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Abstract

Short and well defined promoters are essential for advancing cyanobacterial biotechnology.

The heterocyst of Nostoc sp. is suggested as a microbial cell factory for oxygen sensitive

catalysts, such as hydrogenases for hydrogen production, due to its microoxic environment.

We identified and predicted promoter elements of possible significance through a consen-

sus strategy using a pool of heterocyst-induced DIF+ promoters known from Anabaena sp.

PCC 7120. To test if these conserved promoter elements were crucial for heterocyst-spe-

cific expression, promoter-yfp reporter constructs were designed. The characterization was

accomplished by replacing, -35 and -10 regions and the upstream element, with well

described elements from the trc promoter of Escherichia coli, which is also functional in Nos-

toc sp. From the in vivo spatial fluorescence of the different promoter-yfp reporters in Nostoc

punctiforme ATCC 29133, we concluded that both the consensus -35 and extended -10

regions were important for heterocyst-specific expression. Further that the promoter

strength could be improved by the addition of an upstream element. We designed a short

synthetic promoter of 48 nucleotides, PsynDIF, including a consensus DIF1 sequence, a 17

base pair stretch of random nucleotides and an extended consensus -10 region, and thus

generated the shortest promoter for heterocyst-specific expression to date.

Introduction

Cyanobacteria are promising as platforms for biological production of fuels and other chemi-

cals. Their fast growing photosynthetic nature makes them ideal from a sustainable production

perspective. Within the vast and diverse cyanobacterial phylum, heterocyst forming cyanobac-

teria is a group of fascinating multicellular photosynthetic organisms that are able to differenti-

ate a subset of their cells into specialized compartments dedicated to fixation of atmospheric

nitrogen, called heterocysts. The interior of the heterocyst is kept micro-aerobic to let the oxy-

gen sensitive nitrogenase, the enzyme-complex responsible for the nitrogen fixation, operate.

The development of the nitrogen fixing cells is a complex process where environmental stimuli
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and a large number of signaling substances interact and give raise to the characteristic, semi-regu-

lar pattern of heterocysts along the filament. The process starts when no source of combined

nitrogen is available and is coordinated by the global nitrogen transcription regulator NtcA [1].

Another key factor in the differentiation process is the regulator HetR, which is activated by

NtcA. HetR regulates a large number of genes involved in the differentiation process and is

known to be a major regulator in heterocyst development [2–4]. The differentiation of a vegetative

cell into a heterocyst results in drastic metabolic changes as well as noticeable morphological alter-

ations, such as the development of a thick cell envelope outside the outer membrane [1,5–8].

Heterocysts are interesting for production of biofuels and chemicals, as the unique cellular

environment should be well suited for heterologous expression of oxygen sensitive enzymes,

like hydrogenases [9–11]. To spare the cell from unnecessary metabolic burden caused by

expression of proteins within a non-suitable environment, it is crucial to have tools to express

a given protein solely in heterocysts. Up to this point, all heterocyst-specific metabolic engi-

neering approaches have been utilizing native and often very long and poorly characterized

promoter sequences found upstream of heterocyst expressed genes. Examples of this are the

heterocyst-inhibiting signaling peptide (PatS)-promoter [12], the alr3808-promoter [13,14],

the hepA-promoter [15] from Anabaena (Nostoc) sp. PCC 7120, and truncated versions of the

uptake hydrogenase promoter from Nostoc punctiforme ATCC 29133 (N. punctiforme) [16].

The usage of native, often several hundred nucleotides long, promoter sequences in bio-

technological applications is not optimal. Such native sequences are often heavily regulated

and part of the complex and multi-layered internal metabolic regulatory system, which can

give rise to unpredictable behaviors and unforeseen effects in the expression system. Naturally,

long pieces of DNA are also less convenient when the expression constructs are being assem-

bled, especially for large and more complicated constructs.

The shortest promoter known to render heterocyst-specific expression of heterologous genes is

the 70 nucleotides long native nsiR1-promoter (PnsiR1) from Anabaena sp. PCC 7120 [14]. This pro-

moter controls the transcription of the nsiR1 (nitrogen stress inducible RNA1), a sRNA induced

early in heterocyst development [17]. PnsiR1 is well studied and has been used in a promoter-fluores-

cence reporter system in Anabaena sp. PCC 7120 for detection of proheterocysts before any mor-

phological change specific to heterocyst are visible with microscopy [18]. The PnsriR1, as well as

alr3808-promoter, belongs to the to the DIF+ class promoters [14]. This is a family of promoters

associated with heterocyst-specific expression and contains the DIF1-motif [19] (consensus

sequence 5’-TCCGGA-3’) located at the -35 position relative the transcription start site (TSS).

The native PnsiR1 is shorter than many other promoters used for heterologous expression in

cyanobacteria, but still not as well defined as promoter sequences commonly used in synthetic

biology approaches in more traditional industrial organisms like Escherichia coli [20] and yeast

[21]. To improve and expand the metabolic engineering toolbox, and to address the lack of

minimal synthetic promoters for heterocystous cyanobacteria, we have in this work created

the shortest heterocyst-specific promoter to date. The promoter was constructed according to

synthetic biology principles using consensus architecture design [22]. This is a well-defined,

minimal promoter inspired by natural DIF+ class promoters. The synthetic nature of this pro-

moter ensures that is can be used without risk of unknown native regulation and due to its

short length, it is efficient to use in cloning processes and construct assembly.

Results and discussion

Design of a compact synthetic DIF+ promoter

We aligned 58 DIF+ class promoter regions from Anabaena sp. PCC 7120 [14] and graphically

represented it as a WebLogo [23] (Fig 1). Apart from the already reported DIF1 motif at position
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-35 (relative TSS) [19], we found a highly conserved AT-rich sequence pattern around the -10

region and TSS. This conserved sequence differs from the classical, SigA-associated -10 region

(5’-TATAAT-3’). The alignment revealed no conserved patterns upstream -35 or between the

-35 and -10 regions. We propose that the conserved heterocyst enhanced expression pattern from

the DIF+ class promoters should be an effect of conserved regions in the promoter sequences. The

lack of conserved sequence patterns upstream the DIF-motif suggests that a minimal promoter

sequence could contain all genetic information needed for heterocyst-specific expression. Based

on our observations, we designed a synthetic, 48 nucleotides long, ultra-compact promoter, Psy-

nDIF, by combining the DIF-motif at position -35 with the further downstream consensus

sequence from the alignment, making up an extended -10 region, spanning from -13 to TSS (Fig

2). To minimize the risk of including unknown regulation, the bases in the spacer region between

the -35 and -10 regions were chosen randomly, but the GC-content and number of nucleotides

were kept identical to the corresponding region in the heterocyst-specific NsiR1-core promoter

from Anabaena sp. PCC 7120 [14,17,18]. Upstream the DIF1 motif, 12 nucleotides were put as

spacer between promoter and the plasmid backbone.

Expression pattern of short synthetic DIF+ promoters in N. punctiforme
To elucidate if our minimal synthetic DIF+ promoter had retained the heterocyst-specific

expression pattern typical for the native DIF+ promoters, we designed a promoter fluorescence

Fig 1. Consensus sequences of -35 and -10 elements of 58 DIF+ promoters. Alignment of 58 DIF+ promoter sequences, from 40nt downstream to 120nt upstream of

TSS, identified by Mitschke et al [14]. The result is presented by the weighted sequence logo (WebLogo 3.0) [23] and conserved regions at -35 and -10, as well as the

transcription start site (TSS) are indicated.

https://doi.org/10.1371/journal.pone.0203898.g001
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reporter construct for in vivo detection. The PsynDIF was put upstream of the gene eyfp, which

encodes a yellow fluorescent protein (YFP), together with the cyanobacterial synthetic ribo-

somal binding site RBS� (“RBSstar”) [24] in the self-replicating shuttle vector pSAWyfp (cre-

ated in this work, see Materials and methods and S1 Fig), resulting in the SynDIF-pSAW

plasmid. To be able to resolve the importance of the consensus regions in the synthetic pro-

moter, we developed two similar constructs where the -35 and -10 regions of the PsynDIF were

respectively exchanged to the corresponding regions from the Ptrc1O promoter, with a SigA-

typical -10 region, known to be constitutively expressed in heterocysts and vegetative cells of

N. punctiforme [25]. The two promoters were included in fluorescence reporter plasmids simi-

lar to SynDIF-pSAW, resulting in plasmids -10Ptrc-SynDIF-pSAW and -35Ptrc-SynDIF-

pSAW. The three plasmids, as well as a promoterless control plasmid, were electroporated into

N. punctiforme.
After 12 h of combined nitrogen starvation, the expression patterns from the three pro-

moter variants were investigated by fluorescence confocal microscopy. Representative fila-

ments from each strain were imaged and can be seen in Fig 3. The strain bearing the SynDIF-

Fig 2. Schematic representation of the promoter elements of the minimal synthetic promoter, PsynDIF. Transcription start site (TSS), extended -10 region, spacer

region (arrow) and -35 region are indicated. Consensus sequences from the alignment of 58 DIF+ promoters used in the design of the minimal promoter are depicted as

WebLogos [23] below the promoter.

https://doi.org/10.1371/journal.pone.0203898.g002

Fig 3. Design of SynDIF reporter constructs and YFP expression along filaments of Nostoc punctiforme 12 hours after removal of combined nitrogen. Schematic

representations of the synthetic promoter-reporter constructs, (A) SynDIF, (B) -10Ptrc-SynDIF and (C) -35Ptrc-SynDIF are shown to the left. Black colored letters

indicates bases changed from the SynDIF. Representative confocal fluorescence images of N. punctiforme filaments are shown with fluorescence from the three

promoter-YFP constructs in yellow (530-540nm), and autofluorescence in red (600-700nm). Heterocysts, identified by the reduced autofluorescence, are indicated by

stars.

https://doi.org/10.1371/journal.pone.0203898.g003
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pSAW plasmid (SynDIF strain) showed clear YFP fluorescence restricted to heterocysts, estab-

lishing our minimal synthetic promoter as heterocyst-specific in N. punctiforme. After 24 h of

nitrogen starvation, twenty heterocysts from three individual cultivations of the SynDIF strain

were identified by morphology and reduced autofluorescence. In a second step, these hetero-

cysts were investigated for YFP fluorescence. All of the investigated heterocysts, in total 60,

were confirmed to have drastically higher fluorescence then the 5 closest cells on each side (S1

File), similar to the representative picture in Fig 3. An overview image of multiple filaments

can be found in supporting information, S2 Fig. The PsynDIF is, to the best of our knowledge,

the shortest promoter ever described to provide heterocyst-specific expression of a reporter

gene and its fully synthetic nature makes it truly unique. In the strain bearing the -10Ptrc-Syn-

DIF-pSAW plasmid (SynDIF-10Ptrc strain), distinct YFP fluorescence could be seen in both

heterocysts and vegetative cells with no distinguishable difference in fluorescence level

between the two cell types. It is thus clear that a DIF1-motif in the -35 position is not by itself

enough to render heterocyst-specificity to a promoter sequence. Our result highlights the

importance of the -10 region for the heterocyst-specific behavior of DIF+ promoters. The

strain harboring the -35Ptrc-SynDIF-pSAW plasmid (SynDIF-35Ptrc strain) did not display

any detectable YFP fluorescence in any cells, indicating that the combination of the -35 region

from Ptrc and our consensus extended -10 region does not serve as a functional promoter in N.

punctiforme. It is apparent that both the DIF1 palindrome and an appropriate -10 region are

crucial for the heterocyst-specific expression pattern from our synthetic DIF+ promoter. Fila-

ments bearing the promoterless control construct did not exhibit any detectable fluorescence.

When N. punctiforme is grown in ammonium supplemented media, the formation of hetero-

cysts is prevented, and under this condition the SynDIF strain showed only very low, irregular

fluorescence from YFP. This is in agreement with what has been reported earlier for native

DIF+ promoter-reporter constructs [18].

It has been shown previously, using native PnsiR1, that if the DIF1 palindrome of a DIF+ pro-

moter is exchanged with a restriction site, the heterocyst-specificity is lost [14]. It is not

unlikely that exchanging the -35 region of a promoter for a restriction site would severely affect

the binding properties of the RNA-polymerase and therefore repress the activity of the pro-

moter. This was the case when we changed the DIF palindrome into a sequence known as a

functional -35 region in Ptrc. No detectable increase in fluorescence compared to the promo-

torless control was detected in the SynDIF-35Ptrc strain upon nitrogen depletion (Fig 3). For

us, this indicated a nonfunctional promoter and the conclusion that the DIF palindrome was

solely the region needed for the heterocyst-specific expression pattern could not be drawn

from this experiment. Indeed, our results show that also the -10 region plays a vital role for the

expression pattern of DIF+ promoters.

The recognition of specific promoters and initiation of transcription are directed by sigma

factors, which form complex with RNA polymerase [26]. Heterocyst development is controlled

by a complex transcriptional regulon, in which at least three sigma factors, SigC, SigE and SigF

have critical roles [27,28]. Due to the found importance of the conserved -35 and -10 regions

of the SynDIF promoters for heterocyst specific expression, it is tempting to propose that one

of these sigma factors might be the activator of DIF1 motif promoters. However, there are

without doubt also possible candidates among the other ten sigma factors in N. punctiforme
[29] and among the various other transcriptional regulators involved in heterocyst develop-

ment and metabolism [30].

Based on our results we suggested that the heterocyst specific fluorescence of the SynDIF

strain, detected at 12 hours after combined nitrogen depletion, was caused by an increase of

eyfp transcription. However, the mechanism behind the increased level of fluorescence was

not revealed by our experiment. Still there were questions if the intense fluorescence originated

Synthetic minimal promoters in cyanobacteria
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from a lasting enhancement of transcription from the PsynDIF, or from a transient activation of

the promoter at an earlier stage of heterocyst differentiation, that could appear as a strong fluo-

rescence signal at 12 hours after combined nitrogen depletion due to an accumulation of YFP.

To closer investigate the expression from PsynDIF upon nitrogen step-down, the transcript

level of eyfpwas investigated by RT-qPCR. Twelve hours after nitrogen depletion of the Syn-

DIF, a 10 fold increase in eyfpmRNA levels compared to the levels at 0 h was observed (Fig 4).

This result suggest that the observed increase of YFP in heterocyst is not a result of an early

transient expression of mRNA resulting in high levels of the YFP protein 12 h after nitrogen

depletion, but indeed of a lasting increase in mRNA level. Heterocyst-specific fluorescence

from a PDIF-native-GFP strain of N. punctiforme was previously reported as early as five hours

after nitrogen step-down [13]. Also, the transcript of a gene regulated by the native nsiR1-pro-

moter, was detected as early as three hours after nitrogen-depletion and the abundance level of

this transcript was constant from three to 12 hours after nitrogen depletion [18]. To investigate

the YFP expression from the PsynDIF throughout the development process, single filaments

were monitored by confocal microscopy from the time of nitrogen deprivation and 48 h for-

ward. Images of a representative filament at 6, 12, 24 and 48 h can be seen in supplementary

information (S3 Fig). At 48 h, heterocysts were still showing clear YFP expression. The YFP

variant used in this work (EYFP, see Materials and methods) has been established to have an

Fig 4. RT-qPCR analysis of the eypf transcript levels in Nostoc punctiforme engineered strain SynDIF at 0 and 12 h after nitrogen step down. Fold change

in transcripts levels are shown as grey bars. Values are normalized to the 0h eyfp transcript level and 16S ribosomal RNA was used as reference gene. Fold

change in transcript level was calculated by using CFX manager1 (Bio-Rad) software, which is based on the 2-ΔΔCt method [32]. Three biological and three

technical replicates were used for each sample and error bars indicate standard error of mean from biological replicates.

https://doi.org/10.1371/journal.pone.0203898.g004
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in vivo half-life of 12.8 h in a cyanobacterial host [31]. The limited in vivo half-life, together

with the unmistakable YFP fluorescence in mature heterocysts 48 h after nitrogen deprivation,

is a clear indication that the PsynDIF-activity is maintained also in later stages of heterocyst dif-

ferentiation, confirming its usefulness for biotechnical applications.

Altering expression level by addition of native upstream region

The sequence immediately upstream the -35 region is known to be important for transcription

initiation and regulation. To study the effect of an upstream element (UE) on our synthetic

minimal promoter, we chose a stretch of 35 base pairs upstream the DIF1 motif in the native

nsiR promoter and employed it immediately upstream the DIF1 motif in PsynDIF. The resulting

native/synthetic-hybrid promoter, PUEsynDIF (Fig 5A), was utilized in the same reporter con-

struct as the minimal promoters, resulting in the UESynDIF-pSAW plasmid. After transfor-

mation into N. punctiforme, filaments were investigated for cell specific fluorescence. Also in

this strain, YFP fluorescence was observed in heterocysts 12 h after combined nitrogen deple-

tion (Fig 5B), confirming the function and cell specificity of the native/synthetic-hybrid pro-

moter. Above 90% (91.7% average between three independent cultivations) of the heterocysts

in this strain where confirmed to have drastically higher YFP fluorescence then the 5 closest

cells on each side 24 h after nitrogen starvation (S1 File). The fluorescence level in fluorescing

heterocysts from the hybrid promoter strain, as measured with quantitative flow cytometry,

Fig 5. Design of the UESynDIF reporter construct and YFP expression along filaments of Nostoc punctiforme 12 hours after removal of combined nitrogen.

(A) Schematic representation of the PUEsynDIF-EYFP construct. PUEsynDIF is a version of the PsynDIF with an additional upstream element (UP element) from the

native Anabaena sp. PCC 7120 nsiR1-promoter. (B) Representative confocal fluorescence images of a N. punctiforme filaments carrying the UESynDIF-pSAW

plasmid. Fluorescence from YFP (530-540nm) is shown in yellow (left) and autofluorescence (600-700nm) is shown in red (right). Heterocysts with reduced

autofluorescence are indicated by stars.

https://doi.org/10.1371/journal.pone.0203898.g005
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was significantly higher than the fluorescence from the SynDIF minimal synthetic promoter

construct (Fig 6). This result, together with the confocal data, indicates that an upstream ele-

ment can be utilized to alter the level of heterocyst-specific accumulation of YFP-protein from

DIF+ promoter constructs. In the case of our minimal synthetic promoter, we show that the

addition of an upstream element can enhance the expression level while the heterocyst-speci-

ficity is, to a high degree, preserved.

Conclusions

In this work we use consensus sequences of core promoter elements to build a minimal syn-

thetic promoter for heterocyst-specific expression. This promoter gives an approximate 10

time increase in expression 12 hours after the start of heterocyst differentiation. This well char-

acterized promoter expands the potential for cyanobacterial biotechnology and is of special

importance for expression of oxygen intolerant enzymes in a photosynthetic host organism.

This work provides fundamental understanding of the promoter elements of a core promoter

and adds to the knowledge concerning the importance of the cooperation of -35 and -10

regions, and the usefulness of upstream element to enhance the expression level. From recent

work by Elhai and Khudyakovit [33], it can be concluded that the DIF1 motif is conserved in

the upstream regions of genes involved in heterocyst differentiation in a large number of cya-

nobacteria. Although the cell specificity of DIF+ promoters have only been investigated in

Anabaena sp. PCC 7120 and Nostoc punctiforme ATCC 29133, the SynDIF promoters are of

Fig 6. Quantitative analysis of heterocyst-specific promoter activities in Nostoc punctiforme cultures, 12 hours after removal of combined nitrogen. Mean value of

YFP fluorescence intensity per heterocyst in strains carrying SynDIF-pSAW and UESynDIF-pSAW plasmids. YFP fluorescence intensity data acquired from Merck

Amnis FlowSight was analyzed using IDEAS software. The data represent mean ± SD of triple measurements of three independent cultivations.

https://doi.org/10.1371/journal.pone.0203898.g006
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potential interest for heterocyst-specific protein expression in cyanobacteria beyond these two

model strains.

This work has expanded the available toolbox for heterocyst-based biotechnology. The

developed promoters will be especially useful in bio-hydrogen production from heterocystous

cyanobacteria, an area of importance in the search for sustainable energy-carriers for our

society.

Materials and methods

Promoters and plasmids construction

All oligonucleotide primers used in this work are listed in Table 1. The plasmid pSAW was cre-

ated in this work (S1 Fig). The plasmid fragment responsible for kanamycin resistance and

self-replication in Nostoc punctiforme and Escherichia coli was amplified from pSCR119 [34]

with 5’-phosphorylated primers SCR_F and SCR_R. Flanking BioBrick [35] terminators

BBa_b0052 and BBa_b1007 was introduced as overhangs on the primers. The resulting frag-

ment was blunt end ligated to a DNA fragment containing a ccdB-cassette [36] flanked by

restriction sites (ScaI, XbaI and SalI upstream, XhoI, PstI and KpnI downstream) resulting in a

self-replicating intermediate plasmid, pSAWccdb (S1 Fig). The ccdB fragment was obtained by

PCR amplification with primers ccdb_F/R using 50 ng of pPMQAK1 [25] as template. An eyfp
gene with terminator was amplified with primers Eyfp_F/R using PtrcO1-eyfp-bbaB0015-pS-

B1AC3 plasmid [25] as template, and transferred to the intermediate plasmid by restriction

digestion using PstI and XhoI, resulting in the pSAWyfp vector (S1 Fig).

The PsynDIF-RBS� and PUEsynDIF-RBS�, sequences were synthetized by GeneScript (Hong

Kong) and inserted in pSAW by restriction/ligation using XhoI and XbaI, creating the plas-

mids SynDIF-pSAW and UESynDIF-pSAW. For the full sequence of the synthesized

sequences, see supporting information (S2 File). The plasmids -35Ptrc-SynDIF-pSAW and

-10Ptrc-SynDIF- pSAW were generated by Site Directed Mutagenesis using PCR amplification

with outward-facing, non-overlapping 5’-phosphorylated primers followed by blunt end liga-

tion. The plasmid SynDIF-pSAW was used as template for the PCR reactions and the primers

used for the respective plasmids are listed in Table 1. The promoterless YFP-plasmid used as

control was created by restriction of pSAWyfp with SalI and XhoI, cutting away the ccdB-gene

while creating complementary overhangs, followed by ligation.

Table 1. Oligonucleotide primers used in this study.

Primer name Primer sequence (5’-3’) Plasmid/Experiment

SCR_F cgcaaaaaaccccgcccctgacagggcggggttttttcgcgtgccagctg-cattaatgaatcggccaa pSAW

SCR_R agaaatcatccttagcgaaagctaaggattttttttatctgaattcttttgttatat-cggcggaaagctttgag pSAW

ccdB_F gagctctctagacccggggtcgacactggctgtgtataagggagcct pSAW

ccdB_R ggtacctgcagcccgggctcgagacgcgtggatccggcttactaaa pSAW

Eyfp_F atcgctcgagatggtgagcaagggcgagga pSAW

Eyfp_R cgatctgcagtataaacgcagaaaggcccacc pSAW

DIF-10trc_F gggtgtgtaatatatttgatagatggatagag -10Ptrc-SynDIF-pSAW

DIF-10trc_R cacacccatcctaggatcacctccaga -10Ptrc-SynDIF-pSAW

DIF-35Ptrc_F acagataggtagatagtttagaaa -35Ptrc-SynDIF-pSAW

DIF-35Ptrc_R caaaaaacaatgcgttctaga -35Ptrc-SynDIF-pSAW

YFP_qPCR_F gctaccccgaccacatgaag qPCR experiment

YFP_qPCR_R gatgcccttcagctcgatg qPCR experiment

16S_qPCR_F gaataagcatcggctaactccg qPCR experiment

16S_qPCR_R ctacaccaggaattccctctgc qPCR experiment

https://doi.org/10.1371/journal.pone.0203898.t001
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Strains and growth conditions

The plasmids enlisted in the section “Promoters and plasmids construction” were transformed

in E. coli DH5α or E. coli DB3.1 (when ccdB resistance was required) by standard procedure

for conservation purposes and were transformed in Nostoc punctiforme ATCC 29133 by

means of electroporation as described elsewhere [16], obtaining the strains SynDIF, UESyn-

DIF, SynDIF-35Ptrc, SynDIF-10Ptrc and promoterless-YFP. These, were grown in 100 mL

Erlenmeyer flasks under 40 μmol photons s-1 m-2 of light at 25˚C with gentle agitation. BG11

supplemented with 2.5 mM NH4, 5 mM HEPES and 25 μg/mL kanamycin was used for growth

under normal conditions. For nitrogen step-down experiments, the cells were harvested by

centrifugation at 3500 rpm and resuspended in BG110 three times prior to a final resuspension

in BG110 supplemented with 25 μg/mL kanamycin.

Confocal microscopy

The N. punctiforme cultures where imaged using a Leica DM600 CS microscope and a HPX PL

Fluotar 40.0x0.75 dry objective. Samples were excited using a 488nm laser and emission was

detected between 530nm to 540nm (EYFP channel) and between 600nm and 700nm (auto-

fluorescence channel). Prior to imaging, the different strains of N. punctiforme were fixed on

solid media by spreading 20 μL of cell suspension onto 50 mL petri dish filled with BG110 0.8%

agarose media with kanamycin 25 μg/mL. Z-stacks and 3D-projections were acquired using

Lecia Application Suite Advanced Fluorescence (LAS AF) software, according to manufactur-

er’s instructions using recommended settings.

RT-qPCR

Triplicate cultures of the SynDIF strain and promotorless control strain were grown in

400 mL of BG11 medium, supplemented with 2.5 mM NH4, 5 mM HEPES and 25 μg/mL

kanamycin, at a light intensity of 40 μmol photons s-1 m-2 at 25˚C to an OD750nm of 0.6.

The cells were harvested at 0 and 12 hours and washed. RNA was isolated as previously

described [37]. The RNA quality and concentration were analyzed with the Experion Sys-

tem (Bio-Rad, Hercules, CA, USA) according to the manufacturer’s instructions. Prior to

RT reactions, RNA was treated with DNaseI (Thermo Fisher Scientific), and 1 μg of total

RNA was converted to cDNA using qScript cDNA synthesis kit1 (Quantabio) according

to the manufacturer’s protocol. Melting curve, primer efficiency and expression test were

performed by using CFX ConnectTM qPCR machine (Bio-Rad). YFP and 16S were used as

target and reference genes respectively. Primer efficiency value was considered to be reli-

able for further expression experiments if ranging between 95% and 110% [38]. Fold

change in expression level was calculated by using CFX manager1 (Bio-Rad) software,

which is based on the 2-ΔΔCt method [32]. Three biological and three technical replicates

were used for each sample. All primers used are listed in Table 1.

WebLogo

Sequences for 58 DIF+ promotors with the DIF1 palindromic sequence 5’-TCCGGA-3’
(one mismatch allowed) located close to the −35 were obtained from [14]. Sequences, stretch-

ing from 40 nt downstream to 120 nt upstream of the transcription start site of respective

DIF+ promoters, were aligned and the consensus sequences were generated and visualized by

WebLogo 3.0 [23].
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Cell preparation for imaging flow cytometry, Flowsight 1

N. punctiforme strains SynDIF and UESynDIF were cultivated in BG110 medium. 5 mL of cul-

ture (at an OD750nm of approximately 1.0) was collected by centrifugation 12 hours after nitro-

gen step-down. Cells were resuspended in 2 mL of dH2O and sonicated at 40 W, for 1 min,

and then cooled in ice-cold water. The samples were analyzed under microscope to ensure that

the majority of filaments were ruptured into single cells. The samples were then centrifuged at

1,000 x g, for 3 min, at 4˚C, to remove cell debris. Following centrifugation, cells were resus-

pended in 2 mL dH2O and incubated at RT.

Quantitative study of heterocyst-specific YFP fluorescence

A minimum number of 10,000 cells were sampled on an image-based flow cytometer (Merck

Amnis FlowSight) and analyzed using analysis software IDEAS. Single cells were identified

based on the first gating with area scatter and aspect ratio scatter parameters. Thereafter, the

cells were sub-gated with intensity scatter on YFP fluorescence channel, at 488nm channel (for

YFP, FITC, AF488, and GFP) isolating all cells displaying fluorescence in the said channel. In

order to isolate heterocysts, in case any other cells were displaying fluorescence in the YFP

channel, a third step gating was performed. Based on the 488nm channel data, the cells were

sub-gated with the intensity scatter on 745-800nm channel, indicating autofluorescence. The

targeted single heterocyst cells were selected based on significantly decreased autofluorescence

compared to vegetative cells.

Supporting information

S1 Fig. pSAW plasmid maps. Overview map of the plasmids pSAWccdb and pSAWyfp cre-

ated in this work. Plasmid backbone contains kanamycin/neomycin resistance gene npt and

origins of replication for Nostoc punctiforme (pDC1) and Escherichia coli (ColE1) from

pSCR119 [34]. Toxin encoding ccdB gene for plasmid maintenance and selection in Escheri-
chia coli [36] is expressed from the ccdB-operon. Terminators (brown) are named after their

respective Parts Registry association number [35]. Recommended restriction sites for cloning

are indicated.

(TIF)

S2 Fig. Overview confocal fluorescence image of multiple filaments of Nostoc punctiforme
SynDIF strain. 3D-projection of a Z-stack containing 91 slices of a 30μm deep sample volume.

Fluorescence images from YFP channel (530-540nm) and autofluorescence channel (600-

700nm) are overlaid.

(TIF)

S3 Fig. Monitoring of single filament during heterocyst development process. Confocal

fluorescence images of a representative filament of the SynDIF strain at 6, 12, 24 and 48 h after

nitrogen deprivation immobilized on agar plate. Autofluorescence (600-700nm) is shown in

red, YFP fluorescence (530-540nm) in yellow. Rightmost column shows overlaid images. In

the autofluorescence images, the arrows indicate a developing heterocyst.

(TIF)

S1 File. Investigation of YFP fluorescence in identified heterocysts of the SynDIF and

UESynDIF Nostoc punctiforme strains.

(DOCX)
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S2 File. Sequences of the promoter-RBS constructs. Full sequences of the promoter-RBS

designs synthesized for this study.

(DOCX)

S3 File. qPCR data. Used for Fig 4.

(XLSX)

S4 File. Data from quantitative study of heterocyst-specific YFP fluorescence.

(XLSX)
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