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The purpose of this thesis is to present state of the art in radial basis function generated finite
difference (RBF-FD) methods for pricing of financial derivatives. This work provides a detailed
overview of RBF-FD properties and challenges that arise when the RBF-FD methods are used
in financial applications.

Across the financial markets of the world, financial derivatives such as futures, options, and
others, are traded in substantial volumes. Knowing the prices of those financial instruments
at any given time is of utmost importance. Many of the theoretical pricing models for
financial derivatives can be represented using multidimensional PDEs, which are in most cases
analytically unsolvable.

We present RBF-FD as a recent numerical method with the potential to efficiently
approximate solutions of PDEs in finance. As its name suggests, the RBF-FD method is of a
finite difference (FD) type, from the radial basis function (RBF) group of methods. When used
to approximate differential operators, the method is featured with a sparse differentiation matrix,
and it is relatively simple to implement — like the standard FD methods. Moreover, the method
is mesh-free, meaning that it does not require a structured discretization of the computational
domain, and it is of a customizable order of accuracy — which are the features it inherits from
the global RBF approximations.

The results in this thesis demonstrate how to successfully apply RBF-FD to different
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and smoothing of the initial data to enable high order convergence of the method. Finally, we
compare RBF-FD with other available methods on a plethora of pricing problems to form an
objective image of the method’s performance.

Future development of RBF-FD is expected to result in a solid mesh-free high order method
for multi-dimensional PDEs, that can be used together with dimension reduction techniques to
efficiently solve problems of high dimensionality that we often encounter in finance.
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“These violent delights have violent ends.”
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1. Introduction

The purpose of this thesis is to present state of the art in radial basis
function generated finite difference (RBF-FD) methods for pricing of
financial derivatives. Based on the six appended papers which are re-
ferred to by their Roman numerals, this doctoral work provides a detailed
overview of RBF-FD properties and challenges that arise when the RBF-
FD methods are used in financial applications. Moreover, with this dis-
sertation, we aim to motivate further development of RBF-FD for solving
multi-dimensional partial differential equations (PDEs) in finance.

Across the financial markets of the world, financial derivatives such
as futures, options, and others, are traded in substantial volumes. The
value of all assets that underly outstanding derivatives transactions is sev-
eral times larger than the gross world product (GWP). Financial deriva-
tives are the most commonly used instruments when it comes to hedging
risks, speculation based investing, and performing arbitrage. Therefore,
knowing the prices of those financial instruments at any given time is
of utmost importance. In order to make that possible in practice, it is
often required to employ a set of skills incorporating knowledge in fi-
nancial theory, engineering methods, mathematical tools, and program-
ming practice — which altogether constitute the field known as financial
engineering.

Many of the theoretical pricing models for financial derivatives can
be represented using PDEs. In many cases, those equations are time-
dependent, of high spatial dimension, and with challenging boundary
conditions — which most often makes them analytically unsolvable. In
those cases, we need to utilize numerical approximation as a mean of es-
timating their solution. The fields of numerical analysis and scientific com-
puting are concerned with obtaining approximate solutions while main-
taining reasonable bounds on errors. Unfortunately, there is no universal
numerical method which can be used to solve all problems of this type
efficiently. In fact, there are tremendously many numerical methods for
solving different types of differential equations, and all those methods
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are featured with their own limitations in performance, stability, and
accuracy — mostly dependent on details of the problems they aim to
solve. Therefore, carefully selecting and developing numerical methods
for particular applications has been the only way to build efficient PDE
solvers in ongoing practice.

RBF-FD is a recent numerical method with potential to efficiently ap-
proximate solutions of PDEs in finance. Over the past years, besides
the purely academic development and research of its numerical proper-
ties, the method has been mainly applied for simulations of atmospheric
phenomena. As its name suggests, the RBF-FD method is of a finite dif-
ference type, from the radial basis function family. As a finite difference
method, RBF-FD approximates differential equations by linear systems
of algebraic equations, known as difference equations. Radial basis func-
tions (RBFs) are used as interpolants that enable local approximations
of differential operators that are necessary for constructing the differ-
ence equations. Constructed like that, the method is featured with a
sparse matrix of the linear system of difference equations, and it is rela-
tively simple to implement — like the standard finite difference methods.
Moreover, the method is mesh-free, meaning that it does not require a
structured discretization of the computational domain which makes it
equally easy to use in spaces of different dimensions, and it is of a cus-
tomizable order of accuracy — which are the features it inherits from
the global radial basis function approximations. It is those properties
that led us to recognize RBF-FD as a method with high potential for ef-
ficiently approximating the solutions of some analytically unsolvable and
computationally challenging pricing problems in finance.

Nevertheless, being a young method, RBF-FD is still under intense
development, and we face many challenges when moving from simple
theoretical cases toward more complex real-world applications. The core
of this thesis deals with finding solutions for overcoming obstacles when
financial derivatives are priced using RBF-FD to solve PDEs of multiple
spatial dimensions. Thus, it represents a contribution to making the RBF-
FD methods more reliable and efficient for use in financial applications.

The rest of this manuscript is organized as follows. We introduce and
define financial derivatives in Chapter 2. An overview of some popular
financial models and techniques for the pricing of options are presented
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in Chapter 3. We present the features and properties of RBF-FD meth-
ods for solving PDEs in finance in Chapter 4. Finally, we conclude with
some unsolved challenges and suggestions for further development of the
RBF-FD method for financial applications in Chapter 5.
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2. Financial Derivatives

A financial derivative is a market instrument whose value depends on
the values of some other underlying variables. Most often, those under-
lying variables are the prices of another traded asset (e.g., a stock un-
derlying stock options), but they may as well be almost any variables of
stochastic nature (e.g., air temperatures underlying weather derivatives).
There are numerous financial derivatives in existence, available for al-
most every type of investment asset, ranging from agricultural grains to
cryptocurrencies. Futures and options are best known as exchange-traded
derivatives, standardized to be bought and sold on derivatives exchanges
(e.g., Chicago Mercantile Exchange for futures and Chicago Board Op-
tions Exchange for options). On the other hand, much larger volumes
of financial derivatives are traded bilaterally over-the-counter in a highly
customizable fashion. That gave birth to many contracts with tailored
properties such as forward contracts, swaps, exotic options, and other
custom financial instruments.

When it comes to traders, three categories can be readily identified:
hedgers, speculators, and arbitrageurs [1]. Hedgers use derivatives to re-
duce risks from potential future movements in a market variable, spec-
ulators use them to bet on the future outcome of a market variable, and
arbitrageurs aim at making riskless profits by exploiting discrepancies in
values of the same underlying variable traded under different derivatives
or across different markets. Thanks to the traders, derivatives markets
have been highly liquid over the past decades as many of the traders find
trading derivatives more attractive compared to trading their underlying
assets.

Financial derivatives are traded in extremely large volumes across the
planet. The estimated total notional value of these financial instruments
has been above half a quadrillion of USD during the current decade [2].
That is about an order of magnitude larger than GWP [3]. Moreover,
derivatives markets have received significant criticism due to their role
in the most recent global financial crisis. As a result of the crisis, strict
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regulations in trading of derivatives have been introduced in order to
increase transparency on the markets, improve market efficiency, and
reduce systemic risk. Now, in the post-crisis period, methods for valu-
ation of financial derivatives are still under the spotlight of financial in-
stitutions, as they look for the most efficient ways to solve mathematical
problems stemming from the regulations. Those problems involve esti-
mation of value adjustments (known as xVAs) that keep different sources
of counterparty risk under control.

In order to bring financial derivatives closer to the mathematical frame-
work, it is useful for us to define several of their features. We assume that
the contract representing a particular financial derivative is signed at time
t = tg = 0 and expires at t = T, where T is also known as the time of ma-
turity of the contract. The contract is issued on the underlying stochastic
variable S(t). At the expiration of the contract, the holder receives pay-
off g(S(T)), which is equivalent to the value of the financial derivative
at the time of maturity T, i.e., u(S(T), T) = g(S(T)). The value of the
contract is represented by a function u(t, S(t)).

When it comes to the hierarchy of financial derivatives, we can see
most of them either as a type of a forward/futures contract, or as a type
of an option. Therefore, it is common to study forwards and futures as
binding contracts (—oo < ¢(S(T)) < o0 ), and options as non-obligatory
contracts towards their holders (0 < g(S(T)) < oo ). In the following
sections, we consider them in more detail.

2.1 Forwards and Futures

A forward contract is an agreement between two parties signed at t = £,
to buy or sell an underlying S(¢) at a certain future time T for a cer-
tain price K(tg) = Ky. The price K(t) is called the forward price of
the contract, and it is determined at time t( in such a way that the
value of the forward contract at the time of signing is equal to zero, i.e.,
u(to,S(tp)) = up = 0. One of the parties in the contract takes a long
position and agrees to the payoff

81(8(T)) = 5(T) — Ko.

The other party assumes a short position and agrees to sell S(t) at the
same time T for the stipulated forward price Ky, effectively obliging to
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the payoff
8s(S(T)) = Ko — 5(T).

Forward contracts are traded in over-the-counter markets and may be
further customized according to the preferences of the signing parties.
A futures contract is an exchange-traded, and thus standardized finan-
cial derivative, that is very similar to a forward contract. It is an agree-
ment signed at no cost between two parties at t = ty to buy or sell
an underlying S(t) at a certain time T. The principal difference from
the forward contract lies in the way in which the payments are realized.
Namely, at every point in time fy < t < T, there exists a price K(t), now
called the futures price of the contract, that is quoted on the exchange. At
time T, the long position holder of the contract is entitled to the payoff

Moreover, during an arbitrary time interval (t;,¢;], where ty < t; < t; <
T, the long holder of the contract receives the amount K(¢;) — K(#;), and
the short holder receives K(t;) — K(t;). The futures price K(t) evolves
in such way that obtaining the futures contract at any time tg < t < T
incurs a zero cost, i.e., u(t,S(t)) = 0.

As far as the pricing of forwards and futures is concerned, it is clear
that these contracts are designed in such a way that their prices are equal
to zero at the signing. Thus, computational problems of interest here are
related to fairly determining the defined forward and futures prices. For
more details on forwards and futures, it is wise to turn to [4, 1].

2.2 Options

An option is a contract that gives its holder the right, but not the obli-
gation to buy or sell an underlying S(¢) by a certain time of maturity T
for a certain price K. The price K in the contract is known as the strike
price. If the contract gives the buying right to its owner, then it is called
a call option, and if it gives the selling right, it is called a put option. Call
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options are characterized with

8¢(S(T)) = max(S(T) ~ K, 0), (2.1)
and put options with

$p(S(T)) = max(K — S(T), 0), 2.2)

as their respective payoff functions. Options that can be exercised at
any time ty < t < T are called American options, and options that can be
exercised only at time t = T are known as European options. An example
of the payoff function for a European call option is shown in Figure 3.1.

Since options are traded both on exchanges and in over-the-counter
markets, there are many more types of them (e.g., binary options, barrier
options, Asian options, Bermudan options, and other exotic options) —
as the ways of customizing them are limitless. For instance, rainbow op-
tions are defined in such a way that their payoffs may depend on more
than one underlying asset, consequently requiring a multi-dimensional
pricing model in order to estimate their value. An example of such a
multi-asset derivative is an arithmetic European call basket option issued
on D underlying assets Sy, ..., Sp, whose payoff function is

D
ng(Sl(T)l' . /SD(T)) = InaXxX (é Z Sd(T) - K, 0) . (23)
d=1

Moreover, for a given underlying S, there may be a large number of op-
tions with different dates of expiration T, and different strike prices K.

Due to their versatility, options have been among the most popular
financial derivatives on the financial markets, and many examples of their
applications can be found in [1].
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3. Option Pricing

We emphasize that an option gives the right to the holder to do some-
thing and that the holder does not need to use that right. That is the main
difference between options and other financial derivatives. Whereas it
costs nothing to buy a forward or futures contract, there is always a non-
negative price for acquiring an option. That very detail is the cornerstone
of one of the most involving fundamental problems in financial markets,
known as option pricing. Depending on the option characteristics, the
pricing problem can be as trivial as deriving an analytical pricing formula
— such is the case for the standard European call option with certain
market assumptions. Nevertheless, in many other cases of option valua-
tion, we are faced against an eternal struggle of balancing between rea-
sonable market assumptions for deriving delicate mathematical models
and developing efficient numerical solvers that can estimate the solutions
of the equations posed by those models.

As the option gives stipulated rights, but not the obligations to their
holder, it is natural to assume that this contract must have some objec-
tive non-negative value at any time. The central task of option pricing
is to objectively determine the fair value of an option at any given time
t < T. The fundamental mathematical framework for approaching this
problem is the arbitrage theory. In order to model option prices, the the-
ory heavily relies on carefully argued assumptions about the market and
mathematical ingredients such as martingale measures, stochastic differ-
ential equations (SDEs), It6 calculus, Feynman-Kac representations, and
PDEs. We refer to these topics throughout the manuscript in a limited
capacity, as the detailed definitions and proofs can be found elegantly
presented in [5].

3.1 Market Models

To price an option, we need a set of assumptions that can be used to
build a financial market model. The models range from the simple ones
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capturing a rough approximate picture of reality to extremely advanced
ones aimed at capturing very fine details of the market. Once the model
is defined, we can set up an option pricing problem that needs to be
solved in order to estimate the option value. The difficulty of such pric-
ing problems strongly depends on the complexity of the chosen market
model as well as on the complexity of the specifics in the option contract

that we want to price.

3.1.1 Black-Scholes—Merton Model

We start by considering a plain European option on a stock that does not
pay dividends, under the famous Black-Scholes-Merton model [6, 7].
Creation of that model in 1973 is considered as one of the most suc-
cessful quantitative breakthroughs in social sciences, initiating a pricing
framework that still keeps occupied thousands of researchers across fi-
nancial institutions and universities of the world. This was recognized by
the Royal Swedish Academy of Sciences, when the Bank of Sweden Prize
in Economic Sciences in Memory of Alfred Nobel was awarded to Robert C.
Merton and Myron S. Scholes in 1997, while Fischer S. Black was cred-
ited with equal contribution since he had passed away two years before
the prize was awarded.

The main feature of the Black-Scholes—Merton model is that it allows
the prices of European call and put options to be calculated analytically
using parameters that are either directly observable on the market or
can be easily estimated. The model is still widely used as a benchmark,
although more advanced models have been developed over the years to
take into account more realistic features of asset price dynamics, such
as jumps and stochastic volatility. Being able to calculate prices of some
options analytically makes the estimation of the model parameters simple
— which is useful for calibration of more advanced models and pricing
of more complex financial instruments.

The Black-Scholes—Merton model consists of two assets, a riskless
bond B(t) and a risky stock S(#), with dynamics given by the following
SDEs

dB(1)
ds(t)

rB(t)dt, (3.1)
uS(t) +oS(t)dwW(t), (3.2)
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where 7 is the risk-neutral interest rate, y is the drift coefficient, and ¢
is the volatility of the stock — all three being constant in the model.
Moreover, W(t) is the Wiener process.

The Black-Scholes—-Merton model stands on several important assump-
tions. The main assumption is that the considered financial market is ar-
bitrage free, meaning that it is not possible to make positive earnings on
the market without being exposed to risk. The next assumption states
that the market is complete and efficient, which means that every con-
tract on the market can be hedged and that the market prices fully re-
flect all available information. Those assumptions allow us to determine
a unique price of the option whose payoff function is g(S(T)), using the
following valuation under the risk-neutral measure Q,

u(S(t),t) = exp (—r(T — ) EQ [g(S(T))] . (3.3)

That effectively means that the expected value is calculated on an adapted
dynamics by using r instead of y as the drift constant of the stochastic
process S(t) defined in (3.2).

Moreover, using the 1td’s lemma and the Feynman—Kac theorem, we
can equivalently express the option price as the solution of the following
PDE, known as the Black—Scholes-Merton equation

ou —|—rsa—u + 152(7282—” —ru=0
ot ds 2 952 -
u(s, T) = g(s), (3.4

where s is the deterministic representation of the stochastic asset price
S. Equation (3.4) is a parabolic PDE that has an analytical solution u =
u(s, t) in case of European call (shown in Figure 3.1) and put options.

In order to make better trading decisions, investors often look at the
hedging parameters, which are also known as the greeks. The most com-
monly used ones are delta A = %—g‘, gamma T = 3%‘, and vega v = g—g.
As these hedging parameters represent risk sensitivities, being able to
compute them is of great importance.

We can use this basic framework to price financial derivatives with
different payoffs or extend it in order to be able to valuate options with
different underlying assets (e.g., stocks that pay discrete dividends). Also,
we can further adapt the model to capture different market features

more accurately (e.g., introduce local volatility instead of the constant
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one). Moreover, it is sometimes beneficial to use the Merton model [8]
to describe underlying assets with jumps. On the other hand, stochastic
volatility models, such as the Heston model presented in Section 3.1.2,
are useful when there are prominent volatility smiles in the underly-
ing asset. To push things even further, it is not uncommon to have a
stochastic volatility model with jumps — the most known representa-
tive is the Bates model [9]. Some examples of such extensions of the
Black-Scholes—Merton framework can be seen in Paper V.

r=0030=015T=3

3K
—u(s, T) = gc(s)
—u(s, ty)
2K
=Y
K
0
0 K 4K

s
Figure 3.1. An example of a European call option price u(s,t) calculated
using the Black—Scholes—Merton model, and its payoff function g.(s).

To price multi-asset financial derivatives, such as rainbow options is-
sued on D underlying assets Sy, S», ..., Sp, we consider a multi-dimensional
analogue to (3.1) and (3.2)

dB(t) = rB(t) dt,
dSy(t) = paS1(t) dt + 0151(t) dWi (),

dSp(t) = upSp(t) dt +opSp(t) dWp(t), (3.5)
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where the Wiener processes are correlated such that dW;(t) dW;(t) =
pijdt. In this high-dimensional setting, an option with the payoff func-
tion ¢(51(T),...,Sp(T)), can be priced by solving the corresponding
high-dimensional Black-Scholes-Merton equation

u
g + £bu = 0,
u(s1,...,sp, T) =g(s1,...,5p), (3.6)
where b b ,
ou 1 0“u
Lyu = rzi:sia—Si + 5 izjlp,',j(fiajsisjaSi(%j — Tu. (3.7)

We observe (3.6) as a time-dependent PDE with D spatial dimensions.
When it comes to American options, since these financial derivatives
can be exercised at any t < T, as opposed to the European options (that
can only be exercised at t = T), instead of using a PDE as a model, we
formulate the pricing task as a linear complementarity problem (LCP)

ou
— >
ot +£bu sl 0/

u(s1,...,sp,t) > g(s1,...,5p),
ou
<at + £bu> (u(sl,...,sD,t) —g(sl,...,sD)> =0,
u(sy,...,sp, T) =g(s1,...,5p). (3.8)

This formulation also applies to the pricing of a single-asset American
option by choosing D = 1.

3.1.2 Multi-Factor Models

Besides supporting multi-asset derivatives, another direction in the de-
velopment of pricing models consists of including more stochastic fac-
tors. Models with multiple stochastic factors allow for better simulation
of market features compared to the standard Black-Scholes—Merton for-
mulation, which is known to fall short in capturing heavy tails of return
distributions and volatility smiles. Therefore, various models with local
volatilities, local stochastic volatilities, stochastic interest rates, and their
combinations have been getting popular. In this section, we present two
models with multiple stochastic factors that are used for pricing options.
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The attention to local volatility models started with [10]. The first
multi-factor model that we introduce is the Heston model [11], featured
with a stochastic volatility. The adapted dynamics for this model is as
follows

dS(t) = rS(t) dt + /V(£)S(t) dW(t), (3.9)
dv(t) = K(q - V(t)) dt + o/ V() AW, (1), (3.10)

where V(t) is the stochastic volatility, ¢ is the constant volatility of
volatility, « is the speed of mean reversion of the volatility process, 7
is the mean reversion level, r is the risk-free interest rate, W;(t) and
W, (t) are correlated Wiener processes with constant correlation p, i.e.,
dWs () dWy(t) = pdt. After using the It6’s lemma and the Feynman-
Kac theorem, the PDE for the Heston model reads as

u
g + ﬁhu =0,
u(s,v,T) = g(s), (3.11)
where
Lyu = lvszaz—u + avsaz—u + lazvaz—u
W= 2% 952 o dsdv 2 902
u u
+rsg+x(77—v)%—ru, (3.12)

s and v are deterministic representations of the stochastic asset price and
volatility processes, respectively.

When it comes to path dependent options, the Heston model has a
great advantage over the Black-Scholes-Merton model and models with
deterministic local volatility. There is clear evidence that in practice the
volatility of asset prices is in itself random, and cannot be simply de-
scribed as a function of time and underlying strike price [12].

The Heston—Hull-White model [13, 14], is an enhancement of the
Heston stochastic volatility model. The improvement consists of adding
a stochastic interest rate that follows the Hull-White process [15], as
the interest rates on the market are not constant. The model is use-
ful when pricing long-term derivatives in which we observe an implied
volatility smile in the underlying asset. Another notable property of the
Hull-White model is that the interest rates can be negative, as nowadays
happens in some economies.
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The adapted dynamics for this model is as follows

dS(t) = R(£)S(t) dt + 1/ V(£)S(£) dWs(t), (3.13)
dv(t) = K<;7 - V(t)) dt + oo/ V(1) AW (1), (3.14)
dR(t) = a(b . R(t)) dt + or dW, (1), (3.15)

where R(t) is the stochastic interest rate, a is the speed of mean reversion
of the interest rate process, b is its mean reversion level, oy is its volatility,
Ws(t), Wy(t), and W, (t) are correlated Wiener processes.

We can apply the [td’s lemma and the Feynman-Kac theorem to derive
the pricing PDE

ou
g + Ewu = 0,
u(s,v,r,T) =g(s), (3.16)
where
1 ,%u 1, Pu 1 282
[,wlxl = EUS ai + E(Tvvaiz + 0, a +
82
Pstvvsa 9 ro'r\fs PervUr\[
Ju Ju Ju
rsg—i—x(n—v)%—i—a(b—r)g—ru. (3.17)

Here, it becomes clear how advanced models easily grow in complex-
ity, which in turn makes it difficult to calibrate and valuate them in prac-
tice. Several other multi-factor models are discussed in more detail in
Papers IV and VL.

3.2 Pricing Methods

For a small number of cases, such as plain European call or put options
under the Black-Scholes—-Merton model, calculating the option price can
be done by closed form solutions, derived using analytical methods. In
some other cases, it is possible to approximate the solutions using semi-
analytical schemes. Commonly used methods for pricing of financial
derivatives in the absence of analytical or semi-analytical solutions can
be split into three main groups: stochastic methods, methods based on
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the Fourier transform, and deterministic methods. Performance of these
methods when pricing several option types across different market mod-
els is presented in Papers V and VL.

3.2.1 Stochastic Methods

Stochastic methods, such as Monte Carlo (MC), aim at approximating
option prices using the form showed in (3.3). The idea of estimating
expectations by repeated random sampling was used in different forms
for centuries, but it was officially defined in [16]. The first application
of an MC method in option pricing was reported in 1977 for European
options [17]. A least square MC method for pricing American options
was introduced in 2001 [18], and more recently, a new regression based
MC method, named stochastic grid bundling method (SGBM), has been
developed for efficient pricing of early-exercise options and their hedg-
ing parameters [19]. Furthermore, quasi-MC [20] — methods that use
deterministic sequences of numbers to boost convergence — became suc-
cessful at efficiently tackling problems in hundreds of dimensions [21].
More recently, many advanced versions of MC methods have been de-
veloped, of which some of the most notable are multilevel MC meth-
ods [22], which are inspired by the multigrid ideas for the iterative solu-
tion of PDEs. Interestingly, in the time of publishing of this thesis, some
pioneering approaches in the development of quantum computing MC
algorithms for pricing of financial derivatives have been made [23].

Discrete models like binomial trees that appeared in 1979 [24, 25],
also fall in the group of stochastic methods. These models work by sim-
ulating stochastic trajectories of the underlying dynamics on predefined
discrete lattices and are among the simplest nontrivial models of financial
markets.

Stochastic methods are most suitable for multi-asset derivatives and
multi-factor models — both of which, as well as their combinations, re-
sult in problems of high dimensionality. The classic versions of these
methods are arguably easy to implement and use. MC methods are sig-
nificantly less efficient than other methods when used for problems in
smaller dimensions, as their convergence rate is much slower in compar-
ison.
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3.2.2 Fourier Methods

This group consists of methods based on the Fourier transform such as
Carr—Madan fast Fourier transform method [26]. More recently, Fourier-
cosine series expansions (COS) for European options [27] and early-
exercise options [28], showed to be extremely efficient in pricing. In
2012, the COS method was extended to higher dimensions [29]. The
methods from this category are very fast and accurate, but they typically
require the existence of the characteristic function for the price process
of the underlying asset in closed form, or at least its approximation —
which is available for a fairly large class of the models, but not all.

3.2.3 Deterministic Methods

Deterministic methods are used to solve pricing problems in PDE form
such as (3.4), by discretizing its differential operators.

The main methods in this category are the finite differences (FD).
The first time an FD method was used for pricing of a contract was
in 1976 [30], to solve a one-dimensional Black-Scholes-Merton equa-
tion. A few years later, FD schemes, together with MC methods, have
been established as a standard numerical approach for pricing financial
derivatives when analytical solutions are not available [31]. Moreover,
a notable operator splitting scheme was introduced in [32], enabling
FD methods to price American options efficiently. Over the years, FD
methods have been advancing to solve pricing problems in up to four
dimensions [33, 34]. More recently, hierarchical approximations using
sparse grids and asymptotic expansions [35, 36] of high-dimensional op-
tion pricing problems have been developed — enabling state of the art
FD [37, 38, 39, 40] to be used for pricing by solving a sequence of lower
dimensional problems [41]. Apparently, many high-dimensional pricing
problems have such a configuration of volatilities and correlations that
their effective dimensionality is low, and as such can be represented by
a small number of lower dimensional components [42]. Furthermore,
a high order compact FD scheme for pricing options under stochastic
volatility models was introduced in [43]. Stochastic volatility models
with jumps have been successfully solved in [44, 45], and more recently
using a higher order method in [46, 47].
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Although they are used less often, the finite element methods can
excel in certain cases [48, 49, 50], and the same applies for finite vol-
umes [51], which finds its use in convection dominated or degenerate
cases.

Finally, RBF methods are a more recent group of deterministic meth-
ods to be used for option pricing — first time applied in 1999 for one-
dimensional European options [52]. Ever since, these methods have
been becoming popular, as they possess the potential to cope with PDEs
of moderately high dimensions.

3.2.4 Method Selection

Based on the presented details and the results reported in Papers V and
VI, a basic guide for selecting an appropriate option pricing method is
first to check if it is possible to calculate the solution to the pricing prob-
lem analytically. In case that is not possible, the next best option is a
Fourier transform based method. Deterministic methods come into play
as robust numerical schemes when Fourier methods are not applicable.
Nevertheless, they often suffer from the curse of dimensionality as the
degrees of freedom in the resulting approximations grow exponentially
with the dimensionality of the problem. Therefore, if the pricing prob-
lem is of a higher dimensionality that cannot be reduced, Monte Carlo
methods are the most common alternative.

Typically, deterministic methods are used to solve pricing problems
of up to no more than three dimensions. In the following chapter, we
present a localized RBF method that might become an alternative to
Monte Carlo methods for moderately high-dimensional problems, i.e.,
of dimensionality three to five.
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4. Radial Basis Function generated Finite
Differences

Using the RBF methods for approximating solutions of PDEs dates back
to the beginning of the nineties in the previous century [53, 54]. Ever
since, these methods have been used in different fields, including finan-
cial engineering [52, 55, 56].

In order to apply an RBF method, we observe option pricing problems
on the truncated computational domain Q) C RP in the following PDE

form
aatu(g,t)%—ﬁu(g,t) =0, xeQ, 4.1
Bu(x,t) = f(x,t), x€9Q, (4.2)
u(x, T) =g(x), x€Q, (4.3)

where u(x,t) is the option price, x is the spatial variable representing
underlying assets and/or stochastic factors, with £ as the differential op-
erator of the pricing model; B is the boundary operator which together
with the function f(x, t) models the boundary conditions; initial data are
defined by the terminal condition g(x).

To construct a global RBF approximation in space, we scatter N nodes
x;, where j = 1,..., N, across the computational domain Q). Then, we
consider an interpolant

N
i(x,t) = X;Aj(t)¢(||£—£j||)r (4.4)
=

where ¢ is the RBF, and A;(t) are the time-dependent interpolation co-
efficients. At any time ¢, the value of the interpolant in every point x
only depends on the distance to the nodes and this expression is valid for
any number of dimensions.

Some examples of commonly used RBFs are listed in Table 4.1, split
into two groups. The first group in the table consists of infinitely smooth
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RBFs that can provide spectral accuracy for interpolation and are featured
with a shape parameter e. The second kind are piecewise smooth RBFs

that can give algebraic convergence for interpolation.

Table 4.1. Commonly used RBFs, where ¢ € R is the shape parameter for
the infinitely smooth RBFs, and g € {2m — 1, m € IN} is the degree of the
polyharmonic splines as the piecewise smooth RBFs.

RBF ()
Gaussian (GA) exp (—¢&?r?)
Multiquadric (MQ) V1 + €2r?
Inverse Multiquadric (IMQ) 1/vV1 + e2r?
Inverse Quadratic (IQ) 1/(1 4 €2r?)
Polyharmonic Spline (PHS) 7

In this thesis, we consider GA and PHS basis functions for approximating
solutions of the pricing equations. Those two RBFs are shown plotted on
a unit domain in Figure 4.1.
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Figure 4.1. Examples of GAs with different shape parameter values and

PHSs of different degrees.

We can apply the global RBF method by collocating at the same x;
points through substituting (4.4) into (4.1). Thus, we obtain a dense
linear system of ordinary differential equations (ODEs) of size N, where

Aj(t) are the unknowns. Starting from the terminal condition (4.3), we
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can use a backward time integration method of our choice to compute
the coefficients A;(t), and from that evaluate the interpolant i which
approximates the option price.

Even though the global RBF methods possess desirable properties such
as spectral convergence and mesh-free domain discretization, they are
featured with dense system matrices which makes the method very com-
putationally demanding. To overcome that weakness, several localized
RBF approaches were introduced, among which radial basis function par-
tition of unity (RBF-PU) methods [57] and RBF-FD [58, 59], are the
most popular, and still actively developed. These localized RBF meth-
ods are featured with sparser system matrices while still maintaining great
properties from the global RBF methods, such as being mesh-free and of
a high order.

The RBF-PU method has been used in finance for pricing multi-asset
derivatives [60, 61, 62], and its performance when pricing lower dimen-
sional options and their hedging parameters is also documented in Paper
V. Moreover, RBF-PU is extensively compared with the RBF-FD method
at solving multiple stochastic factors problems, which is reported in Pa-
per IV. While in that paper both methods performed similarly, on a more
comprehensive study with stochastic and local volatility problems, pre-
sented in Paper VI — RBF-FD showed as a robust method that performs
more efficiently in most of the considered cases. As RBF-FD and RBF-
PU are still in development, it is hard to say which method has a better
future potential. Therefore, it is important for the field of computational
finance that both of these methods continue developing.

4.1 Method Definition

In this thesis, we focus on the development of the RBF-FD methods.
RBF-FD can be seen as a kind of an FD method that belongs to the fam-
ily of RBF methods. To construct an RBF-FD approximation, as firstly
introduced by Andrei I. Tolstykh in 2000 [58], we can reuse the same
N scattered nodes across the computational domain Q). For each node
x;, we define an array of nodes x; consisting of ; — 1 neighboring nodes
and x; itself, and consider it as a stencil of size n; centered at x;. The

differential operator £ defined in (4.1) is approximated in every node x;
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1j
; wiil = wiu(xj,t), j=1,...,N, (4.5)

where ul = u(g;.,t) and x! is a locally indexed node in Xj, while w; is
the array of differentiation weights for the stencil centered at x;. In the
standard RBF-FD methods, the weights w} are calculated by enforcing
(4.5) to be exact for RBFs centered at each of the nodes in x;, yielding

o} =) - o(lxf — 1) w} Lo(llx; — 271D
: : : = : - (4.6)
ol =) - (llx; = x;'l1) w]! Lo(llx; —x;"1)
N—_——
A; wj lj

In theory on RBF interpolation, it is known that (4.6) forms a nonsingular
system of equations when RBFs are chosen appropriately. Therefore, a
unique set of weights can be computed for each node x; by solving N lin-
ear systems of size n; x n;. We arrange those weights in a differentiation
matrix L, which now represents a discrete approximation of the spatial
operator £ on the chosen set of nodes {Zj}jliy Since nj < N, the re-
sulting differentiation matrix is sparse, having 7; non-zero elements per
row. It is important to note that the linear systems (4.6) can be solved
in parallel, which significantly reduces the weights computation over-
head that RBF-FD has compared to FD. Moreover, when it comes to the
boundary nodes and the nodes that are close to the boundary, the near-
est neighbor based stencils automatically form according to the shape of
the boundary and require no special treatment for computing the dif-
ferentiation weights — which can be seen in Figure 4.2. The only data
that is required for approximation of differential operators are Euclidian
distances between the nodes. This means that (4.6) represents a way to
approximate a differential operator in any number of dimensions.

After the weights are computed and stored in the differentiation ma-
trix L, an approximation of (4.1) can be presented in the form of the
following semi-discrete equation

C?tu(t) = Lu(t), (4.7)

u(T) =g, (4.8)
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where u(t) = u(x,t) is the discrete numerical solution of the pricing
equation, g = ¢(x), while x is the array of all nodes in the computational
domain. To compute the option price u, we need to integrate (4.7) in
time.

8K,

52

0 K 2K 8K
51

Figure 4.2. An example of nearest neighbor based stencils, used for approx-
imating the differential operator L on a nonuniform node layout adapted for
pricing of two-dimensional basket options with the underlying assets s1 and
sy, and strike price K. The central node of each displayed stencil is denoted
by a white cross mark. All stencils are of the size nj = n = 75.

For the time discretization, in all of our reported research, we use
the second order backward differentiation method (BDF2). The BDF2
scheme requires two known previous states in order to compute the cur-
rent one. To initiate the method, the Euler backward method (BDF1) is
often used for the first time step. In order to avoid factoring two differ-
ent matrices, we use BDF2 with BDF1 as described in [63], so that we
get a single differentiation matrix with nonuniform time steps.

We split the time interval [0, T| into M non-uniform steps of length
Tk = M-k _M—k+1 '} — 1 . M and define the BDF2 weights as
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, (4.9)
k

where wy = 78/7%71 k = 2,..., M. In [63], it is shown how the time
steps can be chosen in such a way that B = By. Therefore, the coefficient
matrix is the same in all time steps, and only one matrix factorization is
needed. Applying the BDF2 scheme to (4.7) we obtain a fully discretized
system of equation

(E—BoL)u* = pu*~1 — phu" 2, (4.10)
C

where E is the identity matrix of the appropriate size. To solve this sys-
tem, we employ the iterative GMRES method with an incomplete LU
factorization as the preconditioner.

RBF-FD may be seen as a generalization of classic FD methods —
where a polynomial interpolant is used instead of an RBE. Ever since its
introduction, the RBF-FD methods have been successfully applied for
solving convection-diffusion equations [64, 65], incompressible Navier—
Stokes [66, 67, 68], and elliptic equations [69, 59]. To the best of our
knowledge, RBF-FD methods were introduced to finance with a master
thesis [70] at Uppsala University in 2013, and the results reported in
this thesis represent the continuation of that work. In parallel with our
research, classic versions of RBF-FD using infinitely smooth RBFs with
constant shape parameters have been applied on equidistant Cartesian
grids for pricing of different contracts [71, 72, 73, 74]. Although those
articles noted the importance of RBF shape parameters for the RBF-FD
approximation stability and accuracy, no special attention was paid to
choosing them appropriately. Moreover, the RBF-FD examples in those
articles were not exploiting the great RBF advantage of being mesh-free,
as the method was applied to pricing problems using node layouts that
correspond to standard equidistant FD grids. The first results of option
pricing with the RBF-FD method using nonuniform node layouts and
recommendations for choosing the shape parameter for GA RBFs were
reported in Paper L.
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4.2 Scattering Nodes

In general, pricing PDEs are defined on infinite real domains. In many
cases, the domain may be limited from one side, e.g., because a stock
as an underlying cannot be negative, but in most cases the domain re-
mains open towards +oc0. Since we want to use a numerical discretization
scheme, it is first required to truncate the domain and assign appropri-
ate boundary conditions at the boundaries. When it comes to pricing
multi-asset options under single-factor models, we truncate the far pos-
itive side of each dimension at spmax = aKD, a € IN. In practice, most
of the time, using 4 = 4 keeps the approximation in the area around
the strike price K safe from the artificial boundary effects. In that case,
the close-field boundary is usually set at s, = 0. The details about the
domain truncation for the multi-factor models, as well as the specifics
about the boundary conditions, can be found in the appended papers
next to each problem used in the numerical experiments.

Once the computational domain boundaries are defined, we discretize
the domain by scattering nodes across it. In order to study RBF-FD ap-
proximation and to be able to compare it with the standard FD methods,
we start by using equidistant Cartesian grid based node layouts. Figure
4.3 shows equidistant Cartesian gird based node layouts for arithmetic
basket option pricing problems of up to three dimensions in space. Al-
though not fully exploiting the mesh-free feature of the RBF-FD meth-
ods, the presented node layouts for D > 2 are truncated diagonally via a
hyperplane that is parallel to the hyperplane of discontinuity in the first
derivative of the payoff function for call and put basket options — as it
is not necessary to have computations in the parts of the domain that are
far away from the strike value.

For many contracts, it is common to have discontinuities in the first
derivative of the payoff function, and for some instruments even in the
payoff function itself. Those discontinuities pose an obstacle for accurate
numerical approximations and can often limit the order of convergence
of the numerical methods. Knowing the location of a discontinuity al-
lows us to scatter the nodes such that their density is higher around the
discontinuity, and therefore improve the accuracy in that area. One way
to do that is to use a one-dimensional nonuniform node scattering scheme

from [38].
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Figure 4.3. Equidistant Cartesian grid based node layouts for pricing op-
tions with a different number of underlying assets. The close-field boundary
conditions are enforced in the blue triangle node, and the far-field boundary
conditions are enforced in the red square nodes.
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That scheme in the case of arithmetic basket options can be expanded to
higher dimensions by generating one-dimensional layouts along the axes
of the domain, and connecting them (via equidistant node scattering)
diagonally across the domain, as seen in Figure 4.4. In Papers I, II, III,
we show the advantages of this payoff function adapted node layout over
the equidistant Cartesian grid based node layouts.

1D

51

00 K 2K 8K
51
Figure 4.4. Payoff function adapted node layouts for pricing options with
a different number of underlying assets. The close-field boundary conditions
are enforced in the blue triangle node, and the far-field boundary conditions
are enforced in the red square nodes.

By using nonuniform node layouts in our numerical experiments, we
have discovered that the RBF-FD stencils become very sensitive to non-
smooth variations in their density, making the approximation numer-
ically unstable. For a successful implementation of RBF-FD methods,
we need to be able to quickly generate node layouts with smoothly vary-
ing density. Unfortunately, not many practical results on node scattering
are readily available, but research on this topic has become quite active
lately. In Paper II, we used a two-dimensional node layout suggested by
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Bengt Fornberg and Natasha Flyer in [75]. An example of layouts with
smoothly varying density for pricing two-asset arithmetic basket options
under the Black-Scholes-Merton model and single-asset options under

the Heston model are shown in Figure 4.5.

BS
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51
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Figure 4.5. Smoothly varying density node layouts for pricing two-asset
arithmetic basket options under the Black—Scholes—Merton model and single-
asset options under the Heston model. The close-field boundary conditions
are enforced in the blue triangle node, and the far-field boundary conditions
are enforced in the red square nodes. The yellow pentagons show the locations

of interest.
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The results in Paper II show on several examples the advantages of
such node layouts over the previously presented ones. The condition
numbers of the differentiation matrices in all considered problems are
significantly lower, and the accuracy is tremendously improved, as the
density can be increased around the areas of interest more easily.

Unfortunately, quick node placing schemes of this sort for higher di-
mensions are still unavailable. One of the recent works [76] introduces a
novel way to quickly generate three-dimensional smoothly varying node
layouts, but other than that the resources about this problem are very

scarce.

4.3 Choosing Shape Parameters

The properties of the RBF-FD methods presented so far are quite at-
tractive, but when it comes to implementing the methods in practice,
with infinitely smooth RBFs we need to deal with the selection of the
shape parameter €. As it can be seen in the plot to the left of Figure
4.1, the shape parameter tunes the support of the RBE. The larger the
shape parameter is, the smaller the support — and vice versa. More-
over, the greater the support of an RBF, the approximation becomes
more accurate. Nevertheless, if an RBF becomes too flat, the system of
equations (4.6) becomes nearly singular, and the computations of the
differentiation weights become ill-conditioned. There have been several
approaches to stabilize the RBF-FD stencils and make them independent
of the choice of the shape parameter [77, 78], but all those treatments
came with significant increases in computational costs.

Therefore, in Paper I, we suggested choosing the shape parameter such
that it has the smallest value before the problem becomes ill-conditioned,
in order to maintain high accuracy of the RBF-FD approximation. In that
article, we showed by spatial error analysis and verified by numerical ex-
periments, that an efficient RBF-FD method can be constructed if the
shape parameter for approximating the Black-Scholes—-Merton differen-
tial operator is chosen as

(4.11)
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where « is a real positive constant, and h is the characteristic distance
between the nodes. The constant «a is obtained by linear regression be-
tween two points in the h-¢ plane with the minimal error for the given
h, obtained experimentally. The suggestion has been verified on one-
dimensional and two-dimensional European and American option pric-
ing problems, on equidistant Cartesian and problem adapted nonuniform
layouts. The result is illustrated in Figure 4.6.
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Figure 4.6. The maximum absolute error Auimayx measured in the subdo-
main () = [%K, %K] around the strike price K, as a function of h and ¢, for
a one-dimensional European call option priced on an equidistant Cartesian
grid with RBF-FD stencil size n = 3. The black line shows the appropriate
choice for the shape parameter. The RBF-FD approximation is performed
using GA basis functions.

If we take a closer look at Figure 4.6, we can see that as h decreases,
the high error areas are joining together from top and bottom — leaving
no space for high accuracy if & is sufficiently small. The truncation error
analysis results presented in Paper I explain the presented behavior, and
we consider the solutions for this issue in the following section.
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4.4 Role of Polynomials

Many infinitely smooth RBFs have been successfully used for approxi-
mating differential operators of PDEs by RBF-FD. Nevertheless, in that
setting, the linear systems of equations that need to be solved in order
to obtain the weights w; is often ill-conditioned, especially as # becomes
smaller. Several works [79, 80, 81, 77, 78, 82], address this problem
by adding low-order polynomials together with RBFs into the presented
interpolation. The linear system that we need to solve to obtain the dif-
ferentiation weights for each node in our problem then becomes

(|l — 2!
A; P/ wi | | Lol —x"1) (4.12)
P 0 vj Lp1(x;) ’

| Lpmlx)

where A, is the RBF matrix and w; is the array of differentiation weights;
P; is the matrix of size m; x n; that contains all monomials up to degree
I (corresponding to m; monomial terms) that are evaluated in each node
g;- of the stencil x; and 0 is a zero square matrix of size m; x mj; v; is the
array of dummy weights that are discarded, and {p1, p2, ..., pm].} is the
array of monomial functions indexed by their position relative to the total
number of monomial terms ;, such that it contains all the combinations
of monomial terms up to degree .

We used monomials of degree | = 0 augmented to GA basis func-
tions in Paper I, and the result is shown in Figure 4.7. The figure no
longer shows joining high error fields, which ensures well-conditioned
convergence of the method as & is decreased.

Even though the problem of choosing the shape parameter for GA
based RBF-FD schemes is thoroughly examined for option pricing prob-
lems in Paper I, it remains unsolved for general applications. Neverthe-
less, recent developments [83, 84], have demonstrated that the RBF-FD
approximation can be greatly improved by using high order polynomi-
als together with PHSs as piecewise smooth RBFs in the interpolation,
shown in the plot to the right of Figure 4.1. With that approach, it seems
as if the polynomial degree takes the role of controlling the rate of con-
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vergence. This allows us to use piecewise smooth PHSs as RBFs without
a shape parameter, since the approximation accuracy is no longer con-
trolled by the smoothness of the RBFs. Still, the RBFs do contribute
to the reduction of approximation errors, and therefore are necessary in
order to have both stable and accurate approximation.
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Figure 4.7. The maximum absolute error Aumayx measured in the subdo-
main Q) = 3K, 3K| around the strike price K, as a function of h and e, for
a one-dimensional European call option priced on an equidistant Cartesian
grid with RBF-FD stencil size n = 3. The black line shows the appropriate
choice for the shape parameter. The RBF-FD approximation is performed
using GA augmented with monomials of degree | = 0.

In Paper II, we successfully apply the PHS based RBF-FD method to
pricing two-asset European call and American put arithmetic basket op-
tions under the Black—Scholes-Merton model, and a single-asset Euro-
pean call option under the Heston model. The PHS based method, free
of any hassle of picking the shape parameters, outperforms the standard
FD method despite the computational overhead from the differentiation
weights.
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4.5 Smoothing of Payoff Functions

For many option pricing problems, the payoff has a discontinuity in the
function itself or its derivatives. Such discontinuities limit the order of
convergence obtained in numerical simulations. For that reason, before
applying the numerical method, we suggest smoothing the payoff func-
tion according to [85]. This approach has been successfully used for
option pricing problems in, e.g., [86, 40]. The smoothing of the payoff
function enables the numerical method to converge with the expected
order of the discretization used.

- O(hz) -.- RBF'FD'GAuniform —A— RBF'FD'PHSnonuniform
=== O(I#*) —#~ RBF-FD-GAuonuniforn - ® - RBF-FD-PHSRSg 0o
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—FD RBF-FD-PHS 1 £orm RBF-FD-PHSEnoothed
Convergence Performance
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h tcpu
Figure 4.8. Absolute error Aumax as a function of h and CPU-time in sec-
onds for a two-dimensional European call basket option.
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In Paper III, we apply the smoothing on the equidistant Cartesian
grid based node layouts as the theory in [85] suggests, to price two-
dimensional European basket options. Moreover, we find a way to use
the smoothing on the payoff function adapted nonuniform node layouts
to enable RBF-FD spatial order of convergence of four. The results of the
numerical experiments show that replacing the payoff function with the
smoothed one gives convergence of the appropriate order, at an accept-
able increase in the computational cost. Figure 4.8 shows the perfor-
mance of the PHS based RBF-FD methods with smoothing against other
RBF-FD and FD methods on uniform and nonuniform node layouts.

Nevertheless, the smoothing on the presented payoff function adapted
nonuniform node layouts relies on the parallel placement of the nodes
with the hyperplane of discontinuity. Smoothing of the initial data on
the node layouts with smoothly varying density still remains an open
question.
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5. Outlook and Further Development

In this thesis, we present recent developments of RBF-FD methods and
their potential to efficiently approximate solutions of PDEs for pricing
of financial derivatives. We show how to apply RBF-FD to a number of
option pricing problems in a way that utilizes the best features of the
method such as mesh-free node placement, high order approximation,
and sparsity of the differentiation matrices. By performing numerical
experiments, we confirm the robustness of the method and compare its
performance with other currently used and newly developed methods in
financial practice. Moreover, we identify some challenges and limitations
for which we suggest appropriate treatments, such as dealing with RBF
shape parameters and smoothing of initial data, but there are still some
problems left open.

As far as future research is concerned, we note that the smoothly
varying density node placing algorithm can be efficiently employed only
in two-dimensional domains. On the other hand, the payoff function
adapted node layout is not as easily customizable for different cases as
the smoothly varying density one. Some recent work has been done to
come up with more robust and efficient ways of constructing customiz-
able node layouts with smoothly varying density in higher dimensions
[76], but the results are yet to be seen in practice. Research on efficient
generation of high-dimensional node layouts is expected to give a signif-
icant improvement in performance of the higher-dimensional RBF-FD
methods and improve the competitiveness of these methods in different
financial applications. Moreover, the problem of smoothing of payoff
functions on smoothly varying density node layouts still remains open,
as the available theory covers only equidistant Cartesian grids.

Future development of RBF-FD is expected to result in a solid mesh-
free high order method for multi-dimensional PDEs, that can be used
together with dimension reduction techniques [36] to efficiently solve
problems of high dimensionality that we often encounter in finance.
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Summary

The purpose of this thesis is to present state of the art in radial basis function
generated finite difference (RBF-FD) methods for pricing of financial derivatives.
This doctoral work provides a detailed overview of RBF-FD properties and chal-
lenges that arise when the RBF-FD methods are used in financial applications.
Moreover, with this dissertation, we aim to motivate further development of
RBF-FD for solving multi-dimensional partial differential equations (PDEs) in fi-
nance.

Across the financial markets of the world, financial derivatives such as futures,
options, and others, are traded in substantial volumes. The value of all assets
that underly outstanding derivatives transactions is several times larger than the
gross world product (GWP). Financial derivatives are the most commonly used
instruments when it comes to hedging risks, speculation based investing, and
performing arbitrage. Therefore, knowing the prices of those financial instru-
ments at any given time is of utmost importance. In order to make that possible
in practice, it is often required to employ a set of skills incorporating knowledge
in financial theory, engineering methods, mathematical tools, and programming
practice — which aftogether constitute the field known as financial engineering.

Many of the theoretical pricing models for financial derivatives can be repre-
sented using PDEs. In many cases, those equations are time-dependent, of high
spatial dimension, and with challenging boundary conditions — which most often
makes them analytically unsolvable. In those cases, we need to utilize numerical
approximation as a mean of estimating their solution. The fields of numerical
analysis and scientific computing are concerned with obtaining approximate solu-
tions while maintaining reasonable bounds on errors. Unfortunately, there is no
universal numerical method which can be used to solve all problems of this type
efficiently. In fact, there are tremendously many numerical methods for solving
different types of differential equations, and all those methods are featured with
their own limitations in performance, stability, and accuracy — mostly depen-
dent on details of the problems they aim to solve. Therefore, carefully selecting
and developing numerical methods for particular applications has been the only
way to build efficient PDE solvers in ongoing practice.
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In this thesis, we present RBF-FD as a recent numerical method with potential
to efficiently approximate solutions of PDEs in finance. Over the past years, be-
sides the purely academic development and research of its numerical properties,
the method has been mainly applied for simulations of atmospheric phenomena.
As its name suggests, the RBF-FD method is of a finite difference type, from the
radial basis function family. As a finite difference method, RBF-FD approximates
differential equations by linear systems of algebraic equations, known as differ-
ence equations. Radial basis functions (RBFs) are used as interpolants that enable
local approximations of differential operators that are necessary for constructing
the difference equations. Constructed like that, the method is featured with a
sparse matrix of the linear system of difference equations, and it is relatively sim-
ple to implement — like the standard finite difference methods. Moreover, the
method is mesh-free, meaning that it does not require a structured discretiza-
tion of the computational domain which makes it equally easy to use in spaces
of different dimensions, and it is of a customizable order of accuracy — which
are the features it inherits from the global radial basis function approximations.
It is those properties that led us to recognize RBF-FD as a method with high
potential for efficiently solving some analytically unfeasible and computationally
challenging pricing problems in finance.

Nevertheless, being a young method, RBF-FD s still under intense develop-
ment, and we face many challenges when moving from simple theoretical cases
toward more complex real-world applications. The core of this thesis deals with
finding solutions for overcoming obstacles when financial derivatives are priced
using RBF-FD to solve PDEs with multiple spatial dimensions. Thus, it represents
a contribution to making the RBF-FD methods more reliable and efficient for
use in financial applications.

The results in this thesis demonstrate how to successfully apply RBF-FD to
different problems in finance by studying the effects of RBF shape parameters
for Gaussian RBF-FD approximations, improving the approximation of differen-
tial operators in multiple dimensions by using polyharmonic splines augmented
with polynomials, constructing suitable node layouts, and smoothing of the initial
data in order to enable high order convergence of the method. Finally, we com-
pare the RBF-FD method with other available methods on a plethora of pricing
problems to give an objective image of the method's performance.
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Sammanfattning

Syftet med denna avhandling dr att presentera forskningsfronten for finita dif-
ferensmetoder genererade fran radiella basfunktioner (RBF-FD) for prissédttning
av finansiella derivat. Baserat pa de sex bifogade artiklarna ger denna avhandling
en detaljerad &verblick av egenskaper hos RBF-FD metoder samt de utmaning-
ar som uppstdr da dessa anvands inom finansiella tillampningar. Vidare amnar
denna avhandling motivera fortsatt utveckling av RBF-FD metoder f6r 16sning av
partiella differentialekvationer (PDEer) for finansiella tillimpningar.

Inom varldens finansiella markader handlas finansiella derivat, sdsom termi-
ner, optioner med mera, i stora volymer. Vdrdet av alla underliggande tillgdngar
hos utstillda finansiella derivat ar flera ganger stérre dn bruttovarldsprodukten.
Finansiella derivat dr det instrument som anvdnds mest inom risk hedging, spe-
kulationsbaserad investering, samt utnyttjande av arbitragemdjligheter. Det dr
darfér synnerligen viktigt att vid varje given tid veta priset pa dessa finansiella
derivat. For att mojliggdra detta behdvs en uppsdttning fardigheter sdsom kun-
skaper inom finansiell teori, ingenjorsmdssiga metoder, matematiska verktyg, och
programmeringserfarenhet. Dessa bildar tillsammans omrddet finansiell ingenjérs-
konst.

Manga av de teoretiska modeller som finns for att prissitta finansiella derivat
kan beskrivas med PDEer. | manga fall r dessa ekvationer tidsberoende, hog-
dimensionella och med utmanande randvillkor — vilket oftast gér dem analytiskt
oldsbara. Nar sa ar fallet behdver numeriska metoder anvidndas for att approx-
imera 16sningen. Omradena numerisk analys och berdkningsvetenskap handlar
om att berdkna approximativa I&sningar och samtidigt garantera att felet i [6sning-
en hdlls inom rimliga granser. Dessvdrre finns ingen universell numerisk metod
som kan anvdndas for att 16sa alla problem effektivt. Det finns i sjdlva verket en
stor mangd numeriska metoder for att 16sa olika typer av differentialekvationer
vilka alla har sina egna begransningar med avseende pa effektivitet, stabilitet och
noggrannhet — oftast beroende pa egenskaper hos problemet som ska I6sas.
Att noggrant vilja och utveckla numeriska metoder for specifika problem har
darfor i praktiken varit det enda séttet att konstruera effektiva PDE-l6sare.
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| denna avhandling presenteras RBF-FD som en nyutvecklad metod med po-
tential att effektivt berdkna approximativa I6sningar till PDEer inom finans. Under
de senaste dren, forutom rent akademisk utveckling och forskning kring meto-
dens numeriska egenskaper, har metoden huvudsakligen anvénts for simulering
av atmosfariska fenomen. Som dess namn antyder, ar RBF-FD en finit diffe-
rensmetod, baserad pa klassen av radiella basfunktioner. Som vanliga finita dif-
ferenser, approximerar RBF-FD differential ekvationer som linjdra system av al-
gebraiska ekvationer; ocksa kdnt som differensekvationer. Radiella basfunktioner
(RBFer) anviands som interpolanter for att mojliggora lokala approximationer
av differentialoperatorer som behdvs for att konstruera differensekvationerna.
Genom att konstruera metoden pd detta vis far metoden ett glest linjart ek-
vationssystemet och ar liksom vanliga finita differensmetoder relativt enkel att
implementera. Vidare dr metoden nit-fri, vilket innebdr att den inte krdver en
strukturerad diskretisering av berdkningsomradet. Detta gor den lika enkel att
anvanda oberoende av antal rumsliga dimensioner och den kan erhdlla den nog-
grannhetsordning man dnskar. De senare egenskaperna drver metoden fran glo-
bala approximationer med RBFer. Sammantaget gér detta att vi kan identifiera
RBF-FD som en metod med hog potential att effektivt [6sa analytiskt oldsbara
och berdkningsmdssigt utmanande prissattningsproblem inom finans.

RBF-FD é&r en ung metod som fortfarande befinner sig under intensiv utveck-
ling och vi méter manga utmaningar nér vi gar fran enkla teoretiska fall mot mer
komplexa problem fran riktiga tillimpningar. Kdrnan i denna avhandling ar att
hitta sitt att dverbrygga de hinder som uppstdr da finansiella derivat prissatts
genom 16sning av PDEer med hjédlp av RBF-FD i flera rumsliga dimensioner. Pa
sd satt representerar denna avhandling ett bidrag till att géra RBF-FD metoder
mer tillfdrlitliga och effektiva fér anvandning inom finansiella tilldmpningar.

Resultaten i denna avhandling visar hur man framgdngsrikt tillimpar RBF-FD
pa olika problem inom finans genom att studera effekten av formparameter for
Gaussiska RBF-FD approximationer, visa hur man forbdttrar approximationen
av flerdimensionella differentialoperatorer genom att anvanda polyharmoniska
splines forstarkta med polynom, hur man distribuerar nodpunkter pa ett lamp-
ligt satt, samt hur man gldttar initialdata for att uppna hog konvergensordning.
Slutligen jamfoér vi RBF-FD mot andra tillgdngliga metoder pa en stor mangd
prissattningsproblem. Detta bidrar till att skapa en objektiv bild av metodens
effektivitet.
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[peraeg

Llnn oBe AOKTOpCKe AMCepTalmje jecTe Ad M3BECTUM O TPEHYTHOM CTakby pa-
3BOja METOAA KOHAUHWX PasAvKa WM3BEAEHUX M3 PaAMjaAHKX 6asHMx GyHKLMja
(KP-PBD) 3a oapehuBarbe LieHe PprHaHcHjckmnx aepyeaTa. OBaj AOKTOPCKM paa
npeACTaBAa AeTasaH nperaea ceojctasa KP-PBD 1 113a308a koju HacTajy kaaa ce
KP-PBED meToae npuMeHe y duHaHCW|ckoj Npakcu. Takohje, pe3yATaTima oBe
AOKTOPCKE Te3e XEeAMMO Aa MOTMBMLEMO Aasu pa3eoj KP-PBD kao noysaa-
He METOAE 32 pellaBarbe BUCOKOAMMEH3MOHMX MapLMjaAHUX AMPEepeHLIjanHmX
jeaHaumHa (M4A)) Koje NponcTUdy 13 GUHAHCUICKMX MOAEAA.

DUHAHCK]CKMM AEPMBaTMMA Kao LUTO Cy ¢GOPBapA YrOBOPM, OMLME 1 APYTH,
LWMPOM CBETCKMX PUHAHCH|CKMX TPXKULTA TPryje Ce Y OrPOMHUM KOAMYMHAMA.
YKynHa BpEAHOCT MMOBMHE KOja Y OBOM TPEHYTKY MOKpMBa akTvBHe $UHAHCU)-
CKe AepMBaTe je HEKOAVKO NyTa Beha oA BPEAHOCTM OPYTO CBETCKOT MPOM3BOAR.
DUHaHCWJCKM AEPVBATM CY HAJKOPULLAEHMjM MHCTPYMEHTH 3a YrpaBaarbe pr3n-
KOM, MHBECTMparbe 3aCHOBAaHO Ha LUMeKyAmncarby, kao U kopuwherse apbuTpa-
KHMX NpuAMKa. CTora, M3y3eTHO je BaXKHO 3HATW HMXOBE BPEAHOCTU Y CBAKOM
TpeHyTKy. Kako 61 To 61Ao Moryhe y mpakcu, HEPETKO je MOTPEBHO NMPUMEHUTH
CKYM BELITMHA 3aCHOBAHMX Ha NO3HaBakby GUHAHCKJCKE TeopHje, MaTeMaTUUKMX
aAaTa, METOAR MPUPOAHMX HaykKa WM TeXHMKa Mporpamuparba — Koje 3ajeAHO
YMHE apCeHaA 3Harba CTPYKE MO3HATE KAo (OUHAHCHCKO MHXEHEePCMBO.

MHOrM TEOPU|CKM MOAEAM 33 OAPENMBarbe LieHa PUHAHCKUjCKMX AepuBaTa MO-
ry ce npeactasutu nomohy 4.V Beakom Bpojy cAyyaja, Te jeAHaumHe Cy Bpe-
MEHCKM 3aBMCHE, BUCOKOAMMEH3MOHE, Ca MPOOAEMATUUHUM TPaHNUYHKM YCAOBM-
Ma — LWTO MX Hajuelwhe YMHW aHAAUTUYKM HepelmBrmMa. Y TUM CUTYyalumjama,
MpVHYNEHM CMO Aa KOPMCTUMO HYMEPWHYKO anpOKCMMMParse Kao CPEACTBO 3a
oApeNMBarbE HMXOBKX MPUOAMKHKX peLlerka. HayuHo-TexHUYKe AUCLMMANHE
Kao LITO Cy HyMepuyka aHaAM3d w padyHapcmso, 6ase ce pasBojeM METOAA 3a
MPUBAMKHO pellaBarbe aHaAMTUYKM HepPELLMBIX NPOBAEMA W M3yyaBarbeM CBO)-
CTaBa TWX MeToAR. HaXarocCT, He NOCTOM jeaHa YHVBEP3aAHa HyMepuika Me-
TOAQ KOJYy BUCMO MOTAM A2 KOPUCTMMO 3a edrKaCHO pellaBakbe CBMX MpobaeMa
osor Tuna. LLTasuie, nocToju orpomaH 6poj HyYMEPUUYKMX METOAR 3a MPUOAM-

KHO pelliaBarbe PasAVUUTIX BPCTa AMPEPEHLIMJAAHMX JEAHAUMHA, A CBaKA OA HoMX
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AOAa3M ca cebu CBOJCTBEHWM CKYNMOM OrpaHuyersa Y NpeLmsHoCcTY, edukacHo-
CTW 1 CTaBUAHOCTM — KOja Hajuellhe 3aBrce oa 0cobrHa camor NMpobaemMa Koju
MOKyLWwaBamo Aa pelmmo. CTora, jearHr HaumH 3a ePrKacHO anpoKCMMMparse
pewersa [14] jecTe naxmneo Guparbe, passujarse 1 NpuraarohaBarbe Hymepui-
KX METOAA 3a CBakM NPOOAEM, MOHaoCo0.

V oBoj ancepTaumjm npeactaesamo KP-PBD kao MAaay HyMepuuky MeToAy
KOja MMa M3BaHpPEAaH MOTEHLMjaA 3a ePMKACHO anpoKkcuMumparse pelersa [ 14
y duHaHcHjama. [1peTXOAHMX rOAMHa, MOPeA YMCTOr akaAEMCKOr pasBoja U 1c-
TpaXuBarba Be3aHMX 3a HheHa HyMepuyka CBOJCTBA, OBa METOAA je YCMELIHO KO-
pyWwheHa y Mpakck 3a cMMyAMparbe aTMochepckix deHomeHa. Kao WTo HeHo
camo nme HarogelwTasa, KP-PED je BpcTa MeToAe kOHauHMX pa3avika (KP) koja
NoTU4e 13 MOPoAMLE MEeTOoAR PaAmjarHix BasHKx dyHkumja (PBD). Tako koH-
CTPpYyVCaHy, OBY METOAY KapakTepuile peTka MaTpuLa ChcTema U jeAHOCTaBHO
MMMNAEMEHTHPaHEe — CAMYHO Kao Koa kAacuuHux KP MeToaa. Takohe, osa Me-
TOAR He 3axTeBa MPEeXY 3a AMCKPETU30Barbe AOMEHa, Beh AUCKPETU30BaHEe MO-
KEMO Aa 006aBAAMO CAODOAHMM PacrpoOCTUParbeM Tadaka. 10 YMHU AMCKPETU-
30Bakbe BULIEAMMEH3MOHMX AOMEHA BPAO JEAHOCTaBHMM, a MOPeA Tora MeToAa
je MpUAAroA/SKBOT peaa MPELIM3HOCTM — LWTO Cy OCObMHE Koje Hacaehyje oa
raobanHmnx PB® mMeToaa. [peacTaBseHa CBOJCTBA CAYXE KaO OCHOB 3a Mperio-
3HaBarbe KP-PBD kao npukaaaHe METOAE 3a pellaBarbe oApeReHnx aHaAUTUYKM
HEPELMBIX U PadvyHapCKX 13a30BHKX NMpobaemMa Y GrHaHCHjama.

Vnak, To wto je KP-PE® meToaa y pa3sojy Hocm ca coboM MHOLLTBO 13330Ba
ca KojMMa Ce CyouaBaMO KaAd Ca MABAAHMX akaAeMCKMX mpumepa npehemo Ha
npobAeme cTBapHor ceeTa. Cpx OBe AMcepTalmje jecTe yrpaBo NPOHaAaXKeHe
pellierba 3a NMperpeke Ha Koje HamnAa3MMO Kaaa Ce LieHe GUHAHCKjCKUX AepyBaTa
oApefyjy peluaBarbem BueaMMeH3noHKX [14) nomohy KP-PE®.

[poyuaBarbeM yTuUaja NapameTapa obAvka [aycosrx PE® Ha KP-PB® anpok-
cMMMparbe, kopUwherseM MOAMXAPMOHW|CKMX CMAJHOBA Ca MOAMHOMMMA 3a anpoK-
CMUparbe BULLEAMMEH3MOHMX AMDEPEHUMjaAHMX ONEepPaTopPa, KOHCTPYMCaHEM
MPVKAGAHMX pacriopeaa Tadaka TOKOM AMCKPETM30Barba AOMEHA W rAadarbem
MOYETHWX YCAOBA Kako O1 METOA MOrao Ad KOHBEPTMPa BUCOKMM PEAOM — pe-
3yATaTW OBE AMCEPTALMjE NOKa3yjy Kako YCrelwHo Moxemo npumennTu KP-PED
METOAY Ha pasHe npobAemMe y dbuHaHcKjama. Takohe, oBa AOKTOpCKa Te3a caap-
xn pesyatate nopehersa KP-PB® ca Apyrvm MeToaama Ha LIMPOKOM CMekTpy
dUHaHCK|CKMX NpoBAeMa Kako BU ce CTBOPMAA OOjeKTUBHA CAMKA O NepdopmMaH-
cama MpeACTaB/AsEHE METOAE .
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