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Abstract
Keshavarz Hedayati, S. 2018. Magnetism in Transition Metal Systems. Interplay between
structure, dimensionality and electron correlation. Digital Comprehensive Summaries of
Uppsala Dissertations from the Faculty of Science and Technology 1720. 94 pp. Uppsala:
Acta Universitatis Upsaliensis. ISBN 978-91-513-0438-0.

In this thesis, an ab initio study of electronic structures and magnetic properties of transition
metal systems has been presented, covering bulk, interface and surface geometries. Among them
are Fe, Co, Ni, CaMnO3, Co2MnSi, a ferromagnetic Heusler alloy, as well as double-perovskites
oxides such as Sr3(Fe1.25Ni0.75)O6 and Nd2NiMnO6.

Their electronic structures have been obtained within the framework of the density functional
theory (DFT) in combination with Hubbard type interaction such as the static correction
evaluated within the Hartree-Fock method (DFT+U) or within the more sophisticated method of
dynamical mean-field theory (DFT+DMFT). Using many-body approaches enables us to treat
the correlation effects such as non-quasiparitcle states above the Fermi level for Co2MnSi and
in the half-metallic side of the Co2MnAl/CoMnVAl heterostructure.

Based on the converged electronic structure, the magnetic excitations were mapped onto the
Heisenberg Hamiltonian. Among various ways to extract exchange parameters, in this Thesis
the method of infinitesimal rotation of the spins has been applied in the framework of the local
magnetic force approach. It is shown that the exchange interactions on the surface of transition
metals can be substantially different from those in the corresponding bulk. At the same time, the
dynamical correlations lead to a slight renormalization of the magnetic couplings. For CaMnO3,
we demonstrated the crucial role of the atomic relaxations defining the magnetic order on the
surface atoms. We were also able to extract the orbital decompositions, which helped identify
the main contributions to the total exchange. For the double-perovskite systems, the extracted
exchange parameters were then used to evaluate the ordering temperature using Monte-Carlo
simulations, and the calculated critical temperatures were found to be in good agreement with
our experimental measurements.

In a more technical investigation, the influence of the spin polarization of the DFT exchange-
correlation functional on the extracted exchange parameters has been investigated. We found
a very good correspondence between the computed total energies and the parametrized
Heisenberg model for LDA+U calculations, but not for LSDA+U. This means that for the
extraction of the exchange parameters based on total energy differences, LDA+U is more
appropriate.

Finally, a systematic study of the emergence of the local minima in DFT+U calculations has
been performed for the bulk of NiO, FeO, CoO and UO2. We extended the use of the occupation
matrix control method to randomly generate density matrices which help better monitor the local
minima and explore the energy landscape. The effect of the Hubbard U and the double-counting
in introducing the local minima are discussed.
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1. Introduction

Human beings are members of a whole,
in creation of one essence and soul.

Saadi, 13th century

Our modern understanding of the electronic structure of solids is based on
the concepts of charge and spin. Historically, the first experimental observa-
tion of spin quantization emerged in the year 1922 through the Stern-Gerlach
experiment [1], where a beam of silver atoms from an oven passed through
an inhomogeneous magnetic field. The screen revealed two discrete points of
accumulation rather than one continuous distribution, due to the quantum na-
ture of spin. Later on, during a short important period from 1925 to 1928, the
concept of spin was theoretically developed by Uhlenbeck, Goudsmit, Heisen-
berg, Pauli, and Dirac. The aim was understanding of atomic spectra by means
of quantum theory. In this process, two of the most important concepts in mod-
ern physics emerged, exchange and spin-orbit coupling. Moreover, analog to
the classical interaction of the spin moments with an external magnetic field
introduced additional concept known as Zeeman effect. The interplay between
the exchange, the spin-orbit, and the Zeeman interactions has been the essence
of magnetism research since then. In particular, they play a key role in all of
condensed matter physics which is based on the concepts of charges, spins
and orbital moments and their interactions [2]. Without exchange there would
be no spontaneous magnetization. It determines the spin arrangement in mag-
netic materials, i.e., the existence of parallel (ferromagnetic), antiparallel (an-
tiferromagnetic) spin alignment. On the other hand, the spin-orbit interaction
generates orbital magnetism and couples the spin to the lattice. Through this
interaction spin and charge can talk to each other through exchanging energy
and angular momentum. The Zeeman interaction is used to align magnetic
materials. In particular, if one needs to align a magnetic material in a specific
direction the Zeeman interaction has to overcome the spin-orbit interaction
which determines intrinsic spin direction, i.e. easy axis. This is because the
external field in Zeeman interaction can act on both spin and orbital moments,
despite the exchange interaction which is isotropic thus it only acts on the spin.

This Thesis comprises a theoretical study of magnetic materials based on
3d elements, so we shall put a particular emphasis on the exchange interaction
because it is the largest magnetic interaction in these systems and the most dif-
ficult one to treat theoretically. Throughout this thesis, a semi-classical treat-
ment of magnetism has been employed, where the parameters of a classical
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Heisenberg model are obtained from a quantum mechanical ab initio calcula-
tions.

This Thesis is segmented in three main parts: Introduction, theoretical
background and the contributions and outlook. In the first chapter, I expose
the origin of exchange and different types of exchange mechanism in magnetic
materials. In the second part in chapter 2, the electronic structure methods of
this Thesis has been discussed from single- to many-body approaches. This
is followed by chapter 3 where different ways to extract exchange parameters
has been discussed with a special focus on the formalism used in this The-
sis. Finally in the last part, I present my contributions through chapter 3−8,
followed by chapter 9 where I conclude my results.

1.1 Origin of exchange
Exchange interaction is at the heart of the phenomenon of long range mag-
netic order and the Heisenberg Hamiltonian is the basis of most theoretical
studies of magnetism in determination of the exchange interaction parame-
ters Ji j. These microscopic parameters define most of macroscopic magnetic
properties such as the Curie temperature (Tc), magnon dispersion curves and
the magnetic response function to an external field [3, 4]. Therefore, a good
knowledge of exchange parameters and the mechanisms generating them (di-
rect exchange, super exchange, etc.) for real materials is desired [5, 6].

In order to understand the basic mechanism behind the exchange interac-
tion, let us consider a very simple model with just two electrons with spatial
coordinates r1 and r2 on atom a and atom b, as shown in Fig. 1.1 (known
as Heitler-London model for the H2 molecule [7]). The total wave func-
tion for the joint state (2-particle wavefunction) should be antisymmetric (for
fermions). So, the spin part of the wave function can be either an antisym-
metric singlet state χS (S=0), in the case of a symmetric spatial state or a
symmetric triplet state χT (S=1), in the case of an antisymmetric spatial state.
Hence, the wave functions of the singlet and triplet states can be written as

ΨS =
1√
2
[φa(r1)φb(r2)+φa(r2)φb(r1)]χS,

ΨT = 1√
2
[φa(r1)φb(r2)−φa(r2)φb(r1)]χT ,

(1.1)

where φ(r) is the single electron state. Then, the energies of the two possible
states are

ES =
∫

Ψ∗
SĤΨSdr1dr2, ET =

∫
Ψ∗

T ĤΨT dr1dr2. (1.2)

It is possible to separate the spin-dependent part of the energy from the rest.
In this respect, the Hamiltonian can be rewritten in the form of an effective
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Figure 1.1. Symmetric representation of a two-particle model which illustrates the
phenomenon of the direct exchange. Two electrons feel each other through Coulomb
interaction between the corresponding electron densities and exchange interaction
which appears for indistinguishable fermionic wavefunctions.

Hamiltonian [6]

Ĥeff =
1
4
(ES +3ET )− (ES−ET )S1 ·S2. (1.3)

For a singlet state S1 · S2 = −3
4 , while for a triplet state S1 · S2 = 1

4 . By
inserting these values into Eq. (1.3) we can obtain energies compatible with
Eq. (1.2). Now, the Eq. (1.3) is the sum of a constant term and a term which
depends on the spins. The spin-dependent term in Eq. (1.3) can be used to
define the exchange constants (exchange integrals). Hence, the effective spin
Hamiltonian can be simply rewritten as

Ĥspin =−JS1 ·S2. (1.4)

Since Ĥspin depends on the scalar product of the spin moments, it will favor
parallel spins if J is positive and antiparallel if J is negative. Of course, this
depends on the convention used for the minus sign, but in the rest of this
thesis we will adopt this definition. The equation (1.4) is relatively simple for
two electrons, but generalizing it to a many body system is far from trivial.
However, this equation can still be applied for atoms in a real material and
leads to the Heisenberg model:

Ĥ =−∑
i j

Ji jSi ·S j, (1.5)

where Ji j is the exchange constant between the ith and jth spins. The calcula-
tions of exchange integrals in many body systems are in general complicated.
Here we present a brief overview of some types of exchange interaction arising
from the direct or indirect Coulomb interaction between the electrons from two
different ions. For more details, we refer the interested readers to the books
by Ashcroft [5] and Fazekas [8].
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Next, we discuss different types of exchange mechanism that can exist in
magnetic systems:

Direct exchange:

In the previous section we explained a two-particle system where the one-
particle bases φa(r) and φb(r) are orthogonal, i.e., the overlap matrix is zero

O =
∫

φ ∗a (r)φb(r)dr = 0. (1.6)

In this case the value of J in Eq. (1.5) only depend on the exchange integral [8].
However, if the one-particle bases are not orthogonal, Eq. (1.6) will have a fi-
nite value of O > 0. In this case, not only the exchange integral but also the
Coulomb integral will contribute in the calculation of the exchange parame-
ters. To be more clear, let us define two quantities as following: Coulomb
integral (Uab) and exchange integral (Jab) in orthogonal basis

Uab =
∫

φ 2
a (r1)

(
1

Rab
+

1
r12
− 1

rra1

− 1
rb2

)
φ 2

b (r2)dr1dr2, (1.7)

Jab =
∫

φ ∗a (r1)φ ∗b (r2)

(
1

Rab
+

1
r12
− 1

rra1

− 1
rb2

)
φa(r2)φb(r1)dr1dr2. (1.8)

where Rab is the proton-proton distance, r12 is the electron-electron distance,
and ra1(rb2) is electron-proton distance. The exchange parameter J in Eq. (1.5)
can be defined as follows (a complete derivation can be found in the book by
Fazekas [8])

J =

{
Jab Orthogonal basis
Jab−O2Uab

1−O4 Non-orthogonal basis
(1.9)

At sufficiently large overlap, the exchange coupling J tend to be antiferromag-
netic. Note that the value of the true observed exchange parameter does not
depend on the choice of orbitals, as it is a physical interaction.
To conclude, direct exchange interaction is based on the overlap of electronic
wavefunctions and are very short-ranged, confined to electrons in orbitals on
the same atom (intra-atomic exchange) or nearest neighbor atoms. In the
former, the single-electron wavefunctions are orthogonal and the coupling is
strictly ferromagnetic. This is a so-called Hund’s intra-atomic exchange.

Indirect exchange in metals:

This form of exchange interaction is known as the Ruderman, Kittel, Ka-
suya and Yosida (RKKY) interaction. RKKY is the dominant magnetic cou-
pling between rare-earth ions in their elemental phases and intermetallic com-
pounds. The basic idea of RKKY mechanism is that the exchange interac-
tion between localized moments can be mediated by conduction electrons. A
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Figure 1.2. Indirect exchange in metals. Depending on the strength of ferromagnetism
in the system, RKKY (Eq. 1.11) or damping (Eq. 1.12) character can be pronounced
in long range.

localized magnetic moment induces the spin polarization to the conduction
electrons and this polarization in turn couples to another localized magnetic
moment at a distance r from it. The exchange interaction, in this case, is
indirect because it does not involve the direct overlap of the wavefunctions.
The RKKY exchange coupling has a peculiar asymptotic behavior at large
distances and, as explained in Ref. [9], it can also occur in transition metal
systems. In the limit of large distance (Ri j) between the two atoms i and j, the
exchange interaction (Ji j) takes the form of

Ji j ∝ Im
exp[i(k↑F +k

↓
F) ·Ri j]

R3
i j

, (1.10)

where k
↑
F(k

↓
F) is the Fermi wave vector for the spin up (down) channel. If

both majority and minority spin bands are partially occupied, both Fermi wave
vectors are real and one obtains

Ji j(r) ∝
sin[(k↑F +k

↓
F) ·Ri j]

R3
i j

. (1.11)

The materials which show this kind of exchange interaction are called weak
ferromagnets. As is clear from Eq. (1.11), this interaction has an oscillatory
dependence on the distance between the magnetic moments (Fig. 1.2). Hence,
depending on the distance it may be either ferromagnetic or antiferromagnetic.
On the other hand, for an ideally strong ferromagnet; a material in which the
majority spin band is fully occupied, the Fermi level lies in a band gap for this
spin-channel. Therefore, we get an imaginary kF for this spin-projection, i.e.,
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Figure 1.3. The double exchange interaction gives rise to ferromagnetic coupling
between Mn+3 and Mn+4 ions, if neighboring atoms are ferromagnetically aligned.

k↑F = iκ↑F .1 In this case the exchange interaction takes the form

Ji j(r) ∝
sin(k↓F ·Ri j)exp(−κ↑F ·Ri j)

R3
i j

. (1.12)

Therefore, for a weak ferromagnet like Fe, we expect a more pronounced
RKKY interaction, while for strong ferromagnets like Co and Ni this type
of interaction is more suppressed [4].

Double exchange:

In some oxides, the ions display mixed valence states (multiple oxidation
states of the same element). For example, some compounds contain Mn ions
in valence state 3 and 4, i.e. as Mn4+ and Mn3+. Then it is possible to have
a ferromagnetic exchange interaction, due to the double exchange mechanism
as shown in Fig. 1.3. The eg electron on a Mn3+ ion can hop to a neighboring
site only if there is an empty orbital of the same spin (since hopping proceeds
without spin-flip). If the neighbor is a Mn4+ ion which has no electron in its
eg shell, this should not present any problem. However, there is a strong intra-
atomic exchange interaction between the eg electron and the three electrons in
the t2g level. This interaction corresponds to the first Hund’s rule and it wants
to keep all spins aligned in the same direction. Thus it is not energetically fa-
vorable for an eg electron to hop to a neighboring ion in which the t2g spins are
antiparallel to the eg electron. Therefore, the system aligns ferromagnetically
to save energy. Moreover, the ferromagnetic alignment allows the eg electrons
to hop through the crystal and the material becomes metallic.

Indirect exchange in ionic solids (superexchange):

There is a number of ionic solids, like transition metal oxides, where the
ground states is magnetic. In these materials the direct overlap between d-

1In ideally strong ferromagnets, there is a gap in one of the spin channels. Thus, the Fermi
surface is not well-defined. However, one can compute the Fermi velocity and it will become
imaginary, because the states in the gap exponentially decay; the gap acts as a barrier for elec-
trons to move.
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orbitals is generally so small that d-electrons can only move through hy-
bridization with the ligand atoms (e.g oxygen 2p-bands). This hybridization
provides a type of exchange mechanism known as superexchange [10]: an in-
direct exchange interaction between non-neighboring magnetic ions mediated
by a non-magnetic ion (e.g. O) which is placed in between the magnetic ions
(see Fig.1.4). The interaction arises due to the competition between the kinetic
exchange energy and the Coulomb repulsion [11]. The Hamiltonian used to
describe this kind of interaction is the Hubbard Hamiltonian

H = ∑
i j

ti jc
†
iσ c jσ +U ∑

i
n̂i↑n̂i↓. (1.13)

The first term is the kinetic term; ti j stands for the electron hopping between
two different atoms and cσ (c†

σ ) represents the annihilation (creation) operator
of an electron with spin σ . The second term is the Coulomb intra-atomic
repulsion with U being the energy cost of having two electrons with opposite
spins on the same atom. More discuss about this Hamiltonian is given in the
next chapter. Here we only mention that in itinerant systems (metallic state)
the first term dominates (ti j >>U), while in localized systems (insulator) two
different situations can happen which affect the strength of the superexchange.
For example, in early transition metal oxides with cubic symmetry, t2g states
are partially filled while eg states are empty. Hence, the hybridization with O is
relatively small (because t2g orbitals point away from the 2p oxygen orbitals).
As a result, super-exchange interaction becomes quite weak. On the other
hand, in late transition metal oxides the eg manifold start getting occupied and
since these states point to the 2p states of O, their hybridization is stronger. As
a result, the superexchange mechanism is more important mechanism in late
transition metal oxides than for early ones. It is usually antiferromagnetic, but
in some situations it can be ferromagnetic.

Empirically, the sign is determined by Goodenough-Kanamori-Anderson
rules [12, 10, 13]. They are based on the symmetry relations and electron oc-
cupancy of the overlapping atomic orbitals. According to these rules:

• A 180◦ superexchange of two magnetic ions with partially filled d shells
is AFM if the virtual electron transfer is between the overlapping orbitals
that are each half-filled, but it is FM if the virtual electron transfer is from
a half-filled to an empty orbital or from a filled to a half-filled orbital.

• A 90◦ superexchange interaction is FM and much weaker.

For example, in the case of CaMnO3 bulk; the nearly 180◦ Mn-O-Mn bridge
shows an AFM coupling as a result of the electron transfer from the half-filled
t3
2g of one Mn ion to the half-filled t3

2g of another Mn (Paper II). While in the
case of NdNiMnO6, the Ni-O-Mn shows a FM coupling due to the electron
transfer from the half-filled e3

g of Ni to the empty e0
g states of Mn (Paper VI).
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Figure 1.4. Superexchange or indirect coupling in a magnetic oxide as a result of the
overlap of magnetic orbitals with a non-magnetic orbitals like the p states of O atom.

Figure 1.5. Schematic representation of anisotropic exchange interactions due to the
lack of inversion symmetry.

Anisotropic exchange interactions:

It is also possible for the spin-orbit interaction to play a role similar to what
oxygen atoms do in superexchange. This happens for certain compounds, like
MnCO3 and CoCO3, where lack of inversion symmetry together with spin-
orbit coupling gives rise to the antisymmetric anisotropic exchange interaction
called Dzyaloshinski-Moriya (DM) interaction. For example, the DM interac-
tion between two spins has the following form

HDM = D12 ·S1×S2 D12 ∼ λa× r12. (1.14)

The DM interaction is characterized by a vector D, proportional to the spin-
orbit coupling constant λ . In most cases, it depends on, e.g., the position a of
the O ion between the two magnetic transition metal ions (see Fig. 1.5). The
vector D vanishes when the crystal has an inversion symmetry with respect to
the center between the two magnetic ions.

To conclude, in Fig. 1.6 we show a schematic representation of all these
exchange mechanisms. Depending on whether the materials are metals or in-
sulators and which type of magnetic atoms (rare earth or transition elements)
are involved one or more of the exchange mechanisms can emerge. The most
complicated situation is seen in 3d transition metals. In these materials, 3d
electrons are partially localized on the atomic sites and also partially delocal-
ized into the crystal. Furthermore, these two aspects can not be distinguished
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completely due to correlated features of the 3d electrons.
Although these types of exchange mechanisms are suggested for different
cases and can be applied to various situations appropriately, there are no clear
borderlines between them. They are related to each other, and there are over-
laps of their regimes of applicability.

Empirical values of the exchange parameters for ferromagnetic materials
can be estimated from specific heats and from spin-wave spectra, whereas their
theoretical estimation has been one of the most challenging problems in mag-
netism. Beside attempts based on combining electronic structure calculations
with model Hamiltonian methods, the biggest obstacle is that, in comparison
to the orbital interactions which lead to chemical bonding, the spin interac-
tions between magnetic ions responsible for magnetic properties are closely
packed in energy (of the order of meV or less), which makes it impossible to
understand the magnetic properties of a system by focusing only on one or a
few magnetic energy levels. Indeed, what is needed is a spectrum of the mag-
netic excitation energies. This can be described by a spin Hamiltonian which
in a very general form has been defined as

Ĥ =−∑
i j

Ji jŜi · Ŝ j +∑
i j

�Di j · (Ŝi× Ŝ j)+∑
i

Ai(Ŝi)
2 +∑

i j
Ki j(Ŝi · Ŝ j)

2, (1.15)

where the first term represents the symmetric exchange interactions, the sec-
ond term the antisymmetric exchange interactions, the third term the single-ion
(magnetocrystalline) anisotropy, and the last term is the biquadratic interac-
tion. The symmetric exchange is known as the Heisenberg exchange, and the
antisymmetric exchange as the DM interaction. DM interaction together with
the single-ion interaction are a consequence of the relativistic corrections due
to spin-orbit coupling.

For the materials studied in this thesis the first term is investigated. Because
in most magnetic materials such as many of transition metals compounds, the
first term is the leading term in the Hamiltonian due the strong local magnetic
moment, while the remaining terms are supposed to be relatively small. The
method used for the calculations of exchange parameters is explained in chap-
ter 3. But before that a discussion on the theory and methods used to study
the electronic structure of the materials in this Thesis is presented, which will
come in the next chapter.
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Figure 1.6. Different exchange interaction mechanism. In real materials, it is possible
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2. Electronic structure

In this chapter we explain the theory of electrons in solids. Atoms, molecules,
clusters or solids are systems composed of mutually interacting electrons and
nuclei. The non-relativistic time-dependent Hamiltonian of a system with mu-
tual interaction through Coulomb forces, can be defined via the Schrödinger
equation as [5, 14]

Htot = ∑
i

p2
i

2me
+∑

I

P2
I

2MI
+∑

Ii

zIe2

|RI− ri| +
1
2 ∑

i�= j

e2∣∣ri− r j
∣∣ + 1

2 ∑
I �=J

zIzJe2

|RI−RJ| ,
(2.1)

wherein ri (RI) are the coordinates of the electrons (nuclei), pi (PI) the mo-
menta of the electrons (nuclei), me the mass of the electrons, M the mass of
the nuclei and zI the charge of the nuclei.
The first and obvious hint to attack this Hamiltonian is suggested by the large
difference between the electron and the nuclear masses, which makes the nu-
clei less mobile than the electrons. Born-Oppenheimer approximation sug-
gests to drop the kinetic energy of the nuclei in Eq. (2.1). This implies that the
nuclear positions become classical variables and the nuclei can be considered
as fixed in a given selected configuration; most often ”fixed” means the equi-
librium configuration. Consistently, this approximation goes even further by
considering the nuclear repulsion (the last term in the above Hamiltonian) as a
constant for any fixed configuration. Although the neglected terms can be very
important to determine the total energy of a system or its cohesive energy, we
can first ignore them and then take them into account when needed.

2.1 Density functional theory
For a many-body system consisting of N particles, the total wavefunction is
a function of all the spatial degrees of freedom of the particles (3N) times
the spin degrees of freedoms. For a real material with N close to the Avo-
gadro number, finding the exact wavefunction becomes impossible. Density
functional theory (DFT) has provided a good way to circumvent this problem,
since its introduction in the 1960s [15, 16].
The basic idea in DFT is to shift the attention from the ground state many-
body wavefunction to the much more manageable ground state one-body elec-
tron density n(r), which is a function of only 3 variables plus spin-degrees of
freedom. In this way the ground state energy of a many-body system can be
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expressed as a functional of the one-body density such that minimization of
this functional in principle allows the determination of the actual ground state
density. This idea originates from the Hohenberg-Kohn theorem [17], which
together with the Kohn-Sham formalism forms the basis of DFT.

2.1.1 Hohenberg-Kohn theorems
The rules of quantum mechanics state that an external potential (Vext) deter-
mines all the properties of an interacting system, including the density. But it
is not clear if knowing the density is sufficient to obtain the external potential.
The Hohenberg-Kohn theorems give the answer to this question. These theo-
rems are summarized in three statements [17].

Statement 1 (Uniqueness): the ground state expectation value of any oper-
ator is a unique functional of the ground state density n(r). Hence, if we know
the density, we can uniquely determine the ground state observables without
finding the many-body wavefunctions. According to this statement, the ground
state energy of a system can be expressed as a functional, as follows

E[n] = 〈Ψ[n]|T +Vee +Vext |Ψ[n]〉 , (2.2)

where T is the kinetic energy of electrons, Vee is the electron-electron interac-
tion and Vext is the external potential experienced by the electrons from nuclei.
Since the external potential uniquely defines the Hamiltonian, this statement
implies that no two Hamiltonians and therefore no two external potentials can
give the same ground state density, i.e., there is a one-to-one correspondence
between vext(r) and n(r) (Fig. 2.1). Thus, all the quantities in the right hand
side of Eq. 2.2 are functions of only density, e.g., E[n], T [n], Vee[n] and Vext [n].
There are several ways to prove this theorem that can be found in the literature
regarding density functional theory [15, 17, 18].

Statement 2 (Variational Principle): The exact ground state density mini-
mizes the total energy functional in equation (2.2). This statement makes it
possible to derive a scheme to find the ground state charge density. We will
discuss this scheme in the next section.

For the third statement, we consider that the part of the energy functional
associated with the external potential can be singled out and the remaining
terms can be included in a new functional F [n] containing the kinetic energy
and the electron-electron interaction energy. The total energy functional can
then be written as

E[n] = F [n]+
∫

drvext(r)n(r). (2.3)

where Vext = ∑i vext .
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Figure 2.1. There is a one-to-one correspondence between the ground state density of
an N electron system and the external potential acting on it.

Statement 3 (Universality): The functional F [n] is universal in the sense that
it does not depend on Vext(r), i.e., it is the same functional for all electronic
structure problems and can be written as

F [n] = T0[n]+
1
2

∫
drdr′

n(r)n(r′)
|r− r′| +Exc[n], (2.4)

where T0[n] is the kinetic energy of a non-interacting electron gas with the
density n(r), and the second term is recognized as the classical Coulomb in-
teraction. The functional Exc[n] is called the exchange and correlation energy.
All many-particle effects are contained in Exc[n], i.e., the many-particle contri-
bution to the kinetic energy and the effects due to the Pauli exclusion principle.

2.1.2 Kohn-Sham formalism
Although the Hohenberg-Kohn (KS) theorem gives a very comfortable way
to address the many-body problem, it does not give an explicit method to find
the ground state density. This, however, is given by the Kohn-Sham formalism
[19]. The main idea of this formalism is to find an auxiliary non-interacting
system exposed to an effective potential Veff, such that this system gives the
same density as for the interacting system with the external potential Vext .
Then the new Hamiltonian of the non-interacting system is

Heff = T0 +Veff (2.5)

and its energy functional becomes

Eeff[n] = T0[n]+
∫

drveff(r)n(r). (2.6)

Since the effective system is non-interacting, we can obtain the ground state
density by first solving the Schrödinger-like single-particle Kohn-Sham equa-
tions (

−1
2

∇2
r + veff(r)

)
ψi(r) = εiψi(r), (2.7)
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Figure 2.2. Schematic representation of the iterative procedure to follow in density
functional theory.
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where the ψi are single-electron KS orbitals with no physical meanings, but
they give the ground state density as

neff(r) =
occ

∑
i=1
|ψi(r)|2. (2.8)

Now, we want the non-interacting density of the effective system to be equal
to the interacting density of the original system. According to the Hohenberg-
Kohn theorem, the ground-state density should minimize the energy func-
tional. This must be done under the constraint that the number of particles
must be conserved. Knowing this, the Euler-Lagrange equation associated
with the minimization of the energy functional is expressed as

μ =
δE[n]
δn(r)

=
δT0[n]
δn(r)

+ veff(r) (2.9)

where μ is a Lagrange multiplier acting as the chemical potential. The vari-
ation of the total energy functional for the original interacting system in Eq.
(2.3) gives

δE[n]
δn(r)

=
δT0[n]
δn(r)

+ vext(r)+
∫

d3r′
n(r′)
|r− r′| +

δExc[n]
δn(r)

. (2.10)

By comparing Eq. 2.10 and Eq. 2.6, we can derive the effective KS potential
as

veff(r) = vext(r)+
∫

d3r′
n(r′)
|r− r′| +

δExc[n]
δn(r)

. (2.11)

The last term in equation (2.10) is called the exchange-correlation potential

vxc(r)≡ δExc[n]
δn(r)

. (2.12)

The combination of the Hohenberg-Kohn theorems and the Kohn-Sham for-
malism leads to the Kohn-Sham equations, Eq. (2.6) and (2.11), that can be
solved in a self-consistent manner.
Theis self-consistent scheme is as follows: First a guess is made for a start-
ing density n(r) which is used as input in Eq. (2.11) and (2.12). The poten-
tial veff(r) is then used to solve the Kohn-Sham equation (2.7). The obtained
single-particle orbitals ψi are used to construct a new density from Eq. (2.8).
A fraction of this new density is then mixed with a fraction of the old den-
sity and then used as input in Eq. (2.11) to get a new potential. This cycle
is repeated until self-consistency is reached (see Fig. 2.2). The final density
will then not only be the correct ground state density for the non-interacting
system, but also for the interacting system by construction.
The procedure is formally exact. However, no explicit form for the exchange-
correlation potential vxc(r) is known, and one has to obtain it approximately.
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One of the most common approximations is the local density approximation
(LDA) and its extension for a spin-polarized density (LSDA). In these approx-
imations the exchange-correlation functional Exc is assumed to be local and
the exchange-correlation energy per electron corresponds to a uniform elec-
tron gas which can be parametrized in various ways, i.e., through the popular
parameterization suggested by Perdew and Wang [20]. For other approxima-
tions to the exchange-correlation potential the reader is referred to the litera-
ture [21, 22, 23].

2.1.3 Relativistic effects
The Schrödinger equation is a non-relativistic equation which is taken as a
starting point for electronic structure calculations. In some systems, the rel-
ativistic effects can become very important such that they need to be taken
into account to have a reasonable description of the system. In such cases,
we should start from the 4-vector Dirac equation [24], which describes both
electrons and positrons with spin up and spin down. This approach leads to a
fully relativistic (FR) treatment of the electronic structure problem. However,
it is also common to take into account the relativistic effects in a perturbative
manner by using a two-component wavefunction for the electrons. In this way,
we can rewrite the single-particle Kohn-Sham Hamiltonian in Eq. (2.7) in the
following form

H =
p2

2me
+Veff(r)− p4

8m3
ec2 +

h̄2

8m2
ec2 ∇2Veff(r)+

S · (∇Veff(r)×p)

2m2
ec2 , (2.13)

where S = σ/2 is the spin of the electron [25, 26]. The first two terms rep-
resent the non-relativistic Hamiltonian used in the Schrödinger equation. The
third term is the relativistic mass correction to the electronic kinetic energy.
The fourth term is the Darwin term and is a correction due to the quantum
fluctuations and it only affects the s orbitals, since the wave function of an
electron with l > 0 vanishes at the origin. The last term represents the spin-
orbit coupling, which stems from the interaction of the electron spin with the
magnetic field caused by its own orbital motion. The mass enhancement term
together with Darwin term are called the scalar relativistic (SR) corrections to
the Schrödinger equation. The spin-orbit term, on the other hand, couples the
spin and orbital degrees of freedom and therefore it is a vector quantity.
Relativistic effects become important when heavy elements are involved. This
is due to the fact that the Darwin term (∇Veff(r)) is larger for electrons in heavy
elements, specially the ones which are close to the nucleus, than for electrons
in light elements. Here we bring a brief explanation for one of the corrections
that is caused by relativistic motion of electrons.
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Spin-orbit coupling

The most significant corrections due to relativistic effects, is the spin-orbit
coupling (SOC). If we assume that the potential Veff is spherically symmetric,
the SOC term can be written as

Hsoc =− e
2c2m2

er
dVeff(r)

dr
S ·L = ξ S ·L, (2.14)

where L = r×p is the orbital angular momentum operator and ξ is the SOC
constant. In solids, the SOC determines the magneto-crystalline anisotropy
(MCA). The MCA is a measure of how strong the spin is locked into a special
lattice direction through the spin-orbit coupling. The MCA, thus, depends on
the magnetization direction in the crystal lattice. If we define the magnetiza-
tion direction M̂ with respect to the z axis as M̂ =(sinθ cosφ ,sinθ sinφ ,cosθ)
then we can expand the MCA for a uniaxial system (like hcp Co) as [27]

EMCA = K1 sin2 θ +K2 sin4 θ +K3 sin6 θ +K4 sin6 θ cos6φ + ..., (2.15)

where Ki are anisotropy constants.
If we are interested in transition metals systems, where the SOC constant ξ

is much smaller than the band width of the d orbitals and also smaller than the
exchange splitting, it is quite common to consider the SOC term as a simple
perturbation. The change in the energy due to the SOC to the second-order is
given by1

ΔEsoc = ξ 2 ∑
n�=m

| 〈n|L ·S|m〉 |2
εn− εm

, (2.16)

where εn and εm are the eigenvalue energies of the occupied and unoccupied
eigenstates of the unperturbed Hamiltonian. A rough estimate of K1 in Eq.
(2.15) for a uniaxial system, like ultrathin film ferromagnet, is

K1 ∼ ξ 2/W (2.17)

Given that ξ ≈ 75 meV and the bandwidth of the d states is W≈ 5 eV, one
obtains K1 ≈ 1 meV·atom−1. However, for cubic systems the second-order
perturbation term gives zero contribution and one needs to go to higher order
perturbation terms, which lead to orders of magnitude smaller contributions
and hence, the magnitude of ∼1μeV·atom−1 is appropriate for K1.

2.1.4 DFT basis set
Practical implementations of the self-consistent Kohn-Sham equations (rep-
resented in Fig. 2.2) require a basis set for the computations. According to

1The first order is zero due to the cancellation in summation.
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quantum mechanics, the wavefunction |ψi〉 of a system can be expanded via a
complete basis set

|ψi〉= ∑
l

cl |χl〉 , (2.18)

Inserting this equation into Eq. (2.7) gives

∑
l

clHeff |χl〉− εi ∑
l

cl |χl〉= 0. (2.19)

Multiplying this equation from the left with 〈χk|, we get

∑
l

cl 〈χk|Heff |χl〉− εi ∑
l

cl 〈χk|χl〉= 0. (2.20)

By defining the matrix elements of the Hamiltonian as Hkl ≡ 〈χk|Heff |χl〉 and
the overlap integrals as Okl ≡ 〈χk|χl〉, the secular equation is written as

∑
l

cl(Hkl− εiOkl) = 0. (2.21)

The Kohn-Sham equation (2.7) has been transformed from a differential eigen-
value equation to a linear algebraic equation. By solving this equation, we
can obtain the Kohn-Sham energies of the system. This equation is generally
solved iteratively. Therefore, first we choose a basis set. Then, by making
use of the Rayleigh-Ritz procedure and standard numerical diagonalization
routines, we calculate the eigenvalues of Eq. (2.21) without iterations. The
self-consistent potential is of course iterated, and in this process the basis
functions are at each step optimized to be the best for this potential. In our
studies, we use the relativistic spin polarized toolkit (RSPt) code in order to
solve the Kohn-Sham equations [28]. Below we explain the construction of
the basis set that is implemented in this code.

2.1.5 Linear muffin-tin orbital method
The full-potential linear muffin-tin orbital (FP-LMTO) method, associated
with site-centered basis functions, is a specific implementation of DFT. A brief
introduction to this approach is given below, while for an extensive review we
refer to the book by J. M. Wills et al. [28]. This method is based on the division
of the space between the atoms into two regions: non-overlapping muffin-tin
(MT) spheres centred on each atom and an interstitial region. For simplicity
we can illustrate the method for a potential that is spherically symmetric close
to the nuclei. In this respect, the external potential Vext defined in Eq. (2.11)
in the unit cell is represented as

V (r) =

{
VMT (r) , |r|< rMT
VI(r) , |r| ≥ rMT

(2.22)
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where MT stays for muffin-tin region and I for interstitial region.
The site-centered basis functions start from the MT spheres (heads of the ba-
sis), and penetrate into the interstitial regions (tails of the basis). The shape
of the basis functions depend on some parameters defined for the system. The
discussion on these parameters is given in the next part, but first we explain
the construction of the LMTOs inside and outside the MT sphere.

MT basis functions:

Typically the basis functions inside the MT spheres are defined in local coor-
dinates with respect to the center of the site τ and are composed of two terms,
a modified spherical harmonic times a radial function, i.e.

χτ,L(ε,r)||r|<rMT = YL(r̂)φl(ε,r), (2.23)

where L = (l,ml) defines orbital quantum numbers. YL = ilYl,m, r̂ is the an-
gular part of the coordinate and r is the distance from the center of the site τ .
After some algebraic manipulation one gets the radial function φl by solving
the radial Schrödinger equation

∂ 2(rφl(ε,r))
∂ r2 =

(
l(l +1)

r2 +VMT (r)− ε
)

rφl(ε,r). (2.24)

In order to remove the energy dependence from the basis function, the radial
functions can be expanded (usually to the first order) around some lineariza-
tion energy εν as follows

φl(ε,r) = φl(εν ,r)+(ε− εν)φ̇l(εν ,r) (2.25)

where the function and its derivative are orthogonal to each other.
Now a linear combination of the function φl(εν ,r) and φ̇l(εν ,r) can be made
as a Taylor expansion of the energy dependence around the energy εν for the l
shell. This linear combination should be chosen in a way that the basis func-
tions inside the MT spheres connect to the basis functions in the interstitial in
a continuous and differentiable way. The interstitial basis functions are given
by Hankel or Neumann functions and will be described in the next paragraph.

Interstitial basis function:

Each basis function in this region consists of a Hankel or Neumann function.
Formally, each basis function in the interstitial is defined as a spherical har-
monic times a spherical wave with some quantum number κ . This quantum
number is a measure of the kinetic energy and is defined as κ2 =VI−ε , where
VI is the interstitial potential. The basis function takes the form

χI,L(ε,κr) = YL(r̂)yl(κr), (2.26)
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where the spherical waves (yl) are the solutions of the Helmholtz equation(
− d2

dr2 +
l(l +1)

r2 −κ2
)

ryl(κr) = 0. (2.27)

For a positive κ2, the yl(κr) obtained in this way is either of the two linearly
independent spherical Bessel functions jl(κr) or Neumann functions nl(κr).
For a negative value of κ2 the solution of Eq. (2.26) is a first type Hankel
function. The full basis function after matching with the function inside the
MT, is defined as

χτ,L(εν ,κ,r) = YL(r̂)

{
φl(εν ,r)+κcot(ηl)Jl(κ,r) r < rMT

κNl(κ,r) r ≥ rMT ,
(2.28)

where Jl and Nl are the augmented versions of the spherical Bessel and Hankel
functions,2 and are related to the Bessel and Neumann functions as

NL(κ,r) = nl(κr)YL(r̂) (2.29)

JL(κ,r) = jl(κr)YL(r̂). (2.30)

In order to achieve a high precision in the electronic structure, it is more
convenient to use a basis with several κ for each l. For example, for disperse
valence bands like s and p, it is common to use 3 tails (3κ or 3 basis), and for
the narrower d and f bands 2 tails. The reason for using several tails for each
orbital is that in the formulation of LMTO, the interstitial region can not be ac-
curately described by a single tail. In the atomic sphere approximation (ASA)
of LMTO this problem can be solved by using large overlapping spheres such
that the interstitial region can be ignored. However, in full-potential LMTO,
the MT spheres do not overlap. To solve this problem, one needs to use mul-
tiple tails with different κ values. However, there are some cases which limit
the number of tails applied in the calculations. More explanation on this case
is given in section (2.2.5). Here, we only say that the choice of tail energies
would affect the total energy value. The total energy is also determined by the
number of k-points used in sampling the Brillouin zone, and hence a choice of
basis functions must be accompanied by a choice of a k-point grid. This effect
is more pronounced in non closed-packed structures, e.g. surface calculations.
As an example, in Fig. (2.3) the total energy convergence with respect to the
number of k-points for different tails are shown for a 15-layer slab of bcc Fe
(for the z direction which is perpendicular to the surface only one k-point is
used since we sample the two-dimensional Brillouin zone). By comparing the

2For κ > 0, Nl is a Neumann function instead of Hankel function.
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Figure 2.3. K-point dependence of the total energy is shown for different values of
tail energies shown in the legend (κ). Using positive tails can produce less accurate
results than having smaller basis set with negative tails. Nevertheless the total energy
for any choice of tails is converged to within 6 meV/simulation cell (15 atoms).

total energy differences, one can see that in the case of three tails, of which
one is positive, tail energies leads to at most 6 meV per simulation cell which
is very small when compared to any energy that is relevant for a solid, e.g.
the cohesive energy. Note that positive tail energies in the system can freely
extend to outside of MT spheres, which in the case of a surface is vacuum.
Therefore, surface atoms usually do not require basis functions with positive
tail energies. However, positive tail energies can sometimes be helpful due to
faster convergence.

Choosing a Basis Set:

In our LMTO-based code (RSPt), the range of energies considered in a normal
calculation extends from the 1s1/2 deep core state to well above the Fermi en-
ergy E f . The localized states in the core region are calculated separately. The
variational basis functions are designed to represent the highest energy atomic
valence configuration and the next highest energy configuration as well. For
example, for Al with atomic configuration of 3s2 3p1, the valence basis would
contain 3s 3p and 3d LMTOs. A good choice would have three s and p orbitals
with different interstitial kinetic tail energies and two d orbitals with different
kinetic tail energies. We write this as
• 3×(3s,3p), 2×3d
The basis set must also be flexible enough to describe energy levels derived
from atomic states, i.e., the states with different principal quantum numbers
but the same angular momentum quantum number. For example, for describ-
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ing the properties of actinides at any pressure, a basis with both 6p and 7p
character is required. Similarly, a more precise calculation of the structural
properties of transition metal oxides requires both semi-core and valence s
and p states on the transition metal ions. Therefore, in LMTO-based methods
it is common to perform calculations using both semi-core and valence states.
For example, in the case of NiO under pressure one can define the valence
basis as follows
• 3×(3s,3p), 2×(4s,4p), 2×(3d)
In this way the description of the evolution of semi core states from localized
to itinerant under pressure can be achieved. In the next chapter we will show
an example of different results one can obtain from different basis size.

2.2 Localized electrons and model Hamiltonians
Density functional theory and its formal extensions give an excellent parameter-
free description of ground state properties of magnetic metals, such as bulk
structures, surfaces, interfaces and disordered alloys [17, 29, 30]. However,
besides many successes, there is a large class of materials for which these
methods fail [31, 32, 33, 34]. This class contains systems with not fully occu-
pied (or unoccupied) shells of localized electrons such as d and f orbitals. The
motion of electrons in these orbitals is strongly entangled such that DFT with
an exchange-correlation functional based on a homogeneous electron gas can
not well describe the kinetic and the Coulomb energy associated with these
electrons. Therefore, one needs to search for methods treating these electrons
in a different manner. In parallel with the development of density functional
theory, model Hamiltonian methods have been also used to study the many-
body electronic structure problem. The aim of these methods is to simplify
the electronic Hamiltonian in Eq. (2.1) while still keeping the physics of in-
terest. Although model Hamiltonians look quite simple, their solutions might
still be quite difficult. We refer the interested readers to the book by Yamada
for a review of some of the most popular model Hamiltonians [35]. One of the
famous examples is the Hubbard model [36], in which the interaction between
electrons is assumed to be purely local as

Ĥhub =− ∑
R,R′,σ

(tR,R′ ĉ
†
R,σ ĉR′,σ +h.c.)+U ∑

R

n̂R,↑n̂R,↓. (2.31)

Here tR,R′ is the energy an electron gains by jumping from site R to site R′,
ĉ†(ĉ) is the creation (annihilation) operator, and n̂R,σ is the number operator
for spin up and down at site R. The amplitude of t is proportional to the
dispersion (the bandwidth) of the valence electronic states and represents the
single-particle term of the total energy. In the case of strong localization,
the partially screened Coulomb repulsion affects mainly the electrons on the
same atom through a term that is proportional to the product of the occupation
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numbers. The strength of this term is the "Hubbard U". In other words, U
is the price to pay for having two electrons with opposite spins on the same
site. For systems with metallic character, when single-particle terms dominate
(t >> U), DFT can still be used as a reliable approximation. Instead, in the
regime dominated by short-range Coulomb interactions (t <<U) like systems
with insulating character, one needs to search for another method.
The main features described by the Hubbard model can be included into DFT,
in the form of an explicit correction. This procedure will be discussed in the
following.

2.2.1 DFT+U Hamiltonian
One of the failures of DFT is the description of Mott insulators [17, 19, 37].
In such systems the insulating character is due to the strong Coulomb repul-
sion between electrons which dominates over their kinetic energy, forcing the
electrons to be localized on atomic-like orbitals (Mott localization) [38]. To
describe this behavior more precisely, one needs to have a better account of
the wavefunction than in DFT, where the focus is on the non-interacting KS
quasi-particles..

The DFT+U approach [31, 32] is a correction to DFT functionals in order
to improve their accuracy. This makes it possible to describe the ground state
of correlated systems and sometimes even the excited states [39, 40, 41]. The
idea is to use the Hubbard Hamiltonian for a better description of "strongly
correlated" electronic states (typically, localized d or f orbitals). The other
valence electrons can still be treated at the level of the "standard" exchange-
correlation functional. In this approach, the DFT energy (EDFT ) is corrected
with a static Hartree-Fock term to give

EDFT+U = EDFT [nσ ]+Ehub[n
R,σ
ξ ξ ′ ]−Edc[nR,σ ], (2.32)

where n is the density, ξ index stands for the atomic quantum numbers |lmσ〉,
nR,σ

ξ ξ ′ refers to the atomic orbital occupations, e.g., occupation matrix and nR,σ =

Tr(nR,σ
ξ ξ ′ ) is the total spin-projected occupation of the localized states.

The Hubbard correction (second term) contains the electron-electron inter-
actions as modelled in the Hubbard Hamiltonian. These interactions have
already been partially taken into account when evaluating the DFT energy
functional EDFT . Therefore, it is necessary to eliminate the "double-counted"
contributions, which are defined in the third term. We will discuss this term in
more detail later, in section 2.2.4.

As can be seen from the Eq. (2.32), the Hubbard correction is a functional
of the occupation matrix (nR,σ

ξ ξ ′ ). This matrix is obtained as projections of
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the one-particle density matrix of the Kohn-Sham orbitals.3 The projection
to the localized states should be made such that the LDA+U energy becomes
invariant under the rotation of the atomic orbital basis set. Because in general
the choice of the localized basis set is not unique. Some of the most popular
choices are atomic orbitals or maximally localized Wannier functions [42].
We refer the interested readers to section 2.2.5 or Ref. [33] for more details.

The practical procedure to arrive to Eq. (2.32) involves first the choice of
the localized basis |R,ξ 〉. Then the Hubbard interaction is explicitly added to
the DFT Hamiltonian in the most general form as

Ĥhub =
1
2 ∑

R
∑

ξ1ξ2ξ3ξ4

Uξ1ξ2ξ3ξ4
ĉ†

Rξ1
ĉ†

Rξ2
ĉRξ4

ĉRξ3
. (2.33)

The U-matrix represents the effective interaction which should take into ac-
count the screening effects. Assuming that atomic states (e.g., d or f ) are
chosen as a localized basis, the next step is the construction of the U-matrix as
defined in Eq. (2.33). If we consider only the intra-site interactions for a given
shell l, the U-matrix will take the form

Uξ1ξ2ξ3ξ4
= δl1l2l3l4Um1σ1m2σ2m3σ3m4σ4 . (2.34)

Although the experssion of Eq. 2.32 seems quite simple, implementation of
the Hubbard term in a DFT code might be crucial. The reason is that there
is no unique way for the choice of the localized basis set. Liechtenstein et
al. [43] and Dudarev et al. [44] have suggested two methods which are both
rotationally invariant.

In Liechtenstein approach, the orbital dependence of the Hubbard term is
taken from the atomic Hatree-Fock

Ehub[nRσ
mm′ ] = ∑

R,m,σ
〈m1,m3 |Vee|m2,m4〉nRσ

m1m2
nR−σ

m3m4

+(〈m1,m3 |Vee|m2,m4〉−〈m1,m3 |Vee|m4,m2〉)nRσ
m1m2

nRσ
m3m4

(2.35)

with
Um1m2m3m4 = 〈m1,m3 |Vee|m2,m4〉 , (2.36)

3If ψσ
k,ν represents the occupied Kohn-Sham orbitals and |R,ξ 〉 are the states of a localized basis

set, then
nR,σ

ξ ξ ′ = ∑
k,ν

f σ
k,ν

〈
ψσ

k,ν |Rξ ′
〉〈

Rξ |ψσ
k,ν

〉
,

where f σ
k,ν is the Fermi-Dirac occupation of Kohn-Sham states, k is the k-point, ν is band index.
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they can be computed from the expansion of the bare Coulomb repulsion in
terms of spherical harmonics

〈m1,m3 |Vee|m2,m4〉=
2l

∑
k=0

ak(m1,m2,m3,m4)Fk, (2.37)

where l is the angular moment of the localized manifold, with −l ≤ m ≤ l.
The ak factors can be obtained as products of Clebsh-Gordan coefficients:

ak(m1,m2,m3,m4) =
4π

2k+1

k

∑
q=−k

〈
lm1|Ykq|lm2

〉〈
lm3|Y ∗kq|lm4

〉
. (2.38)

Mathematically, it can be proved that the ak factors are non-zero only when k
is even and smaller than 2l. The radial Slater integrals Fk are defined as

Fk =
∫ ∞

0

∫ ∞

0
drdr′r2r

′2|φ(r)|2|φ(r′)|2 rn
<

rn+1
>

, (2.39)

where r< and r> are the lesser and the greater variable of r and r′, and φ
represents the radial part of the atomic wavefunction. For d electrons only F0,
F2 and F4 are needed to compute the matrix elements of Eq. (2.37), since for
higher k values the corresponding ak vanishes. The f electrons also require F6.
However, due to the screening, these integrals can not be calculated directly.
It is, however, common to relate them to the direct and exchange integrals of
the screened interaction U and J, which can be obtained semi-empirically. For
d orbitals, this relation is defined as follows

U =
1

(2l +1)2 ∑
m1m2

Um1m2,m1m2 = F0 (2.40)

J =
1

2l(2l +1) ∑
m1 �=m2

Um1m2,m2m1 =
F2 +F4

14
. (2.41)

These equations are often used to evaluate screened Slater integrals Fk from
the values of U and J, with the assumption that F2/F4 and F4/F6 (for f elec-
trons) have the same values as in isolated atoms [22]. Although these equa-
tions are strictly valid for atomic states and unscreened Coulomb interactions,
they can be still accurate for solids if the localized orbitals keep their atomic
character. Therefore, the determination of the 4-index matrix is reduced to
only two parameters U and J.

In the second method, Dudarev proposed that based on the above expres-
sions derived by Liechtenstein et al., one can approximate U and J to be spher-
ical averages, then the total energy in DFT+U will have a form as [44]

EDFT+U = EDFT +
U− J

2 ∑
σ

[
∑
m1

nσ
m1m1

− ∑
m1,m2

nσ
m1m2

nσ
m2m1

]
. (2.42)
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The main difference between the Dudarev approach and the Liechtenstein
formalism is that the extra correlations in the former depends only on U−J in
isotropic screened on-site Coulomb interaction and is equivalent to the Liecht-
enstein approach with J = 0.

Choice of U
In theoretical studies, the U parameter is often chosen to fit one or several
properties of the system under study. For instance, the band gap or the mag-
netic moment of the system is studied for different values of U and then the
one yielding the closest agreement with experiment can be chosen for the rest
of the study. In reality, the value of U should not be a fitting parameter as it
corresponds to a physical property: strength of a screened electron-electron
interaction. Therefore, several ways have been proposed in order to determine
which U value should be used. Among them are constrained DFT (cDFT)
and the improvements beyond that [45, 46, 47, 48] and also constraint random
phase approximation (cRPA) [49]. In cDFT, a supercell is adopted in which
the occupation of the localized orbitals of one atom is constrained and is de-
coupled from all the other atoms in the supercell. Then, the Hubbard U is
calculated from the total energy variation with respect to the occupation num-
ber of the localized orbitals. On the other hand, in cRPA the static values from
the dynamical polarization is extracted. However, these two methods do not
yield the same results for the screened interaction. The reason is that the RPA
includes responses from both on-site and inter-site 3d electrons, whereas the
cDFT only takes into account the responses coming from on-site 3d electrons
to an external perturbation. In this thesis, since the focus was not on the cal-
culation of Hubbard U , these computational methods were not used, but the U
values for different system were simply taken from the literature.

Before closing this section, we need to mention some differences between
the DFT+U approach and the Hartree-Fock (HF) method which also uses a
single Slater determinant as wavefunction [5]. First of all, the effective in-
teraction in DFT+U is screened rather than the bare Coulomb kernel (as in
HF). Second, DFT+U only acts on the localized atomic orbitals rather than all
the states in the system. To express things shortly, DFT+U applies a screened
HF to a sub-group of KS single particle orbitals. In reality, however, when
the electrons are strongly localized, their motion becomes correlated and their
wavefunction acquires many-body character. Thus, the HF or DFT+U meth-
ods which describe the ground state with an optimized single determinant can
not capture the physics of, e.g., paramagnetic Mott insulators.

In the next section we will discuss a method which uses DFT as the single-
particle starting point and is able to describe several properties of strongly
correlated systems in a dynamical way based on many body approach. The

34



problem of the local minima and other failures which do exist in any single-
particle approach, in principle, should not happen in this approach, unless due
to technical problems and difficulties in the implementations which sometimes
are unavoidable. Before that, we would like to give a brief introduction to
two important objects in many-body physics; the self-energy and the Green’s
function.

The self-energy of particles:

Suppose we have an electron moving from point x at time t to point x′ at
time t ′. Then the one electron Green’s function G(xt;x′t ′) gives the probabil-
ity amplitude that a particle inserted in the space-time (xt) propagates to the
space-time (x′t ′). Now, consider the Green’s function of an electron in an in-
teracting environment like a solid. During the journey from (xt) to (x′t ′), the
particle will experience many-body scattering processes. The self-energy is
the sum of the amplitude of all these intermediate scattering processes into
a single entity, represented by the symbol Σ(x, t). For example, in case of
Fermi-liquid the self-energy describes the cloud of particle-hole excitations
surrounding the propagating electron and "dressing" it into a quasiparticle.
The relation between the bare and the dressed propagating electrons (often de-
noted by non-interacting G0 and interacting Green’s function G) is given by
the Dyson equation which states that

Σ = G−1
0 −G−1. (2.43)

Although we presented this relation for a Fermi-liquid, it is a general result for
any interacting system.
In general, the self-energy has both a real and an imaginary component. While
the real part can influence the Fermi surface of the solid and renormalize the
effective mass of the particle, the imaginary part defines the finite life-times
that the excitations acquire because of electron-electron interactions. It also
gives us some information about non-quasiparticle peaks in the spectra of the
system (Fig. 2.4). For more information, we refer to the book by Mahan [50].

2.2.2 Dynamical mean field theory
After the discovery of high Tc superconductivity, a need for methods which can
handle dynamical aspects of many-body effects and temperature became more
urgent. In strongly correlated systems where the on-site Coulomb interaction
U is larger than the bandwidth, the LDA+U method [40] can be applied to
study magnetic moments and spin wave spectra [51]. However, the excitation
spectra of these systems or a paramagnetic ground state can not be well de-
scribed by a single Slater determinant and features such as Kondo resonances,
atomic multiplets, mixed valence state are still out of reach [36]. In addition,
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Figure 2.4. The information that one can obtain by knowing the self-energy of a
system.

LDA+U focuses mainly on the inhomogeneities in the electron density and if
the spin and orbital polarizations are absent, the LDA+U correction vanishes.
Therefore, insulating systems with a nonmagnetic order can not be described.4

To address these shortcomings, one needs to go beyond static mean field ap-
proaches like LDA and LDA+U , or even methods based on a perturbation
expansion such as the GW approximation [52].

Spectral density functional theory was developed to deal with these prob-
lems through an interpolation between atomic physics and band theory. The
dynamical mean field theory (DMFT) is a method which uses DFT as the
starting point and adds dynamical effects in the form of a self-energy Σ. In
this way, DMFT is able to describe both itinerant and atomic limits on equal
footing [22, 23, 53].

The self-energy of correlated electrons is in general space-time dependent.
In DMFT, instead it is considered to be local but still time dependent (or
through a Fourier transform, frequency dependent). The self-energy is ob-
tained from solving the Anderson impurity problem, which we will come back
to later. The model Hamiltonian is the same as the one used in LDA+U . This
means that the Kohn-Sham Hamiltonian is corrected with a local Coulomb
repulsion, as in Eq. (2.33). Although DMFT uses DFT-LDA as the starting
point, it is still quite adequate for the simulation of various systems such as
rare-earth compounds [54], 3d-transition metal Mott insulators [55] and high-
Tc superconductors [56, 57]. The DMFT method is exact in the limit of infinite
dimensions, and for 3-dimensional systems DMFT is a reasonable approxima-
tion. In the limit of infinite dimensions, the self-energy becomes independent
of the momentum (Σ(k,ω) = Σ(ω)). Therefore the interacting Green’s func-
tion of the crystal becomes

G(k, iω) =
1

iω +μ− εk−Σ(iω)
, (2.44)

4In Mott insulators the energy gap is much larger than magnetic ordering temperature above
which the system becomes paramagnetic but remains an insulator.
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Figure 2.5. In DMFT the lattice problem is mapped into a model of a single atom
embedded in a bath of electrons.

In DMFT the self-energy of the lattice is obtained by mapping the lattice
problem into a model of a single atom embedded in a bath of electrons (Fig.
2.5). This system corresponds to a famous model, which is called the Ander-
son impurity model (AIM) [58]. It was first suggested by P. W. Anderson in
order to describe a magnetic impurity atom in non-magnetic metals [58]. The
Hamiltonian for a single impurity orbital reads as

ĤAIM = ∑
k

∑
σ

εkn̂kσ +∑
σ

εdn̂σ +Un̂d↑n̂d↓+∑
k

∑
σ
[Vkdc†

kσ dσ +h.c.]. (2.45)

The first term is the kinetic energy of free (conduction) electrons and the
second term is the kinetic energy of the electrons on the single impurity site,
denoted by d. If two electrons of opposite spin occupy the same site, they will
feel the Coulomb repulsion U , which is modelled by the third term. The hy-
bridization between the electrons in the impurity site and the free conduction
electrons (bath) is given by the last term, where Vkd is the matrix element for
the transition between the impurity state and the free conduction states. All the
features of the bath can be captured by the hybridization term Δ(iω) [58, 59],
which enters into the non-interacting Green’s function G through

G−1 = iω +μ−Δ(iω), Δ(iω) = ∑
k

|Vkd |2
iω− εk

. (2.46)

In DMFT, G is called the bath Green’s function, since it represents the free
electrons in which the impurity is embedded. The interacting Green’s function
can be constructed using the Dyson equation once the self-energy is known

G−1
imp(iω) = G −1(iω)−Σimp(iω). (2.47)

Now if we compare this equation with Eq. (2.44), we realize that the big
difference between these two equations is that the Hubbard model is a lat-
tice model, while the Anderson model is a single impurity model. Now the
question is how one can relate these two models to each other. The answer
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Figure 2.6. Schematic representation of the iterative procedure to follow in the
LDA+DMFT scheme.

is given by the discovery of the behavior of Hubbard model at infinite dimen-
sion, which implies that one can map the lattice model to the impurity model
[60, 61]. In this regard, we need to impose that both the self-energy and the
the local (momentum integrated) Green’s function of the lattice model should
be equal to the impurity self-energy and the impurity Green’s function

Gimp(iω) = GR,R′(iω), Σimp(iω) = ΣR,R′(iω). (2.48)

This condition leads to an approximation unless one treats an infinite dimen-
sional systems. The dynamical mean field theory approximation is that the lat-
tice self-energy is local (independent of momentum k). Then, one can rewrite
the above equations as

Gimp(iω) = ∑
k

1
iω +μ− εk−Σimp(iω)

= ∑
k

1
iω +μ− εk +G−1

imp(iω)−G−1(iω)

= ∑
k

1
Δ(iω)− εk +G−1

imp(iω)
.

(2.49)
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This gives us an explicit self-consistency condition for the impurity Green’s
function. This condition is usually enforced through a DMFT cycle on top of
DFT-LDA schemed in Fig. 2.6:

1. Start with solving the DFT-LDA problem and find the ground state
electron density n(r).

2. Construct the Kohn-Sham Hamiltonian.
3. Set up the local Green’s function Gloc(iω), obtained from the lattice

model and a guess for the self-energy. Project it to localized orbitals.
4. Build the bath Green’s function using the inverse Dyson equation

G (iω) = [G−1
loc(iω)+Σ(iω)]−1

5. Solve the local problem through one of the available "solvers" and
calculate the new self-energy as a functional of G and U

6. Go back to the step 2 and plug the obtained self-energy into Gloc(iω)
and get a new chemical potential μ .

7. Repeat this procedure untill the convergence in the self-energy is ob-
tained, then a new n(r) can be calculated from G(k, iω) which can be
used in the next DFT cycle.

This is the fully self-consistent cycle and should be continued until conver-
gence in n(r), because every new density changes the HLDA in Eq. (2.32).
To conclude, what DMFT does is to map a lattice problem onto a quantum im-
purity model subject to a self-consistency condition. The method can be used
for calculations of thermodynamical properties, one-particle Green’s func-
tions, and response functions [22, 23, 53].
One issue that we have not yet discussed is how to compute the self-energy of
the impurity model. Today, there exist many solvers which can calculate the
self-energy in both numerical and analytical manner, and after the invention
of DMFT this has become an active field of research. The reader is referred
to the review articles as [22, 23, 53] for more information. In the next section,
we will only discuss one of the impurity solver, namely the SPT-FLEX solver,
which we have used for our studies.

2.2.3 Spin-polarized T-matrix fluctuation-exchange solver
(SPT-FLEX)
Solving the quantum impurity model is one of the challenging problem in con-
densed matter physics. The difficulties come from the fact that the impurity
models typically involve several energy scales. First, an interaction scale (U)
which is often high, second; a hybridization scale (Δ), usually intermediate,
and third, some dynamically generated energy scales, which in many cases
are quite low compared to the former ones. In this regard, the solvers can
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Figure 2.7. Diagrams included in the SPT-FLEX approximation. Red arrows repre-
sents the particle propagator, cyan lines are 2-particle interactions and black dashed
lines which sums over all bubble diagrams is the effective interaction. (a) The PP
T-matrix contribution, obtained by ladder type summations. (b) The Hartree-like and
(c) the Fock-like contribution to the self-energy. (d) The RPA-like screened effective
interaction. (e) The P−H self-energy. See text for detailed explanation.

be categorized into several different groups, depending on their efficiency and
applicability. For instance, one group of solvers includes solvers which are
numerically exact based on the quantum Monte-Carlo method [62, 63]. These
solvers can handle a wide range of energy scales, but require analytical con-
tinuation of a numerical function to obtain real-time information (where ob-
servables can be found) which can be a big issue in some materials. Another
group includes solvers that are based on finding an approximate answer for
the self-energy of the impurity problem by the use of many-body perturbation
theory [64, 65]. In this approach, the Coulomb interaction is our perturbation
and the Green’s function G for the whole system can be expanded in a sum
of the terms consisting of products of the non-interacting Green’s function G0
and the Coulomb interaction U . These terms can be visualized by the so called
Feynman diagrams (as is shown in several textbooks like Ref. [66]). However,
instead of expanding G in a series of diagrams, it is usually more convenient
to express the self-energy as a perturbation series. The reason is that in that
case one can choose those subsets of diagrams which are more relevant to the
physics of the problem under study.
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One of the solvers employing this expansion of the self-energy is the fluctu-
ation exchange (FLEX) approximation, first developed by Bickers, Scalapino
and White [64, 65] to investigate high-Tc superconductivity. This solver in-
cludes the second order diagrams, but also the infinite series of bubble dia-
grams, which results in a screened Coulomb interaction. Also, infinite series
of ladder diagrams are summed. In the original formulation of FLEX, the
particle-hole (PH) and particle-particle (PP) channels are treated in an equal
way, while they play different roles in magnetism. In order to have a more
rigorous method, Katsnelson et al. [67, 68], suggests a "two-step" procedure
which combines the spin polarized T-matrix and FLEX scheme (SPT-FLEX).
The first step is to replace the bare matrix vertex with the T -matrix (T (iν)) in
the PP interactions

T (iν) =U−Uχ(PP)(iν)T (iν), (2.50)

where ν = 2nπT are bosonic Matsubara frequencies for a temperature T and
χ(PP) is a 4-index matrix describing the bare particle-particle (PP) suscepti-
bility. The second step is to take into account the PH channel processes using
this effective interaction.
As shown in Fig. (2.7), the PP T -matrix contribution takes into account the
ladder-type diagrams. The T -matrix is then used to construct the Hartree-like
and the Fock-like self-energy, as illustrated in panel (b) and (c) of Fig. 2.7.
These two groups of the diagrams contain all the second order contributions.
For the PH channel a random-phase approximation (RPA) summation of PH
bubble diagrams is needed to construct an effective interaction in (d). The
PH self-energy Σ is constructed from the Fock like diagram in (e). The final
expression for the full self-energy is a sum of all the above-mentioned parts

Σ(ω) = ΣT H(ω)+ΣT F(ω)+ΣPH(ω). (2.51)

Since SPT-FLEX solver is a perturbative solver, it can only be applied to sys-
tems with weak and moderate correlations, and always in the metallic regime
of the Mott-Hubbard transition. It is however computationally cheap, and this
fact combined with its multi-orbital formulation and the full inclusion of spin-
orbit coupling makes it a good DMFT impurity solver for realistic materials,
as long as care and consideration is taken.

2.2.4 Double counting
A double counting (DC) term should be subtracted from the self-energy (Σ =
Σimp−ΣDC) to remove the contributions that are already (wrongly) described
in LDA. However, the determination of this term is one of the most serious
problems in LDA+U and LDA+DMFT. This problem arises since the LDA
is a functional of the electron density only, while the Hubbard correction is
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a functional of the occupation numbers that are defined as projections of oc-
cupied Kohn-Sham orbitals on a localized basis set. Nevertheless, there are
some suggestions for the DC term, depending on the physical limit to which
the system is closer.
Here, we explain briefly some of the widely used choices of DC which can be
used for metals, insulators and for the materials where the uniform occupation
is still a good approximation.

• Around mean field (AMF):

DFT in LDA corresponds to a sort of mean-field solution of the many-
body problem. Hence, the exchange and correlation effects included in
LDA are defined to be spherical, i.e., orbitally averaged within a mean
field approach. This is a reasonable approach for metallic systems where
LDA gives a uniform occupation. Therefore, we can define the average
of the orbital occupations as [69]

n̄ =
1

2(2l +1) ∑
m,σ

nσ
mm, (2.52)

then the DC potential is

vAMF
DC =U(n− n̄)− J(nσ − n̄), (2.53)

where n(nσ ) is the total (per spin) occupation of the correlated shell. U
and J in this notation are spherically averaged Coulomb repulsion and
intra-atomic exchange interaction.
The AMF usually produces unsatisfactory results for strongly correlated
insulators, but is sufficient for moderate or weakly correlated metals.

• Fully localized limit (FLL):

The basic idea behind this double counting is to subtract the average
effect for a localized state, with integer occupation numbers [41]. It
takes the opposite approach to AMF and starts from the atomic limit. In
this way, the local impurity is replaced by an isolated atom in contact
with other electrons. In LDA, the energy levels of the isolated atom are
degenerate. In the atomic limit, in fact, these levels are shifted depending
on their occupation. For example, if these levels are empty, the FLL
leads to an upward shift by (U − J)/2. If the levels are fully occupied,
they will be moved downward by (U− J)/2, with the energy of

EDC =
1
2

Un(n−1)− 1
2

J[n↑(n↑ −1)+n↓(n↓ −1)], (2.54)

and the potential of

vDC,σ ≡ ∂EDC

∂nσ =U(n− 1
2
)− J(nσ − 1

2
), (2.55)
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This DC usually leads to integer occupation with localized electrons and
therefore is only suitable for insulators.

• Σ(0) double counting:

For this choice of DC, the spin splitting in LDA+DMFT comes solely
from LDA, because it considers that for separate spin channel, the or-
bitally averaged static part of the self-energy is quite well described by
LDA. Therefore, once the self-energy is calculated in DMFT loop, one
needs to remove the DC term as follows

Σσ
m1m2

(iω) = Σσ
imp(iω)− δm1m2

2l +1 ∑
m3∈σ

Σσ
m3,m3

(0), (2.56)

where Σimp is the self-energy we obtain after solving the AIM and m is
the correlated basis set.
This is a good choice DC for systems with weak or intermediate corre-
lations like transition metals. It is quite similar to what AMF does in
LDA+U .

2.2.5 DMFT basis
As mentioned before, the Hubbard correction is only applied to a selected set
of correlated electrons. To describe these electrons in DMFT, a basis set is
required corresponding to the correlated orbitals |ξi >. This basis must be
localized enough to describe local orbitals and should form an orthonormal
set. If these two conditions are fulfilled, the choice of basis should not matter
too much. The localization of the basis can be investigated by looking at the
spectral leakage which is the overlap between the LMTO basis |χi > and the
local basis |ξi〉

Oξiξ j = ∑
k,i j
〈ξ1|χi〉(O−1

k )i j
〈
χ j|ξ2

〉
, (2.57)

where Ok is the overlap matrix for LMT orbitals5. The new overlap in Eq. (2.57)
should be ideally close to unity for a proper mapping. Afterwards, local quan-
tities like Hamiltonian and the Green’s function of the system are projected
onto the basis of the correlated orbitals.
In the RSPt code, we have two different choices for correlated orbitals. A brief
description is given below.

• Orthonormalized LMTO (ORT):

This basis uses orthonormalized LMTO’s. The orthonormalization is

5LDA basis in general are neither orthogonal nor normalized.
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done by

ξi = ∑
k, j

χk, j

[√
O−1

k

]
j,i
, (2.58)

The advantage of this basis is that there is no spectral leakage, as the
overlap defined in Eq. (2.57) is one by construction. This is because
the Hilbert space spanned by the ORT basis is a subspace of the Hilbert
space spanned by the LMTO basis. The drawback is that the angular
character is not pure, because this basis is poorly localized and it ex-
tends into the interstitial regions and even further to the neighboring
MT spheres (depending on the tail energy value). Moreover, this basis
strictly requires one tail (κ) for the correlated orbitals in order to have
an exact correspondence between the LMTO basis and the atomic basis.

• Muffin-tin heads (MTH):

This basis is extremely localized with a pure angular momentum L =
(l,ml) character. It is called MT heads since it uses the radial part of
LMTO inside the MT spheres while it is zero outside. It is defined as

ξR,L(r) =

{
YL(r̂)φl(εν ,r) r < rMT

0 r > rMT
(2.59)

where the LMTO radial function φl is the solution of Schrödinger equa-
tion for a certain εν [33] and YL, as explained in Eq. (2.23), are the
modified spherical harmonics. In this basis, the interstitial part is com-
pletely neglected. The main problem of this basis is that it suffers from
some spectral leakage and hence the overlap matrix (2.57) is not unity.
This is because the Hilbert space spanned by the correlated orbitals is
not a subspace of Hilbert space produced by LMT orbitals. To decrease
the spectral leakage, however, one should keep in mind that a large MT
radius has to be used for this projection, e.g., never less than 90% of the
maximum radius allowed by the geometry of the system.
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3. Calculation of the exchange parameters and
beyond

In transition metals and their compounds, the 3d electrons have a dual na-
ture. While their itinerant character defines for instance charge conductivity,
at the same time their localized character is responsible for the local magnetic
moment formation. The latter are often described by the Heisenberg model,
which in the classical limit it is written in the following way:

Heff =−∑
i, j

Ji jei · e j, (3.1)

where Ji j are the exchange parameters between atom i and atom j, and ei
are the unit vectors along the magnetization direction of the atom at the site
i. This model successfully describes field and temperature dependence of the
magnetic susceptibility, the Curie temperature and other thermodynamic prop-
erties of a wide range of magnetic materials. The values of Ji j can be deter-
mined from first-principle calculations. Once the Ji j parameters are extracted,
the thermodynamic properties as well as the spin dynamics can be obtained
afterwards.

In experiment, the exchange parameters can be obtained through the fitting
of the inelastic neutron scattering data to the Heisenberg Hamiltonian. In the-
ory, they can be extracted from electronic structure calculations in different
ways, each of them having its own advantages and disadvantages. The sim-
plest way is to obtain the exchange parameters from total-energy differences
calculated directly from different (usually collinear) spin configurations [70].
This approach, however, has serious drawbacks. First, quite a large number of
spin configurations has to be considered and second, the result is just a num-
ber, which is hard to analyze. For instance, it remains unknown which orbitals
contribute more to the value of Ji j. In addition, there are some methodological
issues which I have discussed in Paper VII, where depending on the spin po-
larized or non polarized DFT exchange-correlation functional one can obtain
quite different results for the exchange parameters.

In this respect, several methods based on adiabatic approximation are sug-
gested. This means that these methods are only valid under the condition
that the fluctuations of spin moments are slower than the fluctuations in the
electron density (due to the electron hoppings). The exchange parameters ex-
tracted from these methods usually show very good agreements with experi-
mental founding. Here, I first give a brief description of two of these methods
and later I show some of my results for different materials.
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3.1 Real-space approach
In order to investigate the effective exchange interactions in ab initio meth-
ods, a real-space method based on multiple-scattering theory was proposed by
Lichtenstein et. al which we refer to as LKAG approach. For more details,
the reader is referred to Ref. [71, 72, 73]. Here we give a brief explanation to
this method, following the derivation from Ref. [73]. According to the LKAG
formalism, it is possible to calculate small total energy changes through the
variations of a one-electron density by employing the Anderson local force
theorem. This theorem assumes that the main contribution to the changes in
the total energy comes from the changes in one-electron density. Thus under
small perturbation, the variation in the total energy δE of the ground state is
the sum of the one-particle energy changes of the occupied states at the fixed
ground state potential. According to this theorem, one can write the first order
perturbations in the charge and spin densities via the following relationship

δE =

∫ EF

−∞
dε ε δn(ε) = EFδ z−

∫ EF

−∞
dε δN(ε)

=−
∫ EF

−∞
dε δN(ε),

(3.2)

where EF is the Fermi energy, n(ε) = dN/dε is the density of the electronic
states and N(ε) is the integrated density of states. If we only have magnetic
excitations in the system, the total number of electrons must be conserved. So,
the change in the number of electrons δ z is zero. The density of states and the
integrated density of states can be expressed via the Green’s function G of the
system as follows

n(ε) =− 1
π Im TrG(ε)

N(ε) =− 1
π Im Tr Ln(ε−H)

(3.3)

in which Ln is the logarithm and G = (ε−H)−1.
According to the above expressions, one can define the variation of the inte-
grated density of states as

δN(ε) =− 1
π

Im Tr[δHG]. (3.4)

Using Eq. (3.2), the first derivative of the total energy of the system takes the
following form

δE =− 1
π

∫ EF

−∞
dε Im Tr(δHG) (3.5)

and the second derivative

δ 2E =− 1
π

∫ EF

−∞
dε Im Tr(δ 2HG+δHGδHG). (3.6)
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ei
e’i

δ
−→
ϕi× δ

−→
ϕj

ej
e’j

.

Figure 3.1. Schematic picture of infinitely small spin rotations at site i and site j.

The next step is to find the effective spin Hamiltonian as suggested by Licht-
enstein et al. in [71, 72]. First, they proposed a system in the collinear ferro-
magnetic state with a unit vector of the magnetization ei (Fig. 3.1), and then
introduced a low-energy spin excitation to the system through small rotations
of vectors ei and e j. The operator expressing the spin rotation at the site i by
an angle |δ�φ | around direction n = δ�φ/|δ�φ | is given by

Û = e
1
2 iδ�φ�̂σ , (3.7)

where �̂σ = (σ̂x, σ̂y, σ̂z) are the Pauli matrices. If the rotation is very small
(|−→δ φ | <<1), then we can expand the spin rotation operator in the following
way:

Û � 1+
i
2
�δφ�̂σ − 1

8
( �δφ�̂σ)2. (3.8)

The new Hamiltonian after this small rotation has the form
ˆ̃H = Û†ĤÛ . (3.9)

which after using Eq. (3.8), will take the following form

ˆ̃H = Ĥ +
i
2

δ�φ [Ĥ,�̂σ ]− 1
8
(δφ)2[�̂σ2Ĥ + Ĥ�̂σ2−2�̂σĤ�̂σ ]+ ... (3.10)

In the basis of some set of localized orbitals |ilmσ〉, the Hamiltonian matrix
elements are defined as Hσσ ′

ilm, jlm′ =
〈
ilmσ |Ĥ| jlm′σ ′〉, where i denotes the site,

l the orbital quantum number, m the magnetic quantum number and σ the spin
index. For simplicity, we drop all the indices except for spin and site. Since the
ground state of the system is considered to be collinear and there is no spin-
orbit coupling, the Hamiltonian matrix must be diagonal in the spin subspace

Hi j =

(
H↑

i j 0
0 H↓

i j

)
. (3.11)

Using this, we can write the first variation of the Hamiltonian in the following
way
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δHj j = iδφ x
j

(
0 Δ j

2
−Δ j

2 0

)
+δφ y

j

(
0 Δ j

2
Δ j
2 0

)
, (3.12)

where Δ j = H↑
j j−H↓

j j is the local exchange splitting. For the second derivative
of the Hamiltonian we can easily obtain

δ 2Hj j = δ 2φ x
j

(
−Δ j

2 0
0 Δ j

2

)
+δ 2φ y

j

(
−Δ j

2 0
0 Δ j

2

)
. (3.13)

Note that since the longitudinal fluctuations are neglected and rotation of spin
moment around z axis does not change the energy of the system, no term
proportional to δφ z exist in the equations above.
The first derivative of the total energy δE represents the torque acting on the
moments and is zero, if the state is stable. The second derivative δ 2E is finite:

δ 2E =− 1
π

∫ EF

−∞
dεIm Tr(

1
2 ∑

i
δ 2HiiGii +

1
2 ∑

j
δ 2Hj jG j j +∑

i j
δHiGi jδHjG ji

)
,

(3.14)

where

Tr(δ 2HiiGii) = 1/2δ 2φ x
i Δi(G

↓
ii−G↑ii)+1/2δ 2φ y

i Δi(G
↓
ii−G↑ii) (3.15)

and

Tr(δHiGi jδHjG ji) =1/2δφ x
i δφ x

j (ΔiG
↓
i jΔ jG

↑
ji)

+1/2δφ y
i δφ y

j (ΔiG
↓
i jΔ jG

↑
ji).

(3.16)

The Green’s function can be written as

G↑ii−G↓ii = G↑ii(
1

G↑ii
− 1

G↑ii
)G↓ii = G↑iiΔiG

↓
ii = ∑

j
G↑i jΔ jG

↓
ji. (3.17)

Using this we can rewrite the Eq. (3.14) in the following form:

δ 2E =
1

4π

∫ EF

−∞
dε Im∑

i j
(ΔiG

↓
i jΔ jG

↑
ji)× [(δφ x

i −δφ x
j )

2 +(δφ y
i −δφ y

j )
2].

(3.18)
Applying the same perturbation expansion on the classical Heisenberg Hamil-
tonian (Eq. 3.1), one arrives at very similar expression for δ 2E, containing the
Ji j’s. Thus an ideal mapping of the two models is possible. Now, we reached
a point where that we can have an explicit definition for the exchange interac-
tions as follows

Ji j =
1

4π

∫ EF

−∞
dε Im(ΔiG

↓
i jΔ jG

↑
ji). (3.19)

48



3.2 Frozen-magnon approach (FMA)
This method is not used in this thesis. However, in order to have a complemen-
tary introduction of the ways for calculation of exchange parameters, a very
brief introduction is given in this section. The interested readers are referred
to Ref. [74]
In contrast to LKAG method, this method is done in reciprocal space and is
based on the calculation of total energy for spin spiral 1(also called frozen
magnon) magnetic configurations [74]. In this method, the spin spiral has a
propagation vector (q) defined in reciprocal space. The vectors of the mag-
netic moments em are localized at ionic sites with lattice vector Rm. Then,
the moment precessing around a certain axis, e.g. z, by the angle of θ can be
defined as

em = sinθ cos(q ·Rm)x̂+ sinθ sin(q ·Rm)ŷ+ cosθ ẑ. (3.20)

Then the total energies of different spin spirals states are calculated and
mapped onto Eq. (3.1). To extract meaningful exchange parameters, we are
restricted to small perturbations: the cone angle θ must be as small as numer-
ical precision permits. Then the exchange interaction for each individual site
is related to the energy differences for each wave vector q:

ΔE(q,θ) = ∑
j �=0

J0 j(1− exp(q · (R0−R j))sin2 θ

= [J(0)− J(q)]sin2 θ ,
(3.21)

where J(q) are the Fourier transform of the exchange parameters:

J(q) = ∑
j �=0

J0 jexp(iq · (R0−R j)), (3.22)

where the exchange parameters can be obtained by inverse Fourier transfor-
mation of this equation. In this method, the spin spirals can be simulated in
the first-principles calculations without the use of large supercells by the help
of generalized Bloch theorem [75]. However, this method is only valid when
spin-orbit coupling is neglected.

LKAG and FMA are formally equivalent and complementary to each other.
The quantities that are calculated are Ji j and E(q) in the former and latter
case, respectively. In fact, these quantities are related to each other by Fourier
transform and should give identical results in the limit of θ → 0 for FMA.
Therefore, the advantages and disadvantages of LKAG and FMA methods re-
fer mostly to their computational efficiency. For calculation of spin-wave dis-
persion curves and spin stiffness, FMA is more direct, since it does not need to

1Spin spiral is a magnetic configuration with moments that are rotated around specific axis by a
constant angle from one atom to another along a certain direction in the crystal.
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Fourier transformation. On the other hand, LKAG method seems to be more
efficient for calculations of ordering temperature, since a set of calculated Ji j
in real space, for typically 200 shells, provide an accurate parametrization for
reciprocal space (J(q)). In addition, the real-space approach LKAG gives a set
of pair interactions even for very distant atoms only from a single calculation.
While the widely used alternative approach, FMA, relies on DFT calculations
for spin spirals and then derives the coupling parameters from total energies
of the spirals. Therefore, depending on the system under study, either of these
methods can be applied. Again, we emphasize that the exchange parameters
obtained by these two methods are formally equivalent. As an example, the Ji j
parameters for bcc Fe bulk obtained with LKAG and FMA methods are shown
in Fig. (3.2) for comparison.

In this thesis, we have used the real-space LKAG method for the calculation
of exchange parameters.

Figure 3.2. The exchange parameters (Ji j) calculated for bcc Fe (left panel) and fcc
Ni (right panel) using two different methods; FMA and LKAG approaches [76].

3.3 Ordering temperature
Having in hand the calculated the exchange parameters, one is able to extract
thermodynamic quantities such as the ordering temperature of the systems.
There are several approximations that can be used.

• Mean-field approximation (MFA)

In this approach, the main idea is that each spin experiences an average
field of the neighboring spins and thus one can replace the spin-spin in-
teraction by an interaction of each spin with an average magnetization
of spins around it [77]. This method usually yields qualitatively correct
results for three dimensional systems with long range interactions, how-
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ever, it can be questionable for low dimensional systems like surfaces
and for only nearest neighbor interactions. The calculated ordering tem-
perature are usually overestimated in comparison to experimental data.
For the case of a single atom per unitcell the experssion is

kBT MFA
c =

2
3 ∑

j �=0
J0 j. (3.23)

• Random phase approximation (RPA)

This method goes beyond MFA and takes into account the tempera-
ture dependence when solving the Heisenberg model using Tyablikov’s
Green’s functions method [78]. In contrast to MFA, it takes into account
the collective excitations (spin waves) and provides more reliable esti-
mates of the ordering temperatures, even though usually underestimated
as compared to experiment.

• Monte Carlo (MC)

The classical MC approach is the most sophisticated and computation-
ally involved approach among the three methods. It is based on an evolu-
tionary search of the magnetic ground states. At each MC run, a chosen
spin at the lattice site j is rotated to a new random direction enew

j . If
this new direction lowers the energy of the system, the rotation is ac-
cepted, otherwise the old direction eold

j is kept. In this way the system is
finally brought into thermal equilibrium for a given temperature [76, 79].

All these three approaches are based on mapping of magnetic moment in-
teractions to the classical Heisenberg Hamiltonian. These moments, however,
are quantum mechanical objects not classical. Therefore, one needs to some-
how take into account the quantum effects. One way is to replace the classical
S2 in the Heisenberg Hamiltonian with the quantum mechanical expectation
value S(S+1) as suggested by Savrasov and Harrison [80, 81]. However, for
large enough spin moments and at high temperatures the difference should be
rather small [82].

In this thesis, the MC method has been used to extract the ordering tem-
perature. The quantity which one can look at to extract this value is either is
projected moment of the atoms when it decays to zero, or the specific heat
when it reaches to its peak (see Fig. 3.3 for the case of CaMnO3).

To conclude this part, stronger localization of the electrons in a system gen-
erates a larger magnetic moment and, at the same time lowers the ordering
temperature, since the exchange interactions with the neighboring atoms be-
come weaker. This is why all rare-earth metals are paramagnetic at room
temperature (with the exception of Gd with TC=289 K). On the other hand, for
some of the 3d metals and their compound this balance is just right; among
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Figure 3.3. The projected spin moment (left) and the normalized specific heat (right)
of CaMnO3 bulk in LSDA and LSDA+U approaches, obtained from MC simulations.

them Fe, Co and Ni. In these system, the localizations of 3d electrons is high
enough to generate a remarkable magnetic moment and still low enough to
provide an overlap with the neighbors. This balance leads to significant order-
ing temperatures.2

3.4 Magnetic excitations
At zero temperature, the magnetic moments are aligned and the material has a
large moment M even in the absence of an external field. At low temperature,
the magnetization scales as T3/2 according to the Bloch’s law. All magnetic
materials typically undergo a phase transition to a paramagnetic state when
heated to sufficiently high temperatures. In a ferromagnetic materials, there
exists basically two different types of magnetic excitations, called

• Stoner excitations:
creation of an electron-hole pair of triplet spin which causes longitudinal
fluctuations of the magnetization.

• Magnons or spin waves:
collective excitations of the electrons spin responsible for transverse ex-
citations of the magnetization.

At low temperatures and in the materials with relatively large spin split-
ting, one can completely ignore the Stoner excitations and only focus on the
spin waves [83]. This is exactly what has been assumed in the semi-classical
description of the spin dynamics where the magnetic moment is treated as a
3D vector with a fixed length. Consider a spin with magnetization M in the
presence of an external magnetic field B. According to the Zeeman term in

2Note that Ni has a smaller moment as compared to Co and Fe and is therefore expected to be
described worse by a classical vector.
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Figure 3.4. The exchange parameters (left) as well as the calculated adiabatic magnon
spectra (right) of CaMnO3 bulk in LSDA and LSDA+U approaches.

Eq. 1.15, the magnetization interacts with the magnetic field which exert a
torque over M making it process around the filed axis as

dM

dt
=−γM×B (3.24)

where γ is gyromagnetic ratio.
In reality, the B field should not only represent the external filed but also

take into account different interactions present in the material such as ex-
change, anisotropy and etc. One way to model this filed is to use the Heisen-
berg Hamiltonian in Eq. 1.15 and define the effective field as Beff = − ∂H

∂M
.

However, in practice only the most significant terms in the Hamiltonian are
taken into account.3

The simplest intuition to the dynamics of the system can be obtained by
assuming that electron motion is much faster that the fluctuations in magnetic
moments. This is referred as adiabatic approximation which gives the static
spin waves by neglecting the precession motion of the moments. In this ap-
proach, one can obtain the spectra by a Fourier transform of the interatomic
exchange parameters Ji j’s. In the case of a single atom unitcell, the energy as
a function of the spin wave momentum (q) is

ω(q) =
4
M

[J(0)− J(q)] . (3.25)

As an example, in Fig. 3.4 we show the adiabatic magnon spectra for CaMnO3
bulk (right panel) in LSDA and LSDA+U from the obtained exchange param-
eters (left panel).

3For a more accurate description on the dynamics of the system a dissipation term needs to
be added to Eq. 3.24, which finally aligns the magnetization with the magnetic filed. This is
done by Landau and Lifshitz [84] for low damping and modified by Gilbert for high damping
systems [85].
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Some points about temperature effects:

Besides description of the ground state properties of magnetic systems which
are obtained at zero temperature, it is also possible to address the dynamical
properties using the temperature dependent exchange parameters. Based on
the three-temperature model [86], the dynamics of the system at finite tem-
perature is determined by the heat communicating among the spin, electron
and lattice. Katsnelson and Lichtenstein have generalized the LKAG method
in Eq. 3.19 for the case of DMFT [72], which can take into account the elec-
tronic temperature. In this case, the expression for the Ji j’s takes the following
form

Ji j =
1
4

Trω,L

[
Σ̂i(iωn)Ĝ

↑
i j(iωn)Σ̂ j(iωn)Ĝ

↓
ji(iωn)

]
, (3.26)

where ↑,↓ refer to spin, ωn is Matsubara frequencies (ω = π(2n+1)kBT ) and
the on-site exchange is now dynamical

Σ̂i(iωn) = (Ĥ↑
i − Ĥ↓

i )+(Σ̂↑i (iωn)− Σ̂↓i (iωn)), (3.27)

with Ĥ being the local Hamiltonian matrix obtained from solving the DFT
equations and Σ̂i is the self-energy describing strong local electronic correla-
tions. The self-energy appears for DFT+U and DFT+DMFT calculations, and
also enters the expression of the Green’s function as

Ĝi(iωn) =

〈
i
∣∣∣∣ 1
iωn− Ĥ− Σ̂(iωn)

∣∣∣∣ j
〉
. (3.28)

This method has been used in Paper I [87], II [88] and V [89], and the re-
sults will be discussed in the next chapter. We should mention that the other
temperature-driven effects such as spin disorder or lattice vibrations are not
considered in this Thesis. Spin fluctuations can be captured by extracting
the exchange parameters from non-collinear magnetic configurations, corre-
sponding to a finite spin temperature. This approach has be developed in
Refs. [90, 91]. To study the impact of lattice vibrations on magnetic proper-
ties, a method of the disordered local moments molecular dynamics has been
employed by Alling et al. [92] which can capture the coupling of spin-lattice
dynamics.

Finally, we mention that in the methods where the temperature effects are
absent, like in DFT and DFT+U , one can combine ab initio calculations with
the atomistic spin dynamics to describe the dynamics of spin systems at finite
temperatures. Among them are the space and time displaced correlation func-
tion C(r− r′, t) which gives information on the correlation between two spins
located at different sites r and r′ and generally it is defined as

Ck(r− r′, t) =
〈

mk(r, t) mk(r′,0)
〉
−
〈

mk(r, t)
〉〈

mk(r′,0)
〉

(3.29)
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for each Cartesian component k of the moments. This function can be used
to obtain the correlation length which is the measure of how long-range the
magnetic order is in a given system.

In Paper IV, we discuss the correlation between the spins at different tem-
perature where we only consider the first term of the above equation. The
second term is called the connected correlation function while the first one
is called the disconnected correlation function. The disconnected correlation
function is the one that offers information about the ordering of the magnetic
system and has been implemented in UppASD code. So for magnetic systems,
the important relevant term is the disconnected correlation function.
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4. Surface of 3d systems

Magnetism is a quantum mechanical property with no classical correspon-
dence. This property appears to be stronger in some elements of the Peri-
odic Table, specially for 3d and 4f elements, where their electronic shell is
not completely occupied. Magnetism leads these materials to show quite dif-
ferent properties when confined to lower dimensions in comparison to their
bulk structures. For instance, as a bulk, these materials present relatively
strong ferromagnetism, while their thin films sometimes show non-collinear
spin structures. The latter leads to the emergence of antiferromagnetic fea-
tures, depending on the film thickness, the substrate used for deposition and
other details [93, 94].

Density functional theory (DFT) and its formal extensions provide an excel-
lent parameter-free description of ground-state properties of magnetic metals,
including bulk structures as well as systems without three-dimensional peri-
odicity such as surfaces, interfaces, thin films, disordered alloys, and nanopar-
ticles. However, several studies have emphasized the importance of includ-
ing strong correlation effects in the electronic structure of 3d systems. For
instance, noncoherent features such as Hubbard bands and satellites, which
appear in the excitation spectra of the photoemission experiments [95, 96],
cannot be solely described by the DFT. Correlation effects in transition metals
are expected to be even more pronounced for the surface atoms due to nar-
rower bands and reduced coordination numbers. In this chapter, we report a
computational study of surface magnetism of TM slabs. The main focus is on
the calculations of the interatomic exchange interactions (Ji j).

4.1 Surface of Fe, Co and Ni
In paper I, we have studied the layer-resolved magnetic exchange interactions
of the surface of late transition metals, i.e., Fe, Co and Ni [87]. The pur-
pose of this work was to have a better understanding of magnetic exchange
interactions between atoms when going from the bulk to their surfaces. In
addition, the effect of correlations on the exchange parameters is studied by
means of LDA+DMFT. These elements have quite high Curie temperature,
which means that their magnetic moments are rather localized and robust with
respect to the thermal fluctuations. Therefore, the magnetic excitations are
caused mostly by transverse spin fluctuations rather than Stoner-like excita-
tions. This approximation is actually good for ferromagnets with a large ex-
change splitting such as Fe, Co and less justified for Ni, that has a smaller
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Figure 4.1. Layer-resolved exchange parameters (Ji j) for a 15-layer bcc Fe(001) slab
for the case when atom i is located in the innermost layer (left panel), in the subsurface
(middle panel), and at the surface (right panel). The solid lines indicate LDA results
while the dashed lines represent the LDA+DMFT results. The layer numbering in the
legend starts from the surface denoted by 1, the subsurface denoted by 2, and so on.
The innermost layer is denoted by 8.

exchange splitting. Therefore, the exchange parameters obtained using DFT
are not very sensitive to the details of the approximations. Here we address
some of these details for the case of Fe slab.

In Fig. 4.1, we show that the interatomic exchange interactions in Fe slab
present a general trend of enhanced values at the surface both in LDA (solid
lines) and DMFT (dashed lines). This is driven by the larger exchange splitting
of the surface states compared to the bulk states. However, the interaction
between Fe surface atoms (green lines in the right panel) are rather weak,
while it is opposite for Co and Ni as shown in Paper I. We argue that this
(antiferromagnetic) weak interaction between the nearest neighbor atoms at
the surface of Fe are due to the nesting at the Fermi surface cross-section. This
nesting defines a preferable direction for a symmetry-breaking in the system
and derives incommensurate magnetic ordering.

The dynamical correlations introduced within DMFT do not show drastic
differences on spin moment and exchange interactions (dashed lines). This is
because within the SPTF solver, which we have used in this study, the topology
of the Fermi surface is unchanged. Therefore, the main effect of the dynamical
correlations is the carrier mass renormalization which results in an overall
slight decrease of the Ji j’s.

Note that the exchange parameters calculated in this work are not scaled
with the moment sizes, therefore; they can directly be used to calculate the
Curie temperature through MFA, RPA or MC approaches. Spin-orbit coupling
in 3d elements is very small, which results into small orbital moments (as
reported in Table II of paper I). Indeed, Dzyaloshinski-Moriya interactions are
allowed by broken symmetry and they will be stronger for the surface atoms
than the inner layers. To obtain substantial values for the DM interaction one
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Figure 4.2. Layer-resolved exchange parameters (Ji j) for 15-layer fcc Ni slab for
the case when atom i is located in the innermost layer (left panel), in the subsurface
(middle panel) and at the surface (right panel). AMF results (solid lines) are compared
with the Σ(0) DC (dashed lines). The layer numbering in the legend starts from the
surface denoted by 1, the subsurface denoted by 2, and so on.

typically requires some 4d or 5d substrate, which effectively enhances the
SOC in the system.

Double counting effect

In our calculations, the LDA Hamiltonian is considered to be spin polarized
(LSDA). In the DMFT calculations, the double counting correction has been
chosen to be the static part of the self-energy (see section 2.2.4). This means
that the static spin splitting in LDA+DMFT comes solely from LDA. Other-
wise, one can perform non spin-polarized LDA and let all the spin polariza-
tion effects come from DMFT. In such a case, the self-energy is spin-polarized
with different contribution for spin up and spin down states. Hence, one might
need to make an average of these two terms before subtracting it from the LDA
Hamiltonian. We did not use this approach in this paper. We, instead, consid-
ered that spin-polarized LDA already gives the correct splitting and hence the
contribution coming from DMFT part at ω = 0 can be canceled out as the Σ(0)
double counting.

In the case of Ni, however, it is known that the LDA splitting is overesti-
mated when compared to experimental data. To avoid this problem, we used
another widely used type of DC called around mean filed (AMF). The ex-
change parameters for different DC corrections are shown in Fig. 4.2, where
the AMF suppresses the Ji j’s only slightly in comparison to Σ(0). An analysis
of the basic electronic structure revealed that the AMF corrections results in a
decreased exchange splitting and consequently a reduction in the spin polar-
ization. However, both DC methods reveal qualitatively very similar results
for the exchange parameters and the difference appears mainly in the magni-
tude of the Ji j’s.
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4.2 Surface of CaMnO3
In paper II, we have analyzed the electronic structure as well as the magnetic
properties of the bulk and surface of CaMnO3 (CMO), which is a G-type AFM
as a bulk. The motivation for this investigation came from the work by Filip-
petti and Pickett [97], where they investigated the surface of CMO by means
of only density functional theory. They analyzed the band structure and calcu-
lated several magnetic configurations. Finally they found that the surface spins
reverse their orientations, i.e., undergo a spin-flip (SF) process. In this way,
the surface and subsurface Mn spins are coupled ferromagnetically through a
double-exchange-type mechanism, while the rest of the system is still in anti-
ferromagnetic spin configurations similar to its bulk.

1

2

Figure 4.3. Left) The exchange interaction between an atom at the surface of CMO
with the atoms at the surface (layer 1) and subsurface (layer 2) for unrelaxed (solid
lines) and relaxed structure (dashed lines) within LSDA+U approach. Right) The
obtained ground state magnetic configuration for the relaxed slab. The purple balls
represent Mn atoms with yellow arrow indicating spin magnetization direction, the
red balls are O and the blue ones are Ca atoms.

This finding was quite interesting. Therefore, I decided to reexamine the
electronic and magnetic structure of the surface of CMO by taking into ac-
count the effect of the static on-site interaction between 3d electrons, within
LSDA+U approach. The preferable magnetic order is identified by direct
total-energy comparison, as well as by extracting the exchange parameters
through the magnetic force theorem. While we confirmed the results reported
in Ref. [97] for an non-optimizied structure, we found out that the structural
relaxations play an important role and that when taken into account, the (001)
surface of CMO has the same AFM ordering as the bulk, i.e., the spin-flip or-
dering of the surface atom disappears. These results are shown in Fig. 4.3,
which indicate that a small structural displacements provides a significant
modification of the interatomic exchange interaction, even to the extent of
the changing the spin configuration of the system (compare the blue lines in
left panels of Fig. 4.3 when they change their sign from FM to AFM after
relaxation).
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5. Half-metallic Heuslers alloys

In this chapter I focus on the electronic structure and magnetism in ferro-
magnetic Heusler compounds. Having a magnetic moment close to integer
classifies these materials as rather correlated; they also show an essential fea-
ture due to many-body effects, i.e., the existence of nonquasiparticle (NQP)
states [98, 99]. These states stem from the electron-magnon interaction and
can influence the value and temperature dependence of the spin polarization
in half-metal (HM) Heuslers. For instance, according to Ref. [100], at T = 0
the density of NQP states vanishes at the Fermi level, while for T > 0 these
states start smearing such that their tails cross the Fermi level which results in
the reduction of spin polarization. Contrarily, some other studies reported that
these states have been seen above the Fermi level without crossing it [101].

Including NQP states in the electronic structure requires methods beyond
standard DFT. In this work, we used DFT+DMFT to better describe the local
correlation effects and possibly to observe the presence of the NQS around
the Fermi level. In addition, we are interested in investigating the magnetic
properties particularly exchange interaction in the presence of the strong local
correlations. Below, I will address two of my papers on Heusler systems.

5.0.1 Co2MnSi bulk
In Paper III, we have done a systematic investigation of the electronic struc-
ture and magnetic properties of a series of half-metallic Heuslers [88]. Spe-
cial attention has been paid to the Heisenberg exchange parameters and the
Gilbert damping. Depending on the choice of exchange correlation poten-
tials, remarkable differences have been found in the description of the systems.
Based on the obtained results, no single combination of exchange-correlation
potential and shape of the KS potential geometry was able to reproduce all
the experimentally measured magnetic properties of a given system simulta-
neously. However, we realized that the more sophisticated treatment of the
geometrical shape of the potential, that is a full-potential scheme, yields re-
sults closer to experiment in comparison to the atomic sphere approximation,
which excludes the nonspherical contributions.

In this work, the bulk Co2MnSi is studied; a ferromagnetic Heusler with
Mn atoms sitting at the body centres of the cubic structure and carrying most
of the magnetic moment of the alloy [88]. Based on the selected Hubbard
U (3 eV) and Hund’s exchange J (0.8 eV) values for both Co and Mn, we
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calculate the electronic structure of the system. The total density of states in
LSDA, LSDA+U and LSDA+DMFT methods are shown in Paper III, Fig. 5.1.
Half-metallic character and integer magnetic moment of Co2MnSi are already
predicted by DFT. While LSDA+U tends to increase the band gap of LSDA by
shifting the bands far below and far above the Fermi level, DMFT (especially
with ΣDC

0 ) predicts similar spectra as for LSDA. This is due to perturbative
treatment in SPTF solver where the dynamical part of the self-energy close to
the Fermi level has a Fermi-liquid behavior just as in LSDA.

Our results based on LSDA+DMFT show that the NQS states appear well
above the Fermi level at room temperature, as shown in Fig. 5.1, and therefore
will not contribute to the spin depolarization. These states manifest themselves
in the imaginary part of the self-energy (see the bottom panel of Fig. 5.1).
Orbital-resolved self-energy in the cubic harmonics basis reveals that the NQP
states stem from the eg states of Mn atoms.

Finally, the exchange parameters in Co2MnSi has been also discussed. The
leading interaction is found to be the one between Mn and their nearest Co
atoms. The interaction between nearest Co atoms at different sublattices also
favors ferromagnetism and is stronger than the ferromagnetic interaction be-
tween the nearest Mn atoms. Overall, LSDA, LSDA+U and LSDA+DMFT
deliver consistent results for the Ji j’s in terms of sign and global trend.
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Figure 5.1. Top) partial density of states of Co and Mn 3d states in LSDA+DMFT
using Σ0 double-counting. Bottom) orbital-resolved spin-up and spin-down imaginary
parts of the self-energy. The brown ellipse highlights the position of NQP states.
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5.0.2 Co2MnAl/CoMnVAl heterostructure
In Paper IV, we study the electronic structure of the Co2MnAl/CoMnVAl het-
erostructures in the presence of the correlation effects as well as investigating
their magnetic properties, particularly the exchange interactions. To analyze
the role of NQP states and the tendency to noncollinear magnetism (as sug-
gested before for this class of materials [102]), we have focused on bulk of
Co2MnAl half-metal ferromagnet (HMF) and CoMnVAl semiconductor (SC),
as well as their heterostructure. Depending on the termination layers, two
types of interfaces are possible [101], namely Co-Co/V-Al and Co-Mn/Mn-
Al. Both of them are predicted to preserve the half-metallic character of the
material.
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Figure 5.2. Left panel) average self-energy per orbital of the Mn and Co 3d states in
Co2MnAl, for majority (left panels) and minority (right panels) spin channels. Right
panel) average self-energy per orbital of the Mn 3d states in Co2MnAl and at the HMF
side of the Co-Mn/Mn-Al interface, both for spin channels.

Similar to Co2MnSi described in the previous section, our findings prove
that Co2MnAl is also a half-metal, whose magnetic moments and exchange
couplings depend only slightly on the inclusion of strong electronic corre-
lations (both static and dynamic). In LSDA+U , where the largest correc-
tions are observed, the magnetic moments are increased of about 10% with
respect to their values in LSDA, while the increase of the nearest neighbor ex-
change coupling is at most of 40%. No qualitative changes, e.g., in the sign of
the magnetic moments or the interatomic exchange parameters, are observed.
LSDA+DMFT simulations clearly show the appearance of NQP states within
the minority-spin gap in the band structure. These states are identified to orig-
inate mainly from Mn-3d states and are located several hundreds meV above
the Fermi level, therefore they do not seem to affect the spin polarization very
much. The signature of NQP states is particularly evident in the orbitally av-
eraged self-energy function, which is shown in the left panel of Fig. 5.2. In
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Figure 5.3. Interatomic exchange parameters Ji j (in meV) for the most relevant atomic
pairs at Co-Mn/Mn-Al interface. Mn, Co, V, and Al atoms are, respectively, repre-
sented as red, blue, green, and small black spheres. The bonding lines and the Ji j
values of the same color correspond to the same bond. Bigger circles represent atoms
belonging to xz plane with x = 0.0, while small circles represent atoms belonging to
the plane with x = 0.5. The z axis is perpendicular to the interface plane. Notice that
two different numbers (in magenta) are reported for the Mn-Mn bond on the side of
interface containing CoMnVAl. The upper and lower numbers correspond to bonds
along the [100] and [010] directions, respectively.

the minority spin channel, the imaginary part of the Mn self-energy is charac-
terized by a large peak appearing at 0.4 eV above the Fermi level, while only
a small shoulder is visible for Co. This is in sharp contrast with the majority
spin channel, where curves have similar shapes. One can also notice that the
magnitude of the corrections induced by the self-energy is much bigger for Mn
than for Co, since correlation effects are often stronger closer to half-filling.

The Co2MnAl/CoMnVAl heterostructures are predicted to be half-metallic
as well. This prediction is held by inclusion of the static corrections (LSDA+U)
or the strong correlations (LSDA+DMFT). Our findings in LSDA+DMFT
simulations predict the appearance of NQP states stemming from the Mn 3d
states at the Co-Mn side of Co-Mn/Mn-Al interface. The tail due to the NQP
states extends closer to the Fermi level than in the bulk HMF, resulting in a
35% reduction of the band gap with respect to its LSDA value. In the right
panel of Fig. 5.2, these states are found around 0.3-0.4 eV.

The Co-Mn/Mn-Al interface is also interesting for its magnetism. The pres-
ence of two Mn atoms which are relatively close to each other leads to a strong
antiferromagnetic coupling, which is stabilized by reducing the size of neigh-
boring moments. The dominant Ji j’s at the Co-Mn/Mn-Al interface are shown
in Fig. 5.3. Within the current magnetic configuration all the magnetic interac-
tions seem to be satisfied, suggesting that the chosen collinear magnetic order
is locally stable. However, the Ji j’s extracted by the magnetic force theorem
are known to depend on the reference state. Thus, we believe that there are
two indications that the current magnetic order might not be the ground state.
First, the Co and Mn moments on the CoMnVAl side are quite small in mag-
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Figure 5.4. Interatomic exchange parameters Ji j in meV for the most relevant atomic
pairs at the surface of CoMnVAl. Similar pattern has been used as for Fig. 5.3 for the
atom colors and etc.

nitude, 0.3 μB for Co and -0.6 μB for Mn in LSDA method. Second, the Ji j’s
between them is also surprisingly small (bold purple numbers in Fig. 5.3).

Our interpretation is that this coupling might actually be ferromagnetic.
However, since it is in competition with a strong antiferromagnetic Mn-Mn
coupling (bold green) and a strong ferromagnetic Co-Mn coupling (bold black)
across the interface, the system finds it energetically favorable to suppress
these magnetic moments.

To verify this hypothesis we performed additional calculations by removing
the HMF from the supercell. The results for the exchange parameters extracted
only from LSDA approach are shown in Fig. 5.4. As can been seen, the cor-
responding Mn-Co magnetic coupling is ferromagnetic with their moments
strongly enhanced. However, the next nearest neighbor interaction of Mn-Mn
is both ferromagnetic and antiferromagnetic of the same order of magnitude
(red numbers). This situation may potentially lead to a noncollinear spin or-
der, which has already been suggested for interfaces involving Heuslers al-
loys [102]. A more quantitative analysis of such ordering could be done by
performing calculations by including spin-orbit coupling and acount for the
DM interactions. This can be then followed by atomistic spin dynamics simu-
lations [103, 104], but this task was beyond the scope of the present study.
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6. Bulk of perovskite oxides

Perovskite oxides have a variety of composition and component elements.
Based on their crystal structures, there are many functions and rich applica-
tion areas, namely ferroelectricity, superconductivity, catalytic activity, mag-
netism. In this chapter, I will discuss two perovskite systems, namely an
AFM Ruddelsden-Popper double perovskite Sr3(Fe1.25Ni0.75)O7−δ , and a FM
Nd2NiMnO6. In these studies, their electronic ground states as well as their
magnetic properties are investigated, with a special focus on the pairwise ex-
change interactions between the magnetic atoms.

6.1 Sr3−xYx(Fe1.25Ni0.75)O7−δ layered perovskite
In Paper V, we present a comprehensive study of the magnetic properties of
the system based on our experimental and theoretical investigations [105].
Experimentally, the magnetic properties are investigated using superconduct-
ing quantum interference device (SQUID) magnetometry and neutron powder
diffraction (NPD). Experimental results show an increase in the Néel temper-
ature (TN) with an increase of Y concentrations and O occupancy. The NPD
data reveal that all samples are antiferromagnetically ordered at low tempera-
tures. For the selected compounds, these results are in good agreement with
the ab initio calculations using DFT+U approach based on total energy dif-
ferences for different spin configurations as well as exchange parameters from
magnetic force theorem (see Figs. 6.1 and 6.2). These parameters are then used
to evaluate the ordering temperature via Monte Carlo simulations. The calcu-
lated magnetic moments and the ordering temperature are in good agreement
with observations; e.g, for x = 0.5 (0.75) the experimental TN is measured 275
K (310 K) while our MC simulations show a peak at 260 K (310) in the specific
heat which corresponds to the ordering temperature. Including on-site magne-
tocrystalline anisotropy and dipole-dipole interactions in our calculations did
not introduce any noticeable change of the 3D ordering in the system.

The self-consistent spin-wave theory for quasi-2D systems shows that the
presence of any small interlayer exchange couplings is important and may
provide 3D ordering [106, 107]. This 3D ordering can exist at low tempera-
tures but will undergo a transition to 2D ordering upon increasing the thermal
fluctuations [108]. To see this, we have performed the spin-spin correlation
functions along different directions by considering only the atoms with the
most relevant exchange couplings, i.e., J1, J2, and J3 in Fig. 6.1. The results
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Figure 6.1. Left) The simulated supercell structure. Right) The spin configuration.

Figure 6.2. Left panel) Exchange parameters between an atom shown in the legend
and all its magnetic neighbors as a function of distance for x = 0.50. Right panel)
Temperature dependence of the normalized spin-spin correlation function as a func-
tion of distance (R) per lattice constant (a) with the intralayer (J1) and interlayer (J2
and J3) exchange couplings for the case of interactions between Fe3 and its neighbors.
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for the case of Fe3 atom in x= 0.50 are shown in the right panel of Fig. 6.2. As
can be seen, at low temperatures where the exchange energy is larger than the
thermal energy, both in-plane and out-of-plane correlation functions are finite,
and the materials exhibits a 3D type of ordering. If the thermal fluctuations
become larger, the correlation decays faster, especially between layers. At 150
K, the correlation between the layers is weak, and at 300 K it is vanishingly
small. However, the spin-spin correlation within the plane (corresponding to
the larger J1 coupling) is finite even above TN . Thus, we propose that there
is a 3D to 2D crossover at some temperature between 150 K and the magnetic
ordering temperature. This is discussed further in the Paper V [105].

6.2 Nd2NiMnO6 double perovskite
Paper VI is also a joint experimental and theoretical investigation of a double
perovskite system. Experimentally, magnetic measurements are done based
on SQUID and X-ray absorption spectroscopy (XAS) like X-ray magnetic cir-
cular dichroism (XMCD). The X-ray diffraction (XRD) characterization re-
veals that the system is purely monoclinic with the XAS measurements con-
firming 4+ and 2+ valency of Mn and Ni, respectively. The ideally ordered
Nd2NiMnO6 double perovskite offers an ferromagnetic exchange coupling be-
tween the Ni and Mn ions.

Based on the experimental synthesized crystal structure, we have performed
LSDA+U simulations, where the U correction is only applied for the Ni and
Mn atoms. In the case of Nd, the spin moment has been calculated by treating
the three 4 f electrons as core states, in accordance with the standard model
of the lanthanides. In rare-earth elements the spin-orbit interactions is rather
strong, therefore the associated spin and orbital angular momenta combine
into a total angular momentum vector L+2S = gJ moments through the fol-
lowing moments [109]

�μS = gSμBS,

�μL = gLμBL,

�μJ = gJμBJ,

(6.1)

where the gyromagnetic factor of electronic spin is gs ≈ 2, orbital gL = 1 and
Landé factor gJ is

gJ =
3
2
+

S(S+1)−L(L+1)
J(J+1)

. (6.2)
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Figure 6.3. Left) The simulated structure with the labels specifying the exchange path
for the case of, e.g., Ni2. Right) The spin (red) and orbital (purple) configurations at
low temperature (≤50K) for the cases when the external field is 0, or bigger than α
which is obtained 5T from experiment and about 30T from theory.

The magnitude of total moment is μJ = gJμB
√

J(J+1), where the spin and
orbital moment get the form of

S = (gJ−1)J, (6.3)

and
L = (2−gJ)J, (6.4)

Using the above expressions, one obtains the values of gJ = 8/11 and Sz =
1.22 for the J = 9/2. In the calculations of the exchange parameters only the
interactions between the spins are considered. Based on that, the exchange
parameters in meV are obtained as following: J1=0.03 (0.23) between Ni (Mn)
and nearest Nd atoms, J2=5.99, J3=4.90 and J4=19.05. The value of J5 which
is the interaction between Nd-Nd nearest neighbors are obtained ≤0.01 (see
Fig. 6.3 for exchange path). Empirically, one can predict that for a 180◦ Ni-O-
Mn bridge with Ni2+ valence as t62ge2

g and Mn4+ valence as t32ge0
g, the electron

transfer from half-filled e2
g and full t6

2g manifolds of Ni2+ are, respectively, to
empty e0

g and half-filled t3
2g orbitals on the Mn4+ ions. These electron transfers

according to Goodenogh-Kanamori rules are accompanied by ferromagnetic
exchange couplings [12, 10, 13].

Using MC simulations, the ordering temperature of Tc = 225 K is obtained
based on the obtained exchange parameters. All these results are in good
agreement with our experimental observations which predicts a FM coupling
within Ni and Mn sublattices up to 200 K and confirms the small exchange
coupling of Nd moment to its neighbors (J1 and J5) in consistent with random
orientation of Nd moment at temperatures higher than 50 K.
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7. Effect of the functional on exchange
parameters

In this chapter, we discuss how the spin polarization of the DFT exchange-
correlation (XC) functional influences the relative total energies of magnetic
configurations and the effective exchange parameters. In the studies of transi-
tion metal oxides (TMOs), one of the most widely used methods is DFT+U .
Since U is relatively large compared to bandwidths, the magnetic excitations
in TMOs are expected to be well described within the Heisenberg model.

This is generally true and the calculated magnon spectra and Tc’s are often
in good agreement with experiment [110, 111]. However, it has been known
that even in such localized systems the Ji j’s depend on the state they are ex-
tracted from [112]. In this work, I have performed a systematic study of this
problem by addressing the influence of the spin-polarization of the underlying
XC functional used to obtain the electronic structure.

In LDA+U , the XC functional of LDA is a function of only charge den-
sity, and therefore the energy contribution to the magnetism originates entirely
from the Hubbard U term applied on the subset of the correlated orbitals [40].
On the other hand, in the LSDA+U the XC functional is a function of both
charge and spin densities [69]. Thus the spin polarization of all orbitals con-
tributes directly to the magnetic energy, as well as the Hubbard U term which
adds further spin splitting to the correlated states.

While in LDA+U , there is no explicit dependence on the magnetization
spin, LSDA+U depends explicitly on the magnetization. This difference af-
fects the DC correction to the single-particle states, given e.g. by Eqs. 2.53
and 2.55 for AMF and FLL DC, respectively. Thus within LDA+U case, the
correction is the same for both spin channels. In the case of LSDA+U , the
DC correction is different for states with opposite spin projections σ . For this
study, we used the FLL form of the DC and the difference between vDC,↑ and
vDC,↓ is proportional to Hund’s J and is supposed to completely cancel out the
intrinsic Stoner I, contained in the LSDA functional. Of course, this is a strong
assumption and there have been evidences that the value of this intrinsic I is
overestimated by LSDA [113]. If this cancelation was perfect, LDA+U and
LSDA+U would provide nearly identical results. Their difference would orig-
inate only from the effect of the spin-polarization of other "non-correlated"
states, which are only taken into account in the case of LSDA+U .
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7.1 Transition metal oxides
In paper VII [114], we performed a systematic study of the differences be-
tween results of LDA+U and LSDA+U calculations for the energies, band
gaps, and exchange constants of the transition-metal oxide compounds CaMnO3
(CMO), MnO, FeO, CoO, and NiO. We have chosen these systems, which
have different crystal structures and different d-level occupancies, to ensure
the generality of our conclusions.

We start with NiO. Figure 7.1 presents the total as well as the projected
density of states of the d orbitals in LDA+U and in LSDA+U methods for
AFM and FM states. The system is found to be insulating for both states and
both methods. The gap in the FM state is slightly smaller than the gap in the
AFM state in both methods. In the end of this chapter, I explain why the band
gap is smaller in FM case that in AFM case for a model system.

Figure 7.1. Total (cyan) as well as the projected density of states for the d orbitals
(red) of NiO.

In Fig. 7.2 the exchange parameters as a function of distance are presented.
The dominant interaction is the second neighbor exchange J2. The first neigh-
bor interaction (J1) is extremely small because there is no superexchange path
between the eg orbitals through one anion in this geometry as can be under-
stood from the right panel of Fig. 7.2. The exchange interactions are negative,
favoring antiferromagnetism for any reference state. However the values of
the exchange constants depend on the state and computational method, be-
ing strongest for ferromagnetic LDA+U ground state and weakest for antifer-
romagnetic LSDA+U state. This conclusion holds across the systems stud-
ied here (CMO, MnO, FeO, CoO), which suggests larger band gaps together
with smaller exchange constants, for the AFM reference state compared to
the FM, and for LSDA+U method compared to LDA+U (for more details see
paper VII).
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Figure 7.2. Left) Exchange parameters of NiO as a function of distance. Right) The
crystal structure of TMOs. The TM atoms are shown by blue circles, whereas the
oxygens are yellow balls. The grey arrow represents the spin direction in AFM TMOs.

The main focus of this work is on the obtained Ji j’s, which in general can be
calculated using total energy difference between FM and AFM state or by use
of the magnetic force theorem. The aim is to check how well the MFT-derived
Ji j’s correspond to the DFT total energies. In Fig. 7.3, we show the comparison
between these two methods. The directly computed LDA+U energy difference
(red line) falls within the range of the Heisenberg-based estimate (red shaded
area). For instance for NiO, the LDA+U energy difference give a value of
about 0.26 which is within the range of MFT-derived Ji j’s: 0.30 eV and 0.22
eV for AFM and FM reference states. The trend is essentially the same for
all the systems, suggesting that the LDA+U scheme indeed leads to the ex-
pected Heisenberg-like magnetic physics. On the other hand within LSDA+U
approximation, the directly-derived FM-AFM energy differences (blue line) is
substantially smaller than the Heisenberg-derived values (blue shaded area).
It is not so easy to identify the precise reason for such a drastic differences
for LSDA+U . One reasonable possibility is the magnetism of non-correlated
orbitals. In this case, induced polarization of oxygen, which appears in the
FM state, also contributes to the total energy. Assuming that this contribution
is given by E = IOm2

O/2, and using values of IO from the literature is not able
to explain the discrepancies. However, there might be some inter-site TM-O
interactions, but Heisenberg model in general and MFT in particular will not
be able to properly address it. Hence, potentially other more sophisticated
models are needed to properly account for the effect of polarization of oxygen
in LSDA+U .

Sensitivity of the results to the Hund’s exchange value

In order to see how sensitive our findings are to the Hund’s exchange value we
have done an additional set of calculations for two systems MnO and NiO by
setting the J to 0.9 eV and 0.6 eV. The results are shown in Figs. 7.4. One can
see that by decreasing the J value, the exchange parameters show an increase
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Figure 7.3. Total energy differences (E = EFM −EAFM) obtained by LDA+U (solid
red line) and LSDA+U (solid blue line) with those which are obtained via Ji j’s. The
latter results are shown with dashed lines as follows: upward (downward) triangle for
AFM (FM) in red for LDA+U and blue for LSDA+U methods. The colored areas are
shown as the interval in which the energy based on the Ji j of any reference state (FM,
AFM, or a combination of both) could end up, i.e., uncertainty of the Heisenberg-
based estimate.

Figure 7.4. Energy difference (ΔE = EFM−EAFM) obtained for MnO and NiO using
J = 0.9 eV (left) and J = 0.6 eV (right) shown by solid lines are compared with those
obtained via Ji j’s shown by dashed lines as follows: upward (downward) triangle for
AFM (FM) in red for LDA+U and blue for LSDA+U methods. The colored areas
are shown as the interval in which the energy based on the Ji j’s of any reference state
(FM, AFM or a combination of both) could end up.
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within LDA+U while a decrease within LSDA+U . This because in LDA+U
the spin splitting between majority and minority d states and the corresponding
band gap are reduced by reduction of the Hun’d J value, while the opposite
condition is observed for LSDA+U .

However, the main conclusion remains unchanged for two different Hund’s
value (0.6 and 0.9 eV), and we still find a better correspondence between
the DFT total energies and the parameterized Heisenberg model for LDA+U
rather than for LSDA+U .

Band gaps

In FM and AFM states the predicted band gaps and the hoppings are different.
To illustrate this point, in Fig. 7.5 we show a spin dimer made up of two spin
sites where each site has one orbital occupied with one spin. In the FM case,
both spin sites have the up-spin level lower in energy by U than the down-spin
level (by convention). For the AFM arrangement, in one site the up-spin level
is lower in energy by U than the down-spin level, while the opposite is true for
the other site. Since only the levels of the same spin can hybrizide, in the FM
case these states are of the same energy that hybridize, whereas in the AFM
case they are of different energies. Thus consequently their band gaps would
be very different, even if the hopping was the same while it is not.

U EG U EG

Figure 7.5. FM (left panel) and AFM (right panel) arrangement of a spin dimer with
each site having one orbital occupied with one spin.
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8. Local minima in L(S)DA+U

Due to the mean-field description in the heart of the standard DFT, all the
electrons of a given spin direction feel similar potential (if leaving aside the
crystal filed effects) and occupy almost equally each of the correlated orbitals
of the same shell (d or f ). For this reason, many of transition metal oxides
are predicted to be metallic in the DFT level. The problem in these materials
arises from the unfilled shell which possesses orbital degrees of freedom and
consequently, a non-spherical charge density. This potential is overlooked by
DFT. To overcome this problem, as mentioned in section 2.2.1, the Hubbard
term is added to the DFT which leads to an orbital dependent shift in the po-
tential, due to its Hartree-Fock mean-field formalism. Therefore, depending
on the occupation provided by DFT part the orbital shift in the potential can
be different. This leads to a well-known problem when applying the DFT+U
method to study magnetic systems and that is the emergence of the metastable
states, i.e., the energy landscape presents a multitude local minima. Depend-
ing on the starting points, the simulations could not be able to explore the
energy landscape for the global minimum and therefore be trapped in the re-
gions around local minima. The obstacle in the search for the ground states is
that going from one minimum to other minima would involve partial occupa-
tions on the way and this requires a drastic change in the wave functions [115].

There are mainly three different sources responsible for the emergence of
the local minima in the system. First, the local Hartree-Fock potential as it
favours orbital anisotropy. Second, the double-counting term, which is often
specifically designed to not suppress the emergence of orbital anisotropy. The
widely used FLL double-counting favors integer occupation (as explained in
in section 2.2.4). Therefore, degenerate orbitals which in conventional DFT
have similar occupations, in DFT+U formalism would become progressively
emptied or full during the charge self-consistency (CSC). Third, the crystal
symmetry of the system and the presence of spin-orbit coupling which deter-
mine the local symmetries of the atomic sites. Fewer local minima can be
expected if the local symmetries favour a unique integer orbital occupation.
All these together can create very different density matrices mi j from a given
DFT density n(r) (Fig. 8.1 a).

For an atom where the integer occupation is desired [115], the exact en-
ergy should follow a strain-line segments joining integer occupations of the
atomic orbitals as shown in panel (b) of Fig. 8.1. While LDA predicts an
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Figure 8.1. a) Initial electron density given by LDA can lead to different orbital oc-
cupations due to the sources responsible for the emergence of the local minima (see
the text). b) Total energy vs the number of electron. The LDA+U curves is simply the
difference between the other two energies, i.e., the LDA energy and the exact result
for an open system [115].

unphysical curvature for noninteger occupations which only coincides with
exact energy at integer occupations. In a solid the situation is more compli-
cated. Because the fractional occupations occur due to the hybridization of the
localized orbitals with the crystal environment. Therefore, it is useful to ex-
tract the unphysical curve predicted by LDA/GGA energy, which contains also
hybridization effects and later polish it with the correction given by the Hub-
bard term. However, the term introduces the emergence of the local minima
through the sources mentioned above.

How to avoid converging to a local minima

The local minima should be avoided as the properties of the system under
study can be wrongly predicted, There are several ways suggested by different
groups in order to explore the right ground state of the system as follows:

• U-ramping [116]
The central idea of this method is to turn on the interaction from the Hubbard
U term in an adiabatic way so that fractional orbital occupations are able to
gradually converge toward integer occupations. This method works best if
the system is predicted to be an insulator already in the DFT level, as the or-
bital anisotropy of the DFT starting point is implicitly assumed to be correct.

• Controlled symmetry reduction [117]
In this method, a structural distortion to the system is applied to make the
metastable states with similar energies undergo a splitting. The deformation
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is then gradually removed. This method is useful to single-out certain min-
ima in order to perform meaningful comparisons between different struc-
tures.

• Quasi-annealing method [118]
In this approach an auxilliary kinetic energy is added to the system so that
the simulation is able to pass over the local minima. The kinetic energy is
then gradually turned off with the hope that the simulation converge to the
global minimum.

• Occupation matrix control (OMC) scheme [119]
In this method, the main idea is to constrain the DFT+U potential to identify
a given minimum. Since in every strongly correlated system, the electrons
in the correlated shell (d or f orbitals) are rather localized, it is possible to
force them to stay in their orbitals only for the first few iterations without
loosing the physics, and then allow them to move freely during CSC run.
As an example, we consider a material of having 2 electrons in d shell. The
idea is to start with several occupation matrices, with all possible configu-
rations of having 2 electrons in 5 orbitals, i.e., 10 different configurations
such as [11000], [10100], etc. The resulting local Hartree-Fock potentials
are then imposed during the first few CSC iterations. This constraint is then
lifted and the calculations are left to converge on their own. Depending on
the starting occupation matrix, several different (metastable) states can be
reached. Traditionally, the OMC method has been mostly applied for ac-
tinide oxides like UO2, where the electrons in the f shell are quite localized.

In this thesis, we have generalized the OMC method by using random con-
strained density matrices to generate the seeding potential. Using this method,
which we call Random Density Matrix Control (RDMC), we have studied the
energy landscape of the local minima in NiO, FeO, CoO and UO2 in a sys-
tematic way. In this approach, the occupation of each orbital can be fractional
instead of only integer, which makes it more physically probable for the d
electrons due to their semi-localized character.

A schematic representation of the RDMC approach is shown in Fig. 8.2. In
order to have a better control on the simulation path we decided to, step by
step, turn on each term in the Hamiltonian. So for the case of TMOs, the first
simulations are based on a scalar relativistic approach, i.e., no SOC is taken
into account. The reason is that, in these systems the orbital moment is rather
small as compared to the spin moment and also excluding the SOC term for
the first subset of simulations helps stabilize the orbital occupations in each
spin channel. This also helps the convergency, which is sometimes quite hard
to reach. Later, the SOC term is added to the simulations, in order to obtain
the final metastable states. However, in the case of UO2 the SOC is relatively
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Figure 8.2. The schematic representation of the method used in this work. See the text
for more details.

large as compared to the crystal field splitting. Thus, the SOC term should be
taken into account from the beginning, as discussed below.

According to the scheme in Fig. 8.2, we start with generating a random
(complex) Hermitian matrix A. The size of A is determined by the number
of the correlated orbitals (10×10 for the d shell and 14×14 in the case of the
f shell). By diagonalizing matrix A, we obtain the eigenvalues matrix D̃ and
eigenvectors matrix R which are related to A as A = RD̃R. In the next step,
we replace D̃ with a diagonal matrix D of our choice. The physical meaning
of the D matrix is that it represents a density matrix of the correlated orbitals.
Its trace must sum up to the number of electrons in correlated orbitals, e.g.,
6 for FeO and 2 for UO2. Using these randomly defined matrices in addition
to the integer D̃ matrices of standard OMC, we constructed the density matrix
through the expression shown in the second block of Fig. 8.2. This density ma-
trix can then be used to estimate the corresponding DFT+U potential, which
we refer to as Vfix. This potential is thus imposed to a particular simulation
during the first few iterations until the large fluctuations in orbital occupations
are quenched and the correlated electrons are rather localized in those partic-
ular states. However, the XC potential and the total density are allowed to
change during this step. After a few iterations, this constraint is lifted and the
electrons are allowed to move freely until convergence in both the DFT+U po-
tential and charge density are reached. The obtained potential Vsc is then kept
fixed and the SOC is turned on. In this way, the large fluctuations in the orbital
occupations due to adding the SOC term can be suppressed. In the final step,
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Figure 8.3. Orbital vs. spin moment of FeO obtained from different starting points in
LDA+U for a k-mesh of 24×24×24. Each number in the legend corresponds to the
step in Fig 8.2.

this constraint is also lifted and the simulations are left to converge on their
own.

The final results are shown in Paper VIII. Here we show the case of FeO.
As can bee see in Fig. 8.3, in the step 4 where the CSC run is done over
the scalar relativistic approach, three different spin local minima have been
observed. We refer them as: high spin (HS), the intermediate spin (IS) and the
low spin (non-magnetic) solutions (LS). Each possesses several orbital local
minima. Using the rather dense k-mesh of 24×24×24, most of the points keep
staying in the same minimum during the later steps when the SOC is added,
except that during step 6 some of the points in the LS have improved only
slightly their spin and orbital moments, their relatively small starting moments
could not modify to IS and HS during CSC. Using a very dense k-mesh of
40×40×40 helped all the points, even the ones with very small initial spin
moments, converge to the high spin solution (see the left panel of Fig. 8.4).
This k-mesh is considered to be saturated, since the further increase of the
number of k-points did not modify the final results. We believe that this is
due to the very complex competition between the crystal field, SOC and the
Hubbard term which is not well-converged for a less dense k-mesh.

Following our study in Paper VII, we learned that the effective exchange
coupling in DFT+U has contributions from the spin-dependence part of the
density functional as well as the Hubbard U . For this reason we did additional
simulations based on LSDA+U to see the effect of different splitting on the
local minima. The results for each step of the instructions is shown in Fig. 8.4.
As can be seen, finally all the points converged to a single region, with the
corresponding spin moment 3.60 μB for LDA+U and 3.62 μB for LSDA+U .
Similar differences has also been obtained for the orbital moments. However,
the essential differences occur in the intermediate steps, when the SOC term is
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Figure 8.4. Orbital vs. spin moment of FeO obtained from different starting points in
LSDA+U (left) and LDA+U (right) for a k-mesh of 40×40×40. Each number in the
legend corresponds to the step in Fig 8.2.

still not taken into account. While the LDA+U predicts a finite orbital moment
for the intermediate spin moment, the LSDA+U shows a suppressed orbital
moment. Note that, these results are for a k-mesh of 40×40×40 where all the
point finally converge to the high spin solution.

The finite orbital moments, observed in the level of scalar relativistic ap-
proach in LDA+U is purely induced by the Coulomb interaction. This favors
states obeying the second Hund’s rule. The inclusion of the SOC provides
a more complete picture of the effects associated to the third Hund’s rule as
well.
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9. Conclusions and Outlook

In this thesis, I particularly investigate electronic structure and magnetic prop-
erties of transition metal systems, including their bulk and surface and inter-
faces, by means of a combination of density functional theory, Hubbard term
and dynamical mean-field theory. During these studies, we obtained many
interesting results that could help us improve our understanding of exchange
interaction in these materials.

Surface studies: In Paper I, we observed a pronounced tendency to ferro-
magnetism at the surface of Co and Ni, while not for Fe surface in which the
surface atoms have a tendency to couple antiferromagnetically with each other,
although the interaction is rather weak. Including correlation through DMFT
couldn’t modify the quality of the exchange interactions. In Paper II, we learn
the importance of the atomic relaxation of exchange parameters, particularly
for CaMnO3 where the superexchange is the leading mechanism with its value
extremely sensitive to the ̂Mn-O-Mn angle, such that the exchange can even
flip its sign at the surface. In Paper III, my main result was the observation of
the non-quasiparticle states in Co2MnSi above the Fermi level at room tem-
perature so that they can not contribute to the spin depolarization.

Double-Provskites: In Paper IV, we study the electronic and magnetic
properties of heterostructure of Co2MnAl/CoMnVAl . At the interface of Co-
Mn/Mn-Al and Co-Co/V-Al the half-metallic character is preserved. Analyz-
ing the magnetic exchange interactions at the Co-Mn/Mn-Al interface appeal
that the competing magnetic interactions are likely to favor the formation of
a noncollinear magnetic order, which is detrimental for the spin polarization.
Next in Paper V, we had done a comprehensive study of magnetic properties
of Sr3Yx(Fe1.25Ni0.75)O7−δ . The theoretical part is done for the selected struc-
tures characterized by Y concentrations; x = 0.5 and 0.75 with δ = 1. Our re-
sults confirmed the experimentally observed G-type antiferromagnetism. The
calculated ordering temperature were also in agreement with measured val-
ues. While the experimental NPD results show that the magnetic state for the
samples is still 3D at 300 K, the calculated spin-spin correlations through spin
dynamics simulations indicate that there is a 3D to 2D cross over at some tem-
perature between 150K and the magnetic ordering temperature. Continuing
our study for double-perovskite systems, in Paper VI we investigated the ex-
change coupling in Nd2NiMnO6 where the leading one happens between 3d
elements, e.g., between Ni-Mn, while Nd moments are randomly oriented at
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temperature higher than 50 K, contributing no measurable net magnetization
to the sample.

Outlook:
In the abovementioned projects, we mostly focus on Heisenberg exchange

interaction term by excluding the effects of spin-orbit coupling. However, in
a more accurate treatment of magnetism in transition metal compounds the
higher-order magnetic interaction terms (biquadratic term and four-spin ring
couplings) should also be taken into account. In the case of broken symmetry,
more terms in the hamiltonian, e.g., Dzyaloshinskii-Moriya interaction and
single-ion anisotropy need to be deliberated. The estimations of the exchange
parameters are done for zero temperature and used for finite temperature stud-
ies as well. This means that lattice vibrations are not taken into account in
case of finite temperature. One way to extract the exchange parameters at fi-
nite temperature is to start from a noncollinear spin arrangement (rather than
collinear) and calculate configuration-dependent exchange parameters follow-
ing the methodology described by Szilva et. al [120, 91].

LDA+U vs LSDA+U : In In Paper VII, we have investigated the impact of
the spin polarization of exchange-correlation functional of LDA on LDA+U
calculations, i.e., the difference between LDA+U and LSDA+U exchange pa-
rameters. Our results for the transition metal oxides with different d orbital
occupations (CaMnO3, MnO, FeO, CoO and NiO) strongly suggest that if one
extracts the Ji j from the DFT+U total energies, the use of spin nonpolarized
functional (e.g., LDA) is more preferable.

Outlook:
It would be interesting to reconsider the importance of higher-order ex-

change interactions employing spin unpolarized DFT functionals. The non-
Heisenberg behavior of the MFT-derived Ji j is a natural consequence of the
different electronic structures of the FM and AFM states. We expect that the
conclusions of the present study are not restricted to the DFT+U method but
also hold for DFT+DMFT, which deserves a separate study. In addition, this
study is performed only for the selected family of transition metal oxides,
while the generalization needs a study on more number of compounds which
are traditionally accepted as good Heisenberg systems.

Local minima in L(S)DA+U : In this work, we perform a systematic study
of the probable local minima in transition metal oxides in the framework of
L(S)DA+U . It is an ongoing project which we hope to have a better under-
standing of the possible conditions where the local minima can appear. In par-
ticular, we were interested in drawing a energy landscape of the local minima
and seeing how these minima can be classified in term of their spin, orbital or
even higher-order multiples. Orbital moment appeared to be a good quantity
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to distinguish the local minima from one another. However, single value de-
composition didn’t provide any further classifications in terms of higher-order
multipoles.

Outlook:
Although this study has been done within L(S)DA+U approach, but it could

be interesting to utilize many-body approaches such as Exact-Diagonalization
or quantum Monte-Carlo methods in order to find the global minima and com-
pare the local minima of L(S)DA+U with the global minimum and investigate
their discrepancies. However, there are several technical issues in the imple-
mentation of these methods which needs special care when using, such as
discretization of the hybridization function in Exact-Diagonalization and etc.
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10. Populärvetenskapling sammanfattning

Ett material avsett för att användas för en specifik tillämpning kan definieras
som en solid, vätska eller en annan kondenserad fas. De traditionella exem-
plen av material är metaller, halvledare, isolatorer, keramer och polymerer.
Nya avancerade material utvecklas fortfarande och inkluderar nanomaterial,
biomaterial m.m. Grunden i materialvetenskap involverar antigen studier och
karakteristik av redan existerande material eller upptäcker och design av nya
material och möjligen att förbättra gamla material för nya tillämpningar. När
materialforskare har kartlagt ett materials egenskaper kan de fortsätta med
att studera dess specifika prestanda för en viss tillämpning. Det kan erhål-
las genom att förstå materialets egenskaper, struktur och prestanda och hur
dessa förändras över tid.

Vetenskapliga verktyg för detta innefattar delar från fysik, kemi och ingen-
jörskonst. Därför anses materialvetenskap vara ett tvärvetenskapligt forskn-
ingsfält. Inom ingenjörsområdet utvecklas experimentella metoder så som
diffraktion med hjälp av röntgenstrålning, elektroner, eller neutroner, och olika
sorters spektroskopier och kemiska analyser så som elektronmikroskopi och
termisk analys. De mer forskningsinriktade aspekterna kan vara minst lika
utmanande. I avdelningen för material teori vid Uppsala Universitet stud-
erar vi olika material från atomnivå ändå upp till makroskopisk nivå. På
atomnivån studeras atomer och hur de är arrangerade i form av molekyler,
kristaller, etcetera. På denna längdskala, några få Ångström (en Ångström är
0,0000000001 m), bestäms mycket av de elektriska, magnetiska och kemiska
egenskaperna av ett material.

Fokus på avdelningen är främst beräkningsvetenskap och teori. Med den
kraftigt ökade beräkningskraften de senaste decennierna har simuleringar av
material och deras egenskaper blivit möjliga. Detta innebär att materialforskare
kan upptäcka egenskaper av tidigare kända material och att designa helt nya
material. Fram tills nyligen hittades nya material genom tidskrävande experi-
mentella försök och evalueringstillvägagångsätt. Men nu hoppas man kraftigt
kunna reducera denna tid med hjälp av beräkningsmetoder. Detta innefattar
att man simulerar material med metoder så som täthetsfunktionalteori (DFT)
och dess förbättringar, molekylär dynamik, etcetera.

I denna avhandling presenterar jag elektroniska och magnetiska egenskaper
av flera magnetiska fasta material. Dessa material uppvisar en stor variation av
intressanta fenomen och magnetiska egenskaper. Mitt mål var att förstå hur in-
teraktionerna mellan elektronerna på atomnivå påverkar, framförallt, de mag-
netiska och elektriska egenskaperna. I vissa material spelar elektron-elektron
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växelverkan en stor roll och inom kondenserade materiens fysik brukar dessa
kallas för starkt korrelerade material.

För dessa material kan inte den väletablerade teoretiska DFT metoden till-
räckligt noggrant behandla elektron-elektron växelverkan och man behöver
använda sig av mer avancerade simuleringsmetoder. De teoretiska metoderna i
denna avhandling är en kombination av DFT och mer sofistikerade metoder så
som DFT+U och dynamisk medelfältsteori. Från den erhållna elektronstruk-
turen är det möjligt att bestämma många andra materialegenskaper, antingen
genom anpassning till experimentell data eller genom att transformera resul-
taten till en enklare modell som innehåller de fysiska storheter av intresse.
I denna avhandling har jag anammat det andra sättet för att bättre förstå de
magnetiska egenskaperna, framförallt den så kallade utbytesväxelverkan.

Denna växelverkan uppkommer främst mellan två magnetiska atomer med
delvis ockuperade d eller f skal. Utbytesväxelverkansparametrar är de rele-
vanta storheter för att bestämma den kritiska temperaturen, det vill säga då ma-
terialet genomgår en magnetisk fasövergång, och spinvågsdispersion. Dessa
makroskopiska storheter är framförallt viktiga för tekniska tillämpningar inom
till exempel spintronikminnen och logiska enheter. Därför behövs en grundläg-
gande förståelse av de magnetiska egenskaperna i dessa material.

En intressant aspekt av detta forskningsfält är studier av låg dimensionella
material. Magnetiska material kan uppvisa nya kvantmekaniska fenomen när
de begränsas till två dimensioner. På grund av färre närmsta grannatomer
kan lågdimensionella material kategoriseras som en bro mellan solider och
enskilda atomer, med många av deras magnetiska och elektriska egenskaper
bestämda av interatomära korrelationer. I denna avhandling studerar vi nog-
grant detta genom att jämföra spektrum och magnetiska egenskaper vid ytor
och bulk för flera olika system. Detta forskningsfält är intressant inte bara för
att uppnå bättre förståelse av fysiken av lågdimensionella material, men också
för att kunna konstruera nya material med önskade egenskaper.
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