupposed, and
the discussions on the ‘programming thinking’ are connected either to the
course and course context, or to a need not limited by the course itself with
its specific language learned. By taking the discussion outside the course
context the understanding expressed in category four reaches beyond the
first two categories and includes and builds upon the third category which
discusses programming as it is met in everyday life. ‘Problem solving’ is
discussed as ability useful within the course.

Student G discusses what it means to learn in the present course:

G: To get to try, like, you learn to think in a special way, you learn
problem solving. [...] It’s problem solving. With the mandatory as-
signments, that is the difficult part, this you can say at least I think
so.

Notice that student G mentions problem solving at the same time as
he/she talks about learning a certain way to think. Problem solving is seen
as part of ‘programming thinking’.

Student K discusses problem solving as an ability separated from the
programming language learned in the course. When answering the question
what it means to learn in the present course student K says:

K: [...] You know, it’s good to have this kind of courses because you get
to kind of exercise problem solving. That’s actually really good. You
have a problem that you solve in different ways and then you perhaps
find the best way. That’s one of the central parts I think. Then that
you must write in some programming language, that you can perhaps
do in any language. But exactly the problem solving, the way to handle
problem solving, that’s what I important think is important.

Student C answers the same question. He/she focuses on problem solving
as meaning certain types of problems appearing in the course. Student C
also discusses problem solving as an ability which might be useful after the
present course:

C: I don’t know... I guess it’s actually to solve a certain type of prob-
lem, it’s rather like the math courses. Then learning different methods
to solve them in different ways. Much like that, if you look back at the
course it’s not much actually but very, very fundamental. So to... get
an overview and a basic idea of what it’s about and that you can read
on your own whenever you need.

4.2.5 Learning is a skill that can be used outside the program-
ming course

The last category in Table 1 is Learning to program is experienced as a skill
to use outside the programming course. This understanding presupposes

30

the understandings in the previous categories. The ability to know and
use a programming language, as expressed in category one, two and four,
are clearly expressed, but no longer the focus. The focus is moved outside
the course and course context. The purpose of learning to program is not
vaguely expressed as in category three. The students can clearly discuss
why they want to learn to program and how they will use this knowledge
after the course. Whilst this understanding is expressed in different ways by
different students, what is common in the students’ expressions is that the
knowledge acquired is seen as something the student believe will prove useful
later on, in further studies or in working life. Programming is experienced
as a tool that will be beneficial for the student even after the study course.

Student C focuses on the use of Java knowledge when learning other
programming languages. Student C answers the question what he/she thinks
the course is about:

C: [...] But it feels as if you get a better grip on most languages, if you
want to study C it will easier after this course.

When answering the question what it means to learn in this course, stu-
dent C discusses this in terms of reaching a level of knowledge in program-
ming where you know enough to manage on your own. Student C obviously
strives to come to an independent level of knowledge so that he/she can
master situations involving programming in the future.

C: [...] get a flair for and have some idea of what it’s all about and that
you then can read on your own when you need to. [...] even if I don’t
know how to do I can look it up, some examples, study the method
and than presumably be able to write the code. That’s probably what
the course has laid the foundation for so one can reach that stage.

Student E also emphasizes the importance of independence. Knowledge
is clearly described as a tool for his/her own success, to be used to manage
the working life better. Student E answers the question what he/she thinks
the course is about:

E: [...] I guess, it’s ... learning to think like a programmer

Later in the interview:

I: What’s the point of learning to program [...]?
E: Yes but it’s that the more you know about computers the less de-
pendent on others you’ll be, sort of.
I: I see.
E: I don’t know, if you work somewhere later and have some insight
into things, then I think it’ll open a window so that you know what
it’s about at least even if you don’t, I mean, it’s the pros that will deal
with the real things.

31

Student F and student H both discuss programming knowledge as some-
thing useful outside the course itself. Student F and H discuss the usefulness
of programming knowledge when working with computers in general, or as a
general knowledge of what programming is. Student F answers the question
what is the point to learn to program:

F: It’s a fairly good aid when one shall do things, other things. Com-
plement with computer programs, build programs, add information or
tasks or calculations, than it can be good to know.

Student H answers the question what has been most important with the
course:

H: But I don’t know, never programmed. Are you a bit into it you kind
of know what one does. You hear of programming all the time, but
what are they really doing? So I don’t think it’s the actual knowledge
to know, ok, it’s this that is programming. So I think it’s been, because
I don’t know if I’ll ever use it at all in the future. It might happen
that I’ll do that but even if I’ll wouldn’t I still know. Yes but when
they talk about it on TV or friends doing it talk about it, then you
at least know, okay, that’s what they are doing. That’s been a great
advantages I think. Then, of course, I guess you can program some
smaller easy program. Sometimes they demand that when you apply
for a job maybe.

Students who express an understanding belonging to category five, have
managed to place the course and the course context in their own world
and thinking about their future. Learning to program is experienced as
meaningful for themselves, even though the reasons for this vary.

4.3 Discussion on students’ understanding of what it means
to learn to program

Table 1 presents the results of the study as qualitatively different under-
standings of what it means to learn to program. The most crucial step
seems to be from the second and third categories, Learning is a way of
thinking, which is experienced as difficult to capture, and which is under-
stood to be aligned with the programming language and Learning is to gain
understanding of computer programs as they appear in everyday life, to the
fourth category, Learning is a way of thinking, which enables problem solv-
ing, and which is experienced as a ”method” of thinking. In the understand-
ing described in category two, the students have noticed that a special way
of thinking is required, but not necessarily what that is. As discussed in
Section 4.2.3, the understanding described in the third category is a shallow
understanding, but it bridges to the understanding in the last two categories.
In contrast, in the understanding described in category 4 the students have

32

realized that the special way of thinking has to do with problem solving and
a systematic way of thinking. The interview excerpts indicate clearly that
students who express an understanding corresponding to category two feel
confused about programming.

Before continuing the discussing of results I want to point at the relation
between the categories of understanding identified by us, and the discussion
by Hazzan (2003) concerning ’process-object duality’. This duality goes
back to work by Piaget, and was developed in mathematics education to
discuss the idea of reducing abstraction. Hazzan discusses this, referring
to Sfard (1991) in terms of a passage from the ’process conception’ to the
’object conception’ 5:

Process conception implies that one regards a mathematical concept
“as a potential rather than an actual entity, which comes into existence
upon request in a sequence of actions.” (Sfard, 1991, p. 4). When one
conceives of a mathematical notation as an object, this notation is
captured as one “solid” entity. Thus, it is possible to examine it from
various points of view, to analyze its properties and its relationships to
other mathematical notations and to apply operations on it. (Hazzan,
2003, pp. 107 - 108)

She concludes that according to these theories, “when a mathematical
concept is learned, its conception as a process precedes - and is less abstract
than - its conception as an object”. It is thus a natural process when learning
abstract concepts to start at the ’process conception’. The learning, in
terms of process-object duality assumes however a passage from ’process
conception’ to ’object conception’. This is the desirable development also
when learning computer science, including object-oriented programming.

Hazzan speaks of ’canonical procedures’. These are ways for the students
to reduce abstraction level when dealing with concepts in different subjects.
She writes:

A canonical procedure is a procedure that is more or less automati-
cally triggered by a given problem. This can happen either because
the procedure is naturally suggested by the nature of the problem, or
because prior training has firmly linked this kind of problem with this
procedure. The availability of a canonical procedure enables students
to obtain a solution without worrying too much about the mathemat-
ical properties of the concepts involved. It seems that this technical
work gives students the assurance of following a well-known, step-by-
step procedure, where each step has a clear outcome. In contrast,
relying on abstract reasoning, for example by exploring properties of
concepts or by relying on theorems, may be shaky mental approach

5When referring to my results, I will use the term ’category’, while when referring to
Hazzan’s research, I use the term ’conception’ to be consistent with her original terminol-
ogy.

33

for the students. Using the process-object duality terminology we may
say that solving a problem by relying on a canonical procedure is an
expression of process conception of the concepts under discussion; solv-
ing a problem by analyzing the essence and properties of concepts is
an expression of object conception of the concepts under discussion.
(Hazzan, 2003, p. 108)

The present chapter has its focus on students’ understanding of what
it means to learn to program, and more precisely to learn object-oriented
programming. The process-object duality is of immediate interest in a course
where abstract concepts like object and class are introduced early in the
teaching, and where the understanding of these and other object-oriented
concepts are fundamental for the rest of the course and for the ability to learn
to program. Programming is a skill, but requires also a deep understanding
of abstract concepts. ”[A]nalysing the essence and properties of central
concepts” in object-oriented programming is very much in line with the
analysis and design phase in a programming problem. Analysis and design
are abstract skills that belong to an ’object conception’ that requires a good
understanding of central concepts and has proved to be difficult, even for
students who are in the end of their computer science education (Eckerdal
et al., 2006).

In object-oriented programming as in mathematics there are standard
solutions to certain types of problem, ’canonical procedures’ to learn and
discover. They are used by experienced programmers, and necessary for the
simplification and speed up of the work. Following Hazzans arguments, it
is desirable to help the students to discern such procedures. In this discus-
sion I want to compare the students’ discussion on ’programming thinking’
when learning object-oriented programming, with a discussion on ’canonical
procedures’. Many students mentioned ’programming thinking’ as some-
thing specific, different from other subjects they had studied. Student D
is an example of this. He/she compares programming with other subjects
studied.

D: [...] I guess, it’s just a rather different way of thinking.
I: Now that you have taken this programming course could you put
your finger on something you think is different than chemistry... or
you must have taken math too I suppose.
D: Sure, I’ve taken many math courses but math is kind of logical and
you understand it but this is... no I don’t know (laughter). No but I
kind of think it’s easier to study math. Then you often have something
creative to base it on, or you don’t, but you learn more methods and
kind of, there is some theory behind. Here you feel as if you only
learn a lot of examples. You know, we’ve gotten so many examples of
everything, in some way it feels as if you don’t understand the base
from the beginning [...]

34

Compare this when student C discusses what it means to learn in the
present course:

C: I don’t know... I guess it’s actually to solve a certain type of prob-
lem, it’s rather like the math courses. Then learning different methods
to solve them in different ways. Much like that, if you look back at the
course it’s not much actually but very, very fundamental.

Student C, who expresses an understanding belonging to category four
has, in contrast to student D obviously discerned ’canonical procedures’,
and has less problems in his/her learning. Student C seems to have reached
the level of ’process conception’, and thus reached further in his/her under-
standing.

Student D on the other hand has not even reached the level of ’process
conception’. He/she explicitly finds it simpler to study mathematics be-
cause there they learn methods to use, which he/she has obviously not been
given, or discerned in programming. Student D furthermore discusses how
troublesome it is to know how to study programming. ”But I still think the
course, it’s difficult too for a novice to get a good grip on how to study”.
This points to that student D is looking for ’canonical procedure’ as a study
technique, but has not found such to the extent he/she asks for. Student D
also explicitly expresses that he/she finds it problematic to understand con-
cepts within the subject and connects this to the ability to program ”Yes, I
think it has been difficult with concepts like that, as to understand how to
use different, how one should use different things in a program. And I actu-
ally think that most of it has been difficult, but this very thought behind,
it feels as some people just understand programming”.

In the understanding described in category four the students have real-
ized that it has to do with problem solving and a systematic way of think-
ing. Using Hazzan’s terminology, category four corresponds to ’canonical
procedures’, important in the learning process to reach the desired ’object
conception’. It is not until category four that the students express an under-
standing of programming in terms of methods to use. This is therefore an
important stage to reach. From the educator’s perspective, it is important
to support students who have problem to reach ’object conception’, to first
discern this understanding that corresponds to a ’process conception’. Ac-
cording to Sfard, the ’process conception’ is necessary for the more abstract
’object conception’.

Results reported in Chapter 5, Table 2 and 3 indicate that there are
students in the study who have reached an object conception of the concepts
object and class. Table 1 indicates that there are students who have reached
a process conception in the learning of object oriented programming. What
is more alarming is however, that the results show that some students do
not even discern ’canonical procedures’, and thus have not even reached
an process conception. Although with different starting points Hazzan’s

35

research and the results from my study point to the same problem, but
my study indicates that in learning object-oriented programming there are
students who do not even reach a level of ’process conception’. My main
question is:

• How can we help students to reach a level of ’object conception’ in
object-oriented programming?

The present study indicates however that an earlier question educators
need to ask is:

• How can we help beginning programming students to discern ’canonical
procedure’ in the process of learning object-oriented programming?

Both my results and Hazzan’s emphasize that students might need ’canon-
ical procedures’ as a heave to reach the higher level of abstraction, the ’object
conception’.

4.4 Related work

The question on how students understand programming has been investi-
gated and reported in other studies. To broaden the base for the conclusions
drawn from the present study, I compare my results to those of two other
studies.

In her thesis Booth (1992) addressed the question What does it mean and
what does it take to learn to program? Undergraduate Computer Engineer-
ing and Computer Science students from first and second year at Chalmers
University of Technology were interviewed several times over one term. Re-
current themes of the interviews were, among others, the nature of pro-
gramming, the nature of programming languages, the nature of learning to
program and the nature of studying programming. In the present study,
the prime interest is the results from the theme ’the nature of learning to
program’. Booth identified four conceptions of learning to program in her
study.

Bruce et al. (2004) investigated first year university students’ early ex-
periences of learning to program. The question addressed was: What are the
different ways in which foundation year students go about learning to pro-
gram? Five different conceptions of how students go about when learning
to program were identified. Bruce’s research question is slightly different
from the research question in the present study. It focuses on revealing
differences in how students go about when learning to program, while the
question addressed here is how students understand what learning means in
the context of the programming course.

Both Booth and Bruce et al. use a phenomenographic approach when
analysing their data. The results are expressed in outcome spaces as cat-
egories of description. Booth’s categories are similar to the categories in

36

Table 1, with the exception that Booth has no category comparable with
my third category. Bruce’s et al. categories are also comparable, expect
the first one, Following - where learning to program is experienced as ’get-
ting through’ the unit. There are students in the present study who express
these thoughts. The reason for not mentioning this is that the outcome
space from the present study does not explore how the students went about
learning, but how they understand what it means to learn to program. Stu-
dent E is shown as a comparison how he or she expresses the aim when
taking the course:

I: What has been the most important goal for you when attending the
course?
E: Pass it.

Student H has similar aim:

I: But is the goal, why should you learn the course?
H: Well, the goal is I suppose, the goal I suppose is to pass the exam,
I almost said. (Laughter)

Booth, like Bruce et al., has no category corresponding to my third
category. The reason for this difference between the studies is not possible
to say from the data given.

Results from the studies discussed give even more support to the impor-
tance for students to reach the understandings of what it means to learn to
program expressed in the last two categories in Table 1.

Booth investigates what she calls ’Framework constituents of program-
ming’. These are Conceptions of the nature of programming, Conceptions
of the nature of programming languages and Conceptions of learning to pro-
gram. In this comparison I have only looked at the Conceptions of learning
to program. Booth asks whether these frameworks are relevant for learning
technical constituents like function, recursion and correctness. Her answer
is:

the conceptions of these apparently peripheral phenomena act as a
scaffold to support the meeting with new aspects of programming and
lend meaning to the experience, thereby affording one conception or
another of the technical phenomena involved. [...] Abstract concep-
tions of technical constructs demand a well-developed set of framework
conceptions. [...] [T]he conceptions of the nature of programming it-
self, programming languages and learning to program were seen as
providing some sort of framework for the whole enterprise of learning
to program. (Booth, 1992, pp. 261-262)

A good understanding of the framework constituents of programming,
where Conceptions of learning to program is one, scaffolds better under-
standing of programming concepts, which is important for a programmer.

37

Investigation of how the students in the present study understand central
concepts in object-oriented programming will be presented in Chapter 5.
This is comparable with the technical constituents Booth investigated in
her study. The question of how the students understand what it means to
learn to program is thus a relevant question to connect to the findings of
the students understanding of the concepts. This is done in Chapter 8.1 in
this thesis.

The conceptions identified in the present study are discussed in terms
of a hierarchy. There seems to be a critical step between the first three
categories and the last two. The last two categories include the former and
are thus more advanced. Moreover, the data shows that the students who
only express understandings corresponding to the first three categories are
more confused than students who express the understandings in the last two
categories. These latter categories also correspond to the latter categories in
Booth’s study, which Booth shows better scaffold the learning of technical
constituents within programming.

Bruce’s et al. study supports the same conclusions. The authors com-
ment on the categories found:

It would appear that problems are likely to occur when students don’t
move beyond the learning experiences of categories 1 or 2. Attempts
to influence the act of learning, or how students go about learning,
through, for instance, changes in curriculum or the development of
teaching tools such as online tutorials, need to focus on encouraging
students to experience the range of different ways of learning to pro-
gram. (Bruce et al., 2004, p. 42)

The last categories in Bruce’s et al. study correspond to the last two
categories in Table 1. The conclusions from Bruce’s et al. study thus support
the importance of helping the students to reach an understanding of what it
means to learn to program expressed in the last two categories in the present
outcome space.

Booth also discusses students when they encounter a programming prob-
lem. This does not happen “in a vacuum but against a background of earlier
experience. This experience is not only made up of the programming aware-
ness, with its conceptual character, but also of the experience of how one
writes programs and solves problems in general” (Booth, 1992, p. 264). In
this context, I find arguments to investigate the environment the students
meet in the study course in terms of resources students are offered and
choose to use in the learning process.

In this sense I go further than the studies of Booth and Bruce et al. I do
not only investigate the students’ understanding of what it means to learn to
program, but I also explore the same students’ use of resources. I investigate
students’ experiences of the resources they use, how they use them and
the ways they are used. This use can enhance the teaching and learning

38

environment such that it communicates and scaffolds an understanding of
what it means to learn to program as expressed in the last two categories in
Table 1.

39

5 On the understanding of Object and Class6

5.1 The object-oriented paradigm

Object oriented programming languages are used at university courses at
all levels throughout the world (Roberts, 2004b). Much has been reported
on the experiences of teaching the object oriented paradigm (Thomas et al.,
2004; Mahmoud et al., 2004; Chen and Morris, 2005). Object oriented pro-
gramming is experienced as difficult both to teach (Roberts, 2004a; Kölling,
1999a) and learn (Lahtinen et al., 2005). The object oriented paradigm is
built on some fundamental abstract concepts, including object and class.
This chapter focuses on students’ understanding of these concepts, which,
when they learn Java, are met at an early stage. The understanding of the
concepts is thus important even in a beginning programming course. There
are other concepts central within the object oriented programming like en-
capsulation or data hiding, inheritance and polymorphism. The reasons to
focus on the concepts class and object are mainly the course content. In the
present first programming course, other concepts are mentioned, but not
thoroughly reviewed. These concepts mostly belong to a second program-
ming course, offered to the students later in their education.

The studies already referred to in Section 1.4 point to the importance
of good understanding of abstract concepts when learning object oriented
programming. This is the background to the research question posed in this
chapter:

• How do students understand abstract concepts in object-oriented pro-
gramming?

In particular the different understandings of the concepts object and
class are in focus. The objective is to identify qualitatively different ways
of understanding the concepts within the group of students in the study
presented. The results show qualitatively different ways in which the con-
cepts object and class have been understood within the group. Because
of the acceptance of the object-oriented paradigm in university educations,
the results from this study can have a positive impact of education in object
oriented programming.

5.1.1 Background

Programming is a central subject in all forms of computer science education
and often also in other forms of engineering education. The programming

6This work has earlier been presented in a shorter version: Novice Java Pro-
grammers’ Conceptions of “Object” and “Class”, and Variation Theory, in inroads
- SIGCSE Bulletin , VOL 37, ISSN 0097-8418, (Jun 27-29, 2005) c© ACM, 2005.
http://doi.acm.org/10.1145/1067445.1067473

40

paradigm taught has however changed over time. Currently the object ori-
ented programming paradigm is common. Programming languages within
the object oriented paradigm are for example C++ and Java. This section is
an attempt to briefly explain the object-oriented paradigm and the concepts
object and class to readers not previously familiar with them.

The principal aim of software engineering is to produce programs with
high quality, which is to say programs that are correct, efficient, reusable,
extendible, easy to use, which are exactly features that underpinned the
development of the object-oriented paradigm (Meyer, 1988; Hamilton and
Pooch, 1995).

Reusability is the ability of software products to be reused, in whole
or in part, for new applications. When programs have, in whole or in part,
been thoroughly tested, further development will be faster and cheaper since
these parts can be safely reused.

Extendibility is the ease with which software products may be adapted
to changes of specifications. An important way to achieve this is to create
independent parts of code, modules, with as little communication with the
rest of the program as possible, and minimal interface. The more indepen-
dent modules, the more likely that a simple change will affect only one or
few modules, rather than start a chain reaction of changes over the whole
system.

Program cost involves the cost for developing the programs, but also the
cost for maintaining programs. This includes correcting errors in the code
and changes in the programs when the circumstances change, for example
change of specification. The using of well-tested modules (reuse of code) and
code that can easily be changed (extendibility) reduces maintenance cost.

Describing the thoughts behind the object oriented paradigm Meyer
writes: “A software system is a set of mechanisms for performing certain
actions on certain data. When laying out the architecture of a system,
the software designer is confronted with a fundamental choice: should the
structure be based on the actions or on the data?” (Meyer, 1988, p. 41).
The latter choice is one of the main principles behind the object oriented
paradigm. Meyer has the following definition of object-oriented design:
“Object-oriented design is the method which leads to software architectures
based on the objects every system or subsystem manipulates (rather than
“the” function it is meant to ensure).” (Meyer, 1988, p. 50). Arguments
for choosing data instead of functions as a base for the program are:

• Data structures are more stable over time compared to the function
of a program.

• It is easier to adapt new demands to a software system built on its
data types than on a system built on its actions.

• A software system is easier to reuse when it is built on its data types

41

compared to a system built on its actions.

5.1.2 Central concepts: class and object

There exists an established understanding, widely shared among professional
programmers and teachers, as to the meaning of the concepts of object and
class (Meyer, 1988; Bar-David, 1993). When describing the concepts ob-
ject and class a variety of aspects should be mentioned according to these
authors:

• An object is the computer representation of some phenomenon in re-
ality.

• A class is the description of the general characteristics of the phe-
nomenon. It is used as a template when objects are created and in-
cludes algorithms describing how the objects can be manipulated.

• A class represents a particular abstract data type implementation. An
abstract data type is a set of values, a data structure, together with
a set of operations, member functions, which access and modify those
values.

• Objects are instances of the abstract data type. An object is a con-
tainer of values of this data type. The state of an object is its current
value. An object is manipulated by the member functions defined in
the class.

• A class is a text file permanently saved in the memory. It is a static
description of a set of possible objects - the instances of the class.

• Objects are created when the program is executed. They only exist
during runtime, an object is a dynamic concept.

• A program or system is a collection of objects that get the work done
by sending each other messages.

• A class can be understood as a module of the program. When design-
ing a program, classes are used as the bricks, the modules the program
is built of.

The two aspects of a class as an abstract data type and as a module
are important when understanding the concepts class and object. They are
useful in different situations, describing the concepts from different perspec-
tives. When designing a program, the identification of classes is a support
for modularisation. As mentioned earlier, using objects as the key to system
modularisation is based on quality aims. This is one of the major factors
that contributed to the success of the object-oriented paradigm.

42

5.2 Phenomenographic analysis

The interviews were read and all statements concerning the concept object
were copied to a separate file to form a pool of statements on the phe-
nomenon object. The same procedure followed for the concept class. The
decontextualised statements were read and compared with each other. By
reading the statements several times, looking for variation in the understand-
ings of the concept, a limited number of categories describing the different
understandings found in the group appeared. In this way the interviews
were analysed at a group level. The individual understandings were not in
focus, the aim was to describe the variation of the understandings found in
the group.

Using the terminology of the theoretical framework developed by Marton
and Booth (1997), presented in Figure 4, Section 2.2, the understandings
captured in the described analysis, represent the referential aspect of the
What-aspect. The referential aspect represents the meaning experienced in
the direct object, that is the concept studied. In the phenomenographic
tradition this part of the analyses is commonly described as creating for “a
pool of meaning” from the data.

When looking for categories of description found in the group, for a
reliability check (see Section 2), two researchers independently read the in-
terviews and formed their opinion of the categories of description appearing
in the interviews. The results were very similar. One person had found
three categories in the interviews, the other had found four, including the
first person’s categories. Going back to the interviews we agreed upon the
number of categories and how to describe the categories found.

5.2.1 The concept of “object”

The different comprehensions of the concept object found in this study, can
be formulated in three categories of description presented in Table 2. The
three categories are illustrated by quotes below.

Object is experienced as a piece of code.
Object is experienced as something that is active in the program.
Object is experienced as a model of some real world phenomenon.

Table 2: Categories describing the different ways to understand the phe-
nomenon object found in the group.

In the first category, the comprehension of the concept is limited to an
analysis of the structure of the code. Student C says:

C: I imagine that it is a piece of the code with all the variables piled
under.

43

When the interviewer asks the student how he/she would explain to a friend
who does not know anything about programming what an object is, student
N answers:

N: I’d just say that it is a part of the program.

In the second category the comprehension is extended to include the
results of the program execution, and the task of the object. It can be
illustrated by the following answers.

Student B explains what an object is:
B: what you create and want to use in the program [...] an object that
you want to work with.

Student H says:
H: the object is a kind of, what is doing something [..] because it is all
about that something is going to happen.

Student J says:
J: If you think of the Java program, that it is built of different objects
and it is the objects we modify so that we can get what we want from
it.

The third category describes an understanding that an object is a model
of some real world phenomenon. This is expressed in the following quotes:

C: Yes an object, you can have a rather physical image of it....
I: What did you say, physical?
C: Kind of, you can think of a car and then it has one variable for how
many wheels it has, one variable for the size of the engine like that.

The three categories express an increasing understanding and complex-
ity. The first category shows an understanding that all students express in
one way or the other, objects as they appear in the code. A few students
express only this understanding. The second category expresses the impor-
tance of the objects for the results of the program execution, the active task
the object has. The last category describes the relation between the objects
and the real world. The first category expresses a poor understanding, while
the last one shows a rich understanding including fundamental thoughts be-
hind the object-oriented paradigm. In an unpublished pilot study, similar
indications were found (Eckerdal, 2002). Students with the least under-
standing of the phenomenon encapsulation only understand it at a code
level, while a richer understanding requires that programming is seen in
a context that goes beyond the code and the syntax of the programming
language. Holmboe (1999) writes about understandings which include the
world outside the computer itself: “A person with holistic knowledge relates
the implementation and design of a computer program to the real world
being simulated.”. It is thus of great importance that students reach an
understanding of the concepts object and class that goes beyond the code
level.

44

5.2.2 The concept of “class”

When looking for the different understandings of the concept class expressed
in the study, a pattern similar to the understanding of the concept object
is found. There are comprehensions focusing on the code and the task of
the programmer, but there are also comprehensions where the reality the
program is supposed to model is present. The categories of description are
presented in Table 3 and illustrated by quotes below.

Class is experienced as an entity in the program, contributing to the
structure of the code.
Class is experienced as a description of properties and behaviour of
the object.
Class is experienced as a description of properties and behaviour of
the object, as a model of some real world phenomenon.

Table 3: Categories describing the different ways to understand the phe-
nomenon class found in the group.

Many of the students express an understanding belonging to the first
category, “Class is understood as an entity in the program, contributing to
the structure of the code”. Student H says:

H: A class is well, yes, like I think a class is like a little programme,
that’s how I think of it, a small programme inside the whole big pro-
gramme being kind of the main programme. Then a class is like a
small programme which does certain things.

The understanding has its focus on the program structure and the pro-
grammers’ task and describes the class-concept as a help for the programmer
when structuring the code. It deals with the code and the programming task,
and the description of the class reminds of a description of modules, even
if no student explicitly uses this formulation. Student E emphasizes the
module aspect:

E: Class. Mm, it took a while before you came to grips with classes,
what it really was actually, that I don’t know if I still have. But
classes which only contain a lot of methods for instance that you later
use or, like how a vector works, it’s a class for instance and, a bunch
of computing vectors which you then will be able to call and use so
that you don’t have to write everything at the same place, a sort of
classification of chapters or something similar.
I: Classification of... ?
E: But well, you divide the programme simply and then... theoretically
you can always write everything in the same programme, or? Although
it would be so incredibly... I don’t know, it wouldn’t work.

Student C discusses the module aspect in terms of encapsulation:

45

C: Then the class should really be something ”clever” which contains
that you shield, this is a class and in a class you could put everything
under the same class although it’s not very clever to do so if you want
to use some things in other programmes. Then it is good to have them
kind of shielded from each other. But the class is really just some
blurred collection of, this I think belongs together, in some way.

The second category, “Class is understood as a description of properties
and behaviour of the object” is the most common understanding expressed
in the group. Even if none of the students explicitly uses the expression
“abstract data type”, the descriptions point in this direction. All students
mention the methods, that are the behaviour of the objects, when talking
about the classes. A few students do not mention that the object’s properties
are defined in the class. Most of the students focus on the behaviour of
the objects in the program during execution, described in the class. Some
examples from this category are given in the following:

Student L emphasises the behaviour of the object:

L: It was then when we were making our own classes. At that point I
came up with that it was just kind of a storage space for methods that
belong to certain objects.

Student O and M articulate that a class contains a description of both
properties and behaviour of the object. Student O says:

O: [...] Eh, when you write a class, for instance class vector which we
have had as a class particle, then you write well, yes, to be able to
create an object of that class later you write how you want it to look
like and that is how I see a class, that you will be able to create an
object and some of what you will be able to do with this object in the
different methods [...]

Student M also points to the variation of the objects properties when
objects of the same type are created, and variation of properties using the
class functions:

M: How I think about a class... well, like a ginger cookie cutter maybe.
[...] It is more like a cast form then cause how you make new ones from
the beginning identical one maybe, if you now will think about that.
But which can be different very quickly. It can be... well, it is...
I: They can be different, what did you say?
M: They have the same origin in some way but they don’t need to be
identical because they come out from the same.
...
I: What is it that you think so to speak is different?
M: Different contents then, more like instance variables. They... well,
you can do the same operations with them, you can do, with the same
class you can in principle do the same elements and so on with all
objects. If they are not too...

46

I: But element that is to say.
M: You can, if you have your cat object you can let the cat run even
though it has three legs defined or two legs.
I: Yes, that’s right.
M: You can still let it do certain stuffs anyway.
I: What do you think is then... the difference so to speak of class and
object?
M: Class and object. Yes, that the class is the pattern over how the
objects of the class look like. That’s how I think of it.

When describing a class as an abstract data type, many interesting
metaphors are used. In the quotes above student M uses “ginger cookie
cutter”, “cast form” and “pattern”. Student A uses “pattern” and “math-
ematical formula”:

A: Oh, the point is that you have a pattern from the beginning, then
you can make them green and blue if you want that and if you don’t
want it then you take them away and make them orange instead for
instance. It is, it is about like a mathematical formula before you have
put in the numbers. With this formula you can do plenty of different
things and you can perhaps change an m and take it away and, well,
you can do very much without affecting itself... if I want something to
be 18, then I put in the numbers that makes it 18. It’s the same here.
If I so to speak want something to look exactly so.

Student L uses the expressions “box” and “storage space”:

L: I would probably almost describe it as a box where you put different
characteristics, different things that this object will do.
[..]
L: It was then when we were supposed to do our own classes. Then I
realize that it was so to speak just a storage space for methods that
belong to certain objects.

In the third category in Table 3, “Class is experienced as a description
of properties and behaviour of the object, as a model of some real world
phenomenon”, the close relationship between the class definition and the
reality the class depicts is pronounced. This category explicitly includes
the understanding expressed in category two. Only a few students express
category three. Student C says:

I: But this about class, I mentioned, how do you think about class?
C: That is a bit more diffuse actually. Class, it is that I would probably
think of that a class contains, can contain a couple of objects or just
one object and different operations that you can do in an object or
between objects. So that you can also think of what it would mean in
reality.
I: Okay.
C: Well, you can have a working space and a human that works there,
then you have two objects and then they can so to speak interact with

47

one another through different operations so to speak, what do I know,
the human gets some coffee and then the coffee variable goes down at
the working place and so on.
I: Okay (laughter). And what do you think the class now, now I want
to...
C: Then the class would really be something smart containing what is
to be shielded, so this is a class and a class you could put everything
under the same class although it is not very clever to do if you want to
use some things in other programmes. Then it is good to have them so
to speak shielded from each other. But the class is just some blurred
collection of, this I think belongs together, in some way.

Notice that in this excerpt student C expresses understandings belonging to
all three categories in Table 3.

5.2.3 The purpose of using objects and classes

One of the questions to the students was “What do you think is the point
of using classes and objects?” Most of the students in the study had never
programmed before. A few of them had tried other programming languages
like C++, Pascal or Basic. Although most of them had never tried a non-
object oriented programming language, still all had an idea of what is the
point of using classes and objects.

The students’ different understandings of the point of using classes and
objects, are presented in three categories in Table 4.

The purpose is understood from a code perspective: the syntax re-
quires it, and it gives the program a good structure.
The purpose is understood from a user and result perspective: simpler
for the programmer to make the program solve the task given.
The purpose is understood from a reality perspective: support to con-
nect reality and programming.

Table 4: Categories describing the different understandings of the purpose
of using the concepts object and class, found in the group.

Most of the students expressed an understanding of the purpose belong-
ing to the first category. Most of them also expressed an understanding
belonging to the second category. Only a few students expressed an under-
standing belonging to the third category.

The first category expresses the understanding of the purpose at a code
level. The reason for using objects and classes is because the programming
language requires it and that objects and classes give a good structure to
the code because of the modularisation the classes achieve. The purpose is
built in the construction of the language, in the syntax rules.

48

I: ...what do you think is the point with having classes and objects?
Why do you create classes and objects?
N: It is because the programmes require it. That’s the way it goes to
create a programme. I don’t know how to do it otherwise.

Student E says:

E: But well, you divide the programme simply and then... theoretically
you can always write everything in the same programme, or? Although
it would be so incredibly... I don’t know, it wouldn’t work. (Giggle)
I: Why do you think it wouldn’t work?
E: You have to have everything in order, the structure, in the begin-
ning you don’t think so much about the structure but when you start
programming some more then you realize how important it is [...]

Student G, having previous experience in the non-object oriented program-
ming language Basic, says:

G: [...] I remember so to speak that it was... if you will compare
Basic with Java then it was so that large programmes in Basic became
very unstructured, it’s difficult to find how you will put it forward and
structure it... run so to speak with classes, divide it up in different files
so to speak and this whole part makes it so it can be built upon each
other in some way, build so to speak programmes on other.

In the second category of Table 4, “The purpose is understood from a
user and result perspective: simpler for the programmer to make the program
solve the task given”, the understanding is not focused on the program code
and compiler but on the programmer and the task of the program. The
most usual way to express this is to say that objects and classes simplify
the work for the programmer for example when debugging and in reuse of
code, and by using objects and classes it is more easy to get what you want
from the program.
Student G above, and also student H express an understanding that includes
both the first and the second category:

I: Mm. What do you think the point is having objects and classes?
H: [...] one point is this that you can use, if you write it in some place
so to speak...right this that you can call them and use them even in
other places so that it will be a kind of...yes... [...] Right this that you
were not allowed to describe, that otherwise perhaps would have been
the alternative, that you only could have been writing what you need
and then you had to write it so many times but now you can only write
one class and then you can use it anywhere you want and so on. It is
very time saving. That’s what it’s all about to write...
[...]

49

I: [...] Why do you create classes?
H: Yes why... well it is... yes it’s the same reason as the latter question,
a little bit right this that it is like this that it’s simply built up. It’s like
this you, well the whole programme is done a little like this so you will
do so but... yes why, otherwise you wouldn’t be able to do anything if
you didn’t have any classes. That’s how I feel about it. I don’t know
really what it would consist of otherwise really.

Student K expresses the user’s perspective:

I: What do you think is the point of having objects and classes then?
K: The point is that... (pause)... well it is that you can write pro-
grammes easy for that purpose which you are looking for kind of.

And later K says:

K: But simply that it’s easier with classes to get what you want from
the programme or to write...
I: To write the programme?
K: Yes or to solve the assignment perhaps you can say. To write the
programme can be too hard even with classes but, yes. To solve the
assignment. If you take for instance assignment no. four, if you didn’t
have classes in it then it would have been really hard for sure.

The third category of Table 4, “The purpose is understood from a reality
perspective: support to connect reality and programming”, shows the most
abstract understanding of the purpose of using objects and classes. Classes
and objects reflect the reality that is going to be matched in the work of the
computer program. Student C explains this clearly:

I: What do you think is the point with having classes and objects?
C: Well, the point is really that you can have this clear image, this is
how it looks in the real world. Yes but then it is something similar on
the computer then. So that it can be described so to speak, therefore
a rather clear image of it. Now I have a particle and I have a box and
the particle has vectors. Yes it has it in the reality too in some way.
I: Precisely.
C: So you get a very concrete picture of also how you perhaps can put
forward the programme if you will do something which in reality has a
couple of objects, then they create one object at the time so to speak
and then you link them together so they will behave as you want. So
it is a very clear picture...

The categories are arranged hierarchically, from a concrete way to un-
derstand to the most abstract in the third category. The first category, “The
purpose is understood from a code perspective: the syntax requires it, and
it gives the program a good structure” is comparable with the first category
describing how students understand the concept object in Table 2 “Object
is experienced as a piece of code” and the first category in Table 3 “Class is
experienced as an entity in the program”. The third categories in the Tables

50

2, 3 and 4 all discuss the reality aspect. Even the second category in Table
4: “The purpose is understood from a user and result perspective: simpler
for the programmer to make the program solve the task given” is comparable
with the second category in Table 2: “Object is experienced as something
that is active in the program” and the second category in Table 3 where the
behaviour of the object is described: “Class is experienced as a description
of properties and behaviour of the object.”. They all focus on the activity of
the program , the task it solves.

The understanding expressed in the first part of the first category in
Table 4, “The purpose is understood from a code perspective: the syntax
requires it”, is hardly a professional way to understand the point of using
object and class. The use of objects and classes has come from a need pro-
grammers experienced and thus object–oriented programs developed. Meyer
writes: “The case for using data (objects) as the key to system modulari-
sation is based on some of the quality aims [...]: compatibility, reusability,
extendibility.” (Meyer, 1988, p. 49). Object oriented programming has not
developed because of a compiler, the compiler is developed because the users
needed a tool to be able to program according to this paradigm.

5.2.4 Discussion on the analysis

The concepts object and class in object oriented programming are closely
related to each other, and can hardly be understood without each other. As
described in Section 5.1 an object is an instance of a class, and a class is the
description of a phenomenon in reality. The class is used as a template when
objects are created and includes algorithms describing how the objects can
be manipulated. When describing the different understandings found in the
group, it is not surprising to find similar patterns for the understandings of
the concept object and the concept class. In the empirical data collected
for the present study, most students express understandings of the concepts
in corresponding categories. If a student for example expresses an under-
standing of object corresponding to the second category in Table 4, he or
she also expresses an understanding of class corresponding to the second
category in Table 3. There are few, if any examples where students show
an advanced understanding of one concept, and a poor understanding of
the other concept. As a consequence of these observations, the categories
of understanding described in Table 2 and Table 3, respectively, are merged
in Table 5 Table 5 thus include both the students’ understanding of object
and class. When comparing the outcome space in Table 2 and in Table 3
with the professional way to understand objects and classes described in
Section 5.1, it can also be noticed that the main ideas behind the concepts
are covered in the outcome spaces.

In Table 5, as in the previous tables, the categories are intended to be
inclusive. This means that an understanding expressed in one of the latter

51

Class is experienced as an entity of the program, contributing to the
structure of the code and describing the object, where the object is
understood as a piece of program text.
As above, and in addition class is experienced as a description of prop-
erties and behaviour of objects, where object is understood as some-
thing that is active during execution of the program.
As above, and in addition class is experienced as a description of prop-
erties and behaviour of objects, where object is understood as a model
of some real world phenomenon.

Table 5: Categories describing the different ways to understand the phe-
nomena object and class found in the group. The latter categories include
the understandings in the former.

categories includes the understandings expressed in the former categories.
It is hardly possible to understand that an object is a model of something
in reality without understanding that this implies a description of its prop-
erties and functions, expressed in the code. This inclusive character of the
categories is described by Marton and Booth in terms of a logic relation
between the categories which is often hierarchic. The authors explain:

[...]the limited number of qualitatively different ways in which some-
thing is experienced can be understood in terms of which constituent
parts or aspects are discerned and appear simultaneously in people’s
awareness. A particular way of experiencing something reflects a simul-
taneous awareness of particular aspects of the phenomenon. Another
way of experiencing it reflects a simultaneous awareness of other as-
pects or more aspects or fewer aspects of the same phenomenon. More
advanced ways of experiencing something are, according to this line
of reasoning, more complex and more inclusive (or more specific) than
less advanced ways of experiencing the same thing, ‘more inclusive’ and
‘more specific’ both implying more simultaneously experienced aspects
constituting constraints on how the phenomenon is seen. (Marton and
Booth, 1997, p. 107)

Since the tables above are inclusive, an understanding corresponding to
one of the latter categories expresses a richer understanding of the concepts
object and class compared to an understanding corresponding to one of the
former categories. In this context it is of interest to mention Pong (1999),
who discusses learning in terms of “multi conceptions”. He gives a short
survey on how the understanding of learning in the 1960’s was defined as
conceptual change, whereas there are today researchers who advocate what
is known as the “multiple conceptions” perspective, which can be inter-
preted as increasing the number of ideas about the physical and cultural
world. Another reference of relevance for the discussion about inclusiveness
is Booth (1992) . Students do, depending on the context, express different

52

understandings of a phenomenon. Booth claims that in Computer Science a
good understanding of a phenomenon is reflected in the capacity to choose in
a situational relevant way between different ways of experiencing the phe-
nomenon. A person with an understanding belonging to one of the less
advanced categories is not able to do so, because he or she can not see the
aspects of the phenomenon expressed in the more advanced categories. All
categories in Table 5 are thus important and valid in different situations
when working with a programming task. By the programming task I mean
the whole problem solution process, that is the analysis of the problem, the
design, implementation and testing of the program. An understanding of
objects and classes as a model of the reality is important when working with
the analysis of the problem, and the overall design of the program, when
finding the different roles of the objects and how they interact with each
other. This corresponds to the third category in Table 5. When focusing on
the task of the program, transferred to the objects’ behaviour and interac-
tion with each other, the understanding that the classes are descriptions of
properties and behaviour of the objects is important. This is described in
category two. To know the syntax-rules and how to write code is a funda-
mental skill in all programming work, and when implementing and testing
a program the understanding that the classes are entities that give a struc-
ture to the program is valid. This corresponds to the first category described
above. This is all in line with Booth’s (1992) arguments stressing the im-
portance of the ability to shift between the different categories , and Pong’s
discussion about the “multi conceptions” perspective, that different aspects
of a certain phenomenon can be focused on depending on the context.

5.3 Enhancing the learning process

What can the educators do to facilitate for the students to develop their
conceptual understanding? The following sections discuss how the empirical
results in this chapter can be further analysed and give implications for
teaching.

5.3.1 Learning in a context

Previous sections have discussed the different meanings of the concepts ob-
ject and class. Table 4 however describes the purpose of using objects and
classes. It turns out that these points to factors that might be important
for teaching. The students understanding expressed in the first part of the
first category in Table 4, “the purpose is understood from a code perspective:
the syntax requires it”, is notable. The understanding that the reason for
using objects and classes is because the compiler requires it shows a total
lack of understanding of what the object-oriented paradigm is about, why it
has appeared and its advantages and disadvantages compared to other pro-

53

gramming paradigms. Several students also express that they do not know
any other way to program, that they even question if there are other ways
to think.

I: What do you think is the point with having objects and classes?
B: That I don’t know, what else would it be so to speak, if you didn’t
have it. It’s necessary, isn’t it, so to speak.

Another student says about the point of using objects and classes:

N: It is because the programmes require it. That’s the way it goes to
create a program. I don’t know how to do it otherwise.

Compare their answers above with their answers on the question if it has
been hard to understand objects and classes:

I: Do you find it difficult to understand classes and objects?
B: Yes I think so. It is very difficult to know if you kind of have
understood it correctly because you could as well have understood
quite wrong things. I don’t know if I have understood it correctly.

And student N says:

N: I have a very vague image so I find it very difficult.

The conspicuous connection between problem to see the point of using
objects and classes and the experience that it is difficult and unintelligi-
ble is notable. On the other hand, the rich understanding of the point of
using objects and classes formulated in category three in Table 4, “The
purpose is understood from a reality perspective: support to connect reality
and programming”, expresses one of the main thoughts behind the object
oriented paradigm. This understanding is elucidated if the object oriented
paradigm is explicitly evolved to the students. This also implies that there
are more programming paradigms. To understand why the question of differ-
ent paradigm exists at all, the students need a context that involves some-
thing from the historical background and the problems that enforced the
development of the different paradigm, and the contexts where they are
used.

The phenomenographic analysis in the study revealed that the under-
standing expressed in the last category in Table 4 corresponds, with few
or any exceptions, to a rich understanding of the concepts object and class
among the students. The connection between fundamental programming
concepts in Java, and the understanding of the programming paradigm it-
self is stressed by Hadjerrouit. He writes:

It is critical to understand that Java is not only a programming lan-
guage, but that it is also an emerging paradigm with a set of fundamen-
tal concepts that can be used to explore a wide range of problems that
was previously beyond the reach of computing (Hadjurrouit, 1998)

54

Here he mentions “The concept of object for designing software as a set of
interacting objects.” Later he writes about “viewing Java as a computing
paradigm organised around a set of fundamental concepts.” Understanding
central concepts within object-oriented programming is fundamental, and is
closely related to understanding the object-oriented paradigm itself.

A rich understanding of the concepts object and class includes an under-
standing that classes and objects are models of real world phenomena. In
the present study only a few students expressed these understandings. To
be able to discern these understandings of the concepts, the study points to
the importance of letting students follow the whole process of a program-
ming task, even including the analysis and design of a real world problem.
Holmboe (1999) writes about understanding object-oriented programming
which includes the world outside the computer itself: “A person with holistic
knowledge relates the implementation and design of a computer program to
the real world being simulated.”. He emphasizes the importance that “[...]
more students will experience the connection between reality, model and im-
plemented program, and thus reach holistic knowledge of object-orientation
sooner in their learning process.” He advocates a focus on object-oriented
analysis and design early in the education, even prior to introducing of a
programming language.

Computing Curriculum 2001 (Joint Task Force on Computing Curricula,
2001) comments the importance of design and analysis in the programming
education: ”Introductory programming courses often oversimplify the pro-
gramming process to make it accessible to beginning students, giving too
little weight to design, analysis, and testing relative to the conceptually
simpler process of coding.”

The research and comments referred to above point in the same direction
as the present study. To follow a whole programming task, including analysis
and design, puts the programming in a context and can help the students to
get a richer understanding of the object-oriented paradigm and fundamental
concepts within the paradigm.

The discussion of the importance of putting programming in a context,
here discussed in terms of knowledge of different programming paradigms
with the historical development that lead to object oriented programming,
and the importance for the students to follow a whole programming task,
are interesting issues that need more investigation in later studies.

5.3.2 Identification of critical aspects

The analytical framework developed by Marton and Booth (1997) presented
in Figure 4, Section 2.2, has been applied to the results presented in Table
5. The reason for this is twofold. The framework gives a tool to get an
overall picture of the students’ experiences, with referential and structural
aspects. The structural aspects then provides a basis for the analysis to

55

identify critical aspects of the concepts studied, and thus discuss dimensions
of variation, necessary for the learning such critical aspects.

Three qualitatively different categories of understanding have been iden-
tified in Table 5, each category of understanding expressed in terms of its
referential aspect. Intending to discuss implications for teaching, the struc-
tural aspects of class and object, corresponding to each of the identified
categories of understanding, will now be made explicit. An example of this
is the first category in Table 5, where the students have experienced classes
as entities of the program, contributing to the structure of the code. The
focus of this understanding of a class, is the appearance of the program with
classes as separate entities. The structural aspect of this category is hence
found.

As discussed in Section 2.2, learning requires discernment of a new struc-
tural aspect of the phenomenon, and discernment requires variation in a
dimension corresponding to the structural aspect.

In the first category in Table 5, the students have experienced classes
as entities of the program, contributing to the structure of the code, and
objects as a piece of program text. The focus of this understanding of a
class, the structural aspects, is, as mentioned above, the appearance of the
structure of the program text. The focus of the understanding of objects, is
on the program text.

In the second category, classes are experienced as descriptions of prop-
erties and behaviour of objects, where objects are understood as something
active in the program. The focus in this category is on what happens during
execution of the program, in particular on the objects created and how they
contribute to different events at run-time7. The objects are the active parts
of the program, accomplishing the task given.

In the last category, class is experienced as a description of properties
and behaviour of objects, where object is understood as a model of some
real world phenomenon. The focus is still on the class’ description of the
active objects, but now with an emphasis on the reality aspect of the class
description.

The structural aspects, the students’ foci, are hence identified. Variation
in a dimension corresponding to the structural aspect is, as discussed above,
a prerequisite for learning to take place . Having expressed the structural
aspects of the concepts object and class, as captured by the categories of
description in Table 5, it is now possible to discuss what dimensions of
variation correspond to each category. In the first category in Table 5 the
structural aspect is the program text and the appearance of the text. To
be able to focus on this aspect, students need to discern that in different
programs objects and classes appear in different ways. In that sense, the

7For readers not familiar with programming: by “run-time” I mean the period of time
when a program is running.

56

textual representation of programs constitutes a dimension of relevance for
the understanding of object and class. Different, specific program texts
constitute values along this dimension.

To be able to discern the understanding expressed in the second category,
the students need to focus on the objects the program creates and events
happening at execution of the program. Here, the relation between class
description, object action, and resulting events during the execution of the
program constitutes a dimension. Different specific cases of such relations
provide values along this dimension. The variation between these values
can enhance an awareness of object and class corresponding to the second
category of understanding, according to Table 5.

In the last category in Table 5, the structural aspect is the active objects
in the program, described by the class, with an emphasis the reality aspect
of the class. In this case, the relation between class, object and real-life
phenomena constitute a dimension. Different specific cases of such relation,
constitute values along this dimension.

The line of reasoning above is summarized in Table 6. It includes both
the referential aspects of the concepts object and class, see the left hand
column in Table 6 and the structural aspects, see the mid column. In the
right hand column I have included what I conclude to be the corresponding
dimensions of variation.

5.3.3 Implications for education

Table 6 has implications for teaching. Teaching is here defined in a wide
sense, to mean everything that supplies resources for learning. Examples of
such resources could be programming assignments, software tools, lectures,
internet and fellow students, anything the students choose to use in their
learning. The whole organisation of the learning environment is in this sense
teaching.

A general implication for teaching is to make resources in the learning
environment available that help students to discern the aspects mentioned
in Table 6. The teacher can create the conditions for such discernment
with the judicious use of variation, see Section 2.2. By varying the teaching
and holding the critical aspect of the phenomenon invariant, that critical as-
pect, in contrast to the surrounding, is lifted out of the surrounding ”noise”.
Furthermore, generalisation, expressed as variation of values of the critical
aspect, can open possiblities for discernment. I speak of opening dimen-
sions of variation, in which taken-for-granted ways of understanding are
now brought into focus.

The results in Table 6, developed and clarified in the previous section,
can be implemented in the teaching and learning environment offered to the
students, in a number of ways. There is a great freedom and possibility
to adapt the results to the need and desire of each teacher, study group

57

The class and ob-
ject concept, the
referential aspect

The class and ob-
ject concept, the
structural aspect

Dimensions of vari-
ation

Object is under-
stood as a piece of
program text.

Focus on the pro-
gram text and the
syntax rules of the
programming lan-
guage.

Variation of the
text in the pro-
gram.

Class is experi-
enced as an entity
of the program,
contributing to
the structure of
the code and
describing the
object.

Focus on the struc-
ture of the pro-
gram.

Variation of the
appearance of
the structure of
different program
texts.

Class is experi-
enced as a descrip-
tion of properties
and behaviour of
objects, where ob-
ject is understood
as something that
is active in the
program.

Focus on the
objects that the
program creates
and events happen-
ing at execution of
the program.

Variation of the
relation between
objects and events
when the program
is executed.

Class is experi-
enced as a descrip-
tion of properties
and behaviour of
the object, where
object is under-
stood as a model
of some real world
phenomenon.

Focus on the ob-
jects that the pro-
gram create, the
reality the class de-
picts.

Variation of the re-
lation between ob-
jects and concepts
within the problem
domain of the pro-
gram.

Table 6: Categories describing the different understandings and the corre-
sponding aspects of variation of the phenomenon object and class found in
the group.

and learning resources. The following paragraph discusses possible ways to
achieve this, showing a few examples.

An example of how the students can discern the aspect that classes
and objects have something to do with the program text and its structure,

58

is that students need to become aware that different programs represent
classes and objects differently, at a textual level. This corresponds to the
first part of the first category. In the second part of category one, the focus
is on the structure of the program text. There are however several aspects of
a program structure. A single class has a structure in terms of its attributes
and methods. Students also encounter problems including several classes
where each class is an entity of the program. Both these aspects of the
structure of the code are possible to expose in the teaching and the students
discern it. A way to achieve this is to use a variety of simple UML class
diagrams8 (Rumbaugh et al., 1999). To transfer the structure from the
diagram to the code where the methods are separated from the attributes
is possible even if there is only one single class. This is often the case in the
examples considered in the beginning of a programming course. The aspect
that the class is a help when structuring the program is made even more
apparent when more than one class is used to solve a problem. Each class
is represented in a UML diagram and forms its own entity of the program.

Another example is in the second category, which has a focus on the
relation between class, objects and events during program execution. Let
one object call different methods and check the result after each method
call. Also let the same method be called by several different instances of one
and the same class and check the results. The aspect that objects are used
to make things happen can thus be discerned. An example of a resource
that can be used for the examples mentioned is BlueJ (Barnes and Kölling,
2003), where class diagrams are used to illustrate classes and relations, and
with a debugger showing the values variables get during execution.

The last category in Table 6 includes the aspect that objects and classes
model the real world. The present study points to the importance of letting
students follow the whole process of a programming task, even including
the analysis of a problem in real life. This can be implemented in teaching
by using an assignment where several classes are needed. The first part of
the assignment would be to do an object oriented analysis of a real world
problem, deciding which classes are needed, which methods each class should
include, and which information the classes need to exchange. If the students
are in their first programming course, they may in a next step be given a
suggestion on suitable classes with attributes and methods before starting to
code. After implementing and testing the code, the students are supposed
to discuss in groups their different solutions and how their final solutions
differ from their first analysis. This might help the students to discern the
real world aspect of objects and classes, and also to discern the differences
between the real world problem and the implementation of the problem.

8UML (Unified Modeling Language) is a visual language. It is a standard for modelling,
developing and documenting object-oriented computer systems.

59

My results can shed new light upon and give explanation to other research
and discussions in the field.

For example, the importance of letting the students follow a whole pro-
gramming task, not only the coding is commented in Computer Curriculum
2001 Section 7.2 (Joint Task Force on Computing Curricula, 2001):

Introductory programming courses often oversimplify the program-
ming process to make it accessible to beginning students, giving too
little weight to design, analysis, and testing relative to the conceptu-
ally simpler process of coding. Thus, the superficial impression stu-
dents take from their mastery of programming skills masks fundamen-
tal shortcomings that will limit their ability to adapt to different kinds
of problem-solving contexts in the future.

This is in line with the discussion above on the need for the students
to follow a whole programming task, including the analysis to find suitable
objects in a real world problem, to get a good understanding of object-
oriented programming. My analysis above provides empirical and theoretical
support for this statement.

As an second example, Holland, Griffiths and Woodman (1997) list some
misconceptions noticed at distance courses where Smalltalk was taught, in
one introductory undergraduate course, and one postgraduate course. One
misconception mentioned is ”object as a kind of variable”. If the examples
the students first come across have only one instance variable, students with
previous experience of procedural programming may develop the misconcep-
tion that objects are in some sense mere wrappers for variables. It is trivially
easy to avoid this misconception by ensuring that all the classes showed as
an introduction have more than one instance variable and that they are of
different type. Another misconception that can appear is if the data aspect
of objects is overemphasized at the expense of the behavioural aspect. This
misconception can be avoided by using introductory object examples where
the response to a message is substantially altered depending on the state of
the object. Both the misconception ”object as a kind of variable” and the
overemphasizing of the object’s data aspect is an indication of the impor-
tance to attain a conception according to the second categories in Table 2
and Table 3. The second category in Table 2 emphasizes that objects are ac-
tive during execution of the program. This points to the behavioural aspect
of objects. The second category in Table 3 explains classes as a description
of both data about the object, and methods explaining the behaviour of the
object. As explained in Section 5.3.2, the relation between class description,
object action, and resulting events during program execution constitutes a
dimension where variation is needed. This implies variation in values of sev-
eral instance variables, caused by several method calls. This is in line with
the recommendations from Holland et al.

A common problem among novice programmers, also mentioned by Hol-
land et al, is to understand the difference between class and object. This is

60

obviously a problem if several examples are presented in which only a single
instance of each class is used. To avoid this, good practice is always to work
with several instances of each class, see category one Table 6. As explained
in Section 5.3.2, the textual representation of programs constitutes a dimen-
sion of variation. This implies variation in the sense of presenting more than
one instance of the class in the code, as recommended by Holland et al.

In the light of the present study, the recommendations from Holland et
al can be summarized as variation of dimensions corresponding to critical
aspects of the understanding is of great importance. These dimensions of
variation are not only pinpointed in the present study, but also explained in
the theory of phenomenography and in the analysis of the data by applying
variation theory on the results of the study (see Chapter 2).

As a third example, Holmboe (1999) performed a study where people of
different background, students who had just finished an introductory course
on object-oriented programming, senior students tutoring the same course
and professors of Computer Science or System Engineering, were asked to
describe in their own words what object-oriented programming is. He made
a qualitative analysis of the answers, and his comments to his research can
be illustrated by my results. When analysing the results from the study
he concludes that some types of knowledge are more suitable as basis for
further knowledge construction than others. He writes about understandings
which include the world outside the computer itself: “A person with holistic
knowledge relates the implementation and design of a computer program to
the real world being simulated.” Holmboe emphasizes the importance that
“[...] more students will experience the connection between reality, model
and implemented program, and thus reach holistic knowledge of object-
orientation sooner in their learning process.” The third category in Table 2
and Table 3 capture an understanding of classes and objects that includes
the world outside the computer itself. The dimensions of variation found and
discussed in Section 5.3.2 are valuable knowledge for teachers to facilitate
for the students to reach this understanding.

Lastly, in Fleury’s (2000) study of student’s constructed rules, she stresses
the importance of carefully constructed sample programs to avoid miscon-
ceptions of concepts. My study stresses the importance of designing the
education so that the students can discern the critical aspects of the con-
cepts. Carefully constructed sample programs in this sense means variation
of dimensions corresponding to these critical aspects. This is applicable
not only on sample programs, but in all different aspects of the learning
environment.

For the Java educator, one challenge is to construct an educational envi-
ronment which facilitates for students to reach a rich understanding of the
concepts object and class. To this end it is important to know the different
ways in which students (as opposed to experts) typically experience these
concepts. My phenomenographic study has given such insight. Next the

61

educator needs to identify what variation the students have to discern in
order to become aware of aspects belonging to a rich understanding of these
concepts. Here, variation theory can be a useful tool, as demonstrated in
the previous discussion.

62

6 Students’ use of resources when learning to pro-
gram

6.1 Background

Learning object-oriented programming involves learning central concepts in
the programming paradigm, the thoughts that build the foundation of this
particular problem solving strategy. Learning to program furthermore in-
evitably involves use of complex resources like computers, compilers and
editors. These resources are not only tools in the learning process, but
learning to master them is part of the subject itself. Following this rea-
soning one of the aims of this study is to give a coherent picture, from the
students’ perspective, of the roles of some frequently used resources9 in an
object-oriented programming course. This involves how the students use
the resources, how they experience that the resources support them in the
learning, and the interaction between resources. It was not decided in ad-
vance which resources to examine, but I let the answers from the students
lead me.

The importance to learn how to use resources in a meaningful and effi-
cient way is seen to be of decisive importance for learning to program, and
problems related to how to use the resources are thus important. There were
students in the study who expressed serious problems in learning the sub-
ject. They discussed this in terms of problems of understanding concepts,
but also as an inability to know how to go about studying. When learning
to program this is closely related to use of resources, since learning is mostly
discussed as taking place in front of the computer, when the students write
programs.

Thoughts in this direction have specially been developed in the socio-
cultural tradition. In this tradition, learning is viewed as taking place in a
context where tools and complicated forms of cooperation between people
play significant roles (Säljö, 2000, pp. 19 - 20). Learning does not occur in a
vacuum, we observe and work on the world around us using tools, in cooper-
ation with other human beings. Tools are the resources, both linguistic and
intellectual as well as physical, which we have access to and use when we act
in and understand the world around us. Discussing from this perspective,
people act and think in the interplay between mental and physical resources,
artefacts. We use resources to solve problem and master social practices.
Thinking can thus not be studied as an isolated phenomenon. Säljö (2000,
p. 76) argues, with reference to Dahlbom (1993), that the inability to in-
tegrate artefacts in our understanding of development and learning is the

9In this thesis the word resources is used in a wide sense. It includes everything
the students mention they have used and experience as support in their learning. It
corresponds well to Säljös discussion on artefacts as mental and physical resources (Säljö,
2000).

63

great weakness of the psychological and pedagogical sciences, which risk to
make them abstract and out of touch with reality.

One of the goals of the present study is to identify resources used by
the students in learning object-oriented programming. This chapter high-
lights the roles of resources mentioned by the students in the interviews,
how these resources interacted with the students in their learning process.
When analysing the students’ answers on their use of resources, two different
themes appeared, following the questions asked in the interviews. The two
themes were:

• How were the different resources used by the students?

• How did the students experience that the different resources supported
them in their learning?

The following sections will first describe resources mentioned in the
present study. After that the research approach, the interviews and the
analyses are described. Then, the two questions above will be discussed.
Finally implications for education are formulated.

6.2 The resources

The answers did not differ much when the students discussed what they
considered to be “resources used for the learning”. Most of the resources
mentioned are resources given by the educator, and explicitly pinpointed as
recommended tools in the study course. All students mentioned the lectures
and notes taken during the lectures but also the text book, even though the
experience of how important the text book was and the use of it varied a lot
among the students. All students, except one, mentioned the compulsory as-
signments and the computer itself as important resources. Friends and peer
students were also mentioned by all students. A few students mentioned
other resources, like ‘patience’, ‘Internet’ and ‘development environments’.
This thesis does not discuss the students’ answers on their use of old ex-
ams and how they prepared themselves for the final written exam. These
resources are planed to be discussed in forthcoming work.

6.3 Research approach: Content analysis

Students’ use of resources in the learning process belongs to the How -aspect
in the phenomenographic model presented in Section 2. In this model the
use of resources constitutes the act of learning.

In this study, the data on students’ use of resources have not been anal-
ysed phenomenographically, but by use of content analysis. The reason for
not using phenomenographic analysis is that the research question does not
concern students’ experiences of a phenomenon, but rather their approaches

64

to the resources. The analysis performed is qualitative text analysis aiming
at finding categories describing different approaches to the resources. Here,
content analysis is used as a method for investigation. The phenomeno-
graphic research approach, presented in the model, represents a full view of
how to understand students’ experiences of learning. In this way content
analysis can be used as method to explore some parts of that full view.

Content analysis is a wide term. Mayring (2000) discusses qualitative
content analysis as an approach of systematic, qualitative text analysis. The
material is analysed step by step, divided into analytical units. Categories
created should be in the centre of the analysis. The research questions guide
the text interpretation and lead to categories which are revised in feedback
loops. The question of trustworthiness should be discussed in an adequate
way.

The analyses of students’ use of resources mainly followed the given
description. The analyses were performed in a systematic way. All data was
studied and categorised, according to the research questions. The systematic
analysis were performed in “revised in feedback loops”, by again and again
going back to the data, and by refining the categories found. For reliability,
validity and generalization, methods common in phenomenographic analysis
have been used. One researcher analysed the data. The emerging categories
were agreed upon together with another researcher, and in the study of parts
of the data, see Section 2.3. Data from the study is richly presented in the
thesis, the results are related to results from previous studies, and the reader
is supposed to know the subject and thus to be able to recognise the results
from his or her own experiences, see Kvale (1996).

6.4 The interviews

The questions the students were asked about their use of resources are first
presented. They are important in the sense that they can be assumed to
trigger the answers the students gave.

One initial question was asked. From the answer given by the student,
the researcher listed the different resources mentioned on a paper in order
to ask more questions on each of them later in the interview. The initial
question was:

• There are many available resources and tools to use in this course. I’m
interested in which resources and tools you have used and which you
found helpful and meaningful, especially considering learning concepts
like object and class?

A few more questions were asked to help the students to present as many
as possible of the resources he or she has used.

• What do you do if you get stuck when studying or programming?

65

• Which resources were especially helpful when learning the concepts
object and class?

For the resources listed, a few questions were asked to enlighten how
the resources were used, the student’s aim when using the resources, and
how they supported the student in the learning process. Each individual
question was not asked for each resource.

• How did this resource support you in your learning?

• What was your aim of using this resource? Why did you use this
resource?

• How did you use the resource?

Following-up questions on the students’ answers were asked to clarify
the students’ statements. The discussions following from the following-up
questions were sometimes a considerable part of the whole interview.

6.5 The analysis

When analysing the students’ answers to the questions above, two main
themes appeared. The first theme was how the different resources were used
by the students, and the second was how the students had experienced that
the different resources supported them in their learning. The interviews
were analysed in order to find qualitative and, if appropriate, quantitative
differences with respect to the two themes.

In a first analysis all resources found in the interviews were put in sep-
arate columns in a spreadsheet, while the students’ descriptions of how the
resources were used were put in the rows. These descriptions were for-
mulated in the researcher’s own words. The student that had expressed a
certain way to use a resource was reported with his or her letter of identity
under the resource where the description was found. The second theme was
analysed and reported in a similar way.

In a second stage of the analysis the spreadsheets were studied with
the aim to find patterns and similarities in the data. Earlier studies were
investigated, where similar questions were researched. Starting from the
data, the findings could be connected to terminology already developed.
The terminology served as a frame in the analysis, to structure the findings.
In this way a content based analysis was performed. The first analysis gave
two separate spreadsheets, corresponding to the two themes. Each theme
and how the second phase of the analysis was performed for each of the
themes, are described below.

The second stage of the analysis showed that the resources were used
in qualitatively different ways. Two main approaches appeared, one in-
terpreted as a search-for-meaning approach, and another interpreted as a

66

superficial approach to the use of resources. In all important aspects, these
approaches correspond to the deep/surface dichotomy discussed in earlier re-
search on students’ approaches to learning. Marton and Säljö (1984, p. 44)
discuss that the deep/surface dichotomy “emphasized referential aspects of
students’ experiences – their search for meaning or not” . The reason why
I chose to use meaning/superficial terminology instead of deep/surface is to
avoid confusion with how the concepts deep/surface learning are interpreted
in some other contexts.

6.6 How the resources were used

Aiming at finding an overview in the analysis of the data, I looked for qual-
itative differences in the students’ experiences of how they had used the
resources, and how they experienced that the different use of resources in-
fluenced their learning. I grouped together and summarized with my own
words similar ways of using resources. I found that these ways, or ap-
proaches, could be categorized into two main categories according to the
search-for-meaning/superficial dichotomy. The approaches are all connected
to the students’ experiences of learning the course content, and I thus la-
belled the main categories Superficial content related ways which categorize
two of the approaches found in the data, and Search-for-meaning content
related ways with five of the approaches. The two categories with their
belonging approaches are presented in Table 7. In the following sections
the approaches are written in italics and illustrated with excerpts from the
interviews.

Additional approaches were found, that are rather connected to the or-
ganisation of the course, than to learning of the course content. They de-
scribe how the students’ go about studying. I call these approaches Study
organisation and discuss them separately at the end of the section.

1. Superficial content related ways.
Looking for hints or pieces of code to copy
Writing without understanding in order not to fall behind
2. Search-for-meaning content related ways.
Read, write or listen aiming to understand
Ask questions, discuss problems
Explain to other students
Think before coding with the help of paper and pencil
Role play to get a better understanding
Learning by coding

Table 7: Students’ different approaches to how they used the resources in
their learning, written in italics, are grouped into two main categories.

Superficial content related ways

67

Only a few of the approaches found can be characterized as superficial.

• looking for hints or pieces of code to copy

Student H says about peer students:

H: [...] sometimes you, well, just get the code directly and other times
more like a hint, yeah, like, you might have a go at it a bit like this...

Student C discusses program examples handed out at the lectures:

I: Well. But the examples handed out in the lectures, how did they
help you to learn?
C: That’s nearly always just a matter of being able to copy the example
code sections, that is one can see how, it was the stuff to do with
graphics which one had no real clue about still, that’s to say if you
haven’t written this stuff yourself it’s pretty hard to see how they work
and so forth, so it becomes very much a case of just directly copying
the example.

The students express that they strive for copying fragments, or part of
code, in contrast to understanding and doing the coding themselves. They
seem to express an intention to reach a mechanical how-to-do level of their
understanding.

• writing without understanding in order not to fall behind

This superficial approach is connected to taking notes during the lec-
tures.

Student A says:

A: [...] you write a lot just to keep up and write down everything, often
you don’t have time to think about it.

Search-for-meaning content related ways

A search-for-meaning approach to learning is characterised by “a search for
the author’s intention, relating the content to a larger context” (Marton and
Säljö, 1984, p. 43). This is the most advanced approach to how the resources
were used. The content of the course is in focus, and the resources are
used with an aim to find a context and a whole, a coherent understanding.
The approaches interpreted as search-for meaning approaches are presented
below.

• Read, write or listen aiming to understand

68

This approach differs from the superficial writing without understanding
in order not to fall behind in the sense that the students strive for a fuller
and better understanding by use of several resources or by an extensive use
of one resource. The students express endurance in their use of resources,
where understanding and getting a larger context are the aims. It also
differs significant from the superficial looking for hints or pieces of code to
copy approach, where the procedure of copying is in focus, while striving for
understanding is the focus of this approach.

Student O discussed the aim of attending the lectures. He or she listened
at the lectures and took notes at the same time to facilitate the learning:

O: [...] listen to it once too, explains... to write yourself. Then you
learn in two ways, both listening and writing and then you have some-
thing to take home which you can read later.

Student A found the textbook important for learning. Student A read
the textbook at one occasion to get an overall picture:

A: [...] the real AHA experience, that was the text book. I sat down
for a whole day and basically read all the sections we should read from
cover to cover and I usually don’t do that. But it connected the whole
way, what I read here came back 20 pages later and, yes, it was built
very pedagogically I think. Lots of repetition. That makes it easier to
understand. So I thought it was great.

• Ask questions, discuss problems

Student C talks about that the purpose of using the teacher as a resource
is to get a better grip on the context, in contrast to details and fragments
of knowledge:

C: to ask why it doesn’t work, basically, and explain greater contexts.

Student K finds it helpful to ask other students when he or she doesn’t
understand. Student K expresses an endeavor that goes beyond a how-to-
do approach found among the superficial approaches. Student K explicitly
expresses that he or she prefers not copying but to construct his or her own
knowledge:

K: Yes, it’s like in all subjects, if you have problem with something
you can ask a friend and they might know it better exactly on that
point. Show how one should do or say how one should do. So I think
it’s good to get a hint that, you could do like this instead. Then you
can figure it out yourself.

• Explain to other students

69

A way to get a better understanding mentioned by the students is to
explain to other students.

Student J uses peer students in this way:

J: [...] you can learn pretty much by trying yourself to explain to
someone.

• Think before coding with the help of paper and pencil

To use pencil and paper as a resource to reach a better understanding is
a search-for-meaning approach.

Student O says:

O: [...] I suppose you’ve learned most when you sat on your own and
wrote at the computer or on paper. I sat and tried to write a bit on
my own before I used the computer.
I: Yes, what was your purpose then?
O: Well, both that [the teacher] had mentioned at a lecture that it’s
difficult to go to the computer directly and know what to write, spe-
cially if you haven’t done it before. So it was a hint from him so I tried
to do it and I think that was good too. Then you got many things
done when you had a lesson too, during lesson time. You did fairly
much.

• Role play to get a better understanding

Role play at the lectures as a way to enhance the understanding is men-
tioned as search-for-meaning.

Student D says:

I: You mentioned that he has been kind of visual or whatever it was,
by playing games and such. How do you think that has helped?
D: Yeah, anyway I think that has helped (laughter) better than if not
having had it at all. Because otherwise it would just be this piece of
theory and then you wouldn’t have any practical example.
I: What do you think they have given you?
D: Something to refer to. Maybe you can think, okay, this is what
he did at the lecture if you work with the method, and now you shall
build something that functions like this as he showed in an example. I
think so.

• Learning by coding

Many students emphasize the importance of their own work at the com-
puter.

Student G expresses a search-for-meaning approach to using the com-
puter. This approach is more than only copying code, which is described as
a superficial approach. The student G uses the computer with endurance,
as a tool to reach an understanding. He or she says:

70

G: Yes, since I’m so dependent on sitting by myself in front of the
computer to learn. It is then I learn. It’s not for certain... some
maybe... programming is such that one has to sit with it by oneself.
It is not many that can attend lectures and then take the exam since
it is a skill. One has to practice to learn.

Study organisation

Above, students’ use of resources has been discussed with a focus on the
learning. In the data ways to use resources that were more connected to
studying than to learning were also found. Students discussed ways to go
about studying in terms of course organisation. The subject content is not
in focus in these descriptions.

• Sitting on my own working

Such a way to use resources found in my data it to work alone.
Student O discusses how he or she has worked with the compulsory as-

signments:

O: It is a relief to be done with the course when it ends and partly in
order to be allowed to sit at a computer and write oneself.

Student O has organized the work in the way that he or she sits at a
computer on his or her own.

Earlier research that supports this finding is found in the ETL project
(http://www.ed.ac.uk/etl). Five different approaches relating to students’
learning and studying were identified. One of them was “organised studying”
which is in line with the result presented.

• As preparation for the final exam

Student G has used the textbook only just before the final exam, in a
way that made it possible to pass the exam:

G: [...] I’ve hardly opened the text book until now before the exam.
[...] and one is allowed to bring the text book to the exam. That is
why I have used it. But apart from those things I’ve not used it at all.

Student M uses paper and pencil when he or she prepares for the final
exam using old exams:

M: [...]Then it becomes to try to solve the problems. [...] Old exam
problems.
I: How did you do that?
M: With paper and pen [...]
I: Okay. Have you worked alone or?
M: Yes, now and then. A bit of both actually but a lot by myself also
to be able to focus on all this, this is my problem to interpret written
problems and get it over to computer symbols.

71

Student M seems to choose to use paper and pencil and work on his/her
own since the final exam is performed individually, with paper and pencil.

6.7 How the resources were perceived to support learning

The analysis of how the students experienced that the resources had sup-
ported them in their learning was done in a similar way as described in
Section 6.6. I looked for all different ways in which the students expressed
that the resources had supported them, and described and summarised these
ways with my own words. As in the previous analysis I found that the
different ways, or approaches identified could also be categorised into two
main groups as Superficial support and Meaningful support. The differ-
ent approaches found are written in italics and categorized according to
the superficial/search-for-meaning dichotomy in Table 8. Each approach is
commented below and illustrated with excerpts from the interviews.

1. Superficial support
Fear of failure forces learning activity
Extrinsic rules as a support
2.Meaningful support
Subject interest as a support
Social stimulation as a support
Stimulation of personal activity

Table 8: Students’ different approaches to how the resources were experi-
enced as help in their learning are written in italics. The approaches are
grouped into two main categories.

Superficial support

’Superficial supports’ identified are closely related to superficial approaches
to learning. They seem to have their origin in a feeling of compulsion,
insecurity and fear.

• Fear of failure forces learning activity

Student J discusses the compulsory assignments as something that has
to be done, but the aim is to pass even if he or she does not understand.
The reason seems to be lack of time:

I: What do you think is the goal, the aim, the most important for you
when you work with assignments?
J: Well, unfortunately when there is time pressure it feels like it is
mostly about that one wants to be done with it and feel that one has
done it, so in some cases it has maybe been, well we write this and it
works, but one doesn’t really understand what it was, unfortunately it
is so. Because one, we have not had time to look into it all.

72

Student D also discusses the compulsory assignments:

D: [...] they are compulsory and one has to in some way understand
and be able to do them. And that I think very much feels like a stressful
part of this course. This that one all the time has these assignments.
It is very good since one learn this way but one always has, it is like
they feel difficult I think.

Student D expresses that the compulsory assignments support him or
her to learn, but there is a pressure behind the resource that is negative.

Student G says that he or she has used the textbook only as a support
to pass the written exam:

G: [...] and then one is allowed to use the text book at the exam. That
is why I have used it. But except for those things I have not used it at
all. [...] I want to be able find things in the text book as I go to the
exam.

Earlier research in the area stresses that perceived assessment require-
ments are strong influences on the approach to learning. Ramsden (1984,
p. 151) writes: “[i]nappropriate assessment procedures encourage surface
approaches”. Ramsden also discusses that anxiety has a negative effect
on the learning. “Where students felt that the assessment situation was
threatening [...] they were more likely to adopt a mechanical, rote learning
approach to the learning task.” (Ramsden, 1984, p. 149). My finding fear
of failure forces learning activity supports this research. On the other hand,
earlier research shows the positive role the teacher can play for students
who experience anxiety and fear in their studies: “The lecturer’s interest
in students, and helpfulness with study difficulties, are the first important
qualities influencing students’ attitudes and approaches.” (Ramsden, 1984,
p. 152).

• Extrinsic rules as a support

Close to the experience described as ’fear of failure’, is when students
express that it is a support to be driven by rules and guidelines given by for
example the educator.

Expressions like “what we are expected to know” and “where they have
put the main focus” are typical in these quotes, and show that the responsi-
bility seems to lie on the teacher more that on the student himself or herself.
This way of experiencing support in the learning is mostly connected to the
lectures and notes taken during the lectures. An example of this kind of
support is student O who discusses the notes from the lectures:

O: [...] then you can see where they put the main focus in course.
I: Why is that good?
O: Well because (laughter) that is useful later when the exam comes.

73

I: Okay.
O: Well then you know something about what to read in the book and
what maybe is less important and you can pay less attention to.

The interviewer asks why student D finds it important to take notes
during the lectures:

D: (sigh) No, but in order to know that I haven’t missed anything
(giggle), no I don’t know [...] that you know they are examples that
you can look back at when you shall do an assignment later.

Student D does not only express that he or she is afraid of missing infor-
mation about what the teacher thinks is important in the course, but also
that the notes are a support to pass the compulsory assignments. Student
O in the quote above expresses similar experiences. The notes are a support
to pass the written exam.

Student F has the teacher’s instructions what to study as a support and
guide. He or she says about the textbook :

F: [...] The Java book. I have in fact tried to read it from cover to
cover, the chapters that are on our reading list. I have thus tried to go
through it just to really know what we should know. [...]
I: What do you mean with what we should know?...
F: What we should know in the course, what we are expected to know
after this course, I’ve tried to read those chapters.

Student D answers the question how the compulsory assignments has
supported him or her in the learning:

D: [...] you have been forced to think about what you’re doing and
been forced to really start to study also or begun to understand what
he has done in the course otherwise it is easy to almost put it aside.
That you’ll come to understand it, what he has covered so far. What
it is we are expected to know so far and so. That you start again and
start to study a little or do some programming.

Student D says that the compulsory assignments have been a support
under constraint in the learning process, and that they show what the stu-
dents ’are supposed to know’.

Booth and Ingerman (2002, p. 504) found, in a study on how first year
physics students make sense of the engineering physics programme over one
year that “different views of authority imply different views of knowledge.”
The authors discuss students’ perception of authority as where the respon-
sibility for the structure and outcome of the study is perceived to lie. They
further write:

74

A student who perceives authority for knowledge lying outside him-
self will seek ways of satisfying that authority [...] trying to build
knowledge fragments into a coherent whole according to their plan by
studying their exam solutions, by reading over and over their notes
and text-books - a classic surface approach in which attention is paid
to the tokens. (Booth and Ingerman, 2002, pp. 504-505)

Booth and Ingermans results emphasize that Extrinsic rules as a sup-
port is not desirable, since it does not facilitate a meaningful approach to the
learning. Students who see the authority lying partly at least with himself or
herself will focus on meaning and how “fragments can mesh to one another,
reading notes and text-books to spy hitherto unremarked connections - the
classic deep approach” (p. 504-505).

Meaningful support

Most of the ways in which students express that resources have supported
them are described in terms of meaningful support. Students talk about
an interest in the subject, about social motives and how the resources have
supported their own activity and understanding while learning.

• Subject interest as a support

Some students describe how an interest in the subject itself supports
them in their learning.

Student H expresses that the lectures have given him or her motivation
and a feeling of the course as a whole. Student H says:

H: yes, what is good with the lectures is this that it starts from the
basics and that you get motivation [...] then you feel like it all holds
together in some way. Then you don’t want breaks in it.

The lectures and the subject itself support student H. Student B ex-
presses the interest for programming as a triggering factor to work hard.
The computer itself is a resource that supports student B:

B: I just think it has been interesting to learn. I have sort of learned
10 times as much as I knew before. I have really really enjoyed it, so I
have spent a lot of time at the computer.

Student B who expresses a pronounced interest in the subject, discusses
the importance of the lectures and the teacher :

B: Mm, I think they have been great. He has covered what one should
do and explained it [...] So, the practice at the computers and the
lectures have complemented each other.
I: Yes. Why have you attended the lectures?
B: Because otherwise I wouldn’t understand anything when I sit down
at the computer.

75

The examples show that use of resources can support subject interest,
and thus facilitate for a meaningful approach to the learning. Earlier re-
search has pointed to the importance of students interest in the subject,
and the results from the present study implies how resources used when
learning object-oriented programming can create such interest. Ramsden
(1984, p. 147) writes: “a lack of interest in the material studied, or a fail-
ure to perceive the relevance in it, was associated with a surface approach,
while interest was related to a deep approach.” Ramsden also discusses the
importance of “good teaching” (p. 151) and points to the importance of “if
the lecturer can communicate interest and enthusiasm as well as informa-
tion.” (p. 152). This is found among the subject interest arguments. My
result confirms the result from earlier research in students’ approaches to
their learning, that the teacher is an important resource.

• Social stimulation as a support

Support is sometimes expressed in terms of the positive effects the rela-
tion to other students have on the learning.

Student M discusses that he or she had probably been able to solve the
compulsory assignments alone, but to work with other students has still
given him or her joy and also alternative ways to work:

M: To discuss then, the problems how you should, sort of, do when
you should write. Which limitations you should have here and there
in the program and how you should solve certain problems. Anyhow
it feels like I should’ve solved them by myself if... I would really have
done that. But it has been more fun to work together. [...] Yes, it is
more fun to sit and discuss how many ways you can do all the things.
Then you also get some help.

Student J discusses how a friend has supported him or her to understand
concepts:

J: [...] a guy that is a computer scientist student so he has explained
to us what these objects and classes really are [...] That has been very
good.

Student H expresses that the group he or she belongs to has been a
support to come to the lecture. The lectures then gave him or her interest
in the subject, but it was the willingness to belong to the group that initiated
this subject interest:

H: [...] when you’re in a class than you sort of want to be in school
because that is... it is not just because the Java but also kind of the
whole thing. I think it’s pretty fun to be in school and then... then it
sort of leads to you going there and then when you been there a few
times then you sort of don’t want to miss the rest.

76

• Stimulation of the personal activity

Resources that stimulate the student’s own activities are support in the
learning.

Student G discusses teachers that help in the lab, but give the kind of
support that makes the student think on his or her own:

G: [...] when you’re working on an assignment, then you want answers
from the one you ask, like, you don’t want people to say that it’s like
this and like this, you want perhaps to get some material and some
hints. [...] You’re there to learn and then you perhaps don’t want to
have the answers to the questions right away. You want hints.

Student H describes that the own work with the compulsory assignments
has supported him or her in the learning:

H: [...] You learn by trying to think yourself what should, how you
should do. Then you could just borrow someone else’s and write it
down but then you wouldn’t learn.

Student K discusses if there are any differences between peer students
and teachers as resources when a question is asked:

K: It should sort of be thus. [...] But from the teacher you get a sort of
straight answer, No, this is wrong or do like this instead, but the friend
can say if you make changes here, what might happen then? Sort of
more fuzzy.
I: Do you see any advantage with either of them?
K: Yes it might be, the teacher, he says more like it is like this. Then
you do so, but the friend, it isn’t the same, you think more perhaps.

Peer students support student K to think on his or her own and thus to
get a better understanding.

Activities like reading, writing, discussing and seeing which are described
as support for students in their learning, are also stimulation of the own
activity.

Student L discusses that the program examples handed out by the teacher
during the lectures have supported him or her. For this student, visual
stimuli are important as a support in the learning:

L: To get a reminder about how it was, some statements and so, it
should look in a specific way and I’m very visual in my learning, I have
to see how things look.

Taking notes as a support in the learning is discussed by student O. The
student has copied the notes by hand from another student’s notes, in stead
of using a copy machine. He or she expresses that writing is a support since
it enhances the learning better than just reading the notes:

77

O: [...] It has been good. I’ve got all lecture notes and I’ve copied
them down.
I: You have sort of got them from a friend?
O: yes, I’ve sort of copied his.
I: Then one learn. You haven’t photo copied them?
O: No, that doesn’t give so much, sure one looks at them, but when
one writes oneself I think.. Yes, that is what I’ve got.

Hindrance in contrast to support

When resources that support students in their learning are discussed, I also
want to point to some hindrances for learning that several students men-
tioned.

• Inadequate background knowledge

Background knowledge is an important resource. Earlier research in the area
of students approaches to learning has showed that inadequate background
knowledge in the subject studied, specially “where the learning task de-
mands that the student has grasped a fundamental concept” (Marton et al.,
1984, p. 148), is associated with a superficial approach. This is especially
relevant when students learn object-oriented programming were concepts
like object and class are fundamental for the understanding of the idea be-
hind the programming paradigm. These concepts are often introduced at
an early stage of the education. Student H discusses what has been difficult
with the course:

H: The difficulties have sort of been that I haven’t had any previous
knowledge, which maybe hasn’t been anticipated, but it has been a very
high speed ahead so it has felt that you’ve known too little, because
many had studied at high school [...]

And student G says:

G: It is this how you, what do you say, well the pre-requisite knowledge,
how important it is, how difficult it can be if you haven’t even been at
a computer before. To start programming when you don’t even know
what a file is, it is sort of... right, sort of, what a difference there is
between different students. Those who have previous experience with
computers have it easier to see why... if we say programming, how you
sort of place things and stuff.

The one week compulsory introduction course to the computer system
at the department, is experienced by some students as not giving sufficient
background knowledge. Student G discusses background knowledge in terms
of general knowledge of computers. A discussion on how Computer Science
education should be adequately started, by learning programming or by

78

learning about the computer itself, is reflected in Computer Curricula 2001
(Joint Task Force on Computing Curricula, 2001) where several different
introductions are suggested. This problem has been touched upon in this
thesis in the discussion on how students understand the concepts object and
class in Chapter 5, Section 4.2.2.

• Too high pressure in studies

Pressure can influence both the students’ subject interest and steer how
they study. Student M discusses how the work load in the educational pro-
gram influences how and what he or she studies. The student says that if the
compulsory assignments had not been compulsory, he or she had probably
not have done them, although if he or she finds them very interesting:

M: yes, but at the same time I know that I don’t have time to do
them anyway, because we don’t have the time. There is none, we have
lectures till 5pm and then we should try to study something between
6pm and 9pm and then one does what one has to and that is the
compulsory assignments. That is what everybody else does.
I: So, the schedule sort of controls you a great deal?
M: yes, yes. I don’t study anything but the compulsory assignment
problem [...]
M: yeah, I think it is interesting, I would be happy to do them even if
they weren’t compulsory but as it looks now I would not have time to
do them.

This result supports earlier research in higher education. Ramsden
(1984, p. 149) writes :

assessment of an overwhelming amount of curricular material pushes
students into surface approaches and an incomplete understanding of
the subject matter

Gow and Kember (1990, p. 11) refer to several studies as well as their
own study when pointing to the relationship between workload and surface
approach to studying. They summarise the results from their study as “the
swot, pass and forget syndrome” .

6.8 Discussion on students’ use of resources for learning to
program

In this section I discuss conclusions and implications for teaching drawn from
the results presented in Section 6.6 - 6.7. I first discuss general conclusions.
After that I point to conclusions from how the students expressed that they
have used the resources, and how the resources supported them in their
learning.

79

The results of the analysis on how the students used resources and how
the resources supported them in the learning show a complex pattern. Dif-
ferent students can discuss the same resource, both with a superficial as with
a search-for-meaning approach. Sometimes I found quotes where the same
student discusses one resource first in one way and then in the other. This
is important, and explicitly stressed by Ramsden when he says:

The idea of an approach to learning is very frequently misunderstood.
The most common mistakes are to believe that an approach is a char-
acteristic of an individual person, like the colour of a student’s hair;
to believe that the approach can be inferred from a student’s observ-
able behaviour; to concatenate ’low ability’ and surface approaches;
or to think that surface and deep approaches to learning are in some
way complementary or sequential. [...] Approaches to learning are not
something a student has: they represent what a learning task or set
of tasks is for the learner [...] Everyone is capable of both deep and
surface approaches, from early childhood onwards. An approach de-
scribes a relation between the student and the learning he or she is
doing. It has elements of the situation as perceived by the student and
elements of the student in it (Ramsden, 1992, p. 44)

And later:

The distinction between characteristics of students and the nature of
different approaches to learning is an absolutely critical one for teachers
to understand. Its implications run right through how we should teach.
In trying to change approaches, we are not trying to change students,
but to change the students’ experiences, perceptions, or conceptions of
something. (Ramsden, 1992, p. 45)

Another point to make is that the students who expressed that resources
had supported them in ways interpreted as superficial, still expressed this in
positive terms. Even if the students expressed these ways to use resources
in positive terms, I still argue that they are not to prefer. Marton and Säljö
(1984, p. 46) discuss this when they say that they do not argue that the
deep approach “is always ’best’: only that it is the best, indeed the only,
way to understand learning materials.”.

The results from the analysis on how the resources were used when learn-
ing object-oriented programming, imply that some resources are mainly used
in a search-for-meaning approach, to get a better understanding and to
find a whole. These resources are

• the teacher

• the computer

• the compulsory assignments, and

80

• peer students and friends.

Resources mainly used in an superficial way, or in a mixed way are

• the textbook

• the notes taken during the lectures and

• examples handed out by the teacher

Even if there are great differences between individuals, and also dif-
ferences in the use of individual resources, depending on the situation, the
data still indicates a clear connection between the resources that were mainly
used in a search-for-meaning approach, and how the students described their
experiences of meaningful support when learning object-oriented program-
ming, as earlier shown in the discussion on Table 8. This connection will be
discussed in the following paragraphs.

When students work at the computer with the compulsory assignments
they are active in a learning process (third approach in Category 2, Table
8). Many students stress the importance of practicing programming using
the computer to be able to learn to program.

The students are allowed to work collaboratively with the compulsory
assignments, which I interpret as being a part of the social stimulation as
a support (second approach in Category 2, Table 8). Interaction with other
students and people is also a part of the social stimulation as a support.
This is expressed in discussions, in asking questions, or in explaining things
to other students, and is also an active process. I furthermore notice that
the positive interaction with other students which I call social stimulation,
sometimes cause an interest for the subject itself (the first approach in Cat-
egory 2, Table 8). The positive experience of interaction with peer students
seems for some students to be a breeding ground for a positive attitude to
the subject learned.

Many students express that the teacher at the lectures was able to me-
diate a subject interest (the first approach in Category 2, Table 8), and he,
the teacher in the course, was able to explain the subject so that many stu-
dents experienced that they could understand. Since I found evidence in the
data of students that experience a fear for the subject, the teacher can, in
supporting, encouraging and generating a subject interest, be an important
resource when learning object-oriented programming.

The resources that are mostly used with a search-for-meaning approach
are closely connected to each other and the subject area. The students
use the computer when they solve the compulsory assignments. They are
allowed to collaborate with peer students for most of the compulsory as-
signments. Teachers and peer students are very important resources to be

81

able to understand concepts and discuss and solve problems when working
with the compulsory assignments. Learning to program is not only learning
concepts, but learning a skill. Becoming a skilled programmer in object-
oriented programming requires both a good understanding of the paradigm
with its central concepts and extensive practicing. The teacher can act as
important mediator of the thoughts behind the paradigm, and a support
when practicing at the computer. It follows from the nature of the subject
that the computer with the compiler are not only important but necessary
resources in the learning. Collaborate with other people is an important
resource that has been pinpointed in this study and is well known as an
important factor in software development industry.

Students emphasized that in learning the basic concepts in object-oriented
programming, peer students, the lectures and compulsory assignments at the
computer are valuable. Some students also mentioned the textbook, while
other students stressed that the textbook did not give much support. The
textbook is the resource that is described in the most diverse way. The
differences in the descriptions of the value of the textbook, to what extent
it is used, and how it is used, are large. It reaches from students who have
hardly used the textbook at all, to students who have used it as one of the
main sources for understanding concepts and to get a fuller picture of the
course by reading it from cover to cover at one occasion.

The resources that are mainly used in a superficial way are interesting
to study since the picture of how they are used varies so much. I found that
even though the use of these resources were often described in a superficial
way, in situations were students used a search-for-meaning approach to their
learning, the textbook, examples handed out and notes from the lectures
played a significant role. I found this for example when students worked
with the compulsory assignments aiming at a better understanding. Even if
the resources were used as references to find details in the syntax, or code
from them were copied, they interacted with the other resources, and made a
search-for-meaning approach possible for the students. This implies that the
resources themselves do not necessarily lead to a meaningful or superficial
approach. Resources that were mainly used in a superficial way contributed
considerably to a search-for-meaning approach in some situations. The re-
sources that were mainly used in a search-for-meaning approach could be
used superficially if for example the students experienced too hard pressure
due to lack of time or background knowledge. The aim for some students
when working with the compulsory assignments was described as coming
through the course rather than learning, due to lack of time, and students
who are not allowed to work collaborative, might use a superficial approach
when working with the compulsory assignments.

The most important aspect of the use of resources in the present course,
seems to be the stimulation of students’ own activity. The support I call
extrinsic rules as a support, second approach in the first category in Ta-

82

ble 8, is in some sense the opposite of this. The students who express this
approach express that some of the responsibility for their learning, what
they should learn, is the teacher’s or educational system’s, not their own.
This superficial approach does not enhance good learning. Responsibility
for the own learning is characteristic for a search-for-meaning approach to
the learning and is worth striving for. This claim is supported by earlier
research (Ramsden, 1992; Booth and Ingerman, 2002; Berglund, 2005). Re-
sponsibility for the own education, and activity in the learning are closely
connected. Ramsden (p. 155) writes: “Passivity and dependence on the
teacher [..] provide an excellent basis for surface approaches” and “deep
approaches are associated with activity and responsibility in learning”. The
superficial content related way to use resources looking for hints or pieces
of code to copy, second approach in Category 1, Table 7, is an example of
a passive way to use resources. I also want to point to the importance for
teachers of presenting a variety of resources to the students, since different
students seem to require different resources in different situations.

Superficial approaches to learning are closely connected to fragmentising.
Resources like the compulsory assignments seem to help the students to put
the pieces of information together. They seem to help the students into a
search-for-meaning approach, where broad use of resources and knowledge
from the whole course is used. In the students’ description of how they used
the compulsory assignments I can see how they were actively engaged in
their learning, and how the different resources interacted. This is especially
clear for the bigger assignments which demanded understanding of the whole
course.

Anderson et al. (1996) discuss whether learning should be done on com-
plex problems and in complex social environments. Referring to previous
research they write “It is better to train independent parts of a task sep-
arately because fewer cognitive resources will then be required for perfor-
mance, thereby reserving adequate capacity for learning.” When learning
to program this argument is in line with variation theory (Marton and Tsui,
2004), which discusses how to make critical aspects of phenomenon come to
the fore in students’ awareness, and thus make it possible for the student to
discern them. This is possible when there is a variation in a dimension cor-
responding to the specific aspect, while at the same time other aspects are
kept invariant. This requires smaller exercises where specific concepts, or
aspects of concepts are trained. On the other hand Anderson et al. discuss
that sometimes there are reasons “to practice skill in their complex setting.
Some of the reasons [...] reflect the special skills that are unique to the com-
plex situation.” Problems that enlighten the object-oriented paradigm will
of necessity become complex, and demand use of complex resources. Even
in the first course in object-oriented programming, the students need to en-
counter such problems. To be able to learn to manage them, the students
need to practise these “special skills that are unique to the complex situa-

83

tion” as Anderson et al. put it. This is in line with the observations from
the data in the present study that the bigger assignments, which involve
several resources and knowledge from the whole course, are important and
trigger a search-for-meaning approach which enhance good learning.

Summarising the discussion in this section, the results from the study
show that there are resources that are mainly used in a search-for-meaning
way, while others are mainly used in a superficial way. The latter group
show however to be of decisive importance when used together with the re-
sources in the former group in a search-for-meaning approach. This becomes
especially clear in the data when students’ describe their experiences of their
work with the larger assignments where the learning is often described as an
active process where students take responsibility for their own learning. Use
of and understanding of resources is a part of the subject itself, and learning
activities that involves students’ understanding and use of resources in a
complex way are thus important to facilitate for a search-for-meaning ap-
proach when learning to program.

84

7 Students’ motives for learning to program

7.1 Background

In an effort to address why students tackle their studies in certain ways and
not other, the issue of motive is now discussed. The research question posed
in this chapter is

• What are the students’ motives for learning to program?

Psychology-based theories often discuss motivations while I in this the-
sis discuss motives. The difference has its roots in the different research
paradigms. Berglund and Wiggberg write:

It is sometimes tempting to draw parallels between phenomenography
and psychologically based theories of learning. However, the differences
are important: While psychology discuss what learning is, independent
of what the learning is about and the context of that which is learnt,
phenomenography studies the experience of learning something, in a
particular setting. (Berglund and Wiggberg, 2006)

Motive is here interpreted in a contextualised way, not as personal char-
acteristics. Students’ motives are seen in relation to the course and learning
outcomes, and thus depending on the study context. More precisely the
motives discussed in this chapter are motives that seem to trigger search-
for-meaning approach and active learning. The reason for not discussing
other motives is that this chapter aims at discussing implication for teach-
ing and learning derived from the positive motives.

The research question is closely connected to how students express their
motives to use different resources, thus the motives to use resources are
discussed to some extent.

Questions asked in the interview that informed the theme were What
was your aim/purpose when using this resource? and Why did you use
this resource? Other questions asked in the interview also informed the
theme. Students expressed motives to learn to program for example when
they discussed what it means to learn in the present course, but also when
answering other questions the theme occurred.

7.1.1 Data analysis

Students’ motives to learn belong to the How -aspect in the phenomeno-
graphic model presented in Chapter 2. In this model the motives constitute
the indirect object of learning.

The analysis performed in this chapter is content analysis, see Section
6.3. The reason for using content analysis is that the question discussed is
rather on students’ different motives than on different aspects of one specific

85

motive. Content analysis is used as a method to investigate an aspect of the
phenomenographic model discussed.

Like in the previous chapter, a categorisation was performed to group
similar motives for a better overview of the data, not aiming at finding
qualitatively different understandings as in a phenomenographic analysis.
All data were investigated in order to categorise the different motives found.
The motives and categories were not decided in advance.

As in the previous chapter, reliability check (Section 2.3) is performed by
letting another researcher read suggested quotes, illustrating the categories,
and discuss categories and quotes until we came to an agreement. Validity
check is also done in a similar way as in the previous chapter.

7.1.2 Related work

As a background for the motives presented in the chapter, this section dis-
cusses earlier research related to students’ motives to learn. A significant
amount of research in this area has been performed, stemming from the
research on students approaches to learning performed already in the early
stage of the development of phenomenography, see for example (Marton,
1974; Svensson, 1977; Marton et al., 1984; Biggs, 1987). This research,
as presented by Biggs (1987) has been further developed by Kember et el.
(1999) . Kember et al. developed a tool for analysing complete data sets
including motives that can enhance the learning process, but also other mo-
tives. Since the aim with this chapter is to discuss implication for education
derived from specific motives, such analytical tool will not be used. Kember
et al include three different motives in their model that can be positive. They
are intrinsic motive, which includes subject interest, achieving motives that
include for example determination to work hard, perseverance and a strong
sense of loyalty to the group, and a third career motive.

Berglund (2005) gives examples on students’ motives to learn in the field
of computer science is . Berglund discusses, with a phenomenographic ap-
proach, students’ motives to learn computer systems in a distributed project
course. Among the different motives found, to learn the subject, to become a
better professional and motives involving social competence were identified.
Berglund’s analysis aims at creating a theoretical framework for analysing
students’ learning experiences, while in the present study the discussion has
an emphasis on implications for education.

7.2 Case students

As explained above, similar motives were grouped together in categories.
To illustrate the categories, students that expressed specifically pronounced
statements for one of the categories were selected as cases. A case, repre-
sented by one student, thus gives voice to one of the categories. This does

86

not exclude that the students selected expressed other motives as well, or
that there were other students who expressed similar motives. The cases are
presented below with the motives interpreted by me and written in italics.

Student B: “I love to program because it’s fun to program”

Student B who has no previous experience of programming, is devoted to
programming. He or she expresses clearly what fun it is to program and
how much time he or she has spent in front of the computer. Student B
does not need more motive than the programming language itself. Student
B comments the aim with learning to program:

B: To complete the compulsory assignments (laughter). I can’t say I
have a specific goal. I just think it has been interesting to learn. I
have learned something like ten times as much as I knew before. I
have really, really enjoyed myself and have thus put in quite a lot of
time at the computer.

Student B says about what it means to learn in the course:

B: I think that means that I should be able to sit by the computer
and do small simple things by myself. I think that I’ve learned that.
It is like, I think it is pretty good when you can sit at the computer,
because then you can like test things and see if it works and see what
happens and such.

Comparing to Kembers et al. study (1999), this is an intrinsic motive,
it is fun to program. To some extent it is also an achieving motive. Stu-
dent B expresses a willingness to work hard and perseverance. All students
in the study do not be express that they have found this kind of motive.
Many students express other motives for their learning than the challenge
the programming language itself gives. Students who have expressed other
types of positive motives are therefore interesting to take a closer look at.

Student A: “I’m interested in concepts and to get a theoretical
overview”

Student A, who has no previous knowledge in programming, has worked
hard but with another motive and approach than student B. Student A says
about what has been most important in the course:

A: (Sigh) I think it is the understanding of how programming languages
are structured more than just the command, if you want to do this, it
is sort of the thinking, the logical thinking

He or she discusses what learning means in the course:

87

A: To learn. I think it is also to get the whole picture, to understand
how a programming language is constructed, how the language is struc-
tured and how it is related with for instance C++ and that is also a
bit more over arching. Detailed knowledge is also useful and to have
tried, sort of to have had a taste, it is more the feeling and a bigger
understanding than... yeah, that’s probably what I think, yeah.

Student A says about the aim of attending the lectures:

A: Yes, try to pick up something at least. I think it has been very
difficult. It has been hard to grasp, it has been something completely
new. The goal has thus been to sort of go to the lectures and really
trying to get into this and then I can use the text book later. It is
always a lot easier to get a first presentation before one sits down to
read the text book and such. This gives you an initial holistic image.

Student A emphasizes the importance of getting an overview of the sub-
ject, and a good understanding.

When the interviewer asks for resources that have been useful when
learning concepts like object and class student A says:

A: [...] I sort of didn’t get a grip on it until I read the text book and it
as really the text book that gave me the first understanding [...] It thus
took a while until things ”clicked”, as I said, the real eye-opener was
the text book. I sat a whole day and read all the chapters we should
read more or less from cover to cover and that is nothing I usually do.
But it sort of connected all the time, the things I read here came back
20 pages later and, well, it was a very pedagogical structure I think,
lots of repetition. That made it easy to understand. I thought that
was really great.

Student A discusses the use of notes from the lectures and the textbook:

A: I’ve tried to look at the notes before and so, but it was probably not
until half the course had passed, maybe just under, that I decided to
read the text book and since then it has been much easier to understand
the notes, to understand what has been covered in class because you
have to write a lot just to keep up if you write all, and thus have no
time to reflect. [...] And before I read the book I had a lot of question
marks, like, well, I’ve written this, but what does it mean. Later when
I’ve read the text book, right, it was that I had read about there.
I: Mm, so, this with the text book, you have talked a fair bit about
the text book, you had a certain agenda when you bought it [...] and
read...
A: Yeah, I wanted sort of see if the text book could give me a better
understanding than the notes and the lectures did. And I think I was
pretty alone in doing that. [...] Yes, I did talk a fair bit with my
class mates. Especially those that said as me, that they really didn’t
understand this. Like, like what is an object, how can you sort of know

88

what it is. Then I tried several times to recommend to read the text
book, but they just said God it is no good. But I, well, I thought it
was really good.

This is an intrinsic motive, a desire to learn and understand, but also
an achieving motive. Student A has put much time and effort in trying to
understand concepts and to get an overview and understanding of the sub-
ject. He or she also discusses the importance of programming exercises in
the learning. The emphasize is however on getting an overview and a good
understanding of concepts, which permeates the interview.

Student K: “I want to learn to program, it will improve my prob-
lem solving ability”

Another intrinsic motive is the interest to learn the subject with the aim
to get knowledge in problem solving in general, and in programming in
particular.

Student K, who has previous programming knowledge in the program-
ming language C++ answers the question what learning means in this
course:

K: What is good with courses like this is that one gets to practice
problem solving. That is actually really good. One has a problem that
one solves in different ways and thus one perhaps find the best way .
That is one of the core things I think. Then that one should write in a
programming language, this could perhaps be done in anyone. But the
dealing with problems, the problem solving, that is something I think
is important.

This motive is not limited to the programming course itself. Student K
sees benefits of the course beyond the course and the course content. Prob-
lem solving is a useful ability in general.

Student H: “I’m going to the class because I want to join the fel-
lowship in the group”

One more intrinsic motive worth noticing is a social motive. Some students
seem to be engaged in the course, mainly because the peer students and the
fellowship in the group.

Student H is one of the students who describe his or her motives as
social:

H: [..] When you are part of a class, then one wants to go to school,
because that’s... it is not just for the sake of Java, but also sort of the
whole ting. I find it pretty fun to be at school [...]

Student M expresses a similar motive:

89

M: [...] Because it’s so concrete in some way, that this is my group, or
my project and that shall work. That is sort of the thought when you
start. This shall work in two days or a week, it doesn’t matter, but it
will work in the end and then one gets involved in what one do and
then one does it.

Peer students and the group have a positive effect on these students to
engage in the class.

Student E: “I’m not interested in programming, but I want to
learn because I know I will benefit from it”

There are students who express a positive career motive for learning to
program. This positive extrinsic motive is interesting from an educational
perspective, since it should be relatively easy for teachers to present for the
students.

Student E has no previous experience in programming. He or she does
not appreciate programming per se, only if it is useful. The course content
is not the driving force behind the learning. Student E discusses learning to
program:

E: I sort of think that it is a good thing that all learn to program. [...]
I’m sort of not the programming type of person. I can find it fun only
when one sees the logic and constructive in it, but.. I get frustrated
when it isn’t so.

Even though student E does not identifies him- or herself as a program-
mer, he or she can say about the purpose of learning to program:

E: Well, but isn’t it so that the more you know about computers, the
less you become dependent on others.
I: yeah..
E: I don’t know, if you work somewhere later on and have some insights
into things, then I think it opens up a small window that let you at
least know what’s it all about, even if you don’t, I mean, it is the
professionals that will deal with the real stuff. We won’t ever be really
good at this. Or, unless you sort of choose it.

Student F expresses a similar motive. Student F who has not pro-
grammed before answers the question what is the point of learning to pro-
gram:

F: It is a pretty good tool when you shall do things, other things. To
complement with programming, build programs, enter information or
data or computations, so I guess it is good to know about it.

Student F expresses the usefulness of programming knowledge:

90

F: yes, it is a good knowledge to have. Even if it isn’t all that fun all the
time. [...] It is boring to be the one that should do the programming.

These students explicitly express that they can find programming boring.
Nevertheless they express a motive to learn to program, based on a clear un-
derstanding of the personal benefits they can get from having programming
knowledge.

Student J expresses similar feelings. He or she wants to learn to program
only if it is useful:

I: What do you think is the purpose for you when you do...
J: To learn the thing I work.
I: Why should you learn?
J: To be able to use it.
I: To be able to use it in the course or ...
J: To be able to use it otherwise also, one does want to remember
something.
I: Mm.
J: Otherwise it wouldn’t feel meaningful. Now we will surely use it in
labs and such that we have had.

7.3 Discussion on students’ motives for learning to program

The previous sections have discussed some motives that seem to trigger
search-for-meaning approach and active learning object-oriented program-
ming. Following the terminology in Kembers et al. study (1999), the first
four are intrinsic or achieving motivations: to program is fun and challeng-
ing, strive for overview and theoretical understanding, to improve problem
solving ability and a wish to join the fellowship of the group. The last one
is extrinsic, personal benefits of programming knowledge. As teachers we
can benefit from becoming aware of different motives among students that
enhance learning, and that we can influence. This section is a discussion on
the motives, with implications for teaching.

Student B illustrates a group of students who probably are easy to
teach and willing to learn, and who spend much time programming because
he or she finds it fun. The programming language itself gives stimulation
and challenge enough to work hard.

The empirical data does not give much information on why some stu-
dents have this driving force. Some examples from the interviews are still
interesting to study for educational purposes.

Student A stresses the insight how much can be achieved with program-
ming. This insight seems to have act as an eye opener for how challenging
and fun programming itself can be:

A: Well, okay. So, it is somewhat interesting. I can, you sort of gets
ones eyes opened [...] sort of when you sit with the computer, that you

91

realizes how incredibly much you can do, do myself with the aid of a
keyboard and that is something I’ve come to realize and I’ve in the same
way come to understand those that sort of are addicted programmers
and who find it just so fun. (Author’s italics)

Another factor why some students have this type of motive could be
that some of them have previous knowledge in programming, and thus have
a lead.

Student G says about his/her experience of the course:

G: [...] Think it is a fun course, absolutely. I have always been inter-
ested in computers. It has sort of been fun to do other things also, so
I’m very positive to the course.

A third factor worth mentioning is the teacher’s impact on the students
and the course. Student G explains how the teacher has inspired him or her
to study:

G: [..] It is our lecturer that sort of has started an interest in us.

The first factor mentioned is interesting for educators. It shows the
importance of putting the course and course content in a wider context.
Even if this is a first programming course, student A has discerned “how
incredibly much you can do, do myself with the aid of a keyboard”. This
study shows that many students have vague ideas of what programming is
even at the end of the course. Students own use of programming knowledge,
what programming is and can be used for are factors educators can mediate
in the education.

The second factor, students’ previous knowledge, can often not be af-
fected by educators. Factors possible to influence is yet the level where the
course starts, and the pace of the course.

The third factor mentioned is the influence of the teacher. Research on
students’ learning shows that the teacher plays an important role for stu-
dents’ motive to learn. As mentioned before, Ramsden writes “Students may
begin to experience the relevance of the content of the lecture for their own
understanding if the lecturer can communicate interest and enthusiasm as
well as information. [...] The lecturer’s interest in students, and helpfulness
with study difficulties, are the first important qualities influencing students’
attitudes and approaches.” (Ramsden, 1984, p. 152).

Student A might be representative for a group of students who strive for
theoretical and conceptual understandings. If so, this indicates implications
for teaching necessary for educators to be aware of. As educators we need to
realise and meet the motive needed for these students. To provide students
with an overview of the course and the course context, and also explicitly

92

teach what it means to program, and how it fits into the students’ education
is important. Table 1 can give some information on this. To facilitate
for the students to understand the basic concepts within object-oriented
programming is possible when we know what is critical in the understanding
of these concepts, from a student’s perspective.

Student B emphasizes programming as a handicraft while student A
emphasizes the conceptual understanding underlying object-oriented pro-
gramming. These are two faces of the same coin. Programming as a skill
that needs much hands-on-training, and understanding of the paradigm be-
hind the object-oriented programming are both needed and worth striving
for. Neither of them can be neglected in the programming education, but
there are obviously students who tend to prefer one of these sides to the
other. As teachers we need to be aware of our own preference, and remem-
ber the importance of the other. There are students who need “the other
side” to become motivated in their studies.

Student K is representative for a group of students in the present study
by discussion problem solving. Problem solving abilities are either discussed
regarding programming skills, or as a general ability. Table 1 shows educa-
tionally critical aspects of what it means to learn to program, where Cat-
egory four and five include problem solving. As discussed in Section 4.3,
it is important that the students’ understanding of what learning to pro-
gram means include this aspect. As educators we need to facilitate for the
students to discern problem solving as an important aspect.

The social motive expressed by Student H gives interesting implications
for the planning of programming courses. To encourage students to work in
groups and help each other can give students motives for their studies that
enhance the learning, and thus promote good learning. This might be one
reason why pair programming has shown good results in several studies.

Student E is interesting from an educational perspective when we teach
non-major computer science students. Student E has succeeded to find a
motive for his or her learning that enhances the learning, even though no
or little interest in the subject is expressed. There might be a considerable
amount of students who are not interested in programming, but still have to
study it. Everyone, both educators and students would benefit from finding
such motives for the studies. The usefulness of programming knowledge in
later studies and coming careers are worth considering and discussing with
the students. This includes general knowledge of computers and the ability
to communicate with professional programmers. It also includes sufficient
programming knowledge to be able to change existing code for certain pur-
poses, and to be able to write smaller programs or scripts on your own.

As teachers we meet students with different motives for learning to pro-
gram. Unfortunately not all of them find programming, in terms of the
programming language and its concepts, interesting and challenging. Stu-

93

dent N can express the understanding in Category three in Table 1, Learning
to program is experienced as to gain understanding of computer programs as
they appear in everyday life, but can nevertheless not find the course much
meaningful, see Section 4.2.3. The third category in Table 1 describes an un-
derstanding of what it means to learn to program that has its focus outside
the course and course context. It still seems to be too shallow an under-
standing to give a satisfactory feeling of meaningfulness. There seems to be
a border between the first three and last two categories in Table 1. To iden-
tify motives that we can mediate to our students could be rewarding, both
for students and educators. The data in this study point in the direction
that students, who do not see the programming language itself and its con-
cepts as a driving force, need to discern what it means to learn to program,
as expressed in the last two categories in Table 1 to find motives for their
learning. A teaching and learning environment that explicitly highlights the
problem-solving aspect, encourage social behaviour, and reveals the personal
benefits and uses the students can get of programming knowledge, is thus
worth striving for.

94

8 Conclusions and Future work

The main focus of this thesis is novice students’ learning of object-oriented
programming. What does learning to program involve in a first program-
ming course? In a qualitative study of first year students this question is
investigated broadly by looking at what students learn as well as how they
learn.

The what-aspect of the learning, the learning outcome, includes an over-
all understanding of what learning to program means and also students’ un-
derstanding of concepts within the subject studied. The question on what
learning to program means is central since many students have not studied
the subject before their first university course. Conceptual understanding
is important for learning of the subject. Many of the concepts students
encounter already at an early stage in the course are fundamental to the
specific programming paradigm, and constitute core knowledge of the sub-
ject (Bar-David, 1993). Examples of such concepts are class and object. One
of the foci in this thesis is students’ understanding of these concepts. The
object-oriented paradigm is constructed for larger software systems, where
the base units are the classes with their instances, the objects, to perform
the task given.

Learning to program a computer does however not only involve learning
concepts, but also, by definition, the use of complex resources like comput-
ers, compilers and editors, which many students do not have any deeper
knowledge of. Furthermore learning is influenced by the learners’ motive to
learn. These two issues belong to the how -aspect of the learning.

The primary research approach in this thesis is phenomenography (Mar-
ton and Booth, 1997). Marton and Booth have, based on a discussion on
learning theories, developed a model for analysing students’ experiences of
learning. This model includes the analytical separation of the what- and
how -aspects and makes a theoretical investigation of the learning experience
possible. The model has been used in the present study as a tool to anal-
yse the complex picture of students’ experience of learning object-oriented
programming.

Phenomenography provides a tool for finding qualitatively different un-
derstandings of phenomena in a group of people. It allows the subject of
interest, here object-oriented programming, to be in focus, and still taking
the students’ perspectives. Since the researcher who performs the analysis
knows the subject it is possible to maintain an expert view during the analy-
sis and not loose the focus on the subject. Taking students’ perspectives give
the advantages to show what aspects of the understanding of a phenomenon
that are critical for the students in their learning. If teachers become aware
of these aspects, it opens for the possibility for them to reflect these aspects
in their teaching, see Section 2.2.

The result of a phenomenographic analysis is an outcome space describ-

95

ing the qualitatively different understandings found in the group of students
studied. The outcome space is interesting per se for educators as it reveals
educationally critical aspects of students’ understanding of the phenomenon
investigated. The results can further be taken into a discussion on implica-
tions for teaching by use of variation theory (Marton and Tsui, 2004) which
I have done in the analysis of students’ conceptual understanding. I have
shown how the results on students’ understanding of object and class might
be implemented in the teaching.

This chapter summarizes the discussions and conclusions from the study
of the four research questions in the thesis. Furthermore the chapter shows
how the results are connected to each other. The four research questions
are important aspects of the students’ complex learning experience, and
together they cover a broad range of the those experiences.

The results presented in this thesis are empirically built. They discuss
novice students’ understanding of what learning to program means, their
conceptual understanding, and their use of resources and motives to learn.
Conclusions on implications for object-oriented programming education are
also discussed. The conclusions drawn are in this sense more relevant and ap-
plicable for educators in object-oriented programming than the earlier, more
general research compared to. They also contribute to the understanding of
students’ learning of programming in a wider context than earlier research
since they cover students’ use of several resources, and not only one or a few
resources as in previous work found.

8.1 Conclusions

The first two columns in Table 9 show the results of the two phenomeno-
graphic analyses presented in the thesis. The first column describes the re-
sults from the analysis on students’ different understandings of some central
concepts. The second column presents the results on students’ understand-
ing of what it means to learn to program. Each understanding presented is
important and relevant when learning to program, and a good understanding
includes them all. The last column is a summary of these analyses.

The analysis of students’ understanding of concepts revealed three differ-
ent ways to understand the concepts object and class, which are summarised
in three categories of description, see the left-most column in Table 9. The
first category however hardly corresponds to a professional way of under-
standing the concepts. It explains the concepts at a code–level. In the
process of learning object oriented programming, a crucial step is to exceed
an understanding at this level. To help the students to discern all the differ-
ent aspects of the phenomena, the present study points to the importance
of students getting the opportunity to follow a whole programming task in-
cluding the analysis of the problem, the design, implementation and testing
of the program.

96

The analysis of how the students understand what it means to learn to
program, revealed five different understandings described in the second col-
umn in Table 9. The first three categories describe shallow understandings
of what it means to learn to program. Here, learning to program is seen as
learning a programming language, and this is experienced as a difficult ac-
tivity delimited to the course. Students who only expressed understandings
corresponding to these categories often said that they had problem to know
how to go about studying, and many experienced that learning to program
involves a special way of thinking that they had not yet acquired. The last
two groups in the second column differ from the first three. Students who
expressed understandings in line with these seemed to know how to study
computer programming and could express programming as an activity that
is relevant outside the course and useful for them. The results indicate that
it is crucial for students to get an understanding of what it means to learn
to program that exceeds the first three categories described.

From the results of students’ understanding of concepts and what learn-
ing to program means, two broad categories can be discern as explained
above. This is presented in the third column in Table 9. The first category
in the third column describes understandings that are delimited to the pro-
gramming language itself, and to a narrow description of what learning to
program means. This category describes understandings that, if they are
the only understandings students are aware of, seem to lead to problems
in the capability to program, and even in the capability to study program-
ming. Problems and confusions are expressed by the students who express
only these understandings.

There seems to be a critical boundary between this first category and
the second. The second category describes understandings that have reached
beyond the programming language and the course itself. A larger context
and personal benefits are sought for in this category. The results indicate
a connection between students’ understanding of concepts and their under-
standing of what it means to learn to program, see Section 4.3. Students
seem to need to discern not only more advanced ways to understand con-
cepts, but also the more advanced ways to understand the general question
what learning to program means. Teachers, aware of the critical under-
standings of what it means to learn to program, and critical understanding
of concepts can use variation theory to facilitate for students to discern these
more advanced understandings.

In the analyses of the data on students’ use of resources, I found that
I could categorize how the students used the resources and how the resources
supported the students in their learning, using the search-for-meaning/superficial
dichotomy. These analyses revealed that some resources are mainly used in
a search-for-meaning way and thus come to enhance the learning. These
resources are the teachers, the computers with the compulsory assignments,

97

Students’ understanding
of the concepts object
and class

Students’ understanding
of what it means to learn
to program

Summary

1. Class is experienced as an
entity of the program, con-
tributing to the structure of
the code and describing the
object, where the object is
understood as a piece of pro-
gram text.

1. Learning to program is
experienced as to under-
stand some programming
language, and to use it for
writing program texts.

2. As above, and in addi-
tion learning to program is
experienced as learning a
way of thinking, which is
experienced to be difficult
to capture, and which is
understood to be aligned
with the programming
language.

3. As above, and in addition
learning to program is ex-
perienced as to gain under-
standing of computer pro-
grams as they appear in ev-
eryday life.

1. Under-
standings
limited to the
course and the
programming
language and
program lay-
out. Shallow
discussions
on the use of
programs in
everyday life.

2. Class is experienced as
a description of properties
and behaviour of objects,
where object is understood
as something that is active
during execution of the
program.

3. Class is experienced as
a description of properties
and behaviour of objects,
where object is understood
as a model of some real
world phenomenon.

4. As above, with the
difference that learning to
program is experienced as
learning a way of thinking
which enables problem
solving, and which is expe-
rienced as a ”method” of
thinking.

5. As above, and in addition
learning to program is ex-
perienced as learning a skill
that can be used outside the
programming course.

2. Under-
standing of
concepts as
abstract data
types and
models of the
real world and
programming
as problem
solving. It
includes the
world outside
the course and
later career.

Table 9: Comparison of the two phenomenographic outcome spaces. From
an educational perspective they are divided in two qualitative categories.
The categories in a column are inclusive; the latter categories include the
understandings in the former.

98

and peer students and friends. Resources that are mainly used in a super-
ficial way are the textbook, the notes taken during the lectures, and the
program examples handed out at the lectures.

The students’ experience of the use of resources are however diverse
and depend on the situation. The same student can in some situation use
resources in a search-for-meaning way, but in another situation in a super-
ficial way. Moreover one specific resource can be used in some situations
in a search-for-meaning way, and in other situations in a superficial way.
The results also indicate that too high pressure in terms of lack of time
and background knowledge trigger a superficial use, even for the group of
resources that are mainly used in a search-for-meaning way. On the other
hand, the group of resources that are mainly used in a superficial way seem
to be important when they were used together with the resources typically
used in a search-for-meaning way, in strive for understanding and finding a
whole context.

This study’s primary contribution concerning students’ use of resources
is the role of resources in the learning of object-oriented programming. The
object-oriented paradigm has been developed for the solving of larger prob-
lems that require many interacting classes. In the data I found that learning
is best promoted when the students have to solve the larger compulsory as-
signments. Some of them included several classes and thus mirrored the
thoughts behind the paradigm better than the smaller assignments. The
larger assignments seemed to facilitate personal responsibility since they de-
manded comprehension of larger parts of the course rather than just details.
They seemed to help the students to put the pieces of information together
and demanded the students not to use a superficial approach in the learning.
They also seemed to encourage students to use several resources, primarily
the ones that promote search-for-meaning learning, but also other resources.

If the student knew how to go about studying, which was often described
as being able to do the compulsory assignments at the computer, he or she
would probably have a better chance to use the other resources, teachers and
peer students in a search-for-meaning way that enhance a better learning
of the subject. Even the resources that primarily were used in a superficial
way showed to be important for solving these tasks, when used together with
the resources that promoted search-for-meaning learning. In this way the
resources interact with each other, and the use of several resources together
are of decisive importance for the learning.

The use and understanding of resources is a part of the subject itself.
Learning that involves students’ understanding and use of resources in a
complex way are important to facilitate for a search-for-meaning approach
to learning to program. With reference to the discussion on variation the-
ory in Chapter 5, I want to emphasize that there is still a need for smaller
exercises in the early stages of learning of concepts, to help students to dis-
cern specific critical aspects of the concepts. This can be done when smaller

99

assignments are constructed which focus on a specific critical aspect of a
concept, and that aspect is lifted from the surrounding noise.

One of the themes investigated in this study is students’ motives to
learn to program. There are some interesting connections between students’
motives to learn to program and the understanding of what it means to learn
to program. The results indicate that if students do not see the programming
language itself and its concepts as a driving force for the learning, or have
a social motive to learn, they need to discern what it means to learn to
program, as expressed in the last two categories in the second column in
Table 9, to find positive motives for their learning.

As I have discussed in Chapter 7, there exist several motives that are
rewarding for the learning of the subject. The motives discussed are sub-
ject interest in terms of a strive for conceptual understanding and/or an
interest in learning the programming skill; social motives for attending the
class; interest to get a general problem solving ability; and the benefit that
knowledge of programming can give in later courses and career. As educa-
tors we can not expect all our students to start the course with a subject
interest, or to get a subject interest during the course. For that reason the
latter motives are interesting to study. In Section 7.3 I have argued that
educators can help the students to discern these positive motives, and thus
facilitate for students to learn the subject.

An interesting result is that there were students who found a subject
interest starting with social motives to attend the class. Some students
attended lectures because they wished to join the fellowship in the group.
When the students came to the lecture, the lecturer succeeded to create
an interest for the subject which gave the students a motive for learning.
This shows the important role the teacher has for the learning, and the
importance of creating a learning environment that involves the possibilities
for social interaction. In this way teachers can help students who start with
low interest in the subject to find an interest.

Students’ motives to learn and resources provided in the course are thus
of decisive importance for the learning. Students with a social motive to
learn are encouraged by group activities, students with motives to learn
theory need lectures where the fundamental thoughts behind the paradigm
is highlighted, students with career motives need to know how the course fits
in their education and how they can benefit from programming knowledge
in coming careers, and students who want to enhance their problem solving
ability need programming problems with connection to their reality.

As educators we can help or constrain our students’ learning by means
of which resources we provide. Implications from the results are that educa-
tors should provide a variety of resources so that resources should be made
available that can connect to the different motives found in the study.

100

In the study there were students who expressed that they had problems
not only to understand concepts, but also to know how to go about studying.
Problems to know how to go about studying indicate problems to know how
to use available resources efficiently. Students who do not know how to use
resources like the computer with the compiler in an efficient way, will have
difficulties to perform assignments, which is expressed by the students as
very important for the learning of concepts.

This finding is connected to students’ understanding of what learning to
program means and the discussion on different levels of conceptual under-
standing. Data in the study, supported by earlier research in Mathematics
education, suggest that many students need ’canonical procedures’ in their
learning to program (Hazzan, 2003). ’Canonical procedures’ are step-by-
step instructions that help students to practise the subject studied. They
scaffold students’ learning and are necessary for developing conceptual un-
derstanding. If such procedures are not discerned by the students they may
get problems to advance in their learning. ’Canonical procedures’ corre-
spond to and are necessary for a ’process conception’. This is, according
to Sfard (1991), a level of conceptual understanding that precedes the more
advanced and desirable level of conceptual understanding, the ’object con-
ception’. The result from the present study, where students say that they
do not know how to study programming, indicates that these students do
not discern the ’canonical procedures’ necessary for the learning, and have
thus not even reached a ’process conception’. This reasoning might be in
line with the broad discussion among many students in the interviews about
the special ’program thinking’ that some of them express they have not yet
achieved, but which they discuss is necessary for learning to program.

Understanding of concepts and use of resources are thus related to each
other and to the understanding of what learning to program means and
students’ motive to learn. The four research questions cover a wide range
of students’ experiences of learning object-oriented programming, and the
study empirically shows that they are all depending on each other and im-
portant in the learning process.

8.2 Future work

The results from the study show that the process of learning object-oriented
programming includes an initial threshold that many novice students have
problems to pass. In Chapter 4, I discuss the special thinking that many
students mention, and name it ’programming thinking’. It is described by
the students as something necessary to acquire to be able to understand
programming, and often expressed as difficult to grasp. Students who have
come to an understanding of what it means to learn to program as learning a
way of thinking which enables problem solving, and a ”method” of thinking,
or that it is learning a skill that can be used outside the programming course,

101

seem to have passed a threshold in their understanding, see the second
column in Table 9.

Taking the view that learning to program is to enter a new culture, I plan
to further investigate this ’programming thinking’. Mullholland and Wal-
lace (2000) discuss the necessity for novice science students to find bridges
or ’entryways’ into the new world of science “in order that professional de-
velopment could continue.” (p. 16). The authors continue by stating that
“[a]lthough these bridges were based in the original world or perspective
held, crossing them requires reorganisation of ideas and attitudes so that
successful transition to the new world could be made.” I plan to further
investigate the ’programming thinking’ in the light of ’entryways’ into a
new computer science culture. I consider the anthropological sense of cul-
ture discussed by Säljö (2000) “culture [means] the set of ideas, values,
knowledge, and other resources that we acquire through interaction with
the world around us.” In this work the concept of ways of thinking and
practicing, WTP’s (Entwistle, 2003) will be central. It is intended to cap-
ture subject-specific ways of thinking and practicing that are central ele-
ments of the culture within a discipline. My goal is to identify threshold
concepts within the subject area (Meyer and Land, 2005). Meyer and Land
state that threshold concepts are “ ’conceptual gateways’ or ’portals’ that
lead to a previously inaccessible, and initially perhaps ’troublesome’, way
of thinking about something. A new way of understanding, interpreting,
or reviewing something may thus emerge [...]” Threshold concepts can in
this way be discussed as ’entryways’ into the computer science culture, and
by use of Meyer and Land’s definition of threshold concepts my goal is to
identify ’entryways’ into the culture.

A second line of future work is how the use of resources is connected
to the learning of concepts in object-oriented programming. The results
from the present study indicate such a connection as discussed earlier in
this chapter. I plan to discuss use of resources in terms of the P in WTP,
’Practicing’. Can identification of threshold concepts also be relevant for
revealing aspects of ways of practicing? This thought is supported by Mull-
holland and Wallace (2000) when they write “the availability of resources
can be thought of as entryways [...] to become a successful science student.”
(p. 18).

In the data I found evidence of students who had problems to know
how to go about studying programming. This indicates that they do not
even know how to use available resources, how to ’practise’ in a way that
promotes good learning. To identify ’canonical procedures’ for novice stu-
dents in object-oriented programming might be a way to help these students.
’Canonical procedures’ are discussed in Chapter 4. They are step-by-step
procedures students use when they are still at a low level of abstraction,
at a process conception, in learning of concepts. The goal is to reach a
higher level of abstraction, the object conception. If students discern these

102

step-by-step procedures, the procedures can act as tools for them to reach
both a better conceptual understanding and better programming skills due
to the possibilities to more efficient practicing of programming. In this way
practising and conceptual understanding go hand-in-hand.

Figure 5: Illustration of the connection and development of learning to
program as conceptual understanding and practicing.

Since the data provide evidence that there are students who do not even
discern canonical procedures when learning to program, and thus hardly
even reach a process conception, I plan to investigate this in the light of the
core role resources like the computer and computing exercises play in the
learning. The differences between learning to program and learning other
subjects students have met before, may explain some of the difficulties many
students express in this study. Computers, compilers and editors etc., are
not only tools in the learning, but knowledge of them is part of the goal of the
course. These resources’ central role in the learning, and the fact that the
necessary resources are advanced and not profoundly known by all students,
may increase the importance of identifying and explicitly showing students
canonical procedures. Canonical procedures can enhance the ability to use
the resources, and the ability to use resources is a help for students to study
which can enhance conceptual understanding. This is illustrated in Figure 5.

Here I discuss both tacit concepts and concepts explicitly taught in a first
programming course. By tacit concepts I mean concepts that can not be

103

expected to be understood in the subject-specific meaning by non-experts
and which are used en passant by the teacher and/or in the text book
although they have a subject-specific meaning of fundamental importance
for understanding the subject matter at hand.

In this way I plan to take the research questions How do students un-
derstand abstract concepts in object-oriented programming? and How do
students use resources and experience support of such in the learning? fur-
ther. The results from the present study show the close relationship between
these questions in the learning of object-oriented programming, and point
to interesting issues for further investigation.

104

References

Anderson, J., Reder, L., and Simon, H. (1996). Situated learning and edu-
cation. Educational Researcher, 25(4):5–11.

Bar-David, T. (1993). Object-Oreinted Design for C++. P T R Orentice
Hall.

Barnes, D. and Kölling, M. (2003). Objects First with Java - A Practical
Introduction using BlueJ. Prentice Hall / Pearson Education.

Beck, K. and Andres, C. (2004). Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional.

Ben-Ari, M. (1998). Constructivism in computer science education. In ACM
SIGCSE Bulletin , Proceedings of the twenty-ninth SIGCSE technical
symposium on Computer science education, Volume 30 Issue 1.

Berglund, A. (2005). Learning computer systems in a disributed project
course. The what, why, how and where. PhD thesis, Uppsala University,
Department of Information Technology, Sweden.

Berglund, A. and Wiggberg, M. (2006). Students learn cs in different ways.
insights from an empirical study. In Proceedings of the Eleventh An-
nual Conference on Innovation and Technology in Computer Science
Education, pages 265 – 169.

Biggs, J. (1987). Student Approaches to Learning and Studying. Australian
Council for Educational Research.

Booth, S. and Ingerman, Å. (2002). Making sense of physics in first year of
study. Learning and Instruction, 12:493–507.

Booth, S. A. (1992). Learning to Program. A phenomenographic perspective.
Number 89 in Göteborg Studies in Educational Science. Acta Universi-
tatis Gothoburgensis, Göteborg, Sweden.

Box, R. and Whitelaw, M. (2000). Experiences when migrating from struc-
tured analysis to object-oriented modelling. In Proceedings of the Aus-
tralasian conference on Computing education, pages 12–18. ACM.

Bruce, C., McMahon, C., Buckingham, L., Hynd, J., Roggenkamp, M., and
Stoodly, I. (2004). Ways of experiencing the act of learning to program:
A phenomenographic study of introductory programming students at
university. Journal of Information Technology Education, 3:143–160.

Chen, S. and Morris, S. (2005). Iconic programming for flowcharts, java,
turing, etc. In Proceedings of the 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education.

105

Dahlbom, B. (1993). Mind is artificial. In Dahlbom, B., editor, Dennett and
his critics. Demystifying mind., pages 161–183. Oxford: Blackwell.

Daly, C. and Waldron, J. (2004). Assessing the assessment of programming
ability. In Proceedings of the thirty-fifth SIGCSE technical symposium
on Computer science education, pages 210–213.

Daniels, M., Berglund, A., and Petre, M. (1999). Reflections on international
projects in undergraduate cs education. Computer Science Education,
9(3):256 – 267.

Eckerdal, A. (2002). Om först̊aelse av begreppet inkapsling - en analys av
en pilotstudie. Unpublished pilot study.

Eckerdal, A. and Berglund, A. (2005). What does it take to learn ’program-
ming thinking’? In Proceedings of the 1st International Computing
Education Research Workshop, pages 135 – 143.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., and Zander, C.
(2006). Can graduating students design software systems? In Proceed-
ings of the thirty-seventh SIGCSE technical symposium on Computer
science education.

Eckerdal, A. and Thune’, M. (2005). Novice java programmers´ concep-
tions of ’object’ and ’class’, and variation theory. In Proceedings of
the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education, pages 89 – 93.

Ellis, A., Carswell, L., A., B., Deveaux, D., Frison, P., Meisalo, V., Meyer,
J., Nulden, U., Rugelj, J., and Tarhio, J. (1998). Resources, tools,
and techniques for problem based learning in computing. report of the
iticse’98 working group on problem based learning. In Proceedings of
the 3th Annual Conference on Innovation and Technology in Computer
Science Education.

Entwistle, N. (2003). Concepts and conceptual frameworks underpinning the
ETL project. Occasional Report 3 of the Enhancing Teaching-Learning
Environments in Undergraduate Courses Project, School of Education,
University of Edinburgh, March 2003.

Fleury, A. E. (1999). Student conceptions of object-oriented programming
in java. The Journal of Computing in Small Colleges, 15(1).

Fleury, A. E. (2000). Programming in java: Student-constructed rules. In
Proceedings of the thirty-first SIGCSE technical symposium on Com-
puter science education.

106

Fleury, A. E. (2001). Encapsulation and reuse as viewed by java students.
In ACM SIGCSE Bulletin , Proceedings of the thirty-second SIGCSE
technical symposium on Computer Science Education, Volume 33 Issue
1.

Goldman, K. J. (2004). A concepts-first introduction to computer science.
In Proceedings of the 35th SIGCSE technical symposium on Computer
science education.

Gow, L. and Kember, D. (1990). Does higher education promote indepen-
dent learning? Higher Education, 19(3):307 – 322.

Gray, K. E. and Flatt, M. (2003). Professorj: a gradual introduction to java
through language levels. In Companion of 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications.

Guba, E. (1981). Criteria for assessing the trustworthiness of naturalistic
inquiries. Educational Communication and Technology Journal, 29:75
– 91.

Hadjurrouit, S. (1998). A constructivist framework for integrating the java
paradigm into the undergraduate curriculum. In ACM SIGCSE Bulletin
, Proceedings of the 6th annual conference on the teaching of computing
and the 3rd annual conference on Integrating technology into computer
science education: Changing the delivery of computer science education,
Volume 30 Issue 3.

Hamilton, J. A. and Pooch, U. W. (1995). A survey of object-oriented
methodologies. In Proceedings of the conference on TRI-Ada ’95: Ada’s
role in global markets: solutions for a changing complex world.

Hazzan, O. (2003). How students attempt to reduce abstraction in the
learning of computer science. Computer Science Education, 13(2):95–
122.

Holland, S., Griffiths, R., and Woodman, M. (1997). Avoiding object mis-
conceptions. In ACM SIGCSE Bulletin , Proceedings of the twenty-
eighth SIGCSE technical symposium on Computer science education,
Volume 29 Issue 1.

Holmboe, C. A. (1999). Cognitive framework for knowledge in informat-
ics: The case of object-orientation. In Proceedings of the 4th annual
SIGCSE/SIGCUE ITiCSE conference on Innovation and technology in
computer science education.

http://www.vr.se (2003). Retrieved November 28, 2003.

107

Jenkins, T. (2001). Teaching programming - a journey from teacher to
motivator. In 2nd Annual LTSN-ICS Conference, London.

Joint Task Force on Computing Curricula (2001). Computing curricu-
lum 2001, computer science volume. Technical report, IEEE Com-
puter Society and Association for Computing Machinery. Available
at http://www.sigcse.org/cc2001/.

Katira, N., Williams, L., Wiebe, E., Miller, C., Balik, S., and Gehringer, E.
(2004). On understanding compatibility of student pair programmers.
In Proceedings of the thirty-second SIGCSE technical symposium on
Computer Science Education.

Kay, J. S. (2003). Teaching robotics from a computer science perspective.
Journal of Computing on Small Colleges, 19(2):329–336.

Kember, D., Wong, A., and Leung, D. Y. P. (1999). Reconsidering the
dimensions of approaches to learning. British Journal of Educational
Psychology.

Kölling, M. (1999a). The problem of teaching object-oriented program-
ming, part 1: Languages. JOURNAL OF OBJECT-ORIENTED PRO-
GRAMMING.

Kölling, M. (1999b). The problem of teaching object-oriented programming,
part 2: Environmentss. JOURNAL OF OBJECT-ORIENTED PRO-
GRAMMING.

Kvale, S. (1996). InterViews: An introduction to qualitative research inter-
viewing. Thousand Oaks, CA: Sage.

Kvale, S. (1997). Den kvalitativa forskningsintervjun. Studentlitteratur.

Lahtinen, E., Ala-Mutka, K., and Järvinen, H. M. (2005). A study of the
difficulties of novice programmers. In Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer Sci-
ence Education.

Lister, R., Adams, E., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M.,
McCartney, R., Moström, J., Sanders, K., Seppälä, O., Simon, B., and
Thomas, L. (2004a). A multi-national study of reading and tracing
skills in novice programmers. ACM SIGCSE Bulletin, 36(4):119–150.

Lister, R., Box, I., Morrison, B., Tenenberg, J., and Westbrook, D. (2004b).
The dimensions of variation in the teaching of data structures. In Pro-
ceedings of the 9th annual ACM SIGCSE Conference. ITiCSE: Innova-
tion and Technology in Computer Science Education., pages 92–96.

108

Mahmoud, Q. H., Dodosiewicz, W., and Swayne, D. (2004). Redesigning
introductory computer programming with html, javascript and java.
In Proceedings of the thirty-second SIGCSE technical symposium on
Computer Science Education.

Marton, F. (1974). Inlärning och studiefärdighet. Technical Report 121,
Rapporter fr̊an Pedagogiska institutionen, Göteborgs universitet.

Marton, F. and Booth, S. (1997). Learning and Awareness. Lawrence Erl-
baum Ass., Mahwah, NJ.

Marton, F., Hounsell, D., and Entwistle, N. (1984). The Experience of
Learning. Scottish Academic Press.

Marton, F. and Svensson, L. (1979). Conceptions of research in student
learning. Higher Education, pages 471–486.

Marton, F. and Säljö, R. (1984). Approaches to learning. In Marton, F.,
Hounsell, D., and Entwistle, N., editors, The Experience of Learning.
Scottish Academic Press.

Marton, F. and Tsui, A. (2004). Classroom Discourse and the Space of
Learning. Lawrence Erlbaum Ass., Mahwah, NJ.

Mayring, P. (2000). Qualitative content analysis. Forum: Qual-
itative Social Research [On-line Journal], 2000, 1(2) Available
at: http://www.qualitative-research.net/fqs-texte/2-00/2-00mayring-
e.htm.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant,
Y.-D., Laxer, C., Thomas, L., Utting, I., and Wilusz, T. (2001). A
multi-national, multi-institutional study of assessment of programming
skills of first-year cs students. SIGCSE Bulletin, 33(4):125–180.

Meyer, B. (1988). Object-oriented Software Construction. International
series in Computer Science. Prentice Hall.

Meyer, J. H. and Land, R. (2005). Threshold concepts and troublesome
knowledge (2): Epistemological considerations and a conceptual frame-
work for teaching and learning. Higher Education, 49:373–388.

Moskal, B., Lurie, D., and Cooper, S. (2004). Evaluating the effectiveness
of a new instuctional approach. In Proceedings of the 35th SIGCSE
technical symposium on Computer science education.

Mullholland, J. and Wallace, J. (2000). Restorying and the legitimation of
research texts. In The annual meeting of the National Association for
Research in Science Teaching, New Orleans.

109

Newman, I., Daniels, M., and Faulkner, X. (2003). Open ended group
projects, a ’tool’ for more effective teaching. In Proceedings of the fifth
Australasian conference on Computing education.

Pong, W. Y. (1999). The dynamics of awareness. In 8th European Conference
for Learning and Instruction.

Powers, K., Cooper, S., Goldman, K., Carlisle, M., McNally, M., and Proulx,
V. (2006). Tools for teaching introductory programming: What works?
In Proceedings of the thirty-seventh SIGCSE technical symposium on
Computer science education.

Ramsden, P. (1984). The context of learning. In Marton, F., Hounsell,
D., and Entwistle, N., editors, The Experience of Learning. Scottish
Academic Press.

Ramsden, P. (1992). Learning to Teach in Higher Education. Routledge,
London, New York.

Roberts, E. (2004a). The dream of a common language: The search for
simplicity and stability in computer science education. In Proceedings
of the thirty-fifth SIGCSE technical symposium on Computer science
education.

Roberts, E. (2004b). Resources to support the use of java in introductory
computer science. In Proceedings of the thirty-fifth SIGCSE technical
symposium on Computer science education.

Roberts, E. (2006). Special session the acm java taxk force: Final report.
In Proceedings of the thirty-seventh SIGCSE technical symposium on
Computer science education.

Robins, A., Rountree, J., and Rountree, N. (2003). Learning and teaching
programming: A review and discussion. Computer Science Education,
13(2):137–172.

Rumbaugh, J., Jacobson, I., and Booch, G. (1999). The Unified Model-
ing Language Reference Manual. Addison Wesley Longman, Reading,
Massachusetts.

Säljö, R. (2000). Lärande i praktiken Ett sociokulturellt perspektiv. PRISMA.

Sandberg, J. (1997). Are phenomenographic results reliable? Higher Edu-
cation & Development, 16(2):203–212.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Re-
flections on processes and objects as different sides of the same coin.
Educational Studies in Mathematics, 22:1–36.

110

Sommerville, I. (2004). Software Engineering. Addison Wesley.

Svensson, L. (1977). On qualitative differences in learning: Iii. study skill
and learning. British Journal of Educational Psychology, 47:233–243.

Thomas, L., Ratcliffe, M., and Thomasson, B. (2004). Scaffolding with
object diagrams in first year programming classes: Some unexpected
results. In Proceedings of the thirty-fifth SIGCSE technical symposium
on Computer science education.

VanDeGrift, T. (2004). Coupling pair programming and writing: Learning
about students’ perceptions and processes. In Proceedings of the thirty-
fifth SIGCSE technical symposium on Computer science education.

Åkerlind, G. (2005). Variation and commonality in phenomenographic re-
search methods. Higher Education Research and Development, 24:321–
334.

111

A Interview questions

Interview with Aquatic and Environmental Engineering
students, spring 2002

1. Introduction

• Presentation and contact making
- I introduce myself, my background and the present work.
- Ask for the student’s name.
- Talk about the purpose with the study:
How students learn object-oriented programming, specifically con-
ceptual understanding and which resources students use that pro-
mote learning.
Goals: to reveal individual understandings, to be able to map the
whole group. Connect the results to education.

- Inform: This is not at test!
- Tell the student that he/she is welcome to talk freely, no need
for waiting for my next question. The discussion is the most
important for me, not “wrong” or “correct” answers.
- If there is something I ask for that the student doesn’t know,
that’s interesting too.
- If there is something the student doesn’t want to answer, it’s
AK.

• The use of the tapes: the whole interview will be transcribed
and analysed by me. The tape will only be listen to within the
research group at the department. I guarantee that the students’
teacher will not get access to the tape until the course is over.

• Topics for the interview:
- Resources you’ve used and how you’ve used them.
- Some central concepts within object-oriented programming.

• - Ask if the student has any questions.

2. What does learning mean?

• - What has the course been about? Mention shortly what you’ve
found most important.
- What has been difficult?
- You’ve learned a lot during the course. What does it mean to
learn this course? (What does learning mean?)

112

• How many of the compulsory assignments have you finished up
to now?

3. Resources & use of resources.

• There are many available resources and tools you can use in the
course. I’m interested in which resources and tools you have used
and which one you experienced as most meaningful, useful?
By resources and tools I mean everything you think has helped
you when you’ve worked with the course, and specially when
you’ve learned the concepts ’object’ and ’class’.
(For the interviewer: Write down a list with the resources the
student mention. Ask the following questions for ech resource on
the list:)

• How did you use the resources? How did they help you in your
learning? (Help for the interviewer to think about: Where
are the resources directed? To pass the exam, learn a detail,
understanding, “just” pass e.g. an assignment?)

• Why did you use this resource? What was the goal and purpose?
What has been gained by using this resource?

• Which resources have been useful when you experienced that
something was difficult in the course?

• How do you experience that the resources have been connected
to each other? (Textbook with assignments etc...) (For the
interviewer: follow up question could be: What resources did
you use if you didn’t use the textbook? Etc...)

• For the interviewer: check some central resources the institu-
tion provides if the students do not mention them: lectures, com-
pulsory assignments, computer exercises, Internet, final exam,
group discussions

4. OOP-phenomena Object and class:

I have paper and pens here if you’d like to write something down or
draw something.

a) What do you experience an object to be? Draw, write and/or tell
me. (For the interviewer: A picture, a simile using words, a Java
program, an example, or...? Give the student paper and pens.)

What is a class? What does an object contain?

b) What do you think is the purpose of using objects/classes? Why
do you create objects/classes?

113

c) The relation between object and class? (One object - several objects
of the same/different classes?)

c) Did you find it difficult/easy to understand objects and classes?
How did you come to the understanding you have now?

5. Conclude

• How did you prepare yourself for the final exam? Which resources
did you use?

• For the interviewer: If necessary pick something from the in-
terview as a conclusion and tuning: “Did I understand you cor-
rectly when you talked about?”

• Tell the student how the interviews after the analysis will be
presented: in my thesis, in scientific conferences and journals etc.
All subjects will be anonymous.

• If you like, you can be on an address list and get information of
published material.

• I don’t have any more questions. Do you have anything more to
add or any questions?

- After the interview: Write down, or tell the tape recorder my im-
pressions of the interview: facial and body expressions, the “feeling”
of the interaction between me and the subject in the interview.

114

Recent licentiate theses from the Department of Information Technology

2006-006 Anna Eckerdal: Novice Students’ Learning of Object-Oriented Programming

2006-005 Arvid Kauppi: A Human-Computer Interaction Approach to Train Traffic Con-
trol

2006-004 Mikael Erlandsson: Usability in Transportation – Improving the Analysis of
Cognitive Work Tasks

2006-003 Therese Berg: Regular Inference for Reactive Systems

2006-002 Anders Hessel: Model-Based Test Case Selection and Generation for Real-
Time Systems

2006-001 Linda Brus: Recursive Black-box Identification of Nonlinear State-space ODE
Models

2005-011 Björn Holmberg: Towards Markerless Analysis of Human Motion

2005-010 Paul Sjöberg: Numerical Solution of the Fokker-Planck Approximation of the
Chemical Master Equation

2005-009 Magnus Evestedt: Parameter and State Estimation using Audio and Video Sig-
nals

2005-008 Niklas Johansson: Usable IT Systems for Mobile Work

2005-007 Mei Hong: On Two Methods for Identifying Dynamic Errors-in-Variables Sys-
tems

2005-006 Erik Bängtsson: Robust Preconditioned Iterative Solution Methods for Large-
Scale Nonsymmetric Problems

2005-005 Peter Nauclér: Modeling and Control of Vibration in Mechanical Structures

Department of Information Technology, Uppsala University, Sweden

