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1. Introduction

The overarching themes of this thesis are the characterization of non-
perturbative aspects of supersymmetric quantum field theories and the
study of topological quantum field theories. In particular, we will show
how these two subjects are not separate entities but instead have many
interesting connections which influenced various recent developments in
theoretical physics.

One of the most intriguing features in the study of supersymmetric field
theories is that certain physical quantities can be computed exactly. In-
deed, being able to identify a class of observables which are invariant
under a subset of supersymmetries in the problem yields powerful tools
to constrain their non-perturbative dynamics. This strategy can be used
to compute a large class of observables such as superpotentials, partition
functions, BPS indices and chiral rings and to use them for sharpening
our understanding of quantum field theories beyond perturbation theory.

Guided by this principle, the initial part of this work is devoted to the
analysis of supersymmetric localization for 5D gauge theories. The dis-
covery of consistent quantum field theories in five and six dimensions is
one of the most important predictions of string theory [1, 2, 3]. These
objects are isolated high energy fixed points of the RG flow and as such
do not admit a weakly coupled description. As a consequence, develop-
ing exact results in five dimensions goes beyond the realm of traditional
quantum field theory and gives us a useful way to actually test predic-
tions from string theory.

Supersymmetric localization techniques were first introduced in the con-
text of topological quantum field theories with the goal of obtaining a
physical description of four-manifolds invariants [4]. A crucial element
in this construction is the so called topological twisting which takes a
supersymmetric quantum field theory and mixes part of its internal sym-
metries. The twisted theory can be described by a set of redefined fields
which underlies the geometrical structure of the twist. Therefore, twisted
topological quantum field theories have a valid description for any curved
Riemannian manifold M and their infinite-dimensional path integral re-
duces to a finite sum over localized fields configurations.

In chapter 2 we explain why topological twisting is not the only possible
way to consistently define a supersymmetric theory on curved spacetime.
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As a result, localization can be now applied to physical supersymmet-
ric quantum field theories. A famous result in modern supersymmetric
localization is the exact evaluation of the partition function for a 4D
N = 2 theory on a four-sphere S4 [5]. Since then, a large body of
work extended this calculation to different supersymmetric theories with
various amounts of supersymmetries and different dimensions.

Both papers I and II are focussed on the study of 5D N = 1 super-
symmetric gauge theories defined on a large class of five-manifolds called
toric Sasaki-Einstein manifolds. These manifolds have been known for
quite some time in the string theory literature as their metric cone is
Calabi-Yau. In order to compute the partition function on such back-
grounds we made extensive use of the toric action. The final result ex-
hibits a peculiar factorization property which was thoroughly analyzed.
In particular, we showed how the partition function receives contribu-
tions uniquely from elementary degrees of freedom concentrated along
the fixed points of the toric action and how these can be organized in
holomorphic building blocks. The results of II generalize this setup to al-
low for five-dimensional Abelian instantons contributions. This hints to
the possibility of factorization being a robust property which also holds
at a full non-perturbative level.

Let us now highlight a few interesting examples of potential applications
of these results. Reducing the five-dimensional theory along a circle
fiber of the Sasaki-Einstein manifold opens up the possibility of calcu-
lating new supersymmetric partition functions for 4D toric surfaces. A
more ambitious goal is to probe the UV behavior of these theories and
their relationship with 6D superconformal field theories. A characteris-
tic feature of these theories is the presence of tensionless strings in their
low-energy spectrum. Quite interestingly, we can consider 6D (1, 0) su-
perconformal field theories compactified on a circle and relate the elliptic
genus of their instantonic strings with the holomorphic blocks obtained
in the 5D localization setup.

The study of six-dimensional superconformal field theories is also very
influential for topological quantum field theories. Six-dimensional ten-
sionless strings carry a lattice of string charges and an associated pairing
which can be classified and have a precise geometrical meaning. The goal
of paper III was to describe such topological data from the perspective of
a 7D topological quantum field theory of abelian three-forms potentials.
An interesting byproduct of our analysis is that the appearance of contin-
ued fractions in the spectrum of string excitations is interpreted much
like filling fractions above the ground state in the fractional quantum
Hall effect. This approach can be further extended by considering a top-
down approach which recovers the 7D TQFT directly from M-theory.
This provides a unified description for the low energy dynamics of a
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multitude of topological systems in various dimensions, characterized by
similar discrete data encoded in the compactification geometry.

The final chapter of this thesis is mostly a review of recent developments
in the study of Chern-Simons theory [6]. One of the original motivation
behind the study of such theory was to explain the fascinating connec-
tions between 1+1D integrable lattice models, quantum groups and knot
theory. Integrable scattering processes are labeled by a complex “spectral
parameter” which appears explicitly in the R-matrix. Unfortunately, it
does not seem possible to derive the spectral parameter using 3D Chern-
Simons theory. This problem has been solved thanks to a new 4D version
of Chern-Simons theory giving geometrical origin to the spectral param-
eter. The novel topological quantum field theories has many surprising
aspects which can only be fully explained by a non-perturbative formu-
lation. Finally, we describe why string theory is the perfect tools for
addressing all these aspects.
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2. Supersymmetry on a Curved Background

In this chapter we give a general overview of the systematic framework
for constructing and analyzing supersymmetric field theories on curved
spacetime manifolds. We follow closely [7].

2.1 Background Fields and Conserved Currents
In the study of quantum field theory (QFT) it is often very useful to
introduce non-dynamical sources or background fields. In this way, the
effect of symmetries can be analyzed by assigning new transformation
rules to these fields. For supersymmetric quantum field theories this
strategy has interesting consequences as the new fields are assigned to
a supersymmetric multiplet. As a result, it is possible to keep track of
their effect on protected or BPS quantities. The most famous example
of this kind was obtained in a groundbreaking paper [8]. There, a N = 1
nonrenormalization theorem was derived as a consequence of the effective
superpotential being a holomorphic function of the coupling constants
contained in a background chiral superfield. Using this theorem it is
possible to derive exactly the superpotential for a vast class of theories
as reviewed in a classic set of lectures [9].

Background fields couple to existing degrees of freedom through con-
served currents. For example, a background gauge field Vμ couples to a
conserved U(1) current Jμ as follows:

ΔL = V μJμ +O(V 2) . (2.1)

The O(V 2) are needed to enforce current conservation. A different option
is to study how the stress-energy momentum tensor Tμν couples to a
background spacetime metric gμν . For a flat Euclidean space we have
gμν = δμν and under a small deformation of the metric gμν → gμν+Δgμν
we have:

ΔL = ΔgμνTμν +O(Δg2) . (2.2)

Again, after tuning the O(Δg2) terms, the Lagrangian is invariant under
diffeomorphisms acting on the background metric and as such it can be
studied on an arbitrary Riemannian manifold M. For a given QFT on
M it is very interesting to compute its partition function:

ZM[Vμ, gμν , . . . ] =

∫
[DΦ] e−SM[Φ,Vμ,gμν , ... ] , (2.3)
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where the ellipses represent extra background fields to be considered,
indeed these extra fields play a crucial role for supersymmetric theories.
There are a number of difficulties in computing (2.3). First, there is
an IR divergence which can be cured by choosing M to be a compact
manifold1. At the same time, there is also a UV divergence for which a
short-distance cutoff is needed. For UV complete theories we only need
to introduce a finite number of new terms. The scheme independent
part of ZM is very important as it can be used to calculate various
correlation functions of local operators on M. For topological quantum
field theories (TQFTs) the partition function can also be used to compute
correlation functions of non-local observables. A typical example is 3D
Chern-Simons where there are no local observables but the partition
function on M still captures useful information [6].

2.2 Supersymmetric Partition Function
For interacting QFTs the partition function (2.3) cannot be computed
exactly. The best option would be to consider a supersymmetric exten-
sion of this calculation where it is known that BPS observables can be
understood non-perturbatively. Unfortunately coupling a supersymmet-
ric theory to a background metric gμν leads to complete supersymmetry
breaking. A simple argument shows that a coupling like (2.2) would
be prohibited in a supersymmetric theory as the stress-energy tensor is
not a BPS observable for every supercharge Q, i.e. [Q, Tμν ] �= 0. In
order to preserve rigid supersymmetry on a curved background M we
need to solve the following differential equation for every curved space
supercharge:

∇μζ = 0 . (2.4)

Solutions to (2.4) are called covariantly constant spinors ζ on M. There
are very few examples of interesting compact manifolds satisfying this
condition. In four dimensions, these are T 4 and K3 surfaces. Luckily,
there is a clever way to find a larger set of supersymmetric backgrounds
that was discovered in [10]. This new approach is clearly inspired by [8]
and the role of extra background fields will be crucial here. As a result,
it is still possible to think about a consistent supersymmetric theory on
a curved space M with a supersymmetric Lagrangian LM.

A properly defined supersymmetric theory on M opens up new possi-
bilities for computing ZM. By now there is a huge body of literature
devoted to the so called supersymmetric localization procedure which

1Generally this is not enough for ZIR to be finite as the theory can still have bosonic
zero modes.
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has the evaluation of ZM as one of its fundamental goals. A very de-
tailed review on these aspects can be found at [5]. Let us briefly review
the localization argument. Consider a supersymmetric theory LM in-
variant under a nilpotent2 supercharge Q, i.e. Q2 = 0. The path integral
expression for ZM can be deformed in a supersymmetric way by:

ZM(t) =

∫
[DΦ]e−SM+t δSM , (2.5)

where δSM = {Q,O} for some fermionic operator O. It can be shown
that ZM(t) does not depend on t as the deformation is Q-exact3:

d

dt
ZM(t) = 〈{Q,O}〉 = 0 . (2.6)

Notice that ZM = ZM(0) can be computed for any value of t. In partic-
ular, the limit t → ∞ is particularly interesting as it allows for a saddle
point approximation. After choosing an appropriate O, the infinite-
dimensional path integral (2.5) is then reduced to finite sum over semi-
classical saddle configurations in the deformed theory.

Historically, the first realization of curved supersymmetry was estab-
lished through topological twisting [4]. This will be discussed in chapter
4. In a supersymmetric theory with a continuous R-symmetry GR we
can define a supercharge Q which is a singlet under the diagonal em-
bedding (GR×Ghol)|diag, where Ghol denotes the Riemannian holonomy
group of M. Two paradigmatic examples are the topological twist of
4D N = 2 theories [4] and the A and B twist of 2D N = (2, 2) theo-
ries [12, 13] which led to revolutionary results in mathematical physics.
Although not manifest, it can be shown that the partition function of
twisted topological field theories is independent of the metric. Since
BPS observables are elements of Q-cohomology, these theories are also
referred to as cohomological field theories to distinguish them from the
more traditional topological theories of Chern-Simons type.

More recently there has been a lot of interest in two backgrounds which
lie outside the original description of topological twisting. First, the Ω-
background introduced in [14, 15] which is an equivariant deformation of
R4
ε1,ε2 rotating the two orthogonal R2 planes. Finally, the S4 background

of [16], exhibiting a OSp(2|4) algebra, which was the first comprehensive
example of supersymmetric localization in the modern sense. Both these
supersymmetric backgrounds are best understood using the procedure
outlined in the following section.

2More generally [5], the nilpotent condition can be relaxed to a Q which squares to a
Killing vector on M.
3There are some unfortunate situations where the path integral does not converge
fast enough and the equality is no longer valid [11].
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2.3 General Overview
A general prescription for analyzing curved supersymmetric backgrounds
in a systematic way has been pioneered in [10]. The stress-energy tensor
is what causes problems when it is coupled to a background metric.
Recall that, in a supersymmetric theory Tμν sits in a supersymmetric
multiplet together with bosonic and fermionic partners which we denote
respectively by J i

B and J i
F . At this stage, some background bosonic

fields Bi could be introduced through the following coupling:

ΔL = ΔgμνTμν +
∑
i

BiJ i
B + . . . , (2.7)

the ellipses here being higher order background field terms. A crucial
point is that for specific choices of Δgμν and Bi there can still be some
fraction of supersymmetry preserved by ΔL . This is due to cancellations
between supersymmetry variations of Tμν and J i

B.

As explained in [10], the best way to understand this problem is obtained
by constructing a new supermultiplet containing both gμν and Bi. The
background fermionic partners Bi

F are set to zero in (2.7). An important
remark is that all the sources are considered as part of an off-shell su-
pergravity multiplet. In particular the values of auxiliary fields are kept
arbitrary and their equations of motions are not solved. Their coupling
to various supermultiplets is performed using a formulation of supergrav-
ity known as linearized supergravity, i.e. an expansion at leading order in
1

MP
in Planck mass. See [17] for an introduction to this approach. Since

the background auxiliary fields are kept non-dynamical, the approach of
[10] has been also referred to as a rigid limit of off-shell supergravity,
where the gravitational degrees of freedom are frozen in the limit where
MP → ∞.

In order to preserve supersymmetry, the variations of fermionic back-
ground sources F i related to J i

F should satisfy:

δQF i = 0 . (2.8)

It is quite interesting to analyze various consequences of the above equa-
tions. When the supersymmetric theory is coupled to off-shell super-
gravity, the fermionic sources J i

F always include at least one gravitino
Ψμα. Imposing (2.8) corresponds to solving a new differential equation
for the spinor ζ:

∇μζ + · · · = 0 , (2.9)
as follows from the usual form of supersymmetric variations that a grav-
itino enjoys. Equation (2.9) is an extension of (2.4) known as generalized
Killing spinor equation. Notice that a given curved supersymmetric con-
figuration might solve (2.9) for just a subset of the original supercharges
Q.
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A supersymmetric field theory might admit multiple stress-tensor super-
multiplet descriptions that could couple to different off-shell supergrav-
ities leading to multiple choices of curved supersymmetric backgrounds.
Interestingly, the background metric does not uniquely specify a curved
supersymmetric background as there can be inequivalent choices of back-
ground bosonic fields for the same geometry. In some sense, background
bosonic fields retain all the most important physical information regard-
ing a background as they influence the evaluation of the partition func-
tion. Moreover, since the auxiliary fields are non-dynamical there is more
freedom in setting their values, in particular when computing partition
functions it might be useful to give them complex values.

Finally, note that from the point of view of flat space supersymmetry
the curved space Lagrangian is always ambiguous. Indeed, as remarked
in [10], there can be terms coupled to powers of the curvature or to
scale factors in the metric. The key point is that it is only important to
specify all the terms that must be included to a flat space Lagrangian
to preserve supersymmetry. In the next chapter we will study how to do
so for a five-dimensional supersymmetric theory.
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3. Five-Dimensional Theories

In this chapter we first review general aspects of 5D supersymmetric
theories. Then, we describe how to obtain rigid supersymmetric back-
grounds with a special focus on Sasaki-Einsten manifolds. Finally we
discuss how to compute the supersymmetric partition function on such
backgrounds.

3.1 Supersymmetry in Five Dimensions
One of the most surprising results in string theory is the discovery of
qualitatively new quantum field theories in five dimensions. Indeed, a
traditional approach would suggest to rule out the study of 5D gauge
theories as these are non-renormalizable systems flowing to free fixed
points at low energies. However, supersymmetric gauge theories in five
dimensions can have non trivial UV superconformal fixed points from
which they flow out. As demonstrated in a classic set of works [18, 19,
20, 21] a combination of field and string theory arguments leads to the
discovery of a large class of such fixed points. From the point of view
of string theory it is quite obvious that these models enjoy UV global
symmetry enhancement, while it is much more subtle to understand why
this is the case using QFT arguments1.

An instructive example is the N = 1 SU(2) theory with Nf ≤ 7 flavors
exhibiting a global symmetry enhancement to ENf+1. This can be engi-
neered using M-theory on a noncompact Calabi-Yau threefold X with a
divisor D collapsing to a point. In this example, the local geometry of D
is that of a del Pezzo surface dPk i.e. P2 blown-up at 0 ≤ k ≤ 8 points.
For k ≥ 1 the number of blow-ups is related to the number of flavors
Nf = k − 1 in the SU(2) theory and there is a perfect matching of the
symmetry enhancement pattern. When Nf = 8 the situation changes
drastically as the UV completion is no longer a truly 5D SCFT but a 6D
(1, 0) E-string theory on a circle [23]. Using string dualities, it is also

1 One of the hallmark of 5D supersymemtric theories is the presence of an unusual
conserved current Jμ = �(F ∧F ) giving rise to a topological U(1)I symmetry. Under
this symmetry there are charged non-perturbative states called “instantons”. Quite
often, flavor symmetries combine with the U(1)I symmetry to generate an even larger
UV global symmetry [22].
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possible to study maximally supersymmetric 5D N = 2 theories with
any gauge group G. In this case it has been shown that the only possible
completion is a 6D (2, 0) theory compactified on a circle [24, 25]. The set
of 5D fixed points can be further extended by allowing (p, q)-fivebrane
webs and related quiver constructions [26].

Five-dimensional superconformal field theories admit supersymmetric
relevant deformations that allow us to study them with weakly coupled
supersymmetric Lagrangians of interest in this thesis. As remarked in
section 2.1, BPS observables such as indices and supersymemtric partion
functions are protected along the RG flow and for this reason there is a
great deal of interest in calculating them exactly [27, 28, 29, 30, 31, 32].

The low energy massless degrees of freedom for 5D N = 1 supersymmetry
consists of vector multiplets with a gauge algebra G and hypermultiplets
in a representation R of G. Interestingly, vector multiplets have real
scalars φi that upon reduction to four dimensions combines with the fifth
component of the gauge fields Ai

5 to make φi complex as in 4D N = 2
vector multiplets. All these theories have interesting Coulomb branches
parametrized by expectation values of φi in the Cartan subalgebra of
G. For this reason the Coulomb branch has dimension equals to r =
rank(G). There can also be Higgs branches where the hypermultiplets
scalars can vary, these are hyper-Kähler manifolds. The most general
Lagrangian on the Coulomb branch is derived from a prepotential F(Ai)
which is (locally) a function of vector superfields Ai:

F = hijAiAj + dijkAiAjAk , (3.1)

with reality constraints that fix hij and dijk to be real constants. More-
over, because of gauge invariance dijk is further restricted to be integrally
quantized [21]. Now, at a generic point on the Coulomb branch the gauge
group is broken to its maximal torus U(1)r and the low energy dynam-
ics is governed by an Abelian theory. The full 1-loop exact quantum
prepotential is a cubic polynomial of φi given by [21]:

F =
1

2g2
hijφ

iφj +
k

6
dijkφ

iφjφk

+
1

12

⎛
⎝ ∑

e∈Root

|e · φ|2 +
∑
j

∑
w∈Rj

|w · φ+mi|3
⎞
⎠ , (3.2)

where Rj denotes the set of weights for a j-th hypermultiplet in rep-
resentation R of G, hij = Tr(TiTj) and dijk = TrF(Ti{Tj , Tk}) where
F denotes the fundamental representation. Notice that for a single hy-
permultiplet in adjoint representation there are no cubic terms in the
prepotential. The first two terms in (3.2) follow from (3.1) while the
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last two terms are generated at the quantum level by integrating out
charged fermions on the Coulomb branch [33]. The 1-loop contributions
give rise to a renormalized effective gauge coupling obtained from the
prepotential:

1(
g2eff

)
ij

= ∂i∂jF . (3.3)

From here it is also possible to obtain the exact metric on the Coulomb
branch:

ds2 =
(
g−2eff

)
ij
dφidφj . (3.4)

By analyzing the structure of the prepotential (3.2) it is possbile to at-
tempt a classification of low-energy 5D gauge theories which might admit
a 5D SCFT fixed point [21]. The main logic behind this classication is
that for a 5D gauge theory with a well defined UV completion it should
be possible to reach the most singular point of the Coulomb branch while
mantaining the metric positive semidefinite. A confusing aspect in this
strategy is that the list of possible candidates meeting this requirement
seems to be very short as the only possibilities are theories with a single
gauge group factor and a strict upper bound on flavor number. For ex-
ample this classification rules out quiver theories with G=

∏
iGi which

are very common examples of SCFTs engineered in string theory [26].
A resolution for this apparent paradox has been put forward only very
recently [34, 35]. The key loophole is that there can be regions of the
moduli space where g−2eff becomes formally negative, and before reach-
ing such regions effective field theory arguments break down and are no
longer valid. There is a clear way to undestand this phenomenon from
a geometrical point of view related to the Kähler cone of Calabi-Yau 3-
folds used to engineer 5D theories [19]. Clearly, having a very large set of
5D SCFTs is a very motivating aspect for developing new quantum field
theory tools in 5D as they might become essential to further elucidate
their microscopic aspects.

3.2 Sasaki-Einstein Background
Motivated by chapter 2, it is natural to study how to preserve curved
supersymmetry for five-dimensional theories. This was developed in a
sequence of papers [36, 37, 38] which we follow closely. The first step
consists in identifying a five-dimensional stress-tensor supermultiplet.
Notice that in 5D there is no complete classification of supersymmetric
stress-tensor multiplets. The simplest known option is a five-dimensional
version of the Sonhius multiplet, usually discussed in the context of 4D
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N = 2 supersymmetry2:

(C,ψi
α, X

ij ,Wμν , R
ij
μ , S

i
μα, Jμ, Tμν) . (3.5)

In this notation i, j are SU(2)R indices, μ, ν spacetime indices and α
spinorial indices. The corresponding background fields are part of an
off-shell supergravity multiplet first considered in [39, 40]:

(K, ηiα, t
ij ,Vμν , (Vμ)

ij ,Ψμα,Aμ, gμν) . (3.6)

The supersymmetric values of background fields needed for preserving
supersymmetry are found by setting to zero the supersymmetric vari-
ations of fermionic fields in the supergravity multiplet. Following the
notation of chapter 2 we denote the supersymmetry parameter by ζ, in
this way the supersymmetric variations read:

δζΨ = 0 , δζη = 0 . (3.7)

The first of these equations is called gravitino equation while the second
is known as dilatino equation. They imply two differential equations
for the bosonic background fields in (3.6). Crucial information on the
background is contained in the gravitino equation as it implies the Killing
spinor equation discussed previously3:

∇μζi = t ji Γμζj + FμνΓ
νζi +

1

2
VνρΓμνρζi , (3.8)

where F is the field strength for A in (3.6) and ∇μ also contains the
SU(2)R gauge field Vμ. At this point it is possible to analyze system-
atically this equation and to attempt a classification of all the possible
backgrounds admitting 5D supersymmetry. This was the ultimate goal
of [36], but unfortunately a complete classification of all five-dimensional
backgrounds is not yet available. For the purposes of this thesis this is
not worrisome as we are interested in one of the simplest known solutions
to this equation. Indeed the focus of I and II is on Sasaki-Einstein4 back-
grounds M which can be obtained by the following choice of background
fields:

V = F = V = 0 , t ji =
i

2r
(σ3)

j
i , (3.9)

2Actually, it is not known whether there are other interesting examples. I would like
to thank Guido Festuccia for discussions on this point.
3The dilatino equation is not discussed here as it is only needed for demanding the
closure of rigid supersymmetric algebra. Interested readers might consult [36] for
additional details.
4Consider a metric cone over a five-manifold M defined as C(M) = M × R+ with
gC(M) = dt2 + t2gM and t a local coordinate along R+. If C(M) is Kähler then
M is said to be Sasaki. If C(M) is, in addition, Calabi-Yau then M is said to be
Sasaki-Einstein. Detailed accounts on Sasakian geometry can be found at [41, 42].
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where r is the overall scale factor of the background and σ3 = diag[1,−1].
With this choice the Killing spinor equation is significantly simplified:

∇μζi =
i

2r
(σ3)

j
i Γμζj . (3.10)

As described in [43], out of the solutions to (3.10) it is possible to extract
an important geometric quantity known as the Reeb vector field:

R
μ = ζiΓ

μζi . (3.11)

Notice that R squares to 1 and it is a Killing vector field. The metric
dual of this object is known as contact one-form:

κμ = gμνR
ν . (3.12)

At this stage, curved supersymmetric variations for a 5D vector multiplet
can be introduced in the following way:

δAμ = iζiΓμλ
i ,

δσ = iζiλ
i ,

δλi = −1

2
(Γμνζi)Fμν + (Γμζi)Dμσ − ζjDji + 2t j

i ζjσ ,

δDij = −iζiΓ
μDμλj + [σ, ζiλj ] + it k

i ζkλj + (i ↔ j) .

(3.13)

The corresponding rigid supersymmetric invariant action on M is given
by:

S(5D,Vec) =
1

g2YM

∫
M

Tr
[1
2
FμνF

μν −DμσD
μσ − 1

2
DijD

ij + 2σtijDij

− 10tijtijσ
2 + iλiΓ

μDμλ
i − λi[σ, λ

i]− itijλiλj

]
. (3.14)

A very similar analysis can be carried out for a hypermultiplet, this was
indeed performed in I. See also [43]. Without further ado, we move to
illustrating the main logic behind localization computations on Sasaki-
Einstein backgrounds.

3.3 Localization Results
Since the first paper on supersymmetric localization [16] it has been quite
useful to rewrite the supersymmetric variations (3.13) into a cohomolog-
ical form. This procedure makes the analogy with twisted topological
theories more manifest and streamline the notation. The basic step is to
introduce the following combinations:

Ψμ = ζiΓμλ
i ,

χμν = ζiΓμνλ
i + R[μζiΓν]λ

i .
(3.15)

21



In this procedure Ψμ becomes a differential 1-form and χμν is a 2-form
satisfying further conditions:

ıRχ = 0 ,

ıR(�χ) = χ .
(3.16)

Using these new variables, the supersymmetric variations (3.13) can be
expressed as:

δA = iΨ ,

δΨ = −ıRF +Dσ ,

δχ = H ,

δH = −iLA
Rχ− [σ, χ] ,

δσ = −i ıRΨ ,

(3.17)

where LA
R is the covariant Lie derivative along the Reeb vector field

dAıR + ıRdA. From (3.17) it is easy to verify that:

δ2 = −iLA
R + iGσ , (3.18)

where Gσ is an infinitesimal gauge transformation with parameter σ. The
supersymmetric action can also be rewritten in a more transparent way:

S(5D,Vec) = S(5D,Closed) + δV , (3.19)

where S(5D,Closed) is a δ-closed topological term obtained by supersym-
metrizing a 5D lift of Chern-Simons term known in the literature as
CS3,2(A) [27, 28]. The exact part of S(5D,Vec) is given by:

V =

∫
Tr

[
Ψ∧�(−ıRF−Dσ)− 1

2
χ∧�H+2χ∧�F+σκ∧dκ∧χ

]
. (3.20)

Localization requires a deformation term for the action that allows to
express the partition function as in (2.5). The deformation term, denoted
by δSM, is usually called a localization term. In this particular example
its bosonic part δSM|bos is written as:

δSM|bos = Tr

∫
ıRF ∧ �(ıRF )− (Dσ)∧ �(Dσ)− 1

2
H ∧ �H +2F+

H ∧ �H ,

(3.21)
where F+

H = (1+ıR�)F is the horizontal self-dual part of F and identities
(3.16) are used in the derivation. It is easy to see that δSM|bos comes
from the bosonic part of δV |bos, obtained from (3.20), after dropping
the final term. The localization term can be further simplified as the
auxiliary field H is not dynamical and can be integrated out. Moreover,
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it is also necessary to Wick rotate the scalar field σ → iσ to get a sum
of positive square terms:

δSM|bos = Tr

∫
ıRF ∧ �(ıRF ) + (Dσ) ∧ �(Dσ) + 2F+

H ∧ �F+
H . (3.22)

The semiclassical saddles which contribute to the path integral are given
by solutions to:

ıRF = 0 , F+
H = 0 , Dσ = 0 . (3.23)

The most interesting equations in (3.23) are the first two which can be
described by a unique equation:

� F = −κ ∧ F . (3.24)

In simple terms this is just a 5D lift of the famous 4D self-dual instanton
equation and for this reason these solutions were dubbed contact instan-
tons [27]. The moduli problem for this set of equations has not been
studied in detail and it is an interesting open problem. For more de-
tails see [43]. As opposed to the famous example of S4 localization [16],
in this setup it is not yet possible to establish rigorously that the only
singular profile solutions of (3.23) are localized on closed Reeb orbits5

of the Sasaki-Einstein background. Nevertheless here it is assumed that
there are no other singular solutions. Motivating arguments come from
3D contact manifolds which have localized singular solutions as shown
by [44] and from toric surfaces whose instanton partition function has
been calculated in [45]. The smooth locus solutions are given by:

A = 0 , σ = ia , (3.25)

where a is a constant. The classical part of the action evaluated around
these configurations gives a Gaussian factor:

S(5D,Vec)(a) = −8Vol(M)

g2YM
Tr[a2] . (3.26)

The next step consists in linearizing the differential operator (3.18) around
(3.25) in order to consider 1-loop contributions to the path integral.
Physically, we would like to compute the functional determinant of δ2

and take care of gauge fixing. This involves a number of technicalities
that we will not explain here, we refer the reader to the original pa-
per [16] or to [43] for additional details. For a 5D vector multiplet the
perturbative partition function is given by:

Zpert
(5D,Vec) =

∫
t

da e
− 8π3

g2YM
Tr[a2]

det′adj sdetΩ(0,•)
H

(−iLR − Ga) , (3.27)

5Let Y be a closed contact manifold, a closed Reeb orbit is defined as a T -periodic
map γ : R/TZ → Y , for some T > 0, for which γ̇(t) = R(γ(t)).
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where the integration is intended over the Cartan t of the gauge group.
The superdeterminant of equation (3.27) should be computed over a
space of differential forms with values in g. As explained in I, for M
a Sasaki-Einstein five-manifold, this reduces to the Kohn-Rossi differen-
tial complex Ω

(0,•)
H . Even though the space of differential forms Ω

(0,•)
H

is infinite-dimensional there is still hope to compute (3.27) because of
supersymmetry. As for other famous examples of localization, the can-
cellations between bosonic and fermionic degrees of freedom in (3.27)
leads to a striking consequence: the only physical modes contributing
to the 1-loop determinant are contained in the Kohn-Rossi cohomology6

H
(0,p)

∂̄H
.

Let us now specialize to a toric Sasaki-Einstein M having a G = U(1)3

isometry, in this setup the Reeb vector field is a linear combination of
these U(1)’s. Moreover, it can be shown that the ∂̄H -complex is in-
variant under G. As a consequence, ∂̄H -cohomology is organized under
representations of G:

H
(0,p)

∂̄H
=

⊕
i

mp
iRi , mp

i ∈ Z≥0 , (3.28)

where m’s are multiplicities of the representations Ri. For G = U(1)3,
the representations are labelled by three charges organized into an integer
valued 3-vector. A noticeable observation by [48], further corroborated
by I, relates the Kohn-Rossi cohomology with a more familiar Dolbeault
cohomology on the Calabi-Yau cone over M, i.e. there is a new map
such that:

H
(0,•)
∂̄H

(M) → H
(0,•)
∂̄

(C(M)) . (3.29)

On a Calabi-Yau cone C(M) there are no holomorphic one-form to be
counted i.e. H

(0,1)

∂̄H
(M) = 0 after restriction. Conversely, there are inter-

esting contributions from holomorphic functions and in order to charach-
terize them a few elements of toric geometry are needed7. Let μ be the
moment map for the three torus actions, then due to the cone structure
on C(M), the image of μ will also be a cone in R3 denoted by Cμ(M):

Cμ(M) = {�r ∈ R
3|�r · �vi ≥ 0 , i = 1, . . . k} , (3.30)

where vi’s are inward pointing vectors of the k faces of Cμ(M). See
figure 3.1.

Internal points of (3.30) are in one to one correspondence with holo-
morphic functions. More precisely, a point in Cμ(M) of coordinates

6The Kohn-Rossi cohomology of ∂̄H is a restriction of the Dolbeault operator on the
metric cone C(M) to its boundary M. See [46, 47].
7See [49].
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�v4

�v5

Figure 3.1. On the left a pentagonal base with inwards pointing vectors �vi , i =
1, . . . 5. On the right the corresponding moment cone.

(n1, n2, n3) is mapped to a monomial zn1

1 zn2

2 zn3

3 . As remarked above, a
Reeb vector field acts on (z1, z2, z3) with eigenvalues (R1,R2,R3), in par-
ticular each monomial has an eigenvalue given by �n · R = n1R1 + n2R2 +
n3R3. For holomorphic two-form contributions, it is useful to exploit the
Sasaki-Einstein condition which requires a vector �ξ such that:

�ξ· �vi = 1 , ∀i . (3.31)

On C(M) there is a top holomorphic 3-form Ω whose charges are given
by �ξ. This implies that the eigenvalues of holomorphic (0, 2)-forms can
be written as −(�m+ �ξ )·R for �m ∈ Cμ(M). Finally, it is now possible to
combine all contributions to the superdeterminant as:

sdetΩ(0,•)
H

(−iLR + x) =
∏


n∈Cμ(M)∩Z3

(
�n·�R + x

)(
�n·�R − x+ �ξ·�R) ≡ SC

3 (x|R) ,

(3.32)
where we defined this contribution as a generalized triple sine function
SC
3 associated to Cμ(M). These functions have been discussed at length

in I and V. Probably, the most known example is for M = S5 which
implies Cμ(M) = R3

≥0 leading to an ordinary triple sine function S3.
Indeed, it is well known that the 1-loop determinant of a vector multi-
plet on S5 can be written as a triple sine function [32]. A final comment
regards the notation adopted in (3.27), the determinant in adjoint rep-
resentation of G can be thought of as:

detAdjS
C
3 (x|R) =

∏
β

SC
3 (i〈x, β〉|R) , (3.33)
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where β runs over all the roots of g = Lie(G). In addition, the superscript
′ denotes scalar zero-modes being excluded from the final answer:

Zpert
(5D,Vec) =

∫
t

da e
− 8π3

g2YM
Tr[a2]

det′adj S
C
3 (ia|R) . (3.34)

From here it is of course possible to repeat the calculation with hyper-
multiplets in representation R, this was discussed in I and [28, 43]. The
complete final result for a 5D gauge theory at perturbative level is given
by:

Zpert
(5D) =

∫
t

da e
− 8π3

g2YM
Tr[a2] det′adj S

C
3 (ia|R)

detR SC
3 (i(a+m) + ξ·R/2|R) . (3.35)

There are powerful matrix model techniques that can be used to ana-
lyze this object. For recent developments on the subject see [50] and
references therein.

Expressing the partition function (3.35) in terms of triple sine functions
turns out to be very helpful in clarifying its physical meaning. Starting
from an observation in [32], in I it was shown how it is possible to express
the newly introduced triple sine functions as:

SC
3 (z|R) ∼

∏
ν∈vertices

(e2πiβνz|e2πiβνεν1 , e2πiβνεν2 ) , (3.36)

where the above product is taken over all vertices in Cμ(M) and we
allowed R to get a complex value8. The right hand side of (3.36) is ex-
pressed in terms of a special function called multiple q-factorial9. Intu-
itively, the global geometry of M is treated as a product of local patches
with geometry C2×ε S

1, in which β denotes the radius of S1 and (z1, z2)
are local coordinates on C2. Moreover, ×ε is a short-hand notation for

8More precisely, R can have generic imaginary part but its real part must lie within
the dual cone condition i.e. R =

∑
i λi�vi , λi > 0 ,∀i.

9For |q1|, . . . , |qk| < 1 the multiple q-factorial is an analytic function of x and q with
the following infinite product representation:

(x, q1, . . . , qk)∞ =
∞∏

n1,...nk=0

(1− xqn1
1 . . . q

nk
k ) .

This can be extended to |q1|, |q2|, . . . |qj | > 1 and |qj+1|, |qj+2|, . . . , |qk| < 1 by

(x, q1, . . . , qk)∞ =

∞∏

n1,...nk=0

(1− xq
−(n1+1)
1 . . . q

−(nj+1)

j q
nj+1

j+1 . . . q
nk
k )(−1)j .

When any |qi| = 1 the function is not well defined.
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what is known as Ω-background [14]. Whenever a circle is periodically
identified in this background, there is a corresponding twist by a factor
of εi on the two orthogonal planes in Ci ⊂ C2, using local coordinates:

[θ, z1, z2] � [θ + 2π, z1e
2πiβε1 , z2e

2πiβε2 ] . (3.37)

In I it is shown how to determine (βν , ε
ν
1,2) using toric geometry on M,

in this way it is possible to generate many interesting examples. Paper II
further elaborates these ideas for a different five-dimensional example, a
5D N = 2∗ Abelian theory where maximal supersymmetry is deformed
by the addition of an adjoint hypermultiplet. Quite miraculously, the
complete non-perturbative partition function can be computed exactly
in this model as shown in [15]. As described in II, on a Sasaki-Einstein
background the partition functions of Abelian instantons can be formu-
lated in terms of generalized Double Elliptic Gamma functions10 satis-
fying factorization properties similar to (3.36).

Coming to a physical interpretation, it should be noted that the right
hand side of (3.36) is a 1-loop partition function for a vector multiplet
in a Ω-background (3.37) [14, 15]. The main message behind (3.36) is
that a complicated partition function on a Sasaki-Einstein background
M is reduced to a product of elementary building blocks “glued” to-
gether through a geometric prescription. These building blocks appears
in different forms in every known localization computation and have been
dubbed holomorphic blocks. By now, there is a huge literature on the
subject, see for example [52, 53, 54]. An interesting future direction
in the field would be to derive the 5D holomorphic blocks for general
curved backgrounds M using the duality domain-walls approach of [55].
Recently this analysis was performed successfully for a 3D N = 2 theory
in [56].

10See V and [51] for mathematical details.
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4. Topological Quantum Field Theories

In this chapter we shift focus and introduce topological quantum field
theories (TQFTs) as they will play an important role in the remain-
ing part of this thesis. The history of topological quantum field theory
started with the foundational paper [6] on Chern-Simons theory. Since
then, TQFTs have become a very useful theoretical laboratory where to
take a privileged look at a large class of physics problem.

By now, there is a beautiful interplay between properties of symmetries
Gi’s in quantum field theory and topological quantum field theory. The
most illustrative example comes from the study of quantum anomalies
which are captured by topological actions involving certain characteristic
classes of Gi-bundles1. On the contrary, it is not widely appreciated how
topological quantum field theories are important in determining subtle
issues on the global aspects of the gauge group in quantum field theory.
The prime example to keep in mind is the difference between U(1) and
R [59]. It is often stated that the gauge group is U(1) or R depending on
what particular value is assigned to the charges in the system. Consider a
quantum field theory with G = U(1) with only integer charged electrons.
In this example the global group would be called U(1). Conversely, a
system with particles of charge

√
2 would then have a global group R.

However, the value of charges in the system is a secondary issue and as
such comes after specifying the global aspect of the group. In fact, the
main attention should rather be on what observables the gauge theory
has. In the R gauge theory the observables are Wilson lines eir

∮
A with

charge any real number r ∈ R. They can be thought of as the worldline
of a very massive particle with charge r. With this gauge group there
are no ‘t Hooft operators.2 On the other hand, for a U(1) gauge theory
there are Wilson lines ein

∮
A with only integer charges n ∈ Z and there

are also ‘t Hooft operators.

1 Interestingly, QFTs might also enjoy “generalized global symmetries” associated to
extended objects for which there are corresponding anomalies. See [57, 58].
2 A ‘t Hooft operator is the worldline of a magnetic monopole. One way to define it
is to consider a line l and to surround it with a 2-sphere S2 supporting a non-trivial
flux F such that

∫
S2 F = 2πN where N ∈ Z.
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A proper definition of gauge theory requires to specify what kind of fluxes
are allowed and correspondingly what kind of operators are allowed3. A
final important example in 4D comes from considering SU(N) versus
SU(N)/ZN , these are really different theories with a very different set
of observables as studied carefully in [60]. The real payoff of topologi-
cal quantum field theories is that all these questions can be formulated
using a topological action with discrete symmetries. A famous example
is the Zp-gauge theory which was studied in [61, 62, 59, 63]. The anal-
ysis of global aspects of a gauge group is then reformulated in terms of
properties of non-local observables in a TQFT.
The study of modern condensed matter theory has been heavily influ-
enced by the use of topological methods. By now, it is widely believed
that all gapped phases of matter are described by a long-range topolog-
ical theory. A famous example in this sense is the fractional quantum
Hall effects (FQHE) which can be modeled in terms of 3D Chern-Simons
theory and that has been experimentally observed since the 80’s. See
chapter 5 for more details. Also, recent developments in the study of
discrete anomalies in condensed matter physics have brought to discover
new phases of matter called symmetry protected topological phases (G-
SPT). In particular many of these result have been highly influential on
some recent works on QCD phases [64].

4.1 Twisted Supersymmetry
The previous section have been primarily focussed on topological theories
whose action is manifestly topological and does not depend on explicit
details of the spacetime metric. However, this turns out to be only a par-
tial description as there is another well known way to define a topological
theory that heavily makes use of supersymmetry. As mentioned at the
end of section 2.2, this strategy is called topological twisting [4]. The
most famous example is probably the topological twisting of 4D N = 2
super Yang-Mills theory with the following symmetries:

SU(2)+ × SU(2)− × SU(2)R , (4.1)

where SU(2)+ × SU(2)− is the 4D Lorentz group while SU(2)R is the
R-symmetry group. A topologically twisted theory is specified by the
choice of a new Lorentz group SU(2)+ × SU(2)Δ such that:

SU(2)+ × SU(2)Δ ⊂ SU(2)+ × SU(2)− × SU(2)R , (4.2)
3 A similar important example is related to 2D orbifold theories. These theories can
be thought of as discrete gauge theories, notice that the difference between U(1) and
R comes from the center Z. Once we mod out by Z, only Z-invariant operators should
be considered and twisted sectors must be included. In this analogy, ‘t Hooft lines
play the role of twisted sectors.
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where SU(2)Δ = SU(2)− × SU(2)R|diag is a diagonal subgroup. This
means that the Lorentz spins are modified in the following way:

(n+ ,n−) ⇒ (n+ ,n− ⊗ nR) . (4.3)

Correspondigly the supersymmetry charges Qi
α,Q̄j

α̇ transform as:

Qi
α : (2,1,2) → (2,2) ⇒ Gμ , (4.4)

Q̄j
α̇ : (1,2,2) → (1,1)⊕ (1,3) ⇒ Q̄, Q̄+

μν , (4.5)

which means that there is a twisted supersymmetry algebra given by:

{Q̄,Gμ} = ∂μ , (4.6)

with Q̄2 = 0. This is precisely the necessary conditions for localization
discussed in section 2.2. The work [4] shows how 4D N = 2 super Yang-
Mills theory can be formulated on any 4-manifold M4, while preserving
Q̄. In this way, observables annihilated by Q̄ become distinguished. In
particular, the supersymmetric partition function localizes on the moduli
space of anti-self dual instantons (ASD) on M4:

MASD = {A ∈ A |F+ = 0}/G , (4.7)

where A is the space of irreducible connections on M4 and G is the
infinite-dimensional gauge symmetry. By (4.6), correlation functions of
protected operators are independent of the metric on M4 and capture
smooth structure invariants of M4. Consider G = SO(3) and a tower of
observables constructed from O = Tr(Φ2). Then the correlation func-
tion of these observables generates the celebrated Donaldson polynomial
invariants of M4. See [65, 66, 67, 68] for a selected list of pedagogi-
cal references on the subject. The discovery of twisted supersymmetry
led to profound revolution in the world of mathematics and tied together
quantum field theory, string theory and geometry. There are many other
versions of topological twist leading to different counting problems and
to different insights on mathematics. See [69, 70, 71, 72, 73, 74] for a
sample of selected results.

30



5. 6D FQHE

In this chapter we present a 6D generalization of the fractional quantum
Hall effect involving membranes coupled to a three-form potential in the
presence of a large background four-form flux. The low energy physics
is governed by a bulk 7D topological field theory of abelian three-form
potentials with a Chern-Simons action coupled to a 6D anti-chiral theory
of Euclidean effective strings.

5.1 A Bulk-Boundary Correspondence
A striking result in modern condensed matter theory relates the 1 + 1D
fractional quantum Hall effect and 2 + 1D Chern-Simons theory using a
bulk-boundary correspondence [75]. Most of the material presented in
this section can be found in a beautiful set of lectures [76].

The starting point is a three-dimensional topological action of abelian
one-forms aI with Chern-Simons interaction and an integral symmetric
matrix of couplings KIJ :

S(3D)[a
I ] =

KIJ

4πi

∫
M3

aI ∧ daJ , (5.1)

where M3 is a Lorentzian 3-manifold. For this particular example we
will assume that M3 is a long stretched neck with boundary R2, i.e.
M3 = R≤0 × R2. See figure 5.1.

Since M3 has boundary it is now important to determine which bound-
ary conditions should be imposed on aI ’s. It can be shown that after
imposing aI = −i �2D aI the action (5.1) reduces to a 1 + 1D chiral
boson. Contrarily to other dimensions, a useful action for a chiral 2D
boson can be written explicitly in a mild non-local way. This is usually
called Floreanini-Jackiw action [77]. Notice that, just by employing a
simple topological field theory we can derive this action in a much more
elegant way [78]. Moreover, the 3D abelian CS theory has other quite
convenient “practical uses”. For example, switching on a bacgkround flux
F = dA through ∂M3 leads to:

S(3D)[A, a
I ] =

KIJ

4πi

∫
M3

aI ∧ daJ +
1

2πi

∫
M3

A ∧ νIda
I , (5.2)
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R≤0

R
2

Figure 5.1. A 3-manifold M3 given by the product of a half-line R≤0,
parametrizing the “time” variable, and a spatial R2.

from which it is easy to derive the so called fractional conductivity1:

σxy = νI
(
K−1)IJνJ . (5.4)

Now, for a ν = [1, 0, . . . , 0] and

K =

⎡
⎢⎢⎢⎢⎣

x1 −1
−1 x2 −1

−1 ... −1
−1 xk−1 −1

−1 xk

⎤
⎥⎥⎥⎥⎦ , (5.5)

there is a continued fraction spectrum:

p

q
= x1 − 1

x2 − 1
x3−...

. (5.6)

More precisely, in condensed matter applications there is an entire hier-
archy given by:

p

q
= x1 ∓ 1

x2 ∓ 1
x3∓...

, (5.7)

1Consider a particle of charge e in a constant magnetic field pointing in the z-direction.
Next, apply a small electric field in the x-direction and measure its current through
the y-direction. The Hall conductivity is defined as the ratio:

σxy =
e2

2π�

p

q
, (5.3)

where p, q ∈ Z. The integer quantum Hall effect happens for q = 1. When q > 1 the
electrons fractionalizes and give rise to the fractional quantum Hall effect.
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Figure 5.2. State insertion by a 3D Wilson line ending on the boundary ∂M3.

and there is an interesting interpretation for them: (+) signs correspond
to “Holes” while (-) signs are interpreted as “Particles”. Strikingly, from
3D Chern-Simons it is also possible to derive the many-body wavefunc-
tion for fractional Quantum Hall Effect [75]. A free chiral boson in 2D
has the following two point function:

〈φ(z)φ(w)〉 = − 1

m
log(z − w) . (5.8)

All states in this 2D CFT can be described from a three-dimensional per-
spective. Indeed, it is convenient to introduce an operator Φ(z) defined
as:

Φ(z) = : eimφ(z) : , (5.9)

which can be thought of as a 3D Wilson line supported on a path which
ends at ∂M3. See figure 5.2.

As shown by [75] the many-body wavefunction is captured by a CFT
correlation function:

Ψ(z1, . . . , zN ) = 〈Φ(z1) . . .Φ(zN ) exp(−i

∫
D2

F ∧ φ)〉 , (5.10)

where D2 is a solid disk of radius R. Everything reduces to the calculation
of two-point functions using (5.8):

Ψ(z1, . . . , zN ) = ΨLaughlinΨLandau =
∏
i<j

(zi − zj)
me−

∑
i |zi|2/4l2B . (5.11)

The final result is factorized in two pieces, the first is known as Laughlin
wavefunction which was first discovered in [79] and it was very important
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for subsequent theoretical developments in quantum Hall physics [80, 81,
82]. The second contribution is that of an electron moving in a magnetic
field B with a background charge density set by lB ∼ 1/

√
F . There

are two amazing consequences of this result, the first is that by using
some arguments in high energy theory, in particular CFT techniques and
topological quantum field theories, it is possible to give a first principle
derivation of a phenomenon which is observed in real labs. The second
one, probably more appealing for a high energy theorist, is that physics of
a chiral 2D CFT is characterized in terms of a many-body wavefunction.
In the next section we explain how this analogy can be quite fruitful in
the study of other known examples of chiral CFTs.

5.2 7D Chern-Simons Theory
Among several AdS/CFT early practitioners [83, 84, 85, 62, 86] it has
been known for a long time that a seven-dimensional Chern-Simons ac-
tion:

S(7D)[c
I ] =

ΩIJ

4πi

∫
M7

cI ∧ dcJ , (5.12)

could be a good starting point for describing 6D systems with chiral 2-
forms. Here cI ’s are a collection of 3-form potentials subject to gauge
redundancy cI → cI + dbI and M7 is again a Lorentzian manifold with
cylindrical geometry: M7 = Rtime × M6. For any three-cycle S ∈
H3(M6,Z) there is a corresponding operator defined by:

Φm(S) = exp

(
imI

∫
S
cI
)

, (5.13)

where mI is a vector of charges. The pairing ΩIJ defines an integral
lattice Λ and the mI take values in its dual Λ∗. Given two operators as
Φm(S) and Φn(T ) as in (5.13) they satisy the so-called braid relations
[84]:

Φm (S) Φn (T ) = Φn (T ) Φm (S)×exp
(
2πi

(
mI

(
Ω−1

)IJ
nJ

)
(S · T )

)
,

(5.14)
where S · T is the intersection pairing for 3-cycles in M6. Because of
(5.14) the ground state degeneracy of the system depends on the topology
of M6. This is a sign of topological order, a feature of certain gapped
systems studied extensively in condensed matter theory. The interested
reader might find it useful to consult [87, 88, 89]. In this setup it is
interesting to understand what happens when chiral boundary conditions
are enforced at the boundary of M7:

�6D cI |∂M7
= icI |∂M7

(5.15)
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Γ Σ

Figure 5.3. Insertion of a membrane wrapping a Riemann surface Σ on the
boundary ∂M7 via a three-form supported along a 3-chain Γ.

i.e. the cI ’s are anti-self dual at the boundary. Moreover, the cI ’s are
considered here as three-form field strengths for two-forms bI ’s:

cI = dbI . (5.16)

As for 3D Chern-Simons there are physical degrees of freedom associated
with the cI ’s, these are 2+1D membranes and can be thought as an
analog of “electrons” for the 7D system.

In this sense, for a given three-chain Γ there is an associated operator:

Φm(Γ) = exp

(
imI

∫
Γ
cI
)

, (5.17)

which represents a bulk insertion of a membrane of charge mI . When Γ
has a topology like Γ = R≤0×Σ, with Σ a Riemann surface lying at ∂M7

as in figure 5.3, there is a corresponding boundary operator denoted by:

Φm(Γ) = exp

(
imI

∫
Γ
cI
)

. (5.18)

The bulk insertion of a membrane operator supported on a 3-chain Γ
corresponds to a Euclidean string coupled to bI and wrapping Σ on the
boundary. As shown in III there are useful “practical uses” also for this
theory. Consider a large 4-form background flux G = dC, this couple to
the original action in the following way:

S(7D)[c
I , C] =

ΩIJ

4πi

∫
M7

cI ∧ dcJ +
νI
2πi

∫
M7

C ∧ dcI . (5.19)
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From (5.19) it is possible to derive the fractional conductivity following
similar steps as in section 5.1, this leads to a hierarchy given again by a
continued fraction:

p

q
= x1 ∓ 1

x2 ∓ 1
x3∓...

. (5.20)

Although this is exactly the same formula as before it carries a quite
different physical interpretation. In the setup of III the (-) signs are in-
terpreted as “brane” while (+) signs were dubbed “dranes” i.e. the nega-
tion of a brane. This picture is quite interesting as it is known that 6D
SCFTs possess a spectrum of tensionless strings described by D3 branes
wrapped on 2-cycles with P1 topology and negative self-intersection [1].
The 7D Chern-Simons setup gives an effective description of this phe-
nomenon in terms of filling fractions for excitations above the ground
state of a quantum many body system localized at the boundary of M7.
A natural question is how to characterize the many body wavefunction
for this system. To do that it is necessary to introduce a background
flux operator Φbkgd:

Φbkgd = exp

(
νI
2πi

∫
D7

cI ∧G

)
= exp

(
νI
2πi

∫
D6

bI ∧G

)
, (5.21)

where D7 = R≤0 × D6. Now, the ultimate goal is to determine the
following correlation function:

Ψ(Σ1, . . . ,ΣN ) = 〈Φ(1) . . .Φ(N)Φbkgd〉 . (5.22)

Since the theory on ∂M7 is free this boils down to evaluating:

ΨLaughlin =
∏

1≤i<j≤N
〈Φ(i)Φ(j)〉6D ×

∏
1≤i≤N

Ψ
(i)
Landau , (5.23)

where the unnormalized Landau wavefunction for a single membrane
moving in a background four-form flux can be defined as:

Ψ
(i)
Landau = 〈ΦbkgndΦ

(i)〉6D . (5.24)

Although (5.23) looks very similar to (5.10) its calculation is not as
straightforward since it involves many non-trivial data about bulk ge-
ometry. The goal of III was to study various interesting limits of this
expression. An obvious difference between electrons and membranes is
that the latter objects carry a natural tension denoted by TM2:

TM2 =
1

(2πl∗)3
, (5.25)

which depends on G. The strength of G governs the behavior of the
effective degrees of freedom, indeed for a big value of the background
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Σ Σ′

z

Figure 5.4. Two large flat surfaces Σ and Σ′ separated along z.

flux the membrane will puff up to a large rigid object while for a small
value of the flux the correct behavior would be that of a point particle.
As a consequence of working with a 4-form flux, there is a tensor of
magnetic lengths which intuitevely can be described as:

l⊥ ∼ 1√
G

, (5.26)

where ⊥ denotes the directions transverse to Σ. An instructive example
is that of two flat surfaces Σ,Σ′ close to each other in the large G limit,
in this case the global six-dimensional geometry can be thought of as
M6 = R2 × Σ × Σ′. The separation of Σ and Σ′ on R2 is parametrized
by complex variables z, z̄. See figure 5.4.

Integrating over the Riemann surfaces leads to a Laughlin wavefunc-
tion given by:

ΨLaughlin ⊂
〈
eim

∫
Σ
beim

′ ∫
Σ′ b

〉
6D

∼ zρz̄ρ̃ , (5.27)

where ρ and ρ̃ depends on the decomposition of b in terms of harmonic
self-dual and anti-self dual 2-forms. In particular, this implies that there
is an explicit dependence on the metric. Nevertheless, there still is a
meaningful quantity protected by topology [90]:

ρ− ρ̃ =
mm′

Ω
× (

Σ · Σ′) |z=0 , (5.28)

where (Σ · Σ′) |z=0 is the intersection pairing of two-cycles on a Kähler
surface. Returning to the evaluation of (5.27), it is worth noticing that
there is a rather close similarity to the case of a 2D chiral boson. The
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R⊥

C
2/ΓADE

Figure 5.5. A stack of M5 branes probing a C
2/ΓADE singularity seen as a 6D

domain-wall along the R⊥ coordinate.

main difference is that the precise values of the exponents ρ and ρ̃ also
require information about the explicit choice of metric as well as the
dynamics of the membranes moving in a background charge density.
Indeed, it is well known that for a six manifold M6 = R2 × P2 this is
actually just a 2D chiral boson.

5.3 Further Directions
The main motivation for studying a 7D Chern-Simons theory in III was to
get a physical explanation for certain characteristic features of 6D SCFTs
that have been observed in recent years [91, 92, 93, 94, 95]. Indeed, it is
known that M-theory has an 11D Chern-Simons term whose reduction
to 7D dimensions leads to a bulk action containing terms like:

S11D,bulk ⊃ ΩIJ

4πi

∫
M7

cI ∧ dcJ +
μI

4πi

∫
M7

cI ∧ Tr (F ∧ F ) . (5.29)

The first term in (5.29) has been discussed at length in section 5.2 while
the second term is a 7D lift of a Greeen-Schwarz coupling [96, 97, 98]
which has also been recently studied in the context of 6D (1, 0) SCFTs
[99]. In III it is conjectured that a particular “gapped” limit of a 7D N =
1 gravitino multiplet would be a good starting point for thinking about
the 7D Chern-Simons theory in a supersymmetric way. See figure 5.5.
An alternative proposal relating M5 branes to the fractional quantum
Hall effect has been proposed in [100].

Finally, the higher-dimensional point of view could be seen as a lab-
oratory to understand and classify a large class of lower-dimensional
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topological systems whose matrix of couplings are determined in terms
of geometrical data of the internal directions.
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6. Spin Chains and TQFTs

We review how solutions of the Yang-Baxter equation associated to Lie
groups can be deduced in a systematic way using a four-dimensional
topological gauge theory. We conclude the chapter with some comments
on the string theory origin of such result.

6.1 Gauge Theory and Integrable Lattice Models
The study of integrable lattice models has been a very active line of
research since the early days of quantum mechanics. Most of the classic
results in this topic can be found in [101]. Elastic scattering process in
1+1D can be drawn as the left diagram in figure 6.1. Particles have
quantum numbers, labeled by elements of a vector space V , denoted
by ei with i = 1, . . . , dim(V ). Moreover, each incoming state is also
characterized by a (complex) spectral parameter z. All the interactions
among internal states are governed by a matrix which depends on z, for
this reason it is crucially important to determine the exact form of:

R(z1, z2) : V ⊗ V → V ⊗ V , (6.1)

which is also known of as R-matrix. A basic working assumption1 is that
the integrable systems considered here will have an R-matrix which only
depends on (z1, z2) through their difference z1 − z2.

The power of integrability emerges quite naturally when more incoming
states interacts with each other. For example, consider an elastic scat-
tering with three incoming states as in the left hand side of figure 6.2.
Because of integrability, the S-matrix structure is constrained in such a
way that exchanging the incoming channels as in the right hand side of
figure 6.2 leads to the Yang-Baxter equation:

R12R13R23 = R23R13R12 , (6.2)

where Rij with i, j = 1, 2, 3 is an abbreviation for Rij(zi−zj). A complete
classification of solutions for general Yang-Baxter equation (YBE) is not
known. However, it is possible to introduce a quasi-classical R-matrix
defined as:

R� = I + �r(z) +O(�2) , (6.3)

1Indeed, there are interesting systems which do not have this property, see [102, 103].
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Figure 6.1. On the left an usual scattering diagrams. On the right a XXX
spin-chain.

where r(z) is known as classical R-matrix and it satisfies a classical
Yang-Baxter equation (cYBE) that can be found by substituting (6.3)
in (6.1). In this way, the situation improves drastically since a complete
classification of solutions to cYBE has been worked out in [104]. Given
a classical R-matrix expressed as:

r(z) =
∑
a,b

ra,b(z)(t
a ⊗ tb) , (6.4)

where ta is a basis for a Lie algebra g and ra,b(z) satisfies a non-degeneracy
condition i.e. deta,b ra,b(z) �= 0, all possible solutions to cYBE can be
classified by studying the poles of r(z). Indeed, in [104] it was shown
that poles of r(z) span a lattice whose dimension can be either 0, 1 or 2.
The corresponding solutions to classical Yang-Baxter equation are given
by rational, trigonometric or elliptic functions.

A very simple but important example is the XXX spin chain as drawn
on the right hand side of 6.1. Incoming particles have quantum numbers
labeled by two vector spaces V = W = C2. The R-matrix acts as an
intertwiner of V and W i.e. R : V ⊗W → W⊗V . Because of integrability
the system can be solved exactly and the R-matrix is found to be:

R�(z) = w ⊗ v +
�

z
c(w ⊗ v) , (6.5)

where v ∈ V , w ∈ W and c ∈ sl2 × sl2 is the quadratic Casimir.

A closer inspection to figure 6.2 reveals a surprising connection. In knot
theory it is customary to classify and distinguish different knots using
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Figure 6.2. A famous illustration of Yang-Baxter equation.

the so called Reidemeister moves. In particular two knot diagrams be-
longing to the same knot can be shown to be equivalent by a sequence of
three different moves. Strikingly, one of these moves is portrayed exactly
in the same way as the diagrammatic Yang-Baxter equation. Following
this intuition, it is natural to wonder whether 3D Chern-Simons theory
could have anything to do with integrable lattice models [105, 6]. Unfor-
tunately, Chern-Simons theory by itself does not seem able to capture
the spectral parameter or to be more precise it does only capture it in
a very degenerate limit z → i∞. For nearly 30 years, a topological
quantum field theory interpretation of the spectral parameter has been
missing.

Recently, the problem of finding a correct topological quantum field the-
ory interpretation for the spectral parameter has been solved in a series
of mathematical papers [106, 107]. See [108, 109] for a physics adapta-
tion. The central idea behind this proposal is very simple, consider a
four-dimensional action given by:

S(4D)[A] =
1

2π

∫
M4

dz ∧ CS(A) , (6.6)

where M4 = R2×C2 has local coordinates (x, y, z, z̄) and the connection
1-form A has no explicit dependence on Az:

A = Axdx+Aydy +Az̄dz̄ . (6.7)

Intuitively, by lifting the problem to four dimensions it is possible to
give a clear geometrical description of the spectral parameter. At this
point, it is quite useful to describe a number of surprising consequences
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of (6.6). First, the action does not have four-dimensional nor three-
dimensional diffeomorphisms invariance but it is only invariant under
two-dimensional diffeomorphisms along R2. In addition, there is no no-
tion of reality as the action functional is a complex function of (Ax, Ay, Az̄).
The action is non-renormalizable by power counting and its coupling con-
stant, denoted by �, has dimension: [�] = [L] = [M ]−1. Contrarily to 3D
Chern-Simons, � does not have a quantization condition. Finally, upon
integration by parts, (6.6) can be rewritten as a position dependent θ-
term:

S(4D)[A] = − 1

2π

∫
M4

zTr(F ∧ F ) . (6.8)

A simple exercise shows that the equations of motions from (6.6) are
given by:

Fxy = 0 , Fxz̄ = Fyz̄ = 0 . (6.9)

Therefore, the theory is topological on R2 and holomorphic along C.
More generally, a topological theory with similar features2 can be writ-
ten for any smooth oriented 2-fold Σ and any complex 1-fold C with a
meromorphic 1-form ω:

S(4D)[A] =
1

2π

∫
Σ×C

ω ∧ CS(A) . (6.10)

The limit � → ∞ is not well defined in perturbation theory, for this
reason ω is not allowed to have zeroes. Then, by Riemann-Roch theorem,
there is a limited number of possibilities for a genus g complex 1-fold C.
In particular, for g = 0 there can be a double pole which gives C = C and
ω = dz or two simple poles leading to C = C∗ and ω = dz

z . Conversely,
for g = 1 there are no poles and C = E where E denotes a complex
elliptic curve with ω = dz. Notice that, this exhausts all the possible
choices of C.

Consider a Wilson loop observable defined by:

Wρ(K) = Trρ Pexp

(∮
K
A

)
, (6.11)

where K is a non-arbitrary loop in Σ×C. Non-arbitrary means that K
needs to be a loop in Σ at a fixed value z = z∗ in C. Quite interestingly,
perturbative calculations involving these observables are quite simple
as (6.6) is IR free. Here we follow [108] and derive a crucial example
involving two intersecting Wilson loop observables exchanging a gluon.
The first step consists of a metric rescaling on Σ by a large factor, in

2Similar theories have appeared also in the context of topological twisting. See [110,
111].
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Figure 6.3. Typical configuration of lines in Σ× C for the 4D TQFT.

this way two intersecting Wilson loops become infinitely stretched lines
on R2. By the same token, “long-distance effects” can be safely ignored
and the only contribution to be considered is localized at the intersection
between two lines. When C = C, a typical configuration of multiple non-
arbitrary lines in R2 ×C together with their gluon exchange is shown in
figure 6.3.
In what follows it is useful to use a metric on R2 × C such that:

ds2 = dx2 + dy2 + dzdz̄ = gμνdx
μdxν , (6.12)

and a metric tensor gμν given by:

gμν =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1

2
0 0 1

2 0

⎞
⎟⎟⎠ . (6.13)

The most convenient choice of gauge-fixing condition in these coordinates
is an analog of Lorentz gauge written as:

∂xAx + ∂yAy + 4∂zAz̄ = 0 . (6.14)
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In this gauge, the four-dimensional propagator for two gauge fields
A and A′ is given by:

〈AA′〉xy =
1

2π

2(z̄ − z̄′)
((x− x′)2 + (y − y′)2 + |z − z′|2)2 , (6.15)

〈AA′〉xz̄ = 1

2π

y − y′

((x− x′)2 + (y − y′)2 + |z − z′|2)2 , (6.16)

〈AA′〉yz̄ = 1

2π

x− x′

((x− x′)2 + (y − y′)2 + |z − z′|2)2 . (6.17)

Moreover, the propagator can be defined as a two-form on R2 × C:

P (x, y, z, z̄) ≡ 1

2π
(xdy ∧ dz̄ + ydz̄ ∧ dx+ 2z̄dx ∧ dy)

× 1

(x2 + y2 + zz̄)2
. (6.18)

So far, Lie algebra indices have been omitted everywhere from the pre-
sentation. A four-dimensional bulk gauge field Aa

μ couples to a Wilson
line in a representation ρ through a Lie algebra matrix ta,ρ. As such,
the correlator of a Wilson line observable, supported on a x-axis line K1

with z = z1, intersecting a second observable localized on a y-axis line
K2 with z = z2 is given by:

〈Wρ(K1)Wρ′(K2)〉4D =

� cρ,ρ′

∫
dxdy′ P (x− x′, y − y′, z1 − z2, z̄1 − z̄2) , (6.19)

where cρ,ρ′ is expressed as:

cρ,ρ′ =
∑
a

ta,ρ ⊗ ta,ρ′ . (6.20)

Here cρ,ρ′ can be viewed as the image of an element c =
∑

a ta ⊗ ta of of
g ⊗ g in the representation ρ ⊗ ρ′. The integral in (6.19) can be easily
evaluated:

〈Wρ(K1)Wρ′(K2)〉4D = � cρ,ρ′
1

2π

∫
dxdy

2(z̄1 − z̄2)

(x2 + y2 + |z1 − z2|2)2

=
� cρ,ρ′

z1 − z2
.

(6.21)

Amazingly, a gauge theory calculation reproduces the XXX spin-chain
R-matrix semiclassical expansion (6.5):

R�(z1, z2) = I + � r(z1, z2) +O(�2) = I +
� cρ,ρ′

z1 − z2
+O(�2) . (6.22)
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Furthermore, by general theorems [104] it is known that this is enough to
determine the full rational R-matrix. Finally, the missing link between
integrable lattice models and gauge theories has been found.

As remarked above, the full four-dimensional formulation was crucial.
More precisely, the results of [106, 107] have shown rigorously how to
make sense of perturbative calculations using formal arguments in BV
formalism. Moreover, the works [108, 109] have put these works on a solid
physical perspective. By now, all these insights seems to point out that
even though the original 4D theory is non-renormalizable its perturbation
theory seems to converge. In the next section we describe how twisted
supersymmetry and brane configurations in string theory are a promising
tool to get a first-principle understanding of such phenomenon.

6.2 String Theory Formulation
A program for understanding the non-perturbative formulation of com-
plex 3D Chern-Simons theory and its relationship to string theory has
been put forward starting with [112, 113] and culminating in [114]. In
all these papers there is an important interplay between supersymmetric
brane configurations and twisted topological field theories. In particular,
a new type of topological coupling for 4D N = 4 super Yang-Mills the-
ory was first found in [115, 116] by studying configurations of D3 branes
ending on NS5 branes. This coupling is a generalization of the θ-angle
term and can be understood in terms of a topologically twisted version
of N = 4 SYM [74]. Moreover, the supersymmetric partition function
for a twisted N = 4 theory on a four-manifold with boundary localizes to
3D complex Chern-Simons at the boundary. As shown in [114], all these
topics can be elegantly unified using various twisted compactification of
a six-dimensional (2, 0) SCFT.

This strategy needs to be modified in order to describe the 4D version of
Chern-Simons theory introduced in section 6.1. The appropriate brane
system is now given by a configuration of D4-NS5 branes with a Ramond-
Ramond flux turned on. These backgrounds have a long history initiated
in [117]. More recently, they have been used in the context of supersym-
metric field theory in [118, 119, 120, 121] where they were called “flux-
trap” backgrounds. A fluxtrap gives a string theory description for the
equivariant parameters used for Ω-deformed supersymmetric gauge the-
ories. The twisted complex planes are now part of the ten-dimensional
geometry and all the branes are trapped at fixed point of the rotation
isometry.

There are some promising hints that the above brane configuration can be
further described using little string theory (LST) [122]. In a convenient
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string duality frame this has a low-energy description in terms of 6D
(1, 1) super Yang-Mills theory. Using supersymmetric localization, the
partition function of this system can be shown to localize to the 4D
TQFT thus giving rise to a well defined non-perturbative definition [123].
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8. Svensk Sammanfattning

Att fysikaliska modeller har exakta lösningar spelar en avgörande roll
för vår förståelse av naturen. Faktum är att bara genom att studera ett
enkelt system kan vi ofta lära oss viktiga egenskaper hos mer komplicer-
ade modeller. Ett exempel på detta är vätgasatomen som har lärt oss
grundläggande aspekter av kvantmekanik. Min forskning handlar om att
försöka skapa nya exakta lösningar inom kvantfältteorier, det universella
språket inom modern teoretisk fysik.

Att studera exakta lösningar är grundläggande för att övervinna kvant-
fältteorins begränsningar och sedan kunna använda det som ett verktyg
när vi vill beskriva naturen. Detta blev tydligt sedan begynnelsen av
kvantkromodynamik eller QCD, den fysikaliska teori som förklarar atom-
kärnans struktur. Vid låga energier sker en stark växelverkan och det
finns en kraft med oändlig räckvidd som “fjättrar” kvarkarna. Denna re-
gion kan inte observeras genom en approximation i störningsteori och
“fjättringen” (confinement) av kvarkar är fortfarande ett av de mest
svårlösta problemen i teoretisk fysik. Ett annat exempel på detta är
fasövergångar hos supraledare sum vid höga temperaturer uppvisar ett
liknande beteende. Slutligen ger strängteori upphov till ett stort ut-
bud av kvantfältteorier vars beteende saknar en sektion med svag väx-
elverkan.

Under min tid som doktorand har jag varit intresserad av de tänkbara
sätt man kan använda för att karakterisera den icke-perturbativa dy-
namiken hos olika kvantfältteorier med hjälp av verktyg såsom super-
symmetri och geometri. Supersymmetriska kvantfältteorier är använd-
bara teoretiska laboratorier där vi kan fördjupa vår förståelse av viktiga
fenomen som också existerar i icke-supersymmetriska teorier. Samtidigt
är många topologiska egenskaper hos fysiska system universella och över-
lever trots att det inte finns en region med svag växelverkan.

Ett av målen med denna avhandling var att studera dynamiken hos su-
persymmetriska teorier i rumtid med ett stort antal dimensioner. Detta
är en av utmaningarna i teoretisk fysik idag, eftersom störningsteori inte
gäller, och vi istället måste använda konstruktioner från strängteori för
att ens påvisa existensen av sådana teorier. Tack vare att partitionsfunk-
tionen är en supersymmetrisk skyddad kvantitet kan vi använda den för
att undersöka teorier vid höga energier, något som annars är omöjligt.
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Detta är ett viktigt steg i processen att identifiera motsvarigheterna mel-
lan variabler i lokala kvantfältteorier och strängdynamik.

Något som kännetecknar supersymmetriska fältteorier i högre dimen-
sioner är existensen av strängliknande frihetsgrader vid låga energier.
Ytterligare ett mål för denna avhandling var att beskriva sådana strän-
gar genom att upprätta en korrespondens mellan en topologisk teori i
den högredimensionella rymden “bulken” och rand-frihetsgrader. I denna
analys utläses spektrumet för rand-excitationer på ett sätt som i stor ut-
sträckning liknar låg-energi-excitationer som är ovanför grundtillståndet
hos ett system inom den kondenserade materiens fysik.

51



References

[1] E. Witten, “Some comments on string dynamics,” in Future perspectives
in string theory. Proceedings, Conference, Strings’95, Los Angeles, USA,
March 13-18, 1995. 1995. arXiv:hep-th/9507121.

[2] A. Strominger, “Open p-branes,” Phys. Lett. B383 (1996) 44–47,
arXiv:hep-th/9512059 [hep-th].

[3] N. Seiberg, “Nontrivial fixed points of the renormalization group in
six-dimensions,” Phys. Lett. B390 (1997) 169–171,
arXiv:hep-th/9609161.

[4] E. Witten, “Topological Quantum Field Theory,” Commun. Math.
Phys. 117 (1988) 353.

[5] V. Pestun et al., “Localization techniques in quantum field theories,” J.
Phys. A50 no. 44, (2017) 440301, arXiv:1608.02952 [hep-th].

[6] E. Witten, “Quantum Field Theory and the Jones Polynomial,”
Commun. Math. Phys. 121 (1989) 351–399.

[7] T. T. Dumitrescu, “An introduction to supersymmetric field theories in
curved space,” J. Phys. A50 no. 44, (2017) 443005, arXiv:1608.02957
[hep-th].

[8] N. Seiberg, “Naturalness versus supersymmetric nonrenormalization
theorems,” Phys. Lett. B318 (1993) 469–475, arXiv:hep-ph/9309335
[hep-ph].

[9] K. A. Intriligator and N. Seiberg, “Lectures on supersymmetric gauge
theories and electric-magnetic duality,” Nucl. Phys. Proc. Suppl. 45BC
(1996) 1–28, arXiv:hep-th/9509066 [hep-th]. [,157(1995)].

[10] G. Festuccia and N. Seiberg, “Rigid Supersymmetric Theories in Curved
Superspace,” JHEP 06 (2011) 114, arXiv:1105.0689 [hep-th].

[11] G. W. Moore and E. Witten, “Integration over the u plane in Donaldson
theory,” Adv. Theor. Math. Phys. 1 (1997) 298–387,
arXiv:hep-th/9709193 [hep-th].

[12] E. Witten, “Topological Sigma Models,” Commun. Math. Phys. 118
(1988) 411.

[13] E. Witten, “Mirror manifolds and topological field theory,”
arXiv:hep-th/9112056 [hep-th]. [AMS/IP Stud. Adv.
Math.9,121(1998)].

[14] N. A. Nekrasov, “Seiberg-Witten prepotential from instanton counting,”
Adv. Theor. Math. Phys. 7 no. 5, (2003) 831–864,
arXiv:hep-th/0206161 [hep-th].

[15] N. Nekrasov and A. Okounkov, “Seiberg-Witten theory and random
partitions,” Prog. Math. 244 (2006) 525–596, arXiv:hep-th/0306238
[hep-th].

52



[16] V. Pestun, “Localization of gauge theory on a four-sphere and
supersymmetric Wilson loops,” Commun. Math. Phys. 313 (2012)
71–129, arXiv:0712.2824 [hep-th].

[17] S. Weinberg, The quantum theory of fields. Vol. 3: Supersymmetry.
Cambridge University Press, 2013.

[18] N. Seiberg, “Five-dimensional SUSY field theories, nontrivial fixed
points and string dynamics,” Phys. Lett. B388 (1996) 753–760,
arXiv:hep-th/9608111 [hep-th].

[19] D. R. Morrison and N. Seiberg, “Extremal transitions and
five-dimensional supersymmetric field theories,” Nucl. Phys. B483
(1997) 229–247, arXiv:hep-th/9609070 [hep-th].

[20] M. R. Douglas, S. H. Katz, and C. Vafa, “Small instantons, Del Pezzo
surfaces and type I-prime theory,” Nucl. Phys. B497 (1997) 155–172,
arXiv:hep-th/9609071 [hep-th].

[21] K. A. Intriligator, D. R. Morrison, and N. Seiberg, “Five-dimensional
supersymmetric gauge theories and degenerations of Calabi-Yau spaces,”
Nucl. Phys. B497 (1997) 56–100, arXiv:hep-th/9702198 [hep-th].

[22] Y. Tachikawa, “Instanton operators and symmetry enhancement in 5d
supersymmetric gauge theories,” PTEP 2015 no. 4, (2015) 043B06,
arXiv:1501.01031 [hep-th].

[23] O. J. Ganor, D. R. Morrison, and N. Seiberg, “Branes, Calabi-Yau
spaces, and toroidal compactification of the N=1 six-dimensional E(8)
theory,” Nucl. Phys. B487 (1997) 93–127, arXiv:hep-th/9610251
[hep-th].

[24] M. R. Douglas, “On D=5 super Yang-Mills theory and (2,0) theory,”
JHEP 02 (2011) 011, arXiv:1012.2880 [hep-th].

[25] N. Lambert, C. Papageorgakis, and M. Schmidt-Sommerfeld,
“M5-Branes, D4-Branes and Quantum 5D super-Yang-Mills,” JHEP 01
(2011) 083, arXiv:1012.2882 [hep-th].

[26] O. Aharony, A. Hanany, and B. Kol, “Webs of (p,q) five-branes,
five-dimensional field theories and grid diagrams,” JHEP 01 (1998) 002,
arXiv:hep-th/9710116 [hep-th].

[27] J. Kallen and M. Zabzine, “Twisted supersymmetric 5D Yang-Mills
theory and contact geometry,” JHEP 1205 (2012) 125,
arXiv:1202.1956 [hep-th].

[28] J. Källén, J. Qiu, and M. Zabzine, “The perturbative partition function
of supersymmetric 5D Yang-Mills theory with matter on the
five-sphere,” JHEP 08 (2012) 157, arXiv:1206.6008 [hep-th].

[29] H.-C. Kim, S.-S. Kim, and K. Lee, “5-dim Superconformal Index with
Enhanced En Global Symmetry,” JHEP 10 (2012) 142,
arXiv:1206.6781 [hep-th].

[30] H.-C. Kim and S. Kim, “M5-branes from gauge theories on the
5-sphere,” JHEP 05 (2013) 144, arXiv:1206.6339 [hep-th].

[31] D. L. Jafferis and S. S. Pufu, “Exact results for five-dimensional
superconformal field theories with gravity duals,” JHEP 05 (2014) 032,
arXiv:1207.4359 [hep-th].

[32] G. Lockhart and C. Vafa, “Superconformal Partition Functions and

53



Non-perturbative Topological Strings,” arXiv:1210.5909 [hep-th].
[33] E. Witten, “Phase transitions in M theory and F theory,” Nucl. Phys.

B471 (1996) 195–216, arXiv:hep-th/9603150 [hep-th].
[34] M. Del Zotto, J. J. Heckman, and D. R. Morrison, “6D SCFTs and

Phases of 5D Theories,” JHEP 09 (2017) 147, arXiv:1703.02981
[hep-th].

[35] P. Jefferson, S. Katz, H.-C. Kim, and C. Vafa, “On Geometric
Classification of 5d SCFTs,” arXiv:1801.04036 [hep-th].

[36] Y. Pan, “Rigid Supersymmetry on 5-dimensional Riemannian Manifolds
and Contact Geometry,” JHEP 05 (2014) 041, arXiv:1308.1567
[hep-th].

[37] Y. Pan, “5d Higgs Branch Localization, Seiberg-Witten Equations and
Contact Geometry,” JHEP 01 (2015) 145, arXiv:1406.5236 [hep-th].

[38] Y. Pan and J. Schmude, “On rigid supersymmetry and notions of
holomorphy in five dimensions,” JHEP 11 (2015) 041,
arXiv:1504.00321 [hep-th].

[39] M. Zucker, “Gauged N=2 off-shell supergravity in five-dimensions,”
JHEP 08 (2000) 016, arXiv:hep-th/9909144 [hep-th].

[40] T. Kugo and K. Ohashi, “Off-shell D = 5 supergravity coupled to
matter Yang-Mills system,” Prog. Theor. Phys. 105 (2001) 323–353,
arXiv:hep-ph/0010288 [hep-ph].

[41] C. P. Boyer and K. Galicki, Sasakian Geometry. Oxford University
Press, USA, 2008.

[42] J. Sparks, “Sasaki-Einstein Manifolds,” Surveys Diff. Geom. 16 (2011)
265–324, arXiv:1004.2461 [math.DG].

[43] J. Qiu and M. Zabzine, “Review of localization for 5d supersymmetric
gauge theories,” J. Phys. A50 no. 44, (2017) 443014,
arXiv:1608.02966 [hep-th].

[44] C. H. Taubes, “The Seiberg-Witten equations and the Weinstein
conjecture,” Geom. Topol. 11 no. 4, (2007) 2117–2202. .

[45] N. A. Nekrasov, “Localizing gauge theories,” in XIVTH International
Congress on Mathematical Physics, pp. 645–654. Mar., 2006.

[46] J. J. Kohn and H. Rossi, “On the extension of holomorphic functions
from the boundary of a complex manifold,” Annals of Mathematics 81
no. 2, (1965) 451–472.

[47] G. B. Folland and J. J. Kohn, The Neumann Problem for the
Cauchy-Riemann Complex. (AM-75). Princeton University Press, 1972.

[48] J. Schmude, “Localisation on Sasaki-Einstein manifolds from
holomorphic functions on the cone,” JHEP 01 (2015) 119,
arXiv:1401.3266 [hep-th].

[49] W. Fulton, Introduction to Toric Varieties. No. 131 in Annals of
mathematics studies. Princeton University Press, 1993.

[50] J. A. Minahan, “Matrix models for 5d super Yang?Mills,” J. Phys. A50
no. 44, (2017) 443015, arXiv:1608.02967 [hep-th].

[51] J. Winding, “Multiple elliptic gamma functions associated to cones,”
Adv. Math. 325 (2018) 56–86, arXiv:1609.02384 [math.CA].

[52] C. Beem, T. Dimofte, and S. Pasquetti, “Holomorphic Blocks in Three

54



Dimensions,” arXiv:1211.1986 [hep-th].
[53] F. Nieri, S. Pasquetti, and F. Passerini, “3d & 5d gauge theory partition

functions as q-deformed CFT correlators,” arXiv:1303.2626 [hep-th].
[54] F. Nieri and S. Pasquetti, “Factorisation and holomorphic blocks in 4d,”

JHEP 11 (2015) 155, arXiv:1507.00261 [hep-th].
[55] D. Gaiotto and H.-C. Kim, “Duality walls and defects in 5d N = 1

theories,” JHEP 01 (2017) 019, arXiv:1506.03871 [hep-th].
[56] T. Dimofte, D. Gaiotto, and N. M. Paquette, “Dual Boundary

Conditions in 3d SCFT’s,” arXiv:1712.07654 [hep-th].
[57] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized

Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
[58] C. Cordova, T. T. Dumitrescu, and K. Intriligator, “Exploring 2-Group

Global Symmetries,” arXiv:1802.04790 [hep-th].
[59] T. Banks and N. Seiberg, “Symmetries and Strings in Field Theory and

Gravity,” Phys. Rev. D83 (2011) 084019, arXiv:1011.5120 [hep-th].
[60] O. Aharony, N. Seiberg, and Y. Tachikawa, “Reading between the lines

of four-dimensional gauge theories,” JHEP 08 (2013) 115,
arXiv:1305.0318 [hep-th].

[61] G. T. Horowitz, “Exactly Soluble Diffeomorphism Invariant Theories,”
Commun. Math. Phys. 125 (1989) 417.

[62] J. M. Maldacena, G. W. Moore, and N. Seiberg, “D-brane charges in
five-brane backgrounds,” JHEP 10 (2001) 005, arXiv:hep-th/0108152
[hep-th].

[63] A. Kapustin and N. Seiberg, “Coupling a QFT to a TQFT and
Duality,” JHEP 04 (2014) 001, arXiv:1401.0740 [hep-th].

[64] D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg, “Theta,
Time Reversal, and Temperature,” JHEP 05 (2017) 091,
arXiv:1703.00501 [hep-th].

[65] R. Dijkgraaf, “Les Houches lectures on fields, strings and duality,” 1997.
arXiv:hep-th/9703136 [hep-th]. .

[66] N. A. Nekrasov, “Lectures on nonperturbative aspects of
supersymmetric gauge theories,” Class. Quant. Grav. 22 (2005)
S77–S105.

[67] J. Labastida and M. Marino, Topological quantum field theory and four
manifolds. 2005. .

[68] G. W. Moore, “Lectures On The Physical Approach To Donaldson And
Seiberg-Witten Invariants Of Four-Manifolds,” 2017.

[69] P. S. Aspinwall and D. R. Morrison, “Topological field theory and
rational curves,” Comm. Math. Phys. 151 no. 2, (1993) 245–262.

[70] C. Vafa and E. Witten, “A Strong coupling test of S-duality,” Nucl.
Phys. B431 (1994) 3–77, arXiv:hep-th/9408074 [hep-th].

[71] L. Rozansky and E. Witten, “HyperKahler geometry and invariants of
three manifolds,” Selecta Math. 3 (1997) 401–458,
arXiv:hep-th/9612216 [hep-th].

[72] D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande,
“Gromov-Witten theory and Donaldson-Thomas theory, I,” ArXiv
Mathematics e-prints (Dec., 2003) , math/0312059.

55



[73] R. Dijkgraaf, S. Gukov, A. Neitzke, and C. Vafa, “Topological M-theory
as unification of form theories of gravity,” Adv. Theor. Math. Phys. 9
no. 4, (2005) 603–665, arXiv:hep-th/0411073 [hep-th].

[74] A. Kapustin and E. Witten, “Electric-Magnetic Duality And The
Geometric Langlands Program,” Commun. Num. Theor. Phys. 1 (2007)
1–236, arXiv:hep-th/0604151 [hep-th].

[75] G. W. Moore and N. Read, “Nonabelions in the fractional quantum Hall
effect,” Nucl. Phys. B360 (1991) 362–396.

[76] D. Tong, “Lectures on the Quantum Hall Effect,” 2016.
arXiv:1606.06687 [hep-th].

[77] R. Floreanini and R. Jackiw, “Selfdual Fields as Charge Density
Solitons,” Phys. Rev. Lett. 59 (1987) 1873.

[78] X.-G. Wen, “Theory of the edge states in fractional quantum Hall
effects,” Int. J. Mod. Phys. B6 (1992) 1711–1762.

[79] R. B. Laughlin, “Anomalous quantum Hall effect: An Incompressible
quantum fluid with fractionally charged excitations,” Phys. Rev. Lett.
50 (1983) 1395.

[80] F. D. M. Haldane, “Fractional quantization of the Hall effect: A
Hierarchy of incompressible quantum fluid states,” Phys. Rev. Lett. 51
(1983) 605–608.

[81] B. I. Halperin, “Statistics of quasiparticles and the hierarchy of
fractional quantized Hall states,” Phys. Rev. Lett. 52 (1984) 1583–1586.
[Erratum: Phys. Rev. Lett.52,2390(1984)].

[82] J. K. Jain, “Composite fermion approach for the fractional quantum
Hall effect,” Phys. Rev. Lett. 63 (1989) 199–202.

[83] E. P. Verlinde, “Global aspects of electric - magnetic duality,” Nucl.
Phys. B455 (1995) 211–228, arXiv:hep-th/9506011 [hep-th].

[84] E. Witten, “AdS / CFT correspondence and topological field theory,”
JHEP 12 (1998) 012, arXiv:hep-th/9812012 [hep-th].

[85] O. Aharony and E. Witten, “Anti-de Sitter space and the center of the
gauge group,” JHEP 11 (1998) 018, arXiv:hep-th/9807205 [hep-th].

[86] D. Belov and G. W. Moore, “Holographic Action for the Self-Dual
Field,” arXiv:hep-th/0605038 [hep-th].

[87] X.-G. Wen, “Quantum Field Theory of Many-Body Systems". Oxford
University Press, Oxford, 2004.

[88] X.-G. Wen, “Topological order: from long-range entangled quantum
matter to an unification of light and electrons,” ISRN Cond. Matt.
Phys. 2013 (2013) 198710, arXiv:1210.1281 [cond-mat.str-el].

[89] J. McGreevy, “TASI 2015 Lectures on Quantum Matter (with a View
Toward Holographic Duality),” 2017. arXiv:1606.08953 [hep-th].

[90] N. Seiberg and W. Taylor, “Charge Lattices and Consistency of 6D
Supergravity,” JHEP 06 (2011) 001, arXiv:1103.0019 [hep-th].

[91] J. J. Heckman, D. R. Morrison, and C. Vafa, “On the Classification of
6D SCFTs and Generalized ADE Orbifolds,” JHEP 05 (2014) 028,
arXiv:1312.5746 [hep-th]. [Erratum: JHEP 06 (2015) 017].

[92] M. Del Zotto, J. J. Heckman, A. Tomasiello, and C. Vafa, “6d
Conformal Matter,” JHEP 02 (2015) 054, arXiv:1407.6359 [hep-th].

56



[93] J. J. Heckman, D. R. Morrison, T. Rudelius, and C. Vafa, “Atomic
Classification of 6D SCFTs,” Fortsch. Phys. 63 (2015) 468–530,
arXiv:1502.05405 [hep-th].

[94] L. Bhardwaj, “Classification of 6d N = (1, 0) gauge theories,” JHEP 11
(2015) 002, arXiv:1502.06594 [hep-th].

[95] M. Del Zotto, J. J. Heckman, D. S. Park, and T. Rudelius, “On the
Defect Group of a 6D SCFT,” Lett. Math. Phys. 106 no. 6, (2016)
765–786, arXiv:1503.04806 [hep-th].

[96] M. B. Green, J. H. Schwarz, and P. C. West, “Anomaly Free Chiral
Theories in Six-Dimensions,” Nucl. Phys. B254 (1985) 327–348.

[97] A. Sagnotti, “A Note on the Green-Schwarz mechanism in open string
theories,” Phys. Lett. B294 (1992) 196–203, arXiv:hep-th/9210127.

[98] V. Sadov, “Generalized Green-Schwarz mechanism in F theory,” Phys.
Lett. B388 (1996) 45–50, arXiv:hep-th/9606008 [hep-th].

[99] F. Apruzzi, J. J. Heckman, and T. Rudelius, “Green-Schwarz
Automorphisms and 6D SCFTs,” JHEP 02 (2018) 157,
arXiv:1707.06242 [hep-th].

[100] C. Vafa, “Fractional Quantum Hall Effect and M-Theory,”
arXiv:1511.03372 [cond-mat.mes-hall].

[101] R. J. Baxter, Exactly solved models in statistical mechanics. 1982.
[102] H. Au-Yang, B. M. McCoy, J. H. H. perk, S. Tang, and M.-L. Yan,

“Commuting transfer matrices in the chiral Potts models: Solutions of
Star triangle equations with genus > 1,” Phys. Lett. A123 (1987)
219–223.

[103] R. J. Baxter, J. H. H. Perk, and H. Au-Yang, “New solutions of the star
triangle relations for the chiral Potts model,” Phys. Lett. A128 (1988)
138–142.

[104] A. A. Belavin and V. G. Drinfeld, “Solutions of the classical
Yang-Baxter equation for simple Lie algebras,” Funktsional. Anal. i
Prilozhen. 16 no. 3, (1982) 1–29, 96.

[105] M. Atiyah, “New invariants of 3- and 4-dimensional manifolds,” vol. 48
of Proc. Sympos. Pure Math., pp. 285–299. Amer. Math. Soc.,
Providence, RI, 1988.

[106] K. Costello, “Supersymmetric gauge theory and the Yangian,”
arXiv:1303.2632 [hep-th].

[107] K. Costello, “Integrable lattice models from four-dimensional field
theories,” Proc. Symp. Pure Math. 88 (2014) 3–24, arXiv:1308.0370
[hep-th].

[108] K. Costello, E. Witten, and M. Yamazaki, “Gauge Theory and
Integrability, I,” arXiv:1709.09993 [hep-th].

[109] K. Costello, E. Witten, and M. Yamazaki, “Gauge Theory and
Integrability, II,” arXiv:1802.01579 [hep-th].

[110] A. Johansen, “Twisting of N = 1 SUSY gauge theories and heterotic
topological theories,” Int. J. Mod. Phys. A10 (1995) 4325–4358,
arXiv:hep-th/9403017 [hep-th].

[111] A. Kapustin, “Holomorphic reduction of N=2 gauge theories, Wilson-’t
Hooft operators, and S-duality,” arXiv:hep-th/0612119 [hep-th].

57



[112] E. Witten, “Analytic Continuation Of Chern-Simons Theory,” AMS/IP
Stud. Adv. Math. 50 (2011) 347–446, arXiv:1001.2933 [hep-th].

[113] E. Witten, “A New Look At The Path Integral Of Quantum
Mechanics,” arXiv:1009.6032 [hep-th].

[114] E. Witten, “Fivebranes and Knots,” arXiv:1101.3216 [hep-th].
[115] D. Gaiotto and E. Witten, “Supersymmetric Boundary Conditions in

N=4 Super Yang-Mills Theory,” J. Statist. Phys. 135 (2009) 789–855,
arXiv:0804.2902 [hep-th].

[116] D. Gaiotto and E. Witten, “Janus Configurations, Chern-Simons
Couplings, And The theta-Angle in N=4 Super Yang-Mills Theory,”
JHEP 06 (2010) 097, arXiv:0804.2907 [hep-th].

[117] M. Gutperle and A. Strominger, “Fluxbranes in string theory,” JHEP
06 (2001) 035, arXiv:hep-th/0104136 [hep-th].

[118] S. Hellerman, D. Orlando, and S. Reffert, “String theory of the Omega
deformation,” JHEP 01 (2012) 148, arXiv:1106.0279 [hep-th].

[119] S. Hellerman, D. Orlando, and S. Reffert, “The Omega Deformation
From String and M-Theory,” JHEP 07 (2012) 061, arXiv:1204.4192
[hep-th].

[120] D. Orlando and S. Reffert, “Deformed supersymmetric gauge theories
from the fluxtrap background,” Int. J. Mod. Phys. A28 (2013) 1330044,
arXiv:1309.7350 [hep-th].

[121] N. Lambert, D. Orlando, and S. Reffert, “Alpha- and
Omega-Deformations from fluxes in M-Theory,” JHEP 11 (2014) 162,
arXiv:1409.1219 [hep-th].

[122] O. Aharony, “A Brief review of ’little string theories’,” Class. Quant.
Grav. 17 (2000) 929–938, arXiv:hep-th/9911147 [hep-th].

[123] J. A. Minahan and L. Tizzano, “Integrable lattice models in the UV,”
To Appear (2018) .

58





Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1657

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-347438

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2018


	Abstract
	List of papers
	Contents
	1. Introduction
	2. Supersymmetry on a Curved Background
	2.1 Background Fields and Conserved Currents
	2.2 Supersymmetric Partition Function
	2.3 General Overview

	3. Five-Dimensional Theories
	3.1 Supersymmetry in Five Dimensions
	3.2 Sasaki-Einstein Background
	3.3 Localization Results

	4. Topological Quantum Field Theories
	4.1 Twisted Supersymmetry

	5. 6D FQHE
	5.1 A Bulk-Boundary Correspondence
	5.2 7D Chern-Simons Theory
	5.3 Further Directions

	6. Spin Chains and TQFTs
	6.1 Gauge Theory and Integrable Lattice Models
	6.2 String Theory Formulation

	7. Acknowledgments
	8. Svensk Sammanfattning
	References



