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Our understanding of cosmology has evolved radically in the last decades. Current models
demand the presence of dark energy in our universe and the most favored candidate behind
this component is a small positive cosmological constant that characterizes a de Sitter (dS)
spacetime. Simultaneously, theoretical physicists have stood up to the challenge of building a
consistent theory of quantum gravity and string theory has raised as a strong contender.

In this thesis we present some explorations within supergravity, a low energy limit of string
theory, studying non-supersymmetric vacua, its stability, and the possibility of finding dS.

We study the landscape of flux compactifications to produce dS with non-geometric fluxes.
We find precise analytic procedures to find perturbatively stable dS near supersymmetric and
no-scale Minkowski in a potential derived from type IIB compactifications. We also provide
analytical evidence of naked singularities being produced in supergravity backgrounds after the
introduction of anti-Dp-branes, at both vanishing and finite temperature.

In order to study the problem of semi-classical stability, we explore compactifications with
anti-de Sitter as external space. We argue that truncations to closed-string-sector excitations of
non-supersymmetric theories may be non-perturbatively protected by the existence of globally
defined fake-superpotentials if they are perturbatively stable, a reasoning that goes in line with
the standard positive energy theorems.

We find that non-supersymmetric solutions tend to manifest modes with masses under the
Breitenlohner-Freedman bound once the open-string-sector is explored while supersymmetric
solutions remain stable. We see this as a hint in the nature of the instabilities predicted by the
weak gravity conjecture.
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1. Introduction

An avalanche of ground breaking physical observations has deeply en-
riched our understanding of cosmology, general relativity (GR) and par-
ticle phenomenology in the last years and we expect many more to come
in the near future. Simultaneously, theoretical physics has stood up
to the challenge of building a consistent conceptual and mathematical
framework that ideally would provide a quantum field theory (QFT) pic-
ture of gravity. It goes without saying that this is not a trivial problem,
an inviting test, considering how effective both descriptions of nature,
QFT and GR, are in their own range of energies and curvature.

In part, the success of QFT and GR has been an inconvenient, as
testing quantum gravity models is therefore a challenge on its own. One
possibility is exploring high energies in order to study and catalog what-
ever we can reach of the spectrum beyond the standard model. Another
one is attempting to find consistency features of a unifying theory that
one can extrapolate to low energy measurements. Along that line of
thought, one comes to wonder what cosmology can tell us about quan-
tum gravity.

Consider, for instance, the ΛCDMmodel or the correspondence model
[R+98, P+99, SS00, WME+13]. It is one of the most significant achieve-
ments of the past decades in observational cosmology. While it is under
continuous scrutiny, it gives a reasonably good account of many ob-
servable properties of the universe, suggesting that about 70% of the
present energy density corresponds to dark energy. The more favored
suspect behind this component is a small positive cosmological constant,
which characterizes a de Sitter (dS) universe. From the point of view
of theoretical physics, establishing models that predict or at least con-
sistently motivate this and other cosmological parameters represents a
fundamental challenge.

A strong candidate for a description of quantum gravity is string
theory. It has evolved drastically pervading all aspects of theoretical
physics. As part of its features, it renders an interesting picture of
spacetime physics. On the one hand, it comes with supersymmetry, a
property that relates bosonic and fermionic degress of freedom. From
the point of view of phenomenology, one expects this symmetry to be
realized at energies higher than the ones so far probed, demanding the
implementation and study of supersymmetry breaking mechanisms. On
the other hand, it provides a constraint on the dimensionality of space-
time, requiring 6 additional dimensions to our 4-dimensional universe.
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Observations demand this 6D extra space, often known as the internal
or compact space, to have a finite and small volume. In our 4D external
spacetime, our observed day-to-day world, we would currently be unable
to detect these additional dimensions.

While these properties might sound discouraging, the fact that grav-
ity appears in its formalism and constraints on spacetime are predicted,
gives strength to the idea that string theory can eventually lead to a uni-
fying formalism. In the present thesis we work fundamentally from the
point of view of a low energy limit of this theory, supergravity (SUGRA).
As we will see, by truncating the spectrum of excitations of strings in
10D, one reproduces the field content and dynamics of massless fields
found in 10D supergravity. As a classical field theory, the hope is that
one can capture the fundamental features of compactifications with su-
persymmetry breaking scenarios and produce models that are interesting
from the point of view of our current understanding of cosmology.

In this work, we study some of the features of compactifications of
supergravity with non-supersymmetric vacua. This includes solutions
that contain 4D de Sitter as external spacetime as well as other vacua
in which we explore the problems of stability and the presence of sin-
gularities. As we have mentioned, this requires us to deepen our un-
derstanding of field theories in the presence of gravity. The interplay
of objects such as black holes and horizons with fields not too different
from the electromagnetic, paints a rich and intriguing picture where one
must go beyond perturbative analysis to see defining aspects of a theory
of quantum gravity.

In supergravity, as in GR, gravity is seen as the interdependence be-
tween energy and the geometry of spacetime. In addition, there is a
variety of fields and sources that enter its action. In particular, it turns
out that 10D supergravity produces an enourmous amount of solutions.
The term landscape has been used for those theories which could poten-
tially provide a consistent effective field theory of quantum gravity and a
good amount of effort has been put in exploring its extension, properties
and phenomenology. At the center of these explorations is the question
of whether supergravity vacua lives in the landscape or not.

In that spirit, there has been enormous progress in producing and
cataloging solutions to 10D supergravity, with different amounts of su-
persymmetry, types of sources, fluxes and metric backgrounds, studied
in different parameter regimes and understood at different orders in per-
turbation theory. These, and more to be found yet, are expected to shed
some light on many of the challenges that high energy physics faces to-
day.

In order to see the 4D world that one obtains in a given solution,
one must perform a (consistent) dimensional reduction, in which some
of the degrees of freedom of the 10D theory are integrated out while
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others remain as massless bosonic fields in the 4D theory. The massless
scalars that are left in this process are called moduli. In a typical setup,
the moduli include parameters of the internal space (like its volume),
positions and field fluctuations of sources, and the value of the closed
string dilaton.

If these scalar fields are not fixed, they manifest as massless particles
in our 4D world and those are not favored by observations1. It is then
necessary to find a mechanism by which they are constrained, a problem
known as moduli stabilization [DK07, Gra06, BBCQ05]. The intention
is then to generate a potential V , for these degrees of freedom, which
effectively gives them a mass (see figure 1.1). In the context of dS, one
would like to find positive masses such that fluctuations cost energy and
hence their dynamics are effectively frozen. This would then fix the
parameters of the compact space.

This was the major motivation that led to the field of flux compacti-
fications. As we will see, besides gravitational degrees of freedom, 10D
string theory allows for the existence of gauge fields. By using not trivial
topologies in the internal space, fields can acquire (quantized) non-zero
fluxes. Heuristically, one can expect the energy of these fields to couple
these fluxes with parameters of the compact space. These couplings are
indeed part of the 10D action of supergravity. Once we perform the
process of dimensional reduction, a potential V is inherited as the re-
mainder of the integrating process resulting in a 4D effective action with
non-trivial dynamics for the moduli. We will see explicitly how V is di-
rectly produced by the metric and the fields of the internal space in this
process. Among the many possible applications of this procedure, we
will focus mostly on the study of (stable) critical points of this potential
V as a function of the moduli (see figure 1.2). In these, not only the
values of the moduli are then fixed but also the value of V acts precisely
as a cosmological constant (in the 4D action).

This realization generated excitement, as it could then provide an in-
teresting model with a dS universe. Unfortunately, it has been shown
that, without the presence of non-perturbative effects, one usually does
not find a stable universe with a positive cosmological constant. The
underlying challenges for the possible candidates are common trouble-
makers: moduli stabilization, resilience against non-perturbative decays,
the energy scale hierarchy problem and consistency of uplifting mech-
anism, among others. Despite the existence of some proposals, fun-
damental limitations still indicate important remaining questions that
need to be answered satisfactorily. It should be mentioned that the

1Alternatively, one might be interested in inducing some dynamics for these fields to
describe other phenomena like inflation, domain walls or false vacuum decays. The
latter will be relevant in our discussion of stability.
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Figure 1.1. In flux compactifications, one can induce a potential V for the
moduli, which here we have as the pair φ1 and φ2. V appears as a cosmological
constant term in the 4D action and perturbatively stable points have positive
moduli masses when V ≥ 0. The hope is to find a stable dS vacuum in the
landscape of string theory, similar to our universe.

A

B

2

1

Figure 1.2. Different critical points are characterized by distinct values of the
moduli and some of the moduli parameterize the properties of the compact
space. On the left, we see the contour plot of the potential with a couple
of critical points marked. By moving from a point A to a point B, the 4D
cosmological constant changes as well as the internal space. On the right, we
have a representation of this transition in the compact manifold. This transition
can happen if it is possible for one vacuum to decay into the other.
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de Sitter geometry presents particular complications when it comes to
stablishing a clear picture of unitary evolution due to the fact that its
assymptotics and finite number of observable degrees of freedom pro-
duce innate complications in defining scattering matrices or correlation
functions [Wit01].

No-go theorems, in particular, have excluded a significant number
of configurations that cannot achieve a positive cosmological constant
and/or cannot attain perturbative stability [MN01, AB17]. This has
produced a clearer picture of how and where to probe the landscape. It
should also be mentioned that a lot of progress has been made recently
in describing dS with non-linear realizations of supersymmetry, a pro-
posal known as de Sitter supergravity [KQU15, BDK+15, GdMPQZ17],
which is not explicitly explored in this thesis. Nevertheless, in chapter
3 we present a no-go theorem that suggests the presence of undesirable
singularities in constructions that are often used to produce dS. Since it
was published, new evidence has appeared in this particular exploration
which we also discuss in context in chapter 3.

In the field of flux compactifications, it is known that with the pres-
ence of available (although not well understood) non-geometric sources,
moduli stabilization and uplifting can be achieved in twisted compactifi-
cations. Nevertheless, more satisfactory constructions can be performed,
and recent proposals have suggested unexplored compact spaces that im-
prove notably in consistency and provide reasonable scale hierarchies. In
this thesis we provide some techniques to explore the space of fluxes
systematically to produce examples of perturbatively stable dS near
Minkowski vacua.

In this work we will also focus on the problem of stability. It is
critical to find constructions whose lifetimes are consistent with our ob-
servable universe. The weaker type of stability, perturbative stability,
is the one we have been discussing: there is a multitude of modes for
which we have to induce a positive mass when it comes to a dS or
Minkowski spacetime. It is also possible to explore other types of maxi-
mally symmetric spacetimes, known as anti-de Sitter (AdS) spacetimes,
which have instead a negative cosmological constant. In this case, per-
turbative stability means having all masses above a negative value fixed
by the Breitenlohner-Freedman (BF) bound [BF82b, BF82a]. Neverthe-
less, the fundamental idea stands: if a field has a mass below this value
in a critical point, this is an unstable solution.

A stronger type of stability, non-perturbative or semi-classical sta-
bility, is even harder to establish for a specific configuration. Broadly
speaking, non-perturbative decays include the possibility of quantum
tunneling of a given critical point to other configurations with less en-
ergy. In order to claim that a point is semi-classically stable, one should
be able to consistently define a Hamiltonian with a lower-bounded spec-

13
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Figure 1.3. As we will see in chapter 5, there is a systematic mechanism
that allows us to find fake-superpotentials for perturbatively stable points in
AdS (V < 0). Here we plot a potential V and a representation of a couple
of fake-superpotentials, fA and fB , for points A and B, respectively. The
energy difference between −3f2

A and V can be read as the cost that a state in
the minimum A must pay to reach other points in the moduli space. In this
interpretation, one then concludes that A is stable. Identical arguments would
then follow for point B and its fake-superpotential.

trum, whose vacua precisely matches the critical point. If this is possible,
then one can classically define an energy in such set of configurations
and state that any transition would cost energy.

In practice, this is a extremely challenging problem, more so with
the presence of gravity. Usually, one instead attempts to find a decay
channel semi-classically and establish its probability as a smoking gun
for instabilities [CDL80, Wit82]. We will briefly explore some of the
arguments that lead to suggest supersymmetry most likely withstands
these processes, but, since it must be broken, it is necessary to improve
our understanding of stability in non-supersymmetric solutions.

In order to probe the nature of these concerns we can explore com-
pactifications with AdS as external space. A proposal that has been
developed in the previous decades states that one may be able to estab-
lish semi-classical stability with the help of a positive energy theorem.
It turns out that for some configurations one can define a lower-bounded
quantity that matches the energy and whose minimum is achieved in the
solution of interest. We will be more precise in chapters 3 and 4 but we
can mention three basic features. First, constructing this quantity can
be done in supersymmetric solutions with relative ease. Second, this
idea has been extended for non-supersymmetric solutions [Bou84] but,
as we will see, care must be taken before implying stability with this
argument. Third, it has been shown that this construction is equivalent
to the solution of a partial differential equation with specific boundary
conditions [ST06]. The solution is often called fake-superpotential and
we provide in this thesis a mechanism to find it (see figure 1.3).
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In this spirit, an important development in the last decade has been
the formalization of the weak gravity conjecture (WGC) [AHMNV07].
Originally, this proposal starts as an observation on charged or Reissner-
Nordström black holes. When its mass and charge match in magnitude
(M = |Q|) (in Planck units) the solution is called extremal. But if a
black hole acquires a mass below its charge, it becomes a naked singu-
larity which is undesirable from the point of view of general relativity.
The statement of the conjecture comes as a constraint for quantum the-
ories of gravity. More explicitly, it says in a consistent theory in which
there is a U(1) gauge field, there must exist a super-extremal state.
These are, in the language of the Reissner-Nordström geometry, parti-
cles with mass below the magnitude of its U(1) charge, i.e. |Q| < M .
These super-extremal objects provide a decay channel for charged (non-
supersymmetric) black holes avoiding the fate of undesirable remnants
or naked singularities.

This conjecture later evolved in a stronger statement, also known as
the swampland conjecture [OV16]. This new version indicates that only
supersymmetric states are and stay extremal. Hence, in a consistent
theory, super-extremal objects must exist so that non-supersymmetric
states can decay, rendering them unstable. In particular, this would
apply to vacua built out of non-supersymmetric sources. In chapter 6
we will present some of the explorations that we have done with the
objective of clarifying the nature of this conjecture. We find that, by
studying specific examples in flux compactifications, it is possible to
associate the appearance of perturbative instabilities of the open-string
spectrum with non-supersymmetric vacua, which do not manifest in
solutions that preserve supersymmetry [DD16].

The fundamental goal of this work is to study cosmological features of
string theory vacua as well as readdress standard gravitational problems
with the machinery of supergravity. To this purpose, we use both ana-
lytical and numerical methods corresponding to constructions of explicit
supergravity solutions (flux compactifications, harmonic superpositions,
instantons and probe excitations), applications of the embedding tensor
formalism and implementations of integrability techniques in Hamilton-
Jacobi systems. These can be used as top-down and bottom-up ap-
proaches to the identification and manufacture of models with signatures
of phenomenological interest that intersect many of today’s cosmology
and quantum gravity challenges.

In summary, exploring these territories seems both accessible and rel-
evant to advance our understanding of cosmology and its connection to
high energy physics. This thesis is divided as follows: In chapter 2,
we discuss some basic ideas behind string theory and specific flux com-
pactifications of type IIA and type IIB supergravity that we will use
repeatedly through this work. In chapter 3 we describe the basic setup
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involved in no go theorems for dS in supergravity, some of which were
discussed in paper I. In chapter 4, we propose our own 4D dS vacua,
in the context of non-geometric compactifications of type IIB. There we
show some simple but interesting techniques found in paper II that treat
the problem of perturbatively stable dS near Minkowski critical points.
In chapter 5, we go through the mechanisms explored in paper III used
to compute fake-superpotentials and discuss semi-classical stability of
AdS vacua in twisted compactifications of type IIA. In chapter 6, we
discuss the implications of the WGC and the role of open-string sector
excitations in the nature of the instabilities it predicts. These were ex-
plored with specific examples in paper IV with vacua in AdS4 and AdS7.
We conclude with an epilogue in chapter 7.
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2. Flux compactifications

In the search for a description of quantum gravity, string theory is
one of the most promising candidates. It is a formalism in which one-
dimensional (open and closed) strings are the fundamental objects that,
by propagating in time, draw two-dimensional surfaces known as world-
sheets. The worldsheet can be seen as a hypersurface embedded in a
d-dimensional spacetime, a target space, in which its dynamics are dic-
tated by its induced metric. Alternatively, the target space coordinates
can be seen as a set of d massless scalars living in the worldsheet (see
figure 2.1). Let us provide a brief introduction to the basics of this
topic and its connection to supergravity. While this can be found in
any standard book on string theory, this summary goes along the line
of [BLT12].

Building on this idea, one can put both bosonic and fermionic degrees
of freedom evolving in the worldsheet. This allows for the construction
of a supersymmetric theory, the Neveu-Schwarz-Ramond (RNS) super-
string1. From the point of view of the target space, one can get rid of
ghosts by picking the critical number of dimensions, d = 10. By mak-
ing use of the multiple symmetries enjoyed by this theory and picking a
gauge, the equations of motion can be reduced to those of a free wave
and a free dirac equation, for bosonic and fermionic fields respectively.

Contrary to the case of bosons, for fermionic modes in a closed string
one can consider periodic or anti-periodic boundary conditions. These
are known as Ramond (R) or Neveu-Schwarz (NS) conditions, respec-
tively, and can be implemented independently for left and right movers
in the closed string. More precisely, the spectrum of the closed string
can be obtained as the (level matched) tensor product of two open-string
spectra. This leads to the RR, NSNS, RNS and NSR sectors in the closed
string2.

Furthermore, by performing a truncation, known as Gliozzi-Scherk-
Olive (GSO) projection, one can get rid of tachyons and attain spacetime
supersymmetry. This is done by defining a notion of fermionic parity
and eliminating all the states in the spectrum being parity odd.

There are five supersymmetric string theories: Type IIA, Type IIB,
Type I, Heterotic-SO(32) and Heterotic-E8×E8. As theories of closed

1This is only one of formalisms used in describing the superstring.
2These are sufficient for the description of the spectra of type II theories.
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XM (τ, σ)←−−−−−−

Figure 2.1. An open string worldsheet. The functions XM (τ, σ) embed the
worldsheet, parameterized by (τ, σ), into the target spacetime, whose coordi-
nates are the XM .

strings, their massless spectra contain a spin 2 field, gMN , which cor-
responds to the graviton, an antisymmetric tensor field, BMN , and a
scalar, Φ, the dilaton. These are known as the universal bosonic sector
of superstring theories and, for type II theories, they are all part of the
NSNS sector.

Later we will see that massless RR fields may also enter in the actions
of some of these superstring theories. Given the fact that they enjoy
spacetime supersymmetry, it is to be expected that massless fermionic
fields are also produced in the closed string. These include one or two
gravitinos (spin 3

2) and dilatinos (spin 1
2). However, in classical solutions,

we freeze and set these spacetime fermions to 0.
Let us write the bosonic action for the universal bosonic sector of the

closed string. To do this, consider the scalar fieldsXM , withM = 0, ..., 9
living in a worldsheet Σ with metric hαβ , α = 0, 1. Including terms with
at most two world-sheet derivatives one finds

SΣ = − 1

4πα′

∫
Σ
dσ2

√−h
[
hαβ∂αX

M∂βX
NgMN (X) + α′Φ(X)R(h)

+ εαβ∂αX
M∂βX

NBMN (X)
]
, (2.1)

with R(h) the Ricci curvature of the worldsheet, the antisymmetric εαβ

with ε01 = 1√−h
and α′ ∼ l2s , with ls the string length scale. In reality,

this action should be seen as the first order in a expansion in
√
α′/L =

ls/L where L is a typical length scale of the background geometry, e.g.
its size or the radius of curvature. α′ � L2 is a limit of low energy
with respect to the string energy scale, in which strings look like point
objects. Massive states in the superstring spectrum result with masses
of the order l−1

s and are, hence, decoupled in this limit.
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The background fields gMN , BMN and Φ corresponding to massless
excitations of the string can be seen as couplings in the conformal the-
ory of scalars living in the 2D worldsheet. The requirement of conformal
invariance imposes their β-functions to vanish. These can also be ex-
panded in powers of

√
α′/L leading, at first order, to a set of equations

of motion. These can be reproduced equivalently with the spacetime
10D action

Seff =
1

2κ210

∫
d10x

√−ge−2Φ

[
R − 1

12
HMNOH

MNO + 4 ∂MΦ∂MΦ

]
,

(2.2)
where R is the Ricci scalar of the 10D spacetime and H = dB. One
can also incorporate the remaining massless bosonic fields corresponding
to each supertring theory consistently. The dynamics one reproduces
with this formalism happen to be precisely reproduced by supergravity
theories in 10D.

It is also worth mentioning that the superstring coupling, gs, which
plays a role in the string loop expansion, is then given by the vacuum
expectation value of the dilaton 〈Φ〉 with gs = e〈Φ〉. The action we have
derived should be seen as the tree level contribution in this expansion
and hence one should be careful to work in the limit gs � 1 in order to
trust the result.

Let us focus now on type II supergravity theories. Both type IIA
and type IIB enjoy maximal supersymmetry (N = 2) and allow for the
presence of RR fields. These are p-form gauge fields, usually denoted
with C(p), with even (odd) values of p allowed for type IIB (IIA). The
two supersymmetry generators are real and chiral (Majorana-Weyl) and
can be chosen to have opposite chirality (type IIA) or the same chirality
(type IIB). Their bosonic degrees of freedom can be arranged as

IIA :
{
gMN , BMN ,Φ, C

(1)
M , C

(3)
MNO

}
IIB :

{
gMN , BMN ,Φ, C(0), C

(2)
MN , C

(4)
MNOP |SD

} , (2.3)

where the subscript SD on C(4) stands for self-dual.
In order to study 4D low energy descriptions from 10D string theory

it is necessary to introduce compactifications, reducing the field content
of 6D manifolds. As it turns out, background values for the internal
space RR, NSNS fluxes and/or metric flux are fundamental in producing
potentials for many of the resulting moduli. In the present chapter we
will see some examples of 10D flux compactifications of massive IIA that
will later play a role in our study of semiclassical stability. In chapter 3,
we will also consider examples in type IIB to approach the problem of
finding 4D dS in the landscape, and in this chapter we will also explore
the basics of these solutions.
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We work in type II theories and, for computational purposes, we follow
the conventions of [Koe11], although with a change in the sign ofH. This
is a democratic string frame formulation of 10D supergravity. Chapter
3 is the exception as we work in Einstein frame. Here we quote some
basic results to see this prescription in action. Using the formal sum
C =

∑
pC

(p) of the RR fields and introducing the corresponding RR

forms F (p+1), we have (in the absence of sources)

F = dC − H ∧ C + F (0)eB , (2.4)

where F =
∑

p F
(p+1), eB is to be interpreted as the formal exponen-

tiation series of B and the F (0) term appears only in (massive) type
IIA. This expression is to be understood as the family of order by order
equations that one finds for each (p+1)-form. F (0) does not have prop-
agating degrees of freedom and corresponds to a constant m = F (0),
called the Romans mass. In the absence of sources and following this
formulation, the equations of motion for the RR fields and the Bianchi
identities take the form

(d + H∧) ∗10 F = 0 , (2.5)

(d − H∧)F = 0 . (2.6)

Even in the absence of sources, non-vanishing field strengths can man-
ifest in manifolds with non-trivial homology groups. After integration
over the corresponding non-trivial cycles, these (NSNS or RR) fluxes
follow the same constraints implied by Dirac quantization. These quan-
tized fluxes produce rich dynamics once one focuses on the dimensionally
reduced theory.

The p+1-field strengths corresponding to these fluxes will remain in-
variant upon the addition of non-trivial harmonic p-forms to their p-form
potentials. Physical degrees of freedom parameterize the deformations
which are not gauge transformations. From the point of view of the
4-dimensional theory, these appear generically as scalar massless fields
known as axions, which are a subset of the moduli of the theory. Other
possible moduli are the dilaton, the metric moduli that parameterize
deformations of the manifold and fields associated with the degrees of
freedom of branes and other sources.

The contribution to the 10D action of the field strengths comes generi-
cally in the form of quadratic terms which then couple all types of moduli
with the quantized fluxes. In addition, curvature terms will also mani-
fest moduli dependence. Together, they produce dynamics in terms of an
effective potential in the 4D theory and in the following sections we will
explore some particular realizations of this process. Unfortunately, these
massless degrees of freedom are usually not favored by phenomenology.
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Finding a potential which fixes their value and gives them massess in
an acceptable energy scale is the challenge of the moduli stabilization
program.

Let us consider a simple example of the flux compactification process.
We may pick the dynamics of an Einstein-Maxwell theory in six dimen-
sions and apply the dimensional reduction process down to 4D to find
the distinct contributions to the effective potential. This can be seen as
a particular case of the solutions presented first in [FR80]. We can write
the action as

SEM =
1

16πG
(6)
N

∫
d6x

√
|g|

[
R − 1

4F
2
(2)

]
, (2.7)

where G
(6)
N is the six-dimensional gravitational constant and F(2) is the

standard electromagnetic field-strength. To make contact with the topic
in question, we pick the geometry M4 × S2 and we add quantized flux
limited to S2 that satisfies ∫

S2

F(2) = nF , (2.8)

with nF an integer. We can be more precise and write the metric

ds26 = r−2 ds24 + r2
(
dξ21 + sin2 ξ1dξ

2
2

)
, (2.9)

where r is a moduli that controls the volume of the S2, ξ1 and ξ2 param-
eterize the internal manifold and ds24 describes the external manifold. As
we will see, the latter simply corresponds to AdS4, the only type of vacua
that we can reach with this compactification ansatz. F(2) can then be
written as

F(2) ∝ nF dξ1 ∧ sin ξ1dξ2 . (2.10)

While one can be interested in finding spacetime dependent dynamics
for r, there is a simple solution to the equations of motion with a fixed
value of this modulus. Both the Einstein and Maxwell equations can be
satisfied with

r ∝ nF and L ∝ n2
F , (2.11)

where L is the radius of AdS4 and appropriate proportionality factors
are omitted for presentation purposes. The same solution can be found
consistently following an alternative interpretation. One may simply
introduce the ansatz for the field strenght and metric in the 6D action
and find that the resulting 4D effective Lagrangian is of the form

L4D ∝ R(4) − 2Λ , (2.12)

where Λ is an effective potential for r that has the dependence

Λ ∼ − 1

r4
+

n2
F

r6
. (2.13)
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The first term in this expression comes from the contribution to the
Ricci scalar from the internal manifold while the second comes from the
square of the Maxwell field strength. The minimum of this potential
precisely matches the result of the 6D equations of motion, producing
a 4D vacuum with a cosmological constant that behaves as Λ ∝ −n−4

F .
By introducing spacetime dependence for r, one can also compute the
normalized mass for the modulus, L2r2

4
1
|Λ|∂

2
rΛ ∝ n4

F , where the factor
L2r2

4 comes from the corresponding kinetic Lagrangian.
One then finds that, with enough flux, the radius can be made large

(in fundamental units) producing small curvatures in this particular so-
lution. While this goes well in the spirit of validity regimes of super-
gravity, the curvatures of both the internal and external manifold are
comparable. Quantum effects are then of similar magnitudes in both
scales which makes it difficult to accept this classical computation as an
effective 4D field theory. In addition, as we pointed out, this type of
construction is limited to AdS vacua.

Methods have been developed in tailoring supergravity solutions ac-
cording to amount of supersymmetry, types of sources and internal man-
ifolds as well as many other parameters to obtain more theoretical con-
sistency and/or more interesting phenomenology. In the following sec-
tions we briefly discuss some approaches that tackle some of the issues
we find in the previous example. In particular, 10D supergravity offers
plenty more fields and degrees of freedom, and controlling this amount
of data without a more systematic approach would not be advisable.
The following constructions explore some of the tools that have allowed
to categorize and classify vacua in specific geometries and the moduli
and fluxes involved.

2.1 Massive type IIA on AdS4 × T 6/Z2
2

Let us briefly explore the basic ideas behind SU(3)-structure manifolds.
Here we follow the approach of [DDG15]. It has been noticed that
reducing type II SUGRA over such manifold can preserveN = 2 SUGRA
in 4D (i.e. 8 supercharges). A 6D manifold with SU(3)-structure is
characterized by the presence of two globally defined SU(3) invariant
fundamental forms: a holomorphic 3-form Ω and a real 2-form J . J
and Ω are not closed in general, and in fact, their failure to be closed is
parametrized by the 5 torsion classes which source curvature and specify
the SU(3) structure,

dJ =
3

2
Im

(
W 1Ω

)
+W4 ∧ J +W3 , (2.14)

dΩ = W1J ∧ J +W2 ∧ J +W 5 ∧ Ω , (2.15)
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where W1 is a complex 0-form, W2 is a complex primitive 2-form (i.e
W2 ∧ J ∧ J = 0), W3 is a real primitive 3-form (i.e. W3 ∧ Ω = 0) and
W4 and W5 are real 1-forms. We will focus on the case W4 = 0 = W5

which will suffice for the compactification of interest.
In terms of the fundamental forms, one can subsequently introduce a

metric. This can be accomplished with the use of the quantity

I n
m = λεm1m2m3m4m5n(ΩR)mm1m2

(ΩR)m3m4m5
, (2.16)

where ΩR = ReΩ , ΩI = ImΩ and λ is a moduli-independent normal-
ization factor that produces I2 = −1. The metric can then be obtained
as

g(6)mn = JmpI
p

n . (2.17)

The Ricci scalar R(6) for such 6D manifold can then be expressed as a
function of the torsion classes as

R(6) = 2
6d
6(W4+W5)+
15

2
|W1|2− 1

2
|W2|2− 1

2
|W3|2−|W4|2+4W4 ·W5 ,

(2.18)
where norms and inner products are understood to be contracted with
the metric gmn and are weighted with a factor of 1

n! with n the order of
the forms involved. For the norm of a complex form, it is understood
the contraction with the complex conjugate to produce a real quantity.

Here we use the string frame in the 10D description. We write a 10D
metric of the form

ds2(10) = τ−2ds2(4) + ds2(6) (2.19)

allowing us to fix τ in order to reproduce an Einstein frame formulation
of the 4D external space. Up to factors, R(6) then becomes part of the
4D scalar potential. From this point of view, we see clearly how the
torsion classes, which are generically moduli dependent, contribute to
the 4D dynamics.

The presence of torsion manifests in non-trivial geometry. We can
use a basis of left-invariant vielbein ηa to see this in the Maurer-Cartan
equations

d ηa +
1

2
ω a
bc ηb ∧ ηc = 0 . (2.20)

Twisted orbifold compactifications are then generated with constant
metric flux ω a

bc . In addition, we can turn on background fluxes along
the internal space for the set of type IIA gauge potentials: (NSNS) H(3)

and (RR) F(p) with p even.

For twisted X6 = T 6/Z2
2 the reduction can give rise to N = 2 su-

pergavity, more explicitly, a so-called STU model. Modding out by an
extra Z2 orientifold action further reduces to four supercharges (N = 1).
Upon reduction, the scalar sector of the N = 1 effective action contains
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seven complex fields or moduli. It is convention to denote them by
TA = (S, TI , UI) with A = 1, ..., 7 and I = 1, 2, 3. We can visualize
their role in the parametrization of the complexified Kähler form Jc and
complex 3-form Ωc with

Jc = B(2) + iJ (2.21)

Ωc = C(3) + ie−φΩR , (2.22)

where B(2) is the NSNS 2-form, C(3) the RR form and φ the dilaton. We
have then

Jc =
∑3

I=1 UIωI with ωI ∈ H(1,1)(X6)

Ωc = Sα0 +
∑3

I=1 TIβ
I with α0 ∈ H(3,0)(X6), β

I ∈ H(2,1)(X6) .
(2.23)

Furthermore, we can write the N = 1 4D superpotential as

WIIA =

∫
X6

eJc ∧ F +

∫
X6

Ωc ∧
(
H(3) + dJc

)
, (2.24)

with F the formal sum F =
∑

p F(p) of RR fluxes and similar inter-

pretation of eJc , such that the paring picks the 6-forms for integration.
With the relations we have provided, one finds WIIA to be a polyno-
mial linear in the fluxes and generically cubic in the moduli. Here we
use the identification in table 2.1 for the fluxes [DGR11, DDG15]. For
instance, turning on the Romans’ mass F(0) (or −a3) produces a cubic
term −a3U1U2U3. We follow the convention in [DDG15] by which the
axions are associated to Re(TA) and dilatons to Im(TA). Consequently
we write the Kähler potential

K =

7∑
A=1

log
[−i

(
TA − TA

)]
, (2.25)

and the standard N = 1 potential follows then from

V = eK
(
−3 |W |2 + KAB DAW DBW

)
, (2.26)

withKAB the inverse of the Kähler metric and DAW = [∂A + (∂AK)]W
the Kähler covariant derivative. The imaginary parts of the complex
fields carry geometric meaning and appear in the above Kähler poten-
tial, being constrained to be strictly positive. The real parts, on the
contrary, have no sign restriction. In the next section we will discuss
more explicitly the characterization and dynamics of N = 1 potentials
as well as the role of the moduli in the Kähler geometry.

Here we will focus on the isotropic case that corresponds to TI = T
and UI = U and similar identifications for the I-dependent fluxes. It is
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then possible to write a explicit realization of the SU(3) structure and
the set of fluxes in vielbien components. The details can be found in
[DDG15]. Here we limit to write the general form of the resulting 10D
background,

F(0) = f1 , F(2) = f2 J , F(4) = f3 J ∧ J , (2.27)

F(6) = f4 vol6 , H(3) = h1ΩI + h2
W3

|W3| , (2.28)

where f1, ..., f4 and h1, h2 are functions of the moduli, and the 10D
dilaton being a constant as well. It was shown that critical points of the
type IIA action of these form are also critical points of the effective 4D
potential obtained after dimensional reduction. In particular, spacetime-
filling sources are generically required in the form of smeared O6/D6
sources, demanding the need to add a local term to the source-less type
IIA action of the form

Sloc = −
∫

d10x e−φj(3) ∧ Ω ∧ vol4 , (2.29)

with

j(3) = j1ΩI + j2
W3

|W3| (2.30)

and j1, j2 linear functions of N
‖
6 = NO6‖ − ND6‖ and N⊥

6 = NO6⊥ −
ND6⊥ . These are, respectively, the number of O6/D6 sources parallel
and orthogonal the orientifold directions and can be computed in terms
of the fluxes with

N
‖
6 = 3b1a2 − b0a3 (2.31)

N⊥
6 = (2c1 − c̃1)a2 + c0a3 . (2.32)

As a consequence, the Bianchi identity for the F(2) RR form takes the
form

dF(2) − F(0)H(3) = j(3) . (2.33)

2.2 Type IIB on M4 × T 6/Z2
2

The T 6/Z2
2 orbifold and orientifolds thereof are very interesting setups

since the internal manifold is its own mirror. As a consequence, one can
have low energy effective descriptions which are related by dualities and
are still formally described by the same effective field theory, where only
the fields and the couplings have been transformed. In particular, this
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means that everything that we have introduced in the context of type IIA
compactifications with O6-planes can be reformulated or reinterpreted
in the language of type IIB compactifications with O3- and O7-planes.

Type IIB compactifications on T 6/Z2
2 with O3/O7-planes and D3/D7-

branes are N = 1 supergravity theories. In the isotropic case, we have
again three complex moduli, Ψα ≡ (S, T, U), that enjoy an SL(2)3

global symmetry. The S scalar is the axiodilaton and the role of the T
and U scalars is swapped with respect to the the type IIA case. This is,
T and U moduli are interpreted as Kähler and complex structure moduli
respectively.

The kinetic Lagrangian

Lkin =
∂S∂S(−i(S − S)

)2 + 3
∂T∂T(−i(T − T )

)2 + 3
∂U∂U(−i(U − U)

)2 , (2.34)

can be derived from the isotropic limit of the Kähler potential we wrote
in the previous section. In our convention, it is the imaginary part of
the moduli that manifests in the Kähler potential, so our choice for an
origin of moduli space is given by

S0 = T0 = U0 = i . (2.35)

Let us consider the different mechanisms giving rise to scalar potentials
for the (S, T, U) moduli. Since there are no vector fields available, a
potential cannot be induced by means of a gauging procedure. How-
ever, allowed deformations are given by WIIB, the superpotential, which
induces a scalar potential, just as we saw in the Type IIA case. It
is also possible to associate the scales of the gravitino and the spin-12
fermions masses with the modulus of the superpotential and its covari-
ant derivative, respectively. This fact will play a role in the realization
of a systematic procedure to separate and solve the equations of motion
and constraints for perturbatively stable de Sitter vacua that we will
present in chapter 4. In addition, we will be able to directly relate WIIB

and WIIA with an explicit identification of their fluxes.
Perturbative and non-perturbative contributions appear in general

the superpotential. In the perturbative category, we may include fluxes
like those we have already, such as NSNS and RR gauge fluxes, which
have a clear 10D interpretation. In our case, H(3) and F(3) fluxes are
allowed by the combination of sources. Compactifications with only F(3)

and H(3) fluxes were originally studied in [GKP02]. In chapter 3 we will
discuss the role of this work in the context of de Sitter proposals. The
corresponding superpotential is [GVW00]

WGKP = a0 − 3a1 U + 3a2U
2 − a3 U

3

− S
(
b0 − 3b1 U + 3b2U

2 − b3 U
3
)
. (2.36)
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couplings Type IIB Type IIA fluxes

1 Fijk Faibjck a0

U Fijc −Faibj a1

U2 Fibc Fai a2

U3 Fabc −F0 a3

S Hijk −Hijk −b0

S U Hijc −ωjk
a −b1

S U2 Hibc Qbc
i −b2

S U3 Habc Rabc −b3

T Qab
k Hibc c0

T U Qaj
k = Qib

k , Qbc
a ωka

j = ωaj
k , ωbc

a c1 , c̃1

T U2 Qib
c = Qaj

c , Qij
k Qci

b = Qjc
a , Qij

k c2 , c̃2

T U3 Qij
c Rijc c3

S T P ab
k −d0

S T U P aj
k = P ib

k , P bc
a −d1 , −d̃1

S T U2 P ib
c = P aj

c , P ij
k −d2 , −d̃2

S T U3 P ij
c −d3

Table 2.1. Mapping between unprimed fluxes and couplings in the superpoten-
tial in type IIB with O3 and O7 and type IIA with O6. The six internal direc-
tions are split into “ − ” labelled by i = 1, 3, 5 and “ | ” labelled by a = 2, 4, 6.
This identification can be found in [DGR11]. Here we adapted it to our type
IIA sign conventions.

The N = 1 potential produced by this superpotential has a so-called
no-scale symmetry due to the absence of the Kähler modulus T . This
implies the presence of massless directions in the scalar potential, as we
will see in a more general context in chapter 4.

Models with generalized fluxes

Starting from a geometric STU-model, one can start acting with SL(2)3

transformations to obtain dual models. In this way, it becomes natural
to conjecture the existence of a completely duality-covariant superpo-
tential [STW05] containing all possible STU-terms up to linear in S and
up to cubic in T and U .

To get a picture of how this works, we can start with a generic 3-form
flux on some 3-cycle, Hijk, in T6 [STW05]. Under a single T-duality
in one direction, metric flux is generated which produces twisting of

the topology of the form dxidxi →
(
dxi − ω i

jk xkdxj
)2

. This type of
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twisted torus manifolds appear in the context of the Scherk-Schwarz
construction [SS79] and have been widely used in the context of flux
compactifications. It is possible to pick a second direction that remains
an isometry of the metric and implement a new T-duality. This produces
a dual “torus” that possesses only a locally geometric description. This
new type of flux is often denoted as Q-flux. Despite the fact that after
this second T-duality there are no isometries left, persisting with a third
one produces a new configuration which lacks even a locally geometric
description and produces R-flux,

Hijk
Ti←→ ω i

jk

Tj←→ Qij
k

Tk←→ Rijk . (2.37)

One can study these fluxes from the point of view of the couplings
they generate in the superpotential, where contributions coming from
non-geometric fluxes generically entail terms with higher powers of the
moduli. Nevertheless, it should be pointed out that in order to main-
tain T-duality between type IIA and type IIB, non-geometric fluxes are
generally required. Similarly, invariance of the superpotential under S-
duality requires the introduction of P -flux, which partners together with
Q-flux when suffering the action of an SL(2) transformation.

Here we present the correspondence between generalized isotropic
fluxes and superpotential couplings appearing in the N = 1 effective
4D description. The complete generalized flux-induced superpotential
can be written as

Wpert. =(PF − PH S) + 3T (PQ − PP S)

+ 3T 2 (PQ′ − PP ′ S) + T 3 (PF ′ − PH′ S) , (2.38)

where3 the couplings in

PF = a0 − 3a1U + 3a2U
2 − a3U

3, PH = b0 − 3b1U + 3b2U
2 − b3U

3,

PQ = c0 + c1U − c2U
2 − c3U

3, PP = d0 + d1U − d2U
2 − d3U

3,
(2.39)

are introduced and explained in table 2.1, whereas the details of the
couplings in

PF ′ = a′3 + 3a′2U + 3a′1U2 + a′0U3, PH′ = b′3 + 3b′2U + 3b′1U2 + b′0U3,

PQ′ = −c′3 + c′2U + c′1U2 − c′0U3 PP ′ = −d′3 + d′2U + d′1U2 − d′0U3,
(2.40)

can be found in paper II. The first half of the terms (see table 2.1) are
characterised by lower powers in T , i.e. up to linear, and represent fluxes

3In principle, the truncation to the isotropic sector gives rise to 40 fluxes. All the
fluxes transforming in the mixed symmetry representations of GL(6) (i.e. Q, P and
their primed counterparts) have in fact two fluxes (c1, c̃1) etc. giving rise to one single
coupling (2c1 − c̃1) etc.. Without loss of generality, we set c̃1 = c1 etc..
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which admit a locally geometric interpretation in type IIB (unprimed
fluxes). The remaining ones (primed fluxes) appear with quadratic and
cubic behaviour in T , and represent additional generalized fluxes which
do not even admit a locally geometric description [ACFI06].

2.3 Massive type IIA on AdS7 × S3

In the study of stability of non-supersymmetric vacua, we will make use
of compactifications with AdS as external spacetime. Here we will briefly
mention the characteristics of an AdS7×S3 solution of interest [PRT15].
While it is possible to turn on other bosonic fields, we will focus on a
theory with only a metric and a scalar X that fully parameterizes the
internal manifold. In this solution, we have localized 6D-brane charge
that fills AdS7. Despite this apparent simplicity, it allows for the pres-
ence of two critical points, one supersymmetric and one that is not.
Stability relays then on the interaction between the brane charge at the
background fluxes.

In particular, we will explore in the following chapters several situa-
tions in which these setups of sources will have to be explored carefully
and we will try to follow distinct approaches to the identification of
instabilities in flux compactifications. In this particular case, the dy-
namics of this scalar field will be enough to establish the appearance
of tachyonic modes in the open-string-sector of the non-supersymmetric
solution.

The solution can be described in 10D massive IIA supergravity with
a background including the RR 1-form C(1), the Romans’ mass F(0), the
NSNS B(2) field, the dilaton Φ and the metric g. We write these as
[PRT15]

ds210 =
1

16
X−1/2 e2A ds2AdS7

+ X5/2dr2 , (2.41)

+X5/2 e2A
1− ξ2

16w

(
dθ2 + sin2 θ dψ2

)
, (2.42)

ds2AdS7
= e4z/L ds2Mkw6

+ dz2 , (2.43)

B(2) = −1

8
eA cos θ dr ∧ dψ +

e2Aξ
√

1− ξ2 sin θ

32 [ξ2 +X5 (1− ξ2)]
dθ ∧ dψ, (2.44)

Φ = Φ0 +
1

2
log

(
X5/2

w

)
, (2.45)

C(1) =
1

4
cos θ eA−Φ0

√
1− ξ2 dψ , (2.46)

F(0) = m , (2.47)
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× AdS7

S1

D6

D6

Figure 2.2. Geometry and sources of the AdS7×S3 type IIA compactification.
There is localized D6 charge in the north pole of the S3.

where

w ≡ ξ2 + X5
(
1 − ξ2

)
, (2.48)

L ≡ 8
√
15X4 (8X10 + 8X5 − 1)−1/2 . (2.49)

It is useful to change from the coordinate r to a coordinate y via

dr =
9

16

e3A√
β
dy , (2.50)

which allows one to analytically describe a family of solutions in terms
of a function β = β(y). In terms of the y coordinate, the north pole
of S3 is located at y = −2. A family of solutions was found in [PRT15]
defined by this system that introduce distinct amounts of positively and
negatively charged objects localized in the internal manifold.

Our case of interest is the AdS vacuum supported by a stack of anti-
D6-branes (D6) located at y = −2, which corresponds to the following
choice

β =
8

m
(y − 1) (y + 2)2 , (2.51)

ξ2 = − yβ′

4β − yβ′ , (2.52)

eA =
2

3

(
−β′

y

)1/4

, (2.53)

eΦ0 =
1

12

(
4β − yβ′)−1/2

(
−β′

y

)5/4

. (2.54)

The above background is a complete solution to the set of 10D field
equations, provided that the scalar X satisfies

1 − 3X5 + 2X10 = 0 , (2.55)
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which holds for X = 1 (SUSY extremum), and X = 2−1/5 (non-SUSY
extremum).

Since the above solutions are supported by spacetime-filling D6-branes,
they require the inclusion of a source term on the right hand side of one
of the Bianchi identities to yield something of the form of

dF(2) − F(0)H(3) = N(D6)j(3) , (2.56)

where j(3) denotes a 3-form current. Such D6-branes would then fill

AdS7 and be fully localized at y = −2 inside S3 (see figure 2.2).
In paper IV and chapter 6 of this work we review the 7D effective

description of the above AdS vacua within N = 1 gauged supergravity,
where we see it as the coupling of a gravity multiplet with three extra
vector multiplets.
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3. 4D de Sitter: No Go’s

There have been several approaches to the production of 4D vacua
with positive cosmological constant. Several constraints in the space
of higher dimensional constructions have been found [MN01, GKP02,
IP01, GMPW04, GMW04], showing that the majority of well under-
stood classical vacua is not simultaneously dS and perturbatively stable
(see also [And18, ABVR17, AB17]). From the point of view of attempts
to produce a quantum theory in a dS space-time, these difficulties can
be expected, since definitions for a S-matrix or correlation functions are
in a natural conflict with the asymptotics and measurable properties of
this geometry [Wit01, Ban01].

In string theory, one of the most popular alternatives was presented in
[KKLT03], in which supersymmetry is broken and an arbitrarily small
and positive 4D cosmological constant is produced. However, this de-
scription does leave some questions unanswered. A first issue to look
into is related to the supersymmetry breaking process involved. Break-
ing supersymmetry can be achieved by putting together sources which
preserve different supercharges. With branes of opposite (brane) charge,
one generically expects a perturbative instability of the construction as-
sociated to the possibility of sources moving towards each other and
annihilating. An analogous instability with fluxes and branes of oppo-
site charge (anti-branes) is harder to establish. A brane-flux annihilation
process would start first with the nucleation of branes from the fluxes
which then annihilate with the anti-branes. While meta-stability of such
configurations is up for debate in many cases, it can be unquestionably
useful: constructing de Sitter vacua [KKLT03], as a channel for brane
inflation [KKL+03], in holography [KPV02, ABFK07, KP11] and in the
construction of non-extremal black hole micro-states [BPV12].

3.1 The KKLT construction
Let us focus on applications for dS constructions of [KKLT03]. The stan-
dard example uses the Klebanov-Strassler (KS) model [KS00] and places
an spacetime-filling anti-D3-brane (D3) at its tip. Let us go through each
of the basic ingredients.

The KS background [KS00] contains the geometry of a deformed coni-
fold with a base of topology S2 × S3 as internal space. F5, F3 and H3
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fluxes live in this six-dimensional non-compact Calabi-Yau manifold and
are enough to support this background.

The work in [GKP02] showed how the insertion of negatively charged
objects (such as an O3-plane) allows for the satisfaction of the tadpole
conditions even in the case of a compact manifold. To be more precise,
let us consider the Bianchi identity for the F5 flux,

dF5 = H3 ∧ F3 + Qloc
3 δ6 (D3/D7/O3) , (3.1)

whereQloc
3 is the net induced D3 charge of spacetime filling point sources.

By integrating over the internal manifold, the left hand side of this re-
lation vanishes for a compact manifold. Inserting D7-branes, O3-planes
(or anti-D3-branes) gives then more freedom to balance out the contri-
bution coming from the background fluxes. Unfortunately, even in this
compact presentation, the Kähler moduli remain as runaway directions,
a fact we observed previously in their effective 4D description.

In [KKLT03] stabilization is achieved through the introduction of non-
perturbative terms in the superpotential. As a consequence, a supersym-
metric configuration with a negative cosmological constant is attained.
This correction is motivated with phenomena such as gaugino conden-
sation or with D-brane instantons producing a correction of the form

δW ∝ PZ eiαT , (3.2)

with T the Kähler modulus, PZ a holomorphic function of the remaining
moduli and α > 0. In the spirit of treating the stability of T explicitly,
it is argued in [KKLT03] that PZ can be considered constant. Finally,
the uplift to de Sitter is made with the addition of the anti-D3-brane
charge. The estimated raise in the vacuum energy goes as

δV ∝ D

Im [T ]3
, (3.3)

with D a quantity that depends on the number of anti-D3-branes and
on the warp factor at the end of the KS throat.

3.2 The singularity
Supergravity solutions [MSS11, BGH10] revealed that the infra-red re-
gion of the KKLT construction has a diverging 3-form flux density

e−φ|H3|2 → ∞ . (3.4)

In the last years, a significant effort has been put in discerning the na-
ture of these potential instabilities and establishing how hazardous they
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really are. Earlier literature had evidence of D3-branes in the KS back-
ground to be present beyond the linearisation [Mas12, BGKM13a] and
partial smearing [GJZ13] limits. Other setups with anti-branes in flux
backgrounds led to similar results [GGO12, BGH11, Mas11, BDJ+11,
BDJ+12, GOP13, CGH13, Bl̊a13, BGKM14].

Heuristically, a singularity can be expected as the counterbalance to
the pile-up of flux produced by gravitational and electromagnetic at-
traction between opposite charge fluxes and sources [DKV04, BDJ+10,
BDJ+11, BDVR13]. If it is strong enough to generate a balance of
forces, one would expect an increased but finite flux density. On the
other hand, in the case of D3-branes, the energy density is integrable
[BGH10] and does therefore not immediately invalidate anti-branes as an
uplifting mechanism [Jun14]. Furthermore, the solution is well-behaved
in the UV and stands some very non-trivial tests [Dym11, DM13].

In order for the solution to be physical, the singularities arising at the
classical level should be resolved in string theory by some mechanism.
A solution comes with the Myers effect [Mye99] in which a Dp-brane
polarizes into a higher dimensional object: a (p+2)-brane. The infinite
result that we had with a point-like anti-Dp-brane might then be avoided
with finite pile-up of the bulk fluxes once attraction is spread out over
additional directions [PS00].

While some works have found some polarization channels to be forbid-
den [BJK+12, BGKM13b, BGKM14], the work of [KPV02] explored the
possibility of the D3-branes in the KS geometry polarizing into spherical
NS5 branes. This 5-brane is wrapped on a S2 inside the S3, leaving a
transverse direction (in the S3) which parameterizes the contribution
of the source in a probe computation. Initially, at one extreme of this
segment, say the south pole, the anti-D3 charge remains but if the source
moves to the north pole, the background fluxes are reduced in brane-flux
annihilation, effectively becoming a supersymmetric state with only D3
charge. This less energetic state would also lose the desired uplifting of
the cosmological constant. Nevertheless, [KPV02] computed an effec-
tive potential for this dynamics showing that for a small enough anti-D3
charge the NS5 has a local minimum in the south pole configuration and
for any quantum tunneling the decay rate is highly suppressed.

Recent evidence [CMDvRV16b] has shown that this polarization chan-
nel is indeed viable if only with a resulting geometry that deviates from
the one predicted by [KPV02]. Despite the fact that the radius of the
NS5 scales faster with the anti-brane charge than in the probe result,
this polarized state still seems to be meta-stable avoiding the infinite
pile-up. This is even more surprising considering the fact that further
analysis of backreacted solutions [DGVR17] has provided evidence that
singularities persist for the cases of D6, D5 and D4-branes.
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Renewed interest in the physics of antibranes has lead to contri-
butions like [MMP+15] proposing a brane-effective action for describ-
ing the physics of antibranes in the weak coupling regime opposite to
that of [BGKM13a, BGKM13b, BGKM15]. In addition, several works
[KQU15, BDK+15, GdMPQZ17] propose an alternative scenario that
could scape the instability of antibranes: an anti-D3-brane placed on
top of an orientifold plane. In these, it is suggested that the low energy
limit of this configuration can be described with the help of a Volkov-
Akulov mechanism that has acquired the name of de Sitter supergravity.

3.3 A no-go for finite T
Generically, it is hard to compute fully back-reacted solutions consis-
tent within the validity limits of supergravity. Nevertheless, it is often
unnecessary to have the complete solutions to establish the presence of
3-form singularities. One can extract fundamental features of a solution
and use the equations of motion to proof that, under certain assump-
tions, a divergent behavior must exist. These are ‘no-go theorems’,
which have been established in different settings of solutions in type IIA
[BDJ+11, BBDVR13, BGKM13a, GJZ13] and M-theory [Bl̊a13].

In paper I we presented a no-go theorem for finite temperature T �= 0
arguing for the presence of singularities. In there the assumptions were
laid clearly and it was pointed out that while all the hypothesis were
well motivated, one of these could not be taken for granted. This was
emphasized later in [CMDvRV16b], in relation to the results in [Har15].
While this is not considered a settled issue, this could potentially give
a loophole for the case of D3-branes. Nevertheless, it should be pointed
out that [DGVR17] does establish the possibility of distinct arguments
signaling the instability of D3-branes in the KS throat. Their reasoning
follows Smarr-like relations for the Arnowitt-Deser-Misner (ADM) mass,
suggesting that one may be able to establish instabilities in the anti-
brane proposal given the innate unbalance between the gravitational
and electromagnetic contributions to the on-shell action.

Keeping in mind the above caveats, in paper I we present analytic
arguments showing that, for fully localised anti-branes, turning on a fi-
nite temperature does not resolve the singularities. The fundamental
starting point is the work done in [GJZ13]. By using a general approach
to the dynamics of localized sources and the 10D equations of motion,
very interesting relations were found between the cosmological constant
of the spacetime corresponding to the word-volume of the sources and
their corresponding on-shell actions. This was accomplished by com-
puting suitable combinations of the equations of motion and picking a
specific gauge that gets rid of additional contributions from the back-
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ground fluxes. In [GJZ13] this was done in the context of a compact
external space. This master equation allowed them to produce a no-go
for configurations of this type, by indicating that a positive cosmological
constant is associated with a divergent behavior of the 3-form flux.

On the other hand, in paper I, we instead considered the case of a
non-compact geometry and we explored both the vanishing and finite
T cases. In doing so, an additional boundary term appears in the mas-
ter equation. By integrating over specific regions and under specific
assumptions about the background, one can still reproduce the diver-
gent behavior found in the compact case. Even more, we were able to
relate the boundary term to the ADM mass in the case of a vanishing
cosmological constant, which points to the possibility of using charges
of the geometry to study the fully non-linear back-reacted solution and
establish similar results.

36



4. 4D de Sitter: Type IIB and non-geometric
fluxes

In the present chapter we summarize some explorations of the landscape
of dS vacua in (non-geometric) compactifiactions of 10D SUGRA. After
dimensional reduction, one may use the dynamics of the remnant scalar
degrees of freedom to explore potential cosmology-inspired models. Re-
cent efforts have been made in developing systematic tools to explore
perturbatively stable critical points in the resulting effective potentials
for the moduli. Here we display some of the mechanisms that have been
developed in this same spirit.

Previous studies of dS in this context [dCGM10, DD13, BDD13,
DD14, BRZ14] have established a feature of critical points in the land-
scape with positive cosmological constant. In the space of parameters
(such as fluxes or superpotential couplings), one tends to find localized
thin regions of stable dS near Minkowski solutions. Deforming these
Ricci-flat solutions is then a natural starting point for the generation
and characterization of dS vacua.

4.1 Solving constraints linearly
In [KLVW14, MVW14] a procedure was established to approach the
problem of dS vacua more systematically. Due to the form of the poten-
tial (2.26), finding critical points by directly exploring the moduli space
is a non-linear problem. Fortunately, in some cases one can transform
this system into an linear set of equations in the fluxes. This is possi-
ble for any supergravity model in which the scalars span a homogenous
space. In those, a general non-compact SL(2)3 duality transformation
takes any point in moduli space to the origin (2.35) (see figure 4.1).
Due to the general form of the scalar potential, the formulation of its
extremality conditions at the origin is just given by a set of six algebraic
quadratic equations in the superpotential couplings.

But one can go even further. In [KLVW14], it was shown that one
can use all derivatives of the superpotential evaluated in the origin up
to third order in a several-step-procedure to turn this into a linear prob-
lem. Specifically, if one starts out with the following arbitrary cubic
superpotential

W (Φα) = W0 + WαΦ
α +

1

2!
Wαβ Φ

αΦβ +
1

3!
Wαβγ Φ

αΦβΦγ , (4.1)
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Figure 4.1. In the plot on the left, we have a potential V with a perturbatively
stable dS point and a family of critical Minkowski points with a flat direction.
In this picture, one would have to move in moduli space to go from critical
Minkowsi to critical dS through a unique potential function, i.e. the fluxes in
the compact space (that parameterize V ) stay fixed. On the right we present
an alternative picture that we use in our work. We stay in a fixed point of the
moduli space, say (φ1, φ2) = (0, 0), and then we variate the fluxes (and hence
the potential function) in such a way that we stay critical through the whole
trajectory in (φ1, φ2) = (0, 0). By using our techniques, in this process the
potential becomes positive and the point becomes perturbatively stable in all
directions. This picture is known as the going-to-the-origin formulation.

where Φα ≡ (S − i, T − i, U − i), and all W derivatives appear as
arbitrary complex numbers, the problem becomes tractable. This is
done by

• Choosing W0, which fixes the gravitino mass scale,
• Choosing the Wα, which fix the SUSY-breaking scale parameters
Fα, with

Fα = DαW = Wα +KαW, (4.2)

• Solving the equations of motion, DαV = 0, which are linear in the
Wαβ ’s, needing at most 6 real parameters to be solved,

• Tuning the (non-normalized) mass matrix

(
m2

)I
J
=

(
Kαγ̄ Vγ̄β Kαγ̄ Vγ̄β̄

Kᾱγ Vγβ Kᾱγ Vγβ̄

)
, (4.3)

to become positive, using the fact that it is linear in the Wαβγ ’s.
Due to the homogeneity constraint and the form of the Kähler poten-

tial (2.25), we must restrict ourselves to superpotentials that are first

order polynomials in S, i.e. WSS = WSSS = WSST = WSSU
!
= 0.

This implies that the most general parameterization of the form (4.1)
compatible with the class of STU-models presented in chapter 2 counts
16 complex parameters, of which 1 is given by W0, 3 by Wα, 5 by Wαβ

and the remaining 7 by Wαβγ .
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Perturbatively stable dS near

SUSY Minkowski No-scale Minkowski

Properties
W0 = 0 = Wα

α = S , T , U

W0 arbitrary

WS = −KS W0

WU = −KU W0

WT = WTα = 0

WTαβ = 0

α = S , T , U = β

These Mkw points satisfy DαV = 0 and m2 ≥ 0

2 massless directions 2 or 3 massless directions

Moving to dS
W0 = κ0 ε

Wα = κα ε

WS = −KS W0 + κS ε

WT = κT ε

WU = −KU W0 + κU ε

DαV = 0 uses generically 6 real components out of 10 Wαβ

Uplifting mass

1) Vαβ = 0

(degeneracy condition)

2) m2
sG > 0 if

neff > 3(1 + γ)

(inequality for the κ’s)

Vαβ = 0 only consistent

with a Mkw with

2 massless directions

V > 0 becomes an inequality for the κ’s

Vαβ = 0 uses generically 12 real comps out of 14 Wαβγ (if used)

Table 4.1. Characterization of SUSY and no-scale Minkowski and their de-
formations to perturbatively stable dS.

In total these are 32 real parameters, a number we found already
when exploring the set of real superpotential couplings in chapter 2,
when we discussed the most general duality-invariant superpotential for
our STU-model. The mapping relating generalized fluxes to complex
superpotential derivatives is, in fact, linear and invertible. This in par-
ticular implies that, whenever a stable dS solution is found for a certain
superpotential derivative configuration, this will always admit an STU-
realisation in terms of 32 generalized perturbative fluxes.

4.2 Perturbatively Stable dS near Minkowski vacua
In paper II, we focused on dS vacua near SUSY Minkowski and no-scale
Minkowski. In table 4.1, we have the fundamental ideas of this work.
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Further applications and explicit examples can be found in the paper
itself.

In the context of these polynomial superpotentials with generalized
fluxes, we have very explicit parameterizations of these Minkowski vacua.
On one hand, for SUSY Minkowski, we set vanishing supersymmetry
breaking parameters. In addition, due to the form of the potential, the
superpotential must also vanish in order to have a vanishing cosmolog-
ical constant. These conditions are only possible if the first derivatives
vanish. On the other hand, no-scale Minkowsi is characterized by the
vanishing of all the T -derivatives as well as vanishing supersymmetry
breaking parameters for S and U . Both of them are solutions of the
equations of motion and, in our context, SUSY Minkowski always has
two massless directions while no-scale Minkowski possesses either 2 or 3
massless directions.

Deforming these solutions to obtain a non-vanishing cosmological con-
stant can be achieved with a single perturbation parameter ε, introduc-
ing deviations in the zeroth and first order derivatives of the superpo-
tential, as shown in table 4.1. Here we denote these deformations with
κ’s, which enter as a quadratic polynomial in the potential. The second
derivatives Wαβ will contain 10 real parameters of which we can use 6
to solve the linear problem corresponding to DαV = 0. By following
this procedure, the equations of motion will remain solved for arbitrary
values of ε, although in principle we are mostly interested in nearby per-
turbatively stable de Sitter. It is to be expected that for large ε, the
solution turns unstable or attains a non-positive cosmological constant.

The positivity of the mass matrix can be approached in several ways.
One possibility is to make use of a degeneracy condition, Vαβ = 0, which
makes the mass-matrix block diagonal and also turns out to enforce a
pairwise organization of the mass spectrum. This condition is then ir-
reconcilable with no-scale Minkowski containing 3 massless directions.
Nevertheless, in the case of SUSY vacua, it is a very useful tool. En-
forcing it is relatively simple since this is a linear system in the Wαβγ ’s.
The outcome is a family of solutions with only 3 distinct masses. The
massless pair corresponds to the sGoldstini, whose mass can be uplifted
by using a bound for their average (see paper II). In doing so, the result
is a stable dS parameterically close to a SUSY Minkowski.
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5. Semi-classical stability: Positive Energy
Theorems

Establishing semiclassical stability for a specific configuration of fields
in curved space is not a trivial task. In practice, one may be able to
compute whether a system is perturbatively stable if one has access to
all the possible field excitations around a critical point. Even if that can
be a challenge, in principle this reduces to finding no tachionic masses in
whichever potential V describes their dynamics. This is, in Minkowski or
de Sitter, finding that the eigenvalues of VIJ are all above or equal to 0.
Or in anti-de Sitter, finding that the eigenvalues of the normalized mass2

matrix |V |−1KIJVJK are all above or equal the Breitenlohner-Freedman
(BF) bound [BF82b, BF82a], − D−1

2(D−2)κ
2, with KIJ the kinetic matrix

and D the spacetime dimension1.
Still, this will not guarantee the absence of non-perturbative decays to

distinct configurations. It was first suggested for the case of supergrav-
ity theories that supersymmetric vacua with asymptotic anti-de Sitter
or Minkowski enjoyed full stability. This was argued with the help of
a positive energy theorem: in these solutions one finds that the time
component of the ADM momentum is semi-positive and vanishes only
at the critical point. Any other state is then at a higher energy and
semiclassical stability is secured.

It was later found that this theorem still has caveats. For instance, the
conclusion heavily relies on comparing systems with the same asymptotic
geometry. Later examples [Wit82] show configurations in which decays
through KK instantons are possible to states with distinct topology to
the original vacuum. Even more, there is also the possibility of vacua
with negative energy failing the criteria presented in [BD68]. Caution for
arguments in favor of this approach is then necessary: the validity of a
positive energy theorem should be studied carefully and, quite possibly,
case by case.

The prospect for non-supersymmetric theories is even more compli-
cated. The expectation from the point of view of [Bou84] is that under
certain circumstances it is possible to extend the protection enjoyed by
SUSY. With the help of a Witten spinor, a semi-positive quantity can
be built in the cases when the vacuum enjoys perturbative stability. In

1This particular expression applies for scalar fields, which will be the focus of our
discussion, but for general states it acquires spin dependence.
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[AHHM07] this argument was further explored, stressing that one can
only relate this quantity to the energy if additional boundary conditions
are taken into account that bound it from below.

Given the potential effectiveness of this criterion, it was established
in [ST06] the equivalence between this approach and the possibility to
construct a function of the fields called a fake superpotential. This is a
solution f to a partial differential equation of the form,

V = − 3 f2 + 2 KIJ ∂f

∂φI

∂f

∂φJ
, (5.1)

where I, J... run over the scalar field content and KIJ is the correspond-
ing kinetic matrix. As we will see, this expression can be read as a
relaxed version of the N = 1 supergravity potential V and it is au-
tomatically satisfied if f is built out of a holomorphic superpotential.
The given vacuum would then appear supersymmetric in the sense that
f (together with V ) would be critical at that point. As it turns out,
this equation also appears in the study of flat domain walls between
vacua via the Hamilton-Jacobi equation, a field that also pondered the
questions of stability.

Since an interesting overlap comes from the combined approach, here
we discuss their interplay in a generic scenario. The basic setup is well
known since [CGS93]. We can write a domain wall ansatz interpolating
between two solutions,

ds2 = gμν dxμdxν (5.2)

= dr2 + e2a(r) g̃
(3)
bc dybdyc (5.3)

= dr2 + e2a(r)
[
− dt2 + S(t)2

(
dρ2

1− kρ2
+ ρ2dϕ2

)]
. (5.4)

This can be used for domain walls with Minkowski solutions as well, but
we will focus on AdS4 critical points. Flat domain wall solutions extend
through the whole interval r ∈ (−∞,∞), but domain walls with positive
curvature start from a finite r− and terminate at r → ∞ (domain walls
with negative curvature can be covered as well, see [CGS93]). We will
see this later explicitly, as has also been observed in the literature (e.g.
[BEFP14]).

The dynamics we intend to describe is simply given by Einstein-
Hilbert gravity plus n scalars. We intentionally avoid making explicit
use of supersymmetry as we intend to describe potential decays from un-
stable (non-supersymmetric) solutions. We have the Gibbons-Hawking-
York boundary terms SGHY and counter terms,

S = SEH + SGHY + Sct + Sφ , (5.5)
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with

SEH =
1

2

∫
M

d4x
√−g R , (5.6)

SGHY =

∫
Σ−

d3y
√

|γ| ΘΣ −
∫
Σ+

d3y
√

|γ| ΘΣ , (5.7)

Sct =

∫
Σ+

d3y
√

|γ| (α + β RΣ) , (5.8)

Sφ =

∫
M

d4x
√−g

[
− 1

2
gμν KIJ ∂μφ

I ∂νφ
J − V (φ)

]
, (5.9)

=

∫
M

d4x
√−g

[
− gμν KAB̄ ∂μΦ

A ∂νΦ̄
B̄ − V (Φ, Φ̄)

]
.(5.10)

Σ− and Σ+ are timelike hypersurfaces defined by h(r) = r = r±
with (r−, r+) the interval covered by r. We denote with M the volume
surrounded by these boundaries. Sct contains, up to this point, the stan-
dard minimal AdS4 counter terms for a flat domain wall. The remaining
notation goes as follows: A normal vector to any of those hypersurfaces
can be written as nμ = gμν ∇ν h = δμr . The induced metric in Σ is

γbc = e2a(r) g̃
(3)
bc or, alternatively, we may work with γμν = γbc δbμ δcν .

We write the extrinsic curvature as ΘΣ μν = − γτ μ ∇τ nν and direct
computation shows that ΘΣ bc = − a′ γbc. It is interesting to see the
full variation of the action,

δS =
1

2

∫
M

d4x
√−g (Gμν − Tμν) δg

μν +

∫
M

d4x
δSφ

δφI
δφI (5.11)

+
1

2

∫
Σ+

d3y
√

|γ|
(
Θbc

Σ −ΘΣγ
bc + αγbc − 2βGbc

Σ

)
δγbc

−1

2

∫
Σ−

d3y
√

|γ|
(
Θbc

Σ −ΘΣγ
bc
)
δγbc ,

where we have written, as usual,

Gμν = Rμν − 1

2
gμν R , (5.12)

GΣ bc = RΣ bc − 1

2
γbc RΣ , (5.13)
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and, following the prescription in [BK99], we introduce the stress energy
tensors

Tμν = − 2√−g

δSφ

δgμν
, (5.14)

T bc
Σ+ =

2√|γ|
δS
δγbc

∣∣∣∣
Σ+

= Θbc
Σ − ΘΣ γbc + α γbc − 2 β Gbc

Σ ,(5.15)

T bc
Σ− = − 2√|γ|

δS
δγbc

∣∣∣∣
Σ−

= Θbc
Σ − ΘΣ γbc . (5.16)

At this point it is always possible to discuss this problem in what is
known as the thin wall approximation. This is done by solving the
equations in motion in two distinct regions, assuming a fixed critical
value of the moduli, and then connecting the two solutions with the
standard junction conditions. In doing so, one relates the discontinuity
in the metric with the surface stress-energy tensors we have computed
(up to counter-terms). With the help of the latter, it is possible to
directly assign a tension to the domain wall that unfolds in this discrete
jump. While this has been done in the past, the intention in this work
is to treat the complete problem of a continuous solution between two
critical points.

In order to obtain consistent equations of motion, one must enforce
the condition

S̈

S
= q0 =

k + Ṡ2

S2
. (5.17)

The solutions for the distinct possible values are summarized in [CGS93].
The fundamental cases of interest are, up to diffeomorphisms,

q0 = 0 , k = 0 , S = 1 , (5.18)

and
q0 > 0 , k = q0 , S = cosh(

√
q0t) . (5.19)

The former is a flat static wall and the latter is a time dependent bubble.
Due to this condition we find [BK99]

T bc
Σ+ = γbc

(
2 a′ + α + 2 β q0 e−2a

)
, (5.20)

T bc
Σ− = γbc

(
2 a′

)
. (5.21)

In the thin wall limit, [CGS93] discusses how solutions with q0 > 0
could represent false vacuum decay (this will be the case if the tension
violates the Coleman-De Luccia bound [CDL80]), while flat walls with
q0 = 0 represent static and stable configurations (which saturate the
Coleman-De Luccia bound). Hence, in this framework, one can describe
the transition from an unstable critical point towards a different solution
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via a curved domain wall, consistent with the intuition of true vacuum
bubbles nucleating.

For future reference, we write here how the equations of motion look
like after the previous identifications have been made,

0 = −2q0e
a +

d

dr

(
a′e3a

)
+ e3a

(
1

2
R− 1

2
KIJφ

′Iφ′J − V

)
, (5.22)

0 = 3q0e
−2a − 3a′2 +

1

2
KIJφ

′Iφ′J − V , (5.23)

0 = φ′′I + 3a′φ′I + ΓI
JLφ

′Jφ′L −KIJ∂JV , (5.24)

with ΓI
JL = 1

2 KIM [∂JKLM + ∂LKJM − ∂MKJL] .
We can also perform a basic analysis of the required holographic renor-

malization [Ske02, BK99] that provides some intuition of the dynamics
that distinguish flat and curved walls. Here we only aim for a minimal
addition of counterterms that take care of the most obvious divergences,
but notice that in general other contributions can appear in a more
complete case by case treatment. Following that logic, we can pick the
counterterms to be α = − 2

l+
and β = − l+

2 , with Λ± = − 3
l2±

the

cosmological constant on each side of the domain wall. As we will see,
this choice is consistent since we may write the on-shell action also as

SOn-Shell = 2 q0

∫
d3y

√
|g̃(3)|

{∫ r+

r−

ea dr − l+ ea(r+)

}
(5.25)

+

∫
Σ+

d3y

√
|g̃(3)| e3a

(
2 a′ − 2

l+
− l+ q0 e−2a

)

−
∫
Σ−

d3y

√
|g̃(3)| e3a (

2 a′
)
.

We can now analyze this result assuming optimal conditions. With
optimal we mean two things. First, a smooth potential which may re-
quire minimal or none V -dependent counter terms. Second, a solution
in which a approaches the V = Λ±, φ′ = 0 limit fast enough2. In a way,
we are exploring the thick domain wall as a perturbation from the thin
domain wall, which is already well understood.

In the case of a flat domain wall (5.25) produces a finite result. On the
one hand, with q0 = 0, the bulk term in the previous equation vanishes.
On the other, we can see that the asymptotic behavior of the boundary
terms is acceptable as long as e2a approaches e2r/l+ when r → ∞ and

2This limit is the solution of (5.23) for a in the thin domain wall limit which can
be computed analytically in a straightforward way. Close to the ends of the domain
wall, the functional form of the solution should depend only on whether the wall is
flat or curved.
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e2r/l− when r → −∞ fast enough. This is, the expected limit for pure
AdS.

For q0 > 0, this regularization also cures divergences. The expected
asymptotic behavior of a in the IR and UV is given by the solution of
the EOMs with V = Λ± = −3/l2±, φ′ = 0, i.e.

ea ∼ l±
√
q0 sinh

[
r − r0
l±

]
. (5.26)

This expression vanishes when r = r0 and therefore, as we have dis-
cussed, there is a finite lowest value for r, r−, which defines the IR limit
of the curved domain wall. At this point, Σ− contracts to a point. As-
suming smoothness, in the on-shell action we are then left only with
the UV boundary contribution and the bulk integral. In turns out that,
with this asymptotic behavior of a, the bulk integral will be convergent
in the IR. In the UV the integral diverges but the combination inside
the brackets in (5.25) is finite. On the other hand, for the UV boundary,
it turns out that both a′ and the counter terms have finite contributions
in the UV limit and put together they vanish for smooth and converging
solutions.

5.1 The Hamilton-Jacobi Equation
Here we will briefly discuss how the Hamilton-Jaccobi formalism is ex-
tremely useful, not only in the computation of domain wall solutions,
but also in the construction of fake superpotentials. This intimate re-
lation has been explored in the last decades and here we will use a
systematic procedure for solving this equation in the present context,
and connecting it to the discussion of stability.

The effective action can also be written as

S = SEH + SGHY + Sct + Sφ =

∫
M

d4x

√
|g̃(3)| L + Sct , (5.27)

with

L = e3a
(
1

2
R− 1

2
KIJφ

′Iφ′J − V

)
+ e3a∇μ [(−ΘΣ)n

μ] . (5.28)

This Lagrangian density is just

L = 3a′2e3a + 3q0e
a − 1

2
e3aKIJφ

′Iφ′J − e3aV , (5.29)
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and the conjugate momenta to a and φI are then

pa =
∂L

∂a′
= 6 a′ e3a , (5.30)

pφ I =
∂L

∂φ′I = − e3a KIJ φ′J , (5.31)

while the corresponding Hamiltonian is

H = pa a′ + pφ I φ′I − L (5.32)

=
1

12
e−3a p2a − 1

2
e−3a KIJ pφ I pφ J − 3 q0 ea + e3a V.

Once on-shell, this is a vanishing function due to the equation of motion
(5.23), what is often known as the zero energy condition. The Hamilton-
Jacobi equation for Hamilton’s principal function SHPF = F (a, φ) −
Ψ r is then

Ψ =
1

12
e−3a

(
∂F

∂a

)2

− 1

2
e−3a KIJ ∂F

∂φI

∂F

∂φJ
− 3 q0 ea + e3a V.

The solutions of interest correspond to Ψ = 0. For non-zero values
of q0, this equation is not separable with ansatz of the form F =
e3a (f(φ) + h(a)). On the other hand, the equation is easily separable
if q0 = 0.

In the case q0 = 0, we may write

F = ± 2 e3a f(φ) , (5.33)

and hence

∂F

∂a
= ± 6 e3a f = pa = 6 a′ e3a , (5.34)

∂F

∂φI
= ± 2 e3a

∂f

∂φI
= pφ I = − e3a KIJ φ′J . (5.35)

These equations lead to

f = ± a′ , (5.36)

∂f

∂φI
= ∓ 1

2
KIJ φ′J , (5.37)

and the Hamilton-Jacobi equation becomes

V = − 3 f2 + 2 KIJ ∂f

∂φI

∂f

∂φJ
. (5.38)

Notice also that assuming this for V , an on-shell version of the La-
grangian written in (5.28) in the case q0 = 0 can be written as squares
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plus a boundary term,

Lf = −1

2
KIJe

3a

(
φ′I ± 2KIL ∂f

∂φL

)(
φ′J ± 2eaKJM ∂f

∂φM

)
(5.39)

+3e3a
(
f ∓ a′

)2
+

d

dr

(±2fe3a
)
.

Enforcing the remaining equations of motion, the only term remaining in
the previous expression is the boundary term. Adding the contribution
from Sct, we obtain the boundary term found in (5.25).

Now we can readily connect this result with N = 1 supergravity.
In the complex scalar description, the Hamilton-Jacobi equation with
q0 = 0 becomes

V = − 3 f2 + 4 KAB̄ ∂Af ∂B̄f . (5.40)

Let us consider a specific form for f . We write

f = eK/2 |ω| , (5.41)

where K = K(Φ, Φ̄) ∈ R and ω = ω(Φ, Φ̄) ∈ C . We write

ω = eiθ |ω| , (5.42)

where θ = θ(Φ, Φ̄) = arg(ω) ∈ [0, 2π) and we use the notation

DAω = ∂Aω + ω ∂AK , (5.43)

DB̄ω = ∂B̄ω + ω ∂B̄K . (5.44)

It can be shown that the general case gives

∂Af =
1

2
eK/2

(
e−iθ DAω + eiθ ∂Aω

)
, (5.45)

∂B̄f =
1

2
eK/2

(
eiθ DB̄ω + e−iθ ∂B̄ω

)
. (5.46)

The Hamilton-Jacobi equation then becomes

V = eK
{
−3|ω|2 +KAB̄

(
e−iθDAω + eiθ∂Aω

)(
eiθDB̄ω + e−iθ∂B̄ω

)}
.

(5.47)
As it can be seen, when ω is a holomorphic function of Φ and q0 = 0,
ω satisfies the same equation as the superpotential W . In addition,
the condition of criticality for f becomes precisely the vanishing of the
covariant derivative DAω. Nevertheless, a non-holomorphic ω can pro-
duce a solution f critical at a given point in moduli space. We will
see that such a critical point is also a critical point of V . This is not
a point in which the covariant derivative vanishes, but still we call f a
fake-superpotential since it still satisfies the more relaxed ∂Af = 0.
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5.2 Solving the Hamilton-Jacobi equation

5.2.1 Expanding around a critical point

Let us consider again equation (5.38). Critical points (i.e. points where
∂IV = 0 ∀ I) as well as domain walls in between, are the focus of our
study. Static domain walls are characterized by having constant fluxes at
each side. In terms of (5.37), this translates into demanding ∂If = 0 ∀ I
in each critical point. To be more precise, let us consider a theory with
n scalars.

Taking into account these two conditions, we proposed in paper III
the following scheme to study the types of solutions that can be found
for (5.38) in-between AdS critical stable points. We consider a solution
±f written as an expansion in powers of ΦI = φI − φI

0 around a critical
point φI

0. We expand the potential V in a similar fashion. Equating term
by term, and, in consideration of the previous constraints, one finds

V = V (0) +
1

2
V

(2)
LMΦLΦM +

1

3!
V

(3)
LMNΦLΦMΦN + ... , (5.48)

±f = f (0) +
1

2
f
(2)
LMΦLΦM +

1

3!
f
(3)
LMNΦLΦMΦN + ... , (5.49)

with

f (0)2 = −1

3
V (0) , (5.50)

f (2) =
3

4
f (0)K +

1

2
K1/2

√
−3

4
V (0) +K−1/2(V (2) + C)K−1/2K1/2 ,

(5.51)
where the elements of the matrix C are given by

CLM = − 4 lim
φN→φN

0

KIJ (∂If) (∂J∂L∂Mf) . (5.52)

Let us discuss signs and square root conventions. Distinct solutions
are classified up to a global sign, since f appears only quadratically in
(5.38). Thanks to this, one may pick f (0) to be positive without any loss
of generality in (5.50). Once this sign is fixed, in order to consider all
the distinct solutions for f (2) in (5.51), it is enough to consider: (1) the
unique positive-semidefinite square root of K for K1/2 and (2) all the
(generically) 2n square roots of − 3

4 V (0) + K−1/2 (V (2) + C) K−1/2.

If one fixes f (0) following the previous prescription and if C vanishes,
then each of the generically 2n solutions for f (2) is fixed and well defined.
In some way, this stays as a feature of the remaining system of equations:
as long as the product of ∂If with (M + 1)-th order derivatives goes to
zero when φN → φN

0 , the equations for V (M) form a linear system for the

f (M) with equal number of equations and unknowns, namely
(
n+M−1

M

)
,
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with M ≥ 3. This does not guarantee that the unknowns will be fully
determined as degeneracies can still happen and, most importantly, the
system of equations will, by definition, fail if there are any non-analytic
behaviors.

While using a perturbative expansion does not sound as an ideal ap-
proach to a partial differential equation in several variables, it is impor-
tant to point out that the nature of this non-linear problem produces a
high number of analytic branches that overlap being all critical at the
point of interest. A distinct numerical approach can easily produce a
Frankenstein monster solution that is not ideal for our computation.
The price we pay, or course, is the need to reach high orders in the
expansion to explore the solution far from the critical point. Neverthe-
less, one can identify some important boundary behaviors as we will
discuss later. It turns out this is still a tractable problem with a regular
computer for the potentials we explored.

5.2.2 Fake superpotentials in Type IIA

Let us show the potential of these constructions in twisted compactifica-
tions of massive type IIA on (S3×S3)/Z3

2, which can be absorbed in the
solutions described in chapter 2. From the point of view of a supergrav-
ity description, we explored in paper III those critical points that can be
embedded in N = 4 after a SO(3) truncation of the scalar coset. As we
mentioned in chapter 2, they can be described with a N = 1 potential,
in particular, they live in the isotropic limit. These critical points can
be grouped into two families of distinct flux values, each family with 4
critical points in the moduli space. Their fundamental properties are
summarized in table 5.1, where they are organized according to two
properties. First, we indicate whether they are supersymmetric with
respect to the superpotential we found in chapter 2 and second, whether
they are perturbatively stable. For the latter property, it is possible to
go beyond the truncation and explore all the 2 + 62 scalar degrees of
freedom (DOFs) that one can expect from the coset of the closed-string
sector excitations,

SL(2)

SO(2)
× SO(6, 6)

SO(6)× SO(6)
. (5.53)

There is only one SUSY point which is a member of the first family. It
is, as expected, perturbatively stable. In addition, there are 2 non-SUSY
points that are perturbatively unstable, one in each family. But then
there are 5 non-SUSY points that are perturbatively stable, 2 living in
the first family and 3 in the second. These are, as we have mentioned, the
most interesting ones and establishing whether these are semi-classically
stable is a core objective of the studies we have performed.
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Family A
Sol. SUSY BF bound

A1 � �

A2 � �

A3 � �

A4 � �

Family B
Sol. SUSY BF bound

B1 � �

B2 � �

B3 � �

B4 � �

Table 5.1. Properties of the 8 solutions in the N = 4 critical points of the
twisted compactifications of massive type IIA on (S3 × S3)/Z3

2. SUSY relates
here to the N = 1 superpotential and stability refers to perturbative stabilty of
the closed-string sector excitations.

As seen in the previous sections, we have developed a systematic ap-
proach to the computation of fake superpotentials in this setup. In paper
III we were able to compute a function f for each perturbatively stable
critical point regardless of supersymmetry for the family that includes
the SUSY point. In figure 5.1 we can see a graphical representation of
the resulting curves for an analogous scenario coming from 11D super-
gravity with 3 critical points (one SUSY), all perturbatively stable. The
plot for the curves corresponding to the case explained in this chapter
can be found in paper III. The curve above is the projection of the poten-
tial in the 3D space defined by the 3 perturbatively stable critical points.
The curves below correspond to −3f2 for each f . These functions, as
one expects from the Hamilton-Jacobi equation, have a maximum in the
corresponding critical point and then drop in every direction.

Despite the fact that these solutions were computed numerically, we
were able to study their boundary conditions in the moduli space. One
finds that these functions only intersect the potential in the critical point.
This is a fundamental property as one can deduce that a second inter-
section would provide a possible non-perturbative decay channel for the
state. If these fake-supertentials are to be covered by the positive en-
ergy theorem, then one can read the difference between the curves V
and −3f2 as the energy excess that any other point in the moduli space
contains with respect to the corresponding critical point, rendering it
semi-classically stable. Given the fact that we found a systematic pro-
cedure to compute these solutions where the fundamental constrain is
having all masses satisfying the BF bound, one would then conclude that
under the assumption of a positive energy theorem, all AdS perturba-
tively stable points admit a fake-superpotential and are semi-classically
stable.

Nevertheless, we shall be cautious regarding this and similar state-
ments as we have discussed here and later in the next chapter. In par-

51



Figure 5.1. Potential and fake-superpotentials in a family of 3 solutions found
in an effective description of a compactification of 11D supergravity. These are
projected over the 3D space that contains the 3 perturbatively stable critical
points. We plot −3f2

i to connect with positive energy theorems for each of
the i-th critical point, i = 1, 2, 3. We were able to compute two flat domain
walls that interpolate between a pair of critical points each. Here we plot the
straight paths between these solutions, with the blue dashed lines indicating
strictly monotonic paths that allowed for this construction. A red dashed line
shows a non-monotonic path between two critical points for which we were not
able to construct a flat domain wall.

ticular, we explore these finer issues in the same set of solutions in paper
IV and we will find that there was a missing chapter in this story.

As a complementary gift, we of course can use some of these fake-
superpotentials as solutions of the Hamilton-Jacobi equation and con-
struct flat domain walls between the critical points. From the point of
view of the “domain wall picture”, these flat domain walls can be seen as
static configurations that connect distinct stable critical points. In the
thin-wall limit, flat domain walls saturate the Coleman-De Lucia bound
and correspond to a infinite on-shell euclidean action impeding decay in
both directions. In that sense, they are further signs of stability of such
critical points. Nevertheless, as far as we know, there is no reason to
expect that a single domain wall between two solutions would impede
decays to other critical points or to the boundary of the moduli space.
In that sense, one again resorts to the positive energy theorem in order
to say something about complete stability.

On the other hand, finding a curved time-dependent domain wall
with a finite euclidean action will certainly provide a decay channel for
a solution and in that sense, the “domain wall picture” is very much
relevant as a smoking gun for unstable solutions. In fact we will come
back to this useful tool in the next chapter.
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6. Semi-classical stability: Swampland

We have established the importance of finding criteria to identify semi-
classically stable vacua. In the last decades interest has been drawn to
another, although ultimately connected, story on instabilities in general
relativity solutions. More explicitly, in [Are11a, Are11b] it has been ar-
gued that the near horizon geometry of the Reissner-Nordström black
hole is unstable with respect to scalar field perturbations. Following
a distinct although interconnected line of reasoning, [AHMNV07] dis-
cussed, from a more phenomenological point of view, how consistency in
quantum theories of gravity imply the presence of decay channels for sick
extremal states. More explicitly, in a consistent theory in which there
is a U(1) gauge field, there must exist a super-extremal state. These
are, in the language of the Reissner-Nordström geometry, particles with
mass below the magnitude of its U(1) charge (in planck units). This
became known as the weak gravity conjecture (WGC).

These arguments have evolved and have been extended to more gen-
eral setups. Following the same line of reasoning, the need for super-
extremal objects allowing for the decay of extremal charged black branes
was stressed already in [HRR16], later followed for what was known as
the strong WGC [OV16]: The weak gravity bound is saturated if and
only if the theory is supersymmetric and the corresponding state is BPS.
A consistent gravity theory with a p−brane whose (p + 1)−form is not
in the supergravity multiplet must contain a super-extremal p−brane.

The reasoning behind this stronger version of the conjecture comes
from the study of curvature and compactifications. More explicitly, in
[KMP07] it was found that higher derivative corrections to the effective
action send non-SUSY extremal states into super-extremality and in
[HRR16] a similar phenomenon was observed upon dimensional reduc-
tion. As a consequence, [OV16] suggests that non-susy holography could
be inconsistent in the case of a finite number of matter fields coupled
to gravity. In addition, it is concluded that non-susy vacua built out of
non-BPS objects are unstable, or at most meta-stable, with a vanishing
life time in the near horizon limit.

A very explicit example was presented in [OS17]. This is a solution
of 11D SUGRA, with a background given by AdS5×CP3 and the 4-form
flux F4 begins as ω ∧ω, with ω the Fubini-Study Kahler 2-form of CP3.
Previous studies had been able to establish that while the solution is
not supersymmetric, it is perturbatively stable, although a KK mode
saturates the BF bound exactly.
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S2

×

CP3

S4

×

× AdS5

Figure 6.1. 11D background geometry in [OS17] with CP3 as a S2 fibration
over S4 and AdS5 as external space. No spacetime-filling sources are required in
this solution. S2 collapses with positive and finite on-shell euclidean instanton
action.

By studying the dynamics of the euclidean action, in [OS17] they
decompose the geometry in vielbein that manifestly describe CP3 as a
S2 fibration over S4 (see figure 6.1). By allowing dependence of the
geometry and F4 on the radial coordinate of AdS5, they find a solution
in which S2 collapses while F4 locates itself fully in S4, hence preserving
flux conservation. In addition, upon subtraction of the AdS5 volume, the
on-shell euclidean action is finite and positive. This then corresponds
to a non-perturbative decay channel for the original 11D non-SUSY and
perturbatively stable solution.

6.1 Probing the Open String Sector
While the WGC poses a potential criterion to segregate unstable solu-
tions, efforts have to be made in discerning the precise nature of these
decay channels. There have been several proposals and here we will con-
sider the reasoning presented in [DD16]. In this process, we must stress
some fundamental ideas behind the construction of string theory vacua
that become particularly relevant in this discussion.

SUGRA has provided us with two distinct paths to obtain lower-
dimensional AdS solutions. On the one hand, one may put together
stringy sources in a configuration such that at the near-horizon (NH)
limit we reproduce a geometry of the form AdSd × MD−d. A list of
examples of these constructions can be found in [CLPVP00] and with
less supersymmetry in [KLPT07]. In [DD16] this is denominated as the
brane picture of AdS vacua. On the other hand, one can limit oneself
to find a flux compactification, that is, a set of “God-given” 10D/11D
fluxes that satisfy the equations of motion. This, as we discussed in
the previous sections, can generate a lower dimensional potential upon
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compactification consistent with the AdSd × MD−d geometry. This is
denoted as the flux picture of vacua.

The first conjecture in [DD16] is that these two pictures generate the
same vacua. To do this, one makes emphasis on the distinction of two
types of sources that are used in the construction of vacua via the brane
picture. These are the background branes which source fluxes in the AdS
vacua (which typically fill d−1 spacetime dimensions) and then we have
those that fill spacetime in order to comply with charge conservation, if
they happen to be needed. From the point of view of the flux picture,
the former ones manifest as dynamical terms in the equations of motion
while the latter branes appear as tadpole-cancellation terms. This, as is
known, leaves aside the problem of their backreaction which has then to
be studied separately. The expectation in [DD16] is that, through this
identification, one should be able to realize a one-to-one correspondence
with vacua built through each picture. This then equates to identifying
flux picture vacua as the limit in which we leave aside the dynamics of
the background branes which source them.

The stereotypical example of an extremal object is the 4D Reissner-
Nordström (RN) black hole with matching mass and charge. The NH
geometry, AdS2× S2 was shown to be unstable with respect to per-
turbations of a (massive or massless) charged scalar [LMRT13, Are11a,
Are11b]. The consequence is the creation of a trapped surface, turning
the black hole in a geodesically incomplete space time. If this is the
case, what looks as a perturbative decay at the level of the NH limit,
manifests as a non-perturbative effect of the extended geometry, as the
one predicted by the WGC. Even more, the coupling between gravi-
tational and electromagnetic degrees of freedom is crucial in capturing
these phenomena.

In fact, this reasoning is further extrapolated to 10D. There one can
find examples of non-supersymmetric vacua that enjoys full perturbative
stability when truncated to closed-string sector excitations. Neverthe-
less, once one considers the coupling to the degrees of freedom of the
space time filling sources, perturbative instabilities manifest. These can
be captured with probe computations or alternatively one can consider
the efective gauged supergravity model in which one couples extra vec-
tor multiplets to the closed-string sector description. In paper IV we
showed this explicitly for examples in AdS4 and AdS7 for the case of a
single brane probe.

The setup is again based on the compactifications we described in
chapter 2 and 5. In chapter 5 we described a effective mechanism that
builds fake-superpotentials for a family of critical points that can be
embedded in a N = 4 description with AdS4 as external space. There
we found non-SUSY solutions that are perturbativley stable when one
considers the excitations of the closed-string sector. We may account for
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the degrees of freedom coming from open-string modes by adding extra
vector multiples corresponding to the coupling of the background with
the spacetime-filling sources. At first approximation, one may consider
an abelian coupling consistent with a single D6 brane. These adds 6
degrees of freedom per brane to the scalar coset description which is
then enhanced to

SL(2)

SO(2)
× SO(6, 6 + n)

SO(6)× SO(6 + n)
, (6.1)

with n the number of branes and 2 + 62 + 6n DOFs in total. When
computing the effective potential with the help of the embedding ten-
sor description, one finds that most of the non-SUSY solutions acquire
masses below the BF bound. The SUSY solution, on the other hand,
remains stable.

We considered as well the case of AdS7 whose background was de-
scribed in chapter 2. Warped compactifications of massive IIA on a
squashed S3 with spacetime-filling O6/D6 sources are known to admit
a gauged N = 1, D = 7 supergravity description. The theory that cap-
tures all of the closed-string zero modes is the one obtained through the
coupling of the gravity multiplet with 3 extra vector multiplets. Such a
supergravity model enjoys

G0 = R+ × SO(3, 3) (6.2)

as a global symmetry, where its 64 bosonic degrees of freedom are ar-
ranged into the metric (14), 6 vectors (6 × 5), one 3-form (1 × 10) and
10 scalars. Let us consider again the addition of additional vector mul-
tiplets to describe the coupling to n D6 branes. The scalar coset is
then

R
+ × SO(3, 3 + n)

SO(3) × SO(3 + n)
, (6.3)

with 10 + 3n DOFs. We again restrict ourselves to an abelian coupling
and compute the effective potential to find that the non-SUSY solution
develops a mass below the BF bound while the SUSY solution stays
stable. It is also possible to perform the same computation with a probe
potential using the 10D background to find the same result, as we show
in paper IV.

A more realistic approach to these phenomena should be reached by
studying the full non-abelian effect of a finite n > 1 number of spacetime-
filling probe branes. From the point of view of the effective gauged
supregavity, this means the introduction of couplings reproducing this
enhanced gauging. In a way, this will require an identification non dis-
similar to the one done for 10D fluxes in a previous section. This is
part of ongoing and future work. There is also interesting physics in
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the infinite n limit where interesting phenomena as brane polarization
has been seen in other compactifications [JSZ14] which does not seem
to manifest in the non-supersymmetric solutions we have studied.

The final conjecture in [DD16] is logically motivated by previous stud-
ies on instabilities of 10D backgrounds of mixed brane charge [DGVR17].
The expectation is that while supersymmetric vacua might require (at
most) spacetime-filing sources of pure brane charge, non-supersymmetric
vacua would introduce other sources, that is, anti-brane charge to can-
cel tadpoles. This mixed background would then decay thanks to the
exchange open-string degrees of freedom leading to brane/anti-brane
annihilation. Consequently, a truncation to the closed sector of these
solutions would not see this channel of gravitational tunneling, allow-
ing for apparent meta-stable non-supersymmetric vacua. In situations
where no spacetime-filling sources are required, it is argued [DD16] that
apparent stability is only established thanks to an incomplete descrip-
tion of SUGRA that lacks the full low energy spectrum coming from
string theory [GOS07].
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7. Epilogue

We have studied some realizations of dS in supergravity and we have
explored the challenges that one faces when establishing stability of a
gravitational theory. Whether we talk about instantons or interaction of
D-branes and fluxes, at the very end we see how non-perturbative aspects
of field theory in curved space still require more attention, particularly
in situations without supersymmetry.

We have done these explorations from the point of view of the clas-
sical theory. In that regard one may ponder what are the paths to
follow in this landscape. In the case of the explorations done in paper I,
there is hope that one can go beyond case by case compactifications and
find general relations between the ADM mass and the on-shell action
of sources [CMDVRV16a, CMDvRV16b]. The fact that one can relate
objects of both the UV and IR limits of a theory with the cosmological
constant is, at its core, one of the hopes of the string cosmology (and
quantum gravity) paradigm. On the other hand, explorations of the
SUGRA vacua, like those in paper II, are being refined and expanded at
an accelerated rate, with more sophisticated approaches that slowly but
steadily satisfy more phenomenological criteria [MRW18, GMVW17].

We have provided mechanisms and ideas on the problem of stability
in papers III and IV. In the explorations of domain walls and fake-
supergravity, there has been follow-up work that indicates non-analytical
branches of the Hamilton-Jacobi problem can be relevant in establishing
the properties of the holographic RG flow [NSPS17]. In addition, there
is renewed interest in refining the constraints that have to be imposed,
in terms of both boundary conditions and the bulk flow itself, to be able
to confirm a positive energy argument granting stability [DDTVR17,
TVRV12].

Then again, this is a tale of two cities. Evidence for the WGC is
increasing, with literature offering potential proofs [CLR18, Hod17].
There are some hints of exceptions or potential loopholes as well [GP18,
DDS17]. Either of these could trigger a change in the way we approach
the landscape, at least for the purpose of doing cosmology. The hope is
that one way or another supergravity still has something to say about
these problems, as we explore uncharted territories of the connection
between non-perturbative and perturbative instabilities.
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Svensk sammanfattning

ΛCDM-modellen eller korrespondensmodellen är ett av de viktigaste re-
sultaten under de senaste decennierna i observationell kosmologi. Medan
modellen ständigt är satt p̊a prov kan den med god noggrannhet re-
dogöra för många av universums observerbara egenskaper, bland annat
att cirka 70% av energitätheten motsvararmörk energi. Den mest troliga
orsaken bakom denna komponent är en liten men positiv kosmologisk
konstant, som kännetecknar ett de Sitter (dS) universum. Ur den teo-
retiska fysikens perspektiv är det en stor utmaning att skapa modeller
som kan förutsäga eller åtminstone beskriva dessa och andra kosmolo-
giska parametrar.

Under de senaste åren har problemet med mörk energi gett upphov
till en uppsjö av möjliga lösningar med en kosmologisk konstant som
utvecklats och testats p̊a olika sätt. Med tanke p̊a att strängteori är
en potentiell kandidat för en kvantteori för gravitationskraften, skulle
man kunna förvänta sig att supergravitation (SUGRA) vid l̊aga en-
ergier kan ge oss ledtr̊adar till detta problem. Änd̊a ger de enklaste
och mer välförst̊adda modellerna inte upphov till ett stabilt dS-rum.
Trots att det finns många förslag p̊a modeller har de alla fundamentala
begränsningar som behöver adresseras p̊a ett tillfredsställande sätt.

I supergravitation, precis som i Einsteins allmänna relativitetsteori,
ses tyngdkraften som det ömsesidiga beroendeet mellan energi och rumti-
dens geometri. Dessutom finns det en mängd olika fält och källor och
det visar sig att en enorm mängd lösningar kan produceras. Termen
“landskap” har använts för de teorier som har potentialen att ge oss en
korrekt bild av gravitation och kvantmekanik. Under de senaste decen-
nierna har man utvecklat verktyg för att utforska detta landskap, vilka
man sedan använder för att söka efter en lösning (vakuum) som liknar
v̊art universum. Förutom de egenskaper som kosmologin kräver, finns
teoretiska villkor som måste uppfyllas. Teorier som är orimliga sägs höra
till “swampland” (“träsket”). I denna avhandling bidrar vi till denna
klassificering av teorier genom att utforska och förhoppningsvis förfina
gränsen mellan dessa världar.

Stabiliteten hos vakuum i supergravitation är ett viktigt ämne i sig.
Ur ett kosmologiskt perspektiv måste vi hitta lösningar som överens-
stämmer med v̊ara observationer. Änd̊a är det inte ett trivialt problem
att skapa en semi-klassisk stabilitet för en specifik lösning. Sv̊arigheterna
härrör inte bara fr̊an behovet av att utforska en mängd olika lägen
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som kommer fr̊an kompaktifierings-frihetsgrader utan ocks̊a möjliga icke-
störande kanaler och deras motsvarande sönderfallshastigheter. Det är
därför nödvändigt att v̊ar först̊aelse av stabilitet i icke-supersymmetriska
lösningar förbättras.

Men är det verkligen möjligt att hitta en modell med alla önskade
egenskaper som beskriver supergravitation? Vid första anblicken verkar
det som om det finns en motsägelse mellan de olika kraven: stabilitet
kontra icke- supersymmetriska teorier. Forskning som genomförts under
de senaste decennierna har lett fram till en hypotes som kallas “Weak
gravity conjecture” (WGC) (“den svaga gravitations-hypotesen”). I
sin senaste version verkar slutsatsen vara att vakuum skapade av icke-
supersymmetriska källor har en mycket kort livstid.

I denna avhandling studerar vi n̊agra av egenskaperna hos konstruk-
tioner i supergravitation med icke-supersymmetriska vakuum. Detta
inkluderar lösningar som inneh̊aller dS i fyra dimensioner samt andra
vakuum där vi utforskar problemen med stabilitet och singulariteter.
Som tidigare nämnt kräver detta en djupare först̊aelse av fältteorier där
tyngdkraften tas med i beräkningen. Samspelet mellan objekt som ex-
empelvis svarta h̊al och horisonter med fält som liknar elektromagnetiska
fält, målar en rik och komplex bild där man måste g̊a bortom störnings-
analys för att se viktiga aspekter av en teori om kvantgravitation.

I det här arbetet ger vi analytiska bevis för att nakna singulariteter
produceras i en supergravitations-bakgrund efter introduktionen av anti-
Dp-bran, vid l̊ag temperatur. Detta är ett viktigt steg i arbetet med att
hitta stabila konstruktioner av dS-vakuum. För närvarande verkar situ-
ationen vara oklar för anti-D3-fallet, men för p > 3 verkar en fluxklump-
ningsprocess som produceras via Myers-effekten omöjlig att förhindra
och gör lösningen instabil.

Vi bidrar ocks̊a med v̊ara egna förslag genom att studera det ännu
outforskade landskapet av flux-kompaktifieringar för att producera dS.
Tidigare arbete inom detta omr̊ade utnyttjade ofta icke-störande effekter
som gaugino-kondensation för att erh̊alla dS-punkter nära Minkowski-
vakuum. I stället använder vi de s̊a kallade icke-geometriska flödena.
Vi utvecklar exakta analysmetoder för att hitta störnings-stabila dS
nära supersymmetriska Minkowski-vakuum. Dessa metoder har utökats
och vidare tillämpats i andra sammanhang för att studera inte bara dS
vakuum utan ocks̊a inflationsmodeller och tidsberoende dynamik.

För att undersöka dessa problems natur kan vi istället utforska mer
välförst̊adda teorier, exempelvis kompaktifieringar med anti-de Sitter
(AdS) som externt rum. Vi argumenterar för att sektorn med slutna
strängar i icke-supersymmetriska teorier kan vara skyddad mot sönder-
fall av falska superpotentialer. Vi tillhandah̊aller ocks̊a ett systematiskt
förfarande för att lösa motsvarande Hamilton-Jacobi problem när det
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gäller modulrum i flera dimensioner som ocks̊a kan implementeras för
att numeriskt skapa “domän-väggar” och instantoner.

Icke desto mindre har motexempel hittats med störnings-stabila teorier
som har en icke-försvinnande sönderfallshastighet genom källförstöring.
I v̊art arbete undersöker vi därför rollen som excitationer i sektorerna
med öppna strängar har, för att fastställa en möjlig orsak till dessa in-
stabiliteter. Vi fann att icke-supersymmetriska lösningar tenderar att ha
massor under Breitenlohner-Freedman-gränsen när sektorn med öppna
strängar utforskas för enkla bran medan supersymmetriska lösningar
förblir stabila. Även om detta inte är den fullständiga bilden, ger den
oss en antydan om naturen hos de instabiliteter som förutsp̊as av WGC.
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