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Abstract
Bondarenko, N. 2018. Theoretical studies of lattice- and spin-polarons. Digital
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and
Technology 1631. 103 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0235-5.

Theoretical studies of lattice- and spin-polarons are presented in this thesis, where the primary
tool is ab-initio electronic structure calculations. The studies are performed with employment of
a variety of analytical and computational methods. For lattice-polarons, we present an analytical
study where multipolaron solutions were found in the framework of the Holstein 1D molecular
crystal model. Interestingly, we found a new periodic, dnoidal, solution for the multipolaron
system. In addition to it, we examined the stability of multipolaron solutions, and it was found
that cnoidal and dnoidal solutions stabilize in different ranges of the parameter space. Moreover,
we add to the model nonlocal effects and described dynamics in terms of internal solitonic
modes.

Hole-polaron localization accompanying the formation of a cation vacancy in bulk MgO
and CaO and at the (100) MgO/CaO interfaces is presented. We show that the ground state is
found to be the O1-O1 bipolaronic configuration both in bulk oxides and at their interfaces.
Moreover, the one-centered O2-O0 bipolaron was found to be metastable with its stability
being enhanced at the interfaces compared to that in bulk oxides. Also, for several bipolaronic
configurations, we analyzed possible transitions from O1-O1 to O2-O0. On the same line
of reasoning, electron localization and polaron mobility in oxygen-deficient and Li-doped
monoclinic tungsten trioxide has been studied. It is shown for WO3, that small polarons formed
in the presence of oxygen vacancy prefer bipolaronic W5+-W5+ configuration rather than W6+-
W4+ configuration, which is found to be metastable state. Also, it is demonstrated that the
bipolarons are tightly bound to vacancies, and consequently exhibit low mobility in the crystal.
On the other hand, we show that polarons formed as a result of Li intercalation are mobile and
that they are being responsible for electrochromic properties discovered in the compound.

Spin-polaron formation in La-doped CaMnO3, with G-type antiferromagnetic structure, was
also studied. We found that for this material, spin-polarons are stabilized due to the interplay of
magnetic and lattice-effects at lower La concentrations and mostly due to the lattice contribution
at larger concentrations. We show that the formation of SP is unfavourable in the C- and A-type
antiferromagnetic phase, in agreement with previously reported experimental studies. We have
also studied dynamical and temperature dependent properties of spin-polarons in this compound.
We estimated material specific exchange parameters from density functional theory and found
that 3D magnetic polarons in the Heisenberg lattice stabilize at slightly higher temperatures than
in the case of 2D magnetic polarons. Next, we have proposed a method to calculate magnetic
polaron hopping barriers and studied spin-polaron mobility CaMnO3 using additional methods
such as atomistic spin dynamics and kinetic Monte Carlo. We make a suggestion of using this
system in nano-technological applications.
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1. Introduction

Cheshire Cat: You may have
noticed that I’m not all there
myself.

Alice’s Adventures in
Wonderland. Lewis Carroll

Condensed matter physics explores physical properties of condensed
phases of matter. The studies are mainly focused on many-body systems
where many particles bond to each other. Under certain assumptions,
such systems admit a description in the language of interacting subsys-
tems, nuclear (ionic) and electronic. The perturbation of the electronic
state in the crystal leads to the local changes of the interatomic interac-
tion and hence to the excitation of atomic vibrations, i.e., excitation of
phonon modes. Vice versa the lattice perturbations affect the electronic
density that reflect the manifestation of so-called electron-phonon interac-
tion responsible for numerous cooperative effects in solids. Thus, current
carrier scattering, anharmonic renormalisation of the phonon frequencies,
carrier quantum confinement, or conventional superconductivity are pos-
sible examples.

One of the most extraordinary collective phenomena which arises as
a consequence of the electron-phonon interaction is a charge localisation
in a lattice in the self-induced potential well. In this regards, a localised
carrier is dressed in the lattice polarisation and it forms a quasiparticle,
called a polaron. This entity has its own characteristics reflecting its
inner structure: radius, formation energy, charge, magnetic momentum
and other quantum numbers. Polaron admits a description in the frame
of the effective mass approximation and since it is a dressed quasiparticle,
the polaronic effective mass is usually greater than the effective mass of
a Bloch particle, i.e, an undressed electron in a crystal lattice.

Despite the simplicity of the main concept, exact solution of the po-
laron problem has been obtained only in a few limiting cases and the
problem continues to attract the extensive attention of the scientific com-
munity. In statistical mechanics and quantum field theory, the problem is
the simplest case of a system where nonrelativistic quantum particle in-
teracts with a bosonic quantum field. Numerous sophisticated theoretical
methods had been developed and employed to solve the problem.
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Initially, the concept was introduced by L.D. Landau [1]. S.I. Pekar [2],
suggested a common term − polaron and investigated the self-energy and
the effective mass of this new quasi-particle in continuum polar media.
Later, Fröhlich [3] in studies on polaron model in the continual limit has
adapted Pekar’s approach to the adiabatic or strong-coupling regime. The
functional integral method, developed by R. Feynman especially to study
polaron problem, became one of the most used methods in statistical me-
chanics and quantum field theory [4]. An essential contribution to the
polaron theory has been constructed by Bogolyubov which developed a
consistent adiabatic perturbation theory of polaron formation [5]. Later
he returned to the problem and also applied the well-known method of
chronological orderings or T-products [6]. The technique appeared effec-
tive for the theory of polarons with a large radius (radius much larger
than the characteristic lattice period) for all electron-phonon interactions
(weak, intermediate and strong). Moreover, the T-product method based
on the path integral formalism has a variety of applications in many areas
of quantum physics.

A proper theoretical analysis of a polaron also includes studies with
employment of the Lattice Hamiltonian in the context of a microscopic
picture. The studies dealing with a spatially well-localised wave function
(small polaron limit) form another branch of research which question
Fröhlich picture. Seminal papers corresponding to the subject are dated
back to the 50’s of the previous century [7]. Nowadays, studies on the po-
laron in the discrete picture form a broad field including numerous studies
with employment of advanced theoretical and computation technics such
as Diagrammatic Monte Carlo [8], the Density Matrix Renormalization
Group technics (DMRG) [9] or Exact Diagonalisation [10] among oth-
ers. Recently, it has been shown that a proper theoretical analysis of a
lattice polaron in microscopic pictures requires ab-initio techniques [11].
They precisely account for material dependent wave function and reflect-
ing the motion of every single atom in the area of the lattice distortion
surrounding the localised electron.

Interest in the polaron problem increases if, in addition to the previ-
ously described spatially homogeneous systems, a charged particle with
elementary excitations in spatially inhomogeneous media is considered.
In this regards, polaron localisation in quantum dots, interfaces and sur-
faces, in systems with low-dimensionality also constitute as an emerging
subject. Moreover, the polaron concept extended to systems, with a dif-
ferent type of interaction enriched the family of quasiparticles. Thus, the
family of polaron-like quasiparticles has been extended and are listed in
the following as: spin-polaron − a localized, due to the magnetic inter-
action, charge in a magnetic lattice [12], excitonic-polaron − an exciton
coupled to the optical phonon branches [13], ripplonic polaron [14] − a
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charge carrier localised due to the topological defects, plasmapolaron [15]
− an electron coupled to a plasmon excitation and many more.

Polarons is a broad field of experimental research in solid-state physics
since they are not only theoretical, abstract constructions, but also ex-
perimentally observable objects. Nowadays, the experimental evidence
allows studying a variety of polaronic fingerprints in systems with vari-
able structures and compositions. For example, optical absorption spec-
tra and electron spin resonance (ESR) indicate the formation of a po-
laronic state [16]. Moreover, studies of the optical absorption for small
polarons as compared to large polarons exhibit different characters of the
spectra [17]. Usually, experimental X-ray absorption measurements are
employed to detect polaronic band formation [18]. Very recently, two-
dimensional electronic spectroscopy (2DES) has been employed to study
bipolaron pair absorption in polymer thin films [19]. Measurements of
electrical conductivity and Seebeck coefficient are methods of choice in
order to study polaron mobility [20]. The sample magnetisation curves
carry information regarding spin-polaron state formation [21]. Overall,
these experimental data plays an important role in the understanding of
a variety of phenomena such as charge transport and optical properties
of semiconductors [17, 22], high-temperature superconductivity [23] and
giant magnetoresistance [24].

Of course, it is impossible to highlight all aspects of the polarons in
this short introduction. With this, we just aimed to familiarize the reader
with the methods and achievements of modern physics developed in the
context of the polaron theory. Undoubtedly, the following chapters of this
work are devoted to several problems in the framework of polaron theory.
However, for a complete description, we refer the reader to specialised
literature [25, 26, 27, 28].

Here, we present a theoretical study of lattice- and spin-polarons with
employment of several theoretical methods. Our research is done in
systems with various dimensionalities, such as, one-dimensional chain
of harmonic oscillators, two-dimensional surfaces, interfaces and three-
dimensional oxide bulk. Moreover, we analysed polaron formation and
dynamics accounting for the influence of anisotropy, non-locality, tem-
perature and electric field. Studies are done with employment of both
analytical as well as modern computational methods of solid state physics.
The thesis is organised as follows: in Chapter I, we give an overview of
main theoretical models and approaches of polaron theory, in Chapter
II, we discuss polarons and multi-polarons in Holstein molecular-crystal
model with introduced non-local term and some of our results achieved
in the frame of this model. In Chapter III, we give an overview of main
aspects of spin-polaron theory related to our studies in this field. In
Chapter IV, we discuss methods and approaches of the density functional
theory (DFT). In Chapter V, we discuss methods and approaches of the
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density functional theory (DFT) we used in order to model polarons in
oxides. Chapter VI of this thesis is devoted to our results of the polaron
numerical modelling in the frame of DFT. In Chapter VII, we report an-
alytical calculation of the polaronic nonadiabatic transition rate. Finally,
in Appendices we discuss analitical derivation of polaron nonadiabatic
transition rate.
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2. Polaron models

Formation of a polaronic state is a consequence of the lattice polarization
induced by a charge carrier. The crystal polarization lowers the crystal
energy towards the delocalized state and a local potential well forms. In
polar crystals, the carrier’s wave function is well localized in the potential
well and rapidly decays in the surrounding media. Therefore, the pola-
ronic state develops in a self-consistent manner: a localized charge state
induces lattice polarization and in its turn, the locally polarized lattice
traps the carrier.

In the continual limit when the localized wave function is spread over
a region significantly larger than the characteristic interatomic spacing,
the so-called large polaron is discussed. In this approach, the crystal can
be considered as a continuous dielectric media with the corresponding
material constants.

Another attempt to describe polarons is given within mesoscopic mod-
els which account for the internal structure of the media. Polarons in
this model are usually strongly onsite localised. Below we describe both
continual and discrete polaron model. Also, we discuss bipolaron state
which may form.

2.1 Pekar’s model
We start assuming a self-trapped, large polaronic state in the tight-
binding picture [29]. In the framework of the model, we distinguish
inertial polarization responsible for the state localization and the peri-
odic potential formed due to the ionic shell polarization which follows the
carrier motion without any interruption. Thus, the localized state can be
determined as a solution of the Schrödinger equation:

− h̄2

2m
∇2ψ(r)+ [V (r)+W (r)]ψ(r) = Eψ(r), (2.1)

where ψ(r) is the electronic wave function, V (r) is lattice periodic poten-
tial, and W (r), the interaction energy of the electron with the trapping
self-induced polarization field. For a large polaron, it is possible to drop
the periodic lattice polarization term replacing the electronic mass m by
effective mass m∗:

13



− h̄2

2m∗ ∇2ψ(r)+W (r) = Eψ(r). (2.2)

The Eq. (2.2) can be obtained as a variation of the following functional
and accounting for the normalization condition

∫
dτ |ψ|2 = 1:

E [ψ] =
∫

dτ
h̄2

2m∗ (∇ψ)2 +
∫

dτWψ2, (2.3)

hereby we notice that the second term in this equation is the average of
the electron-media interaction energy W̄ .

For the polarized anisotropic media W̄ can be expressed in terms of
the dipole interaction energy as:

W̄ = −
∫ ∫

dτdτ ′P (r)q(r′) r −r′

|r −r′|3 =

−e

∫ ∫
dτdτ ′P (r)

∣∣ψ(r′)
∣∣2 r −r′

|r −r′|3 ,

(2.4)

where P (r) is the crystal polarization vector and q(r′) is the electron
charge distribution function.

At the same time the electrical induction vector is :

D(r) = e

∫
dτ ′ ∣∣ψ(r′)

∣∣2 r −r′

|r −r′|3 . (2.5)

Accounting for Eq. (2.5), the functional (2.3) finally obtains the following
form:

E [ψ] =
∫

dτ
h̄2

2m∗ (∇ψ)2 −
∫

dτP D [ψ] . (2.6)

Next, relation between P (r) and D(r) can be found using material
dependent constants :

P (r) = 1
4πε∗ D(r), (2.7)

where ε∗ is the effective permittivity (called also Pekar’s factor) deter-
mined by the ionic polarization displacements and can be defined as
ε∗−1 = ε−1∞ − ε−1

0 , where ε∞ and ε0 are static and high-frequency per-
mittivity, respectively.
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The ground state energy corresponding to the polaronic state can be
found by applying a minimization procedure to the functional (2.6) at
the constant P . After the minimization, the vector P can be defined
using first the relation (2.7) and then Eq. (2.5). A similar result can
be obtained first redefining P (r) through D(r), and then minimizing the
obtained functional but only multiplying the potential term by factor 1/2.
Thus, the ground state wave function can be found solving the following
integro-differential equation:

J [ψ] =
∫

dτ
h̄2

2m∗ (∇ψ)2 − 1
8πε∗

∫
dτD [ψ]2 . (2.8)

Adopting Pekar’s choice for the trial function ψ = A(1+r/rp +βr2)e−r/rp ,
where rp is the characteristic radius of the polaronic cloud, β is the varia-
tional parameter and A is a normalizing coefficient. After minimizing the
functional indicated in Eq. (2.8) with respect to the variables, we obtain:

A = 0.12/r3/2
p ,

β = 0.45/r2
p,

rp = 1.51 h̄2ε∗

e2m∗ .

(2.9)

Taking into account Eq. (2.6), the obtained parameters for the elec-
tronic wave function lead to:

E0 = E [ψ0] = −0.164 m∗e4

ε∗2h̄2 . (2.10)

This energy can be considered as the lowest photon energy Eb to excite
the polaronic electron into the bare electron band, so that Eb = E0. The
thermal polaron dissociation energy can be estimated as Ed = −E0 −Wp,
where Wp = 1

4πε∗
∫

D2 is the inertial part of the polarization energy. By
using Eq. (2.10) and the definition of the inertial part of the polariza-
tion energy, it is straightforward to show that Wp = −2/3E0 and conse-
quently Ed = −1/3E0. Finally, the averaged potential energy according
to Eq. (2.4) and Eq. (2.10) is W̄ = 4/3E0. Thus, we arrive to the funda-
mental ratio |Ed| : |Wp| : |Eb| : |W̄ | =1:2:3:4 for characteristic energies of
the Pekar’s continual polaron.

2.2 Fröhlich versus Holstein model
The Fröhlich Hamiltonian [3, 30] describes an electron coupled to non-
dispersive (optical) phonons of a dielectric medium via its polarisation.
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The model is mostly popular in the polaron problem and has attracted
broad interest of researchers working in the field, well describing many
aspects of polaron behaviour in a wide range of systems. The Fröhlich
model postulates the following main principles (Fig. 2.1 a)): 1) in the
system one considers optical modes with the same frequencies; 2) the
dielectric crystal is treated as a continuum medium; 3) in the undistorted
lattice the carrier moves freely with a quadratic dispersion relation. In
the standard description, the Fröhlich Hamiltonian reads as [3]:

H = − h̄2

2m∗ ∇2 +
∑

k

h̄ωLOa†
kak +

∑
k

(Vkakeikr +H.c.), (2.11)

where r is electron position coordinate operator, m∗ is the electron effec-
tive mass, a†

k and ak are the creation and annihilation operators of the
longitudinal optical phonons with the wave vector k and energy h̄ωLO.
The Fourier components of the electron-phonon interaction are:

Vk = −i
h̄ωLO

k

(4πα

V

) 1
2
(

h̄

2m∗ωLO

) 1
4

, (2.12)

where V is the crystal volume and constant α is the strength of the
electron-phonon interaction:

α = e2

h̄

√
m∗

2h̄ωLO

1
ε∗ . (2.13)

In the weak coupling regime (valid in the limit α < 1) the Lee, Low
and Pines [31] approach is the method of choice. The method is based
on the unitary transformation which eliminates the electronic variables in
the Hamiltonian. Using the variational wave function, the method finds
a shifted polaronic ground state energy under the assumption that new,
successive virtual phonons are emitted independently.

When the coupling is very strong (α � 1) all features of polaron be-
havior are well described by Pekar’s model [29]. The theory includes
variational calculations based on the idea that in the strong coupling
regime the quantum effects are negligible and a carrier is adiabatically
followed by the surrounding polarization field.

An excellent formalism, that is accurate at all couplings, was already
introduced by Feynman [32]. He developed a variational all-coupling
path-integral polaron theory. The starting point of the formalism is the
imaginary-time path-integral for the Fröhlich Hamiltonian, with a single
impurity. With employment of the Feynman-Jensen [33] inequality, for
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which the full path integral calculation is a difficult task, is replaced with a
simpler variational model action. After the procedure, the problem is for-
mulated in terms of a model Hamiltonian which approximately describes
the interaction of the electron with the lattice. In the new Hamiltonian,
an electron is coupled to a fictitious mobile mass, which models the cloud
of phonons. In this description, the model consists of two variational
parameters: the mass of the fictitious particle and the spring constant.
The diagrammatic quantum Monte Carlo [34] and renormalization group
studies [35] have demonstrated the remarkable accuracy of the Feynman
method for the Fröhlich electron self-energy.

In contrast to the Fröhlich model, mainly dealing with long-range in-
teractions, the Holstein model was adopted to describe microscopic prop-
erties of the localized state and focuses on the polaron formation at the
presence of short-range interactions (Fig. 2.1 b)). The Holstein Hamilto-
nian in one dimensional, spin-less picture reads as:

H = −j
∑

i

(a†
i ai+1 +H.c.)−g

∑
i

a†
i ai(b

†
i + bi)+ω0

∑
i

b†
i bi, (2.14)

where a†
i (ai) and b†

i (bi) are creation (annihilation) operators for electrons
and dispersionless optical phonons on i-th site, j is the nearest-neighbor
hopping integral, g is the electron-phonon coupling parameter and ω0 is
the phonon frequency.

The model has successfully been applied to a vast range of physical
problems [25, 36]. For instance, studying band structure of the strongly
correlated systems [37, 38] and thermoelectric properties of molecular
junctions [39]. Polaron paring (bipolaron) mechanism in the frame of
the model has been suggested to understand high-(Tc) superconductivity
phenomena in cuprates [40] and hydrides under high pressure [41]. In
the last decades, the model also has gained much attention due to pola-
ronic effects which play an important role in charge transport in organic
semiconductors [42].

According to the value of the system parameters, several different limits
of the model can be distinguished. The first important dimensionless
ratio (the adiabaticity ratio) t/ω0 determines characteristic time scale of
the electronic or atomic subsystems. In the case of adiabatic regime,
t/ω0 � 1, the dynamics of the charge carrier is affected by quasi-static
crystal deformations and as a consequence of this, the quantum lattice
fluctuations can be neglected. Lattice oscillators, in this case, may involve
dispersive character having many levels and can be considered as classical
variables in the Hamiltonian.

However, in the so called anti-antiadiabatic regime (t/ω0 � 1), the elec-
tronic subsystem is slower than the ionic subsystem, so that, the latter
immediately adapts to the perturbations of the electronic state renormal-
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a) b)

e-

e-

Figure 2.1. Illustration for two different polaronic models. a) Fröhlich continual
model. b) Discrete Holstein polaron.

izing the mass of the carrier. If the Einstein oscillator energy is not too
small compared to the energy of the coupling strength, the phonons in
the Hamiltonian can be fully described as quantum particles.

Now, we move the discussion to the second ratio g/ω0 which character-
izes electron-phonon coupling strength (the ratio is also called dimension-
less coupling constant). The strong (weak)-coupling regime simply holds
when g/ω0 > 1(g/ω0 < 1). The electron-phonon coupling strength can be
also characterized via α = g2/2ω0Dt, where 2Dt is the half bandwidth of
the free electron (here D refers to the dimensionality of the system).

Since the seminal Holstein [7] paper, the model has extensively been
studied using a variety of theoretical techniques. Introduced at the early
stages of theory development, Lang-Firsov (LF) and modified Lang-Firsov
(MLF) transformation [43] turned out to be a powerful tool for numerous
studies. The transformations renormalize the system energy and incorpo-
rate the electron-phonon interaction into the electronic hopping integral.
Perturbative approaches [44], which can also be combined with the trans-
formations [36], are methods well established in the weak and strong
coupling limits.

Recently, the field theory development together with numerical and
computational technics extended coverage of the coupling constant also
to intermediate regimes. Relevant for this discussion are Exact Diagonal-
ization [45], variational [46] and Quantum Monte Carlo [47] algorithms.
Unfortunately, the current computational capabilities highly limit these
calculations in terms of the lattice size. To overcome this problem, the
DMRG method [9], optimal for one dimensional systems, has successfully
been implemented. Dynamical mean-field theory also has been applied
to the Holstein polaron problem [41, 48]. The approach, exact in infi-
nite dimensions, has been interpolated for 3D systems with use of the
semiempirical electronic density of states.

Even though numerical calculations have significantly increased our
understanding of polaron physics in the Holstein’s picture, the rigorous
analytical solution still has a tremendous value. Moreover, they are im-
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portant not only from the mathematical point of view, but also increasing
our insight into the details of the physical nature of the problem.

2.3 Bipolaron concept

Figure 2.2. Cartoon illustrating bipolaron formation. a) Two separated po-
larons each in its own polarisation well. b) Bipolaron where two electrons are
localized in the same potential well. Formation of the joint bipolaron poten-
tial overcomes Coulomb repulsion of the electrons. The potential wells are
schematically shown via concentric isolines.

For certain system parameters, two polarons with the same charge can
become mutually coupled, forming a new type of a quasiparticle named
bipolaron [40]. Therefore, the energy gain for creating a bipolaron from
two separated polarons (Fig. 2.2 a)) is the net result of the Coulomb repul-
sion which tends to separate polarons, and the lattice deformation energy
gained by having two particles in the same potential well (Fig. 2.2 b)).
Electron or hole bipolaron has an electric charge equal either to 2e− or
2e+, respectively. The two electrons may localize at the same atomic site
in the lattice. In this case, the so-called one-centre bipolaron forms [49].
In the simplest models, such bipolaron configuration is usually described
by a helium atom-like Hamiltonian. Two polarons localised at different
sites form a two-centred bipolaron. The two-centred polaron, unlike two
unbound polarons, is characterised by a nonzero formation energy of the
bound state. Bipolaron can stabilise in two equilibrium magnetic con-
figurations. If two polarons form an s-orbital configuration, where the
net angular momentum of two united polarons is zero, it will occur in the
spin-singlet state. This scenario is common for the one-centred bipolaron.
Otherwise, two polarons with the same spin component along a common
quantization axis will form a bipolaron in the spin-triplet state. For ex-
ample, two-centred hole-bipolarons in the magnesium oxide stabilise in
the spin-triplet state.

The bipolaron has an integer spin so that the bipolarons obey the
Bose-Einstein statistics. Moreover, it is thought that at low tempera-
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tures they form a Bose condensate similarly to Cooper pairs in supercon-
ductors [50]. Due to their unique properties bipolarons formation takes
a special place in the polaron physics. Bipolaron models have success-
fully been applied to the study of the transport properties of conducting
polymers [51], organic magnetoresistance [52] and hight Tc superconduc-
tivity [53]. Moreover, recently it has been shown that bipolaron model
leads to a straightforward interpretation of the isotope effect observed in
the latter [54].
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3. Polaron in Holstein Molecular Crystal
model in the continuous limit

Since the seminal work of S. Pekar that initiated studies of polarons
more than 70 years ago, nowadays the polaron theory has developed into
a wide field of research. However, some of the aspects of the theory as,
for example, non-local electron effects had not been fully discussed in
the literature up today. The main reason for the circumstance is caused
by the complexity of the non-local problem applied to the interacting
electron-lattice systems. In this chapter, we make an attempt to introduce
the non-local extensions to the Molecular-Crystal Model, which describes
interacting electrons in the tight-binding picture. Holstein has shown
that in one-dimension, continual case the model can be mapped onto a
so-called Non-Linear Shrödinger Equation (NLSE). Interestingly, in this
limit, the robust stable solitonic solution of the NLSE corresponds to a
polaron. Below, we describe our studies of the non-local extensions of the
polaronic NLSE. Moreover, we discuss the new, periodic solutions of the
model and their stability with respect to a weak, periodic perturbation.

3.1 Nonlocal extensions of the Holstein Molecular
Crystal model in the continuous limit

Following Holstein’s seminal paper [7], we reformulate the model starting
from the Hamiltonian:

H = Hel +Hlat +Hel−lat +Hn−loc, (3.1)

where
Hel = −j

∑
n

a†
n(an+1 +an−1),

Hlat =
∑

n

(
p2

n

2M
+ 1

2Mω2
0x2

n

)
,

Hel−lat = −g
∑

n

xna†
nan,

Hn−loc =
∑

n

Wna†
nan.
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The first term Hel describes tight-binding electrons with nearest-neighbor
overlap integral j. The second term of the Hamiltonian, Hlat, describes
1D lattice of N identical diatomic molecules with mass M and momentum
operator pn ≡ (h̄/i)∂/∂xn. Nucleus harmonically oscillate around the
stationary mass center with frequency ω0 and deviation xn, which counts
with respect to the equilibrium interatomic separation. In the zero-order
adiabatic approach, assumed in the present work, the vibrational term
only remains to be considered. The next term, Hel−lat, stands for the
electron-lattice interaction with the characteristic coupling constant g.
Finally, the nonlocal term Wn(x1, ...,xn), in a simple picture, is assumed
to be taken in the form of the Pöschl-Teller potential [55]. This term
represents the perturbation on site n due to the presence of the other
atomic sites. It can be calculated, in the continuum limit, as the following
Coulomb integral [7]:

Wn(x1, ...,xn) =
∫

| φ(x−na,xn) |2
∑

m�=n

U(x−ma,xm)dx, (3.2)

where φn ≡ φ(x−na,xn) are the “single-site” atomic electron wave func-
tions, U is the single-site atomic potential and a is the lattice parameter.
As commented above, the atomic potential can be modelled by using the
Pöschl-Teller potential given by:

U(x−ma,xm) = −Vm

cosh2
(

x−xm
βa

) , (3.3)

where Vm is the height of the potential and β is the parameter accounting
for the potential overlapping with nearest neighbours.

For the single-site electronic wave function, we used a localised function
as:

φ(x−na,xn) = γn sech2(x−xn

βa
). (3.4)

Here, γn represents the maximum of the wave function. For simplicity,
we used the same β parameter for both U and φ since they are related to
the overlapping of the electron wave function and this is precisely what
the Wn term is meant to describe. Consequently, it is expected that Wn

will be proportional to β. By inserting Eqs. (3.3)-(3.4) in Eq. (3.2), the
nonlocal term Wn can be recast in the form:

Wn = −
∑

m�=n

γ2
nVm

∫ η

−η
sech4

(
x−xn

βa

)
sech2

(
x−xm

βa

)
dx, (3.5)

where η represents half of the size of the 1D system, i.e. half of the
number of diatomic molecules.
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The overlap integral between neighbouring diatomic molecules is de-
fined, in the continuum limit, as:

j(xn,xm) ≡
∫

φ∗(x−na,xn)U(x−na,xn)φ(x−ma,xm)dx. (3.6)

Using the same picture as described above and assuming for simplicity
that γn = γm, then the hopping integral can be recast in the following
form:

j(xn,xm) = −γ2
nVn

∫ η

−η

sech2
(

x−xm
βa

)
cosh4

(
x−xn

βa

) dx. (3.7)

In order to ensure that the boundary conditions of the chain of diatomic
molecules are periodic, we take a finite chain in the range [-η,η] and
assume the periodic boundary conditions.

The general Hamiltonian, as defined in Eq. (3.1), projected onto a
single-electron state solves the following eigenvalue problem:

Ean = 1
2
∑
m

Mω2
0x2

man −gxnan +Wnan − j(an−1 +an+1). (3.8)

We multiply Eq. (3.8) by a complex-conjugated amplitude a∗
n and sum

over all sites (here we employ normalisation condition
∑

n |an|2 = 1). The
procedure leads to an expression for the total energy:

E = 1
2
∑
m

Mω2
0x2

m −
∑

n

gxn |an|2 +
∑

n

Wn |an|2 −
∑

n

j(an+1 +an−1)a∗
n.

(3.9)

In order to find equilibrium positions, we differentiate energy with re-
spect to position, xp, and if the dependence on electronic hopping is
neglected one obtains:

∂E
∂xp

= Mω2
0xp − (g − ∂Wp

∂xp
) |ap|2 , (3.10)

and near the equilibrium point ( ∂E
∂xp

≡ 0) this leads to an important an-
alytical relation expressing dependency of the electronic and new, lattice
degrees of freedom Xp:

Xp =
(g − ∂Wp

∂xp
)

Mω2
0

|ap|2 , (3.11)

where ap is the solution of Eq. (3.8) for the minimum energy E (notice
that we introduce gothic font for the variable at the equilibrium point).
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Substituting Eq. (3.11) into Eq. (3.8) and introducing an convenient no-

tation Υp =
g− ∂Wp

∂xp

Mω2
0

, we obtain an electronic discrete Schrödinger-type
equation:

Ean = 1
2
∑

n

Mω2
0X 2

nan −gΥn |an|2 an +Wnan − j(an−1 +an+1). (3.12)

After introducing the convenient substitution: ε = −E + 1
2
∑

Mω2
0X 2

n −2j,
Eq. (3.12) takes the following form:

j(an−1 −2an +an+1)+gΥn |an|2 an − (ε+Wn)an = 0. (3.13)

In the continuum limit, an is assumed to be a differentiable function
of the continuous position variable n:

an±1 = an ± ∂an

∂n
+ 1

2
∂2an

∂n2 . (3.14)

In the case of the strongly localised wave function (Wn = 0 as β →
0), the approach turns Eq. (3.13) into the so-called classical continuous
nonlinear Schrödinger equation (CNLSE) [7, 56, 57]:

j
∂2an

∂n2 + g2

Mω2
0

|an|2 an − εan = 0. (3.15)

Interestingly, the first term in Eq. (3.15) can be generalised for the case
of the higher order overlap integrals. We found that, in the continuum
limit, for the case of hopping to the arbitrary δ-th nearest neighbour:

jδan+δ + jδan−δ = jδ(2an + δ2 ∂2an

∂n2 ). (3.16)

It is easy to prove that in the case of the first-nearest neighbour (δ = 1),
this relation converges to Eq. (3.14):

jan+1 + jan−1 = j(2an + ∂2an

∂n2 ). (3.17)

Thus, accounting for δ-nearest neighbours, we finally reformulate the
problem in terms of the extended CNLSE with variable coefficients:

∑
δ

jδδ2 ∂2an

∂n2 +gΥn |an|2 an − (ε+Wn)an = 0, (3.18)

where we have disregarded the functional dependence of the functions for
the sake of simplicity. Finally, the extended time-dependent CNLSE with
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variable coefficients is obtained after adding the time-dependent deriva-
tive:

ih̄
∂an

∂t
+
∑

δ

jδδ2 ∂2an

∂n2 +gΥn |an|2 an − (ε+Wn)an = 0. (3.19)

3.2 On the periodic solutions of the one dimensional
polaronic model

In this section, we describe derivations on the periodic solutions in more
detail. The initial electron-lattice Hamiltonian in the absence of the non-
local term can be mapped into the continuous NLSE:

j
∂2an

∂n2 + g2

Mω2
0

|an|2 an − εan = 0. (3.20)

It is convenient to introduce the following notation: f2 = g2

εMω2
0

|an|2

and n = ( j
ε)

1
2 n′, which leads to:

f
′′
n′n′ + f3 − f = 0. (3.21)

Periodic solutions of Eq. (3.21) are sought in the form of Jacobi elliptic
functions ζ0 cn[ζn,m] and ζ0 dn[ζn,m], where ζ0 and ζ are coefficients that
can be expressed as a function of m, the square of the elliptic function
modulus. After some algebra we obtain:

f(cn) =
( 2m

|2m−1|
) 1

2
cn

⎡
⎣ 1

|2m−1| 1
2

n
′
,m

⎤
⎦ ,

f(dn) =
( 2

2−m

) 1
2

dn

⎡
⎣ 1

(2−m)
1
2

n
′
,m

⎤
⎦ .

(3.22)

By using the notation σ = g2

4Mω2
0j

, we can rewrite the periodic cnoidal
and a previously not discussed, dnoidal solutions of Eq. (3.20) as:

m
1
2 ζ(cn)

(2σ)
1
2

cn
[
ζ(cn)n,m

]
; ζ(cn) = (ε(cn)

j
)

1
2

1
|2m−1| 1

2
,

ζ(dn)

(2σ)
1
2

dn
[
ζ(dn)n,m

]
; ζ(dn) = (ε(dn)

j
)

1
2

1
(2−m)

1
2

.

(3.23)
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The normalisation condition of an in case of N-well solutions will lead
to (the solutions are presented in Fig. 3.1 a),b)):

N

σ
mζ(cn)

∫ K

0
cn2
[
ζ(cn)n,m

]
dn = N

σ
ζ(cn)(E −m′K) =1,

N

σ
ζ(dn)

∫ K

0
dn2
[
ζ(dn)n,m

]
dn = N

σ
ζ(dn)E =1,

(3.24)

where K is the complete elliptic integral of the first kind, E is the complete
elliptic integral of the second kind and m′ is the complementary to m
parameter [58].

After some algebra, the relations shown in Eq. (3.24) lead to the fol-
lowing expressions for the energy of the localised electron represented by
the parameter ε:

ε(cn) = j

(
σ

N

)2 2m−1
(E −m′K)2 ,

ε(dn) = j

(
σ

N

)2 2−m

E2 .

(3.25)

The length of the chain 2η and number of the wells along the chain N
are related as 2ηζ = NK. Considering this relation we find it convenient
to present the energy of the localised electron in the following form:

ε(cn) =
(

g2

4Mω2
0

)(
K

2η

) 2m−1
E −m′K

,

ε(dn) =
(

g2

4Mω2
0

)(
K

2η

) 2−m

E
.

(3.26)

3.3 The modulation instability of the periodic solutions
Investigating the stability problem is the key method to clarify the sys-
tem behaviour in case of non-degenerate tree of solutions. We focus on
the cnoidal and the dnoidal solutions as the most probable candidates
describing the behaviour of the multi-polaron chain and examine their
modulation instability [59] against small perturbations. We start consid-
ering the time dependent CNLSE (Eq. (3.19)) in the form:

ih̄
∂an

∂t
+ j

∂2an

∂n2 + g2

Mω2
0

|an|2 an −Wan = 0. (3.27)
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where W plays the role of an external potential which we assume to
be constant in order to study the perturbation near the manifold of the
analytically obtained periodic solutions (it is easy to prove that the con-
ditional relation for the slowly changing non-local term Wn in Eq. (3.2)
sets a criterion that Vp << γn and 2η > βa). Hereby we also find it
convenient to introduce the following substitutions: φ2 = g2

jMω2
0

|an|2 and

t = h̄
j τ . That leads to the following equation:

iφ
′
τ +φ

′′
nn + |φ|2 φ− W

j
φ = 0. (3.28)
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Figure 3.1. Normalized periodic cnoidal a) and the dnoidal b) solutions of
Eq. (3.20) for κ2 varied in the range of 0.1-1. Notice that both solutions
converge to a soliton as soon as κ2 → 1.

In order to find the solutions in this study, we use the following ansatz
in the form of the travelling wave function:

φ(ξ,τ) = A(f(ξ)+φ1(ξ,τ)+ iφ2(ξ,τ))ei(A2−k2)τ+ikx, (3.29)
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where we redefine ξ = A(n − 2kτ). In this notation f(ξ) represents the
stationary part of the solution; φ1(ξ,τ) and iφ2(ξ,τ) are assumed to be
the lower-order terms with respect to the unperturbed solution. They
play the role of small perturbations in the system.

Figure 3.2. Real part of the Θmn matrix eigenvalues. Low-lying (left panel) and
upper-lying (right panel) branches are obtained over 15x15 matrix diagolization
for cnoidal ( a), b)) and dnoidal ( c), d)) solutions. Branches are plotted in the
range of Q=0-1, for m = 0.1 (dashed line), m = 0.9 (solid line) and parameter
� = 1.

Substituting Eq. (3.29) into Eq. (3.28), leads us to the following system
of equations:

⎧⎪⎪⎨
⎪⎪⎩

f
′′
ξξ(ξ)+ f3(ξ)−�f(ξ) = 0,

∂φ1(ξ,τ)
∂τ = A2(� − f2(ξ)− ∂2

∂ξ2 )φ2(ξ,τ) = A2Ô1φ2(ξ,τ),
i∂φ2(ξ,τ)

∂τ = −iA2(� −3f2(ξ)− ∂2
∂ξ2 )φ1(ξ,τ) = −iA2Ô2φ1(ξ,τ).

(3.30)

Here we find it convenient to introduce the dimensionless parameter � =
1 + W

jA2 . Moreover, we have introduced Ô1 and Ô2 are the operators
acting in the real and complex space, respectively.

After some simple algebra, we obtain the following relation:
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e)

Figure 3.3. Imaginary part of the 15x15 Θmn matrix eigenvalues obtained after
diagolization procedure in case of the cnoidal solution, in the range of Q=0-1,
for m = 0.1 (dashed line) and m = 0.9 (solid line).

∂2φ1(ξ,τ)
∂τ2 = −A4Ô1Ô2φ1(ξ,τ). (3.31)

Further, we introduce time factorisation of the φ1(ξ, t) in the form:

φ1(ξ,τ) = φ1(ξ)eA2θτ , (3.32)

where the θ parameter is so called the instability increment. Substituting
the factorised function into Eq. (3.31) leads us to following relation:

Ô1Ô2φ1(ξ,τ) = −θ2φ1(ξ). (3.33)

We substitute small, periodic perturbation in the form of the Bloch-
Floquet set: φ1(ξ) =

∑
q f(ξ)eiqξ. Fourier series expansion of f(ξ) at the

given q, leads us to φ
(q)
1 =

∑
n Cneinq0ξeiqξ =

∑
n Cneiqnξ which we sub-

stitute into Eq. (3.33). Here Cn are constant coefficients. We find it
convenient to introduce qn = nq0 + q = q0(n+Q), where Q and n are nu-
merical parameters (n is an integer) and normalise integrals with respect
to l. Furthermore multiplying the obtained relation by e−iqmξ and inte-
grating over l which stands for the period of the f(ξ) function, we end up
with:

1
l

∑
n

Cn

∫ l

0
e−iqmξÔ1Ô2eiqnξdξ =

∑
n

ΘmnCn ≡ −θ2Cm. (3.34)

Thus, the analysis of the system stability is being reformulated in terms
of the Θmn matrix eigenvalue problem. Taking into account exponential
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behaviour presented in Eq. (3.32), it is easy to see that −θ2 ∈ R
+ is the

condition for the system to be stabilized with respect to the small per-
turbation, but if otherwise, −θ2 ∈ R

− or −θ2 ∈ C, the system instability
exponentially diverges with time.

Replacing the operators in Eq. (3.34) by using Eq. (3.30), we finally
find the matrix Θmn. The relation is very similar to the one obtained
previously in studies of the nonlinear waves in plasma physics [60]:

Θmn = (� + q2
n)2δmn +31

l

∫ l

0
f(ξ)4cos(qn − qm)dξ−

1
l

∫ l

0
(4� +3q2

m + q2
n)f(ξ)2cos(qn − qm)dξ.

(3.35)

In order to solve eigenvalue problem for Θmn, we substitute the periodic
solutions given in Eq. (3.23) into Eq. (3.35). Then for the cnoidal solution
we find the following relation:

Θ(cn)
mn = 2{(1 + ( π(Q + n)

2K(2m− 1)
1
2

)2)2δmn + 3( 2m
2m− 1

)2
∫ 1

0
cn[4Kξ,m]4 cos [2π(n − m)ξ]dξ−

( 2m
2m− 1

)
∫ 1

0
(4 + 3( π(Q + m)

2K(2m− 1)
1
2

)2 + ( π(Q + n)
2K(2m− 1)

1
2

)2)cn[4Kξ,m]2 cos [2π(n − m)ξ]dξ},

(3.36)

and for the dnoidal:

Θ(dn)
mn = 2{(1 + ( π(Q + n)

K(2 −m)
1
2

)2)2δmn + 3( 2
2 −m

)2
∫ 1

0
dn[2Kξ,m]4 cos [2π(n − m)ξ]dξ−

( 2
2 −m

)
∫ 1

0
(4 + 3( π(Q + m)

K(2 −m)
1
2

)2 + ( π(Q + n)
K(2 −m)

1
2

)2)dn[2Kξ,m]2 cos [2π(n − m)ξ]dξ}.

(3.37)

It can be seen that the eigenvalues −θ2 of the infinite dimensional ma-
trix Θmn form a band structure with respect to m and Q parameters.
In practice, to perform a numerical diagonalisation of Eqs. (3.36-3.37), a
square matrix with a finite size has been considered. In order to examine
matrix size effects, we have diagonalised 7x7, 15x15 and 33x33 matrices
and noticed qualitatively similar results. In this section, we present re-
sults obtained over 15x15 matrix diagonalisation. Based on the obtained
−θ2(cn) and −θ2(dn), the dispersion law of both solutions is described as
follows.

In the case of cnoidal solution Fig. 3.2 a),b), the real part of the −θ2

matrix eigenvalues, for m=0.1 and m=0.9 all branches of −θ2(cn) remain
real and positive for Q parameter in the range of 0-1. However, the
non-zero imaginary part of −θ2(cn) eigenvalues indicates an instability of
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cnoidal solution for m = 0.1 (see Fig. 3.3). At the same time for m = 0.9
the cnoidal solution remains stable in the range of Q=0.32-0.68 where the
imaginary part of −θ2(cn) eigenvalues remain vanished. As for the dnoidal
solution, for m = 0.1 the solution is unstable due to the negative values
of the low lying branches (Fig. 3.2 c)). For m = 0.9 dnoidal solution is
stable over the whole range of Q values since all branches of −θ2 matrix
eigenvalues remain positive (Fig. 3.2 d)). The results described in Chapter
3 form the basis of Paper I, that contains a full account of this analysis.
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4. Spin-polaron: general concepts

The polaron concept extended to systems with magnetic interaction leads
to a new phenomenon, the so-called spin-polaron. Similarly to the clas-
sical polaron, we have described in previous chapters, spin-polaron de-
scribes a localised charge carrier. However, in this case, the quasiparticle
stabilises due to the strong magnetic interaction of the impurity spin
and the spin states of the host material. Spin-polaron physics stems from
Zener’s study on the double-exchange interaction [61]. He has shown that
the interaction is induced via electron doping and it forces two neigh-
bouring Mn spins in manganese compounds with perovskite lattice be-
come aligned parallel. Anderson and Hasegawa’s [62] studies have also
contributed to the theory development. Finally, in the seminal research
on the spin-polaron formation, de-Gennes [63] discovered that in diluted
antiferromagnetic semiconductors, a charge carrier localises in the ferro-
magnetic cloud of polarised spins. Studies on the half-filled, single-band
Hubbard [64] model led Nagaoka [65] to the conclusion that in the limit
of the infinite electron-electron repulsion the system will converge to a
ferromagnetic ground state. This work is conceptually related to the
spin-polaron theory since it predicts an infinite size, or limited by the
size of the crystal, ferromagnetic cloud formation in the large-U limit.
Thus, different models, have explained the mechanisms of a spin-polaron
formation emerged by the strong magnetic interactions in the system.
Nowadays, in the literature, there are several terms, which refer to the
phenomenon − spin polaron [66], magnetic polaron [67], ferron [68], fluc-
tuon [69] and perhaps many more.

In this chapter, we discuss theoretical models of spin-polaron formation
and transport. Also, we describe Langevin dynamics in the context of
the spin-polarons. This discussion is relevant for our studies presented in
Chapter 7.

4.1 Exchange interactions
In magnetic materials, magnetic moments are rarely free of interaction
with each other. Usually, they exhibit a collective behaviour manifested
due to the magnetic exchange interactions dominating in magnetic sys-
tems. Below a critical temperature, magnetic moments stabilise in fer-
romagnetic or antiferromagnetic, or other more exotic structures such as
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ferrimagnetic, helimagnetic, spin-glass, etc. The exchange interaction ef-
fects arise as a combination of the electrostatic Coulomb repulsion, Pauli
exclusion principle which keeps electrons with parallel spins apart and
reduces the Coulomb repulsion and kinetic energy.

Magnetic ordering manifested in magnetic systems is a result of direct
or indirect interactions between the onsite localised moments or delo-
calised electronic moments in the crystal. For magnetic systems several
mechanisms of the exchange interaction are most frequently considered:

1. Direct exchange which arises as a consequence of the Pauli exclusion
principle and depends strongly on the overlap of the participating
wave functions [70]. At shorter distances between the interacting
particles, the interactions usually manifests an antiferromagnetic
(AFM) character (Cr, Mn). However, as soon as the distance be-
tween the particles increases, the interaction changes its character to
ferromagnetic (FM) (Fe, Co, Ni). Finally, when the overlap between
the participating wave functions is neglectable small, the paramag-
netic phase stabilises.

2. Superexchange interaction [71, 72, 73] takes place in most of the
magnetic insulators, for example, MnO. The interaction is mediated
by the magnetic coupling between the two next-neighbour cation
atoms (Mn) situated at distances too far for their 3d wave func-
tions to overlap. Thus, the exchange interactions is mediated by
a non-magnetic anion (O) through the overlap of 3d and 2p wave
orbital. The electrons involved in the superexchange interaction are
strongly localised and its value and sign can vary depending on the
cation-anion-cation bond angle and the occupancy of the d orbitals
which is either the same for the cations or differs by two. According
to Goodenough-Kanamori rules, [74, 75] superexchange interactions
leads to an antiferromagnetic structure if a virtual electron trans-
fer between overlapping orbitals that are each half-filled and leads
to ferromagnetic structure formation if the transfer is performed
between a half-filled (filled) to an empty (half-filled) orbital.

3. Double-exchange interaction [61] also takes place in the Mn-O-Mn
bond alignment and differs from the superexchange interaction by
the occupation of the d-orbitals and the delocalised character of the
electrons involved in the interaction. The interaction is manifested
in the material both by the magnetic exchange coupling as well as
metallic conductivity.

4. Finally, we describe RKKY indirect exchange interaction named
after Rudermann, Kittel, Kasuya and Yosida [76, 77, 78] which sug-
gested the mechanism of the magnetic interaction. The interaction
refers to the magnetic interaction of the two nuclear magnetic mo-
ments or localised inner d- or f- magnetic sites through the electronic
gas of the conduction electrons (s, p). RKKY interaction takes place
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over at distances beyond a few atomic spacings between the interact-
ing spins and leads to the formation of a complex magnetic structure
such as in helimagnets or spin-glass systems. Most of the rare-earth
magnets have RKKY coupling.

4.2 Heisenberg Hamiltonian
The modern theory of magnetism begins with the Langevin’s theory [79]
explaining the Curie law [80] of magnetic susceptibility by means of local
magnetic moments. Subsequently, Weiss introduced the molecular field
as a notion of interaction between the atomic magnetic moments. In the
frame of Langevin-Weiss [79, 81] approach was possible to describe the
temperature effects observed in the ferromagnetic 3d transition metals.
The theory correctly explained magnetisation behaviour observed both
below and above the transition (Curie) temperature. However, despite
its success, the theory failed to explain the magnitude of the molecular
field within the classical description. Therefore, it became clear that
the fundamental features of the magnetic exchange interactions invoke a
quantum mechanical approach.

In 1928 Heisenberg [82, 83] proposed the quantum mechanical formu-
lation of magnetic interaction. He has attributed the origin of the Weiss
molecular field to the quantum mechanical exchange interaction. For
the simplest case of two interacting electrons, the exchange Hamiltonian
formulated by Heisenberg reads as follows:

Ĥex = −J12ŝ1ŝ2, (4.1)

where ŝ1 and ŝ2 are spin operators corresponding to electrons labelled as
1 and 2, and J12 is the exchange integral which characterises the relative
proximity of the two interacting spins and can be estimated as:

J12 =
∫ ∫

dτ1dτ2φ1(r1)φ2(r2)Ĥexφ1(r2)φ2(r1). (4.2)

where φ1(r1) and φ1(r2) are wave functions corresponding to electron 1
and 2, respectively. The parameter J12 has a short-range nature and
decreases with the distance between two electrons. A positive value of
J12 leads to the parallel spin orientation (ferromagnetic ordering) while
a negative value produces an antiparallel orientation of spins (antiferro-
magnetic ordering).

At the earlier stages of the theory development, empirical values of the
exchange interaction parameters have been calculated for a variety of fer-
romagnetic metals from specific heat measurements and from spin-wave
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spectra. However, a fully theoretical estimation of the parameters has
been one of the most challenging problems in magnetism. Early attempts
to estimate exchange integrals based on model Hamiltonian approaches
failed even to describe the magnetic structure in 3d systems [70]. Success-
ful material specified parameters become possible to be estimated only
during the last decades due to the recent developments of novel meth-
ods based on ab-initio calculations of the electronic structure of materi-
als [84, 85]. One of these methods adopted for this thesis will be discussed
in Chapter 5 (see section “Exchange interaction parameters”).

4.3 Spin-polaron formation mechanisms; Ferron
Here we describe spin-polaron formation in the frame of the Heisenberg
picture considering only the localized atomic spins in the system. We
introduce an one-dimensional lattice where intersite exchange interaction
J refers to the magnetic interaction between two neighbouring spins of
the lattice, and J0 is an on-site interaction which describes the on-site
magnetic interaction of the spins of itinerant electrons with the localised
spins of the lattice (see Fig. 4.1).

a) b)

d)c)

J0

J

J1

J0<0, J>0 J0<0, J<0 

J0>0, J<0, 
J1>0

J0>0, J>0 

Figure 4.1. Illustration for the different type of magnetic structures stabilised
due to an excess spin local magnetic interaction with the magnetic media (fol-
lowing named as onsite interaction). a) Exchange interaction in host is FM;
the onsite interaction is AFM. b) Both exchange interaction in the host and
the onsite interaction are AFM. c) Exchange interaction in the host is FM and
the onsite interaction is also FM. d) Exchange interaction in the host is anti-
ferromagnetic, however, the onsite interaction is FM. In this case a ferron-like
spin-polaron forms.
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A spin-polaron can occur in a variety of magnetic phases. A charge
carrier strongly interacting with the magnetic subsystem affects the initial
magnetic structure. Apparently, an impurity spin localised on an atomic
site changes the total spin of the magnetic ion. The antiferromagnetic
on-site exchange integral J0 < 0, between the extra spin and spin S of the
atomic shell, will lead to the diminished S-1/2 total spin. On the other
hand, the ferromagnetic on-site exchange interaction J0 > 0 will lead to
the enhanced spin with a value of S+1/2. Therefore, in the half-filled
spin chain, the AFM onsite exchange interaction between the excess spin
and the host spin leads to tightly bound singlet state formation which
forms a spin-hole in the spin-1/2 Heisenberg chain (Fig. 4.1 a)b)). If the
onsite interaction has ferromagnetic character, a spin-polaron may form
(Fig. 4.1 c)d)). In the ferromagnetic chain, spin-polaron formation does
not affect the magnetic structure of the lattice. However it can be seen
that in the case of an AFM lattice a spin-polaron stabilizes due to a local
breaking of the magnetic order via rotation of the host spin by 180◦ (a
spin-flip event). Ferromagnetic sign of the exchange interaction J1 with
the nearest-neighbour sites is also required. For details see (Fig. 4.1 d)).
This type of the spin localisation aligns several surrounding spins in a
ferromagnetic manner and in general, can result in spin-polarons with
a variety of size and structure [86] (see also Paper IV of this thesis).
Nagaev at first has discussed in detail this type of quasiparticle. He has
introduced the corresponding term - "ferron" [68]. In materials, the ferron-
like type of quasiparticle was tought to be formed by the localization of a
conduction band electron (a donor-type of dopant) or a hole (an acceptor-
type of dopant) in the valence band and therefore has -e or + e charge,
respectively. Ferron-like spin-polaron propagates in the material as a joint
entity, and above the Neel temperature, TN collapses. Although, if the
depth of the potential well created by a spin-polaron is large enough, the
quasiparticle survives in the paramagnetic region as well.

Spin-polaron stability increases due to the lattice polarisation which
accompanies the ferromagnetic cloud formation. In the magnetic semi-
conductors, strong electron interaction with optical phonons leads to co-
operative spin-polaron and polarisation-polaron formation. In this case, a
charge carrier trapped in the ferromagnetic region significantly polarises
the surrounding lattice. The contribution of the lattice polarisation can
be roughly estimated as e2

ε∗RF M
, where RF M is the radius of the ferromag-

netic region. For certain magnetic semiconductors, the electron-lattice in-
teraction is so significant that the contribution of the lattice polarisation
energy into spin-polaron formation energy is comparable to the magnetic
interaction contribution [87]. Therefore, an entangled spin-polaron and
lattice polaron state forms.
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4.4 Spin-polaron at finite temperature
Foremostly, a spin-polaron formation can be realized in the collective and
fluctuation regimes [88]. In the collective regime, often realised at low
temperatures (T << TN ), the maximal total spin of the spin-polaron is
proportional to N, the number of the ferromagnetically coupled spins.
The number of the magnetic spins, in its turn, varies depending on the
parameters of the system.

In the fluctuation regime, the collective effects described above are in-
terrupted by temperature fluctuations. In this case, a carrier adjusts its
spin along the magnetic moment of the fluctuation created by the mag-
netic moments inside a localisation area. This adjustment is energetically
favourable and has a certain lifetime. The average total spin of the spin-
polaron is proportional to

√
N ′, where N ′ is the number of the localised

magnetic moments interacting with the carrier. It is easy to see that the
relaxation of the excess spin, in this case, is much faster than the relax-
ation of the surrounding spins in the ferromagnetic area. Namely, in the
fluctuation regime, the spin orientations are not affected by the presence
of the carrier. This scenario is possible when thermal energy kBT exceeds
the exchange field in the carrier localisation volume.

4.5 Langevin dynamics
An attempt to account for temperature effects in the magnetic lattice
adopted in this thesis we performed using Langevin dynamics. The ex-
tended Heisenberg Hamiltonian we considered for a spin-polaron in the
AFM background looks as follows:

H =
∑
i�=j

|J (pp)
ij |si · sj −

∑
i�=j

|J (pb)
ij |si · sj −

∑
i�=j

|J (bb)
ij |si · sj −Kani

∑
i

(si ·eK)2 ,

(4.3)

where si denotes the classical atomic magnetic moment on site i of the
magnetic lattice. Jij denote nearest-neighbour exchange parameters.
Superscripts denote exchange interaction parameter between two spin-
polaron sites (J (pp)

ij ), site of the media and spin-polaron (J (pb)
ij ) and two

sites of the media (J (bb)
ij ), respectively. The direction of the anisotropy

axis eK and Kani represents the parameter characterising the magne-
tocrystalline anisotropy. A negative value of Kani corresponds to easy
axis anisotropy, a positive value to easy-plane anisotropy.

The dynamics of the magnetic moments si in the magnetic system
is evaluated by solving the stochastic Landau-Lifshitz-Gilbert [89, 90]

37



equation as:

∂si

∂t
= − γ

1+α2 si ×Beff
i − γ

1+α2
α

si

[
si ×
[
si ×Beff

i

]]
, (4.4)

where dimensionless parameter α denotes Gilbert damping and γ is the
electron gyromagnetic ratio. Each atomic moment is considered to be a
three dimensional vector with constant magnitude. Beff

i in this equation
is the local magnetic field at site i which finds as:

Beff
i = −∂H

∂si
+bi(T ), (4.5)

where the first term is a partial derivative of the Eq. (4.3) with respect
to moment, and therefore depends on the current magnetic configuration
of the magnetic system. The second term bi(T ) is the stochastic field,
depending on temperature and modelled as a Gaussian white noise, to
account for all possible excitations. The term must fulfil the following
criteria:

〈bi(t)〉 = 0, 〈bi(t)bj(t′)〉 = 2Dδijδ(t− t′), (4.6)

where the brackets denote averaging in time. The first criterion indicates
that the time average of the stochastic field is zero. According to the sec-
ond criterion, the field correlated in time δ(t−t′) and in between different
directions is neglected. Finally, the temperature dependent strength of
this field, D can be found from the Fokker-Planck equations [91, 92] as:

D = α

(1+α2)
TkB

sμB
. (4.7)

4.6 Spin polaron motion
As we already mentioned above, a spin-polaron is a composite object
with a complex internal structure. Therefore, a realistic description of
the quasiparticle and its motion has to account for perturbations in the
magnetic subsystem, optical phonon excitations as well as for the mag-
netic and polarisation fluctuations and temperature effects. Up to now,
several theoretical mechanisms have been suggested for spin-polaron mo-
tion in a magnetic lattice.

In a simplified picture, if only the spin degrees of freedom are consid-
ered in the system, a new type of magnetic polaron state named quasi-
oscillatory can form [93]. A qualitative picture of the quasi-oscillatory
state in an antiferromagnet is described as follows: in the case of J0 < 0,
onsite exchange interaction, an electron spin and spin of the atom are
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a) b)

d)c)

t0

t0

t

t

Figure 4.2. Illustration of two different mechanisms of spin-polaron propaga-
tion described in the text. a) At the initial moment, t0 in the antiferromagnetic
background a spin-hole forms. b) At the moment t spin-hole propagation leads
to the formation of a string of the spin-flip states. c) Ferron-like quasiparticle
formation at the initial moment t0. d) The random walk leads to a spin-polaron
with a larger radius.
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antiparallel. The impurity electron localized on the initial site in this sit-
uation will create an exchange-interaction hole in the antiferromagnetic
order of the host (the dashed circle in Fig. 4.2 a),b)). The electron transi-
tion from the initial site to the nearest-neighbour site will be accompanied
with the spin-flip by 180◦. Due to the conservation of the system total
spin, the transition of the impurity electron will form a string of the spin-
flip states (Fig. 4.2 b)). Each spin-flip event increases the energy of the
system by |J1|S, where J1 is the lattice exchange integral and S is the
total spin of the atom. Consequently, the number of spin-flip events in-
creases as soon as the electron propagates through the lattice. Therefore
the magnetic energy of the system will also increase. The reversed motion
of the electron to the initial position will vanish changes incorporated by
its propagation, and the system will retain the initial total energy. There-
fore, the electron propagation mimics existence of a quasi-elastic force,
which tends to return the electron to the initial position. The particle
will perform oscillations around the initial site, and the deformation of the
periodic structure will oscillate all together with the oscillating electron
near its equilibrium position.

The energy of the quasi-oscillatory state can be estimated as follows:

Umin = |J1|SR

a
, (4.8)

where |J1|S is the exchange energy per one spin-flip event, a is the pe-
riod of the lattice, and R/a is the number of jumps that an electron
performs, propagating to distance R from the initial position. Moreover,
according to the uncertainty principle, the real trajectory of the electron
propagation is much more complicated than we have assumed here. The
simplified picture reflects the fact that the electron propagation in a lim-
ited region increases the system energy and triggers the emergence of a
restoring force.

Another scenario of the electron propagation is the random walk model
(electron diffusion in the lattice) [94]. According to the model, an electron
performs in average (Rmp

a )2 jumps that increases the energy of the system
by about:

Umax = |J1|S
(

Rmp

a

)2
. (4.9)

Radius Rmp, in this case, can be referred as the radius of the magnetic
polaron (Fig. 4.2 c)d)). If Rmp is larger than the lattice constant, the de-
scription can be continued in the frame of effective-mass approximation.
A rough estimate of the spin-polaron effective mass can be obtained from
the equation given by Mott and Davis [95], m∗

mp = m∗
beγRmp where the nu-

merical coefficient γ ∼= 1 and m∗
b is a polaron band effective mass. Thus,
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taking into account both quasi-oscillatory and diffusion mechanisms of
the spin-polaron propagation the average energy due to an electron prop-
agation Ū lies in the range of Umin < Ū < Umax.
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5. Polaron in the frame of Density Functional
Theory

The central statement of the Density Functional Theory (DFT) is that
the ground state and other properties of an electronic system can be de-
termined from knowledge of the electron density distribution only. Sem-
inal works applied to atoms (Tomas-Fermi model) [96, 97, 98] revealed
a fundamental importance of electron density. Later Dirac [99] formu-
lated hypothesis according to which the density function may describe
atomic states within the Hartree-Fock model instead of specifying individ-
ual three-dimensional wave functions. Further, the idea developed to the
theory, nowadays, mainly presented in Hohenberg-Kohn-Sham [100, 101]
formulation which we consider in this chapter.

DFT applied to the correlated many-body system has driven the com-
putational condensed matter physics and physical-chemistry to a princi-
pally new, groundbreaking level. The theory makes it possible to over-
come the exponential wall and to calculate properties of the large, many-
particle systems from the first principles. This advantages provided within
the DFT formalism have a significant impact on building a microscopic
theory of the polarons in solids. The theory describes polarons with high
accuracy, which is remarkable given that they are quasiparticles spread
in the media far beyond the characteristic lattice distance

Below we describe basic concept and models of DFT which lead out
our studies of the lattice polarons presented in the next chapter.

5.1 Hohenberg - Kohn formalism
According to the Born-Oppenheimer [102] approximation, electronic and
ionic degrees can be separated, in the way that the light electronic sub-
system evolves in the external potential of the almost stationary, heavy
nuclei. Then, the Hamiltonian describing electronic subsystem can be
written as:

Ĥ = T̂ + V̂ext + V̂ee = − h̄2

2m

∑
i

∇2
i +
∑

i

v(ri)+ 1
2
∑
i�=j

e2

|ri −rj | , (5.1)
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where the first term is the kinetic energy of the electrons, the second term
is the external potential, and the last term corresponds to the electron-
electron interaction. From the form of the Hamiltonian follows that the
systems with the same number of particles N will differ from each other
only by the potential interaction term. Therefore, all physical properties
can be regarded as functionals of a particular, external potential. In
this case the wave function can be called v-representative. Therefore, it
corresponds to following Shrödinger equation:

(T̂ + V̂ext + V̂ee)|Ψ[v]〉 = E[v]|Ψ[v]〉, (5.2)

where Ψ[v] is the v-representative wave function of the electronic system
and the total energy E[v] is the expectation value of the Hamiltonian Ĥ:

E[v] = 〈Ψ[v]|T̂ + V̂ee|Ψ[v]〉+ 〈Ψ[v]|V̂ext|Ψ[v]〉 = F [v]+ 〈Ψ[v]|V̂ext|Ψ[v]〉.
(5.3)

To further evaluate the problem lets focus on the last term in Eq. (5.3).
The operator V̂ext can be defined through the external potential as:

V̂ext =
∫

dτv(r)ρ̂(r), (5.4)

where the particle density operator is simply:

ρ̂ =
N∑

n=1
δ(r −ri). (5.5)

Then, the expectation value of V̂ext, in general, will be defined as:

〈Ψ|V̂ext|Ψ〉 =
∫

dτv(r)ρ(r), (5.6)

where the electron density is obtained from the many-body wavefunction
which in our case is the ground state function of the main Hamiltonian
described in Eq. (5.1):

ρ(r1) = 〈Ψ|ρ̂(r1)|Ψ〉 = N

∫
dτ2dτ3 . . .dτN

∑
σ1...σN

|Ψ(r1σ1,r2σ2 . . .rN σN )|2,

(5.7)

(the summation over the spin coordinates σi is performed without distin-
guishing spin-up and spin-down states).

Substituing Eq. (5.6) to Eq. (5.3) we obtain:

E[v] = F [v]+
∫

dτv(r)ρ(r), (5.8)
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it can be seen that both the external potential and the electron density
are two conjugated variables that equally contribute through the external
potential to the total energy. The key idea of the Hohenberg-Kohn theory
is that there is one to one correspondence between the electron density
and the external potential and from the v-representative functional we can
go to the ρ-representative functional. The main reason to perform this
transition, as we will see further, is a possibility to describe the system
using a set of one-particle equations, known as Kohn-Sham equations (see
next section).

Based on the Hohenberg and Kohn [100] idea and assuming that E[v]
is known the Legendre transform for fixed ρ[r] will take the form:

F [ρ] = inf
v∈L3/2+L∞

{
E[v]−

∫
dτρ(r)v(r)

}
, (5.9)

where, infimum is taken over the domain of v which according to Leib
must belong to Banach space L3/2 + L∞ that admits decomposition of
the potential into the short and long range parts. From the first-order
perturbation theory follows that δE

δv(r) = ρ(r). This automatically leads
to a conjugated relation:

δF

δρ(r) = −v(r). (5.10)

Now, let us consider a set of non-degenerated densities M. Accord-
ing to the Hohenberg and Kohn theorem ∃ρ ∈ M that specifies a unique
external potential v (to within a constant) corresponding to a unique
ground state wavefunction Ψ0[ρ] (to within a phase factor). The den-
sity that minimizes the total energy while keeping external potential v[r]
constant will be an exact ground state density. The general variational
principle for the total energy will be obtained through the second order
Legendre transform:

E[v] = inf
ρ∈M

{∫
dτρ(r)v(r)+FHK [ρ]

}
, (5.11)

where FHK is a convex function and can be found as:

FHK [ρ] = 〈Ψ[ρ]|T̂ + V̂ee|Ψ[ρ]〉, (5.12)

Moreover, the ground state expectation value of an observable, Ô, is
regarded as a functional of the density:

O[ρ] = 〈Ψ[ρ]|Ô|Ψ[ρ]〉. (5.13)

For the degenerated ground state the external potential generates a lin-
early independent set of different ground states M′. The expectation
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value of an observable in this case, excepting the ground state total en-
ergy, will depend on a choice of the wave function and therefore the
electron density from manifold M′. This means that the ground state
density, ρ(r), is no longer an unique functional of the external potential
v(r). However, it can be proved, that the inverse mapping occur and
the ground state density determines a unique external potential that has
generated it. Then, the ground state energy can be found taking infimum
over M′ manifold:

E[v] = inf
n∈M′

{∫
dτρ(r)v(r)+TrD̂[ρ](T̂ + V̂ee)

}
, (5.14)

where D̂[ρ] is ground state density matrix with TrD̂[ρ]ρ̂(r) = ρ(r). The
theory requires TrD̂[ρ](T̂ + V̂ee) to be a convex function on the whole of
its domain of definition.

5.2 Kohn - Sham equations
The Hohenberg-Kohn theory states that the ground state of the system
is uniquely determined by the electronic density. Unfortunately, despite
its conceptual beauty, the theory does not lead much ahead in solving
the many-body problem since the exact form of the functional is un-
known. The decisive step towards the success of the theory was achieved
after Kohn and Sham [101] suggested a procedure which allows refor-
mulating Hohenberg-Kohn theory in terms of the explicit functional of
non-interacting particles.

Let us assume a system of noninteracting particles with external ef-
fective potential vs and therefore new ground state wave function Φ[vs].
The ground state energy of the system is:

Es[vs] = 〈Φ[vs]|T̂ + V̂s|Φ[vs]〉, (5.15)

where Vs is the potential energy functional for the system of non-interacting
electrons. From this relation straightforwardly follows:

Ts[ρ] = 〈Φ[vs]|T̂ |Φ[vs]〉 = Es[vs]−
∫

dτρ(r)vs(r). (5.16)

The relation is the new Legendre transform with two following conjugated
derivatives:

∂Es

∂vs(r) = ρ(r),

∂Ts

∂ρ(r) = −vs(r).
(5.17)

45



Finally assuming that F [ρ] and Ts[ρ] are defined on the same domain
of densities, we map the system of interacting electrons to the non-
interacting picture and arrive at Kohn-Sham decomposition of the initial
functional in Eq. (5.12):

F [ρ] = Ts[ρ]+EH [ρ]+Exc[ρ], (5.18)

where EH [ρ] term has a meaning of the Hartree energy and can be written
as:

EH [ρ] = 1
2

∫
dτdτ ′ ρ(r)ρ(r′)

|r −r′| . (5.19)

Ts[ρ] in Eq. (5.18) is nothing but the kinetic energy of non-interacting
particles and finally Exc[ρ] is a new term named exchange-correlation
energy. The physical meaning of this term we will discuss later. Thus, we
introduced a mapping procedure of the system of interacting particles to
the corresponding system of non-interacting particles which now describe
a given ground state. Taking into account Eq. (5.8) and introducing all
known terms in their explicit form, we obtain:

E[v] = −1
2

N∑
i=1

∫
dτφ∗

i (r)∇2φi(r)+
∫

dτρ(r)v(r)+

e2

2

∫
dτdτ ′ ρ(r)ρ(r′)

|r −r′| +Exc[ρ].
(5.20)

Now, if we differentiate Eq. (5.18) with respect to the density ρ we obtain
following relation for the effective potential:

vs(r) = v(r)+ e2
∫

dτ ′ ρ(r′)
|r −r′| +vxc(r), (5.21)

with the exchange-correlation potential:

vxc = δExc

δρ(r) . (5.22)

The effective potential and non-interacting particle kinetic term form
a set of one-particle Kohn-Sham equations. The particles described by
the equation are non-interacting fermions. The Kohn-Sham wavefunction
which solves eigenvalue problem is a single Slater determinant constructed
from a set of orbitals that are the lowest energy solutions to:

(−1
2∇2 +v(r)+

∫
dτ ′ ρ(r′)

|r −r′| +vxc)φi(r) = εiφi(r). (5.23)
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Here, εi is the orbital energy of the corresponding Kohn-Sham orbital, φi.
The density for an N-particle system, therefore, finds as:

ρ(r) =
N∑

i=1
|φi(r)|2. (5.24)

On the other hand, the exchange-correlation functional can be recast
in the following form:

Exc = min
Ψ→ρ

〈Ψ|T [ρ]+Vee[ρ]|Ψ〉−Ts[ρ]−EH [ρ]. (5.25)

The exchange-correlation functional is often split into two terms as
follows:

Exc = Ex +Ec, (5.26)

where first and second term correspond to exchange functional and a
correlation functional, respectively.

5.3 Exchange correlation functionals
As we already stated, the Kohn-Sham theory highly facilitates calcula-
tions and demonstrates large perspectives for multi-atomic systems. Ac-
cording to the theory 3 N-degree of freedom description within the total
wave function becomes reduced to a significantly more feasible problem
which deals with the electron density and therefore three degrees of free-
dom. The theory is formally exact since it yields the exact ground state
density of the real system. However, the form of the exchange-correlation
functional is the most debatable subject of the theory. It carries all un-
known information about the system and must be approached according
to the hypothetical assumptions. Nowadays, there are plenty of differ-
ent approaches for the exchange-correlation functional. A few, the most
significant of them, will be discussed below.

In the simplest Local Density Approximation (LDA) [101], originally
introduced by Kohn and Sham, the density is being treated locally as
an uniform electron gas and therefore, the exchange-correlation energy
within each volume is assumed to be:

ELDA
xc [ρ] =

∫
dτρ(r)εunif

xc [ρ(r)], (5.27)

where εunif
xc is the exchange-correlation energy per particle of an uniform

electron gas of density ρ(r). The exchange part of the functional can be
approximately determined by the Dirac functional as:
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ELDA
x [ρ] = −3

4( 3
π

)
1
3

∫
ρ(r)

4
3 dr, (5.28)

while correlation functional ELDA
c [ρ] is accurately calculated using Quan-

tum Monte Carlo method.
For the spin-polarized case, the approach is extended to the Local Spin

Density Approximation (LSDA) and the functional gets the following
form:

ELSDA
xc [ρ↑,ρ↓] =

∫
dτρ(r)εunif

xc [ρ↑(r),ρ↓(r)]. (5.29)

where, ρ(r) = ρ↑(r)+ρ↓(r).
As the LDA assumes the homogeneous density everywhere in the sys-

tem, it fails in situations where the density undergoes rapid changes. As
a result the approach usually under-estimates the exchange energy and
over-estimate the correlation energy. An improvement in this situation
has been achieved by Generalized Gradient Approximation (GGA) [103,
104, 105] which considers the gradient of the electron density ∇ρ(r)
within the exchange-correlation functional:

EGGA
xc =

∫
dτfGGA[ρ↑(r),ρ↓(r), |∇ρ↑(r)|, |∇ρ↓(r)|]. (5.30)

Within the GGA, a more accurate description of the molecule geome-
tries and lattice parameters of compounds has been achieved. It reduced
the bond dissociation energy error and improved transition-state barri-
ers. But, unlike LDA, there is no single universal form of the functional.
Particularly, in our calculation, we have adopted the extremely successful
parameterization for GGA functional suggested by Berdew, Burke and
Ernzerhof [106].

The PBE functional incorporates the exchange and the correlation
functionals:

EP BE
xc = EP BE

x +EP BE
c . (5.31)

The exchange functional in the PBE takes the following form:

EP BE
x [ρ] =

∫
dτρ(r)εunif

x (ρ)F P BE
x (s)dr, (5.32)

with the exchange enhancement factor:

F P BE
x (s) = 1+κ− κ

1+μs2/κ
. (5.33)

The parameter tells how much exchange energy is enhanced over its LDA
value. Here s is the dimensionless density gradient which finds as:

s = |∇ρ(r)|
2(3π2)

1
3 ρ(r)

4
3

, (5.34)
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and κ and μ are numerical parameters which vary for different versions
of the functional.

As for correlation functional, the PBE approach has adopted the fol-
lowing form:

EGGA
c [ρ↑,ρ↓] =

∫
dτρ[εunif

c (rs, ζ)]+H(rs, ζ, t)], (5.35)

where rs is the local Seitz radius, ζ = ζ↑−ζ↓
ζ↑+ζ↓ is the relative spin polariza-

tion. The following ansatz is adopted for H(rs, ζ, t):

H = e2

a0
γφ3 ln

{
1+ β

γ
t2
[

1+At2

1+At2 +A2t4

]}
, (5.36)

where

A = β

γ

[
exp
{

−εunif
c a0
γφ3e2

}
−1
]−1

. (5.37)

Here a0 = h̄2

me2 and

t = |∇ρ|
2φksρ

, (5.38)

is another dimensionless gradient which is expressed through ks, the
Tomas-Fermi screening wave factor and φ(ζ). The spin-scaling factor
is written as:

φ(ζ) = (1+ ζ)
2
3 +(1− ζ)

2
3

2 . (5.39)

Finally, β and γ are also numerical parameters which vary their values
depending on the functional version.

5.4 Projected Augmented Wave (PAW) formalism
All the electronic states are non-zero close to the nuclei, and therefore
Kohn-Sham wavefunctions exhibit very sharp, oscillatory behaviour in
this region. However, further out in the interstitial region where only the
valence states exist, the wave functions are much smoother. Due to the
features in the core region, the wave function requires a very fine grid.
One way of solving this problem is the use of much smoother, effective
potential (pseudopotential) which mimics existence of the collective sys-
tem of nuclei and core electrons [107]. This method reduces the number
of wave functions to be calculated since the KS equations are then solved
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for the valence electrons only. Nowadays the idea about pseudopotentials
forms the basis of a variety of effective methods employed to solve the
Kohn-Sham problem.

The PAW formalism, initially proposed and implemented by Blöchl [108],
advances the idea of pseudopotential allowing to calculated a smooth
pseudofunction instead of the real valence wavefunction. The method
can be considered as a generalization of Vanderbilt-type ultrasoft pseu-
dopotentials [109] and the linearized augmented-plane-wave [110] method.

In the PAW method, the one electron wavefunctions ψkν (orbitals),
where kν are k-point and band indexes, respectively, are constructed from
the pseudo-orbitals ψ̃kν using the following linear transformation:

|ψkν〉 =
∣∣∣ψ̃kν

〉
+
∑

i

(|φi〉−
∣∣∣φ̃i

〉
)
〈
p̃i|ψ̃kν

〉
, (5.40)

where φi form partial wave basis in each PAW sphere, built upon solving
the Shrödinger equation for the isolated atom. For each partial wave, the
auxiliary partial wave φ̃i is chosen. Moreover, so-called projectors p̃i are
defined as dual function by using the following relation:

〈
p̃i|φ̃i

〉
= δi,j . In

interstitial region between the PAW spheres, the orbitals are constructed
such way that they are identical to the exact orbitals. However, inside the
spheres, the pseudo orbitals are an inaccurate approximation to the true
orbitals, even not reproducing the norm of the all-electron wave function.

5.5 Hubbard-U correction
The Hubbard model is an elegant way to properly describe a large class of
materials with properties that are determined by strong electronic corre-
lations, particularly characteristic for transition elements. The transition
elements which occupy three rows of the Periodic Table, extending from
the alkali earth metals (Ca, Sr, Ba) with the empty d-shells to the noble
metals (Cu, Ag, Au) with the fully occupied d-shells. Despite its simplic-
ity, Hubbard model, which also accounts for on-site Coulomb interaction
is a powerful tool for reproducing the main features of d-electrons which
exhibit intermediate behaviour between strongly localised core electrons
and free electrons in alkali metals.

Formally, the correlation energy, Ec, can be defined as the difference
between the energy obtained from the Hartree-Fock approximation and
the exact energy of the system, Ec = Eexact −EHF . In the Hartree-Fock
(HF) [111, 112] picture the electronic ground state is defined via variation-
ally optimised single particle determinant. However, a precise description
of the system with strong electronic correlations requires accounting for
the full N-electron wave function together with the many-body terms of

50



the electronic interactions, constructed as a linear combination of multiple
Slater determinants [113].

The conventional DFT also fails to describe strongly correlated elec-
tronic systems. One of the most known examples is the Mott insula-
tors [114]. DFT predicts conducting properties for these materials what
is in strict contradiction with the experimental observations. The in-
sulating properties stem from the strong Coulomb repulsion between d-
electrons. The repulsion of the electrons prevails over their kinetic energy
and forces the electrons to be localised on the atomic-like orbitals. More-
over both LDA and GGA, which tend to overestimate electron delocali-
sation, incorrectly reproduce other physical properties of the Mott insu-
lators, including their equilibrium crystal structure, magnetic moments,
vibrational spectrum, etc. The Hubbard model naturally incorporates
terms describing the electron localisation on atomic orbitals and gives
better description of the material properties compare to HF approxima-
tion and conventional DFT functionals.

In the second-quantization, one-band formulation of the Hubbard Hamil-
tonian [115] reads as follows:

Ĥ = −j
∑

<l,m>,σ

(ĉ†
lσ ĉmσ +H.c.)+U

∑
l

n̂l↑n̂l↓, (5.41)

where parameter j represents the kinetic energy of the fermion hopping
between nearest-neighbor sites. 〈l,m〉 denotes summation over nearest-
neighbor lattice sites. The fermion with spin σ on l-th (m-th ) lattice site
is specified by the creation (annihilation) operator ĉ†

lσ (ĉmσ). Parameter
U denotes the potential energy arising from the on-site Coulomb repulsion
and the density operator is given as n̂ = ĉ†

lσ ĉlσ.
The general expression for the total energy within LDA+U approach

(the following formalism applies to other generic DFT functionals too)
reads as follows [116]:

ELDA+U [ρσ,{nσ}] = ELSDA[ρσ]+EU [{nσ
mm′}], (5.42)

where ρσ, is the electronic density with spin σ (hereafter we drop depen-
dence on spatial coordinate, so that ρσ = ρσ(r) ) and nσ

mm′ are the on-
site atomic-orbital occupations. The Hubbard-U functional EU [{nσ

mm′}]
in Eq. (5.42) consists of Hubbard and so-called double counting terms
which we discuss further:

EU [{nσ
mm′}] = EHub[{nσ

mm′}]−Edc[{nσ}]. (5.43)

The formalism is adapted in a such way that the strongly correlated
electrons, usually populated on d or f orbitals, are considered in the
frame of the Hubbard correction while the remaining electrons are treated
within the conventional functional.
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The occupation numbers are obtained by projecting the Kohn-Sham
orbitals {ψσ} onto the localised basis set of the atomic states {φ} as:

nσ
mm′ =

∑
<k,ν>

fkν〈ψσ
kν |φm′〉〈φm|ψσ

kν〉, (5.44)

where fkν is the occupation of the KS states with the corresponding k-
points, ν-band numbers and σ spin indexes, respectively.

The screened electron-electron Coloumb interaction Vee among local-
ized atomic basis is given by the following integrals:

vmm′′,m′m′′′
ee = 〈φm,φm′′ |Vee|φm′ ,φm′′′〉 =∫ ∫

drdr′φ∗
mφm′

e2

|r −r′|φ
∗
m′′φm′′′ .

(5.45)

Using the notation introduced above, the Hubbard term in Eq. (5.43) in
rotationally invariant formulation may be expressed as:

EHub[{nσ
mm′}] = 1

2
∑

{m},σ

{vmm′′,m′m′′′
ee nσ

mm′n−σ
m′′m′′′+

(vmm′′,m′m′′′
ee −vmm′′,m′′′m′

ee )nσ
mm′nσ

m′′m′′′}.

(5.46)

The double-counting term Edc[{nσ}] in Eq. (5.43) is introduced in
order to remove electron-electron interaction already incorporated in the
ELSDA[ρσ] of Eq. (5.42):

Edc[{nσ}] = U

2 n(n −1)− J

2
∑

σ

nσ(nσ − 1), (5.47)

where nσ =
∑

m nσ
mm stands for the trace of occupation matrix for the

localized states with spin σ and n =
∑

σ nσ represents the summation of
the trace of both spins. The Eq. (5.47) contains parameter U which has
the meaning of the screened Coulomb interaction:

U = 1
(2l +1)2

∑
m,m′

vmm′,mm′
ee = F 0, (5.48)

and the Hund exchange parameter J :

J = 1
2l(2l +1)

∑
m�=m′,m′

vmm′,m′m
ee = F 2 +F 4

14 . (5.49)

Basically, the simplified form of the functional, Eq. (5.42), is obtained
retaining only lowest order Slater integrals F 0, at the same time neglect-
ing higher orders, F 2, F 4 and etc. Neglecting the non-sphericity of the
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electronic interactions and the differences among the couplings between
parallel and anti-parallel spin electrons we arrive at the Hubbard+U ap-
proach in its simpler formulation [117]:

HHub[{nσ
mm′}] =

Ueff

2
∑

σ

Tr[nσ(1−nσ)], (5.50)

where Ueff is an effective value that incorporates the Coulomb interaction
U and the exchange correction J as Ueff = U −J .

5.6 Self-consistent determination of Hubbard-U
parameter

The appropriate Hubbard U parametrisation can be optimised on the
basis of a variety of different physical properties. For example, these
are ground state crystal structure [118], elastic constants [119], band-gap
energy [120], valence charge distribution [121], etc.

Following, we describe one of the ways to estimate system-specified U
parameter theoretically [122, 123]. This formalism stems from the idea of
computing U parameter utilising constrained-density-functional calcula-
tion. In the suggested approach, a self-consistent and effective Hubbard
U, is considered to be a correction of the total energy curvature with
respect to the occupation of the Hubbard manifold. According to this
approach, the effective Hubbard U is given by the following expression:

Ueff = d2E[{n}]
dn2 − d2EKS [{n}]

dn2 . (5.51)

The first term represents the total energy curvature with respect to con-
strained site occupation in the case of the interacting system. The cur-
vature contains the energy cost of an electron localisation on the chosen
site including all screening effects from the crystal environment. The
second derivative represents the total energy curvature obtained for the
non-interacting Kohn-Sham problem associated with the same system.

As it has been shown in Refs. [122, 123], the actual optimisation of
the U parameter is easier to pass using a Legendre transform. After
solving the Kohn-Sham equations self-consistently, we get an occupation-
dependent energies:

E[{αI}] = min
n

{
E[{n}]+

∑
I

αnI

}
,

E[{αKS
I }] = min

n

{
EKS [{n}]+

∑
I

αKS
I nI

}
.

(5.52)
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Variation of these functionals with respect to wavefunctions show that α
parameters, play role of additional potentials to the single particle term:

Vtot|ψσ
kv〉 = VKS |ψσ

kv〉+αI
∑
m

|φI
m〉〈φI

m|ψσ
kv〉 (5.53)

where localized potential shifts of strength are applied to the localized
levels of associated site I. It is useful to introduce the interacting and
noninteracting density response functions of the system with respect to
these localized perturbations:

χIJ = ∂2E

∂αI∂αJ
= ∂nI

∂αJ
,

χ0
IJ = ∂2EKS

∂αKS
I ∂αKS

J

= ∂nI

∂αKS
J

.

(5.54)

The effective interaction parameter U I associated to site I can be con-
structed as follows:

U I = (χ−1
0 −χ−1)II , (5.55)

where χ−1 and χ−1
0 are inverse of the response matrixes given in Eq. (5.54).

χ measures response of the system at self-consistency and χ0 measures
response accounting for the rehybridization of the electronic states upon
perturbation, respectively.

5.7 Hybrid functional and Screened Coulomb potential
In the PBE functional, the many-electron exchange energy is specified by
the local electron density and its derivatives. At the same time, the
Hartree-Fock theory provides an exact form of the many-electron ex-
change energy. The accuracy of the semilocal PBE functional substantial
increases by using the hybrid functional which mix the PBE exchange
energy with a fraction of the nonlocal Fock exchange:

Ex = −e2

2
∑

〈k,ν〉〈q,η〉
fkνfqη

∫ ∫
dτdτ ′ ψ∗

kν(r)ψ∗
qη(r′)ψkν(r′)ψqη(r)

|r −r′| .

(5.56)

where fkν and fqη are occupational numbers corresponding to a set of
one-electron Bloch states of the system {ψkν}.

Earlier versions of the hybrid functional [124, 125] have successfully
been applied to medium sized molecules and some insulating solids with
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excellent results. However, for periodic systems, which are of the main
interests in solid states, the long-range nature of the Fock exchange inter-
action and consequently the costly computational requirements present
a major difficulty for practical application. This is especially true for
metallic and semiconductor systems, which often demand also a dense
sampling within the Brillouin zone. Development of the hybrid function-
als based on a screened Coulomb potential extended the applicability of
the method to large molecules and solids.

The screened Coulomb hybrid density functional proposed by Heyd,
Scuseria and Ernzerhof (HSE) [126] has been designed to produce ex-
change energies comparable to traditional hybrids while admixing the
Fock’s exchange only in the short range part. The exchange-correlation
HSE functional has the following general form:

EHSE
xc = aEHF,SR

x (ω)+(1−a)EP BE,SR
x (ω)+EP BE,LR

x (ω)+EP BE
c .

(5.57)

The expression consists of two parameters which characterize the func-
tional profile ω and a. The mixing coefficient a determines the magnitude
of the exact exchange fraction in the short-range exchange energy, therein
the screening parameter ω is employed to accomplish splitting of the full
Coulomb potential 1/r into the short and long-range parts by means of
the error function:

1
r

= erfc(ωr)
r

+ erf(ωr)
r

. (5.58)

where r = |r −r′|. Therefore, using the decomposed Coulomb kernel the
non-local Fock exchange energy in Eq. (5.57) takes the following form:

ESR
x = −e2

2
∑

〈k,ν〉〈q,η〉
fkνfqη

∫ ∫
dτdτ ′ erfc(ωr)

|r −r′| ψ∗
kν(r)ψ∗

qη(r′)ψkν(r′)ψqη(r).

(5.59)

The family of HSE hybrid functionals have two remarkable limits. When
ω = 0 the functional is equivalent to PBE0 [127] functional and otherwise
for ω → ∞ the hybrid functional asymptotically converges to standard
PBE. Empirically, it has been found that the satisfactory description of
bulk systems can be achieved for ω = 0.1 − 0.25 [128]. Although, for the
best of our knowledge a variation of ω and a parameters can be employed
in order to validate the model for a certain material since the space of
parameter values, for different materials, has been explored only sparsely.
For the validation procedure, a variety of experimental parameters can
be used such as lattice parameter, vacancy formation energies, as well as
the band gap.
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5.8 Exchange interaction parameters
Nowadays, there are several methods to estimate exchange interaction
parameters within the quantum mechanical description of the solids. In
this thesis, the material dependent exchange interaction parameters are
extracted with employment of DFT+DMFT theory [129, 130].

First, to define the local set of electronic orbitals |i, ξ,σ〉, the electronic
structure problem is solved. Here i refers to the number of the atomic
site in the crystal and indicates the lattice vector Ri that uniquely points
to a given ion. Moreover, ξ denotes the orbital degree and σ is the spin
index with obtained {↑↓} values, respectively. A generalised expression
for the intersite exchange is formulated as follows:

Jij = T

4
∑

n

[
Δ̂i(iωn)Ĝ↑

ij(iωn)Δ̂j(iωn)Ĝ↓
ji(iωn)

]
, (5.60)

where i and j are atomic sites of the interacting particles, T is the tem-
perature, ωn = 2πT (n+1) refers to n-th fermionic Matsubara frequency.
Trace in the expression (5.60) is intended over the orbital degrees. Ĝσ

ij
refers the intersite Green’s function projected over spin σ. Finally, the
term Δ̂i can be expressed as:

Δ̂i(iωn) = Ĥi↑
KS +Σ̂↑

i (iωn)− Ĥi↓
KS − Σ̂↓

i (iωn). (5.61)

It has a meaning of the exchange splitting at the i-th site, estimated as a
difference between the spin- and site-projected Kohn-Sham Hamiltonian
ĤKS and local self-energy Σ̂i for spin-up and spin-down cases, respec-
tively.
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6. Results of numerical polaron modeling

During the last decade, a significant number of studies were published
reporting the first principle calculations of polarons in different materials.
For instance, both electron and hole polarons have been described in pure
and doped compounds such as cerium dioxide [131, 132], rutile [11, 133],
perovskites [121], hematite [134], hafnium dioxide [135, 136], lithium iron
phosphate [137], cuprate superconductors [138], lithium peroxide, lithium
carbonate [139, 140] and many more. The common conclusion of all these
studies is that in order to correctly reproduce the charge localization
associated with polaron formation one needs to use methods going beyond
the standard density functional theory (DFT), such as DFT+U [11, 133,
137, 141], SIC [141], hybrid functionals [140, 141] or dynamic mean field
theory (DMFT) [142]. Below, we present the results for a different type
of polarons obtained using DFT+U and Hybrid functional methods.

6.1 Standard procedure of the polaron state localization
in DFT

An extra electron (hole) in the ionic crystal or a polar semiconductor
may induce a polaron formation. Usually, en extra charge can be incor-
porated via a defect, doping or creation of a vacancy. This process can
be illustrated by considering a bivalent metal oxide MeO in the frame of
the ionic bonding model. In the ideal MeO lattice, a metallic ion is in
Me+2 ionic state. An oxygen vacancy in the compound will create two
unpaired electrons adjacent to two Me atoms surrounding the vacancy so
that each of the two Me atoms accompanying the defect will obtain one
unbounded extra charges and become Me+1. A similar situation applies
to Me vacancy formation which will result with two O−1 oxidation states.
The extra electrons on metallic sites interacting with the lattice form a
bound lattice polaron (localised solution). The insufficiency of the charge
on oxygen ions will lead to a hole polaron formation.

It is rarely possible to reproduce localised solutions within standard
DFT theory. For this type of density configuration, both the LDA and
GGA fail due to the self-interaction errors inherent in typical exchange-
correlation functionals. For the case of a metal vacancy in a MeO oxide,
the functional will lead to two unpaired electrons being spread across
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several sites (delocalized solution). Interestingly, Hartree-Fock (HF) the-
ory oppositely overestimates polaronic hole localisation. Therefore, both
LDA/GGA and HF cannot be considered as theories adequately describ-
ing polaron states in solids.

Much success towards solving this problem has been obtained apply-
ing theoretical methods beyond DFT. Lany and Zunger [143] have well
illustrated the opposite biases, which standard LDA functional and HF
theory exhibit, by analysing curvatures of the total energy E as a function
of the fractional occupation number n. They found that for HF theory
d2E/dn2 < 0 and for LDA functional, due to residual self-interaction,
d2E/dn2 > 0. In the ideal, unbiased case the energy has to be a linear
function of occupation number and therefore d2E/dn2 = 0. Moreover,
authors have formulated the condition to be fulfilled as:

E(N +1)−E(N) = ei(N);
Πi +Σi = 0.

(6.1)

where ei(N) is the energy before electron addition to the system, Πi indi-
cates the self-interaction energy after electron addition to the orbital i, Σi

is the energy contribution arising due to wave-function relaxation, respec-
tively. In order to satisfy this relation, they have introduced a potential
operator that acts on empty hole states but vanishes for the normally
occupied states. Within DFT+U approach, similarly to the method pro-
posed by Lany and Zunger, the self-interaction error is also being cor-
rected. Hybrid functionals improve the description of the wavefunction
as well, combining nonlocal Fock exchange term with conventional DFT
functional. Thus, disadvantages provided within LDA/GGA and HF for
polaronic calculations can be neglected using the proper choice of U pa-
rameter and ω-a parametrisation.

Beyond DFT approaches provided for the electron density calculation
do not always guarantee localizations at specific sites. To the best of our
knowledge, the correct initial geometry is another crucial factor which
controls electron localization or delocalization. Electron and hole po-
larons in semiconductors tend to affect the bond lengths near the po-
laronic site. Therefore, a correct initial geometry with justified bond
lengths may help to localize the charge. On the other hand, an artificial
wavefunction with an excess electron or hole at specific sites may also be
helpful at the beginning of the modelling.

To obtain the results presented in this thesis, we have used a variety
of the methods in order to localize electrons at specific sites. We have
noticed that the procedures described above may not always give the
localized solutions that are expected. In some cases, to achieve a satis-
factory result, it is worthy to try different technics (varying U and (ω,
a) values, stretched bond lengths around polaronic sites, justified initial
geometry, applying U-ramping method [144], etc.).
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6.2 Hole bipolarons in MgO
In alkaline earth oxides, hole polarons can form when cation vacancies,
also called V-centres, or aliovalent impurities are present [145]. According
to both experiment [146, 147, 148, 149] and theory [150, 151], formation
of a cation vacancy in these oxides is accompanied by hole localization
in an O1 −O1 bipolaronic configuration, namely at two oxygen atoms on
opposite sides of the cation vacancy, as illustrated in Fig. 6.1 a).

The localised holes possess local magnetic moments, which could be
either parallel (triplet state) or antiparallel (singlet state) to each other.
Some experiments showed the triplet (S=1) to be the ground state for
MgO [148, 152] whereas others did not confirm it [146]. These investi-
gations showed that neutral vacancies (V 0) were not primarily stable in
bulk oxides. These defects easily trap electrons from surrounding media
and collapse into more stable V − or V 2− configurations. Using photo-
luminescence and positron annihilation spectroscopy, the concentration
of Mg vacancies was found to decrease with increasing particle size ac-
companied by a decrease in the saturation magnetisation of the samples,
with defects mostly found at the surface of the nanocrystalline [152]. The
existence of a local magnetic moment in these structures allowed one to
consider MgO as a strong candidate for the so-called d0 magnets [153], a
fascinating class of magnetic materials containing no d- or f-shell atoms.

As mentioned above, in order to reproduce the hole configuration one
needs to use methods going beyond conventional local and semi-local ap-
proximations of DFT [141]. Moreover, the key factor leading to the for-
mation of a localized state is the local lattice distortion around the atoms
where holes localize [141], thus demonstrating the paramount importance
of charge-lattice interaction for the polaron formation. This distortion
is reproduced neither by LDA nor GGA; both functionals result in the
metallic state for MgO [141, 154, 155].

In the following, we describe electronic structure calculation for the
two-centre O1 − O1 hole-bipolaron bound to a cation vacancy in MgO
calculated using a hybrid functional (HSE06, a = 0.25 and ω = 0.2)
employing the projector augmented wave method [108] and the PBE
parametrization [106] of the exchange-correlation interaction. Calculated
DOS curves show that the bipolaronic character of hole localization, as-
sociated with a cation vacancy. The hole states are 0.42 eV above the top
of the valence band (see Fig 6.1 a)) and the obtained equilibrium mag-
netic configuration is the triplet, which is 11 meV lower in energy than
the singlet state. We noticed that the magnetic moments obtained in the
HSE06 calculations with a=0.25 are smaller than those from the DFT+U
calculations for Ueff =10 eV. We find that they are directly affected by
the value of the HF admixing parameter a. The calculations show that
the on-site magnetic moment steadily increases with increasing HF con-
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Figure 6.1. Different type of polaron states calculated in the framework of
DFT+U and HSE approximations. The left panel shows localised partial charge
densities of the polaron mid-gap state in a) and b) and in the vicinity of the
Fermi level c). The right panel presents the corresponding density of states.
a) Hole-bipolaron bound to a cation vacancy in MgO obtained via HSE06
functional. Each polaron corresponding to bipolaron is situated on the oxygen
atoms surrounding the vacancy. b) Electron bipolaron along the [100] direction
in γ −WO3. Polarons are localised on tungsten d states. c) 21-site spin-polaron
in La-doped CaMnO3. Polaron density is spread over 21 Mn sites. b) and c)
calculations are done using by DFT+U with U parameterisation optimised in
the frame of linear response theory.
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tribution reaching 0.77 μB . The increase of the a parameter shifts empty
hole p-states up in the band gap, which, in turn, increases the width. For
example, the values for the band gap obtained in these calculations with
a=0.25 change from 5.82 eV to 7.52 eV for a = 0.5.

A comparison with calculations using DFT+U approximation shows
that the band gap for MgO obtained with Ueff =10 eV is 4.8 eV (data
not shown here) as compared to the experimental value of 7.672 eV [156],
showing the typical underestimation of the band-gap of DFT based cal-
culations. The separation between the unoccupied hole states and the
top of the valence band is 1.7 eV. Hence it seems that both DFT+U and
HSE methods produce localized hole solutions with a similar degree of
localization in agreement with previous results [141].

We also find that holes prefer to localise in O1 −O1 bipolaron configu-
rations. Although, one-centre O2 −O0 bipolaron (further called monopo-
laron), where two holes localise at the p-orbitals of the same oxygen atom
are found to be metastable. The monopolaron is not the ground state and
could have a rather high energy. In order to stabilise it, we take advan-
tage of the fact that the deformation pattern around the localised charge
is of paramount importance for the polaron stabilisation. To prepare the
initial guess for the local atomic configuration around the monopolaron,
we introduced a lattice distortion into the unit cell around one of the
oxygens neighbouring the cation vacancy, and we obtained a metastable
local energy minimum. The unit cell was then fully relaxed. After the re-
laxation, we obtained a metastable O2 −O0 polaronic configuration. The
two-centre solution O1 −O1 compared to O2 −O0 bipolaron configuration
is favourable by about 2 eV. Therefore, we found that the existence of
both polaronic configurations in MgO could be possible.

The results of Sections 6.1 and 6.2 form the basis for the results of
Paper II.

6.3 Electron polarons in oxygen-deficient γ −WO3
Tungsten trioxide is a wide band-gap semiconductor (2.6-3.0 eV [157,
158, 159]) with perovskite-like structure. The oxide shows rich structural
polymorphism [160, 161, 162], whereby oxygen octahedrons surrounding
tungsten atoms vary their orientations and shape depending both on tem-
perature and pressure. Usually, at room temperature both δ-WO3 (tri-
clinic P1 233-290 K) and γ-WO3 (monoclinic P21/n 290-350 K) phases
coexist [163]. Depending on the method of preparation, the samples can
be characterized by various γ/δ ratios, micro-structure and defective-
ness. Under certain conditions, a more exotic hexagonal h-WO3 phase
[164, 165] or amorphous a-WO3 [166] phase can form. The structural
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variety of WO3 offers a range of optical characteristics that is important
for applications relying on light absorption [167, 168, 169].

The presence of different localised charge states in WO3 has been con-
firmed by numerous experiments [170, 171, 172]. The formation of po-
larons in this oxide has also been studied theoretically by semi-empirical
models [133, 173] and more recently by ab-initio methods employing hy-
brid functionals [154]. More studies of the electronic and structural prop-
erties of perfect and defective WO3 can be found in Refs. [174, 175, 176].

In the following, we present calculated bipolaron state in defective γ-
WO3 phase. In the defective oxide (with one oxygen vacancy), a bipo-
laron can form at the d-states of each of the two tungsten W5+ atoms
surrounding an oxygen vacancy in the same manner as it is described for
hole-polarons in MgO above.

For the calculations reported below, we have employed DFT+U func-
tional. Moreover, to properly model small polarons in the compound,
we have modelled the lattice distortions around the polaronic sites natu-
rally supporting polaron localization [137, 141, 177, 178]. We considered
an oxygen vacancy with two unpaired electrons localized on both sides
of the vacancy in the W 5+ − W 5+ configuration. Within the DFT+UW

approach, we varied UW applied to tungsten d-states from 2 to 12 eV .
We analysed the localisation patterns for different values and found that
for Ueff = 8 eV and higher values almost precisely one electron was lo-
calised at the d-orbitals of each of the two W5+ tungsten atoms. The
local magnetic moment for each W in this case was 0.96 μB . Next, we
performed calculations using DFT+ UW , UO. The U values (UOp = 9 eV
and UW d = 6 eV ) were determined using the linear response procedure
described in Section 5.6. In this case, the local magnetic moment due to
the electron localisation at the Wd-states were 0.86 μB .

The density of states (DOSs) obtained in the DFT+UW , DFT+UW ,UO

show the following. The band gaps are expectedly underestimated by
both versions of the DFT+U calculations: Eg (DFT+UW ) = 1.43 eV
(data is not shown), Eg (DFT+UW , UO) = 1.64 eV (Fig 6.1 b)) that
should be compared to the experimental value of 2.8 eV [179].

In the case of DFT+UW , the localized polaronic d-states are situated
at the upper edge of the valence band (data is not shown) whereas, for
DFT+UW , UO the states situated 0.8 eV above the top of the valence
band (Fig 6.1 b)). We notice that the position of the polaronic peak in
the gap obtained by DFT+UW , UO is in good agreement with HSE06 and
previously reported B3LYP results [180]. We found that in the case of
DFT+UW ,UO the antiferromagnetic coupling of local spins is favoured
over the ferromagnetic one by about 20 meV. Using DFT+UW , UO we
also examined DOSs calculated for Li-WO3 and found them to be very
similar to those calculated for the vacancy case. The only noticeable dif-
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ference was a 40 meV shift of the polaronic peak down in energy. Further
results of this study are also reported in Paper III of this thesis.

6.4 Spin-polarons in La-doped CaMnO3
Perovskite CaMnO3-LaMnO3 (CMO-LMO) system exhibits an outstand-
ingly rich magnetic and structural polymorphism [181]. CaMnO3 (CMO)
is an orthorhombic (Pnma) semiconductor with the band gap of 3.07
eV [182]. Its magnetic ground state is the G-type antiferromagnetic (G-
AFM) structure, where each spin-up (down) atom is surrounded by 6
spin-down (up) atoms. Such a magnetic ordering is thought to be gov-
erned by the super-exchange interaction along the Mn4+(t3

2g) ↑ −O(p)−
Mn4+(t3

2g) ↓ bond chains [71]. When trivalent La3+ substitute atoms
in the Ca2+ sublattice, extra valence electrons are added to the system.
This extra charge can be redistributed among a large number of atoms
or fully (partially) localized at the d-orbitals of particular Mn atoms
driving the double-exchange interaction in the mixed-valence Mn3+(e1

g) ↑
−O(p)−Mn4+(t3

2g) ↑ bond alignment [61]. The Hund coupling may then
assist the spin flip at the central site of the magnetic octahedron [183],
thus forming a ferromagnetic (FM) 7-site droplet or the so-called 7-site
spin-polaron (SP). Such 7-site SPs can be joined together in different
configurations forming larger FM droplets, for example, involving 12-,
17- or 21-sites [86]. Unlike lattice polarons, where an electron is trapped
due to a strong electron-lattice interaction, spin polarons are thought to
form largely due to magnetic interaction [26, 88]. However, cooperative
spin-charge-lattice effects are also important for SPs as the formation
of the Mn3+(e1

g) state leads to the symmetry breaking by Jahn-Teller
distortions becoming more pronounced as the number of Mn3+ ions in-
crease. At a critical concentration, the accumulated lattice deformation
energy drives the magnetic transition to the C-type antiferromagnetic (C-
AFM) state, which in La-doped CaMnO3 is accompanied by the struc-
tural transition from Pnma orthorhombic to the P1/m monoclinic struc-
ture [86, 181, 184].

In our study, we used the DFT+U approach, employing the PAW
method [108] and the PBE parametrization [106] of the exchange-correla-
tion interaction. The choice of the Hubbard U parameter is always an
important issue in the calculations of complex oxides. Here we estimated
the effective U parameter (Ueff =U-J [117]) using the linear response
method developed by Cococcioni [122], which depending on the choice of
the basis set, resulted in Ueff (Mn3d) in the range of 3.45-4.23 eV. For
our calculations, however, we utilized the rotationally invariant approach
[116]. This approach was shown to be more appropriate for the descrip-
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tion of complex magnetic structures [123]. We used J = 0.9 eV, which is
the most common value applied for this class of compounds [185].

In Fig 6.1 c), we show the density of states (DOS) we obtained for
the 21-sites SPs formed in G-AFM matrix for two La concentrations.
The excess electrons, donated by La, occupy the states in the shoulder
near the Fermi level, which is hardly visible for xLa=0.013 but becomes
more evident as the La concentration increases as shown in Fig 6.1 c).
This shoulder consists of the eg-states and the partial charge distribu-
tion shows that these eg states are mostly localized at the SP sites and
have 3z2 − r2,x2 − y2 character. We also found that somewhat larger
degree of the Mn(e1

g) − O(p) hybridization is observed in the double-
exchange active (101) plane as compared to the others. We have also
performed hybrid functional calculations (HSE06) [126, 186] of the 7-site
SP configuration and obtained the very similar character of DOSs to the
ones shown in Fig 6.1 c). Moreover, we have checked the significance of
the spin-orbit coupling for the description of the magnetic structures in
LaxCa1−xMnO3. We found that it has only a minor influence lowering
the total energies of the considered SPs by about 10−15%. More results
of this study can be found in Paper IV of this thesis.
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7. On polaron mobility

Usually, the rate equation for polaron hopping both in the adiabatic
and non-adiabatic regimes manifests an exponential type of temperature-
dependence. When the probabilities to occupy the initial and the final
states are equal each other, the site-to-site hopping can be described by
the Arrhenius type of equation. It means that the atomic displacements
that affect the electronic configurations along the transition path are in
coincidence at the moment of a career jump. In the adiabatic case, the
carrier moves rapidly enough to adapt to the relevant atomic motions.
However, in the non-adiabatic regime, the carrier is unable to follow such
atomic motion. Nonetheless, the hoping process in the non-adiabatic
regime which is mainly controlled by the electron tunnelling processes,
shifts to the adiabatic regime as soon as the temperature of the system
increases. Thus, both the lattice configuration and electron-lattice coop-
erative effects manifest their key role in polaron transport properties.

Below we discuss different theoretical models of the propagating po-
laron and describe our modelling of polaron motion in a crystal. The re-
sults are obtained including methods presented in Chapter 4 and Chapter
5 of this thesis.

7.1 Adiabatic rate transition for the phonon assisted
hopping

The hoping process of electrons can be illustrated by a family of tra-
jectories curved on the potential energy profile plotted as a function of
relative atomic displacements, (see Fig 7.1). It can be seen that there
are two potential wells which correspond to the initial −n and the final
n sites, respectively. The lower and upper adiabatic potentials describe
trajectories which the carrier follows moving from one well to the other
well. There are a few possibilities for the carrier to move [187, 188]. In
the non-adiabatic regime, the carrier performs a transition from the low-
est to the upper adiabatic potential along the path shown by the dashed
line in Fig. 7.1. A carrier makes there finite number of oscillations and
then moves down to the next potential well. Therefore, even if the non-
adiabatic jump is predominant, a hoping process includes some adiabatic
passages. Another possibility for a career is to jump immediately to the
upper adiabatic potential absorbing a photon with energy h̄ω ≥ Eb, where
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Figure 7.1. Schematic explanation of a small polaron propagation from “-n”
to “n” position in the anharmonic potential within the adiabatic and non-
adiabatic limit. The lower adiabatic and upper adiabatic potentials are shown
by solid curves versus relative atomic displacements. Ea is the activation energy
at the coincidence point (“0” coordinate) for the adiabatic hopping along the
low adiabatic trajectory. With dashed lines, we show polaron trajectory in the
non-adiabatic regime (see also text).

Eb is the energy of electron binding to the potential well in the lattice
(discussed previously in Section 2.1). In the case when the hopping is
activated by the interaction with a phonon the carrier is following the
lowest adiabatic potential which is strongly anharmonic in the vicinity of
its maximum. In Fig. 7.1, Ea represents the transition activation energy
and can be expressed as: Ea = 1

2Eb − j [187, 188], where j possess the
value equal to a half of the splitting between the two adiabatic potentials
at the coincidence point (denoted by “0” in Fig 7.1).

The small polaron jump rate in the adiabatic regime refers to the Ar-
rhenius type of equation given in the following form:

Rad = νe
−Ea
kBT , (7.1)

where ν is a representative atomic vibration frequency. Usually, Eq. (7.1)
satisfactorily describes high temperature (T > θD

2 ) regime of a small po-
laron hopping in solid. However, in certain cases, adiabatic polaron hop-
ping can manifest more complex behaviour. For example, a shift of the
stiffness of the atomic vibrations accompanying polaron hopping brings
an important contribution which has to be accounted for. The effects
can be described using Emin-Holstein dimensional theory [189, 190, 191]
developed for a polaron moving in the adiabatic regime as we show below.
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The free energy associated with a carrier which occupies an initial po-
sition at “-n” is denoted as F−n and express by the following polynomials:

F−n = ( Te

R2−n

− Vs

R3−n

− Vl

R−n
)+f−n, (7.2)

where Te is the coefficient characterising the carrier’s kinetic energy con-
tribution, Vl is a parameter describing the long-range electron-phonon
interaction and Vs the short-range electron-phonon interaction, respec-
tively. R−n is the characteristic dimensionless radius of a polaron at the
ground state. The last term in this expression, f−n, denotes contribution
of the atomic harmonic vibrations associated with the polaron formation.

At the coincidence point, a relation for the free energy in the case of a
three-dimensional media can be written as [191, 192]:

F0 = Te

R2
0

− Vs

2R3
0

− Vl

2 ( 1
R0

+ 1√
R2

0 +d2
)+f0, (7.3)

where R0 is a dimensionless characteristic radius of a polaron at the
coincidence moment, d = 2n is a dimensionless separation between the
two centroids associated to the initial and final sites. f0 denotes the
vibrational free energy of atoms with configuration at the coincidence
point.

Under the assumption that R−n = R0 and introducing the following
relation:

Ea = Vs

2R3
0

+ Vl

2

⎛
⎝ 1

R0
− 1√

R2
0 +d2

⎞
⎠ , (7.4)

the difference of the free energies for the initial configuration and at the
coincidence point, reads as: F−n − F0 = −Ea + (f−n − f0). Then, an
expression for the polaron hopping rate can be rewritten in the following
form:

Rad = ν exp
(

f−n −f0
kBT

)
exp
( −Ea

kBT

)
. (7.5)

In Ref. [191] Emin has shown that the exponential pre-factor in Eq. (7.5)
can be expressed as:

f−n −f0
kBT

= Ea

Δ0
, (7.6)

where Δ0 is the electronic intersite transfer energy at the coincidence
point. The physical meaning of Eq. (7.6) refers to the carrier motion
induced softening processes. The effects arise due to the intersite motion
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of a charge carrier which reduces the stiffness of the associated atomic
vibrations. Substituting Eq. (7.6) into Eq. (7.5) yields the adiabatic jump
rate in the so-called weak dispersion model:

Rw
ad = νexp

(
Ea

Δ0

)
exp

(−Ea

kBT

)
, (7.7)

which in the limit of Δ0 → ∞ yields the adiabatic regime given by Eq. (7.1).
As for the spin-polaron hopping processes its hopping rate is usually

estimated under the assumption that both lattice and magnetic degrees
of freedom are contributing independently to the probability of the hop-
ping event. Thus, the spin-lattice coupling effects are assumed to be
neglectable, and the spin and lattice degree are factorised according to
the following expression:

R = fmagflate
−Ea/kBT , (7.8)

where Ea is accounting for both contributions from the spin and the
lattice perturbation, so that Ea = Elat + Emag. Moreover, fmag and
flat denote the magnetic and lattice pre-factors, respectively. The one-
electron tight-binding approach leads to the following magnetic prefac-
tor [193, 194]:

fmag = 0.25sech
(

TN

T

)
e− kBT 2

N
4EaT . (7.9)

for the small polaron in the case of an AFM lattice. In Eq. (7.9) TN is
the Neel temperature [80].

7.2 Lattice-polaron hopping barriers in the frame of
DFT

The following procedure can represent the polaron transfer process cal-
culated within the ab-initio formalism. Obviously, at the very beginning,
one needs to reproduce polaronic states localized in the compound. Par-
ticularly, as we have shown in Fig. 6.1, the polaron state appears localised
in reciprocal space as a mid-gap state in the density of states. At the same
time, the polaron localisation can be indicated in a real space. For exam-
ple, the corresponding partial charge density of the mid-gap state appears
as the onsite localised orbital. The first step in the polaron transition
modelling is reproducing charge localisation at the initial and final sites
of the polaron transition path. This can be achieved using methodologies
described in Chapter 6.
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Usually, the transition barriers grow as the length of the transition
path increases. In order to estimate the transition state between the
initial and final states, we assume that a polaron behaves according to
the rules formulated for the small adiabatic polaron transfer. Indeed,
according to this model, a polaron has to overcome a certain energy bar-
rier corresponding to the coincidence point between the initial and final
potential wells on the potential surface.

Further, we present the calculated energies for the hole bipolaron-
to-monopolaron transition in MgO (see Fig. 7.2). The bipolaron and
monopolaron states, considered here are equivalent to two-center and
one-center bipolarons. The transition we modelled in the linear approx-
imation, which roughly estimates the energy barriers for hole migration
using the set of cell configurations obtained with the linear interpolation
procedure [11, 139].
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Figure 7.2. a) Monopolaron-Bipolaron-Monopolaron transition estimated in
the linear approximation (see Eq. (7.10)) in pure oxides. Initial and final con-
figurations are equivalent due to symmetry (x = -1 and x=1). We choose to
shift all energies in such a way that EMgO

bip = 0.

Each atomic coordinate is specified with a parameter q, and a given set
of atomic coordinates is then specified by

∑
qp. The linear interpolation

scheme along the transition path between different polaronic configura-
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tions can then be written as follows:∑
qp = −x

∑
qm1 +(1+x)

∑
qb, −1 < x < 0;

∑
qp = (1−x)

∑
qb +x

∑
qm2, 0 < x < 1.

(7.10)

The initial configuration of the transition expressed in Eq. (7.10) is the
monopolaron configuration O2 − O0, where two holes are located on the
first oxygen atom, which corresponds to the bipolaronic ligand accompa-
nying the vacancy (denoted as m1 configuration, see also picture under-
lying Fig. 7.2). The configuration O1 − O1 is denoted as b and, finally,
monopolaron configuration O0 − O2, where the both holes are localized
on the second oxygen atom is denoted as m2. The resulting energies
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Figure 7.3. b) Energies along the transition paths of W 5+ from one tungsten
site to the other in the case of Li doped γ phase. The energies are given
with respect to the energy of W 5+. The solid lines show the energies obtained
using nudged elastic band for all the [100] crystallographic directions. For com-
parison, we also show the energies obtained using linear interpolation scheme
calculations (dashed line). Charge distributions for W 5+ at the initial x = 0
and final x = 1 transition points are shown for illustration at the bottom of the
plot. We choose all energies such a way that the energy of the initial polaronic
configuration equals zero.

for bulk MgO are shown in Fig. 7.2. The bipolaron configuration is at
(0) and monopolarons at (-1) and (1) according to the notation chosen
here. The curves are symmetric as in bulk MgO O2 − O0 and O0 − O2

configurations are equivalent. It can be seen that both holes perform a
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transition from p-orbitals from the initial to the final sites passing bipo-
laron configuration where each hole is situated on the opposite oxygen
atoms. Calculated energy barrier is about 2 eV. More information re-
garding polaron dynamics in MgO, CaO and MgO/CaO heterostructures
can be found in Paper II.
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Figure 7.4. Calculated transition barriers for spin-polarons in La doped
CaMnO3 with restricted (dashed line) and allowed (solid line) lattice relax-
ation. Energies of initial and final spin-polaron configuration differ due to the
different distance between the spin-polarons and the La impurity. All energies
along the transition path are given with respect to the ground-state configu-
ration (see also text). Spin rotation angle of the initial Mn3+ and final Mn4+

sites along the transition path varies in the range of γ = 0◦ −180◦ and measures
in clock-wise (anti-clock wise) direction for initial (final) sites.

Next, we report our results of the polaron mobility in Li doped mono-
clinic WO3. First, we consider one lithium atom situated in an octapore
in the supercell of 256 atoms, i.e. WO3Li0.016. This is a realistic con-
centration often studied in experiment [195]. To study polaron mobility
we used tungsten sites away from Li (∼ 6-8 Å) simulating a free polaron
propagation in the WO3 matrix. Figure 7.3 shows the energy barriers for
polaron jumping between two neighbouring W 5+ sites in the [100] crys-
tallographic directions. The barriers are calculated using two following
methods: the linear interpolation procedure described above and nudged
elastic band (NEB) method. The NEB [196, 197] is a method devel-
oped in order to find saddle points and minimum energy paths between
known reactants and products. The method is based on optimization of
a number of intermediate images along the reaction path. Each image
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finds the lowest possible energy at the same time the equal spacing to
neighbouring images is being preserved. This constrained optimization
is done by adding so-called spring forces along the band between images
and projecting out the force components to the potential perpendicular
to the band.

As expected, the barriers obtained using linear interpolation scheme
(260 meV) described above are higher than those obtained using NEB
method (125 meV). These values are in surprisingly close agreement with
the activation energy for polaron hopping estimated from basic models
using experimental information, 180 meV [195]. Further details of our
study of the polaron mobility in monoclinic WO3 can be found in Paper
III.

7.3 Spin-polaron hopping barriers from first principles
The spin-polaron is a region of ferromagnetic coupling in an AFM matrix,
which is connected to the excess of electrons in this region. To study the
dynamics of such polarons we adopt a concept similar to one we have
introduced for lattice polarons where the spin-polaron can jump between
two sites by overcoming a certain energy barrier, Ea.

Our recent studies of the static properties of spin polarons in La doped
Ca1−xMnO3 have provided a theoretical description of the magnetic
phase diagram in the La range of 0 < x < 0.10, in good agreement with
experimental data (see Paper IV). These studies have shown that spin-
polarons are stabilised mostly due to the magnetic interaction at lower
La concentrations and due to the lattice contribution at larger concentra-
tions. To reduce the influence of the spin-lattice correlations, we chose to
calculate barriers for polaron hopping in the low La concentration limit,
namely, for xLa = 0.013. The barriers were estimated for hopping from
the initial site to nearest-neighbour.

We calculated the energy barriers for polaron hopping for a seven site
spin-polaron in bulk. We notice that the seven site polaron was formed
in the antiferromagnetic matrix by flipping spin at one Mn site and then
allowing the lattice to fully relax. We denote this magnetic and lattice
configuration as the initial configuration. Spin-polaron hopping from the
initial configuration to the final configuration (in Fig. 7.4 the relevant
atomic sites are shown schematically and labelled as Mn3+ and Mn4+,
respectively) was controlled by changing the spin configuration. Namely,
spins at the initial and final sites were simultaneously rotated by angle γ
in a clockwise and anti-clockwise directions, respectively (for illustration
see Fig. 7.4). The excess charge associated with the polaron could, in
this way, be moved from the initial to the final configuration. The energy
barrier of the polaron hopping we determined by the maximum of the
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Table 7.1. Obtained parameters over various model fitting to the calculated
time periods between hopping events.

Model Parameters
Adiabatic Ea = 10 meV
Weak dispersion adiabatic Ea = 15 meV; Δ0=12 meV
Non-adiabatic Ea=20 meV; j = 10 meV
Magnetic polaron Ea = 18 meV at TN = 125 K

total energy curve along the transition path (see Fig. 7.4). It varies in
the range of 14-18 meV depending on the La atom position with respect
to the polaron. Our results show that in each point of the transition
path lattice relaxation lowers the energy with a non-negligible value as
compared to the energy of the unrelaxed lattice (Ea � 24-27 meV).

We also found that it was energetically favourable for the spin-polaron
to move in the double-exchange active (101) plane. The barriers also
varied about 1.5 meV depending on the choice of the spin rotational plane
along the transition path in the non-relaxed case. However, the difference
was neglected in calculations with employment of the lattice relaxation.

Moving further, as we continue discussing the spin-polaron mobility
introducing the temperature effects when the polaronic centre can move
through the sample. We assumed that the carrier motion of the magnetic
polaron can be modelled using an Arrhenius-type process using a real-time
method such as Kinetic Monte Carlo (KMC) [198]. To obtain reasonable
statistics, the simulations for each temperature were performed for 100
different times with different seeds for the random number generator to
obtain unbiased results. To study the dynamics of the spin-polaron sys-
tem, we choose an anisotropic, 2D landscape since the spin-polaron is
very likely to move in the double-exchange active (101) plane. The en-
ergy barrier was set to be Ea = 15 meV as they were obtained via our
calculations described above. The attempt frequency, ν, was assumed to
be ν = 1×1012 Hz, such value is expected if the motion of the polaron as
a compound object is driven by magnonic and phononic processes.

We found that the obtained average time periods between hopping
events, i.e. jumps of the polaron between sites, follow an exponential
behaviour as a function of temperature (Fig. 7.5). We also performed
a numerical fitting of the obtained results to the rate transition within
adiabatic (Eq. (7.1)), adiabatic with weak dispersion (Eq. (7.7)), non-
adiabatic (Appendix 11.1, Eq. (11.35)) and non-adiabatic magnetic po-
laron (Eq. (7.9)) models (results are presented in Table 7.1).

As an attempt to take into account the stochastic behaviour of the
system, we introduced the stochastically driven motion process. We cal-
culated the time that it takes for the polaron to jump whenever two
nearest-neighbour spins are aligned strictly antiparallel in the motion
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Figure 7.5. Average times between spin-polaron jumps obtained using KMC
method (filled circles). The result is compared with different models: adiabatic,
adiabatic with weak dispersion, non-adiabatic and non-adiabatic in case of the
spin-polaron in the AFM lattice. On the bottom panel, the data is given using a
logarithmic scale and also contains results for the stochastically driven motion.
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plane. In Fig. 7.5 b) it can be seen that this approach also predicts
an exponential-like behaviour likewise our calculations and models listed
in Table 7.1. However, jumping times obtained via stochastically driven
motion method differ by almost two orders of magnitude. The reasons
behind such behaviour could be many, in particular, there is no influence
of the lattice in the anti-parallel approach, a factor which is relevant for
the energy barrier obtained from first principle calculations. The only
term in this case which describes the intrinsic viscosity of the spin system
is the Gilbert damping α, used for the Atomistic Spin Dynamics [199]
simulations based on Langevin dynamics (discussed in Section 4.5). This
parameter was set up to α = 0.5. A full account of the results of spin-
polaron mobility and the potential to use these objects in nano-technology
is discussed in full detail in Paper V.
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8. Conclusions and outlook

They tried to bury us. They
didn’t know we were seeds.

Dinos Christianopoulos

In this chapter, we summarise the results emphasised in the thesis and
provide a brief outlook of the directions where some of our findings can
have further development and applications.

• We have studied multi-polaron solutions in the framework of the
1D Holstein model in Paper I. We found that the periodic solu-
tions can stabilize in a certain range of the parameters. By using
the approaches previously introduced in plasma physics, we show
that the periodic solutions may stabilize with respect to a periodic
perturbation in a certain range of the parameters. We emphasize
the importance of the universal, dnoidal solution, which previously
has not been discussed in the context of the Holstein model. Thus,
along with the robust stable solitonic solutions, we enlarge the set
of stable solutions to be considered, to the periodic functions, which
may describe the multi-polaron case. Moreover, the model was ex-
tended and studied under the influence of non-local effects that has
never been done before. We show that, by increasing the complex-
ity of the problem, the NLSE lose its complete integrability. We
show that the non-local nonlinear effects produce important effects
in the dynamics of solitons and polarons and ignoring these effects
can become crucial for an adequate description. Particularly, we
have observed that nonlocal effects influence polaron-polaron colli-
sions by inducing an inelastic scattering via the excitation of internal
modes. We show that nonlocality forces the bipolaron dynamics to
develop spatial asymmetry and delocalizes bound polaronic states
earlier in time than the standard solution. This result should also be
considered in theories dealing with bipolaronic superconductivity.

• In Paper II, we have modelled different hole bipolaronic configura-
tions adjacent to a cation vacancy at the (100) MgO/CaO interface.
We found that the vacancy formation is substantially facilitated by
the presence of the interface between the two oxides. We applied
two theoretical methods, DFT+U and HSE hybrid functional, and
this allowed us to obtain a correct local lattice distortion around the
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defect which leads to hole localisation pattern in agreement with ex-
perimental data. The O1 −O1 bipolaronic configuration is found to
be the ground state in all the studied cases. We show that at the
interface, the cis configurations are always preferred, and the triplet
and singlet magnetic configurations are degenerate within the accu-
racy of 1-2 meV. We found that the O2 −O0 bipolaronic solution is
metastable exhibiting deeper local minima at the interface compared
to those in bulk oxides. This result indicates that different bipola-
ronic configurations could coexist at the MgO/CaO interfaces. The
study shows the possibility to control bipolaron configuration intro-
ducing an interface between two oxides. The applied methodology
can be extended in order to theoretically predict V-center topology
formed on interfaces between a wide range of ionic oxides.

• In Paper III, we study the applicability of HSE06 and two DFT +U
approaches to model polarons in WO3. We have shown that the
DFT + U approach with two Hubbard − U parameters determined
and applied simultaneously to the 5d states of W (UW =6 eV) and 2p
states of O (UO=9 eV) provides a proper description of polaron for-
mation and transitions in WO3. At the same time, this method al-
lows us to calculate large cells necessary to properly model polarons
and bipolarons in the crystal. Using this approach we have studied
the vacancy energetics for the six non-equivalent oxygen positions
and two electronic configurations: W 5+ − W 5+ and W 6+ − W 4+.
We show that the W 5+ − W 5+ bipolarons situated along [001] are
the most favourable electronic configurations around vacancies. We
have also studied polaron and bipolaron formation and energetics for
Li-doped WO3. In this case, the W 5+ −W 5+ bipolaronic configura-
tion aligned with [001] has again the lowest energy but winning only
8 meV over two separated W 5+. Our results suggest that polarons
formed due to oxygen vacancies are immobile, at the same time,
the W 4+ state is metastable and the transition from W 5+ − W 5+

to W 6+ − W 4+ state is possible with a barrier of 150 meV. On
the contrary, polarons formed in Li doped tungsten oxide are mo-
bile with the minimum activation energy (98 meV) along the [001]
direction. The W 4+ state is 300 meV higher in energy than any
studied W 5+ configuration and, therefore, W 4+ is unlikely to form
in perfect Li−WO3 without vacancies or similar structural defects.

• Further, in Paper IV, we propose an optimised approach, based on
DFT+U, which allowed us to describe charge localisation and mag-
netic polymorphism of doped CaMnO3 and Mn-oxides, in general.
Moreover, it allows us to describe the La-concentration dependence
of the magnetic state of La-doped CaMnO3 fully from first princi-
ples. We report the optimised geometries of SPs as a function of La
concentration and provide a microscopic understanding of the rela-
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tive importance of exchange and lattice effects for the formation of
the spin-polarons in La-doped CaMnO3. In this paper, we propose
an optimised methodology enabling one to describe charge localisa-
tion and magnetic polymorphism of doped CaMnO3 and Mn-oxides,
in general. The methodology proposed in this paper also allows us
to stabilise the spin-polarons of different sizes and configurations,
calculate their energies, study the degree of charge localisation and
its coupling to the local distortions and, finally, describe the mech-
anism of their stabilisation. We perform this analysis for a wide
range of La concentrations and show how stabilisation mechanism
changes with concentration.

• In Paper V, we have investigated theoretically the static and dy-
namic properties of spin-polarons in La-doped CaMnO3. In order
to do this, we constructed an effective low energy Hamiltonian, in
which all parameters were calculated from first principles theory.
This low energy Hamiltonian is used to investigate the temperature
stability of the spin-polaron, as well as the response to an exter-
nal applied electric field. Technically, this involves ab-initio elec-
tronic structure theory and atomistic spin-dynamics simulations in
combination with kinetic Monte Carlo simulations. In our study,
we compared results from different geometries, like spin-polarons in
bulk, surface or single two-dimensional layers, and significant differ-
ences were observed. Where a comparison can be made, primarily
for bulk geometries, the results presented here compare well with
experimental data, and previous theoretical predictions.
We demonstrated a remarkable control of the mobility of spin-
polarons in this material, and that the critical parameters deciding
this, is the temperature and the strength of the applied electrical
field. This opens up for technology using spin-polarons, and our
simulations demonstrate that storing and erasing information mag-
netically, by introduction and control of electrical charge, is possible,
even for rather low strength of the external electric field.

Concluding the present thesis, I would like to say that the main context
of this work can be viewed as new, theoretical results in polaron physics.
The results improve our understanding of several current problems in
the field as well as open new possibilities for further studies both from
theoretical and experimental perspectives.

Analytical studies of polarons took place since the 50’s of the previ-
ous century. Currently, many aspects of a single polaron description are
understood very well. However, there are still plenty of interesting ques-
tions waiting further investigations. In this context, multipolaron systems
have gained particular attention in the last two decades. In this work, we
attempted to extend Molecular Crystal Model in 1D, including nonlocal-
ity effects. More complex view on multipolaron systems accounting for
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anisotropy, nonlocality and studies performed for 2D and 3D dimensional
systems, undoubtedly will lead to new, unknown physical effects. It is
especially important to continue this theoretical research in collaboration
with further experimental studies.

Also, we would like to emphasize some methodological priorities laid
out for further studies. Mapping to the models previously studied in the
context of other physical problems makes possible to adopt new methods,
from other fields of physics and mathematics. For example, in Paper I
and Chapter 3 we have discussed a methodology, previously developed
in plasma physics, in order to examine solution stability. Particularly, in
case of NLSE, for further research it might be useful to involve methods
of optic and plasma physics, as well as to adopt field theoretical methods.
In general, attention must be paid to studies of quantum interacting par-
ticle systems. It is remarkable, that the opposite methodological trend
also takes place. For example, as already mentioned in the Introduction,
Feynman’s path integral method.

Undoubtedly, analytical models might lead to limited, sometimes incor-
rect description of polarons in real systems. Studies with employment of
first principle methods give a better description of lattice polarons, their
inner structures, mobility, etc. Moreover, due to the complexity of the
systems carrying polarons, experimental measurements quite often face
great difficulties. In this case, a consistent theoretical description using
analytical and computational methods brings important knowledge about
mechanisms underlying the polaron behaviour. The theoretical and com-
putational methods we propose in the thesis, open possibility to compare
experimental data with theoretical model. For example, we show that the
theoretical description admits a variety of different polaronic configura-
tions in a crystal, which differ in charge and orbital occupation, however,
some of them are metastable and will have a rather short mean lifetime.
Moreover, polarons may develop certain topologies in highly anisotropic
systems such as heterostructures and exhibit different transport proper-
ties depending on the way they have originated, either intercalation of
defects or electron injection.

Successful studies of the lattice polarons using ab-initio implementa-
tion of the Hubbard-U approach show that further achievements can be
obtained by including Holstein-like electron-phonon interactions. An-
other possibility is further studies of polarons in f-electron systems with
employment of full-potential approaches and Dynamical mean-field the-
ory (DMFT). Optical and spectral properties of polaronic systems can
be studied using quantum many-body methods in the presence of time-
dependent potentials such as Time-dependent density functional theory
(TD-DFT). Valuable information can be achieved using phonon spectra
calculations in order to analyze renormalization of phonon branches due
to the localized state formation. Moreover, the first principle methods
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we propose in order to study polarons in solids can be extended to other
quasiparticles such as excitons, plasmon states, etc. In this spirit, studies
of spin-polarons is a promising direction for further studies. Research on
spin-polaron properties in perovskites with half-field and highly occupied
eg orbitals would be especially interesting. In such compounds, we ex-
pect a strong influence of the spin-orbit coupling, electronic correlations
as well as the cooperative spin-lattice effects.
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9. Svensk sammanfattning

En polaron kan enkelt beskrivas som en lokal störning av en inre struk-
tur, som skapas av rörliga elektroner, och där den lokala störningen
skapar en attraktiv potential som fångar in och lokalriserar den rörliga
elektronen. Det polaroniska tillståndet utvecklas på ett självkonsistent
sätt: ett lokaliserat laddningstillstånd inducerar gitterpolarisation som
i sin tur fångaar in den lokalt polariserade laddningsbäraren. Polaro-
nen har egna egenskaper som speglar dess inre struktur: radie, for-
mationsenergi, laddning, magnetisk moment och andra kvanttal. Po-
laronkonceptet medger en beskrivning inom ramen för den effektiva mass-
approximationen, och eftersom den är en s.k. klädd kvasipartikel är den
polaroniska effektmassan vanligtvis större än den effektiva massan av en
vanlig elektron somrör sig fritt i ett material.

L.D. Landau introducerade ursprungligen polaron-konceptet men det
var S.I. Pekar som föreslog namnet "polaron". Han studerade polaro-
nens självenergi och effektiva massa i polära kontinuum medier. Fröh-
lichs modell i kontinuum gränsfallet (d v s för stora polaroner) visade
sig vara ekvivalent med Pekars metod i den så kallade stark-kopplande
regimen. Senare utvecklade R. Feynman en linje-integral-metod för att
särskilt studera polaronproblemet. Metoden har blivit till en av dem mest
använda inom statistisk mekanik och kvantfältteori. Ett annat försök för
att beskriva polaroner baseras på mikroskopiska modeller som tar hänsyn
till mediets interna struktur. I de modellerna beskrivs polaroner med en
atomär bild (tillämpbar för mindre polaroner), vilket är ett annat till-
gångssätt som skiljer sig från Fröhlichs beskrivning. Betydelsefulla pub-
likationer inom polaronen-vetenskap gjordes på 50-talet av föra århun-
dradet. I dagslägget är polaronstudier med det diskreta tillgångssä ett
brett forskningsfält. Här bör man nämna några avancerade beräknings-
baserade och teoretiska metoder, som till exempel diagrammatisk Monte
Carlo, eller exakta diagonaliserings metoden. Det har nyligen vistats
att en ordentlig teoretisk analys av gitterpolaroner i en mikroskopisk
beskrivning kräver att ab-initio-beräkningstekniker används. De sistnäm-
nda kan noggrannt svara för materialens elektronvågfunktion och inklud-
erar rörelse av varje enskild atom i området där gitterdeformation kring
lokaliserade elektronen uppstår.

Experimentella studier av polaroner är också ett intensivt forsknings-
fält. Dessa experiment spelar stor roll för förståelsen av en mängd olika
fenomen såsom laddningstransport och optiska egenskaper hos halvledare,
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högtemperatur-supraledning, och gigantisk magnetoresistans. Olika ex-
perimentella tekniker fokuserar på olika aspekter och egenskaper hos po-
laroner i fasta material. Till exempel optisk absorptionsspektra påvisar
att ett polarontillstånd bildas, medan detaljer av det optiska absorp-
tionspektrumet beror på storleken hos polaronerna och röntgenabsorp-
tionsmätningar kan användas för att upptäcka när polaronband bildas.
Nyligen har även mätningar med tvådimensionell elektronspektroskopi
(2DES) använts för att studera koherenta vibrationer i filmer av poly-
merer, där man har observerat absorption av polaronpar i filmer som inte
utsatts för uppvärmning. För att studera polaronkonduktivitet används
mätningar av elektrisk konduktivitet och av Seebeck koefficienten. Slutli-
gen är det också viktigt att påpeka betydelsen av experimentella studier
av provens magnetiseringen eftersom dessa indikerar om spinnpolarontill-
stånd har bildats. Detta arbete beskriver teoretiska studier av gitter- och
spinn-polaroner in flera olika system, såsom endimensionella kedjor av
harmoniska oscillatorer, joniska och kovalenta oxider, samt magnetiska
halvledare.

Figure 9.1. En spin-polaron i den antiferromagnetiska G-typ fasen.

I denna avhandling beskrivs teoretiska studier av gitter- och spinnpo-
laroner i flera system t.ex. en endimensionell kedja av harmoniska oscil-
latorer; joniska och kovalenta oxider; samt magnetiska halvledare. För
gitterpolaroner presenterar vi först en analytisk studie där multipolaron-
lösningar hittades inom ramen för Holstein 1D-molekylkristallmodellen.
Vi hittade en ny periodisk s.k. dnoidalösning, som tidigare inte diskuter-
ats för multipolaronsystemet. Utöver det undersökte vi stabiliteten hos
multipolaronlösningar och har visat att cnoidala och dnoidala lösningar
stabiliseras i olika områden av det parametriska utrymmet. Dessutom
utvidgade vi modellen med hjälp av icke-lokala effekter, vilket speglar
det verkliga systemens beteende. Vi studerade också polaron-dynamik
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och visade att tidsutvecklingen av det polaroniska systemet medger ex-
citering av inre strukturer. Vi har även studerat lokalisering av hål-
bipolaroner, och medföljande vakansformation av en katjon i kristall-
strukturerna MgO och CaO och vid gränsskiktet MgO/CaO. Ett viktigt
resultat i denna studie är att grundtillståndetet är den O1-O1 bipolära
konfigurationen, både för kristall-oxider och vid deras gränsskikt. Vi har
också upptäckt att den enkel-centrerade O2-O0 bipolaronen är metastabil
och att dess stabilitet är förstärkt vid gränsskikten jämfört med situatio-
nen inuti kristall-oxider. I denna avhandling studeras möjliga övergån-
gar mellan några valda bipolära konfigurationer. Med samma tankesätt
studerades även elektronlokalisering och polaronmobilitet i syrefattig, Li-
dopad och monoklinisk tungstentrioxid. Det visar sig att små polaroner,
som skapas i närvaro av syrevakanser, föredrar bipolära W5+-W5+ konfig-
urationen över den metastabila W6+-W4+ konfigurationen. Vi visar att
bipolaroner är starkt bundna av syrevakanser och därmed även orörliga.
Dock verkar polaroner vara rörliga om de är skapade av Li interkalation.

Avslutningsvis visar vi att spin-polaroner (SP) också kan skapas i La-
dopad CaMnO3, i den antiferromagnetiska G-typ fasen (se figur 9.1), men
inte i den antiferromagnetiska C-typ eller A-typ fasen. I detta material är
SP lösningar stabila på grund av samspelet mellan magnetiska och gitter
effekter vid låga La koncentrationer och vid höga koncentrationer mes-
tadels på grund av gittret. Det är viktigt att poängtera att det teoretiska
magnetiska fasdiagrammet överensstämmer väl med tidigare rapporter-
ade experimentella resultat. Vi har också studerat dynamiska aspekter
och temperaturegenskaper för detta material och med hjälp av beräknade
material-specifika utbytesparametrar har vi erhållit att 3D magnetiska
polaroner i Heisenberg-gittret stabiliseras vid något högre temperatur än
för 2D magnetiska polaroner. Utöver detta har vi föreslagit en metod för
att beräkna övergångs barriärer för magnetiska polaroner. Resultaten i
denna avhandling är sammanfattningsvist i utomordentlig överensstäm-
melse med tillgängliga teoretiska och experimentella resultat.
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11. Appendices

11.1 On non-adiabatic transition rate
Here, we derive the semi-classical transition rate in the non-adiabatic
regime guided by Holstein’s paper [200]. We start from the electron-
lattice harmonic Hamiltonian with augmented coupling term between the
nearest-neighbour sites. Into the consideration, we take the n-th site as
the initial and n+1-the site as a final site of the carrier transition in the N-
site chain. In the frame of the molecular-crystal model, the corresponding
Hamiltonian reads as:

ih̄∂an
∂t =

[∑
m

(
− h̄2

2M
∂2

∂x2
m

+ 1
2Mω02xm

2 + 1
2Mω12xmxm+1

)
+gxn

]
an − j(an+1 +an−1),

(11.1)

where an has a meaning of the electronic wavefunction amplitude which
is a function of the “lattice-vibration” coordinates xn and in general reads
as an(x1, ...xN ). Similarly to the Hamiltonian introduced in Chapter 3, g
in Eq. (11.1) is the electron-lattice coupling constant, and j is the nearest-
neighbour overlap integral of the tight-binding electrons, respectively. ω0
and ω1 correspond to the individual vibration of the diatomic molecule
with mass M, and the nearest-neighbour augmented vibration, respec-
tively.

In order to simplify the initial Hamiltonian in Eq. (11.1), we transform
previous equation to the normal mode coordinate representation intro-
ducing the following general relation for the vibrational degrees xn:

xn = ( 2
N

)
1
2
∑

k

qk sin(kn+ π

4 ), (11.2)

where k = 2πκ/N , the integer κ lying in the range -1/2(N-1) ≤ κ ≤ 1/2(N-
1) and N is assumed to be an odd integer.

After inserting Eq. (11.2) in Eq. (11.1) we get:

ih̄
∂an

∂t
=
∑

k

[(− h̄2

2M

∂2

∂q2
k

+ 1
2Mωk

2qk
2)+

( 2
N

)
1
2 gqk sin(kn+ π

4 )]an − j(an+1 +an−1).
(11.3)

Next, we find it convenient to introduce a quantity Ekn as:

Ekn =
√

2
N

g sin(kn+ π

4 ). (11.4)
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After the transformation, the Hamiltonian described by Eq. (11.1), takes
the following form:

ih̄
∂an

∂t
=
∑

k

(
− h̄2

2M

∂2

∂q2
k

+ 1
2Mωk

2qk
2 +Eknqk

)
an. (11.5)

We notice that in the stationary case, Eq. (11.5) is nothing but a
Hamiltonian corresponding to a system of the N harmonic independent
oscillators with the shifted equilibrium points:

Enan =
∑

k

(
− h̄2

2M

∂2

∂q2
k

+ 1
2Mωk

2qk
2 +Eknqk

)
an. (11.6)

Moreover, Eq. (11.6) can be rewritten in the following convenient form:

Enan =
∑

k

(
− h̄2

2M

∂2

∂q2
k

+ 1
2Mωk

2(qk − Ekn

Mωk
2 )2 − Ekn

2

2Mωk
2

)
an. (11.7)

Introducing q0
′ = Ekn

Mωk
2 and denoting the non shifted oscillatory eigen-

value as E
′ , one readily obtains:

E
′
nan =

∑
k

[− h̄2

2M

∂2

∂q2
k

+ 1
2Mωk

2(qk − q0
′)2]an, (11.8)

where the eigenvalues simply find as:

En = E
′
n +
∑

k

Ekn
2

2Mωk
2 , (11.9)

and the eigenfunctions are:

an = 1√
q0

φ(osc)
n (qk − q

′
0

q0
), (11.10)

where q0 = ( h̄
Mωk

)1/2.
In Eq. (11.10), φ

(osc)
n (ξ) are Chebyshev-Hermite polynomials:

φ(osc)
n (ξ) = 1√

2nn!π1/2
Hn(ξ)e−ξ2/2. (11.11)

Now let us calculate the classical occurrence probability for the electron
to propagate from the n-th to the n+1 site. For the calculation, we use
the first order perturbation theory by omitting only lattice vibrations and
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assuming that j (hopping integral) is a small parameter, perturbing the
electronic amplitude an:

ih̄∂an
∂t = −gxn(t)an − jan+1;

ih̄
∂an+1

∂t = −gxn+1(t)an+1 − jan.
(11.12)

Taking into account that at the initial moment t0, an = 1 and an+1 = 0,
and introducing the coincidence moment tc at which xn(tc) = xn+1(tc),
the solution of the system given in Eq. (11.12) can be found as:

an+1 = − j

ih̄
exp{ ig

h̄

∫ t

tc

xn+1(t)dt}×
∫ t

t0
exp{ ig

h̄

∫ t

tc

(xn(t′′)−xn+1(t′′))dt′′}dt′,
(11.13)

or in terms of the normal coordinates:

an+1 = − j

ih̄
exp{ ig

h̄

∫ t

tc

∑
k

( 2
N

)
1
2 qk(t)sinαkndt}×

∫ t

t0
exp{ ig

h̄

∫ t

tc

∑
k

( 2
N

)
1
2 qk(t′′)sin(k

2 )sin(k

2 +αkn)dt′′}dt′,
(11.14)

where, αkn = (kn+ π
4 ).

For further evaluation, we use a number of the following assump-
tions suggested in Ref. [200]. The argument of the first path integral in
Eq. (11.14) is assumed to be zero as an average of all possible given classi-
cal trajectories between successive coincidence points. Also, the spacing
in time between consecutive coincidence points is assumed to be large
comparing with the transition time. Thus, one can replace the integra-
tion over time limits in the second path integral by integration from minus
to plus infinity. The phase of the normal coordinate in the region around
tc is assumed to be stationary, so that the time variation of the qk can be
considered as a linear function near the coincidence point which allows
factorisation in terms of time and velocity. Thus, we obtain:

an+1 = − j

ih̄

∫ +∞

−∞
exp{ ig

2h̄
(ẋn(t)− ẋn+1(t))(t− tc)2}dt, (11.15)

and, after integration over the time variable, we get:

an+1 = −j

i
e− iπ

4

( 2
h̄(ẋn(t)− ẋn+1(t))

) 1
2

. (11.16)

The transition probability of an inter-site jump, n > n+1, which occure
in a single coincidence event is:

W(n→n+1) = 2πj2

h̄

1
|ẋn − ẋn+1| = πj2

h̄

(2N)1/2

q̇k(t)sin(k
2 )sin(k

2 +αkn)
. (11.17)
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If W(n→n+1) is a probability to jump per second, then the probability to
jump for a coincidence event can be expressed as :

Rnon−ad = PcW(n→n+1), (11.18)

where Pc is probability that the coincidence will occur.
Further, Pc is calculated by using the standard description of the ther-

mal average function:

Pc = Fc

Zc
=∫

...
∫

eβ(HL+gxn)[δ(xn − xn+1)ẋrdt][δ(ẋn − ẋn+1 − ẋr)dxr]dx1...dxN ddẋ1...dẋN∫
...
∫

eβ(H−gxn)dx1...dxN dẋ1...dẋN

,

(11.19)
where, β = 1

kBT .
To evaluate Eq. (11.19), we use the standard Euler-Poisson integral 1,

and we first evaluate the integration over the velocity variables of Pc:

Fẋ = ...

∫ ∫
...e

−Mβẋ2
p

2 e
−Mβẋ2

p+1
2 δ(ẋp − ẋp+1 − ẋr)ẋrdt...dẋpdẋp+1...

(11.20)

Here we use the delta function filter property:
∫

δ(x−y)f(x) = f(y) and
get the following expression:

Fẋ =
√

π

Mβ
e

−Mβẋr
4 ẋrdt. (11.21)

Next, the denominator of Eq. (11.19), we find as:

Zẋ = ...

∫ ∫
...e

−Mβẋ2
p

2 e
−Mβẋ2

p+1
2 ...dẋpdẋp+1... = 2π

Mβ
. (11.22)

Finally, dividing Eq. (11.21) by Eq. (11.22) we get:

Pu̇ =

√
Mβ

4π
e

−Mβẋr
4 ẋrdt. (11.23)

To obtain probability per time unit one needs to divide Pẋ by dt.
Then multiplying Pu̇ by W(n→n+1) in the limit |ẋn − ẋn+1| → |ẋr| and
integrating over all possible values of ẋr one gets:

PẋW(n→n+1) =
∫ √

Mβ

4π
e

−Mβẋr
4

2πj2

h̄
dẋr = 2πj2

h̄
. (11.24)

1In derivations, we often use Euler-Poisson integral with real and complex coefficients:∫
e−(ax2+bx+c)dx =

√
π
a e

b2−4ac
4a ,

∫
e−iax2

dx =
√

π
a e− π

4
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To evaluate integration over the coordinate variables xn it is more
convenient to use normal mode representation which is already introduced
above:

Pqk =
Fqk

Zqk

=

∫
...
∫

e
β
(∑

k

1
2 Mωk

2qk
2+gqk sin αkn

)
δ{( 2

N
)

1
2 (
∑

k
qk sinαkn −

∑
k

qk sinαk(n+1))}dq1...dqN

∫
e

β

(∑
k

1
2 Mωk

2qk
2+( 2

N
)

1
2 gqk sin αkn

)
dq1...dqN

.

(11.25)
Using the following property of the delta function: δ(x) = 1

2π

∫+∞
−∞ eixγdγ

we can rewrite the numerator of (11.25) in the following way:

δ [xn −xn+1] =
∫ +∞

−∞
ei( 2

N )
1
2 (
∑

k
qk sinαkn−∑

k
qk sinαk(n+1))γdγ. (11.26)

Evaluation of all parts readily leads to:

Fqk = 1
2π

∏
k

(
2π

βMω2
k

) 1
2
∫ −∞

+∞
exp

(∑
k

((iγ − gβ)sinαkn − iγ sinαk(n+1))2

NMω2
k

β

)
dγ;

(11.27)

Zqk
=
∏
k

(
2π

βMω2
k

) 1
2
(∑

k

(gβ sinαkn)2

NMω2
kβ

)
. (11.28)

Dividing the given quantities, we obtain the following relation:

Pqk = 1
2π

∫ −∞

+∞
exp

(∑
k

((iγ − gβ)sinαkn − iγ sinαk(n+1))2 − (gβ sinαkn)2

NMω2
k

β

)
dγ.

(11.29)
Next, we pair terms with opposite sights of k and using trigonometric

relations, simplify Pqk
to the following form:

Pqk
= 1

2π

∫ −∞

+∞
exp

(∑
k

−2(γ2 + iγβ)(1− cosk)
NMω2

kβ

)
dγ. (11.30)

For further evaluation, we introduce the following replacement: ε =
γ + ig

2kT . Changing integration limits can be easily done by considering
that the real part of the integration limit is infinity although the imag-
inary coefficient is a finite number. Thus, we can write: limγ→±∞ =
(γ ± ig2β2

2 ) = ±∞, and

Pqk
= 1

2π

∫ −∞

+∞
exp

(∑
k

−(4ε2 +g2β2)(1− cosk)
2NMω2

kβ

)
dε. (11.31)
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Then, introducing the quantity Ea either for discrete number of k or in
the limit when summation over k can be replaced by integration we get:

Ea = 1
N

∑
k

g2(1− cosk)
NMω2

k

= 1
N

∫
g2(1− cosk)

NMω2
k

dk. (11.32)

Also, one can write :

Pqk
= 1

2π

∫ −∞

+∞
e

(− 4ε2
g2β

Ea−Eaβ)
dε. (11.33)

Finally, integration over ε gives:

Pqk
= g

2π
( πβ

4Ea
)

1
2 e−Eaβ . (11.34)

Multiplying all quantities represented by (11.24) and (11.34) one finally
gets the following relation for the small polaron transition rate in the
non-adiabatic regime:

Rnon−ad = W(n→n+1)Pq̇k
Pqk

= j2

h̄
( πβ

4Ea
)

1
2 e−Eaβ . (11.35)
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