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Abstract

Background: With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of
the genome has been the subject of much debate. This has gained further impetus in recent years due to a rapidly
growing catalogue of genomic elements, based primarily on biochemical signatures (e.g. the ENCODE project). While
the assessment of functionality is a complex task, the presence of selection acting on a genomic region is a strong
indicator of importance. In this study, we apply population genetic methods to investigate signals overlaying several
classes of regulatory elements.

Results: We disentangle signals of purifying selection acting directly on regulatory elements from the confounding
factors of demography and purifying selection linked to e.g. nearby protein coding regions. We confirm the importance
of regulatory regions proximal to coding sequence, while also finding differential levels of selection at distal regions. We
note differences in purifying selection among transcription factor families. Signals of constraint at some genomic classes
were also strongly dependent on their physical location relative to coding sequence. In addition, levels of selection
efficacy across genomic classes differed between African and non-African populations.

Conclusions: In order to assign a valid signal of selection to a particular class of genomic sequence, we show that it is
crucial to isolate the signal by accounting for the effects of demography and linked-purifying selection. Our study
highlights the intricate interplay of factors affecting signals of selection on functional elements.

Keywords: Regulatory regions, Purifying selection, Selection efficacy, Non-coding DNA, Functional elements, Population
genetics
Background
The mammoth task of identifying functional elements in
the human genome began decades before the genomic era
and still continues today. Much of the pre-genomic efforts
were focused on the discovery and functional
characterization of protein coding genes, using linkage to
identify their locations, and experimental approaches,
often employing sequence disruption to evaluate function-
ality [1]. While thousands of protein coding genes had
already been discovered prior to the release of the draft se-
quence of the human genome [2, 3], this landmark event
represented a drastic acceleration in the identification of
both protein coding genes and non-coding elements, and
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provided a launchpad for further plans to identify add-
itional elements. The search for non-coding functional el-
ements started early on [4–6], but the release of the
human genome sequence provided much-needed impetus
to evaluate methods and technologies available for the
identification of functional elements. This effort culmi-
nated in the form of the ENCODE Project Consortium,
which undertook a comprehensive annotation of func-
tional elements in the human genome. The rapid advances
in DNA sequencing technology and genomic assays in the
past decade allowed for the release of the aforementioned
annotation in 2012 [7]. ENCODE utilised a primarily bio-
chemical approach to map functional elements; using such
signatures as methylation, DNase sensitivity and transcrip-
tion factor occupancy to determine regions in the genome
displaying potential functionality. These biochemical sig-
natures, while indicative of activity at a site or region, can
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also occur stochastically [8], and so, cannot be regarded as
indisputable evidence of functionality [9]. With this in
mind, the database of elements provided by ENCODE still
contain a promising list of candidates to be evaluated for
functionality.
Comparative genomics approaches have also been used

to identify functional elements, through the search for pat-
terns of conservation in multi-species sequence align-
ments [10]. Conserved sequences exist due to a lowered
substitution rate; caused by the removal of deleterious
mutations from regions subject to purifying selection by
virtue of their biological importance. These methods have
also been used to provide an estimate for the proportion
of functional sites in mammalian genomes [10]; estimated
at ~5%. This estimate is drastically different to estimates
from the ENCODE Project, which range between 20% and
80%, based on biochemical signatures [7]. Since the publi-
cation of the ENCODE results, these estimates have been
disputed, often due to the discrepancy with estimates
based on evolutionary constraint and definitions of func-
tionality [11]. While biochemical signatures cannot be
held up as sole evidence of function, comparative genomic
estimates of function are also not without caveat. A major-
ity of highly conserved regions detected by comparative
genomics investigations have yet to be verified experimen-
tally, through biochemical or functional assays [12]. This
need is illustrated by the ultra-conserved elements [13],
which are genomic regions longer than 200 bases that
maintain 100% identity in human, rat and mouse ge-
nomes. While some of these regions have been assigned
functionality – e.g. transcriptional enhancers [14] – most
are still functionally a mystery [15]. Since the release of
the ENCODE data, additional conserved regions have
been assigned functions; however, this is mainly due to the
expansion of annotated genomic space [12]. Still, this pro-
vides support for an integrated approach, which incorpo-
rates multiple strategies. Another major drawback of
comparative genomics is its inability to detect lineage-
specific constraint [9, 16]. These methods are better suited
for detecting functional regions that have been under se-
lective pressure for very long periods of evolutionary time,
in contrast to detecting functional regions affected by re-
cent selective pressure [17] and high rates of turnover [9,
18]. Population genetic methods have been used to ad-
dress the former case, in examining regions of the genome
under recent selection. Ward and Kellis [16] estimated
that a further 4% of the genome was under lineage-
specific constraint in humans. ENCODE-annotated ele-
ments have also been implicated as showing signals of
purifying selection [19, 20]. The patterns of variation un-
covered by population genetic methods, however, are af-
fected both by selection and by demographic factors [21].
The use of a selection-neutral reference can be used to
control for the effects of demography [21, 22]. Additional
confounding factors such as linked-purifying (or back-
ground) selection [23, 24] may also increase the difficulty
of elucidating valid signals of selection on elements in the
genome. Indeed, Hernandez et al. [25] found selection sig-
nals in conserved non-coding regions and noted that the
proximity of these regions to exons may have been re-
sponsible for these observations.
In this study we undertook a comprehensive analysis of

patterns of variation in regulatory elements of the human
genome among a diverse dataset of populations from
across the world, with multiple sub-Saharan Africans, in-
cluding Khoe-San populations that capture the deepest
split among humans (>100 kya) compared to other
African and non-African groups [26]. In addition, we re-
lied on a selection-neutral genomic reference and the
spatial organisation of elements to control for the effects
of demography and linked-purifying selection, respect-
ively. Our results indicate differing selective pressures
across regulatory elements; depending as well on proxim-
ity to coding sequence.

Results
Signs of demography
When examining the results for the non-annotated class,
we observed the well-known reduced diversity in non-
Africans, which has been attributed to the Out-of-Africa
bottleneck [27]. The African populations (θπNKS= 0.00101,
θπSKS = 0.00102, and θπWAF= 0.00095) all exhibited
higher levels of diversity in comparison to the non-African
populations (θπAMR= 0.00072, θπSAS = 0.00074, and
θπEUR = 0.00071) (Fig. 1 and Additional file 1: Figure S1;
Table 1 for details of populations). Tajima’s D for the non-
annotated class appeared to be consistent with expectations
from the general features of the populations’ demographic
histories, with a negative Tajima’s D in African populations
(DNKS = −0.451, DSKS = −0.482, and DWAF = −0.458) reflect-
ing population expansion, and a positive Tajima’s D in non-
Africans (DAMR = 0.126, DSAS = 0.105, and DEUR = 0.149)
(Fig. 1 and Additional file 1: Figure S2) reflecting a strong
bottleneck that overshadows a recent expansion [28]. Due
to the apparent delineation between African (AFR) and
non-African (N-AFR) populations, the combined averages
for the two broad groupings were used primarily, with
population-specific results shown where necessary.

Overall levels of diversity and selection in regulatory
regions
For protein coding genes, the coding sequence (CDS)
was, invariably, the most conserved (least diverse) cat-
egory in the genome by far (θπAFR = 0.00050, θπN-AFR
= 0.00036), followed by the untranslated regions (UTR)
(θπAFR = 0.00074, θπN-AFR = 0.00053). Intronic se-
quence also showed a noticeable decrease in diversity
(θπAFR = 0.00091, θπN-AFR = 0.00065, Fig. 2a, Table 2).



Fig. 1 Estimated means and 95% confidence intervals of θπ and Tajima’s D in the six global pools for non-annotated regions (NON-ANN), protein
coding sequence (CDS), predicted promoter regions (PROMOTER_w_TSS), and the whole genome, denoting the clear delineation between
African and Non-African populations
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The genome segmentation classes exhibited varying pat-
terns of variation. Promoters showed several signs of be-
ing under purifying selection, with the lowest levels of
diversity compared to the non-annotated class (θπAFR =
0.00083, θπN-AFR = 0.00059), and the lowest values of
Tajima’s D (DAFR = −0.58245, DN-AFR = −0.03135). Pro-
moter flanking regions also showed similarly low levels of
diversity (θπAFR = 0.00084, θπN-AFR = 0.00060), but their
Tajima’s D estimates, while still significant, were not as
low (DAFR = −0.53822, DN-AFR = 0.02555). Enhancers were
slightly lower than the whole genome average for both
diversity (θπAFR = 0.00092, θπN-AFR = 0.00066) and
Tajima’s D (DAFR = −0.51041, DN-AFR = 0.06994); quite
similar to the intron class. Weak enhancers were signifi-
cantly less diverse compared to the non-annotated class,
but only just (θπAFR = 0.00097, θπN-AFR = 0.00070);
while only having significantly lower estimates of Tajima’s
Table 1 Description of sample groups

Global Pool (code) Population (code)

Northern Khoe-San (NKS) Ju/‘hoansi (JUH)

Northern Khoe-San (NKS) !Xun (XUN)

Southern Khoe-San (SKS) Karretjie (KAR)

Southern Khoe-San (SKS) Nama (NAM)

West African origin (WAF) Luhya (LWK)

West African origin (WAF) Yoruba (YRI)

admixed Indigenous American (AMR) Mexican ancestry

admixed Indigenous American (AMR) Peruvian (PEL)

European origin (EUR) Italian (TSI)

European origin (EUR) Northern & Weste
European ancestry

South Asian (SAS) Gujarati ancestry (

South Asian (SAS) Punjabi (PJL)
D in African populations (DAFR = −0.49004, DN-AFR =
0.09227). CTCF enriched regions were not significantly
different from non-annotated sequence for either diversity
(θπAFR = 0.00098, θπN-AFR = 0.00070) or Tajima’s D
(DAFR = −0.46795, DN-AFR = 0.11596) (Fig. 2a and b; Z-
scores provided in the figures).
The transcription factor (TF) classes, including

sequence-specific families, also showed significantly
lower levels of diversity than non-annotated sequence;
though it was more difficult to discern differences
among them than for the genome segmentation classes.
General TFs, however, showed signs of being under
stronger purifying selection with the lowest diversity es-
timates (θπAFR = 0.00088, θπN-AFR = 0.00063) and low-
est Tajima’s D estimates (DAFR = −0.550277, DN-AFR =
0.011069) among TF classes. The collective sequence-
specific TF and the BZIP classes were at the other end
Country Sample size

Namibia 5

Angola 4

South Africa 4

Namibia 5

Kenya 5

Nigeria 4

(MXL) USA 5

Peru 4

Italy 4

rn
(CEU)

USA 5

GIH) USA 4

Pakistan 5



Fig. 2 Estimated means and 95% confidence intervals of a θπ and b Tajima’s D in Africans and Non-Africans for genomic classes across the genome.
The threshold for significant difference to non-annotated sequence was set at p < 0.05 (Z < −1.96 or Z > 1.96). Details of the classes found in Table 2
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of the spectrum and only slightly lower than the whole
genome average in diversity estimates and Tajima’s D
(Fig. 2a and b). Using overall estimates, we could not ad-
equately separate the TF classes for intensity of purifying
selection, although we discuss later how we improved
the resolution among some of these TF classes.
While the results for genome segmentations and TFs

were relatively consistent across summary statistics, some
elements displayed conflicting results; such as DNase
hypersensitive regions (DHS), which have long been used
as a proxy for active chromatin due to the binding of regu-
latory factors [29, 30]. While Tajima’s D estimates for DHS
(DAFR = −0.52428, DN-AFR = 0.03731) showed significant
differences to non-annotated sequence, only the non-
African diversity estimate (θπAFR = 0.00097, θπN-AFR =
0.00069) was significantly different (Fig. 2a and b).
The neutrality index (NI), based on a McDonald–

Kreitman (MK) test, was also calculated as an additional
measure of selection. While the NI found varying levels
of purifying selection across the investigated elements
(2.5% – 15%), it was unable to discern significant differ-
ences between them; apart from the CTCF enriched re-
gions, which were noticeably lower (2.5%) than the other
classes (7.9% - 15%) (Additional file 1: Figure S3).

Influence of linked-purifying selection
We determined if the signal noted for the various non-
coding elements was caused by selection acting on those
particular regions, as opposed to a selection signal caused
by linkage to coding regions known to be under purifying
selection, i.e. linked-purifying selection. In order to separ-
ate these two factors, we examined whether the relative
locations of the elements influenced the estimates of the
summary statistics used in the search for selection acting
on these elements. We sought to roughly ascertain how
positionally associated the elements were by performing a



Table 2 Genomic classes used in the study

Category Code Category Description

CDS Protein coding sequence regions

UTR Protein coding untranslated regions

INTRON Protein coding intronic regions

DHS DNase hypersensitive regions

Genome Segmentations

PROMOTER_w_TSS Predicted promoter region including
transcription start site

PROMOTER_FLANK Predicted promoter flanking region

ENHANCER Predicted enhancer

W_ENHANCER Predicted weak enhancer

CTCF_ENRICHED CTCF enriched elements

Transcription Factor Binding Sites

TFGEN General transcription factors

TFCHR Chromatin-modifying transcription factors

TFSS Sequence-specific transcription factors

BHLH_FAM Basic helix-loop-helix protein family

BZIP_FAM Basic leucine zipper family

HMD_FAM Homeobox-domain family

NR_FAM Nuclear hormone receptor family

P53_FAM P53-like transcription factor family

WHTH_FAM Winged helix-turn-helix family

ZNF_FAM Zinc finger protein family

Reference Regions

NON_ANN Non-annotated regions at least 200
kb away from CDS

WHOLE_GENOME Whole genome average

Fig. 3 Pairwise correlations (Pearson’s r) for genomic classes on
chromosome 1

Naidoo et al. BMC Genomics  (2018) 19:95 Page 5 of 14
pairwise sliding-window correlation analysis [31] across
chromosome 1 (Fig. 3). The results obtained for chromo-
some 1 were corroborated by the analysis of an additional
chromosome (chromosome 10; Additional file 1: Figure S4),
as both chromosomes showed similar pairwise correla-
tions among the elements.
The TF classes were highly correlated (measured with

Pearson’s r), with general, chromatin-modifying and
sequence-specific binding regions overlapping with
each other substantially. The TF classes also correlated
highly with the promoters and enhancers, while show-
ing relatively lower correlations with the promoter
flanking regions. Weak enhancers only showed moder-
ate levels of correlation to TF classes and other genome
segmentations. The CDS, however, showed weak pos-
itional association with TF classes and genome segmenta-
tions, with low levels of correlation (chromosome 1: 0.0194
to 0.1962; chromosome 10: 0.0022 to 0.1627). The CDS did
show slightly greater correlation with UTR (chromosome 1:
0.3018; chromosome 10: 0.3019), introns (chromosome 1:
0.2024; chromosome 10: 0.2115), and DHS regions
(chromosome 1: 0.2825; chromosome 10: 0.2228).
Next, we assessed if that level of correlation in com-

bination with strong purifying selection on CDS was
enough to influence the results of the other elements via
linked-purifying selection. We investigated if the weak
positional associations to CDS were correlated with the
estimates of θπ and Tajima’s D of the other genomic
classes and found moderate negative correlation per
population (θπ: −0.4054 to −0.4877, Tajima’s D: −0.5211
to −0.6514; Additional file 1: Table S3). We also checked
if the total sizes (in bases) of the genomic classes were
correlated with the above summary statistics and found
only weak positive correlation for Tajima’s D (0.1465 to
0.2459) and almost no correlation for θπ (0.0603 to
0.0679; Additional file 1: Table S3). These findings indi-
cated that, while the sizes of the genomic classes had po-
tentially little to no effect, linked-purifying selection
stemming from CDS likely influenced the results of
other genomic classes. In order to quantify this effect,
we studied how linked-purifying selection affected
potentially neutral sequence in close proximity to CDS
(the most intense signal of purifying selection). θπ and
Tajima’s D were computed for discrete bins of non-
annotated sequence, at increasing distance from CDS, in
order to isolate the linked-purifying selection signal
(Additional file 1: Figures S5 and S6). In all populations,
θπ exhibited a consistent pattern, with significant reduc-
tions in diversity up to at least 7.5 kb away from CDS
(with non-African populations extending till 10 kb). The
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effect of linked-purifying selection on Tajima’s D, how-
ever, was not as clear. Nevertheless, it was still possible
to utilise both of these results, when we disentangled the
effects of purifying and linked-purifying selection.
Through demonstrating the effect of linked-purifying

selection on non-annotated regions in the vicinity of
genomic elements under strong purifying selection (i.e.
CDS), we were able to unhitch this effect from other
genomic elements in the same vicinity, in a quantifiable
manner. We computed θπ (Fig. 4 and Additional file 1:
Figure S7) and Tajima’s D (Fig. 5 and Additional file 1:
Figure S8) within discrete bins at increasing distance
from CDS for each of the elements under investigation.
These distributions (of θπ and Tajima’s D) were then
compared to distributions (of θπ and Tajima’s D) for
non-annotated sequence within each discrete bin, using
a Z-test. For both θπ and Tajima’s D, the distributions
for most elements (Figs. 4, 5, and Additional file 1:
Figures S7, S8) differed significantly from non-annotated
sequence, with stronger signals of selection especially
within 2.5 kb of CDS. We interpreted this higher inten-
sity, relative to non-annotated sequence at the same dis-
tance from CDS, as purifying selection independent of
the linked-purifying selection from CDS. From these re-
sults, we observed strong disparities in selection strength
between proximal (within 2.5 kb of CDS) and distal re-
gions; and also among the genomic classes included in
the study.
Efficacy of selection
Comparisons of regulatory elements to non-annotated
sequence were used to reduce the effects of demography
on the site frequency spectrum (SFS) summary statistics.
We were, however, unable to remove all effects; notably,
the signals were still affected by efficacy of selection.
This observation was indicated by noticeably lower sig-
nals of selection in non-African populations. In terms of
purifying selection, while the ability of selection to re-
move deleterious alleles from a population is dependent
on the selection coefficient, the product of the selection
coefficient and the effective population size (Ne) is de-
terminative of its efficacy [32]. The difference between
African and non-African populations was not as notice-
able in the overall estimates of θπ (Fig. 2a), but there
was some indication of it in the Tajima’s D estimates
(Fig. 2b). The effect became more pronounced in both
θπ and Tajima’s D, however, when displayed as a func-
tion of distance from CDS (Figs. 4, 5, and Additional file
1: Figures S7 to S44). There has been considerable de-
bate on whether the efficacy of selection has varied
across human populations [33–36]. Our results support
a lowered efficacy of selection in non-African popula-
tions. These results held across all populations, with very
consistent spatial patterns of diversity (Additional file 1:
Figures S9 to S44).

Discussion
We searched for signals of selection primarily among
predicted regulatory elements and regions bound by
TFs, and used two different approaches in order to sep-
arate the demographic and selection signals: (i) by com-
paring results from different population groups, known to
have experienced some differences in their more recent
demographic histories; and (ii) through the use of a “selec-
tion-neutral” reference, comprised of non-annotated re-
gions of the genome, which allowed us to control for the
effects of demography on each population group. In using
non-annotated sequence as a neutral reference, we assumed
that these regions were less constrained, evolutionarily. This
assumption appeared justified, as non-annotated sequence
contained the most diversity overall when screened, which
supported our use of the non-annotated class as a proxy for
neutral genomic regions.
Our overall estimates were corroborated by the results

of previous studies [16, 19, 20], where regulatory ele-
ments were shown to be under more constraint than a
neutral reference [19], a bootstrap-generated distribution
from a specified background [16] or the genome average
[20]. The observations of reduced diversity in specific re-
gions, while consistent with differential levels of purify-
ing selection across the various investigated elements,
were also consistent with differential levels of linked-
purifying selection. Linked-purifying selection is usually
invoked to describe the decrease in genetic diversity of a
non-deleterious region of DNA due to purifying selec-
tion acting on a linked region [23, 24]. Together with
genetic hitchhiking [37], linked-purifying selection is a
phenomenon where the consequences of selection at a
particular site can alter the population genetic dynamics
and the patterns of genetic variation of genetically linked
neutral (and non-neutral) sites that compose its genetic
background [38]. Unlike in genetic hitchhiking, where
the frequency of a neutral allele is altered due to its close
proximity to a region undergoing a selective sweep,
linked-purifying selection often purges neutral alleles
from a population due to their close proximity to dele-
terious mutations.
Despite the weak positional association of CDS to the

TF classes and genome segmentations, the level of asso-
ciation was high enough to influence the results of the
other genomic classes, highlighting the effect of linked-
purifying selection. In order to quantify this effect, we
used the neutral non-annotated sequence near CDS. We
demonstrated that this non-annotated sequence, unlike
our selection-neutral reference, was affected by its prox-
imity to regions under strong purifying selection; thus
allowing us to unhitch this effect from other elements in
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Fig. 4 θπ at varying distance from CDS for non-annotated sequence (red) versus a general TFs, b Promoters, c UTR, and d DHS, in African (blue)
and non-African (green) populations. Neutral reference (non-annotated sequence at least 200 kb away from CDS) is illustrated by the dotted line.
Shaded areas represent 95% confidence intervals, with Z-scores (non-annotated vs. annotation) shown per bin
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Fig. 5 Tajima’s D at varying distance from CDS for non-annotated sequence (red) versus a general TFs, b Promoters, c UTR, and d DHS regions, in
African (blue) and non-African (green) populations. Neutral reference (non-annotated sequence at least 200 kb away from CDS) is illustrated by
the dotted line. Shaded areas represent 95% confidence intervals, with Z-scores (non-annotated vs. annotation) shown per bin
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the same vicinity. Ward and Kellis [16] also showed a con-
sistent reduction in heterozygosity as genetic distance to
exons was decreased (Fig. 1c in [16]) when comparing
ENCODE-annotated to non-annotated elements. Their
signal was constant till roughly 0.01 cM, which on average
is comparable to the estimates we found.

Proximal versus distal regions
We observed strong disparities in selection strength be-
tween proximal (within 2.5 kb) and distal regions for
most genomic classes. This highlighted the importance
of elements found in close proximity to CDS (e.g. gen-
eral TFs [Figs. 4a and 5a]). Previously, some TFs were
shown to exhibit much stronger signals of selection at
proximal sites versus distal sites [19, 20]. Linked-
purifying selection extending from CDS was proposed as
one of the possible reasons for this pattern [19]. Hernan-
dez et al. [25] also invoked linked-purifying selection as
one of the main reasons for a trough in diversity extend-
ing from exonic regions. Our results show that while
linked-purifying selection significantly reduces diversity
surrounding CDS (as evidenced by the effect on poten-
tially neutral non-annotated sequence), this reduction
comprises only a portion of the effect, with regulatory
elements exhibiting further reduced levels, especially
within 2.5 kb of CDS.
While proximal regions provided the strongest signals,

distal regions (tested up till 100 kb) also showed signals
of purifying selection. We were able to show a strong
spatial component, with some elements displaying mod-
erate levels of purifying selection up to almost 100 kb
from CDS (e.g. promoter regions [Figs. 4b and 5b]),
while the signal for others (e.g. CTCF enriched regions
[Additional file 1: Figures S7D and S8D]) collapsed im-
mediately outside 2.5 kb of CDS. While these spatial pat-
terns tended to reflect overall estimates of diversity and
Tajima’s D (Fig. 2), they further allowed us to uncover dif-
ferences among TF classes that were difficult to differenti-
ate when looking at overall estimates. This was more
apparent for diversity estimates than for Tajima’s D, which
appeared to be less sensitive at these sample sizes. The
comparison of chromatin-modifying TFs to the P53 family
is a good illustration of this (Additional file 1: Figure S7 K
and P). While chromatin-modifying TFs displayed a much
greater decrease in diversity than P53 TFs within 2.5 kb of
CDS, this signal extended only till around 10 kb. In con-
trast, moderate signals of purifying selection associated
with P53 TFs extended till around 50-75 kb.

Non-coding genic regions
The UTR class, collectively comprised of the 5’-UTR
and 3’-UTR elements which play major roles in post-
transcriptional (3’-UTR) and translational regulation
(5’-UTR and 3’-UTR) [39], showed very strong signals
of purifying selection. Notably, the signal was roughly con-
sistent up to 7.5 kb (Figs. 4c and 5c). With close to 95% of
UTR sites falling within 7.5 kb of CDS (around 80% within
2.5 kb), the pattern we observed points to strong purifying
selection across much of the length of UTR elements.
While we did not measure estimates for the 5’-UTR and
3’-UTR regions separately, Mu et al. [19] noted a slightly
lower diversity for 3’-UTR elements. Introns also dis-
played moderate levels of purifying selection (Additional
file 1: Figures S7B and S8B), especially close to CDS.
While this signal decreased with increasing distance from
CDS, low levels were still maintained till at least 50 kb
into introns. Some degree of constraint is expected close
to exons due to the presence of splice sites and the extent
of selection presence may be due to the other functions
that introns play, including gene regulation [40, 41].

Support for genome segmentation accuracy
The genome segmentations used in this study were gener-
ated by integrating [42] two unsupervised chromatin state
annotation algorithms, ChromHMM [43] and Segway
[44]. The use of unsupervised methods allowed for en-
hanced discovery of potential functionality in the genome,
with less bias toward well characterized regions. With dis-
tinct signals of purifying selection at most of these pre-
dicted annotations, as well as notable differences in the
strength of selection among them, our results provide
additional support for the utility of these methods for
uncovering functional elements in the genome. Both pro-
moters and promoter-flanking regions exhibited more
constraint both proximally and distally than enhancers.
Notably, the spatial distribution of purifying selection on
promoters provided some indication of the importance of
distal promoter elements (Figs. 4b and 5b). Enhancers
(Additional file 1: Figures S7E and S8E), as well, were
under stronger selection than weak enhancers (Additional
file 1: Figures S7H and S8H). Overall estimates of diversity
and Tajima’s D at CTCF enriched regions were not much
different from the neutral reference (Fig. 2); a finding sup-
ported by similar results in [16]. This was surprising, since
CTCF has several roles, acting in transcriptional activation
and repression, as an insulator, and in chromatin structure
[45]; and has previously been found in conserved regions
[46, 47]. Once positionally de-constructed, however,
purifying selection was detected at proximal CTCF sites
(Additional file 1: Figures S7D and S8D). This potentially
reconciles the prior contradictory findings; indicating that
the multi-tasking CTCF may be evolutionarily relevant
primarily when binding close to protein coding regions.

Increased mutation rate in DHS?
While overall diversity and Tajima’s D estimates were
contradictory, primarily for African populations, the
comparison of DHS results proximal and distal to CDS
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provides some insight into this apparent contradiction.
Proximal DHS elements were moderately constrained,
but distal elements were significantly more diverse than
non-annotated sequence regions (Fig. 4d). Tajima’s D es-
timates, however, showed purifying selection acting on
DHS elements (Fig. 5d) till around 50 kb away (in African
populations). This discrepancy may be due to an increased
mutation rate at DHS sites. The ENCODE Project [7]
found that DHS elements showed reduced diversity in
humans and Thurman et al. [30] noted that this diversity
was linked to the mutation rate of the cell lines from
which the DHS elements were derived. When normalised
for mutation rate, it was shown that DHS elements from
only a few cell lines displayed reduced diversity. Sabari-
nathan et al. [48] was able to show substantially increased
mutation rate in DHS elements, particularly those bound
by TFs, due to reduced levels of nucleotide excision repair.
An increase in mutation rate, under the influence of re-
combination and selection would result in an increase of
θw over θπ [49], thus resulting in a negative value for
Tajima’s D. It should be noted, however, that the findings
in Sabarinathan et al. [48] were based on somatic muta-
tion rates, and so it is not clear how far this observation
extends to germline mutation rates. In addition the in-
creased mutation rate appeared to be a consequence of re-
duced levels of nucleotide excision repair in regions bound
by TFs, suggesting an increased mutation rate at TFs them-
selves, yet we did not find this effect in any of the TF clas-
ses. This may be explained by the presence of purifying
selection masking the effect of increased mutation rate.

Conclusions
In searching for signals of selection among regulatory el-
ements of the human genome, we demonstrated the im-
portance of isolating the signal by accounting for the
effects of demography and linked-purifying selection.
The signals we uncovered were strongest from elements
in close proximity to CDS, even after accounting for the
impact of linked-purifying selection. Apart from these
strong signals of purifying selection in regulatory ele-
ments proximal to CDS, we found variable distributions
of selection in distal regions. By conditioning on distance
to CDS, it became possible to discern differences in se-
lection among some TF classes, using small sample sizes.
Previously Khurana et al. [20] showed that when taking
overall estimates into account, very large sample sizes
were necessary to pick up clear differences between TF
classes. It is, however, expected that high levels of pos-
itional correlation between TFs from different families
would increase difficulty in discerning differences in selec-
tion (Fig. 3). The ability to find purifying selection acting
on annotations based on biochemical signatures generated
by the ENCODE project [7] again validated their efforts,
and increased support for integrated approaches to
identifying functionality in the genome. At the same time,
it became clear that the presence of an annotated element
was not always associated with a signal of purifying se-
lection. The differences in selection efficacy uncovered
between African and non-African populations, and the
difficulty in removing that demographic signal from our
data, is a consequence of the intricate relationship be-
tween selection and demography, where the ability of se-
lection to remove deleterious alleles from a population is
dependent on the demographic history of that population.

Methods
Genome sequence data
The SNP data (limited to autosomes only) used in the
study were sourced and extracted from samples in the
Complete Genomics diversity panel [50] (4 GIH, 5 MXL,
and 4 TSI), selected samples from the 1000 Genomes Pro-
ject [51] that were sequenced to high coverage and typed
on the Complete Genomics platform (5 CEU, 5 LWK, 4
PEL, 5 PJL, and 4 YRI), and from samples used in Schle-
busch et al. [26] (5 JUH, 4 KAR, 5 NAM, and 4 XUN) in
order to obtain coverage worldwide, with 4–5 individuals
per population (Table 1). The populations were assigned
to six global pools of nine individuals each – Northern
Khoe-San (NKS = JUH +XUN), Southern Khoe-San (SKS
= KAR+NAM), West African origin (WAF = YRI +
LWK), admixed Indigenous American (AMR= PEL +
MXL), South Asian (SAS =GIH + PJL), and European
(EUR = CEU+TSI), based on previous investigations of
population structure [26, 51, 52]. Levels of population
structure of the pooled populations were assessed with a
pairwise FST [53] (Additional file 1: Table S1), with all
pooled groups having pairwise FST values <0.0156. For use
in downstream analyses, human ancestral and derived al-
leles were determined for the variants found in the se-
quence data using three outgroups, Chimpanzee
(panTro4), Gorilla (gorGor3) and Orangutan (ponAbe2);
all downloaded from the UCSC genome browser (geno-
me.ucsc.edu/index.html). For further details on how the
data were processed, see Additional files.

Gene annotations
Gene annotations were obtained from Ensembl version
75 (GRCh37.p13; GENCODE 19) (ftp://ftp.ensembl.org/
pub/release-75/gtf/homo_sapiens/), with the exception
of the intron annotation, which was obtained separately
from the UCSC table browser (http://genome.ucsc.edu/
cgi-bin/hgTables). More specifically, genomic coordi-
nates were retrieved for CDS, UTR, and INTRONs.

Regulatory annotations
The regulatory element dataset was based on annotations
generated by the ENCODE Project [7]. Experimental data
from the three tier-1 cell lines (GM12878, H1-hESC, and

http://genome.ucsc.edu/index.html
http://genome.ucsc.edu/index.html
ftp://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/
ftp://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/
http://genome.ucsc.edu/cgi-bin/hgTables
http://genome.ucsc.edu/cgi-bin/hgTables
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K562) and the two tier-2 cell lines (HeLa-S3 and HepG2)
were used; including DHS peaks, genome segmentations,
and transcription factor binding site (TFBS) peaks. DHS
peaks [30], were accessed through the ENCODE Project
portal (www.encodeproject.org). Uniform TFBS peaks [54]
and predicted functional elements from the combined
genome segmentation [42] were downloaded from the
ENCODE section of the UCSC genome browser (uniform
peaks: http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19
&g=wgEncodeAwgTfbsUniform; genome segmentations:
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wg
EncodeAwgSegmentation).
Annotation files for DHS peaks, genome segmenta-

tions, and TFBS peaks were limited to chromosomes 1
to 22, and annotations for the five cell lines (GM12878,
H1-hESC, K562, HeLa-S3 and HepG2) were combined
and sorted. This was performed using BEDTools version
2.23.0 [55].
Transcription factor classes
TFBS peaks from a total of 136 TFs were used in the ana-
lyses (Additional file 2: Table S2). These included the initial
dataset used in the ENCODE integrative analysis [7, 54], as
well as additional TFs included prior to the March 2012
freeze. The TFBS peaks, which denote regions of DNA se-
quence shown to have been bound by specific TFs, were
derived from chromatin immuno-precipitation and high-
throughput sequencing (ChIP-seq) data [54]. Sequence-
specific TFs were classified by Gerstein et al. [54] into
families, based on the Luscombe dataset [56] and DNA
binding domain data from Interpro (https://www.ebi.ac.uk/
interpro/). This information was used in the current study,
with additional TFs classified based on the information
found in Gerstein et al. [54], and using the PANTHER Clas-
sification System (http://pantherdb.org/) [57, 58]. Families
with more than five representative TFs in the dataset were
also pooled into categories (Additional file 2: Table S2).
Decomposition of site frequency spectra
In order to uncover the presence of selection on genomic
elements, summary statistics were computed across the six
global population groups, which allowed us to examine
components of the SFS; whose features are often uti-
lised to examine how population-level processes shape
the genetic variation within a group. These included
average number of pairwise nucleotide differences, θπ
[59], as well as the neutrality test statistic, Tajima’s D
[60]. Estimates of means and standard error for Tajima’s
D, and θπ were generated using the weighted block
jackknife approach [61, 62], with a five megabase gen-
omic block consecutively removed at each iteration,
using custom python scripts.
Comparing neutral and non-neutral regions using a two-
sample Z-test
Selection, however, is not the only population-level
process capable of affecting the SFS. Demographic effects
also contribute substantially to shaping the SFS; working
in conjunction with selection to affect SFS summary sta-
tistics [21]. In order to use SFS summary statistics to un-
cover selection at genomic elements, it was necessary to
account for the effect of demography in shaping the signal.
This is a difficult task and much population genetic re-
search is aimed at this endeavour [21, 63]. Our approach
was to compute SFS summary statistics for a selection-
neutral reference as well; comprised of non-annotated se-
quence. This class was filtered to exclude the annotations
mentioned above, as well as non-coding RNA and pseudo-
genes (from Ensembl version 75), and high occupancy tar-
get regions [64]; while being at least 200 kb away from
protein coding sequence, and so would presumably be
under minimal selection, relative to the rest of the gen-
ome. While this would not completely remove all of the
effects of selection from the reference signal, by removing
the most intense signals of selection, we could provide at
least a conservative estimate for levels of selection on gen-
omic elements in comparison to the selection-neutral ref-
erence. A two-sample Z-test (genomic element versus
non-annotated sequence) for the SFS summary statistics
was conducted; providing a statistical measure (effect size)
of the level of selection, in the form of a Z-score. Since the
normality assumption breaks down for values of |Z| > 2
[65], the significance threshold was set at p < 0.05, which
is equivalent to a Z-score > 1.96 or a Z-score < −1.96. Z-
scores above or below these values, while statistically sig-
nificant, are not translatable to p-values.

MK test for neutrality
A modified version of the MK test was used as an add-
itional measure of neutrality. Polymorphisms (P) were
counted as the number of polymorphic variants in ac-
cessible sequence from the combined sample, while sub-
stitutions (D) were calculated based on the number of
derived alleles that were fixed on the modern human
lineage, compared to the three primate outgroups. The
postulated non-neutral (n) functional elements were
compared to a neutral (s) reference; the non-annotated
sequence class. The NI was calculated using [66]:

NI ¼ Pn=Ps

Dn=Ds

Sliding window correlation analysis
Correlations of the locations of genomic and regulatory
elements were computed. A sliding window approach
[31] was used in order to incorporate the spatial

http://www.encodeproject.org/
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeAwgTfbsUniform
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeAwgTfbsUniform
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeAwgSegmentation
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeAwgSegmentation
https://www.ebi.ac.uk/interpro/
https://www.ebi.ac.uk/interpro/
http://pantherdb.org/
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distribution of elements. The chromosomes were anno-
tated per site for the presence/absence (1/0) of selected
element classes. These elements were then mapped to
windows, with a step-size of 1.5 kb, as count data per
window for each element class. Window sizes of 5 kb,
10 kb and 15 kb were compared (Additional file 1: Table
S4). Negligible differences were found due to window
size, with extremely high levels of positive correlation
(0.959–0.998) between window sizes, and we only show
the results from 10 kb windows. The resultant data
matrices were used to perform a pairwise correlation
analysis (using Pearson’s r) of the element classes. The
pairwise correlation matrices were visualised in R using
the “corrplot” package; and ordered via hierarchical clus-
tering (method = ward.D).

Disentangling purifying- and linked-purifying selection
In order to assess the distance that linked-purifying selec-
tion extends from CDS under purifying selection, discrete
bins of non-annotated sequence were compiled at increas-
ing distance from CDS (i.e. 2.5 kb, 5 kb, 7.5 kb, 10 kb,
25 kb, 50 kb, 75 kb, and 100 kb away), using BEDTools
version 2.23.0 [55] and BEDOPS version 2.4.3 [67]. The
SFS summary statistics were then computed for each of
these bins. These discrete bins were also generated for
each of the genomic classes for which we had earlier ob-
tained overall summary statistic estimates. This allowed us
to compare the estimates for the genomic classes to that
of non-annotated sequence within each bin.

Additional files

Additional file 1: Supplementary Methods, Tables and Figures.
(PDF 8572 kb)

Additional file 2: Table S2. Transcription factors used in the study.
(XLSX 17 kb)
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