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In this thesis, the magnetic properties of several materials were investigated using first 
principle calculations. The ab initio method named real space linear muffin-tin orbitals 
atomic sphere approximation (RS-LMTO-ASA) was used to calculate the electronic structure 
and magnetic properties of bulk systems, surface and nanostructures adsorbed on surfaces.

We have implemented new features in the RS-LMTO-ASA method, such as the calculation 
of (a) Bloch Spectral Function (BSF), (b) orbital resolved Jij and (c) Dzyaloshinskii-Moriya 
interaction (DMI). Using (a), we have shown that one can calculate the dispersion relation 
for bulk systems using a real space method. Furthermore, the dispersion relation was revealed 
to be existent even for finite one-dimensional structures, such as the Mn chain on Au(111) 
and Ag(111) surfaces. With (b), we have investigated the orbital resolved exchange coupling 
parameter Jij for 3d metals. It is demonstrated that the nearest neighbor (NN) interaction for 
bcc Fe has intriguing behavior, however, the contribution coming from the T2g orbitals favours 
the anti-ferromagnetic coupling behavior. Moreover, the Fermi surface for bcc Fe is formed 
mostly by the T2g orbitals and these are shown to be highly Heisenberg-like, i.e. do not depend 
significantly on the magnetic configuration. Later, the same approach was used to study other 
transition metals, such as Cr, Mn, Co and Ni. In the end, we have presented the results 
obtained with the implementation (c). Our results have shown the large dependence of the 
DMI values, both the strength and direction, with respect to which magnetic configuration 
they are calculated from. We argue that, for the investigated systems, the non-collinearity 
induces currents (spin and charge) that will influence directly the DMI vectors.
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1. Introduction

Since ancient times, dated centuries B.C., magnetism has been known. Firstly

known by its mystic properties, the phenomenon of magnetism has led us to

important technological progress. From applications in medical matters to

computer storage, magnetism has a fundamental role and its study has been

heavily evolving due to the potential future technological applications. Among

these new studies, experimental techniques have been widely developed to-

wards the investigation of nanostructures. We can highlight a few, such as

(a) Spin-Polarized Scanning Tunneling Microscope (SP-STM) [1–10], which

is capable of performing a topological mapping of surfaces on the atomic

scale [3–9], provide valuable and precise informations about the magnetic or-

der, differentiate magnetic structures such as collinear or non-collinear [9–11]

and investigate the magnetic interactions between the adsorbed nanostructure

and the surface [3, 4, 12]; (b) Atomic Force Microscope (AFM) [13], which

is a high-resolution type of a scanning probe microscopy (SPM) that provides

resolution on the order of fractions of nanometer; (c) X-ray Magnetic Circular

Dichroism (XMCD), which is an efficient technique capable to study systems

ranging from a single adsorbed atom to surfaces, making it possible to measure

the magnetic and orbital moments per atom, as well as the magnetic anisotropy

energy (MAE).

In order to understand the electronic and magnetic properties of a given ma-

terial, one needs to understand how the electrons interact with each other and

their environment. This many-body problem is described by the Schrödinger

equation. It is an impossible mission to solve it analytically, but one can re-

formulate the problem with a few approximations. For instance, the Born-

Oppenheimer approximation [14, 15], which states that the electrons are as-

sumed to move in the static potential caused by the nuclei, making it possi-

ble to decouple the system into separated ionic and electronic problems. By

going from a many-body problem to an effective single particle problem, as

described and applied in Density Functional Theory (DFT) developed by Ho-

henberg and Kohn [16,17], one is able to solve the complexity of the problem.

Through the symbiosis between experimentalists and theoreticians, tech-

nology can progress to improve our life. This communication has been more

and more challenged by the constant growing complexity of novel materials,

for example. With that, constant improvement of well known methods in the

literature are needed. There are many different methods that use DFT to cal-

culate the electronic structure of a given system. Particularly here, we have

worked to improve the so called real space linear muffin-tin orbitals atomic
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sphere approximation (RS-LMTO-ASA) [18–21], which solves the eigenvalue

problem in the real space and can also deal with non-collinear magnetism.

With the problem being solved in the real space, the study of nanostructures

is computationally less costly compared with methods developed in the re-

ciprocal space, such as commonly used methods based on plane waves. It

means that one can deal with nanoscaled systems, such as a single atom, is-

lands or nanostructured materials adsorbed on a given surface, without having

the symmetry as a problem and where the systems are more likely to present

non-collinear magnetism as magnetic ground state. Although DFT methods

are designed to be efficient, they are not suitable to describe mesoscopic ef-

fects due to their high computational costs. In order to overcome this issue,

one can employ multi-scale methods where one can calculate parameters from

the DFT, which give the overall behaviour of the system, and use them with

Hamiltonians that can model particular problems with higher efficiency. Re-

garding magnetic systems, one can make use of the spin Hamiltonian to pre-

dict important characteristics of a given system, such as the ground state, phase

transitions (between phases such as ferromagnetic, anti-ferromagnetic, para-

magnetic, skyrmionic phase, etc.), critical temperatures, effect of an external

field, the magnetic dynamics, etc. The accuracy of these calculations relies

on how well described the system is by a Heisenberg Hamiltonian, or in or-

der words, how much Heisenberg-like is a system. An effective bi-linear spin

interaction Hamiltonian can contain three parameters: the exchange coupling

parameter Ji j, the Dzyaloshinskii-Moryia interaction �Di j and an anisotropy

term. In this thesis, we are going to focus on the two first pair-wise inter-

actions: the exchange coupling parameter Ji j and the Dzyaloshinskii-Moryia

interaction Di j [22, 23].

Another very usage of the Heisenberg Hamiltonian is to calculate the ef-

fective magnetic field experienced by the system and study its spin dynamics

properties [24–33]. Particularly, in the information technology sector, efforts

are being applied to improve our information exchange speed ratio and our

storage power. A new and promising field is the field of spintronics. Spin-

tronics is a broad field and uses the motion of the spin to technological ap-

plications. Within this field, one subject has gained a lot of attention lately:

skyrmions. Skyrmions, in magnetism, are objects with a topologically pro-

tected magnetic configuration with quasiparticle characteristics, which offers

possible great applicability in information technology due its mobility and

size [34–42]. The study of these materials can be done using a good com-

munication between ab initio methods, such as RS-LMTO-ASA, and spin dy-

namics methods [24–26].

In the present thesis, we have investigated the exchange parameters more

carefully by studying closely the elements involved in their calculations. We

have implemented new features in the RS-LMTO-ASA method that allow us to

study these parameters from new perspectives, which will come to enrich the

known knowledge about them and further assist new possibilities of research.

10



In this way, we present our results in the following chapters. The Chapter 2

will present the many body problem and how DFT approaches this. Moreover,

it will be shown how the RS-LMTO-ASA method uses DFT to calculate the

electronic structure of metals. The Chapter 3 is focused in the investigation

done with respect to the exchange parameters. We show our implementations

and new contributions to the RS-LMTO-ASA method. In Chapter 4 we give a

small brief about our papers and lastly we present an outlook of the thesis, fol-

lowed by the Appendixes A, B and C with a brief description of the theoretical

background.
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2. Density Functional Theory (DFT)

2.1 The many body problem

Many of the physical properties of materials can be studied if the behavior of

electrons is known. Therefore, electronic structure calculation of solids is one

of the most important methods to understand these properties. Moreover, the

theoretical study of electronic structure, in general, helps to understand better

the phenomena observed experimentally and to predict phenomena that are

not yet observed.

In order to complete this task, one should calculate the eigenstates for an

interacting multi-electronic system. That means that one needs to find the

solution for the Schrödinger, written as:

Ĥψ j(�r) = Eψ j(�r), (2.1)

where E is the total energy of the system and Ĥ is the Hamiltonian operator,

which in this case is described, in Rydberg units, by:

Ĥ =−∑
i

∇2
Ri

Mi
+∑

i�= j

ZiZ j

|�Ri− �R j|
−∑

i
∇2

ri
+∑

i�= j

1

|�ri−�r j| −∑
i, j

2Zi

|�ri− �R j|
, (2.2)

where �R and�r are the coordinates for each nuclei and electron, respectively. Z
is the atomic number of each atom and M is the mass of each nuclei. The

Hamiltonian is composed by kinetic operators of the nuclei and electrons,

first and third terms respectively. The second, fourth and fifth terms are the

Coulomb interactions nuclei-nuclei, electron-electron and electron-nuclei; re-

spectively. In our case, for solids, this is an impossible problem to solve due

to the amount of particles to be taken in consideration. Therefore, one should

be careful and use the appropriate approximation to overcome the many body

problem, in order to give reliable results.

A good approximation for the problems we are interested in is the so called

Born-Oppenheimer approximation, or adiabatic approximation, which states

that the nuclei are much heavier than the electrons and, therefore, the electron

response for any nuclei movement is given in a very small interval of time.

This allows us to consider the nuclei with a fixed position with respect to the

electron position, enabling to study the nuclei and electrons independently.

With the Born-Oppenheimer approximation, we reduce the problem to a

calculation of stationary states of a system of electrons moving influenced by

12



an electrostatic field generated by the fixed nuclei. Although this approxi-

mation simplifies the Hamiltonian, the electron-electron interaction is still a

complicated many body problem. Consequently, further approximations are

needed to solve the problem.

2.2 Introduction to DFT

One way of reformulate the problem is to go from a many body problem to

many problems of a single body. Under the light of this thinking, Hohenberg,

Kohn and Sham developed the so called Density Functional Theory (DFT)

[16,17]. The theory uses the electronic density of the ground state η0(�r) as its

main variable. From that new variable, one can then calculate the properties,

such as the magnetic properties of the system, which is the aim of this work.

The theory is sustained by two fundamental theorems:

1. The external potential, Vext , where the electrons are immersed, is a unique

functional of the electronic density η(�r).
2. The energy functional E[η ] is minimized by the electronic the ground

state density η0(�r).
As a consequence of these theorems, Kohn and Sham [43] demonstrated

that instead of solving the Schrödinger equation for the many body problem,

one can solve the problem of one electron that moves subjected by an effec-

tive field described by electrostatic terms and one quantum term known as

exchange-correlation interaction. The equation that describes that problem is

known as the Kohn-Sham equation:

[−∇2 +Ve f (�r)]ψi(�r) = εiψi(�r). (2.3)

The Eqn. 2.3 is a Schrödinger-like equation, where now the effective potential

Ve f is a function of the electronic density η(�r), and is described by

Ve f =Vext +2

∫ η(�r′)
|�r−�r′|d

�r′+Vxc(η(�r)). (2.4)

In the Eqn. 2.4, Vext represents the external potential due the atomic nuclei,

Vxc stands for the exchange-correlation potential and the central term is the

electrostatic potential between the electrons, commonly known as the Hartree

term.

With the Eqns. 2.3 and 2.4, it is possible to calculate the wave function

ψi(�r) and the energy εi of each electron of the studied atom. Note that the

effective potential Ve f is a function of the electronic density η(�r), which is

determined by η(�r) = ∑i |ψi|2. That means that the calculation must be done

in an iterative fashion. In general, one guess an initial value for the electronic

density and then the external potential is calculated to solve the Kohn-Sham

equation in order to obtain the wave functions. From the wave functions, a
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new electronic density is calculated, which is then typically mixed with the

old electronic density. The resulting electronic density is used again to give

continuity to the self-consistent process. This process is maintained until the

resulting electronic density is the same as the input electronic density, given a

certain convergence limit.

Now, one more part of the problem needs do be treated: the exchange-

correlation Vxc. Since the exchange-correlation is not known for real materi-

als, one needs to use an appropriate approximation. Since we are dealing with

metallic systems, it is reliable to treat the system as an interacting homoge-

neous electron gas. This approximation is called Local Density Approxima-

tion and will be further discussed in the next section.

2.3 Local Density Approximation
Now, the problem to be solved is on finding the adequate approximation for the

exchange-correlation term. Kohn and Sham [43] proposed an approximation

which consists in taking a non-homogeneous system of many electrons and

consider it as small subsystems of a homogeneous interacting electron gas.

This approximation is called Local Density Approximation (LDA). In this ap-

proximation, it is assumed that the electronic density η(�r) varies smoothly

around a given point in space�r, thus, the exchange-correlation energy is de-

fined as an integration over all space, where the exchange-correlation energy

density is the same as the homogeneous electron gas. In this way, one can

write the exchange-correlation energy as follows

Exc[η ] =
∫

η(�r)εxc(η(�r))d�r, (2.5)

where εxc is the exchange-correlation energy per electron. Therefore, one can

write the exchange-correlation potential Vxc as

Vxc[η ] =
d

dη(�r)
{η(�r)εxc(η(�r))} . (2.6)

If one is dealing with spin polarized systems, it is possible to extend the

Local Density Approximation to Local Spin Density Approximation (LSDA).

In this case, the magnetization density is described by the difference between

the majority band η↑(�r) and minority bands η↓(�r). The new spin dependent

exchange-correlation energy is now written as

Exc[η ] =
∫

η(�r)εxc(η↑(�r),η↓(�r))d�r. (2.7)

With the new spin dependent exchange-correlation potential Vxc as

V k
xc =

∂
∂nk {η(�r)εxc(η↑(�r),η↓(�r))}, (2.8)
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where the index k can be either ↑ or ↓. It is still possible to parametrize the

exchange-correlation energy by parametrizing the term εxc in order to facilitate

the obtaining of the exchange-correlation potential. Here, we will make use of

the Barth-Hedin parametrization [44].

2.4 Spin polarized systems

In the case of spin-polarized systems, it is convenient to substitute the elec-

tronic density η(�r) by a electronic density matrix ρ(�r), described by

η(�r)⇒ ρ(�r) =
η(�r)

2
1+

�m(�r)
2

σ , (2.9)

where �m(�r) is the magnetization density, σ are the Pauli matrices and 1 is a

2x2 unitary matrix. The wave functions are now described with spinors:

ψi(�r) =
[

αi(�r)
βi(�r)

]
, (2.10)

where αi and βi are the spin projections. The electronic density matrix is now

expressed as a function of the spinors as

ρ(�r) =
N

∑
i=1

[ |αi(�r)|2 αi(�r)βi(�r)∗
αi(�r)∗βi(�r) |βi(�r)|2

]
. (2.11)

Now, one can write the magnetization density �m(�r) and the charge density

η(�r) as

�m(�r) =
N

∑
i=1

ψi(�r)†σψi(�r), (2.12)

η(�r) = Tr(ρ(�r)) =
N

∑
i=1

|ψi(�r)|2, (2.13)

where N is the number of states in the system. Analogous to the density ma-

trix, the external potential can also be extended to a 2x2 matrix. Thus, the

non-magnetic Eqn. 2.3 can be generalized in the following way

(−∇2 +V σ
e f (�r))ψ

σ
i (�r) = εσ

i ψσ
i (�r). (2.14)

Now, one is able to split the effective potential in a magnetic term, b, and

a non-magnetic term, Vnm. In this way, the Kohn-Sham Hamiltonian for a

spin-polarized system can be written as

H = (−∇2 +Vnm)1+b ·σ . (2.15)
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The non-magnetic part of the Hamiltonian is diagonal and if the system is

collinear, i.e. system has a global magnetization axis, the spin dependent term

can also be obtained in the diagonal form. Once the Hamiltonian is diagonal,

the spin projections do not hybridize with each other (if the spin-orbit coupling

is neglected), enabling the problem to be solved independently. When this case

is not possible, i.e. there is not a global magnetization axis, then we have a

non-collinear magnetism case. This particular case will be analysed further in

this thesis.

2.5 Spin-orbit coupling
The Hamiltonian described by the Eqn. 2.15 takes into consideration only

scalar relativistic effects. However, to be able to have a more accurate de-

scription, when the fully relativistic effects become important, one needs to

include the spin-orbit coupling effect. This can be done solving the Dirac

equation for the spin-polarized systems or one can add the spin-orbit coupling

to the scalar relativistic Hamiltonian as a perturbation [45–47], updated at ev-

ery self-consistent step. Thus, the new Hamiltonian is written as

H = HSR +ξ L ·S, (2.16)

where the HSR is the scalar relativistic Hamiltonian and ξ is the spin-orbit

coupling parameter. The latter is described as

ξ ∝
1

r
∂V
∂ r

, (2.17)

which is influenced by the atomic number, therefore, the spin-orbit effects are

stronger for heavy elements [48, 49].

2.6 The RS-LMTO-ASA method

2.6.1 Introduction

It is known that the Eqn. 2.3 needs to be solved in a self-consistent method.

The Real Space - Linear Muffin-Tin Orbital - Atomic Sphere Approximation

(RS-LMTO-ASA) [18] is self-consistent, DFT based method, applied in the

real space, based on the LMTO-ASA formalism (Appendix A) and uses the

recursion method (Appendix B). The advantage of having a method developed

in the real space is that one can study systems without any periodicity, i.e. does

not rely in symmetry restrictions. That makes it an appropriate method to deal

with metallic alloys, defects on surfaces, interstitial impurities, etc [19–21].

The RS-LMTO-ASA method is a linear method with which the solutions are

more precise around a given energy Eν , usually taken as the gravity center of

the occupied bands s, p and d [45].
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The method works in the orthogonal representation of the LMTO-ASA

formalism, nevertheless, the orthogonal Hamiltonian is expanded in terms of

tight-binding parameters (TB) [50] for the better use of the recursion method.

Here, we use the upper bar to represent the tight-binding basis. Thus, the

Hamiltonian in the orthogonal basis written in terms of parameters from TB

representation is given as

H = Ev + h̄(1+ ōh̄)−1. (2.18)

If ōh̄ is too small, one can expand the (1+ ōh̄)−1 in a series of ōh̄, thus

obtaining

H = Ev + h̄− h̄ōh+ h̄ōh̄ōh̄−·· · , (2.19)

where h̄ is a Hermitian matrix expressed as a function of the TB terms (see

Appendix A), described by

h̄ = C̄−Ev + Δ̄
1
2 S̄Δ̄

1
2 . (2.20)

In this case, one can use the Hamiltonian in its first order approximation

H = H(1) = Ev + h̄ (2.21)

or in its second order

H = H(2) = H(1)− h̄ōh̄. (2.22)

In our case, to describe the occupied part of the bands s, p and d, the first

order approximation is typically enough. The second order approximation is

useful when the unoccupied part of these bands are important. Therefore, the

Hamiltonian with the first order approximation is given by

H = C̄+ Δ̄
1
2 S̄Δ̄

1
2 . (2.23)

Here, C̄ and Δ̄ are potential parameters related to the calculation of the Eqn.

2.3 in each sphere and represent, respectively, the center and the width of the

density of state from site R. The structure matrix S̄ is a part of the Hamiltonian

independent of the potential at site R, VR. From the Eqn. 2.23, one needs to

solve the eigenvalue problem, which can be solved in the real space using the

recursion method (see Appendix B):

(H−E)u = 0, (2.24)

where H is the considered Hamiltonian, E is the eigenvalue and u the eigen-

vector. Taking the expansion around a fixed and arbitrary energy E = Ev for

ψ , we have

ψ(r,E) = ∑
RL

[ϕlv(rR)+(E−Ev)ϕ̇lv(rR)]YL(r̂R). (2.25)
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The functions ϕlv(rR) and ϕ̇lv(rR) are the solutions of the Eqn. 2.3, indexed

by the quantum numbers L = (l,m), and its first derivative with respect to

energy, calculated in Eν . These functions are defined inside the Wigner-Seitz

(WS) sphere of the site R and zero outside this region.

Now, in the next section, we will focus on the self-consistent process, as

well as the difference between the process done for the two-dimensional (2D)

metallic systems and for the defects in these 2D systems.

2.6.2 Generalized self consistent process in the RS-LMTO-ASA

The process used in the RS-LMTO-ASA method consists in two different

linked processes: an atomic and a main part. In the former process, the pa-

rameters are found by solving the Kohn-Sham equation inside the muffin-tin

spheres (MT), which is solved for every non-equivalent site. The equivalent

spheres are the one with the same potential parameters and, thus, have the

same occupation, local density of states, etc.

Main part
Before describing the process, keep in mind a few observations related to the

basis choice, which can be found in the Appendix A with a more detailed

description. According to Andersen et al. [51], the LMTO-ASA formalism

gives us the possibility of different basis choices {χi} for the expansion of

the wave function described in Eqn. 2.25. That means that one can choose

the more convenient basis more suitable for each particular case. Originally,

this formalism was developed in the canonical basis, however, for the systems

studied in this thesis, two other bases will be used that simplify our calcula-

tions. One of the basis will be used with which the functions are orthogonal

between themselves, which simplifies the eigenvalue problem. The second

is the tight-binding basis (TB), to simplify the recursion method. From the

canonic basis, the other basis can be described in terms of mixture terms, de-

noted by Q. Here, the upper bar still represents the TB basis, but the variables

with no superscripts are the variables in orthogonal basis. The relation be-

tween the orthogonal basis and the TB basis can be written as the following:

Δ
1
2

Δ̄
1
2

= 1− (Q̄−Q)
C̄−Ev

Δ̄
=

C−Ev

C̄−Ev
. (2.26)

For the TB basis, the parameters Q̄ are constant and independent of the

material. In this way, it is now possible to split the problem in two parts. The

first one is structure-related only and has the objective to calculate the structure

constant matrix S̄ of the Hamiltonian described in the Eqn. 2.23, responsible

for connecting several sites.
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S̄ = S0(1− Q̄S0)−1, (2.27)

where 1 is the identity matrix and S0 is the structure constant in the canonic

basis, which values can be found in the literature [51]. Note that in our calcu-

lations, S̄ is constant and is calculated only once.

Once the structure matrix is calculated, the next step is to calculate the other

potential TB parameters C̄ and Δ̄, which are related with the center of the band

and the band width (in the TB basis), respectively. So, the process consist

in guessing initial values for the C̄ and Δ̄ (calculated within the atomic part),

the Hamiltonian 2.23 is constructed, and the eigenvalue problem is solved by

Eqn. 2.24 and lastly the density of states per spin (LDOS) is calculated for

each of the non-equivalent sites and for each orbital L (L = l,m), denoted by

NRL(E). The latter step is done by using the recursion method [52] and the

Beer-Perttifor terminator [53] (see Appendix B). It is noteworthy to say that

this method is efficient only if one has a sparse Hamiltonian, i.e. with a lot of

zeros, and that is why the TB basis is chosen here.

Once the NRL(E) are calculated, it is possible to obtain the moments, m(q)
Rl ,

of order "q"(q = 0,1,2) of the LDOS, for a given energy Ev, using the follow-

ing equation:

m(q)
Rl =

∫ EF

−∞
(E−Ev)

qNRl(E)dE. (2.28)

As commented earlier, Ev is chosen as the gravity center of the occupied

band. Consequently, in this region, the moment m(1)
Rl is zero, whereas the

moment m(0)
Rl gives the occupation of each orbital. After the moments are

calculated, the next step is to calculate the potential parameters Pl(l = 0,1,2).
We define Pl as

Pl = 0.5− 1

π
arctg(Dl), (2.29)

where Dl is the logarithm derivative of the Eqn. 2.3 with respect to a given

orbital l calculated in the sphere boundary. Dl can be described as

Dl = 1+(2l +1)

[
Q−1

l
2(2l +1)

Cl−Ev

Cl−Ev−ΔQ−1
l

−1

]
. (2.30)

Once these parameters are calculated, one can start the atomic part of the

procedure. In this step, we calculate self-consistently the potential parameters

at each non-equivalent site in order to determine the new C, Δ and Q.

Together with the atomic part, the Madelung potential Vmad is calculated

(see more details next in Eqn. 2.37), which gives us the energy due the fact

that the sites are inserted in a crystal and, therefore, there are charge transfer

between them. In essence, this is the electrostatic potential of the electrons
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within the crystal and has the job to adjust the values in the center of the band

and Ev.

With the new C, Δ, Q and Vmad , the relation between the orthogonal basis

and the TB basis is used, Eqn. 2.26, to obtain the new values for C̄, Δ̄ and

Q̄. This process is done self-consistently until the convergence is reached. In

Fig. 2.1, it is shown schematically how the main part of the RS-LMTO-ASA

method calculation is done.
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Figure 2.1. Self-consistent process of the RS-LMTO-ASA method - General Part.

21



Atomic part
In this self-consistent step, the objective is to find the potential and the poten-

tial parameters for each non-equivalent sphere of the crystal, using the con-

ditions established by the found values for m(q)
Rl and Pl , Eqns. 2.28 and 2.29,

respectively. It is done by solving the Eqn. 2.3 inside of each sphere, evalu-

ating then the potential and the potential parameters defined in the orthogonal

basis (CRl ,ΔRl and QRl).
Now, an initial estimative is given for ϕRl , for the three first moments of

the density of states mn
Rl(m

(0)
Rl ,m

(1)
Rl = 0,m(2)

Rl ) and for the parameter Pl . From

there, the electronic density ηR(r) of each non-equivalent sphere centred in

the site R is obtained, given by equation

ηRl(rR) =
1

4π ∑
l

[
m(0)

Rl ϕ2
Rl +m(2)

Rl (ϕ̇
2
Rl +ϕRlϕ̈Rl)

]
, (2.31)

where ϕ̇Rl and ϕ̈Rl are, respectively, the first and the second derivative with

respect to the energy of the Eqn. 2.3 radial solution, inside the sphere with

radius R and both calculated for the energy Ev. With the electronic density

calculated, it is now possible to calculate the electrostatic potential VE using

the Poisson equation, defined, in atomic units (Rydberg), by

∇2VE(r) =−8πηRl(r). (2.32)

To this potential, the contribution coming from the electrostatic potential of

the studied atom, VN , is added. The contribution coming from the exchange-

correlation potential Vxc, obtained with the LSDA approximation is then also

added. With these new contributions, the new potential can be written as

VR =VE(ηRl(r))+Vxc(ηRl(r))+VN , (2.33)

where VN is given by

VN =−2Z
r
. (2.34)

With the new potential and the boundary conditions determined by Pl , one can

obtain the new wave functions solving the Eqn. 2.3 centred in the sphere of

radius R, for a given energy Ev,Rl

(−∇2 +VR)ϕRl(r) = Ev,RlϕRl(r). (2.35)

When the new wave functions ϕRl and their derivatives are known, one can

calculate a new electronic density, Eqn. 2.31, ηRl(r). It is then verified if the

calculation is converged, which is done by checking if the output value for the

density is inside a given convergence range compared with the old electronic

density. If this condition is not met, i.e. convergence is not satisfied, a mixing
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in terms of weighted average is done between the input and output values for

the density, weighted by a value β

ηRl(r) = βηnew
Rl (r)+(1−β )ηold

Rl (r), (2.36)

where β is a parameter with values 0 ≤ β ≤ 1. The result obtained from this

weighted is then used for a new self-consistent procedure with all the steps

before explained, until the convergence is met.

Once the convergence is reached, the converged wave functions ϕRl(r) are

obtained. With ϕRl(r), its derivatives and the boundary conditions Pl , the new

potential parameters CRl ,ΔRl and QRl are calculated, in orthogonal basis.

Note that in Eqn. 2.33, the potential due other spheres is not taken in con-

sideration. Due to that, a correction is needed in order to considers the charge

distribution of the calculated sphere’s neighbors and the electronic contribu-

tion of the calculated sphere itself. This correction is given by the Madelung

potential, described by

V i
mad = ∑

j �=i

2T DQ( j)
|�Ri−�R j|

+
2T DQ(i)

RWS
, (2.37)

where Ri is the position of the reference sphere, |�Ri−�R j| the distance between

the site i and j, RWS the Wigner-Seitz radius and T DQ the relative charge

transference of site i. The first term is the reference sphere potential generated

by the Coulomb interaction with the neighbor spheres (off-site contribution),

whereas the second term is the potential of the reference sphere itself (on-site

contribution).

As already mentioned before, the Madelung potential Vmad shifts the energy

scale, shifting Ev to Ev +Vmad and the parameter C to C+Vmad . The scheme

of the explained procedure is shown in Fig. 2.2.
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Figure 2.2. Self-consistent process of the RS-LMTO-ASA - Atomic Part.
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2.6.3 Self consistent process for metallic surfaces

The RS-LMTO-ASA self-consistent method explained in the previous section

can be applied for any metallic system, however, the electrostatic potential VE
and the Fermi energy EF must be calculated according to the studied system.

In this section, we describe the process to obtain these values for metallic

surfaces.

To study metallic surfaces using the RS-LMTO-ASA method, the semi-

infinite structure of the metallic system is simulated by a large cluster with

several thousands of atoms positioned in atomic planes parallel to the crys-

tal plane of the surface which is being calculated (e.g [001], [110], [111]).

It is known that a small amount of charge can be transferred to regions out-

side of the Wigner-Seitz sphere of the atoms in the surface. To compensate

this effect, one or two empty sphere layers are included to simulate the vac-

uum. Therefore, it is possible to calculate the amount of charge in the surface

neighborhood. With the charge being transferred to the empty sphere layer,

the surface will be positively charged whereas the empty sphere layer will be

negatively charged. That characterizes a parallel plates capacitor, which will

change the electrostatic potential in sites far away sites from the surface and

this shifts the Fermi energy from a value that depends on the transferred sites

around the surface [54, 55]. In order to avoid this Fermi energy shifting, a

new energy scale is defined where the potential felt from far away sites is null.

Therefore, for any two-dimensional/surface calculation, the Fermi energy is

fixed to the value found self-consistently for the bulk system.

The Fermi energy EF for the bulk material can be calculated using the fol-

lowing equation:

∑
RL

∫ EF
NRL(E)dE = QV , (2.38)

where QV is the valence charge. Once the Fermi energy EF is fixed, it is

possible to calculate the local density of states (LDOS) and determinate the

charge transfer in each site, including the empty spheres.

For periodic crystals, the electrostatic potential VE is obtained using the

Ewald summation, where all the multipole potential contribution plus the charge

in each sphere are considered. However, the case of a surface is more compli-

cated. Here, the symmetry holds only along the planes parallel to the surface

and each surface has its own electrostatic potential. For this case, the two-

dimensional Ewald summation by Skriver et al [54, 55] is used, in order to

obtain the electrostatic potential VE and the Madelung potential Vmad for each

site.

Physically, it is expected that layers far away from the surface will not feel

the effects due the surface, therefore, the parameters Δ and C for these far away

layers will be the same as the bulk parameters. In this way, only layers close to

the surface are treated self-consistently. So, for the self-consistent calculation,
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Figure 2.3. Schematic representation of the generic surface, without including the

defect, such as an embedded or adsorbed atom.

a certain number of empty sphere layers are included (usually one or two),

which will simulate the vacuum (ES-2, ES-1; Fig. 2.3), and a number n of

metallic layers (Met(S-1), Met(S-2), Met(S-3)) under the surface (Met(S)).

The number of layers n are chosen in a way that all the considered layers

in the self-consistent procedure have different parameters compared with the

bulk system.

2.6.4 Self consistent process for an isolated defect on metallic
surfaces

In order to study the effects due to isolated defects, impurities, nanostructured

systems, etc; using the RS-LMTO-ASA, one should initially have the surface

converged, following the scheme outlined in Sec. 2.6.3. Once the surface is

converged, the desired system can be calculated. For the impurity calculation,

the Fermi energy is fixed to the bulk value, i.e. EF is not updated at every

iteration. The electrostatic potential, charge transfer and potential parameters

are also fixed for the sites far away from the defect, which it is considered to

not be affected by the impurity.

Once the defect is inserted on the surface, the charge transference ΔQ and

the potential VES influenced by the defect is then defined as
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Figure 2.4. Schematic representation of the generic surface, including the defect de-

noted by the red color and its nearest neighbors denoted by the dashed concentric

circles.

ΔQ = ΔQsur f +ΔQlocal , (2.39)

VE =VEsur f +VElocal , (2.40)

where ΔQsur f and VEsur f are the transferred charges and the electrostatic po-

tential for the unperturbed surface, respectively, whereas ΔQlocal and VElocal
are the transferred charges and the electrostatic potential associated with the

perturbation, respectively.

Here, we give an example of one adsorbed atom on a metallic surface, called

as impurity in the following. For that, the Fermi energy is fixed to the Fermi

energy calculated for the corresponding bulk system without the defect. Then,

the converged unperturbed surface is taken and we substitute one atom from

the empty sphere layer ES-1 for one impurity. Now, in order to build the new

Hamiltonian, an initial guess for the impurity potential parameters is taken,

whereas for the other atoms of the other layers the potential parameters re-

main the same as those of the unperturbed surface. This procedure is the so

called single site approach. Moreover, the recursion method is used to obtain

the LDOS and NRL(E), integrating the latter until the Fermi energy according

to Eqn. 2.38 in order to calculate the transferred charge ΔQ. In the next step,
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the Eqn. 2.39 is used to calculate the charge transferred ΔQlocal on the impu-

rity site. Using the charge conservation law, the charge in excess is distributed

among the impurity neighbors and the electrostatic potential VElocal in the im-

purity site is determined by the resulting transferred charges. Once VElocal is

found, VEsur f is added in order to obtain VE according to Eqn. 2.40. Then,

the new potential parameters are found in order to build the new Hamiltonian,

repeating the process until the convergence is reached.

Once the single site calculation is converged, the nearest neighbors to the

impurity are included in the self-consistent calculation. Then, all the pro-

cess described previously is repeated until the convergence. More neighbors

are included until we reach a point where there is no further influence on the

impurity when including more neighborhood sites in the self-consistent calcu-

lation (see Fig. 2.4). This is the point where the calculation is considered to

describe the problem at its highest efficiency.

It is important to notice that the geometry of the defect can be arbitrary

since we are dealing with real space method. Therefore, the RS-LMTO-ASA

is appropriate to treat nanostructures with no symmetry adsorbed or embedded

in metallic surfaces. If one uses the reciprocal space approach, in order to

calculate these nanostructures, a big supercell is needed to be used to prevent

the nanostructure to interact with itself. Here, in the real space approach, one

does not have to worry about such effect.

2.6.5 Non-collinear magnetism with RS-LMTO-ASA

In this section, a description of how the non-collinear magnetism is approached

in the RS-LMTO-ASA method [56, 57] is provided. There are several meth-

ods in the literature that can deal with non-collinear magnetism of periodic

system, but very few can deal with the non-collinear magnetism without any

symmetry restrictions. Here, we will focus on the specific details to study the

magnetization density in the RS-LMTO-ASA methods.

In the LSDA approximation, one can write the electronic density as a 2x2

density matrix, which would be a function of the non-magnetic charge n and

the magnetization density m, as following:

ρ =
1

2
(n1+m ·σ), (2.41)

where 1 is the identity matrix 2x2 and σ = (σx,σy,σz) are the Pauli matrices.

As shown in the recursion method (see Appendix B), the local density of

states LDOS, N(E), where E stands for the energy, is obtained by

N(E) =− 1

π
ℑTr[G(E)], (2.42)

where G is the Green function, which is described by
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G(E) = (E−H)−1, (2.43)

with H being the Hamiltonian. The Green functions will be better explored in

the next section.

Analogously to the LDOS calculation process, the collinear magnetization

density can be calculated as

m(E) =− 1

π
ℑTr[σzG(E)], (2.44)

where only the diagonal elements of the Green function should be used. There-

fore, in order to obtain a generalized non-collinear magnetization density, as

the following is done:

m(E) =− 1

π
ℑTr[σG(E)], (2.45)

but for that it is necessary to calculate the non-diagonal terms of the Green

function. Hence, it is clever to avoid to work with the non-diagonal terms, due

its high computational costs.

With the RS-LMTO-ASA method, it is possible to avoid the calculation

of these non-diagonal terms by doing unitary rotations U in the Hamiltonian.

Therefore, if one performs rotations from σ to σ ′ in such a way that the com-

ponent x of the matrix σ ′x gets to be diagonal, it is then possible to find mx(E).
The same procedure can be done for the y component, obtaining then the full

magnetization density vector m(E). When realizing unitary rotation on the

Hamiltonian H ′=UHU†, the Green function is rotated, therefore G′=UGU†.

By knowing that the U†U = 1 and that the trace is invariant under rotations,

one can write the generalized magnetization density of states as the following:

m(E) =− 1

π
ℑTr[σU†UGU†U ] =− 1

π
ℑTr[σ ′G′], (2.46)

where σ ′ are the Pauli matrices after the unitary transformations.

Hence, one can choose two matrices, U1 and U2, in order to turn σ ′x and σ ′y
diagonals and then calculate mx(E) and my(E) through the diagonal elements

of the Green function G. These rotations are in the spin space and described

as

σ ′x =U1σxU
†
1 = σz, (2.47)

and

σ ′y =U2σyU
†
2 = σy. (2.48)

The Hamiltonian can be divided in a spin dependent part, called B, and a

spin independent part, called H0, analogously to what was done in Eqn. 2.15.

Therefore, one can write:
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H ′ = H01+B ·UσU†. (2.49)

Now, the Hamiltonian matrix elements can be described using the LMTO

parameters, in this case, in a first order representation. Here, the sites and or-

bitals will be denoted by Q = RL, the spin independent potential parameters

will be denoted by the superscript 0 and the spin dependent potential parame-

ters will be denoted by the superscript 1. Therefore, the spin independent and

spin dependent part can be written, respectively, as

H0
QQ′ = C̄0

Q + Δ̄0 1
2

Q S̄QQ′Δ̄
0 1

2
Q′ + Δ̄1 1

2
Q S̄QQ′Δ̄

1 1
2

Q′ mQ ·mQ′ (2.50)

and

BQQ′ =

(
C̄1

Q + Δ̄1 1
2

Q S̄QQ′Δ̄
0 1

2
Q′

)
mQ+ Δ̄0 1

2
Q S̄QQ′Δ̄

1 1
2

Q′ mQ′+ Δ̄1 1
2

Q S̄QQ′Δ̄
1 1

2
Q′ mQ×mQ′ .

(2.51)

With the Hamiltonian described in Eqn. 2.49, the recursion method can

be used three consecutive times for every one of the unitary transformations

U1,U2 and U3 in order to obtain mx(E), my(E) and mz(E). With the magneti-

zation density available, one can integrate the densities until the Fermi energy

to obtain the magnetization of each direction and, therefore, to obtain the local

spin moment direction.

2.6.6 The Bloch Spectral Functions in the real space

A significant part of the work developed in this thesis was the implementa-

tion of the Bloch Spectral Functions (BSF) calculation in the RS-LMTO-ASA

method. Here follows an explanation on how these functions can be inter-

preted inside the real space and how it is interpreted by the code.

The local density of states (LDOS) can be written as a function of the intra-

site Green function as the following:

N(E) =− 1

π
ℑG0(E), (2.52)

where the index 0 stands for a given site (for more details, see Appendix C).

Therefore, one can define the BSF as the following manner:

A(�k,E) =− 1

π
ℑG0(�k,E), (2.53)

where G0(�k,E) is the Fourier transformation of the real space Green function:

G0(�k,E) = ∑
j

G0 j(E)exp
(
�k ·�R j

)
. (2.54)
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If one integrates the BSF over the Brillouin Zone, the real space LDOS can be

recovered as

N(E) =
1

ΩBZ

∫
ΩBZ

A(�k,E)d3�k. (2.55)

One can verify it by using the Eqns. 2.53 and 2.54, writing the BSF as the

following:

A(�k,E) =− 1

π
ℑ

[
G00 + ∑

j �=0

G0 j exp
(
�k ·�R j

)]
. (2.56)

If one integrates both sides of Eqn. 2.56 over the Brillouin zone, it is possi-

ble to verify that only the first term, the intra-site term, is different than zero.

This term is precisely the density of states in the real space, normalized by

the Brillouin zone volume. Therefore, A(�k,E) can be seen as the density of

states project onto the reciprocal space. In the particular case of a perfectly

ordered system A(�k,E) is a sum of delta functions δ (E −E�k) that represent

the dispersion relation E�k.

The Green functions in the Eqns. 2.53 to 2.56 were calculated using the RS-

LMTO-ASA. Since it is a code developed in the real space, one needs to check

the convergence of the Eqn. 2.54. For that, one needs to compare the Green

function between one atom on the site 0 and one atom in the first shell G01,

i.e. nearest neighbors, and the Green function between the atom on the site 0

and the last considered shell G0N . If the Green function G0N ≈ 0 compared

with the G01, then one can conclude that contributions coming from further

shells are negligible and the summation can be truncated. As the first test for

this implementation, we have performed calculations for the bcc Fe bulk. In

this way, it is possible to calculate the dispersion relation. This comparison is

shown Fig. 2.5 and is possible to verify that the dispersion relation are in good

concordance with the ones calculated in the reciprocal space. Although the

real space bands are blurry due the imperfect description of the real space BSF,

it is still possible to detect the most important features. The method used to

make the comparison with is the Spin-Polarized Relativistic Korringa-Kohn-

Rostoker electronic structure technique (SPR-KKR) [58]. The advantages of

having such tool in the real space is the possibility to consider defect or impu-

rities isolated and study how the bands respond to them. Another interesting

application is the possibility to apply the developed implementation to finite

objects.

In Paper I, we have applied it and calculated the energy dispersion for finite

nanochains of Mn on Au(111) and Ag(111) surfaces. There, 17 Mn atoms

were calculated self-consistently on top of the cited surfaces. After the self-

consistent procedure, the Green functions and BSF were calculated, with the

dispersion relation shown in Fig. 2.6. Note that the bands are very local-

ized, i.e. it has a low dispersion due to the low dimension. The interesting
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Figure 2.5. Bloch Spectral Function calculated for the Fe bcc bulk. In the upper part

of the figure we have the majority bands, while in the bottom we have the minority

bands. In the background of each figure is shown the dispersion relation calculated by

the SPR-KKR method (black line) as comparison [58].
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Mn on Ag(111) Mn on Au(111)

Г                                  X Г                                  X

Г                                  X Г                                  X

200

0

Figure 2.6. Bloch Spectral Function (BSF) calculated for the Mn nanochains on

Ag(111) (left) and Au(111) (right) for the majority bands (top) and minority bands

(bottom). The color gradient stands for the BSF values in arbitrary units.

fact here is that the dispersion relation, i.e. the energy and momentum trans-

fer, is present even for finite materials, where the periodicity and boundary

conditions are absent. For this case, an experimental verification of this, e.g.

by use of angular resolved photo emission spectra (ARPES) would be highly

interesting.

In order to test the convergence of the Eqn. 2.54, it was compared the

Green function between the atom in the center of the nanochain (the atom

that is supposed to have the parameters of a infinite nanochain) and its nearest

neighbor with the Green function of the same central atom and the edge atoms,

as shown in Fig. 2.7.

Note that the G0−edge ≈ 0 compared with G0−NN . It shows that one can

conclude that additional terms in the sum in Eqn. 2.54 will not influence the

Fourier transformation and, consequently, the BSF calculation. More infor-

mation can be found in the Paper I.
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Figure 2.7. Comparison between the trace of the real part (Re(G0−i)) and imaginary

part (Im(G0−i)) of the Green functions between the central atom and its nearest neigh-

bor (G0−NN) and between the central atom and the edge atom (G0−edge).
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3. Exchange parameters from the electronic
structure: new insights and perspectives

In this chapter, we will show how the exchange coupling is calculated in

the RS-LMTO-ASA method. Here, we extended the known formalism from

collinear configuration [59–62] to a general non-collinear magnetic configu-

ration [63]. Regarding the collinear formalism, we have deepened the inter-

pretation and have projected the exchange coupling interaction Ji j into orbital

resolved contributions, in case of cubic environment. The analysis has brought

intriguing results which will be discussed in this chapter. Furthermore, we

have used the non-collinear formalism to describe the Dzyaloshinskii-Moriya

interaction (DMI). We have developed a computationally simple concept to

directly calculate the x, y and z components, in cartesian coordinates, of the

DMI vector in a global coordinate system for any non-collinear atomistic spin

arrangement. Finally, we have extended the interpretation of each exchange

parameter, Ji j and DMI, in order to understand both interactions in terms of

spin and charge current.

3.1 The collinear exchange formula and the
non-collinear exchange formalism

By means of Multiple Scattering Theory (MST) (see Appendix C), one can

derive the two-site energy variation due to the Lloyd formula Eqn. 3.1 as

follows

δEi j =− 1

π
ℑ

εF∫
−∞

dεTrσL (δPiτi jδP jτ ji) . (3.1)

This equation only describes the leading term of the energy variation when

spins are rotated at site i and j at the same time (two-site rotation). This two-

site energy variation can be derived for a spin Hamiltonian (like the Heisen-

berg model), and can be compared to Eqn. 3.1 by establishing a mapping

procedure. Using the values for δPi and τi j, defined in Eqns. C.34 and C.33,

respectively, with δPi being explicitly written as

δPi = piδ�ei�σ , (3.2)

one can have
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TrσL (δPiτi jδPjτ ji) = 2TrL

(
piT 0

i j p jT 0
ji− pi�Ti j p j�Tji

)
(δ�eiδ�e j)+

2TrL

(
piT α

i j p jT
β
ji + p jT

β
ji piT α

i j

)
δeα

i δeβ
j +

2TrL

(
piT 0

i j p j�Tji− p jT 0
ji pi�Ti j

)
(δ�ei×δ�e j) , (3.3)

where indices α and β run over 0, x, y or z. A more detailed description about

this derivation can be found in Ref. [63]. Using the properties of Ti j in the

absence of spin-orbit coupling, one can have that

TrL

(
piT α

i j p jT
β
ji

)
= TrL

(
p jT

β
ji piT α

i j

)
, (3.4)

thus, the third term of Eqn. 3.3 is null. Introducing the matrices

Aαβ
i j =

1

π
ℑ

εF∫
−∞

dεTrL

(
piT α

i j p jT
β
ji

)
(3.5)

and the matrix

Âαβ
i j =

1

π
ℜ

εF∫
−∞

dεTrL

(
piT α

i j p jT
β
ji

)
, (3.6)

one can write the energy variation as

δEi j =−2

(
A00

i j − ∑
μ=x,y,z

Aμμ
i j

)
δ�eiδ�e j−4 ∑

μ,ν=x,y,z
δeμ

i Aμν
i j δeν

j . (3.7)

In Eqn. 3.7 one can identify the first term as the LKAG exchange coupling

(in case of collinear spin configurations) and the second term as an anisotropy

term that may be non-zero even in the absence of the spin-orbit coupling, as

explored in more detail in Paper V. Now, one can add the spin-orbit coupling

as a perturbation and for that we make a few remarks about how to treat per-

turbations in the MST.

Let us add the spin-orbit coupling as a perturbation. Then one has to cal-

culate the perturbed δP′-s and τ ′-s. It can be shown that the perturbed Green-

function can be given as

G′i j = G0
i j +ΔGi j , (3.8)

where G0
i j has the structure of G0

i jI2, while ΔGi j can be formed as ξ�Γi j�σ ,

with ξ being the strength of the spin-orbit coupling and the component Γμ
i j is

obtained as
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Γμ
i j = ∑

k
G0

ikLμG0
k j (3.9)

where Lμ is a component of the angular momentum operator. This implies

that�Γi j transforms as (
Γμ

i j

)T
=−Γμ

ji , (3.10)

where μ runs over the coordinates x, y and z. For further details of the deriva-

tion of the vector �Γi j, see the BSc Thesis of A. Deák, Ref. [64]. Using

ΔGi j = ξ�Γi j�σ , one gets that(
t′i
)−1

= t−1
i −ξ

(
�Γii�σ

)
, (3.11)

i.e.

P′i 
 Pi−ξ
(
�Γii�σ

)
= p0

i +
(

pi�ni−ξ�Γii

)
�σ . (3.12)

It implies that

δP′i 
 piδ�ni�σ = δPi . (3.13)

Now, the final task is to calculate the τ ′. Considering Eqns. C.33 and C.34,

one can write for the perturbed scattering path operator that

τ ′nm = tnδnm + ∑
k �=n

tnG′nkτkm , (3.14)

with G′nk being the perturbed Green function considering the spin-orbit cou-

pling. That should be applied to t′i, see Eqn. 3.8. It is possible to get that,

changing the indices n,m to i, j

τ ′i j = τi j +Δτi j , (3.15)

where

Δτi j = ξ ti

(
�Γii�σ

)
tiδi j+ξ ti

(
�Γii�σ

)
tiG0

i jt j+ξ tiG0
i jt j

(
�Γ j j�σ

)
t j+ξ ti

(
�Γi j�σ

)
t j .

(3.16)

Note that site i is never equal site j in this formula. One can prove that Δτi j
has the same structure as τi j, i.e.

Δτi j = ΔT 0
i j I2 +Δ�Ti j�σ . (3.17)

Using Eqns. 3.10 and 3.16, it can be shown that(
ΔT α

i j
)T

=−ΔT α
ji . (3.18)
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This implies that

TrL

(
piΔT α

i j p jT
β
ji

)
=−TrL

(
piT

β
i j p jΔT α

ji

)
(3.19)

and

TrL

(
piT α

i j p jΔT β
ji

)
=−TrL

(
piΔT β

i j p jT α
ji

)
. (3.20)

With the properties described by Eqns. 3.19 and 3.20, the third term of Eqn.

3.7 is no longer null, therefore, the energy variation now has the form of

δEi j =−2

(
A00

i j − ∑
μ=x,y,z

Aμμ
i j

)
δ�eiδ�e j−4 ∑

μ,ν=x,y,z
δeμ

i Aμν
i j δeν

j −2�Di j (δ�ei×δ�e j) .

(3.21)

Lastly, after the mapping into the Heisenberg Hamiltonian, one can extract

the value for both exchange coupling Ji j, the Dzyaloshinskii-Moriya vector
�Di j (which will be further discussed in the next section) and an anisotropy

term already mentioned. The quantities Ji j and �Di j, in terms of Eqns. 3.5 and

3.6, can be written as

Ji j = A00
i j −Axx

i j −Ayy
i j −Azz

i j , (3.22)

and

�Di j = Â0μ
i j − Âμ0

i j . (3.23)

The LKAG mapping is correct because the anisotropy term does give a con-

tribution that is being of fourth order in the angle variation taken by rotating

the two interacting spins, see Ref. [65]. It can however be shown that the

second term in Eqn. 3.21 does not give significant contribution when a flat

spin spiral is considered. This is an other case of the exact mapping, beside

the collinear LKAG limit, that can be the subject for further studies. Note

that in a non-equlibrium - non-collinear case, the anisotropy term gives non-

trivial contributions, even in the case of bulk bcc Fe, as it has been shown in

Ref. [66].

3.2 Exchange formulas in RS-LMTO-ASA

The connection between the parameters in terms of the MST and the LMTO

is not so simple. In a general way, we have that p = C−Ev
Δ and T =

√
ΔG
√

Δ
[67]. With these substitution, entities with the form of piTi j p jTji assumes the

form of 1
4 δiGi jδ jG ji, where δ is the energy-dependent local exchange splitting

matrix. In this way, the new equation for the Ai j matrices can be written as
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Aαβ ,KKR
i j ≡ 1

π

εF∫
−∞

dε ImTrL

(
piT α

i j p jT
β
ji

)
=

1

4π

εF∫
−∞

dε ImTrL

(
δiGα

i jδ jG
β
ji

)
,

(3.24)

and δi has the form of

δi (ε)≡
C↓i Δ↑i −C↑i Δ↓i +

(
Δ↓i −Δ↑i

)
ε√

Δ↓i Δ↑i
. (3.25)

A more detailed description of such correspondence can be seen in Ref.

[63]. Moreover, a slightly more complicated correspondence comes from

intra-site terms such piTii. In this case, the description can be found in Ref.

[60].

3.3 Dzyaloshinskii-Moriya interaction
Recently, a lot have been discussed about the new limits of the current tech-

nology, as the devices get smaller and smaller. Particularly, concerning data

storage, new solutions are being researched as we reach the size limits for thin

films. A good alternative has been shown with the topologically protected

magnetic configuration, so called skyrmions [34–42]. In this size limit, some

interactions get to be more and more important. One of those key interactions

is the Dzyaloshinskii-Moriya interaction, which is crucial for the stabilization

of the skyrmionic phase. In this section, we will show a few preliminary tests

and further results obtained after the implementation of the DMI calculation

in the RS-LMTO-ASA method.

After the whole self-consistent procedure, i.e. after having all the converged

potential parameters, it is possible to compute the Green functions for the

studied system. In the following tables, we will show how the matrices of

Eqn. 3.23 change from regime to regime, showing the finite �Di j when the

symmetry is broken. Note that the structure of the matrices are the same for

both Ai j and Âi j

Table 3.1. The structure of Aαβ
i j in the lack of spin-orbit coupling, considering a

collinear magnetic configuration, for bulk system. This is the case for both Ai j and
Âi j.

Aαβ
i j 0 x y z
0 a 0 0 c
x 0 0 0 0

y 0 0 0 0

z c 0 0 b
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Table 3.2. The structure of Aαβ
i j in the presence of spin-orbit coupling, considering

a collinear magnetic configuration, for bulk system. This is the case for both Ai j and
Âi j.

Aαβ
i j 0 x y z
0 a d e c
x d i f g
y e f j h
z c g h b

Table 3.3. The structure of Aαβ
i j in the presence of spin-orbit coupling, considering a

collinear magnetic configuration, for surface system. This is the case for both Ai j and
Âi j.

Aαβ
i j 0 x y z
0 a d′ e′ c′
x d i f ′ g′
y e f j h′
z c g h b

Figure 3.1. Schematic representation of the (a) Fe monolayer on W(110) and the (b)

triangular trimer of Cr on Au(111), where in the former one is only represented the

central atom and its nearest and next nearest neighbors. The pink arrows denote the

normalized DMI direction and they stand in between two atoms which the interaction

correspond to.
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Considering the spin-orbit coupling and the broken symmetry, one can ver-

ify that in Table 3.3, the Âαβ
i j matrix is no longer symmetric, which means

that the �Di j is now different than zero. In order to test our new implementa-

tion, we have applied the formalism to calculate the DMI for systems where

results have been shown in the literature. Particularly, for a monolayer of Fe

on W(110) and a triangular trimer of Cr on Au(111), with results shown in

the Refs. [68] and [69], respectively. One can verify that the results of the

DMI are in a good agreement with the cited literature. This good agreement

encourages us then to study new results for new systems.

It is noteworthy to say that since RS-LMTO-ASA is a real space method,

it gives us the freedom to calculate all the components of the DMI vector

for any nanostructure with any magnetic structure. In paper VI we explored

this potential by calculating the DMI for triangular trimers on top of Au(111)

and Ag(111), revealing its direction, strength and how does it behave between

different substrate and magnetic configuration.

3.4 Orbital resolved Ji j
The Beth-Slater (BS) curve is part of a fundamental understanding of the mag-

netism and the magnetic ordering of the 3d transition metals. It can explain the

anti-ferromagnetic (AFM) behavior of bcc Cr, as well as the ferromagnetism

of bcc Fe, hcp Co and fcc Ni, for example. Here, the mechanism behind the

curve will be revisited with a deeper analysis.

This analysis consists in considering the cubic symmetry of the 3d transi-

tion metals and examining the individual influence of its orbitals. In the case

of cubic symmetry, the d orbitals (which provides the biggest contribution to

the Ji j) split in two different irreducible representations inside the point sym-

metry, the Eg and T2g. In Eqn. 3.22, the multiplication of the Green functions

matrices will give rise to elements that will have purely T2g or Eg contribu-

tions, but as well as mix terms such as T2g−Eg. In this way, one can rewrite

the total Ji j as

Ji j = JEg−Eg
i j + J

Eg−T2g
i j + J

T2g−T2g
i j , (3.26)

where JEg−Eg
i j is the contribution coming from the interaction exclusively be-

tween orbitals Eg, J
T2g−T2g
i j from T2g orbitals and the term coming from the in-

teraction between both orbitals, J
Eg−T2g
i j . The Ji j between the nearest neighbors

(NN) and next-nearest neighbors (NNN) were calculated for the 3d metals in

bcc structure and shown in Fig. 3.2

Note that the contribution coming T2g−T2g between NN for bcc Fe is a rel-

atively strong AFM contribution compared with the total ferromagnetic (FM)

contribution already known from the literature??. Depending on how Fe is
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Figure 3.2. Exchange coupling Ji j between the NN (J1) and NNN (J2) project onto

orbitals T2g and Eg for 3d metals in bcc structure.

inserted in the system, such as an alloy, the interaction between nearest neigh-

bors can bring significant AFM contribution. More about this subject is further

explored in Papers II, III, IV and V.

3.5 Influence of spin and charge current in the exchange
interactions

Still looking to improve the understanding of the exchange interactions, a good

idea that could enlighten the understanding of them and create a insightful con-

nection with the experiments is to study them as a function of spin and charge

currents. Here, the Green functions can be divided into both spin independent(
G0

i j

)
and spin dependent

(
Gμ

i j

)
, being 9× 9 matrices with orbital indexes

written here as α,β . Then, one can represent these Green function in terms

of their behavior under a given operation T , an operator that simultaneously

transpose orbitals and sites. Firstly, one can rewrite the Green functions as
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G0
i j = G00

i j +G01
i j (3.27)

and

Gμ
i j = Gμ0

i j +Gμ1
i j , (3.28)

where the second index, that was introduced in Eqns. 3.27 and 3.28, denotes

whether it is even (0) or odd (1) under T , meaning that(
G00

i jαβ

)T
= G00

jiβα = G00
i jαβ , (3.29)(

G01
i jαβ

)T
= G01

jiβα =−G01
i jαβ . (3.30)

Lastly, the two-index formalism can be obtained with the one-index formalism

from

G0
i j +G0

i j
T
= G00

i j +G01
i j +

(
G00

i j +G01
i j
)T

= G00
i j +G01

i j +G00
i j −G01

i j = 2G00
i j

(3.31)

G0
i j−G0

i j
T
= G00

i j +G01
i j −

(
G00

i j +G01
i j
)T

= G00
i j +G01

i j −G00
i j +G01

i j = 2G01
i j .

(3.32)

The four different parts of the decomposed Green function have direct physical

origins as tabulated below

G00 charge density

G01 charge current

Gμ0 spin density

Gμ1 spin current

Then, it is straightforward to rewrite Eqn. 3.23 as

Dμ
i j =

1

2π
ℜ

∫
Tr

{
δiG00

i j δ jG
μ1
ji +δiG01

i j δ jG
μ0
ji

}
=

(
DS

i j +DC
i j
)μ

. (3.33)

With this formulation, we have divided the DMI in two parts. One related

with the spin-current, called DS ∝ G00Gμ1; and other one related with the

charge-current DC ∝ G01Gμ0. In this interpretation of DMI, it arises due to

inter-atomic spin and charge currents.

We also implemented the same line of thought to calculate the exchange

parameter Ji j, rewriting Eqn. 3.22 as

Ji j =
1

8π
ℑ
∫

Tr
{

δiG00
i j δ jG00

ji +δiG01
i j δ jG01

ji −δiG
0μ
i j δ jG

0μ
ji −δiG

1μ
i j δ jG

1μ
ji

}
.

(3.34)

Note that when the superscript μ is repeated, a summation is implicit. In this

way, one can interpret the total Ji j as a sum of four different parts. One related
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with the charge density JCD
i j , one with the charge current JCC

i j , one with the

spin density JSD
i j and one with the spin-current JSC

i j ,

Ji j = JCD
i j + JCC

i j − JSD
i j − JSC

i j . (3.35)

Note that here we suppress the integration variable as well as its limits,

in order to simplify the equation. Recently the existence of orbital magnetic

moment in absence of SOC that is driven by the spin chirality of a given system

have been discussed e.g. in [70, 71]. Here, we have performed calculations

including SOC and once converged one can scale its strength down to zero. We

used this scaling to study the influence of the SOC on DMI vectors calculated

for systems where the magnetic configuration gives rise to a spin chirality

different than 0. For simplicity, here we only present calculations for a Mn

triangular trimer on Ir(111) and Au(111) surfaces, and analysed three different

scenarios: (1) a rotation from a ferromagnetic configuration to a Neél structure

and further back to a ferromagnetic configuration after a 180◦ rotation. Note

that in between the collinear configurations, the in-plane angle of 120◦ was

fixed between the magnetic moments; (2) a scaling of the strength of SOC,

when the magnetic moments have an in-plane angle of 120◦ between them

and with a 40◦ with respect to the z-axis; and (3) a global spin rotation, Rα , of

the magnetic configuration described in (2), around the y-axis with an angle

α . Once the rotation is done, we calculate the new DMI and rotate back to the

original reference frame.

In Fig. 3.3 we show results from calculation for the Mn trimer on Au(111)

and Ir(111) at every 10◦, from 0◦ to 180◦. A self-consistent calculation was

made for every 10◦ step. Our results show that when the magnetic config-

uration is collinear, the DMI only exists if the SOC is different from zero,

meaning that there is no non-relativistic contribution to it. However, when

a non-coplanar magnetic configuration (�Si×�S j ·�Sk �= 0) is reached, the non-

relativistic part of the DMI dominates and in fact there is a very small differ-

ence between values with and without SOC. It is noteworthy to say that when

θ = 90◦, i.e. a Néel magnetic structure, the spin chirality is zero and there is

no charge-current flowing in the system. This means that the charge-current

dependent part of the DMI DC vanishes and all the contribution comes from

the spin-current dependent DS, whose z-component is allowed by symmetry.

The relation between DMI and spin current have been recently argued [71,74].

In Fig. 3.4 we converged the system with the magnetic moments at an

angle θ = 40◦ with respect to the z-axis. Then we scaled the strength of SOC

to study its influence on the DMI. One can verify in Fig. 3.4 that there is

a very weak influence, corroborating our statement that, for this system and

this configuration, the source of the DMI is primarily due the non-relativistic

sources.

In Fig. 3.5 we repeated the set up of Fig. 3.4 but did a global spin rotation,

Rα , of the magnetic configuration around the y-axis. The non-relativistic part
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Figure 3.3. DMI calculated when varying the vertical angle of the magnetic moments

between θ = 0◦ and θ = 180◦. On top we have the plot for Mn triangular trimer on

Ir(111) and on bottom the Mn triangular trimer on Au(111). The black line denotes

the Dz component while the red line denotes the in-plane component Dy/Dx. The full

line stands for the calculation when the spin-orbit coupling is included, whereas the

dashed line denotes the calculation without spin-orbit coupling.

of DMI should be scalar in spin space, therefore for zero SOC �Di j(α) ·Rα êi×
Rα ê j = �Di j(0) · êi× ê j. In the limit of weak SOC the quantity R−1

α �Di j(α) ≈
�Di j(0) should be fairly independent of α with any anisotropy directly con-

nected to the SOC. The result is shown in Fig. 3.5. One can verify an almost

constant value for the DMI with very small oscillations. We can conclude that

again, for that configuration, the DMI is present mostly due to non-relativistic

effects, although the small oscillations refers to some small relativistic effects,

probably related with one-site anisotropy.
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Figure 3.4. Scaling of the strength of the SOC calculated for a Neél like magnetic

structure with a fixed θ =40◦. On top we have the plot for Mn triangular trimer on

Ir(111) and on bottom the Mn triangular trimer on Au(111). The black line denotes

the Dz component while the red line denotes the in-plane component Dy/Dx.

Figure 3.5. Calculated DMI when one perform a global spin rotation of the magnetic

structure by angle α around the y-axis. On top we have the plot for Mn triangular

trimer on Ir(111) and on bottom the Mn triangular trimer on Au(111).
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4. Introduction to the papers

This chapter will be dedicated to detail the importance of study presented in

this thesis for each paper. The content for each paper is discussed around

a new interpretation of the well known exchange-coupling parameter Ji j and

the Dzyaloshinskii-Moriya interaction Di j for several different systems. The

contribution done by me for the papers are the following

• In Paper I, I performed most of the calculations concerning to the elec-

tronic structure of the 1D Mn systems on Ag(111) and Au(111), as well

as calculated the Ji j and its new features implemented by me. Among

the new features, that were implemented and presented in the paper, the

calculation of the Ji j as a function of energy was particularly important

to show how sensitive the 1D systems are to effects such as hybridisation

and coordination number, consequently. Lastly, I also implemented how

to calculated the Bloch Spectral Function (BSF).

• In Paper II, III and V, another implementation done in the RS-LMTO-

ASA was used, in which the Ji j was split into orbital contributions to

study how each orbital contributes to the total Ji j. In addition to the

implementation and calculations, I have participated actively in the dis-

cussions presented in the papers.

• In Paper IV, I have calculated the electronic structure using the RS-

LMTO-ASA method for the bulk materials and participated actively on

the analysis of the data.

• In Paper VI, I have calculated the electronic structure for the triangu-

lar trimers on top of Ag(111) and Au(111) surfaces. There, it was also

implemented the calculation of the Di j and revealed its strength and di-

rection for these nanostructures, considering different magnetic config-

urations.

4.1 Magnetic and electronic structure of 1d Mn
nanostructures on Ag(111) and Au(111)

In Paper I, ab initio calculation of 1D Mn nanostructures on Ag(111) and

Au(111) was shown. For Mn chains on Ag(111), our calculations have shown

that the edge atoms in general have canted orientation compared to the Mn

atoms in the center of the chain, which present collinear configuration. This

is supported by the fact that the Ji j is slightly different in the edge, given by a

competition between nearest (NN) and next-nearest neighbor (NNN), leading
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to the canted orientation. In the middle of the chain, this competition is weaker

and the collinear ferromagnetic configuration prevails. For the Mn chains on

Au(111) the magnetic behavior is different, where in general the orientations

between all Mn atoms are noncollinear. Furthermore, since we find that Mn

atoms on Ag and Au surfaces in general present exchange coupling parameters

with the same magnitude and sign, it is reasonable to conclude that stronger

spin-orbit coupling of the Au substrate, leads to non negligible effects from

the Dzyaloshinskii-Moriya interaction, which is known to favor noncollinear

magnetism. Lastly, a method to obtain energy bands from real-space Green

functions was developed, by considering a Fourier transform. We have shown

that energy bands can be observed even for finite-size objects like the systems

considered here. As mentioned before, an experimental verification of such

theoretical finding using, for example, angular resolved photo emission spectra

(ARPES) would be of great interest.

4.2 Orbital resolved Ji j for Cr, Mn, Fe, Co and Ni

The implementation of the calculation of orbital resolved Ji j is presented in

several papers presented in this thesis. In Paper II, we have shown that the

well known Bethe-Slater curve does not follow the same pattern observed for

the total Ji j. This gives us new insights about the electronic structure and the

magnetism of each metal. Firstly, for the NN exchange-coupling interaction

J′i js, for the bcc lattice metals, we find that the Eg−Eg contributions are fer-

romagnetic throughout the 3d series, once the Eg orbitals are populated. The

T2g orbitals are populated very close to the Fermi surface, meaning that they

are very sensitive to the chemical potential, leading to the coupling between

them to be ferromagnetic or anti-ferromagnetic. In this scenario, the coupling

between T2g and Eg shows itself not straightforward and depending heavily on

each orbital filling. These findings about each orbital have revealed that, for

a particular direction ([111] in this case), the long-range interaction is mostly

done by the T2g electrons due to the fact that the Fermi surface is formed al-

most exclusively by T2g electrons. Lastly, we have shown that for the T2g−Eg
coupling, due to the complexity present in the interplay between both orbitals,

the trend is not so trivial. An interesting fact is that, due to symmetry reasons,

the mixed coupling is null between NNN, i.e. between atoms in the borders of

the cube. This is simply due the fact that, in this case where atoms obey the

C4v symmetry, there is not a matrix that can transform one Eg orbital into T2g
orbital, therefore, they do not mix with each other. All these information com-

bined can enlighten the discussion of new magnetic materials design, opening

new windows and perspectives for the experimentalists who work in this field.

From the discussion above, one metal showed particularly an intriguing re-

sult. This leads us to Paper III, where we discuss the particular case for the

bcc Fe. In this paper, we discuss form a microscopic level showing the dif-
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ference between Eg and T2g orbitals, revealing their particular contribution to

the microscopic known behavior of bcc Fe. The T2g orbital, as already men-

tioned for other metals above, shapes the Fermi surface, while the Eg forms

weakly interacting impurity levels. Due to these particular characteristics, the

T2g orbital does not show a big dependence on the magnetic configuration and

is classified to be Heisenberg-like, whereas the Eg orbital break this scenario,

since it highly depends on the spin orientation. In the end, the analysis of the

nearest neighbor exchange-coupling interaction between T2g orbitals are nega-

tive (antiferromagnetic), despite the total Ji j being strongly ferromagnetic, due

these couplings being driven by Fermi surface nesting. We argue then that bcc

Fe has a unique behavior among other 3d metals when it comes to magnetic

exchange interactions.

Still about Fe and its unique behavior, we reach Paper V. It takes the anal-

ysis in Paper III to a different level: mapping into a bilinear Heisenberg spin

model. It is shown that the pairwise energy variation calculated in terms of the

multiple scattering formalism cannot be mapped onto a bilinear Heisenberg

spin model for a simple non-collinear configuration of spins, even for the sim-

plest case without considering the spin-orbit coupling. Some non-Heisenberg

terms are induced by the spin-polarized host. However, for the particular case

of the Fe bcc, we have shown that the exchange-coupling parameter related

to the T2g orbitals are Heisenberg-like and can be mapped onto a Heisenberg

spin model even considering the non-collienar case. For that, we have rotated

one atomic spin in a ferromagnetic background and have calculated, for each

degree the exchange-coupling related to the T2g and it showed very small de-

pendence throughout the rotation.

4.3 Magnetism and ultrafast magnetization dynamics

In Paper IV, we have used the extended LKAG formalism able to calculate

exchange-coupling parameters for non-collinear case to analyse the behav-

ior of different Co structures, e.g. bcc, fcc and hcp crystals; as well as how

the crystal behaves under Mn doping. Our results have shown interesting re-

sults where all crystal structures of Co are found to have and almost perfect

Heisenberg behavior, by using the same set up previously described for Fe

bcc, i.e. rotating one spin in a ferromagnetic background and analysing the

exchange-coupling parameter dependence on the rotation. Having a Heisen-

berg behavior in this context means that one can have the correct descrip-

tion of the time evolution of the magnetic moments under the influence of a

temperature-dependent laser pulse. In the other hand, for the same set up,

Mn shows a strongly dependence on the rotation of one spin in a ferromag-

netic background, revealing its strong non-Heisenberg behavior. Therefore,

dopants of Mn in CoMn alloys drives the system to have a non-Heisenberg

behavior as Mn scales into the system, although small amount of Mn is not
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expected to brake this Heisenberg behavior. Later, the structural and magnetic

properties of Co-rich CoMn alloys were calculated and compared with exper-

imental data, which has shown good agreement with our theoretical findings.

Lastly, the time-dependent behavior of the magnetism of Co in bcc, fcc and

hcp structures together with the CoMn alloys were analysed after a laser pulse

excitation. It was shown that the ultrafast magnetization dynamics strongly

depends on the damping parameter and the concentration of Mn, due the Mn

influence on the changing of the exchange-coupling parameter.

4.4 Implementation of the Dzyaloshinskii-Moriya
interaction

In Paper VI, we have shown our implementation of a simple way to calcu-

late the Dzyaloshinskii-Moriya interaction (DMI). As far as we know, it is the

only method capable of calculating the DMI from a non-collinear magnetic

configuration. There, we have performed calculations for 2D Mn systems on

top of Ag(111) and Au(111), from nanostructures to monolayers. We have re-

vealed that, for a collinear ferromagnetic configuration with the moments per-

pendicular to the surface plane, the same nanostructures show different DMI

strengths and directions between the substrates. For a monolayer of Mn on top

of Ag(111), the z direction of DMI is slightly stronger than the Mn monolayer

on Au(111), although their plane components x and y are essentially the same.

Concerning the strength, the Mn monolayer on Au(111) has a much stronger

long-range behavior than on Ag(111), where the DMI drops to zero after a

few Mn neighbors. These findings are in good agreement with the literature.

Later, we extend the analysis to nanostructured systems, e.g. triangular trimers

and hexagonal disks-like systems, with the latter being composed by a central

atom and its six nearest neighbors in a fcc(111) surface lattice. Within the

nanostructured systems, we have shown that the strength and direction does

not change drastically from the monolayer to the nanostructure. Later, we

have explored how the DMI vectors change when non-collinearity comes to

be a factor. For that, we have allowed the magnetic moments to relax and find

the ground state for each system and then calculated the DMI from these new

magnetic configurations. Interestingly enough, our results show that due the

complex role that spin and charge currents play in the system when the non-

collinearity is present, both strength and directions can be different from the

collinear case. These findings show, as seen for the Ji j’s, the importance of the

non-collinear limit when dealing with exchange parameters. These new limit

can strongly influence in dynamics properties and, therefore, could possibly

be relevant for future development of technologies based on spintronics, for

instance.
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5. Outlook and perspectives

This thesis was focused in studying the exchange parameters from ab initio

methods in order to explore new limits and improve the information given

to modelling more complex systems, using Atomistic Spin Dynamics (ASD)

methods, for example. These parameters are the exchange-coupling Ji j and

the Dzyaloshinskii-Moriya interactions (DMI) that were extended to be un-

derstood under the light of new interpretations. The Ji j was split into orbital

contributions showing the complexity of its individual contributions, while

the DMI was extended to be calculated not only from a collinear magnetic

configuration already done in the literature, but also from any non-collinear

configuration, with the case where the ground state is non-collinear particu-

larly studied here. It was also implemented a connection between the recipro-

cal space and the real space, made by calculating the energy dispersion from

Bloch Spectral Function by performing a Fourier transformation of the real

space Green function.

Among the studies that have used the implementation with which one is

able to calculate the orbital contributions from Ji j, transition metals were in-

vestigated. The results showed that different orbitals, in case of cubic lattice,

the T2g and Eg, behave quite distinctly than the general trend. This gives new

insights when designing new magnetic materials. Understanding how these

particular orbitals behave under non-collinear configuration, also give us in-

formation whether some approximations are valid. The Heisenberg spin model

can describe many dynamical magnetic properties and the mapping with these

parameters is essential to a correct description of the experiments and to pre-

dict new phenomena. For instance, it was revealed the intriguing behavior

of Fe bcc concerning to how each orbital, T2g and Eg, contribute to the micro-

scopic picture, being the former one mostly responsible to the formation of the

Fermi surface and the long-range interaction (here, not only for Fe, but also

the other studied 3d elements). It was also shown the Heisenberg behavior of

Co fcc, bcc and hcp; and how the non-Heisenberg behavior of Mn influences

dynamic and other magnetic properties in the CoMn alloys.

Lastly, still giving new insights for the modelling magnetic materials, we

have shown the dependence of the DMI vectors strength and direction to not

only different substrates, but more importantly, the dependence on the mag-

netic configuration. Here, we have studied triangular trimers of Cr on Au(111)

and Mn on Au(111) and Ag(111), revealing the difference of the DMI vectors

for these nanostructures between different substrates. Furthermore, we have

shown the role of non-collinearity in the final DMI vectors that can highly im-

pact in the properties of the spin dynamics of systems where the DMI plays
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a crucial role, such as skyrmionic materials that are being highly studied due

its technological potential. We believe that our studies can open up new win-

dows where new limits are explored and the communication not only between

theory and experiment, but also theory and theory are improved.
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6. Sammanfattning på svenska

Sedan antiken, har magnetism som fenomen varit känt. Efter att först ha va-

rit känt för sina mystiska egenskaper har magnetismen och magnetiska ma-

terial lett oss till flera viktiga tekniska framsteg. Från applikationer i medi-

cinska tillämpningar till datalagring har magnetismen en grundläggande roll

och studierna inom området har utvecklats kraftigt motiverat av potentiella

framtida tekniska tillämpningar. Som exempel har ett stort antal experimen-

tella tekniker utvecklats för att kunna analysera magnetiska nanostrukturer

och andra magnetiska material. Vi kan lyfta fram ett antal av dessa tekni-

ker, såsom Spin-Polarized Scanning Tunnel Microscope (SP-STM) [1–10],

Atomic Force Microscope (AFM) [13] och spektroskopi baserat på Röntgen-

dikroism (XMCD). En annan viktig milstolpe för forskningen om magnetism

är den teori som utvecklats av Hohenberg och Kohn, densitetsfunktionsteori

(DFT) [16]. Med denna teori förbättrades möjligheten att genomföra precisa

teoretiska undersökningar av material avsevärt.

Genom samarbetet mellan experimentalister och teoretiker kan teknologi-

er utvecklas för att förbättra våra liv. Den nya och växande komplexiteten

hos nya material ställer fortsatt höga krav på goda samarbeten mellan dessa

grupper. För att hantera detta krävs en konstant förbättring av välkända me-

toder. Det finns många olika metoder som använder DFT för att beräkna den

elektroniska strukturen för ett visst system. Särskilt här har vi arbetat för att

förbättra den så kallade “Real Space Linear Muffin Tin Orbitals method wit-

hin the Atomic Sphere Approximation” (RS-LMTO-ASA) [18–21], som löser

egenvärdesproblemet som formuleras inom DFT i det reella rummet och som

kan hantera icke-kollinär magnetism. När problemet löses i det reella rum-

met, är studier av nanostrukturer mindre kostsam jämfört med metoder som

utvecklats för det reciproka rummet, såsom vanliga metoder baserade på plan-

vågor. Det betyder att man kan hantera nanoskalade system, såsom en enda

atom, öar eller nanostrukturerade material som adsorberas på en given yta ut-

an att symmetrin blir ett problem. För dessa geometrier är material mer be-

nägna att uppvisa icke-kollinär magnetisk ordning såsom magnetiskt grund-

tillstånd. Även om DFT-metoder är utformade för att vara effektiva, är de in-

te passande för att beskriva mesoskopiska effekter på grund av deras höga

beräkningskostnader. För att komma till rätta med detta problem kan man

använda flerskaliga metoder genom vilka man kan beräkna parametrar från

DFT, som kan beskriva systemets övergripande beteende och använder dem

för att parameterisera Hamiltonianer som sedan kan modellera speciella pro-

blem mer effektivit. När det gäller magnetiska system kan man använda sig
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av Spinnhamiltonianer för att förutsäga viktiga egenskaper hos ett givet sy-

stem, såsom grundtillstånd, fasövergångar (mellan faser som ferromagnetisk,

anti-ferromagnetisk, paramagnetisk, skyrmionisk fas m.m.), kritiska tempera-

turer, effekter av externa magnetfält, systemets magnetiseringsdynamik, etc.

Noggrannheten i dessa beräkningar är beroende av hur väl beskrivet systemet

är av en Heisenberg-modell, eller annorlunda uttryckt, hur Heisenberg-likt ett

system är. En effektiv bilinjär spinnväxelverkanshamiltonian kan innehålla tre

parametrar: utbyteskopplingsparametern Ji j, Dzyaloshinskii-Moryia växelver-

kan �Di j och ett anisotropibidrag. I denna avhandling kommer vi att fokusera

på de två första parvisa interaktionerna: utbyteskopplingsparametern Ji j och

Dzyaloshinskii-Moryia växelverkan Di j [22,23]. DMI för vissa strukturer kan

ses i Fig. 6.1.

Figur 6.1. Schematisk representation av en triangulär trimer av: (a) Cr på Au (111),

(b) Mn på Au (111) och (c) Mn på Ag (111) fcc ytor. De rosa pilarna betecknar norma-

liserad DMI-riktning, vid kolinär magnetisk konfiguration (ferromagnetisk med mag-

netiska moment vinkelrätt mot ytan), och de står mellan två atomer som interaktionen

motsvarar.

En annan mycket användbar tillämpning av den så kallade Heisenbergha-

miltonianen är att beräkna det effektiva magnetfältet i systemet och studera

dess magnetodynamiska egenskaper [24–26]. Särskilt inom sektorn för infor-

mationsteknologi görs kraftfulla ansträngningar för att förbättra hur snabbt och

effektivt information kan lagras. Ett nytt och lovande forskningsområde med

hög relevans för det är spinntronik. Spinntronik är ett brett fält och använder

magntiska moments dynamk för tekniska tillämpningar. Inom detta område

har ett ämne fått stor uppmärksamhet på senare tid: skyrmioner. Skyrmioner

inom magnetismen är föremål som uppvisar en topologiskt skyddad magne-

tisk konfiguration med kvasipartikelegenskaper, vilket har stor användbarhet
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i informationsteknik på grund av dess rörlighet och stabilitet [34–42]. Studi-

er av dessa material kan genomföras med hjälp av en kombination av textit

ab initio metoder, såsom RS-LMTO-ASA, och magnetiseringsdynamikmeto-

der [24–33]. I den här avhandlingen har vi noggrant undersökt utbytespara-

metrarna genom att ingående studera vilka faktorer som är inblandade i beräk-

ningarna av dem. Vi har infört nya funktionaliteter i RS-LMTO-ASA-metoden

vilket gör att vi kan studera dessa parametrar ur nya perspektiv. Det kommer

att berika den redan kända kunskapen om magnetism i allmänhet och mag-

netiska växelverkningar i synnerhet och därmed bidra till ytterligare framtida

forskningsmöjligheter.
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7. Resumo em português

Desde os tempos antigos, datados de séculos A.C., o magnetismo é conhe-

cido. Primeiramente pelas suas propriedades místicas, o fenômeno do mag-

netismo tem nos levado a progressos tecnológicos importantes. De aplicações

em medicina a tecnologia da informação, o magnetismo tem um papel funda-

mental e seu estudo tem sido importante para futuras aplicações tecnológicas.

Dentre esses estudos, técnicas experimentais têm sido amplamente desenvol-

vidas no que diz respeito ao estudo de nanoestruturas. Podemos destacar algu-

mas como Spin-Polarized Scanning Tunneling Microscope (SP-STM) [1–10],

Atomic Force Microscope (AFM) [13] e X-ray Magnetic Circular Dichroism
(XMCD). Outro importante avanço foi o desenvolvimento da teoria do fun-

cional da densidade (DFT) [16], por Hohenberg e Kohn. Esta teoria foi fun-

damental para o estudo de materiais e suas propriedades na física do estado

sólido.

Através da cooperação entre teóricos e experimentais, a tecnologia pode

progredir para melhorar nossa qualidade de vida. Essa comunicação tem sido

cada vez mais desafiada pelo aumento da complexidade de novos materias.

Com isso, é preciso haver um constante melhoramento de métodos teóricos e

experimentais. Existem diferentes métodos na literatura que usam DFT para

calcular a estrutura eletrônica de um dado sistema. Neste trabalho, aperfei-

çoamos o método real space linear muffin-tin orbitals atomic sphere approxi-
mation (RS-LMTO-ASA) [18–21], o qual resolve o problema de auto-valores

no espaço real e também pode lidar com magnetismo não-colinear. Com o

problema sendo resolvido no espaço real, o estudo de nanoestruturas passa

a ser menos custoso computacionalmente, comparado com métodos desen-

volvidos no espaço recíproco, tais como os métodos baseados em ondas pla-

nas. Isto significa que é possível lidar com sistemas em nano-escala, como

por exemplo um único átomo, ilhas ou materiais nanoestruturados adsorvidos

em uma superfície, justamente onde os sistemas estão propícios a apresenta-

rem o magnetismo não-colinear como o possível estado fundamental. Em-

bora métodos baseados no DFT sejam projetados para serem eficientes, eles

não são adequados para descrever efeitos mesoscópicos devido ao alto custo

computacional. A fim de superar este problema, pode-se empregar métodos

multi-scale onde usamos parâmetros calculados diretamente de métodos que

usam o DFT, os quais dão informações gerais sobre o sistema estudado. Pos-

teriormente, usamos estes parâmetros em Hamiltonians que podem modelar

problemas pontualmente com mais efetividade e menos custo computacional.

No que diz respeito a problemas envolvendo magnetismo, podemos fazer uso
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das spin-Hamiltonians para prever características importantes de um dado sis-

tema, como por exemplo o estado fundamental, transição de fases (entre fases

como fase ferromagnética e anti-ferromagnética, paramagnética, fase de skyr-

mions, etc.), temperatura crítica, efeito de um campo magnético externo, a

dinâmica magnética do sistema, etc. A precisão destes cálculos está ligada

diretamente a proximidade do sistema e como a Hamiltoniana é representada,

em outras palavras, o quanto o sistema é Heisenberg-like. Uma Hamiltoni-

ana bi-linear geralmente conta com três parâmetros: o parâmetro de acopla-

mento e troca Ji j, a interação Dzyaloshinskii-Moryia �Di j e um termo que re-

presenta a anisotropia do sistema. Neste trabalho, nós iremos focar nas duas

interações emparelhadas: o parâmetro de acoplamento e troca, e a interação

Dzyaloshinskii-Moryia [22, 23].

Outro importante uso da Hamiltoniana de Heisenberg (Hamiltoniana bi-

linear de spin) é o cálculo do campo magnético efetivo sofrido pelo sistema e

através disto calcular suas propriedades magnéticas dinâmicas [24–33]. Par-

ticularmente, no que diz respeito a tecnologia da informação, esforços estão

sendo aplicados na direção de melhorar a velocidade em que a informação

é transmitidas e transformada, assim como aprimorar a capacidade de arma-

zenamento de dados. Dentro deste campo, um assunto vem ganhando bas-

tante atenção ultimamente: skyrmions. Skyrmions são, no campo de magne-

tismo, estruturas magnéticas topologicamentes protegidas com características

de quase-partículas, o que oferece um grande potencial de aplicabilidade em

tecnologia da informação devido a sua mobilidade e tamanho [34–42]. O es-

tudo dessas estruturas pode ser feito com uma boa comunicação entre métodos

ab initio, como o RS-LMTO-ASA, e métodos de dinâmicas de spin [24–26].

Nesta tese, nós investigamos mais profundamente os parâmetros calculados

de métodos ab initio a fim de aprimorar as propriedades calculadas através

das Hamiltonianas de spin. Nós implementamos novas ferramentas no mé-

todo RS-LMTO-ASA que nos possibilita estudar este parâmetros através de

novas perspectivas, as quais nós acreditamos que irá melhorar as informações

já conhecidas na literatura e possivelmente assistir futuramente em novas pos-

sibilidades de pesquisa.
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Appendix A.
LMTO-ASA formalism

A.1 Introduction
Here, we will solve the Kohn-Sham equation through a linear method, which

uses energy independent basis function. The linear muffin-tin orbital - atomic

sphere approximation (LMTO-ASA) method is an example of a linear method.

The LMTO formalism was initially developed in the canonic basis, however,

O. K Andersen [45] has shown that the LMTO formalism can be described as a

function of other basis set, e.g. canonical basis, orthogonal basis and the most

localized basis called tight-binding (TB). In this way, one has the freedom to

choose the most appropriate basis to be used for a given study. In our case,

there are two basis set that make our calculations easier: the orthogonal basis,

where the wave functions are orthogonal between themselves, and the local-

ized TB basis. In this appendix, the specifics aspects of the TB and orthogonal

basis will be shown as well as how they relate with each other. A more general

formulation about the canonical basis and the complete description of how to

change to a generic basis can be found in the literature [51, 72].

A.2 The eigenvalue problem
As seen in the Chapter 2, DFT simplifies the many-body problem, formulating

it into a problem of one electron moving under the effect of an effective poten-

tial. For this new reformulation, one needs to solve the Kohn-Sham equation,

which in this appendix will be called a Schrödinger-like equation. To start,

one can write the wave function ψ j as a linear combination of basis χi, energy

independent basis functions

ψ j = ∑
i

χiui, j, (A.1)

where ui, j are the expansion coefficients. Substituting the expansion terms in

the Schrödinger-like equation, the following eigenvalue problem needs to be

solved

(Ĥ−EO)u = 0, (A.2)

with Ĥ being the Hamiltonian matrix and O the overlap matrix, both indepen-

dent in energy and described by
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Ĥ ji =
〈
χ j

∣∣(−∇2 +V )
∣∣χi

〉
(A.3)

and

O ji =
〈
χ j|χi

〉
. (A.4)

In order to simplify the calculation, a few approximations are done. One

is the so called Atomic Sphere Approximation (ASA), where the crystal is

considered filled by spheres centred in each atomic site R and neglect the in-

terstitials and overlap regions. The radius a of each sphere is chosen in such

a way that the summation of the volume occupied by the spheres is equal to

the volume occupied by the atoms in the material. In the particular case of a

material constituted by only one atom, this radius is called Wigner-Seitz ra-

dius. It is noteworthy to say that this approximation is appropriate for densely

packed materials. Another valid approximation concerns the potential symme-

try. Here, for each sphere centred in the site R, the potential VR is considered

spherically symmetric.

V = ∑
R

VR. (A.5)

A.3 Development of the LMTO-ASA formalism in the
canonical basis

Inside the LMTO-ASA formalism, the χi basis must be chosen in a conve-

nient way in order to obtain the Hamiltonian matrix, Eqn. A.3, and a overlap

matrix, Eqn. A.4, with a given number of functions that are, at least, the min-

imum number of functions able to describe the system. In case of transition

metals, the object of our study, one can choose 9 orbitals per site, being 1 s, 3

p and 5 d. In order to create one basis with these characteristics, one consid-

ers an isolated sphere of radius a, centred on the site R. Hence, a symmetric

muffin-tin potential is taken inside the sphere and constant outside of it. In-

side the sphere or radius a, where the spherical symmetric potential is situated,

the Schrödinger-like equation solution must be differentiable and continuous

in all space towards the outside of the sphere. Also, it is considered that the

kinetic energy outside the radius a, in the interstitial region, is null. This ap-

proximation is convenient in the ASA approximation, since this region is not

taken into consideration. Hence, outside the sphere of radius R, the solution

for the Schrödinger-like equation is given as

KRL(rR) =

∣∣∣∣�rR

a

∣∣∣∣−l−1

YL(r̂R), (A.6)
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with the �rR =�r− �R, YL(L = l,m) being the spherical harmonics and a is a

factor that has to be chosen appropriately. Usually, the value of a is chosen

as the Wigner-Seitz radius of the studied material. Lastly, the values for l are

related to the orbitals s, p and d; being l = 1, 2 and 3, respectively.

Taking into account that the ASA approximation is a group of juxtaposed

spheres centred on each atomic site, with a spherical symmetric potential in-

side the sphere, one needs a process that describes the system correctly. This

process consists of substituting part of the KRL function inside the spheres,

centred on the sites �R �= �R′, by functions that are solutions of the Schrödinger-

like equation, so that the logarithmic derivatives in the sphere boundary can

be continuous. These auxiliary functions are called envelope functions. They

have the objective to establish the boundary conditions that has to be obeyed

by the solution of the Schrödinger-like equation inside the spheres centred in
�R′. In the canonic basis, the envelope functions, before defined by Eqn. A.6,

is now written as

KRL(�rR) = kRL(rR)YL(r̂R). (A.7)

In this equation, the radius part is given by the kRL(rR) and it is written as

kRL(rR) =
(rR

a

)−l−1
. (A.8)

In order to obtain the functions χ0
RL in the canonical basis, one needs to sub-

stitute part of the envelope solution, Eqn. A.7 defined on the spheres R′,
by functions related to the solution of the Schrödinger-like equation inside

the spheres, given a spherical symmetric potential, which is obtained self-

consistently. These functions are orthogonal with respect to the core levels, in

the region around the site �R′, being then a good approximation for the solution

of the problem in this region. Note that the substitution process must consider

the continuity and differentiability conditions on the sphere limits. This pro-

cess is assisted by the envelope functions and it is known by augmentation.

In order to realize this process, one needs to expand the envelope function

around the sites �R′, since the Schrödinger-like equation has well defined so-

lution around �R′. For such expansion, one needs to take part of the KRL that

extends itself on the centred spheres R �= R′ (defined by χ0
RL) and write it as an

expansion around the regular solutions to the Laplace equations in the origin

and centred in R′L′, described by

K0
RL =−∑

R′L′
J0

R′l′(rR′)S
0
R′L′,RL, r > s, (A.9)

with J0
R′l′(r

′
R) being null outside the spheres of centred in R′ and radius s,

described inside by
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J0
R′l′(rR′) =

∣∣∣∣ �rR′

a

∣∣∣∣l
′

1

2(2l′+1)
Y ′L(r

′
R). (A.10)

In the Eqn. A.9, the coefficients S0
R′L′,RL exist only between �R and �R′, being

null for R = R′. The structure matrix in the canonical basis is called S0 and its

elements are the expansion coefficients of the KRL function around �R′, given

by

S0
R′L′,RL =

1

(4π)1/2
Gl′m′,lm

∣∣∣∣∣�R−�R′

a

∣∣∣∣∣
−l′−l−1

Y ∗l′+1,m′−m(�R−�R′) , (A.11)

where Gl′m′,lm is written as

Gl′m′,lm =(−1)l+m+1

[
(2l′+1)(2l +1)(l + l′+m′ −m)!(l + l′ −m′+m)!

(2l′+2l +1)(l′ −m′)!(l′ −m′)!(l +m)!(l−m)!

]1/2

.

(A.12)

Now the envelope function centred on the site �R and defined in all the space is

defined as

K∞
RL = kRl(rR)YL(r̂R)−∑

R′L′
j0
R′l′(rR′)YL′(r̂R′)S

0
R′L′,RL, (A.13)

where

kRl(rR) =

∣∣∣∣�rR

a

∣∣∣∣−l−1

, (A.14)

and

j0
R′l′(rR′) =

∣∣∣∣ �rR′

a

∣∣∣∣l
′

1

2(2l′+1)
. (A.15)

If one uses the Dirac notation, the envelope function is written as

|K〉∞ = | K〉− ∣∣J0
〉

S0. (A.16)

Once the envelope function K∞
RL is calculated, we can proceed with the aug-

mentation process. For this second part, one must substitute the envelope func-

tion inside the sphere by solutions of the Schrödinger-like for a spherically

symmetric potential, always verifying if the boundary conditions established

by the envelope functions are being satisfied. In order to do that, one needs

to find the radial solution of the Schrödinger-like equation for a spherically

symmetric potential inside of each sphere centred at R, in order to obtain the
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normalized solutions ϕRL(r,E). Taking ϕRL(r,E) and its derivative calculated

for E = Eν ,Rl , we have

ϕRL(r) = ϕRL(r,Eν) (A.17)

and

ϕ̇RL(r) =
∂

∂E
ϕRL(r,E)|E=Ev . (A.18)

In this way, one is able to write the basis energy-independent. Then, the func-

tion χ0∞
RL is taken in all the space and is written as a linear combination of the

radial solutions and its derivatives, Eqns. A.17 and A.18, respectively. Then

χ0∞
RL (�rR) = ϕRl(rR)YL(r̂R)+ ∑

R′L′
ϕ̇0

R′l′(rR′)YL′(r̂R′)h
0
R′L′,RL, (A.19)

and using that

ϕ̇0
R′l′(rR′) = ϕ̇R′l′(rR)+ ∑

R′L′
ϕR′l′(rR)o0

R′l′ , (A.20)

Using A.20 in A.19

χ0∞
RL (�rR) = ϕRl(rR)YL(r̂R)+ ∑

R′L′

[
ϕ̇R′l′(rR)+ϕR′l′(rR)o0

R′l′
]
YL′(r̂R′)h

0
R′L′,RL,

(A.21)

where the functions ϕRl and ϕ̇Rl are defined only to the sphere centred in �R
and the index ∞ says that the function is defined in all space.

Rewriting the functions A.19, A.20 and A.21 in the vectorial (Dirac) nota-

tion ∣∣χ0
〉∞

= |ϕ〉+ ∣∣ϕ̇0
〉

h0, (A.22)

with ∣∣ϕ̇0
〉
= |ϕ̇〉+ |ϕ〉o0 (A.23)

or ∣∣χ0
〉∞

= |ϕ〉(1+o0h0)+ |ϕ̇〉h0, (A.24)

where |ϕ〉, ∣∣ϕ̇0
〉
,
∣∣χ0

〉∞
, etc. are the vectors of components |ϕRL〉, etc. and

h0 and o0 are matrices. In this notation, the angular parts are included in the

spherical harmonics around the site �R and normalized to unity.

The calculation of the matrices h0 and o0 is done connecting the radial

solutions of the envelope function, kRl(r) and j0
Rl(r), to a linear combination

of ϕRl(r) and ϕ̇Rl(r) in such way that these functions fall on top of each other

in the sphere boundary r = s [72]. Doing this, the values for h0 and o0 can be

obtained.
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h0 =

[
− W (k,ϕ)

W (k, ϕ̇0)
+

(
2

a

)1/2

W ( j0,ϕ)S0W ( j0,ϕ)
(

2

a

)1/2
]

(A.25)

and

o0 =−W ( j0, ϕ̇)
W ( j0,ϕ)

. (A.26)

Here, W (a,b) are diagonal matrices called Wronskian of a and b, described as

W (a,b) = s2[a(s)b′(s)−a′(s)b(s)], (A.27)

where f (s) is the function f (r) in r = s and f ′(s) is its derivative with respect

to r in r = s. In these expressions, the indexes RL are not presented. The

coefficient h0 is a matrix with elements h0
RL,R′,L′ and o0 is a diagonal matrix

with elements o0
RL.

With the elements h0 and o0 calculated, the canonical basis is finally done.

In the LMTO-ASA formalism, is usual to write the coefficient h0 of the

basis function in terms that are potential dependent and potential independent.

Therefore, redefining h0 using the parameters Δ0 and C0

h0
RL,R′L′ = (C0

Rl−EνRl)δR,R′δL,L′+Δ0 1
2

Rl S0
RL,R′L′Δ

0 1
2

R′l′ , (A.28)

with

C0
Rl = EνRl−W (kRl ,ϕRl)

W (kRl , ϕ̇Rl)
(A.29)

and

Δ0 1
2

Rl =

(
2

a

)1/2

W ( j0
Rl ,ϕRl). (A.30)

Now it is possible to define the Hamiltonian matrix H0 and the overlap matrix

O0, in the canonical basis, as

H0 =∞ 〈
χ0

∣∣−∇2 +V
∣∣χ0

〉∞
, (A.31)

and

O0 =∞ 〈
χ0|χ0

〉∞
, (A.32)

respectively.

Using
∣∣χ0

〉∞
in the Eqns. A.31 and A.32, and the properties of the functions

H0 and O0 in terms of h0 and o0, then

H0 = h0 +(o0h0)†h0 +EνO0, (A.33)
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and

O0 = 1+o0h0 +(o0h0)† +(o0h0)†o0h0. (A.34)

Note that small terms, of the order of (h0 + ph0), with pRL =
∣∣ϕ̇2

RL
〉
, where

not taken into consideration. So, using H0 and O0, one can write the secular

equation for the LMTO

(
H0−E jO0

)
u0

j = 0. (A.35)

Solving this equation, one can calculate the eigenvalues for the particular

case of the canonical basis. At first sight, the problem would be solved, since

the solution of Eqns. A.35 determines the electronic structure of the mate-

rial. However, in the direct space, this procedure is only convenient if the

Hamiltonian matrix is localized, which is not guaranteed in the canonical ba-

sis. The structure matrix S0 decays very slowly with the distance, extending

itself through many neighbor shells, being then non-local. This is enough to

conclude that the Hamiltonian in the canonical basis will not be localized ei-

ther. Therefore, more basis transformations are needed in order to obtain a

better basis for our problem.

A.4 Generic basis

It is known that the LMTO-ASA formalism allows us to change the problem

basis in order to find a proper one. So, firstly, one can generalize the represen-

tation in a way that the envelope function tail can be expanded in terms of one

regular function J0 and a irregular function K, having then

∣∣JG〉= ∣∣J0
〉−|K〉QG, (A.36)

where QG is a diagonal matrix that dictates the mix between the irregular func-

tions KR′L′ with the regular functions J0
R′L′ . The envelope function would be

then written as

∣∣KG〉∞
= |K〉− ∣∣JG〉SG. (A.37)

It is possible to show [51] that the structure matrix, in this representation, is

given by

SG = S0(1−QGS0)−1. (A.38)

Then, the envelope functions of the different basis are related with each other

in the following manner

∣∣KG〉∞
= |K〉(1+QGSG)− ∣∣J0

〉
SG. (A.39)
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In this representation, the structure matrix SG is connected with the material

electronic structure as well as depend on the potential on the spheres through

the parameter QG.

Analogously with what was done for the canonical basis, it is possible to

define a function
∣∣χG

〉∞
in the general representation and as a function of hG

and oG, such as ∣∣χG〉∞
= |ϕ〉(1+oGhG)+ |ϕ̇〉hG. (A.40)

and ∣∣ϕ̇G〉= |ϕ̇〉+ |ϕ〉oG. (A.41)

or in the following manner∣∣χG〉∞
= |ϕ〉(1+oGhG)+ |ϕ̇〉hG. (A.42)

The parameters hG and oG are determined by the augment process. Hence,

we have

hG =− W (k,ϕ)
W (k, ϕ̇G)

+

(
2

a

)1/2

W ( jG,ϕ)SGW ( jG,ϕ)
(

2

a

)1/2

(A.43)

and

oG =−W ( jG, ϕ̇)
W ( jG,ϕ)

=−W ( j0, ϕ̇)−W (k, ϕ̇)QG

W ( j0,ϕ)−W (k,ϕ)QG , (A.44)

where oG is a diagonal matrix with elements oG
Rl e hG

Rl is a matrix with elements

hG
RL,R′L′(note that the indexes Rlm were suppressed). So, using the expression∣∣χG

〉∞
in terms of the matrices hG and oG, it is possible to define the Hamilto-

nian HG matrix and the overlap OG matrix in the generic basis

HG =∞ 〈
χG ∣∣−∇2 +V

∣∣χG〉∞
= hG +(oGhG)†hG +EνOG, (A.45)

and

OG =∞ 〈
χG|χG〉∞

= 1+oGhG +(oGhG)† +(oGhG)†oGhG. (A.46)

A.5 Tight-binding basis - the localized basis

Since we have the freedom of taking a parameter of any mixture QG, then one

can take a parameter in order to make the basis as localized as it can be, in

such way that only the interaction between the first neighbors are sufficient

to the correct description of the problem. This localized Hamiltonian matrix
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enables the use of the recursion method, which is efficient when dealing with

problems in the real space.

As mentioned before, the structure matrix, given by SG = S0(1−QGS0)−1,

also depends on the mixture parameter QG. The values for the mixture param-

eters were calculated by O. K. Andersen and O. Jepsen [51,62]. The obtained

values are structure independent and the structure matrix decays exponentially

with the distance between the atoms. The values are

Q̄s = 0,3485, (A.47)

Q̄p = 0,05303, (A.48)

Q̄d = 0,010714 (A.49)

and

Q̄l = 0, l > 2 . (A.50)

where QG = Q̄ are the parameters in the TB basis. In the TB basis, the eigen-

value equation is described by(
H̄− ĒŌ

)
ū = 0. (A.51)

Substituting hG and oG for h̄ and ō, respectively, in the Eqns. A.45 and A.46,

it is obtained (
H̄− ĒŌ

)
ū =

[
h̄+ h̄†ō†h̄+EνŌ−EŌ

]
ū = 0 , (A.52)

A.6 The orthogonal basis

It is possible to recover the orthogonal basis by forcing the overlap matrix to be

the identity matrix. For that, one just needs to have oG = 0. Note that this basis

is interesting to deal with, since it makes it simple to obtain the eigenvectors

and eigenvalues of the equation (HG−EOG)uG = 0. In the orthogonal basis

notation, the upper indexes are suppressed. The Hamiltonian matrix in the

orthogonal basis can be written as

H = h+Eν . (A.53)

Therefore, the eigenvalue equations is written as the following manner

Hu = Eu, (A.54)

or

(h+Eν)u = Eu. (A.55)

Consequently
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h = E−Eν . (A.56)

The Hamiltonian H can be written as a function of the potential parameters

in the orthogonal basis as

H =C+Δ1/2SΔ1/2, (A.57)

where

C = Eν −W (k,ϕ)
W (k, ϕ̇)

(A.58)

and

Δ1/2 =

(
2

a

)1/2

W ( j,ϕ). (A.59)

For the structure matrix S

S = S0
(
1−QS0

)−1
, (A.60)

where the term Q is obtained by choosing oG = 0

Q =
W ( j, ϕ̇)
W (k,ϕ)

. (A.61)

The basis functions in the orthogonal basis are written as

|χ〉∞ = |ϕ〉+ |ϕ̇〉h. (A.62)

Then, by doing h = H−Eν , one can have

|χ〉∞ = |ϕ〉+ |ϕ̇〉(H−Eν) . (A.63)

Now, writing the this equation in terms of the eigenvalues of H, one can reach

|χ〉∞ = |ϕ〉+ |ϕ̇〉(E−Eν) . (A.64)

Remember that in the LMTO-ASA formalism, the functions written in the

orthogonal basis are given by Taylor expansion up to the first order in energy

of the partial wave |ϕ(E,r)〉 around the energy Eν .

A.7 Orthogonal representation of the Hamiltonian
matrix as function of tight-binding representation
parameters

It was shown so far that both the orthogonal and the TB basis simplify the cal-

culations in the real space. The former one makes the problems to be simpler
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and the latter one enables the utilization of the recursion method. However,

in order to obtain one orthogonal Hamiltonian as a function of the potential

parameters in the TB representation, one needs to find proper approximations

that facilitates the process.

The Hamiltonian described by H = h+Eν can be written in terms of the

general basis in the following manner

h = hG (
1+oGhG)−1

. (A.65)

Note that this relationship is valid for any basis
∣∣χG

〉∞
. Therefore, it is possible

to represent the orthogonal basis Hamiltonian in terms of the TB parameters

as

H = Eν + h̄
(
1+ ōh̄

)−1
. (A.66)

Taking the values for ōh̄ very small, one can expand (1+ ōh̄)−1 in a power

series of ōh̄, and then

H = Eν + h̄− h̄ōh̄+ h̄ōh̄ōh̄− ..., (A.67)

where h̄ is a hermitian matrix written as a function of the TB parameters and

is described as

h̄ = C̄−Eν + Δ̄1/2S̄Δ̄1/2. (A.68)

In this representation, ō, C̄ and Δ̄ are the potential parameters in the TB

basis and S̄ is the structure matrix, also in TB basis. Taking the expansion up

to the first order in (E−Eν), the Hamiltonian is then written as

H(1) ≈ Eν + h̄ = C̄+ Δ̄1/2S̄Δ̄1/2. (A.69)

And if it is used up to the second order

H(2) = H(1)− h̄ōh̄, (A.70)

where H(1) is the first order Hamiltonian. For a good description of the occu-

pied bands of the s, p and d orbitals, the first order Hamiltonian is typically

enough. However, if one wants a better description of the unoccupied states

of these bands, it is necessary to include the terms of the second order expan-

sion, i.e. the h̄ōh̄ terms. For the accurate description of the properties, such

as magnetic moment, the addition of the second order term does not affect the

results significantly.

In the real space, inside the RS-LMTO-ASA formalism, one must use the

orthogonal representation for the Hamiltonian in terms of the TB potential

parameters C̄, Δ̄ and S̄, given by

C̄ = Eν −W (k,ϕ)
W (k, ˙̄ϕ)

, (A.71)
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Δ̄1/2 =

(
2

a

)1/2

W ( j̄,ϕ) , (A.72)

and

S̄ = S0
(
1− Q̄S0

)−1
. (A.73)

The relationship between the parameters of a more localized basis and the

orthogonal basis is described as

Δ̄1/2

Δ1/2
=

[
1− (

Q− Q̄
)C−Eν

Δ

]
=

C̄−Eν

C−Eν
. (A.74)

The calculation of the Hamiltonian H, represented as a function of the TB

parameters, can be divided in two distinct parts. One depends on the potential

of each sphere and obtaining the parameters C̄ and Δ̄. The second part depends

on the structure of the material and the calculation of the structure matrix S̄ and

does not depend on the potential.
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Appendix B.
The Recursion Method

In this appendix, the recursion method and the Beer-Pettifor terminator used in

the RS-LMTO-ASA method will be described. It has been shown that inside

the RS-LMTO-ASA method, one can write the Hamiltonian in a orthogonal

basis in terms of the TB parameters. The obtained Hamiltonian is a sparse

matrix 9Nx9N, where N is the number of atoms considered and 9 is the num-

ber of the considered orbitals. Given the matrix dimension, the eigenvalue

problem is impracticable to solve. Therefore, a method that makes the prob-

lem solvable is needed. This method is the recursion method developed by

R. Haydock [52]. The goal of the recursion method is to shape the regular

problem Hamiltonian into a tridiagonal (Jacobi matrix) Hamiltonian matrix,

through a basis change.

Since the Hamiltonian will be tridiagonal, each element |un〉 must only in-

teract with the previous and posterior elements |un−1〉 and |un+1〉, respectively.

A recursion relationship can the be identified as

H |un〉= an |un〉+bn+1 |un+1〉+bn |un−1〉 , (B.1)

where H is the Hamiltonian in the orthogonal basis written as a function of the

TB parameters and {an,bn} are the coefficients that describe the interaction

of |un〉 with |un−1〉 and |un+1〉. In order to obtain the coefficients an and bn, a

arbitrary orbital |u0〉 is chosen, that is associated with the site where the local

density of states is calculated. It is also needed that the basis |un〉 is normalized

and that |un−1〉= 0. Hence, the recursion relation for n = 0 is written as

H |u0〉= a0 |u0〉+b1 |u1〉 . (B.2)

According to Eqn. B.2, it is possible to determine the coefficient a0 by doing

a scalar multiplication by 〈u0| and using the orthogonality properties, one has

a0 = 〈u0|H |u0〉 . (B.3)

After a0 is obtained, it is possible to obtain b1 by subtracting a0|u0〉 in the Eqn.

B.2, and then

b1 |u1〉= (H−a0) |u0〉 , (B.4)

multiplying by its dual correspondent
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〈u1|b†
1b1 |u1〉= 〈u0|(H−a0)

†(H−a0) |u0〉 , (B.5)

using the normalization condition

b2
1 = 〈u0|(H−a0)

†(H−a0) |u0〉 (B.6)

or

b1 = 〈u0|(H−a0)
†(H−a0) |u0〉

1
2 . (B.7)

With b1 determined, one can now calculate |u1〉

|u1〉= (H−a0)

b1
|u0〉 . (B.8)

Now, knowing a0, b1 and |u1〉, one can calculate the values for a1, b2 and |u2〉
analogously. Generalizing the procedure for any value of n, one can reach

an = 〈un|H |un〉 , (B.9)

b2
n+1 =

[〈un|(H−an)
†−〈un−1|b†

n
]
[(H−an) |un〉−bn |un−1〉] (B.10)

and

|un+1〉= (H−an) |un〉−bn |un−1〉
bn+1

. (B.11)

Therefore, the Hamiltonian in its new basis can be written as

Hm,n = 〈um|H |un〉= 〈um|an |un〉+ 〈um|bn+1 |un+1〉+ 〈um|bn |un−1〉 (B.12)

or

Hm,n = 〈um|H |un〉= anδm,n +bn+1δm,n+1 +bnδm,n−1. (B.13)

Writing now in its matrix form

⎛
⎜⎜⎜⎜⎝

a0 b1 0 0 · · ·
b1 a1 b2 0 · · ·

H = 0 b2 a2 b3 · · ·
0 0 b3 a3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠.
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Note that the orbitals |un〉 are obtained after successive applications of H on

|u0〉. Therefore, as n increases the orbitals extends itself for a big region (n+1

neighbors), therefore, the influence of orbitals |un+1〉 on |u0〉 decreases and

eventually becomes irrelevant for the local density of state calculation in this

site. In the self-consistent process, the Hamiltonian transformation ends when,

for a given n, bn+1 = 0 is reached. However, for a given n > LL (so called cut-

off parameter), the contributions of |un〉 are too small. Therefore, one can

truncate the coefficients at n = LL. The value for LL is chosen given the size

and complexity of the problem.

Once the new tridiagonal Hamiltonian is found, as well as the parameters

an and bn, one can then calculate the local density of states N(E). However,

the problem is truncated, therefore, the local density of states is discrete. In

order to have the local density of states in the continuous spectrum, one must

use a terminator to simulate the contributions of the parameters an and bn with

n> LL. These density of states are calculated using the properties of the Green

function in the form of continued fraction. The local density of states for the

|uo〉 orbital can be written as

N0(E) = LDOS =− 1

π
Im [G0(E)] , (B.14)

where G0(E) is the first element of the principal diagonal of the matrix

G0(E) = 〈u0|(E−H)−1 |u0〉 , (B.15)

being

⎛
⎜⎜⎜⎜⎝

(E−a0) −b1 0 0 0 · · ·
−b1 (E−a1) −b2 0 0 · · ·

(E−H)−1 = 0 −b2 (E−a2) −b3 0 · · ·
0 0 −b3 (E−a3) −b4 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠

−1

,

In order to obtain the elements of the inverse matrix (E −H), one must cal-

culate the ratio between the cofactor matrix and the determinant of it. Defin-

ing then Dn(E) as the matrix determinant, suppressing the first n lines and

columns, and D0(E) the determinant of the (E−H) matrix, one can write

G0(E) =
D1(E)
D0(E)

. (B.16)

Using the property for determinants of a matrix n×n, described by

detAn×n =
n

∑
i=1

(−1)i+1Ai,1Di,1, (B.17)
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having that Di,1 is the determinant of the matrix A with line i and column 1

suppressed

D0(E) = (−1)1+1(E−a0) D1,1︸︷︷︸
D1(E)

+(−1)2+1(−b1)D2,1, (B.18)

with

D2,1 = (−1)2(−b1)D2(E), (B.19)

therefore,

D0(E) = (E−a0)D1(E)−b2
1D2(E). (B.20)

Substituting these results in B.16, we have that

G0(E) =
D1(E)
D0(E)

=
D1(E)

(E−a0)D1(E)−b2
1D2(E)

, (B.21)

G0(E) =
1

(E−a0)−b2
1

D2(E)
D1(E)

. (B.22)

Now, notice that

D1(E) = (E−a1)(−1)2D2(E)− (−b2)
2 D3(E). (B.23)

In a general form, then

Dn(E) = (E−an)Dn+1(E)− (−bn+1)
2 Dn+2(E). (B.24)

And finally, the G0(E) in terms of the continued fraction can be written as

G0(E) =
1

(E−a0)− b2
1

(E−a1)−
b2
2

(E−a2)−
b2
3

(E−a3)−
b2
4

...

. (B.25)

This continued fraction will give two different types of density of states: a

discrete one, if the fraction is truncated, or a continuous if one uses the infinite

fraction. As the interest of this study is the continuous limit, the fraction is

truncated in the cut-off parameter and then a terminator is used to represent

the missing terms. In this way, we can write
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G0(E) =
1

(E−a0)− b2
1

(E−a1)−
b2
2

(E−a2)−
b2
3

...
(E−aLL−1)−

b2
LL

(E−aLL)−t(E)

, (B.26)

where t(E) is the terminator of the continued fraction and has the goal of

represent the terms when n > LL.

Here, we will use the Beer-Pettifor terminator [53]. This terminator deter-

mines that an = n and bn = n for the constant in n > LL and the continued

fraction is written as

t(E) =
b2

E−a− t(E)
. (B.27)

For t(E), we have the following equation

[t(E)]2− (E−a) t(E)+b2 = 0. (B.28)

Solving this equation for t(E)

t(E) =
1

2

[
(E−a)±

√
(E−a−2b)(E−a+2b)

]
. (B.29)

Substituting B.29 in the continued fraction, the fraction is obtained which will

generate a continuous spectrum for the local density of states in the interval

a−2b < E < a+2b. (B.30)

Finally, one can calculate the total local density of states if one sums up all the

contributions coming from each orbital for a given site.
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Appendix C.
Multiple scattering theory

The multiple scattering theory (MST) is a mathematical formalism that is use-

ful when describing the propagation of a wave through different scatters. The

MST is widely use in several areas of physics and particularly here, in con-

densed matter, the formalism becomes handy when dealing with electronic

structure calculations. In our case, it will be use to describe the interactions

between two magnetic moments. Interactions explored in this thesis, such

as the exchange-coupling and the Dzyaloshinskii-Moriya interactions, were

mathematically described by the MST and further developed into the LMTO

language. For more detailed information about the MST, one should take a

look at the notes in Ref. [73].

C.1 Grand canonical potential from the integrated DOS

A good and convenient way to determine the electronic structure of a given

system is to work within the grand canonical potential. The grand canonical

ensemble states that the energy and particles of a system can be changed with

a reservoir, i.e. the chemical potential μ and the absolute temperature T are

the thermodynamic variables. The grand canonical potential can be written as

E =

∞∫
−∞

dεε f (ε)n(ε) (C.1)

and N is the (average) number of particles given by the equation

N =

∞∫
−∞

dε f (ε)n(ε) , (C.2)

where f (ε)= 1/
(

1+ eβ (ε−μ)
)

is the Fermi-Dirac distribution function parametrized

with the inverse temperature β = 1/(kBT ). The n(ε) stands for the density

of states (DOS) as a function of the energy variable ε . Considering that the

Fermi-temperature is usually much higher than the critical (Curie) tempera-

ture, it is enough to work in the T = 0 approach when the energy integration

goes up to εF (and f (ε) is a step function). In this case
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Ω = E − εFN =

εF∫
−∞

dεεn(ε)− εFN , (C.3)

or

Ω = εFN(εF)−
εF∫
−∞

dεN(ε)− εFN , (C.4)

where N(ε) is the integrated DOS (IDOS) that was obtained through a par-

tial integration in Eqn. C.3. Considering that N(εF) = N, it is possible to

verify that the first and third term cancel each other in Eqn. C.4. Therefore,

the grand canonical potential can be written as

Ω =−
εF∫
−∞

dεN(ε) . (C.5)

This means that one is able to determine the variations of the IDOS to get the

variations of the grand potential. For this purpose we will derive the Lloyd

formula after introducing the needed MST quantities.

C.2 Green function and DOS

Particularly in the electronic structure field, the Green function gives us the

information about how an electron in a site i interacts with an electron in site j
or vice-versa. This information is extremely valuable when calculating inter-

actions between two atoms, such as the exchange interactions explored in this

thesis. This particular form of Green function is called inter-site Green func-

tion. Other particular form of the Green function, so called intra-site Green

function, will gives us the information within the atom in the site i and it gives

us each orbital occupation. Here, the Green function will be discussed and

its interpretation in the electronic structure. The Green function of a given

Hamiltonian H is defined as

G(z) = (z−H)−1 , (C.6)

where z ∈ C. It implies that G(z∗) = G†(z). If both sides of the equation

(z2−H)− (z1−H) = z2− z1 (C.7)

are multiplied by G(z1)G(z2) then the equation

(z1−H)−1− (z2−H)−1 = (z2− z1)(z1−H)−1 (z2−H)−1 , (C.8)
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is obtained. Assuming that z2 = z+dz, z1 = z and dz→ 0, the equation

dG(z)
dz

=−G2(z) . (C.9)

can be derived.

Let us now assume that the Hamiltonian H has a discrete spectrum (the

conclusions can be extended to the continuous spectrum), i.e. Hϕn = εnϕn.

Then the spectral resolution of the Green function (Lehmann representation)

can be obtained as

G(z) = ∑
n

|ϕn〉〈ϕn|
z− εn

. (C.10)

It implies firstly that on the basis of the eigenfunction of H the Green function

would be represented as Gnn′(z) = δnn′
1

z−εn
. Secondly, the G(z) is obviously

undefined for a z = εn. However, we can define the up and down side limits of

G(z) as the following

G±(ε) = lim
δ→0

G(ε± iδ ) . (C.11)

Note that G±(ε) = (G∓(ε))†
. The notation defined by Eqn. C.11 will be

later used for the T -matrix.

In a system of independent fermions, the measured value of a one-particle

observable, A, is given as

A = ∑
n

pn〈ϕn|A|ϕn〉 , (C.12)

where pn = f (εn), and Fermi-Dirac distribution function f (ε) has been intro-

duced already.

Using the Cauchy’s theorem, which states that for a closed contour clock-

wise oriented, the integration of the equation g(z)/(z−a) is equal to−2πig(a)
if a is within the contour and 0 if a is outside. We should keep in mind that the

Fermi-Dirac function f (z) also has Matsubara poles. However, if the contour

is performed on the real axis then, with the help of the Cauchy’s theorem and

Eqn. C.10, the Eqn. C.12 can be simply given by G+(ε) as the following

A =− 1

π
ℑ

∞∫
−∞

dε f (ε)Tr
(
AG+(ε)

)
. (C.13)

If A is the identity operator then it can be written that

N =− 1

π
ℑ

∞∫
−∞

dε f (ε)Tr
(
G+(ε)

)
. (C.14)

Comparing Eqn. C.2 with Eqn. C.14, it can be obtained for the DOS that

n(ε) =− 1

π
ℑTr

(
G+(ε)

)
. (C.15)
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C.3 T-operator and Lloyd formula

If one considers the unperturbed Hamiltonian H0 and the operator V as a per-

turbation, the perturbed system can be written as

H = H0 +V . (C.16)

The Green function for the unperturbed and perturbed system is given as

G0 (z)= (z−H0)
−1 and G(z)= (z−H)−1, respectively. Then it can be written

that

G(z) = (z−H0−V )−1 = [(z−H0)(I−G0 (z)V )]−1 , (C.17)

where I is the identity operator. For the Green function we can write a Dyson

equation as G(z) = G0 (z)+G0 (z)V G0 (z)+G0 (z)V G0 (z)V G0 (z)+ . . . . In-

troducing the T-operator,

T (z)≡V +V G0 (z)V +V G0 (z)V G0 (z)V + . . . , (C.18)

the perturbed Green function can then be written as

G(z) = G0 (z)+G0 (z)T (z)G0 (z) . (C.19)

It follows from the definition of T (z) that T (z) = V +V G(z)V . It can be

shown that

G0 (z)T (z) = G(z)V T (z)G0 (z) =V G(z) . (C.20)

These expressions imply that

T (z) =V +V G0 (z)T (z) . (C.21)

Considering that T (z) =V +V G(z)V , the derivative of T (z) with respect to z
is V dG(z)

z V . Using Eqns. C.9 and C.20, we can write for the derivative of T (z)
that

T (z)
dz

= T (z)
dG0(z)

dz
T (z) . (C.22)

The Eqn. C.15 tells us how to calculate the DOS. For the perturbed DOS it

can be written that

n(ε) =− 1

π
ℑTr

(
G+(ε)

)
=− 1

π
ℑTr

(
G+

0 (ε)+G+
0 (ε)T

+(ε)G+
0 (ε)

)
(C.23)

by using of Eqn. C.19. Introducing the unperturbed DOS as n0(ε)=− 1
π ℑTr

(
G+

0 (ε)
)
,

the perturbed DOS can be written as n(ε) = n0(ε)+δn(ε) where
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δn(ε) =− 1

π
ℑTr

(
G+

0 (ε)T
+(ε)G+

0 (ε)
)
=− 1

π
ℑTr

((
G+

0

)2
(ε)T+(ε)

)
.

(C.24)

We used the cyclic property of the trace in the last step. For
(
G+

0

)2
using

Eqn. C.9 we get that

δn(ε)=
1

π
ℑTr

(
G+

0 (ε)
dε

T+(ε)
)
=

1

π
ℑTr

((
T+(ε)

)−1 T+(ε)
G+

0 (ε)
dε

T+(ε)
)

,

(C.25)

where we inserted the identity (T+(ε))−1 T+(ε) in the last step. The Eqn.

C.22 simplifies the variation of the DOS as follows

δn(ε) =
1

π
ℑTr

((
T+(ε)

)−1 T+(ε)
dε

)
, (C.26)

which can be further formulated as

δn(ε) =
d

dε
1

π
ℑTr ln

(
T+(ε)

)
. (C.27)

If the variation of the DOS is given as an energy derivative then for the varia-

tion of the IDOS can be written that

δN(ε) =
1

π
ℑTr ln

(
T+(ε)

)
. (C.28)

We have derived the so-called Lloyd formula which tells us how to get the

variation of the IDOS due to a representation of the T-operator.

C.4 Fundamental equation of MST

Next, we specify what the operator V stands for. It can be written as a sum of

single-domain potential, i.e.

V = ∑
i

Vi , (C.29)

where Vi is the single site potential at site i. This can be a single muffin-

tin potential which is described by a spherical symmetric potential within a

radius of an atomic position, and equals to a constant (muffin-tin zero) outside

the radius. In general, the corresponding single site scattering operator can be

written as

ti (ε) =Vi +ViG0 (ε) ti , (C.30)
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see Eqn. C.21. Note that the up-side energy limit will be considered, see Eqn.

C.11 for a definition, however, the + symbol will be not written. Inserting

Eqn. C.29 into Eqn. C.18 leads to the relation

T = ∑
i j

τi j , (C.31)

where the scattering path operator (SPO)

τi j = tiδi j + t jG0(1−δi j)t j +∑
k

tiG0(1−δik)tkG0(1−δkm)tm + ... (C.32)

has been introduced. In order to simplify the following steps, the energy vari-

able, ε , is dropped in Eqns. C.31 and C.32. Next, we introduce the notation

τ (ε) and t(ε) as the set of the
{

τi j (ε)
}

and {ti (ε)}matrices, respectively. Us-

ing Eqns. C.30 and C.32, we can formulate the fundamental (Dyson) equation

of the multiple scattering theory as the following

τ (ε) = (P(ε)−G0 (ε))−1 , (C.33)

where

P(ε) = t−1 (ε)≡ {
Pi (ε)δi j

}
=

{
t−1
i (ε)δi j

}
(C.34)

the inverse of single site scattering operator (ISO) while G0 (ε)=
{

G0,i j (ε)(1−δi j)
}

stands for the Green function of the free system (which is called as structure

constant).
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