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The detection of weak signals in noisy data is a problem which occurs across various disciplines.
Here, the signal of interest is the spectral signature of the electron magnetic chiral dichroism
(EMCD) effect. In principle, EMCD allows for the measurement of local magnetic structures in
the electron microscope, its spatial resolution, versatility and low hardware requirements giving
it an eminent position among competing measurement techniques. However, experimental
shortcomings as well as intrinsically low signal to noise ratio render its measurement challenging
to the present day.  

This thesis explores how posterior data processing may aid the analysis of various data
from the electron microscope. Following a brief introduction to different signals arising in
the microscope and a yet briefer survey of the state of the art of EMCD measurements, noise
removal strategies are presented. Afterwards, gears are shifted to discuss the separation of
mixed signals into their physically meaningful source components based on their assumed
mathematical characteristics, so called blind source separation (BSS).   

A data processing workflow for detecting weak signals in noisy spectra is derived from these
considerations, ultimately culminating in several demonstrations of the extraction of EMCD
signals. While the focus of the thesis does lie on data processing strategies for EMCD detection,
the approaches presented here are similarly applicable in other situations. Related topics such
as the general analysis of hyperspectral images using BSS methods or the fast analysis of large
data sets are also discussed.
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1. Introduction

Reader! Let me lay out the center of my interest over the last few years to

you. Alas, not by dialogue, but by these very lines. Much like when skipping

stones, we shall touch many topics briefly, and without much depth.

Since you took this little booklet from the shelf, it is clear that you have at

least a rudimentary idea of the functioning and applications of an electron mi-

croscope. I need not praise its capabilities nor potential in front of you! From

our position, it is, however, still necessary to take a step backwards in order to

progress forwards: All too frequently, measurements in the microscope lead

to data with low signal to noise ratios, such as in low dose imaging or high res-

olution spectrum imaging. Also having an eye on ever increasing amounts of

data, the need to develop robust routines to detect the signal of interest, auto-

mated routines to tackle the analysis of tomorrow’s large data sets or generally

a data processing combining both, robust to shortcomings of the data, yet scal-

able to fully exploit all of the data correlations at hand, is apparent. The third

step of a microscopy experiment after sample preparation and measurement,

the analysis of the obtained data, needs to be refined.

This is the ground on which this thesis stands. While most of the results

and considerations presented here are straightforwardly generalizable to other

applications, the signal of interest shall be the spectral signature of the electron

magnetic chiral dichroism (EMCD) [1, 2] effect. EMCD is a scanning trans-

mission electron microscope (STEM) technique, a daughter of electron en-

ergy loss spectroscopy (EELS). The EMCD signal gives information on local

magnetic structures. Combined with the capabilities of modern STEM instru-

ments, EMCD offers thus an opportunity to study nano-sized magnetic devices

while simultaneously offering the information wealth of an EELS measure-

ment.

Considering the analysis of EEL spectra, one can identify two challenges.

First, the signal, which is often excruciatingly weak, has to be recognized be-

neath the noise it is hidden by. Second, signals may appear mixed, it may

be necessary to invert the mixing before they can be interpreted. The former

boils down to the challenge of noise removal, denoising of the signal. Since

the noise in EEL spectra ideally follows a Poisson distribution, this can be

achieved by averaging of identical spectra, by application of local filters, or

also more sophisticated approaches, discussed below, which avoid deteriora-

tion of the structures by blurring under milder mathematical assumption. The

latter is the much discussed problem of blind source separation (BSS). By

assuming suitable, ideally generally applicable mathematical constraints, one
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tries to solve the otherwise ill-conditioned task of matrix factorization. E.g.,

statistical independence or non-negativity combined with sparsity are often

assumed one way or the other to solve the BSS problem.

A third challenge is the size and format of data coming from electron mi-

croscopes. Modern instruments allow for acquisition of 105 to 106 spectra

per measurement session, data can be anything from one dimensional single

spectra to two dimensional images, three dimensional hyperspectral images,

or also higher dimensional formats when considering spectrum tomography

[3, 4, 5], measurements with pixelated cameras [6, 7] or segmented annular

dark field (ADF) detectors [8], or generally measurements with added param-

eters (e.g., time in a time series). Fortunately, while the increasing data size

puts limitations on the computational efficiency of applied algorithms, BSS

methods typically benefit from large data sets so that the noise is suppressed

further.

On this backdrop, consider the declared goal of measuring EMCD: The

signal has a notoriously low variance, some few percent of the non-magnetic

signal’s strength [9]. Correspondingly, one expects a low signal to noise ra-

tio (SNR). Especially when taken to the extreme of atomic resolution, the

predicted SNR drops to the limit of detectability. The signal occurs neces-

sarily mixed, only in ideal situations it can be obtained by subtracting nor-

malized spectra from each other, making some signal separation necessary.

However, the EMCD spectrum defies the mathematical assumptions of several

more common BSS methods. It is neither independent from the non-magnetic

signal, nor is it non-negative. Being highly sample dependent it can not be

parametrized straightforwardly either...

You see, reader, EMCD extraction implies challenges, it is an ideal play-

ground to test and develop novel approaches. After getting a most brief overview

over different signals that can be measured in the microscope in section 2, a

selection of data processing tools useful for the task of EMCD extraction and

general EEL spectrum analysis are presented in section 3. At last, these two

threads are joined, new methods furthering the development of EELS anal-

ysis are introduced, ultimately culminating in the demonstration of different

EMCD measurements. In the coda of the thesis, a few related data processing

strategies are discussed.
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2. Signals in the electron microscope

The versatility of electron microscopy is directly coupled to the broad range

of signals that can be measured on a suitably equipped instrument. Besides

the basic imaging modes in transmission and scanning transmission electron

microscopy (TEM and STEM, respectively), an ADF detector can be used

to obtain an additional image for electrons scattered to larger angles. When

using a segmented ADF detector [8], one immediately obtains an additional

mode for the data, the two-dimensional image becomes a three-dimensional

tensor, the third mode describing the detector segments. Spectrometers allow

for the detection of fluorescent X-rays, cathodoluminescence (CL), or also the

energy loss of the electron after scattering in the sample. Focusing on STEM,

a fast CCD camera can be used to acquire a diffraction pattern at every image

pixel, again leading to a large increase of information and data complexity

(and size) [6, 7]. Additional complexity is gained by introducing apertures

selecting only electrons scattered to certain angles, by tailoring the (phase)

profile of the electron beam changing its scattering behavior, or multiple other

parameters which can be considered at liberty.

It must be clear that this thesis can not give an exhaustive overview over

suitable data processing techniques for all of these signals. Instead, the focus

lies on the analysis of spectral data sets. The three spectroscopic techniques in

the microscope, EELS, CL and energy dispersive X-ray spectroscopy (EDX),

and proposed data processing tools for either of them will be briefly discussed

in the sections below, followed by a short introduction of the thesis’ main

objective, the EMCD signal, and miscellaneous signals of interest, selected by

the author in a biased manner.

Before introducing the different spectroscopic techniques it is worthwhile

considering the overall data format. Not considering additional measurement

parameters (time, additional spatial mode for spectroscopic tomography, . . . ),

a STEM measurement where a spectrum is measured at each pixel will yield

a three-dimensional data set, X ∈ R
nx×ny×nE , where nx and ny are the spatial

coordinates and nE denotes the number of energy channels. This data structure

occurs in multiple applications, e.g., in the remote sensing community, it is

referred to a hyperspectral image (HI, e.g. [10] and references therein), in

the image processing community it would more likely be referred to as multi-
channel image, in the microscopy community the terms data cube or spectrum
image are more commonly used.

From seeing how the same data format occurs in different disciplines, one

can recognize that some methods developed for one are probably applicable

also in the other. However, here the focus will be kept on STEM experiments.
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2.1 The spectral trinity

2.1.1 Cathodoluminescence

CL is considerably less prominent than the other two spectral techniques, but

nevertheless finds its application range for signals in the low energy range.

The signal is caused by radiative energy relaxation of the sample which has

previously been excited by the electron radiation. Collection of the radia-

tion emitted from the sample then yields the CL emission spectrum. Typical

wavelengths lie around the visible spectrum, which corresponds to outer shell

excitations in the emitting atom. Given this energy range, CL is affected by the

chemical environment and can be used to, e.g., study defects in (In,Ga)N/GaN

nanowires [11], or to study plasmonic structures of nano-particles [12, 13].

The spatial resolution of CL experiments is more limited due a larger inter-

action volume. Since the energy range of CL radiation lies around few eV,

also scattered electrons are able to excite it. Hence, the interaction volume

increases well beyond the order of magnitude of the converged STEM probe

to several nanometers (e.g. [14]).

Given the emission spectrum character, the CL spectrum shares some char-

acteristics with the EDX spectra: Both consist of a series of peaks, in the CL

spectrum broad and featureless, often overlapped which may complicate the

analysis. Given this obstacle, BSS methods seem a good candidate to facilitate

the analysis of CL data, but are not yet spread in the community. An example

can be found in [15], where principal component analysis (PCA) is used for

classification of spectra from different types of river sediments. The inherent

lower resolution of CL spectra, however, implicates often enough a relatively

high SNR so that basic analysis methods such as integration over individual

peaks (e.g. [16]) suffices to characterize the sample. It remains subject of

future explorations to demonstrate the usage of BSS for CL spectra. E.g., by

enabling the interpretation of heavily overlapped signals or boosting the signal

to noise ratio to detect also faint signals.

2.1.2 Energy dispersive X-ray spectroscopy

Similar to CL, fluorescent radiation is collected in EDX spectroscopy. How-

ever, as suggested by the name, radiation at much higher energies, resulting

from core-shell excitations, is collected. Consequently, much of the informa-

tion in the CL spectrum is lost. Unless a wavelength dispersive detector is

used, EDX spectra only contain elemental information without fine-structures

or chemical shifts distinguishing stoichiometrically equivalent, but chemically

different compounds [17]. Acquisition of X-ray spectra at high energy resolu-

tions using wavelength dispersive X-ray spectroscopy (WDX or WDS) over-

comes this limitation, but is typically intractable in a STEM experiment as

single pixel dwell times do not permit acquisition of the full WDX spectrum.

When operated in STEM mode, WDX measurements typically only acquire
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intensities at selected, pre-defined energies determined by the diffraction an-

gle of the dispersion grating (i.e., the crystal used as prism) (see, e.g., [18] for

an application of WDX). The increased energy of the radiation also implies

a smaller interaction volume. If sufficiently thin specimens are used, atomic

resolution maps can be achieved (see, e.g., [19]). Notably, the EDX signal

appears less delocalized than its EELS counterpart [20], which may improve

the contrast of elemental maps at atomic resolution.

Different data processing techniques have been proposed for EDX spectra.

For example, besides noise filters [21], PCA has been applied both for a de-

noising of the data as well as subsequent analysis of rotated factor loadings

[22]. Straightforwardly interpretable components are obtained. Given that

the EDX spectrum consists of a broad Bremsstrahlung background and sharp

peaks, non-negative matrix factorization (NMF) appears to be a suitable can-

didate for the analysis of EDX spectra. Besides the consideration in paper X,

where source components of EDX data are identified using NMF on data gen-

erated by drawing random samples from the signal subspace while enforcing

non-negativity, which amounts to an assumption of stand-alone peaks in the

source spectra, NMF’s applicability to EDX data has been demonstrated, e.g.,

in [23], where meaningful source spectra of different phases in a LaSrMnO3-Y

doped ZrO2 are extracted using a sparsity constrained NMF algorithm.

2.1.3 Electron energy loss spectroscopy

At last, EELS has to be discussed. More in depth overviews can be found in

[17, 24]. In contrast to CL or EDX, the energy loss of transmitted electrons

rather than emitted photons is measured in EELS. This energy loss is highly

characteristic of the sample, and results in a spectrum with largely different

features. Consider the stereotypical EEL spectrum in Fig.2.1: The spectrum’s

most prominent feature is the zero-loss peak consistent of electrons which

have passed through the sample without loosing any energy. Since it has by far

the highest intensity, it dominates the image contrast in STEM. If a monochro-

mator is employed, the features on its tails can be studied. E.g., small energy

gains by thermal excitation can be studied on the negative energy loss (i.e.,

energy gain) side [25]. On the energy loss side, phonons and bandgaps are

the first features to appear in so-called valence EELS (VEELS, [26]). Next,

the plasmonic peaks dominate the spectrum. Especially at larger thicknesses,

they may dominate the spectrum. Multiple scattering events may become pro-

nounced also for electrons which have undergone a high-energy loss scatter-

ing event. In this case, a deconvolution of the spectrum with the low-loss

spectrum may correct for the multiple scattering contributions [24]. Beyond

the plasmonic spectrum the high-loss region spans, which is the region where

most analyses are carried out. Core-loss edge signals do not only allow for an

elemental characterization of the sample, but also carry fine-structures which
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Figure 2.1. Schematic of a stereotypical EELS spectrum displaying zero-loss and

Plasmon peaks on the low energy side and element characteristic core loss spectra at

high energies.

are characteristic of the chemical environment, the magnetic structure, etc.

Especially when considering further enriching the spectrum information by

placing a collection aperture in the microscope’s backfocal plane so that mo-

mentum dependent scattering contributions can be observed, the full wealth of

information of an EEL spectrum becomes apparent.

While this information wealth offers great opportunities to study various

material properties at high resolutions, the mathematical characteristics of

the core-loss spectrum make EELS analysis more challenging compared to

EDX or CL. The spectrum contains a large background, typically modeled

as a power law decay. The edge signals on top of the background can in

first approximation be modeled as saw-tooth function, also contributing with

a long tail to the background signal in energetically close lying edges. On the

edge onset, fine-structures are typically observed. Due to the large variety of

chemical environments (and other fine-structure contributions), the shape of

the fine-structures eludes a poignant parametric description. Apart from these

features of interest, EEL spectra may contain multiple artifacts. Spurious X-

ray impacts may lead to sharp spikes in the measured spectrum. More severely,

since it is less easily corrected for a posteriori, the detection system can lead

to different additive components ranging from a correlated noise like contri-

bution to intensity fluctuations either in time or across the energy channels.

Assuming a stable microscope, these artifact components can be corrected for

by subtracting a dark and gain reference from the measured spectra. At last,

it has to be mentioned that EEL spectra often suffer from a low SNR. Consid-

ering the logarithmic intensity scale in Fig.2.1, it becomes apparent that the

core-loss region has much fewer counts than other, low energy-loss features
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of the spectrum. When measuring with short dwell times, e.g., at high resolu-

tions where sample damage puts a limiting factor on the maximal dwell time,

this implies very noisy spectra, which poses a challenge to analysis afterward.

Given the multitude of signals and challenges of the SNR, various data pro-

cessing approaches have been proposed. Narrowing the discussion to analysis

by BSS techniques, some examples may be found in the attached papers, other,

selected examples are listed below: NMF, optionally sparsity constrained, has

been demonstrated to be applicable to EEL spectra [27, 23]. The goal of iden-

tifying meaningful source spectra (and abundances) is always considered first

for NMF on data including large backgrounds. Independent component anal-

ysis (ICA) was also proposed for EEL spectrum analysis [28, 29, 30], with

limitations for the application to spectra including fine-structures, see paper

XII. A workhorse for spectrum denoising has been PCA [31, 32, 33, 34]. Lim-

itations of PCA for spectrum denoising have been discussed in [35, 36, 37] or

also in paper III. A more detailed discussion of EELS analysis follows in the

remainder of this thesis.

2.2 The holy grail

2.2.1 Brief theoretical background of EMCD

The story of EMCD starts with the desire to characterize magnetic structures at

high spatial resolutions. Neutron scattering experiments can be used to study

magnetic structures accurately, but the spatial resolution is rather limited. Un-

less high demands are put on the sample preparation, i.e., to place a distinct

isotope layer at the exact position in the sample which should be studied [38],

neutron scattering is a bulk measurement. As first improvement on the spatial

resolution, X-ray magnetic circular dichroism (XMCD) enables resolutions of

approx. 10 nanometers if synchrotron radiation is used [39, 40, 41]. A quanti-

tative analysis of the measured signals is then enabled by use of the so called

sum-rules [42, 43], which relate the spectral shape of the XMCD signal to spin

and orbital magnetic moment.

Modern electron microscopes, on the other side, routinely achieve spatial

resolutions in the order of few tens of picometers. Considering EELS mea-

surement, magnetic signals can be assessed using EMCD. EMCD dates back

to 2003 [1] and has been demonstrated experimentally shortly after in 2006

[2]. In close analogy to XMCD, sum-rules were formulated also for EMCD

[44, 45] enabling a quantitative analysis. Since then, progress has been made

to push the achievable resolution, SNR or generality of the measurement by

refined experiments [9, 46, 47, 48, 49, 50, 51, 52], to further the theoretical un-

derstanding and optimize experimental parameters [53, 54, 55, 56, 57, 58, 59],

as well as to study the quantitativeness of the method potentially improved by

suitable data processing [60, 61, 62, 63, 64, 65]. New measurement schemes

for an optimized SNR or experimental feasibility have been proposed as well.
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E.g., the use of aberrated electron probes for EMCD measurement was dis-

cussed and demonstrated [66, 67, 68]. Electron vortex beams [69, 70, 71]

were proposed for EMCD measurements on crystals with arbitrary symmetry

[72, 73, 74]. Despite recent advances achieving atomically sized vortex beams

[75, 76, 77], a conclusive measurement of EMCD using vortex beams has not

been reported so far. Other advances include the proposal of alternative selec-

tion apertures in atomic plane resolution EMCD (APR-EMCD) [78, 79], the

use of alternative apertures in the microscope for further generalization of the

technique [80], or the use of spatially resolved EELS (SREELS) for EMCD

[81].

The remainder of this section is dedicated to a quick introduction to the un-

derlying scattering theory of EMCD followed by a survey of different EMCD

detection geometries. A more detailed introduction to dynamical diffraction

can be found in [82, 83], an introduction to EMCD in [53].

The double differential scattering cross-section ∂ 2σ
∂E∂Ω contains the EMCD

signal. It can be expressed as a sum of so called mixed dynamic form factors

S(q,q′,E) (MDFF) [2]. In two beam orientation, dynamical diffraction effects

are particularly simple and the scattering cross section can be written as:

∂ 2σ
∂E∂Ω

=
4γ2

a2
0

k f

ki

(
S(q,q,E)+S(q′,q′,E)+2Im

[
S(q,q′,E)

])
(2.1)

where γ = 1√
1−β 2

is the relativistic correction factor, a0 is the Bohr radius and

the MDFF

S(q,q′,E) = ∑
i, f

〈
i
∣∣∣∣ eiq·r

q2

∣∣∣∣ f
〉〈

f

∣∣∣∣∣ e−iq′·r

q′2

∣∣∣∣∣i
〉

δ
(
E f −Ei −E

)
(2.2)

where |i〉, | f 〉, Ei and E f denote the state and energy of initial and final wave-

function, respectively. q denotes the momentum transfer in the scattering

event, E the energy loss. After recasting the equations, one notes that the

magnetic signal is only contained in the imaginary part of the MDFF [53].

Assuming that non-dipole transitions are negligible:

S(q,q′,E)≈ 1

q2q′2
[
N(E)q ·q′+ iM(E) · (q×q′)

]
(2.3)

where M(E) and N(E) denote magnetic and non-magnetic contribution, re-

spectively, and are purely real. The classical EMCD geometry then follows

via assuming magnetization along z and a Bragg vector G = (G,0,0) with

q′ = q−G [66]

Im
[
S(q,q′,E)

]
=

GMz(E)qy

|q|2 |q−G|2 (2.4)

When moving the detector from the wavevector k f = (k f
x ,k

f
y ,k

f
z ) to k′ f =

(k f
x ,−k f

y ,k
f
z ) the sign of qy is inverted what corresponds to an inversion of the
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perceived magnetic signal’s sign. The EMCD spectrum, the magnetic signal,

is thus obtained by acquiring the spectra for both these wavevectors and then

taking their difference.

2.2.2 Survey of experiment settings

Finding measurement settings suitable to get a sizable EMCD signal boils

down to maximizing contributions of the imaginary parts of the MDFF to

the spectrum. Either one selects electrons scattered into suitable angles by

means of a collection aperture, or one manipulates the phase of the incoming

electrons. Having realized this, all proposed measurement schemes become

variations on a theme:

Direct difference EMCD: DD-EMCD, sometimes referred to as classical

EMCD, stems from the original EMCD proposal [1, 2]. The sample is ori-

ented in 2 (or 3) beam case orientation, as indicated by the derivations above,

subsequent placement of a collection aperture on two opposing positions on

the Thales circle will yield spectra with opposing EMCD signs. Direct differ-
ence of these two spectra will then obtain the EMCD signal. When extended

to spectrum imaging, a DD-EMCD measurement leads to a four dimensional

data set X ∈ R
nx×ny×nE×na , na being the aperture placement index. Although

demonstrated experimentally repeatedly, this scheme bears the disadvantage

that signal fractions drop when reaching atomic resolution and the same sam-

ple area needs to be scanned several times to obtain the EMCD signal, which

may lead to problems with sample damage or microscope stability issues due

to the prolonged measurement time.

SREELS-EMCD: Being quite recent [81], SREELS-EMCD is closely re-

lated to DD-EMCD in the sense that it also utilizes a collection aperture for

selection of suitably scattered electrons. Now, however, a second selection slit

is placed in the image plane (or the detector entrance slit acts as such an image

plane aperture) and the spectrometer lenses are used to disperse the electrons

by energy. One obtains a three dimensional data set, X ∈ R
ny×nE×na , infor-

mation along the second spatial mode is lost. A benefit of this scheme is the

applicability also to atomic resolution imaging, the SNR is greatly improved

by the implicit spatial averaging and possibility of prolonged measurement

times. However, one is still required to measure the same sample area several

times. Furthermore, dedicated equipment with non-standard aberration cor-

rectors (cc-correctors) is needed in order to avoid some artifacts occurring in

the energy dispersive plane.

EFTEM-EMCD: If a signal can be measured by placing a collection aper-

ture in STEM mode, it is similarly contained in the energy filtered diffraction

pattern (EFTEM). Hence, acquisition of an EFTEM series across the magnetic

species edge obtains a three dimensional data set, X ∈ R
kx×ky×nE , where kx

and ky are the k-space grid, which contains the EMCD spectra at the local-
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ization determined by the sample structure and orientation. While the EMCD

signal in EFTEM-EMCD can be obtained from a single EFTEM series, the

restriction to a single site looses the spatial resolution. Naturally, convergent

beams can be used to measure EFTEM series at neighboring positions, which

recovers the spatial information. As discussed in paper XV, a 4D-STEM mea-

surement employing an energy filter can be used to obtain an EMCD weight

map (but not spectrum), across a region of interest.

Vortex filter EMCD: A slightly different Ansatz was presented in [80].

Instead of using the sample as beam splitter, a vortex mask is included in the

diffraction plane so that contributions which have undergone magnetic scatter-

ing (and have thus obtained an orbital moment) are scattered to different angles

than non-magnetic contributions. Using this approach, more general samples

can be studies, no specific sample orientation or even crystallinity is assumed.

However, experimental limitations, such as a finitely large beam size, render

the EMCD signal faint, the vortex filter scheme has not been demonstrated

experimentally yet.

Vortex EMCD: Already using a vortex mask, one can similarly create a

vortex beam in front of the specimen so that an EMCD signal results [72,

73, 74]. Curse and blessing of the vortex beam approach is the necessity to

go to large convergence angles. On the one hand, simulations predict sizable

EMCD contributions also at large convergence angles allowing for high reso-

lution measurements. However, production of such highly converged, small,

yet simultaneously high quality vortex beams is challenging to be realized ex-

perimentally. Furthermore, the inclusion of the vortex mask leads to a substan-

tial loss of beam intensity reducing the SNR (this can potentially be avoided by

usage of magnetic needles for the creation of electron vortices). At last, also

the vortex EMCD scheme necessitates repeated measurements of the same

sample area.

Aberrated probe EMCD: Instead of using vortex beams, the lens system

of an aberration corrected microscope can similarly be used to introduce cus-

tomized aberrations to the electron probe [68]. If the aberrations are suitably

tuned to the symmetry of the magnetic lattice, an EMCD signal can arise.

Since tuning of aberrations is more feasible than the production of a high

quality vortex mask, this EMCD approach has already been demonstrated ex-

perimentally. The achievable beam intensities are higher than for the vor-

tex approach, but the expected EMCD signal fractions are lower. As a result

EMCD detection remains challenging also here. As before, unless the sys-

tem studied naturally provides magnetic signals of opposing signs, such as in

anti-ferromagnets, repeated scans are necessary.

APR-EMCD: The last method mentioned here is APR-EMCD [67], which

achieves sizable EMCD contributions by positioning a rectangular aperture

above the systematic row reflections in the backfocal plane of the objective

lens for a sample oriented in 3 beam case orientation. Due to the special

sample orientation, atomic columns are no longer observed, instead they are
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averaged (by projection) to atomic planes. As selected by the aperture, EMCD

signals with opposing signs occur on the sides of these lattice planes overcom-

ing the limitation of repeated scans shared by all other methods above, i.e.,

X ∈R
nx×ny×nE . Furthermore, the rectangular aperture is larger than typically

used circular collection apertures, which boosts the SNR. A drawback of this

approach is the loss of sample orientation flexibility. The features of interest

need to be identifiable also when rotated to three beam case (3BC) orientation.

2.3 Apocryphal signals

So far, only spectral signals have been considered, although it has already been

mentioned above how diverse signals in the electron microscope can be. An

outlook beyond the canon of this thesis must be mentioned here: Being mi-

croscopy’s main objective many image manipulation and/or analysis methods

have been suggested. Many of the latter have been introduced outside of the

microscopy community and can impossibly all be incorporated into this thesis.

Since it coincides with the main topic of this thesis, some examples of analysis

by BSS methods have to be pointed out, e.g., [84, 85]. The two more recent

instrumental developments in STEM are the segmented ADF detector and the

fast, pixelated CCD camera.

The former leads to a data set X ∈ R
nx×ny×na , na being the number of

detector segments. Currently, no dedicated signal processing strategies have

been suggested for these data tensors. The signal is also non-negative, al-

though intensity shifts may be more easily described also with negative ampli-

tudes. In the lack of a data set to try them on, some ideas may be mentioned as

open questions: Can ICA identify shift components (which are approximately

orthogonal to the mean intensity and thus independent) and be used for an au-

tomated differential phase contrast analysis? Can BSS methods generally be

used to overcome the necessity to study (artificial) bright and dark field sepa-

rately by obtaining a best contrast component? Given their wide application

range it is almost sure that geometric blind source separation can be used to

obtain an identification of different phases in the sample.

At last, consider 4D-STEM measurements. Here, a four-dimensional data

set X ∈ R
nx×ny×kx×ky is measured, which, much like a segmented ADF de-

tector allows for the formation of virtual dark or bright field image and DPC

measurements, suggesting that some of the ideas from above are also appli-

cable here. Given that the 4D-STEM technique is still quite recent, not much

dedicated signal processing literature has been published. A sole example can

be found in [86], where neural networks are used for the analysis of position

averaged convergent beam electron diffraction patterns. In paper XV it was

identified how ICA can be used to identify EMCD signals in 4D-STEM data.

This suggests that BSS methods might also benefit the analysis of these type

of data.
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3. A selection of data processing tools for a
microscopist

After the preceding brief overview of signals we can expect to process, it is

now time to consider what we can actually do with them. Naturally, it is

again neither feasible nor necessary to give an exhaustive overview here. For

a reader interested in a general introduction to basic analysis techniques com-

mon to the community textbooks are readily at hand (e.g., [24, 17]). Instead,

the focus will lie on factorization approaches for the signal matrices (and ten-

sors), (and) on BSS techniques.

I.e., given a measured signal matrix X ∈ R
n×m, which can, e.g., be a ma-

tricized EELS tensor where each row contains a spectrum and each column

a vectorized energy slice of the tensor, we seek a factorization into k source

signals A ∈ R
k×m, here the source spectra, and associated scores M ∈ R

n×k,

here the abundances of the source spectra:

X = MA (3.1)

Note how this matrix factorization model implies a linear mixing model. For

tensors and coupled factorization a wider variety of factorization models can

be set up. The linear mixing model assumption implies absence of multiple

scattering effects for spectroscopic data, which holds for thinner specimen and

can be generally achieved by means of a deconvolution in practice. For other

applications in imaging, the linear mixing model has not been discussed or

tested yet, a point to consider in the future.

In the following, noise removal approaches for spectra and images are dis-

cussed followed by a discussion of ICA and NMF, the two most commonly

used BSS methods in electron microscopy. Afterwards, geometric BSS meth-

ods, much more common in the remote sensing community, are surveyed.

Tensor factorization and coupled factorizations are included as outlook going

beyond classical matrix factorization approaches.

3.1 Noise removal approaches
As hinted at above, raw data from microscopes can be excruciatingly noisy.

Especially when considering high resolution experiments or generally mea-

surements on beam sensitive specimen, where beam damage becomes a lim-

iting factor, the maximal achievable SNR in a single spectrum or image is

dictated by the sample studied. The raw data may no longer be directly inter-

pretable, a denoising needs to be performed to appreciate the signal features.

22



3.1.1 Principal Component Analysis

The workhorse of spectrum denoising is PCA, and thereby likely the most

widely applied BSS method in electron microscopy. The method dates back to

1901 [87], but took its time to spread into the electron microscopy community

[88], where it lay unnoticed for another decade, until various research groups

picked up on the method, first for denoising purpose only in the early 2000s

[89, 90, 91, 31]. Since then, PCA has established itself predominantly for

spectrum denoising [33, 22], but also for analysis of spectrum images, either

by rotation of the factor loadings prior to analysis [32], or by performing PCA

only on sufficiently small clusters of the original data set so that the principal

components become interpretable [34]. Limitations of PCA for EELS analysis

were discussed in [35, 36, 92, 37].

Given the age of the method and spread in various fields, comprehensive

introductions can be readily found. Here another description of key ideas of

PCA is offered: Thinking in geometric terms, we want to find a cartesian

(i.e., orthonormal) coordinate system that describes the data best, i.e., in as

few components as possible. This can be achieved by seeking a vector that

maximizes the overlap with the data matrix. I.e., given the overlap of the ith
component ai

mi = aT
i X (3.2)

we maximize

E
[
m2

i
]
= E

[
aT

i XXT ai
]

(3.3)

= aT
i Cai (3.4)

and additionally enforce aT
i ai = 1. A greedy algorithm can be formulated,

where the data matrix is reduced by the previously computed component

X ← X−miai (3.5)

ensuring that successively computed components describe variance orthogonal

to the already computed space.

Note that one can already identify that C = XXT is indeed the covariance

matrix of X and all ai can be found via its eigenvalue decomposition. Alterna-

tively, a singular value decomposition (SVD) contains the same information,

albeit delivers simultaneously eigenvectors (or rather singular vectors) of row

and column space, U and V, respectively:

X = USVT (3.6)

Different algorithms have been proposed to compute a PCA. PCA via vari-

ance maximization was discussed early by Hotelling [93], today’s algorithm

for a SVD dates back to the 70s [94], the Karhunen-Loéve transformation

connects PCA to second order statistics [95],[96]. More interesting to the mi-

croscopist are probably extensions of PCA to deal with large or corrupted data:
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Figure 3.1. Example for a scree plot displaying a kink after the third component

revealing the intrinsic dimension of the data. The scree plots of the noise free data and

the noise spectrum are indicated as well.

Robust principal component analysis (RPCA, e.g., [97] and references therein)

has been formulated to deal with data containing outliers, either via identifying

a sparse corruption or reducing the estimation of the principal components to

a least outlying subspace. Random PCA (RandPCA, see [98] and references

therein) has been formulated to compute PCA also on large matrices in limited

time and with limited memory requirements. Other extensions, e.g., to enforce

sparsity on the components (e.g., [99]) or to perform PCA online (e.g., [100])

can similarly be found, but are probably of minor interest to microscopists

who typically deal with dense matrices in an offline analysis process.

A last important feature of PCA to be discussed is its rank revealing nature.

When computing the eigenvalue (or singular value) decomposition of the co-

variance matrix, one not only obtains the eigenvectors, but also the eigenvalues

which indicate the components variance. By convention, the eigenvalues are

sorted in a descending manner, a plot of the entire range of eigenvalues re-

sults in a plot like Fig.3.1, the so called scree plot. For a noise free data set

all eigenvalues but the first n significant ones will be zero. The rank of the

data, n, can be read directly from the scree plot. In case noise is included,

a (in first approximation) flat noise spectrum is added. Now always of full

rank, a truncation of the data is nevertheless meaningful. Assuming that the

signal components’ variance lies above the noise variance (or rather fulfills

certain detection criteria [37]), only the first n components will contain the

signal variance. Omission of the remaining components can be used for com-
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pression of the data, or most commonly for denoising. The rank of the data

can be identified as the point beyond which the spectrum becomes flat. In case

no clear kink is observed, care has to be taken. Components may be lost since

their variance is too weak, artifacts may be contained in the data, or the linear

mixing model may be violated.

3.1.2 Image denoising

Microscopy deals not only with spectra, but also with images, let us briefly

consider image denoising. There is a whole ocean of image filters out there,

but microscopists tend to be conservative when it comes to their usage. Often,

nothing more sophisticated than a Gaussian filter or a Fourier filter is used.

The latter often not by selecting only the n largest Fourier coefficients in the

reconstruction, but by applying circular masks to selected areas in the Fourier

transformed image, or even more straightforwardly by only considering the

n lowest frequencies in the image, which is motivated by the instrumental

analogy of placing a collection aperture in the backfocal plane of the objective

lens. The same philosophy of thresholding of large coefficients is followed

when using wavelet transforms for image denoising (e.g., [101] and references

therein), but offers a better general applicability also for non-periodic signals.

For electron microscopy, some image filters have been proposed previously

[102, 103], but recent efforts have been centered around non-local filters both

in the image processing community [104, 105, 106, 107] and the microscopy

community [108, 109, 110, 85] or also in paper XI. The key idea here to

achieve the denoising by truncation of the expansion coefficients in a trans-

formation the signal is (approximately) sparse in, like in Fourier filtering, but

to use the inherent self-similarity of images to gain a denoising via averaging

similar patches, computing a low rank approximation of similar patches or to

compute a common basis for all patches.

To understand the concept of self-similarity, consider Fig.3.2: An image

which has sharp edges and is of high rank can still be approximated by a

low number of local environments. After segmenting the image as indicated,

similar patches can be automatically recognized via some clustering step. Af-

terward averaging similar patches for noise reduction, of computing a low

rank approximation of a patch class via PCA obtains the denoised patches.

Straightforward inversion of the segmentation obtains then a denoised image.

Note that typically patches are drawn around every pixel and not only in a

rigid grid as indicated in Fig.3.2.

3.2 Matrix factorizations I - ICA and NMF
Sometimes more than a denoising is needed. I.e., Eq.3.1 needs to be solved

in a manner that allows not only to separate signal and noise, but to identify
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individual components as well. This, however, brings problems, the matrix

factorization as formulated in Eq.3.1 is an ill-conditioned problem. Any uni-

tary rotation matrix U ∈R
k×k can be induced changing the components found

without affecting the variance captured by the model

X = MA = MUT UA = M̃Ã (3.7)

Interpretability of the components is thus easily lost. PCA achieved a unique

factorization by constraining the components to be orthogonal and ordered by

variance, which is not a physically meaningful constraint in practice. If one of

the factors is known, e.g., in the form of reference spectra for EELS unmixing,

Eq.3.1 reduces to regression and can be solved with standard methods. Unsur-

prisingly, this is a popular approach, see, e.g., [111] for a recent example of

this referencing approach.

But what if no reference spectra are at hand? Other constraints have to be

included to solve the BSS problem in a unique, robust manner, or at least to

achieve good convergence into physically meaningful solutions.

3.2.1 Independent Component Analysis

ICA was proposed for EELS analysis in [28], but afterward greatly popu-

larized in the community by the HyperSpy program package [112]. A vari-

ety of algorithms has been proposed [113, 114, 115, 116, 117, 118, 119] (or

[120, 121, 122] and references therein), but the underlying assumption on the

data remains unchanged: As the name suggests, ICA assumes statistically in-

dependent variables.

Although this assumption is somewhat opaque for the application to un-

known source components, i.e., statistical independence is only translated into

Figure 3.2. Schematic representation of an image with high self-similarity. The entire

image consists only of two different blocks as indicated.
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constraints on spectral or spatial features with difficulty, some generalities for

the application to hyperspectral images can be derived. In [123] it was rec-

ognized that spatial correlations as they occur in hyperspectral images greatly

impact the applicability of ICA to these data. In [28] and later in [29] it was

noticed that the performance of ICA on EEL spectra is greatly enhanced by

working with the derivative of the signal instead. As discussed in paper XII,

this enhancement is limited to cases without overlapping fine-structures (with

selected exceptions).

While the application of ICA is thus not entirely unambiguous, satisfac-

tory unmixing performances have been reported (e.g. [29],[30]). Especially

in cases where independence (or orthogonality) of the components can be as-

sumed, ICA is an elegant method to estimate the data’s source components.

3.2.2 Non-negative Matrix Factorization

Considering that spectra represent counts, they naturally are non-negative.

Hence, it appears intuitive to constrain the BSS problem such that both source

components and their scores are non-negative, i.e., to perform NMF. The re-

sulting optimization problem can be formulated as

min
M,A

||X−MA||22
s.t. M ≥ 0

A ≥ 0

Unfortunately, the uniqueness conditions of NMF are closely connected to the

sparsity of the signal [124, 125, 126]. Since observed hyperspectral images

typically are not sparse, uniqueness conditions are more often than not not

met.

Trying to deal with this non-uniqueness, one can do an exhaustive search

over local minima, which is not elegant, but feasible given that hyperspectral

images are often sufficiently small to allow for this procedure. As pointed out

in [124], inclusion of additional constraints can alleviate this situation. Ad-

ditionally enforcing orthogonality or sparsity of the components, or to apply

minimum volume constraints improves the uniqueness conditions of NMF. Al-

ternatively, sparsity enhancing pre-processings can be applied (see also paper

X).

The limitations imposed by uniqueness of NMF is also reflected in the

publications on NMF: Initially focused to achieve an unconstrained NMF

[127, 128], constraints were added later. For hyperspectral images, orthog-

onality constraints can be found in [129], a minimum volume constraint was

first proposed in [130] but has sparked development of a multitude of algo-

rithms since. Surprisingly, the microscopy community has still be largely

silent on the development of customized NMF algorithms for the analysis of
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their data. Besides the work in this thesis, a sparsity constrained algorithm can

be found in [23]. By enforcing sparsity on the abundance maps, meaningful

source spectra could be extracted.

Stepping back to the considerations in [124], one can recognize that spar-

sity on one factor matrix behaves similarly to enforcing minimum volume on

the other. Can one achieve an unmixing by solely enforcing the minimum

volume? Here we step into the field of geometric BSS methods.

3.3 Matrix factorizations II - using geometry
Consider a phase diagram for a ternary mixture. All physically meaningful

mixtures (with molar fractions ranging from 0 to 100%) fall within a triangle,

a simplex region, formed by the pure substances. Now consider a data set of

rank 3. Just as for the ternary mixture, there are three pure source components.

As long as we can assume that the scores can be interpreted as molar fractions,

i.e., sum to one, the pure substances will form the corners of a triangle in which

all other, mixed data points fall. Further relaxing the sum to one constraint,

the data now fall into a cone spanned by the vectors defined by the pure source

spectra. If one generalizes to include more source components, the data will

fall into a high-dimensional simplex (or cone).

Can one use these geometric considerations to identify the source compo-

nents? What if the source components are included in the data set? More

importantly, what if not? This is the topic of geometric BSS methods.

3.3.1 Finding pure pixels

First, let us consider the case where the pure source spectra, in the remote

sensing community called pure pixels, are contained in the data. In a slight

twist of events, the easiest way to identify the source spectra is not by as-

suming a simplex structure, but by means of classification of different phases

in the data. Especially if not only a single pixel can be considered pure in

the spectrum image, but an extended region (think of a multilayer system with

different chemical composition), automatic identification of these phases (e.g.,

by a clustering algorithm of your choice) followed by averaging of the corre-

sponding data points gives the source components. Afterward, these compo-

nents can be fitted to the data to complete the BSS. Maybe this is not the most

elegant strategy to unmixing, but it is effective (see paper IV) and useful for

identifying different phases in the sample. Since many clustering algorithms

utilize distance measures for identifying the different signal classes, this ap-

proach fits well into the geometric BSS section.

Now coming back to simplex structure BSS methods, identification of pure

pixels was firstly done by inflating (or shrinking) a simplex in the data. Once

the maximum volume within the data has been reached, the vertices of the
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simplex are the pure source spectra. E.g., the pure pixel index (PPI) [131],

AVMAX and SVMAX [132], or the N-FINDR algorithm [133] use this ap-

proach. A more effective approach was proposed in [134], vertex component

analysis (VCA): By first identifying the signal subspace by PCA and the pro-

jecting the data onto orthogonal, random vectors and selecting the data points

with maximal amplitude along each of these projections, the vertices of the

simplex can be extracted efficiently. A robust version of VCA was proposed

in paper IV, but also all methods used for pure pixel estimation in data where

they are missing (see below) can be used for data containing the source com-

ponents.

Note how all of the aforementioned approaches only yield estimates of the

source components, but not their scores. These have to be estimated in a sec-

ond step via any regression approach. For the context of hyperspectral im-

ages dedicated regression techniques constraining the abundances to be non-

negative and to fulfill the sum-to-one constraint have been developed (e.g.,

[135]).

While geometric BSS methods were mostly developed in the remote sens-

ing community they do not make explicit assumption on the data, rather on

their degree of mixing. As such they are straightforwardly applicable also in

other disciplines. For an application of VCA to EEL spectra see, e.g., [136].

3.3.2 Estimating pure pixels

Finding the pure pixels in your data suffices for the analysis of some data

sets, but may be lacking in other situations given that in BSS we would like

to unmix data also in situations where a straightforward analysis by manu-

ally browsing through the data and identifying suitable reference spectra is no

longer sufficient. I.e., we would like to be able to analyze data sets without

pure pixels. Nevertheless, pure pixels methods are valuable for quick analyses

of the data (see paper VIII) or automated analyses of large data sets.

If no pure pixels are contained in the data, this amounts to chopping off

the corners of the data simplex (or cone). This implies that pure pixel methods

will fail, the pure pixels are no longer contained in the data set. But what about

the notion to estimate a minimum volume simplex enclosing the data? Even

if the corners of the simplex are gone, if the faces a sufficiently populated, the

minimum volume simplex is still uniquely defined!

Based on these very considerations, uniqueness conditions for volume min-

imization approaches can be formulated [137]. The mathematically versed

reader is referred back to [137], for others let me paraphrase the conditions:

Consider the inner circle of a triangle. If the data not only fill out this circle, but

exceed its boundaries within the triangle, the triangle itself becomes the min-

imum volume enclosing simplex. This considerations can be formulated for

arbitrary dimensions and also in terms of cones rather than simplexes, further

29



generalizing minimum volume constrained methods. Essentially, geometric

BSS methods achieve uniqueness not by assuming certain mathematical char-

acteristics of the source components, but by assuming a certain minimal purity

(degree of mixing) in the data. The more components are in the data, the more

mixed they can occur. As long as the facets of the data simplex (cone) are

populated, the vertices (extreme rays) can be identified.

A variety of algorithms working with this minimum volume approach has

been proposed. Algorithms working purely with convex geometry are, e.g.,

minimum volume enclosing simplex (MVES, [138]), minimum volume sim-

plex analysis (MVSA, [139]) or also the VolMin algorithm of [137] and other

algorithms in the remote sensing community. However, minimum volume

constraints have also been incorporated in different settings. E.g., Bayesian

linear unmixing (BLU, [140]) has been proposed to estimate minimum vol-

ume simplexes with additionally enforced non-negativity in a Bayesian set-

ting, which is very similarly constrained as the multitude of minimum volume

constrained NMF algorithms which have been proposed, e.g., MVC-NMF

[130] or (R)CoNMF [141].

Recent works take steps beyond the pure minimum volume constrained.

E.g., extreme direction analysis (EDA, [142]) wagers a minimum volume

term against a sparsity measure of the source components, which achieves

good performances for the unmixing of natural images, suggesting the meth-

ods usefulness especially for microscope data at low magnifications. In [143],

inspiration was taken from minimum volume constraints to propose an algo-

rithms to uniquely identify non-negative source components with an arbitrary

mixing matrix, which generalizes geometric BSS methods further to be also

applicable to data with non-negativity destroying pre-processings, which may

open further possibilities to boost unmixing performances.

In the electron microscopy community, geometric BSS methods are not yet

very wide-spread. In [136], VCA and BLU were demonstrated on an EELS

data set, paper IV further includes MVSA. Some applications of VCA and

BLU can be found in [84, 144]. This is somewhat surprising given that they

have explicitly been designed for hyperspectral images and do not have ex-

plicit constraints on the spectral shape of the source components, which makes

them applicable to any not too strongly mixed data set, regardless whether it

is CL, EDX or EELS.

3.4 Matrix factorizations III - beyond matrices

Consider Eq.3.1: We have already at this first step limited ourselves to the

analysis of three- (or multi-) dimensional data sets in a matricized form where

we obtain spectral source components and associated weights. But what is

gained by this matricization? Could it vice versa be beneficial to omit the

matricization and instead factorize the tensor directly? This is the topic of this
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section, factorization approaches beyond matrices, i.e., tensor factorizations

and coupled factorizations.

Before starting to introduce different factorization models, it is useful to

introduce the n-mode product:

A ×n B = ∑
in

ai1i2...in−1inin+1...iN b jnin = C , (3.8)

The multiplication of the tensor A ∈ R
I1×I2×···×In−1×In×In+1×···×IN with the

matrix B ∈ R
Jn×In yields the tensor C ∈ R

I1×I2×···×In−1×Jn×In+1×···×IN . While

somewhat abstract at first, this notation may become more clear when rewrit-

ing the classical SVD, Eq.3.6 using the n-mode product. The SVD then reads:

X = S×1 U×2 V (3.9)

I.e., the components stored in the columns of U are multiplied with the first

mode (the rows) of S, the columns of V are multiplied with the second mode

(the columns) of S. It is clear how this notation allows for generalizations also

to higher dimensions.

3.4.1 Tensor factorizations

Comprehensive reviews of tensor decomposition models can be found [145,

146, 147]. Despite their relative age, they have not yet been used much for the

analysis of hyperspectral images. For the context of microscopy data, paper

V is an exception, for remote sensing images, non-local tensor models have

been proposed for denoising and classification (e.g., [148, 149]), a dedicated

non-negativity constrained decomposition model was proposed in [150]. Here,

only three tensor decompositions are considered, i.e., the Tucker decomposi-

tion (TKD), the canonical polyadic decomposition (CPD) and the block term

decomposition (BTD). Note, however, that many more models have been pro-

posed, such as tensor trains (TT) [151, 152], . . .

Tucker Decomposition
Let us first consider the TKD. The TKD model of a tensor X ∈ R

n1×n2×...

reads

X = S ×1 A1 ×2 A2 × . . . (3.10)

where S ∈R
k1×k2×... is the so called core tensor and Ai ∈R

ni×ki are the com-

ponents matrices of the ith mode.

For the case of three-dimensional hyperspectral images, a TKD would not

only yield spectral source components, but also source components for the

spatial features of the tensor. Abundance maps M of the matrix factorization

can, however, be retained (assuming the third mode is the energy mode):

X = S ×1 A1 ×2 A2 ×3 A3 (3.11)

= M ×3 A3 (3.12)
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Importantly, where before all components of the spatial components were con-

sidered in the factorization model, one now has the opportunity to truncate the

model further, which may help to suppress the influence of noise or lead to

better convergence of the extraction also of spectral features.

The TKD dates back to 1966 [153], where it was computed without im-

posing any constraints onto factors or core tensor. This lack of constraints

unfortunately leads to poor uniqueness properties. I.e., it has to be assumed

that the TKD is not unique, multiple computations may be necessary to find

a global optimum, which is typically only found up to rotation [154], which

complicates the interpretation of the obtained factors. Furthermore, the TKD

model has unfavorably scaling memory demands for very high-dimensional

data. For the typically 3 to 4 dimensional tensors of microscopists, however,

this should not be a limiting factor.

Constrained TKDs may naturally have better uniqueness properties. Non-

negativity and sparsity constrained algorithms have been formulated (e.g.,

[155, 156]), imposing orthogonality constraints on both factors and core ten-

sor leads to the multilinear singular value decomposition (MLSVD) or also

higher order singular value decomposition (HOSVD) [157], which is unique

in absence of degenerate eigenvalues along any mode. As compared to the

classical matrix SVD in Eq.3.9, additional factors are simply added, the core

matrix is replaced by a core tensor (which is no longer (super)diagonal, but

orthogonal).

This uniqueness of MLSVD makes it a valuable denoising tool, but di-

rect analysis of factors is prohibited due to the orthogonality constraint. As

compared to PCA denoising an additional subtlety occurs: Where before the

number of components was truncated to achieve a denoising, one now stands

in front of the dilemma that one either can truncate the number of components

along all modes, or the maximum number of core components to the n largest

amplitudes (or both). The latter truncation reminds of denoising via threshold-

ing in sparsity promoting transformations, the former amounts to a limitation

of the multilinear rank, the rank of the matricized tensor for an unfolding

along the respective mode, as in contrast to the tensor rank, the number of

rank-1 tensors that capture all information of the original tensor.

Canonical polyadic Decomposition
The tensor rank closely connects to the CPD, first introduced in [158] al-

though the name CPD first occurred in [159]. A rank-1 tensor is a tensor which

is described by a single component along each of its modes. A CPD is then a

factorization into rank-1 tensors:

X = ∑
i

ai ×2 bi ×3 ci × . . . (3.13)

= I ×1 A1 ×2 A2 ×3 A3 × . . . (3.14)

where the latter equation with I as tensor which is 1 along the superdiagonal

and 0 otherwise highlights the connection between CPD and TKD.
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Important differences between CPD and TKD are that the estimation of the

number of components becomes much harder for CPD, as estimation of the

tensor rank can only be done via tracking the reconstruction error with increas-

ingly large ranks, which may be costly for large tensors. On the other hand,

CPD promises more relaxed uniqueness conditions by only imposing assump-

tions about minimal ranks of the factor matrices and not on other mathematical

properties of the factors itself. The earliest conditions were formulated in 1977

[160], but increasingly relaxed conditions have been found since, more recent

ones include [161],[162].

Similar as for the TKD, a CPD model can be reformulated to resemble

Eq.3.1:

X = ∑
i

ai ×2 bi ×3 ci (3.15)

= ∑
i

Mi ×3 ci (3.16)

However, the implicit constraint that abundance maps of each source spectrum

are of rank 1 is likely not met by many samples in the electron microscope.

However, if the source data have additional modes so that the spatial modes

can be unfolded into a single mode, CPD can become a useful tool, as dis-

cussed in section 4.2.

Block Term Decomposition
The last factorization considered here is the BTD [163, 164, 165]. In some

sense, BTD weds the notions of multilinear rank and tensor rank and thereby

TKD and CPD by offering a decomposition into a series of Tucker models:

X = ∑
i

Ti = ∑
i

S (i)×1 A(i)
1 ×2 A(i)

2 × . . . . (3.17)

Naturally, this can be recast to obtain abundance maps and source spectra for

application to (three-dimensional) hyperspectral images

X = ∑
i

S (i)×1 A(i)
1 ×2 A(i)

2 ×3 A(i)
3 (3.18)

= ∑
i

M (i)×3 A(i)
3 (3.19)

Much as the TKD, a general BTD offers no unique solution, becomes com-

putationally demanding to estimate and requires large memory allocations for

larger tensors, which makes the method less attractive. However, in [166] it

was recognized that less strict uniqueness criteria apply for a decomposition

(of three-dimensional tensors) into (L×L×1)-terms, i.e., tensors of rank L
along two modes while having rank 1 along the third. This LL1-decomposition

can be considered a relaxed form of the CPD allowing also for more complex

patterns under the assumption that the joined factor matrices are of full rank.
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This feature may be useful for the analysis of some hyperspectral images with

features of low rank, but not necessarily of rank 1 so that a CPD is not suffi-

ciently flexible to capture the signal information.

3.4.2 Coupled factorizations

The next generalization moves from single matrix or tensor decomposition to

coupled factorization. Consider, e.g., a joined EELS/EDX measurement, at

every pixel of the STEM image both spectra are measured. One thus obtains

two tensors whose spectral modes are quite different, but since both spectra

originate from the same pixel, one can expect that the spatial structures of

both tensors are highly correlated. If one would then analyze the tensors in

matricized form, it would make sense to assume that some (or all) of the spatial

factors are shared between the two factorizations:

XEDX = SAEDX and XEELS = SAEELS

One can then further imagine a coupling of different matrix or tensor factoriza-

tion with different factor matrices (partially) shared, with different constraints

on either factor. Can factors be estimated more accurately? Does one get

better uniqueness results?

There are different approaches in which to deal with such coupled factor-

izations. E.g., a time series measurement of 2D data could be cast into a tensor

decomposition so that the factors of individual 2D measurements are shared

across all times. Dealing with independence constraints, different joint BSS

approaches were formulated, see [167, 168] and references therein. Here, the

discussion is constrained to discuss the PARAFAC2 decomposition [169, 170]

as well as the coupled matrix and tensor factorization (CMTF) [171] and struc-

tured data fusion (SDF) [172, 173].

PARAFAC2
PARAFAC2, the name deriving as extension to PARAFAC (parallel factor

analysis, a different name for a CPD), decomposes a number of slabs Xk ∈
R

nk×m jointly into

Xk = EkDkST (3.20)

where Dk are diagonal matrices. In the context of microscopy, joined spatial

factor matrices can be derived for hyperspectral images (or any other measure-

ment in STEM where several detectors yield signals at the same pixel).

Sparing the reader details of the computation of the model (can be found

in [170]), an important feature of PARAFAC2 is its uniqueness criteria. I.e.,

a sufficient conditions for a unique result is that the correlation matrix of the

detector channel component, ET
k Ek, is constant along all k and the rank of the

model R fulfills the following condition (K being the total number of slabs)

K ≥ 1
24 R(R + 1)(R + 2)(R + 3) [174]. Simulations in [170] even indicated
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uniqueness for larger R if K ≥ 4, falling much below this sufficient condition,

also admitting the hope for a tighter bound in future works.

The assumption that ET
k Ek stays constant for all k is somewhat restrictive

for the application to coupled STEM data. E.g., the spectral components of

a coupled EELS/EDX measurement likely defy this assumption due to their

largely different mathematical characteristics, although their spatial compo-

nents may be exactly shared. On the other hand, the lack of restrictions on the

exact shape of Ek admits the possibility that PARAFAC2 is applicable across

data from many different sensor types.

For some applications, the ET
k Ek constancy even appears plausible: E.g.,

for coupling of EEL spectra measured at different energy dispersions, or for

monitoring of a fine-structure component across a time series, or cases where

ET
k Ek becomes block-diagonal so that a component of interest (or a subspace

of interest) can be extracted reliably.

Coupled Matrix and Tensor Factorization - Structured Data Fusion
CMTF and SDF were proposed separately and indeed differ in their algo-

rithms and intent. However, a joining feature is that in both cases the opti-

mization criterion is formulated as sum over l2 (or Frobenius) norms of the

residuals between data matrices and their models. The models are then for-

mulated thus that several factor matrices are shared between the individual

terms of the optimization objective, as the user defines. Furthermore, individ-

ual constraints can be applied to individual factors, further generalizing the

model.

While CMTF and SDF are thus fully general tools meeting the requirements

of a microscopist, they bear two disadvantages: First, uniqueness conditions

vary for any specified model. Likely not generally unique anymore, inclusion

of customized constraints largely benefits the convergence of the model into

meaningful solutions. Second, this need to minutely tailor the model to the

data at hand requires a dedicated user. It is not possible to use CMTF or SDF

as blackbox algorithm to be applied to a (general) class of problems. This

is not a conceptual problem of the approach, but affects its attractiveness to

a user less used to identifying suitable model structure and constraints for a

given application.
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4. Looking for the holy grail

After the preceding review of signals in the microscope and different matrix

and tensor factorization approaches, it is now time to put them to practice and

find the EMCD signal. I hope, reader, I will be able to convince you that the

EMCD is much like the holy grail elusive, but, unlike it, real.

In section 4.1 some considerations on how to find weak signals in noisy

hyperspectral images are presented. These findings are then applied to propose

measurement and extraction strategies for EMCD signals in section 4.2, which

is followed by a demonstration of the proposed schemes in section 4.3. After

this climax, section 4.4 is dedicated to selected (un)related approaches for

different data processing problems in electron microscopy as a bridge into the

thesis’ coda.

4.1 Finding signals in noisy hyperspectral images
A common problem is that whatever signal one is interested in has a low vari-

ance (or energy for non-zero means) and is thus obscured by the noise. For the

case of hyperspectral images in microscopy, simple strategies to improve upon

this situation are to change the measurement conditions if possible, to measure

the same sample area repeatedly to average the thus obtained data sets into a

single high-quality set, or to denoise the data. The former is clearly a safe

choice, but we will here assume that the SNR in individual spectra has already

been optimized omitting this path. Averaging of identical data (up to the noise

realization) places demands on the microscope hardware to be able to deal

with larger amounts of data and works with implicit assumptions that noth-

ing changes over the course of acquisition, which (with some post-processing,

i.e., spatial alignment of the data) is a good assumption for static structures,

but is not suitable for any measurement where time is a variable. Similarly,

if accidental or unexpected structure changes occur, these will deteriorate the

resulting analysis without the operator noticing it. Lastly, a denoising retains

more control over the data, but is limited to a maximal denoising (under some

assumptions) depending on the original SNR in the raw data.

Here, the latter path is explored, following the content of papers III, V, VIII,

XI.

4.1.1 Detecting signals with PCA

Already in section 3.1, PCA was introduced as a denoising tool for spectral

data. However, to fully understand its potentials and limitations, it is necessary
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Figure 4.1. Dot-product between true and recovered components of a uniform random

variable retrieved from data with fixed noise variance using PCA at different matrix

sizes n and m.

to consider the boundaries beyond which components can not be retrieved by

PCA. To understand the asymptotics of PCA, it is useful to consider the bias

of eigenvalues in PCA. Already in [175] it was identified that PCA of a data

matrix X ∈ R
n×m gives rise to the following bias bλ in each eigenvalue λ :

bλ = (n+m)σ2 (4.1)

where σ2 is the noise variance. This equation looks troublesome at first

glance: The larger the data matrix, the larger the bias of the PCA model!

However, when considering reconstructions, one needs to consider the bias

normalized by the size of the data matrix in order to assess the error at any

point of the matrix. One obtains:

b̃λ =

(
1

n
+

1

m

)
σ2 (4.2)

which reveals a much more pleasing asymptotic. For infinitely large matrices,

PCA recovers the true data exactly, unaffected by the noise level. For finite

sizes, especially in situations where n 	 m, the error is determined by noise

variance and size of the other mode alone. The description of [175] gives

correct results only asymptotically, a more accurate description also around

the information loss threshold is given in [176]. A cutoff criterion is found

beyond which components are lost:

m
n
≥

(
σ2

λ ∗

)2

(4.3)

where λ ∗ denotes eigenvalues normalized by m. Since λ ∗ still scales with n,

one thus obtains a cutoff where n and m enter symmetrically.

This behavior is also observed when retrieving a uniformly distributed ran-

dom variable at constant noise level using PCA for data with different n and m
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(see Fig.4.1). A cutoff can be observed beyond which the component is lost.

This cutoff is symmetric with respect to n and m where these variables are

of approximately same size. For tall matrices the asymptotics derived from

Fabers algorithm is reached, since there the cutoff is determined by only the

smaller mode size.

But what does this imply for the application of PCA to hyperspectral im-

ages? The number of energy channels is usually fixed by the detection sys-

tem, the noise variance (or rather the SNR) can be considered to have been

optimized and is also fixed. The number of pixels, however, can be varied at

will. Hence, PCA dictates a detection limit based on the optimized SNR and

number of detector channels. Given that signals typically spread over several

100 channels, this implies that the minimum signal variance can be a factor

100 to 1000 below the noise variance, which suffices for most applications.

Hence, if the microscopist only remembers to measure enough spectra, PCA

is an easy to use tool to estimate source spectra and their scores.

A drawback is the remaining noise in the components. Many pixels imply

almost noise free spectra, but a finite (small) number of energy channels leads

to considerable noise in the scores. PCA nicely detects spectral shapes of

the components, but not their localization. Instead, one needs to average the

denoised spectra spatially, filter the score maps, or exploit further correlations

in the data set.

4.1.2 Mapping signals with MLSVD and LLR

An obvious strategy to improve on the denoising of PCA is to denoise the score

maps further using any state-of-the-art image denoising algorithm, which is,

coincidentally, one of the most recently published strategies for denoising of

hyperspectral images [177]. There is no use in discussing performance of

different image denoising algorithms here, instead, the questions on how low-

rank approximations can be extended to spatial correlations will be discussed.

This has the advantage that it generalizes also to multi-modal data straightfor-

wardly.

Moving from purely spectral denoising to spectral-spatial denoising amounts

to moving from matrix denoising to tensor denoising. As discussed in section

3.4, MLSVD is a good candidate for tensors whose spatial structure allows

for a low rank approximation. Due to the inherent uniqueness properties a

near optimal denoising can be achieved reliably also at low SNRs, truncation

of multilinear ranks or active core elements followed by reconstruction of the

full tensor is a direct route to denoise the data further beyond the limits of

PCA. Examples can be found in papers V and VIII.

Despite this progress, MLSVD is still limited to tensors which allow for

a (global) low rank approximation. If modes do not allow for this com-

pression, like more complex spatial structures in hyperspectral images do,
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MLSVD denoising approaches the denoising of PCA and little is gained. A

strategy to alleviate this dilemma was found in paper XI: While a noisy ten-

sor X ∈ R
I1×···×Ii×···×IN might have a high multilinear rank along the ith

mode prohibiting MLSVD to give a good denoising, local segments of this

mode may allow for a low rank approximation. I.e., when drawing subtensors

Xsub ∈ R
I1×···×ni×···×IN along every pixel in the ith mode and stacking these

in an additional mode to Y ∈ R
I1×···×ni×···×IN×Mi , one obtains a tensor which

is small or compressible along all modes. MLSVD can now be expected to

give good denoisings independent of the structure along the ith mode. Some

further subtleties for an optimal denoising of Y are discussed in paper XI.

Using MLSVD and LLR one can thus extend the low-rank denoising of

PCA also to the full tensorial hyperspectral image or even further multi-modal

data (time series,...). A data processing workflow to both detect source spectra

and their localization is thus to apply PCA to sufficiently many measured spec-

tra (also from multiple data sets) and then denoise the remaining modes further

using tensor factorizations. If the spatial structures are of low rank, MLSVD

can achieve excellent denoising performances. If the spatial structures of the

hyperspectral image do not allow for a global low-rank approximation, one

utilizes the LLR segmentation to segment both spatial modes and applies LLR

on the stacked tensor, again achieving a low-rank approximation, now of the

local spatial-spectral features.

4.2 Learning how to find EMCD

Having learned how to identify signals with small variance, we have now tools

to detect also faint signals - as needed for EMCD detection. However, one

additional step has to be taken: Instead of merely denoising the data faithfully,

the EMCD spectrum has to be extracted. Here, three extraction strategies are

listed. A fourth one fits into the introduction of this section:

In a classical EMCD measurement, but also any other EMCD measurement

where the same sample area is measured multiple times resulting in data sets

with opposing EMCD signs, the spectra can be background subtracted and

normalized in the post-edge. Subsequent subtraction of the data sets with

opposing EMCD signs yields a data tensor only containing the EMCD signal.

This direct difference (DD) procedure is straightforward, but sensitive also to

other fine-structures contributing to differences between the data sets. E.g., if

some sample damage occurs or contamination is building up on the sample

between the scans, this DD approach may fail.

Hence, consider how DD can be automatized and robustified: I.e., the con-

tent of papers XIV, XV.
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4.2.1 Geometric blind source separation for EMCD

Given that the DD procedure works, geometric BSS methods are a natural

candidate to automatize this analysis. Instead of subtracting the data with op-

posing EMCD contributions form each other, they can be joined in a single

data set. Methods constrained to estimate pure pixels can then identify spectra

carrying the positive and negative EMCD contributions, taking the difference

between these spectra yields the EMCD signal, the difference of their abun-

dance maps the EMCD structure.

A subtle detail needs to be considered: If pure pixel estimating methods

are used which base their estimation on a single spectrum, e.g., (R)VCA, the

noise in the data set will lead to an overestimation of the EMCD amplitude

scaling with the noise variance. As the noise gives rise to random shifts of the

data inside the simplex, it effectively increases the simplex volume and thus

the amplitude of the data features. This spurious amplitude increase is less

noticeable when using clustering techniques to identify different phases in the

sample. Here, source spectra are estimated as averages over extended regions,

thus attenuating the noise.

The advantage of using geometric BSS methods over a DD approach is not

only the automatization aspect, but also that the approach generalizes straight-

forwardly to single data sets already containing different EMCD contributions

like in APR-EMCD or measurement of magnetic structures across domain

walls or in different grains. Furthermore, if some regions of the data set are

degraded by some unwanted components, the BSS methods will pick up un-

contaminated components from other parts, thus also alleviating this problem.

Usage of pure pixel estimating algorithms does typically give no improve-

ment for the task of identifying different phases in the data, as these (by def-

inition) occur pure. However, an interesting approach is to apply minimum

volume constrained algorithms to mean subtracted data sets. I.e., if some

other component occurs between the data sets, this components may not ap-

pear highly mixed, but only as small perturbation (while dominating in other

parts of the data set). Using, e.g., MVSA to estimate pure pixels in this data

set may extrapolate the EMCD spectrum beyond this unwanted component.

A drawback of this approach is that the underlying assumptions of MVSA,

in particular non-negativity of the abundances, is violated for a data set con-

taining EMCD signals with opposing signs. Estimating EMCD signals of op-

posing signs, however, leads to rank-deficiency also rendering the algorithm

useless. Nonetheless, for some cases satisfactory unmixing was achieved. Fu-

ture geometric BSS approaches pushing beyond the limits of MVSA may fur-

ther improve this approach.
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4.2.2 EMCD and ICA

The EMCD signal is typically correlated to the non-magnetic signal, indepen-

dence is thus violated and ICA seems like a bad idea. However, it has to be

remembered that while microscopists tend to forget that BSS methods can not

only be used to estimate source spectra, we can similarly attempt to unmix

the EMCD signal by assuming statistical independence of its scores from the

scores of other signals.

I.e., if the data is represented as a four-dimensional tensor X ∈R
nx×ny×nE×na ,

na may be too small to allow for unmixing of all spectral components due to

rank deficiency (if na is smaller than the multilinear rank along the energy

mode), but matricization into X ∈ R
nx·ny·na×nE may allow for extraction of the

EMCD component since it is (ideally) the only component changing with na.

Its sign flip between different na ideally makes it orthogonal (and thereby in-

dependent) of the other signals. If other components varying with na occur

(asymmetry, contamination, sample damage, . . . ), independence might still

hold (allowing for EMCD extraction unaffected by artifacts!), or be destroyed

necessitating other approaches.

For data sets including different EMCD signs in real space, ICA should sim-

ilarly be applicable. E.g., the shift of non-magnetic and EMCD fluctuations

in APR-EMCD should ideally make the signals independent from each other.

However, I observe that imperfections of the data (noise, drift, . . . ) often do

not permit this extraction to be successful.

At last, EFTEM EMCD should be considered. As pointed out in paper XV,

the k-space maps of EMCD are orthogonal to their non-magnetic associates.

ICA is thus a method well suited to extract the EMCD contributions regardless

of sample orientation and magnetization direction.

4.2.3 Extracting EMCD straight from the tensor

The last strategy included here is to get the EMCD via a tensor decomposition

method. Given that the spatial structures are likely of high rank, it makes sense

to unfold these two modes into a single spatial mode, i.e., X ∈ R
nx×ny×nE×na

is transformed to X ∈ R
nx·ny×nE×na . Can a CPD be used to extract pairs

of spectral source components with associated abundances (vectorized) and

weights at different aperture positions?

A possible obstacle is that na is typically small (i.e., 2 or 4). Hence unique-

ness criteria of CPD are better fulfilled if we keep the ranks of the other modes

also small. This can be achieved by a suitable pre-processing of the data. E.g.,

data can be background subtracted, normalized and mean subtracted (each re-

ducing the rank of the energy mode by typically 1). CPD would likely be even

better suited to analyze data sets where at every pixel of a ky ×E maps is ac-

quired by projecting the diffraction plane onto the spectrometer entrance slit,

giving a data set X ∈ R
nx×ny×nE×ky (then transformed to X ∈ R

nx·ny×nE×ky).
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Since ky 	 a and the EMCD signal distribution along ky allows for an easy

separation of the non-magnetic signals (for some sample orientations and k-

space slit placements), CPD will likely achieve a correct unmixing more easily.

This scheme was already successfully tested on simulated data in my licen-

tiate thesis [178], it has not yet been published and tested also on experimental

data.

4.3 Finding EMCD
Oh reader, you have reached the strangely anti-climatic climax of this thesis,

the demonstration of the proposed processing strategies on experimental data.

However, if you have read attentively until here, you may skip this section

altogether, for it can be summarized in two words: It works.

4.3.1 EMCD with abberated probes

This demonstration refers back to the contents of paper I. Aberrated elec-

tron probes were used to induce EMCD contributions in the antiferromagnet

LaMnAsO, experimental details can be found in paper I.

In short, this project demonstrates the usage of PCA for detection of EMCD.

I.e., pre-processed (spike removal, alignment of energy axis,. . . ) and then sub-

jected to PCA. By performing PCA over multiple data sets, the number of

spectra was increased to approx. 300000 allowing also faint components to be

detected. Selecting components according to the now clear scree plot resulted

in essentially noise free spectra. The remaining noise in the scores, however,

prohibited a direct interpretation of the spatial maps regardless which extrac-

tion strategy was chosen. Thus, we resorted to averaging spectra according

to the known magnetic structure, thus obtaining two averaged spectra with

opposing EMCD signals, DD yielded the magnetic spectrum.

4.3.2 APR-EMCD

Extraction of the EMCD signal from APR-EMCD signals was addressed in

detail in paper XIV. Geometric BSS methods as well as tensor decomposition

can be used to extract the EMCD signals here.

Since the EMCD signal changes sign within the same data set, no repeated

measurements of the same sample area are needed to obtain the signal, pure

pixel methods can identify the phases with opposing signals, both clustering

and VCA perform well. A successful data processing workflow is thus the

following: Pre-processing (spike removal, alignment, background removal,

optionally normalization of the post-edge), PCA jointly on several data sets to

obtain the spectral source components, denoising of the score maps by LLR

(or MLSVD on aligned data), geometric BSS (or tensor decompositions).
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As demonstrated in paper XIV, geometric BSS methods show an excellent

performance here, with a LLR denoising the weights of the EMCD signal in

single pixels can be investigated. For an ideal data set without distortions, CPD

is not applicable since one mode of the tensor is only of rank 1 creating prob-

lems with the uniqueness of CPD. PARAFAC2 may be an attractive candidate

for the analysis of these sets as well, otherwise a Tucker model was demon-

strated to extract qualitatively correct components. Corresponding analyses

are contained in paper XIV.

4.3.3 EFTEM-EMCD

Since the k-space distribution of the EMCD signal is orthogonal to (and thus

independent of) the non-magnetic signal, ICA can be used to distinguish the

k-space components of EMCD for various sample orientations.

This has been demonstrated in paper XV. The data were pre-processed sim-

ilarly to STEM-EMCD, i.e., spikes were removed, a background model was

estimated and subtracted. Afterward, ICA was applied to the centered data’s

k-space basis (estimated by PCA). The EMCD components can be identified.

However, a quantitative analysis is so far prohibited. Due to artifact contri-

butions from the camera and microscope instabilities, the observed rank of

the data exceeded the expected number. These artifact components are not

necessarily independent of the EMCD signal, thus decreasing the unmixing

performance. Future measurements on more stable microscopes may improve

this approach. In particular in combination with recent 4D STEM measure-

ments, this may open an attractive road to study non-trivial spin arrangements

in the microscope.

4.3.4 DD-EMCD

The DD approach has been used one way or the other in almost all measure-

ments of EMCD so far. An example can be found in paper VII. The data

were subjected to the standard pre-processing (spike removal, energy axis

alignment, background removal, post-edge normalization), the data sets with

opposing EMCD signs were subtracted from each other, the resulting tensor

only contains EMCD signal and possibly other contaminations from changing

contributions between the scans.

4.4 What has been learned from the quest for EMCD

At last, miscellaneous (un)related approaches deserving mentioning are listed

in this section. How do the considerations above apply to other problems?

More importantly, how can they be extended? The former question is easily
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answered: The detection of any fine-structure of interest follows essentially

the same steps, denoising and extraction methods have anyway been devel-

oped not for EMCD measurements, but a much wider class of problems. The

latter question is the topic of this section.

4.4.1 A faster way of finding pure pixels

Already in paper IV, the computational efficiency of different geometric algo-

rithms was compared. Clustering was identified to be a time and cost efficient

step for the extraction of pure pixels in the data set. However, the speed deter-

mining step still lies in the computation of the SVD. Can this step be sped up

further?

Re-reading section 3.1, one quickly finds randomized PCA as opportunity

for further reducing computation time (and RAM needs). Substituting the

SVD step by a random SVD (see [98] for some algorithms) reduces the com-

putational complexity of the SVD from O(mn2) to O(mn log(k)) (k being the

number of estimated components), thus promising a considerable speed up.

Already considering randomized algorithms, a randomized interpolative de-

composition (rID), e.g., X ∈ R
n×m with rank k is decomposed by identifying

k columns of X to satisfy

X = X·, jM (4.4)

where M ∈ R
k×m. While IDs have made their impact mostly in the com-

pression of large matrices, the parallels to pure pixel estimation are apparent.

To deal also with large matrices efficiently, randomized algorithms have been

proposed [179, 180].

Lastly, taking inspiration from such techniques for matrix compression,

greedy algorithms for the submatrix selection can perform at even lower costs

and higher speeds. E.g., the algorithm published in [181] promises a reduction

of computation costs to O(mk2)!
To do a quick proof of principle, let us consider a simplistic data set: 5

normally distributed random variables with 1000 observation channels which

occur in 5 phases in the sample as pure pixels, i.e., the total of 50000 simu-

lated spectra can be distributed into 5 times 10000 pure spectra. Afterwards

applying VCA, clustering using a rSVD (with a gaussian matrix as initial com-

pression step), an ID (no randomized algorithm used) and the algorithm of

[181] retrieves the correct components in all cases. The Amari indices are be-

low 10−10 in all cases, further underlining the good unmixing (Amari indices

are vanishing for exact unmixing and increase with a decreasing unmixing

performance). However, computation times differ: Normalized to the VCA

computation time, the times are 13.2 for ID, 1.0 for VCA, 0.09 for clustering

following rSVD, 0.05 for the greedy column selection.

The speed of the ID is not impressive. Since no randomized algorithm is

used, the speed hinges on the intrinsic QR factorization. Better results can
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be expected from the algorithms in [179, 180]. For clustering with rSVD and

greedy column selection, however, significant speed ups are observed. If the

matrix size is increased further, the differences to VCA become even more

apparent, a speed up of two orders of magnitude can be achieved.

Not having been used in the context of microscopy yet, these algorithms

give hope that also larger data sets on tomorrow’s microscopes will be analyz-

able using the methods presented in this thesis, or may be useful for compres-

sion during acquisition to enable measurement of larger data sets.

4.4.2 Analysis of compressed signals

Pure pixel estimating methods are quickly computed and yield source spectra

close to the spectra in the original data set. Also considering the above paral-

lels to matrix compression, the question of how else one can use the compres-

sion for the analysis of spectra arises.

In paper VIII, an efficient background subtraction was proposed: Basis vec-

tors A are estimated using VCA, a background model AB is then estimated on

A. The background subtracted data set XBGS is then obtained the following

way:

X = MA
= M(AS +AB)

XBGS = X−MAB

Straightforward and easily implemented, this scheme can be extended to many

more traditionally conducted analyses. E.g., an elemental analysis can be car-

ried out on the basis vectors, estimated elemental contents can then be extrapo-

lated to the entire data set by expanding with the abundances. A correction for

multiple scattering effects can be achieved by deconvolving the basis vectors

with the low-loss spectrum, estimating the difference spectrum between orig-

inal and corrected spectrum and subtracting the difference spectrum from the

data set. Besides speed and advantage of performing analyses on the basis vec-

tors rather than individual spectra is the inherent noise reduction. Especially

when correcting noisy data, the risk of introducing noise related artifacts into

the data may outweigh the advantage of the correction. This is side-stepped

when performing the operation on the compressed data.

4.4.3 Exploring the signal subspace

An important lesson from section 4.1 is the usefulness of PCA to reliably

find vanishingly little noise biased source spectra from hyperspectral images

by simply increasing the number of spectra sufficiently. An excellent basis

for the spectral signal space is obtained. Geometric BSS methods typically
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operate on PCA compressed data, in this signal (sub)space. Can one use other

properties of this space for a better, more general unmixing?

In paper X steps towards that direction were taken. If the source signals

can be assumed to be non-negative and orthogonal in some observation chan-

nel (e.g., for spectra with a stand-alone peak), the extreme rays of the cone

spanned by the non-negative spectra in the signal subspace are the sought af-

ter source components. An algorithm to their extraction is thus PCA, random

sampling of scores, only those scores that lead to non-negative spectra are re-

tained. As a result, one finds the cone of non-negative spectra in the signal

subspace. Application of NMF or pure pixel methods obtains then the source

spectra.

Can one use this signal subspace sampling (SSS) idea more generally? Be-

fore BSS methods were introduced to the microscopy community, the BSS

problem was often referred to as multivariate curve resolution (MCR), to be

solved via alternating least squares. Addition of physically motivated con-

straints leads to better convergence, but local minima have to be feared. This

strategy of finding source spectra by included meaningful constraints can be

extended to a little elegant, but straightforward SSS algorithm. Essentially any

constraint can be enforced as they occur only as conditional statements when

deciding whether an artificially generated score vector should be retained or

not. The likelihood in which meaningful spectra are sampled determines the

usefulness of this approach, but given that a normal distribution seemed an

efficient prior in paper X one can hope that this will not become a limiting

factor. E.g., non-negativity and post-edge constancy could prove useful con-

straints for EELS fine-structure analysis, much like in MCR.

4.4.4 Unmixing hyperspectral data by exploiting spatial
periodicity

Another strategy to unmix spectrum images may be to exploit the spatial pe-

riodicity of images at atomic resolution. In paper V tensor decomposition

methods were already proposed for the analysis of tensors which are glob-

ally of low rank. However, using the non-local approach of, e.g., LLR, also

high-rank images can be described in a low rank setting. Considering atomic

resolution images only, the LLR assumption can be sharpened even further:

Since crystals admit for a description with a unit cell, a block sampling ap-

proach should lead to similarly good results and lead to even lower multilinear

ranks.

I.e., consider a hyperspectral images of a crystal X ∈R
nx×ny×nE with a unit

cell of ux ×uy pixels. Either by application of template matching algorithms,

or by performing block segmentation on the image (i.e., form a regular grid

of non-overlapping blocks), individual unit cells can be identified and stacked

in the tensor Y ∈ R
ux×uy×nE×N , where N is the number of blocks. If the unit
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cell is well aligned with the image borders, the two spatial modes of the tensor

likely allow for a rank 1 approximation, for most crystals without rank defi-

ciency of the factor matrices. Also assuming that the energy mode is not rank

deficient (and some of the components change across the hyperspectral image

so that the stacking mode is not too rank deficient), the uniqueness criteria of

a CPD are likely met, the source spectra can be extracted without any further

assumption on their spectral shape! In case the unit cell is not aligned with the

image borders (e.g., the crystal appears rotated in the image), one can either

move to LL1-decompositions (but needs to reconsider whether the factor ma-

trices will be of full rank), or one can reshape Y to Ỹ ∈ R
ux·uy×nE×N . In the

latter case, the spatial rank of the unit cell structure can increase arbitrarily,

but one needs to reconsider rank deficiency along the stacking mode. Unless

the lattice changes across the image (leading to non-uniform changes of the

factor matrices along the stacking mode), uniqueness conditions may not be

met anymore.

Let us briefly demonstrate this method on two simulated, abstract data set.

Source components and source structures are displayed in Fig.4.2. Afterward,

the image was segmented into blocks of 10× 10 (which in this case matches

exactly with the unit cell of the structure). Due to the chosen structure, the

spatial structures were exactly of rank 1 CPD on Y thus successfully extracts

the source components. If the spatial rank would be higher, it is worth consid-

ering applying CPD to Ỹ . Here, however, one observes that only the second

set with changes of the lattice within the image leads to the correct unmixing.

For the other case, the stacking mode is too rank deficient (only rank 2, the

uniform lattice accounts for one components, the gradient for the other) to al-

low for the lattice components to be separated. The gradient component is still

found correctly.

While the source components do not resemble real microscopy data, they

were also not constrained in any way. The proposed approach should thus

be transferable to different signals in the microscope. Using pattern matching

instead of rigid segmentation grids likely will increase the flexibility further,

if care is taken to track the multilinear ranks of the tensor when applying this

mosaicking approach, a fairly general analysis of atomic resolution spectrum

images is possible. The possibility to separate lattice signal space from other

components changing on larger scales over several unit cells may also be use-

ful to correct for artifacts (gradual energy drift, beam damage, . . . ).

4.4.5 Inpainting instead of denoising

In some cases, the sensitivity of the specimen to damage through illumination

with the electron beam becomes the limiting factor for the achievable image

quality. It has been proposed [182, 183] to reduce the dose the sample is

exposed to during image acquisition by intentionally omitting some pixels and

47



Figure 4.2. Top row: Source abundances for the two sets studied here, the first three

components are displayed as RGB image (intensities ranging from 0 to 1), the last

gradient component is shared between the sets. Center row: Source components and

recovered components for both sets when applying CPD to Y . Bottom row: Recov-

ered source components when applying CPD to Ỹ .

then inpainting the missing intensities in an offline process. For this inpainting

task, basis pursuit approaches dominate today.

However, any denoising algorithm can easily be transformed into an inpait-

ing tool when reformulating the algorithm to estimate its components only on

the measured pixels, e.g., by assigning the missing observations zero weight

when computing the covariance matrix of PCA. Hence, a hidden contribution

of section 4.1 was the development of inpainting tools. Considering images,

LLR is readily rewritten as inpainting tool. As small difference to image de-

noising, in our experience, one often obtains better results when computing

a high-rank CPD rather than a low rank Tucker model on the LLR stacking

tensor (with missing pixels). Especially in cases where the spatial ranks of

the stacking tensor can not be compressed considerably, CPD outperforms the

TKD, which tends to over-represent the measured pixels on cost of an overall

worse reconstruction.
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As discussed at length in paper XIII, an inpainting algorithm for regularly

(sub)sampled images can also be formulated using LLR. Since LLR allows for

a low rank approximation of images, one can estimate a local feature basis on

a set of training images and then apply this basis to the undersampled image.

Since the basis is small, it avoids coherence artifacts otherwise occurring in

basis pursuit inpainting naturally.
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5. Conclusions

The majority of this thesis’ content was focused on the extraction of the EMCD

signal using BSS methods. After giving an overview over different signals oc-

curring in the microscope, different classes of BSS methods, both matrix and

tensor factorizations, were briefly sketched. These threads were then com-

bined to a data processing workflow to detect weak signals in noisy hyper-

spectral images. Applying this knowledge, data sets containing EMCD signals

can be reliably denoised. Based on known signal distributions, different BSS

methods were suggested for different types of EMCD measurements. After-

ward a selection of the proposed methods was demonstrated experimentally.

Besides this focus, one must not forget that the methods are applicable to

a much wider range of signals. This is reflected in the variety of fields the

literature of section 3 stems from, but also in the rhapsodic section 4.4 sum-

marizing some other ideas of usage of data processing methods in microscopy

(and beyond).

For a reader thinking beyond the applications discussed here, focusing on

underlying assumption on mathematical characteristics of the data, parallels to

many other applications may open. As the size and types of data sets are ever

increasing there will be ample space for the different factorization techniques

presented here to shine.
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6. Sammanfattning på svenska

Elektronmikroskopi använder sig av högt accelererade elektroner i mindre än

nanometer tjocka strålar för att utföra spridningsexperiment på olika material.

Från dessa kan man lära sig om materialets struktur, defekter, sammansättning,

elektroniska struktur och magnetiska egenskaper. Studerar man dessutom en

effekt som kallas för "elektromagnetisk kiral dikroism" (EMCD), kan man

mäta en enskild atoms spinn och magnetiska moment i ett visst material. I

ideala fall kan EMCD-effekten tillåta att man kombinerar magnetisk analys av

material med alla fördelar som elektronmikroskop kan tillåta, t. ex. hög up-

plösning och låga instrumentella krav, jämfört med andra mätmetoder. Dock

så är det svårt att mäta signaler i data med dålig upplösning – ett problem som

förekommer i många olika vetenskapliga discipliner, antagligen bl.a. också i

forskningen om T-rexer.

I detta doktorsarbete analyseras magnetiska strukturer med hjälp av elek-

tronmikroskop, med fokus på EMCD-effekten. Specifikt handlar doktorsar-

betet om att undersöka hur moderna metoder inom dataanalys kan underlätta

upptäckten av EMCD-signalen, liksom andra signaler från elektronmikroskop.

Till en början diskuteras olika signaler som uppstår i mikroskopen liksom de-

ras matematiska egenskaper, följt av en kort sammanfattning av EMCD-teorin

och de experimentella mätmetoder som används. För att reducera brus i mät-

ningarna har jag använt Principal Component Analysis (PCA), följt av ten-

sorfaktorisering och ytterligare brusreducering. Förutom olika brusreducer-

ingsmetoder, diskuteras även metoder för en direkt identifikation av relevanta

signaler. En översikt av olika metoder ges, inklusive automatiska metoder som

jag utvecklat.

I arbetets sista del, används de metoder vi föreslagit för att detektera EMCD-

signaler i specifika experiment. Dessa demonstrerar hur EMCD kan användas

i högupplösta mätningar av magnetiska strukturer för att karakterisera mate-

rial med atom-atom-upplösning. Semiautomatiska detektionsmetoder testas

på samma sätt. Med verktyg från modern dataanalys kan därmed EMCD:ns

potential för att mäta magnetism i olika material utvecklas till fullo.
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