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Abstract—In an out-of-order core, the load queue (LQ), the
store queue (SQ), and the store buffer (SB) are responsible
for ensuring: i) correct forwarding of stores to loads and ii)
correct ordering among loads (with respect to external stores).
The first requirement safeguards the sequential semantics of
program execution and applies to both serial and parallel code;
the second requirement safeguards the semantics of coherence
and consistency (e.g., TSO). In particular, loads search the SQ/SB
for the latest value that may have been produced by a store, and
stores and invalidations search the LQ to find speculative loads
in case they violate uniprocessor or multiprocessor ordering. To
meet timing constraints the LQ and SQ/SB system is composed
of CAM structures that are frequently searched. This results in
high complexity, cost, and significant difficulty to scale, but is the
current state of the art.

Prior research demonstrated the feasibility of a non-associative
LQ by replaying loads at commit. There is a steep cost however:
a significant increase in L1 accesses and contention for L1 ports.
This is because prior work assumes Sequential Consistency and
completely ignores the existence of a SB in the system.

In contrast, we intentionally delay stores in the SB to achieve
a total management of stores and loads in a core, while still
supporting TSO. Our main result is that we eliminate the LQ
without burdening the L1 with extra accesses. Store forwarding
is achieved by delaying our own stores until speculatively issued
loads are validated on commit, entirely in-core; TSO load→load
ordering is preserved by delaying remote external stores in their
SB until our own speculative reordered loads commit. While
the latter is inspired by recent work on non-speculative load
reordering, our contribution here is to show that this can be
accomplished without having a load queue. Eliminating the LQ
results in both energy savings and performance improvement
from the elimination of LQ-induced stalls.

Index Terms—Memory Consistency, Out-of-order Execution,
Total Store Order

I. INTRODUCTION

In out-of-order cores the load queue (LQ) is essential for is-
suing loads speculatively while guaranteeing correctness. This
correctness consists of (1) intra-thread memory dependence
and store forwarding; (2) consistency load→load order; and
(3) coherence for loads on the same address, independently of
the consistency model.

Memory dependence store forwarding: A load must read
the latest value written by a store to the same address, if no
other core wrote that location in the interim. Waiting for all
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previous stores to resolve their target address and then issuing
subsequent loads can result in a severe performance penalty.
High-performance processors issue loads speculatively over
older stores with unknown addresses. When a store resolves
its address, or when the store is ready to commit, the LQ is
searched for younger speculatively-executed loads matching
the store address. If there is a match, such loads and subse-
quent instructions are squashed.

Consistence load→load ordering: Some consistency mod-
els such as TSO specify that loads must appear in program or-
der. Waiting for a previous load to complete is time consuming,
and processors speculatively execute loads out-of-order [1]. In
such cases, the load→load order can be violated if a remote
core writes the memory location of such a speculative load.
Therefore, upon receiving an invalidation or upon a cache
eviction a core searches its LQ. If a match for a speculatively
reordered load occurs, the load and all subsequent instructions
are squashed.

Coherence load→load ordering (same-address loads):
While the previous correctness requirement concerns specific
memory models (e.g, TSO) and one could argue limited
applicability, there is a case of load reordering that is a coher-
ence problem, not a consistence problem. This requirement is
therefore universal in any coherent system, regardless of the
memory model, thus superseding the consistence requirement.
More specifically, when a load is reordered over another load
on the same address (perhaps because the older load did not
resolve its address in time) the exact same requirements hold:
an invalidation or an eviction must search the LQ and squash
any matched speculatively-executed load. Excellent discus-
sions of this phenomenon appear in Dubois, Annavaram, and
Stenström [2], Bell and Lipasti [3], and Cain and Lipasti [4].

To summarize: the state of the art today is that processors
aggressively execute loads speculatively out-of-order and de-
tect memory dependence violations or memory ordering viola-
tions (for consistence or coherence) and squash the offending
loads if necessary. The LQ has the central role in this approach
and is searched on every incoming invalidation, cache eviction,
or address resolution of a store.

The LQ must be designed in a way to both keep the order
or loads and support multiple, fast, single-cycle, associative
searches on address. The result is a complex CAM structure
that keeps both FIFO order and allows searching with priority
matching (e.g., finding the oldest match). Not only the LQ



is an expensive structure in area and energy, but it also
inhibits scaling of the microarchitecture: the energy cost of
CAM structures grows exponentially with size, but without a
corresponding contribution to performance [5].

Prior work concentrated on eliminating the searches in the
LQ since the culprit for the high cost is the associative nature
of the LQ. A non-associative LQ is possible if stores and
invalidations do not have to search the LQ to find conflicting
loads. The key insight is that the detection of a conflict
between a load and a store (of the same core or a remote
core) can be deferred until the load tries to commit. To test
for a conflict that may have occurred between the time the load
was issued and the time it commits, the load is replayed and
the loaded value is re-checked (i.e., re-loaded from the L1).
This ensures that even when conflicting stores or invalidations
are no longer available at the time of commit, the conflict
will not go undetected. This approach was first proposed
by Gharachorloo et al. [1] but was quickly dismissed as it
puts tremendous pressure on the L1. Cain and Lipasti [4],
improved the idea by filtering out all the loads that need no
replay simply because there was no store with unresolved
address, nor any invalidation received, between the loads’
issue and their commit. The technique was further improved
by Roth [6] with more accurate filtering of loads using the
concept of Store Vulnerability Window (SVW). Despite the
successive improvements, there remains a sizeable fraction of
loads that need to be re-executed at commit. This increases L1
energy consumption, creates interference in the cache ports,
and ultimately hurts performance.

This paper proposes two solutions to completely eliminate
the load queue and its limitations without affecting the L1
at all. The solutions are based on the observation that stores
can be safely—correctly— delayed in the store buffer (SB).
Previous approaches ignored the existence of a store buffer
and instead considered only the LQ/SQ system in relation to
the L1 (cache hierarchy). This misses out on a fundamental
property of the SB: we can delay stores in the SB until some
condition is met, without affecting the memory consistency
model (in our case TSO).

The key observations that drive this work are:

• We can validate load speculation (at commit time) in our
own core, without ever leaving the core to go to the L1,
if we delay our own stores in our own SB, and

• We can fend-off any external conflicting stores, whose
invalidations would otherwise squash our loads, by de-
laying external stores in their remote SBs.

The implication of these two observations is that an LQ is
no longer required for the correct operation of an out-of-order
core supporting TSO. Specifically:

1) Searching the LQ is no longer required for loads issuing
under a memory-dependence speculation (i.e., over older
stores with unresolved addresses) as we use the concept
of on-commit value-check [1], [4]. The advancement
over all previous work is that our solution never requires
accessing the L1 for the value re-check. An extra benefit

of our approach is that it allows any state of the art
memory dependence predictor [7], [8] to be used in the
core, something that was not possible in previous value-
based approaches [4].

2) Searching the LQ is no longer required for loads issued
under a consistency speculation (i.e., over older non-
performed loads in TSO) as we employ the concept of
delaying conflicting stores on invalidation [9]. (Similarly
for eviction of cache lines speculatively accessed by
loads.) The advancement over previous work is a new
approach that does not need an LQ to set, maintain,
and track “lockdowns” based on completion of loads.
Instead, we implement cacheline lockdowns. A cache-
line lockdown means: no change (e.g., invalidation or
eviction) is allowed for the cacheline as it is under a
speculative read. As in the work of Ros et al. [9], a
locked-down cacheline will not respond to invalidations;
in contrast to that work the cacheline cannot even be
evicted.

Altogether, our two-pronged approach completely elimi-
nates the searches in the LQ and therefore the LQ itself.
Without an LQ, the commit order of loads is simply kept by the
reorder buffer (ROB). A load replay is required on commit to
re-check the loaded value for memory dependence speculation.
But this replay is restricted in-core: it accesses only the store
buffer and never goes to the L1. While for memory dependence
speculation we essentially substitute an associative search of
the LQ with a search of the store buffer, the benefit comes
from relieving the L1 from the burden of load-replay (value
re-check). The substantial benefit of our approach, however,
comes from eliminating all the LQ searches from external
invalidations and cache evictions. External searches account
for the bulk of the LQ searches both in previous work [4],
[6], and in our own results. No load replay is required in
these cases, so all eliminated searches are net profit.

Results: Eliminating the LQ results in significant energy
savings of 17.6% for SPLASH, 18.7% for PARSEC, and
22.1% for SPEC, for the structures involved, compared to a
value-based replay proposal; and of 5.7% for SPLASH, 5.1%
for PARSEC, and 8.3% for SPEC compared to a standard
architecture featuring an associative LQ. In addition, the
elimination of the LQ in a small core where LQ stalls are an
issue, improves performance by up to 10% and 5.9% compared
to the value-based approach and the associative LQ approach
respectively.

II. BACKGROUND

Conceptually, a load queue can be constructed as an insu-
lated structure. Insulated LQs perform all operations in strict
program order and thus are low performance. An insulated LQ
requires snooping on load issue, but on the other hand, it does
not need to be searched.

In this paper, we consider high-performance LQs that need
to be searched. These LQs support uniprocessor memory de-
pendence speculation and multiprocessor speculative memory



reordering. In a searchable load queue, the searches are per-
formed in two situations: 1) when a store resolves its address
to validate a load’s memory dependence speculation, and 2)
upon an invalidation or a cache eviction, to enforce a memory
consistence model. This section gives some background for
work relating to these two situations.

A. Memory Dependence Speculation

Instruction Set Architectures promise that instructions ap-
pear to be executed atomically and sequentially in program
order. Naturally, a load must take its value from the most
recent —in program order— store to the same address that
precedes the load. In an out-of-order core this translates to
every load associatively searching the SQ and the SB for the
latest store on the same address if it exists in there. This store-
search is fundamental for the ISA and cannot be eliminated.
Without a match in the SQ/SB the load accesses the L1.

The memory dependence problem appears when the address
generation for a store instruction is delayed (perhaps due
to a long latency miss) and younger loads are eagerly and
speculatively issued assuming that their address does not
match the unresolved address of the store. Such loads are
called D-speculative according to the terminology of Ros et
al. [9]. A D-speculative load requires at least two associative
searches and one access to the L1: i) a load searches the store
queue/store buffer (SQ/SB); ii) speculatively accesses the L1
(assuming no store forwarding from the SQ/SB); iii) at least
one store resolving its address accesses the LQ to check if
the D-speculative load violated a memory dependence. (This
count does not include the searches and accesses that follow
if the load is squashed and re-executed.)

Associative searches with Memory Dependence Predic-
tion: Memory dependence prediction (MDP) [7], [8], [10],
provides an effective way to address the memory dependence
problem, by predicting when loads are likely to depend on
older stores and thus avoiding the likely-futile issue of the
loads when these older stores have not resolved their address.
Memory dependence prediction is only “safe” when it predicts
the existence of a dependence, as it conservatively prevents a
load from executing with a potentially wrong value. If the
prediction is wrong (and there is no dependence) no harm is
done other than delaying the execution of the loads. However,
when MDP predicts absence of dependence, it is unsafe as
it allows loads to execute in the presence of stores with
unresolved addresses. If the prediction is incorrect, and there
is a dependence, then issuing a younger dependent load is
incorrect and the load must be squashed (this typically means
that all instructions after an incorrect load are squashed).
Because the likelihood of predicting absence of a dependence
is higher in many workloads there is only modest reduction in
the associative searches of the SQ/SB and the LQ. We assume
MDP throughout this paper.

B. Eliminating LQ Searches with a Value-Based Approach

A value-based approach [1], [4] eliminates the load-squash
searches in the LQ, by delaying the possible squash until a

load attempts to commit. At commit, a load rechecks its loaded
value by reloading from the L1 in case an intervening store did
not change the value. This means that one associative search
and up to two access to the L1 are performed per D-speculative
load: i) a load searches the store queue/store buffer (SQ/SB);
ii) speculatively accesses the L1 (assuming no store forwarding
from the SQ/SB); iii) re-accesses the L1 on commit to validate
its loaded value. (This count does not include the accesses if
the load is squashed and re-executed.)

Compared to the standard way of handling speculative loads
described in Section II-A, we simply trade a search of the
LQ with an access to the L1. How profitable is this tradeoff
depends on the relative costs of searching the LQ versus
accessing the L1.

In any case, it is imperative to reduce the replays at
commit to a minimum, as the increased pressure on the L1
is detrimental to performance. To avoid replaying all loads at
commit time, Cain and Lipasti [4], use a natural filter for this
case: loads are only required to replay at commit if a store with
an unresolved address exists in the SQ (not committed) at the
time of the load’s issue. Roth [6] improves this natural filter
by taking into account the ordering between the loads and
stores (with an elaborate numbering scheme for stores) and
enforcing the replay only if an older store with an unresolved
address is present in the SQ at the time of the load’s issue.
Despite the successive improvements no proposal managed to
bring a value-based approach on par with the base architecture
in terms of performance. The extra L1 accesses tax an already
strained resource and diminish the possible energy benefits
from converting the LQ into an non-associative structure.

C. Enforcing Consistence and Coherence on Speculatively
Reordered Loads

Forcing memory operations to execute in program order
is too restrictive for performance even for strong consistency
models such as TSO. Out-of-order cores allow loads to execute
speculatively out-of-order with respect to older non-performed
loads. Such reordered loads are called M-speculative [11].
However, consistence can be violated when a conflicting store
from another core races with a speculatively reordered load.
When this is detected by the invalidation of the conflicting
store, the speculative load must be squashed and re-executed
in its proper order [12]. In addition, a cache eviction at the time
a load is speculatively reordered is also cause for squashing
the load. The reason is that without the L1 cache line the
invalidation of a conflicting store will not be received. The
solution for these cases requires an associative LQ that can be
searched for a matching speculative load.

A value-based approach, defers the validation of an M-
speculative load for the commit stage, where the load is re-
played and re-checks its value [4], [6]. If the value has changed
from the speculatively loaded value, the load is squashed.
Similarly to the case of the dependence speculation discussed
above (Section II-B), a value-based approach obviates the
need for a searchable (associative) LQ, but substitutes the
associative search of the LQ with an extra L1 access. Not all



M-speculative loads need to be replayed, though. A natural
filter for this approach is to replay only the M-speculative
loads in the presence of an invalidation or cache eviction.

D. Non-Speculative Load Reordering

Recent work by Ros et al. [9] shows that preserving
the appearance of the load order in TSO can be efficiently
achieved by the coherence protocol in a non-speculative way.
The problem in TSO is that a race between a load and store
might happen at a time when the load can be “seen” as
reordered. A reordering of a younger performed load can
be observed by a conflicting store simply because an older
load is not yet performed. The key observation of Ros et
al. is that if the conflicting store occurred slightly later, after
the older load is performed, the reordering could not have
been observed. The proposal of Ros et al. is to simply delay
the conflicting store in its store buffer (by withholding its
invalidation acknowledgment) until the reordering is resolved
(all older loads than the reordered load have been performed).
While this approach has the potential to catalyze value-
based approaches by significantly reducing squash events,
unfortunately it relies on the existence of an LQ to keep track
of “locked-down” loads (loads that execute out-of-order with
respect to older loads) as well as the invalidations they may
receive and withhold until their reordering cannot be observed.
In the same work Ros et al. also propose an external structure,
called Lockdown Table (LDT) for the purpose of removing
loads from the LQ (out of order commit), however, the LDT is
nothing more than a external proxy of the LQ for the removed
loads. The advancement of our work is to achieve the same
goal without using an LQ.

III. DELAYING STORES IN THE STORE BUFFER

In this section, we describe our approach to eliminate the
LQ in a processor supporting TSO. We first describe the
processor model that we use; subsequently, how LQ searches
for the validation of memory dependence speculation are
eliminated; and finally, how locking cachelines in the L1 and
delaying conflicting stores in their store buffer eliminates the
need to search the LQ for invalidations and cacheline evictions.

A. Base Processor Model

As the base processor model we assume a typical out-of-
order architecture that includes an instruction queue (IQ), a
reorder buffer (ROB), a load queue (LQ), store queue (SQ)
and store buffer (SB). During the dispatch stage, instructions
dispatched to the IQ are inserted in the ROB and depending
on whether they are loads or stores are also inserted in the
LQ and the SQ respectively. If any of these structures cannot
accommodate an insertion, the dispatch (and possibly the
whole front-end) is stalled.

The LQ and SQ replicate instructions that are in the ROB.
They are simply helper structures and their function is to hone
in various searches to the proper subset of instructions. In
other words, one can do without an LQ and an SQ if one
is willing to associatively search the entire ROB. But that
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Fig. 1. Combined SQ/SB

would be too expensive. Instead, having a separate LQ and
SQ means that the ROB does not need to be searched and can
be structured simply as a circular memory buffer (SRAM).
The relative ordering of the loads in the LQ and the stores
in the SQ is defined by their position in the ROB. This is
explained in Section III-C.

The SB (Fig. 1, upper left) is the structure that holds
committed stores. When a store reaches the head of the ROB
(and the head of the SQ) and commits, it transitions from the
head of the SQ to the tail of the SB (Fig. 1, upper diagram).
The store is made visible in the memory system when it
reaches the head of the SB and is written in the L1. If the
corresponding cacheline is present in the L1 and has write
permissions, the store is completed and removed from the
SB. A miss, or a write miss (no write permissions) in the
L1 initiates a coherence action. To overlap the latency of a
possible coherence action with the queuing time of a store
in the SB (the time to reach the head of SB), a prefetch for
permissions is sent as soon as a store enters the SB. Actual
processors issue such prefetches at this time [13].

While we are discussing the SQ and the SB as two separate
structures, they can be one and the same, as found in some
implementations [13]. A combined SQ/SB is a single physical
structure that is logically divided into an SQ part and an SB
part (Fig. 1, lower diagram). The whole structure is a single
FIFO CAM buffer. Stores enter in the tail pointer at dispatch
and are removed from the head pointer when they are written
in the cache. The logical distinction between the SQ and the
SB part is kept with an additional pointer that separates the
non-committed from the committed stores.

The benefit of the unified (combined) SQ/SB structure is
a better utilization of the available buffer space [?]. The
downside is that it is more difficult to perform targeted
searches in just one part (e.g., the SQ or the SB). To perform
such targeted searches we would need to modify the CAM
circuitry to first select based on a single distinguishing bit
which part of the structure will actually perform the rest of
the comparisons [14]–[16]. In this paper, we treat the SQ and
the SB as a combined structure.

In this base architecture the LQ is a necessity as it is
searched every time a store resolves its address, or an external
invalidation is received, or a cache eviction occurs. In the rest
of this section we describe our proposal without an LQ.
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B. Base Processor Model with Replay on Commit

The base processor model with replay on commit is mod-
elled after the Cain and Lipasti work [4]. In this model
speculative loads re-check their value in two extra pipeline
stages before commit. In the first of these stages the L1 is
accessed (Cain and Lipasti [4] assume that the replay L1
access can be performed faster than the initial L1 access) and
in the second stage the speculative value is compared against
the re-check value.

C. Instruction Order

An important requirement for our approach, that will be-
come evident in subsequent sections, is the ability to easily
determine instruction order, for example between loads and
stores. This could be accomplished by giving each dynamic
instruction, at the time of dispatch, an ascending sequence
number (e.g., as in [6]), but there are two problems: i) for
large sequence numbers, storage and energy costs can add up,
and ii) an implementation with a limited-width counter for the
sequence numbers incurs frequent wraparounds.

We only have to compare instructions that are in the
processor’s instruction window at the same time —in other
words, instructions that are never more than n places apart,
where n is the size of the ROB. This allows us to use
an efficient encoding inspired by the proposed encoding of
Buyuktosunoglu et al., for ordering instructions in a non-
compacting instruction queue [17]. In the Buyuktosunoglu
encoding, an instruction’s order is simply its ROB position
augmented by an additional high-order bit, called the sorting
bit. The sorting bit is needed because the ROB is a circular
FIFO buffer and both the head and the tail pointer can wrap
around the end of the ROB to its beginning. Thus, we are faced
with the situation where newly inserted younger instructions
occupy lower positions in the ROB than older instructions. The
sorting bit correctly encodes this situation in the instruction’s
order.

In our case, the mechanics of the sorting bit are as shown in
Fig. 2: In the beginning, where the head and the tail pointer
are ordered (head ROB position < tail ROB position) each
dispatched instruction receives a sorting bit of 0 and is inserted
at the tail (Fig. 2, upper diagram). When the tail pointer wraps

around the end of the ROB (head ROB position > tail ROB
position), the sorting bit changes to 1 (Fig. 2, middle diagram).
This gives the newly inserted instructions in the lower ROB
positions, a higher order than the ones starting at the head
pointer. When the head pointer wraps around the end of the
ROB, all the sorting bits of all the entries in the ROB are
flash-cleared to 0 (Fig. 2, lower diagram).

An instruction’s order of log2(n)+1 bits (i.e., ROB position
+ sorting bit) is kept in the instruction’s ROB entry, and is
copied where needed.1 The sorting bit is flash-cleared, when
needed, in all structures where the ROB order of an item
has been copied. In the rest of this paper, we will simply
compare instructions (younger versus older), implying that a
comparison of their ROB-encoded order is taking place.

D. Validating Memory Dependence Speculation

When a load issues over an older store with an unresolved
address we are speculating that there is no memory depen-
dence between the two. This speculation can be validated in
one of two ways:

• have the store check the LQ for a matching younger load,
• or have the load re-check its loaded value at the time of

commit.
The first case necessitates the associatively-searched LQ of the
base architecture as it is the store’s responsibility to find any
younger loads that may have executed speculatively and need
to be squashed. The search occurs when the store resolves its
address.

In the second case, it is the load’s responsibility to check the
speculation. Speculation is initiated at the load’s issue time,
when by accessing the SQ we determine the existence of prior
stores with unresolved addresses [4], [18]. However, at the
load’s commit time, the store that caused the speculation has
already committed (as it is older than the load which is about
to commit) and may have already gone to the memory system.
This means that the load may have to re-check its value by
looking in the SB and the L1 (failing to find a match in the
SB).

The key idea to eliminate the load-replay L1 accesses is
to delay the appropriate stores in the SB until the loads that
were issued under a memory dependence speculation have a
chance to re-check their value solely in the SB.

E. Sentinels

To simplify the presentation, we first explain the main idea
from the perspective of a single speculative load that issues
over a single store with an unresolved address (Fig. 3).

On a load issue, we search the SQ/SB for the most recent
store on the same address, or an unresolved address. Recall
that we assume a unified SQ/SB structure, but our approach
can be easily adapted for separate structures. The SB part of
the SQ/SB cannot have stores with unknown addresses, but
the SQ part can.

1Committed stores in the SB are outside the instruction window and do not
make use of this encoding.
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Not all loads need to re-check their value. Only if a load
matches an unresolved-address store in the SQ (and without an
intervening store on the same address), becomes dependence-
speculative (D-speculative) and cannot commit unless its spec-
ulation is validated with a replay.

In such a case, we ensure that the load’s speculation will
be validated while the store is still in the SB part as follows:

• We mark the unresolved-address store with a sentinel
(Fig. 3, upper diagram). The sentinel is the ROB order
of the load as discussed in Section III-C.

• We mark the load in the ROB with the position of the
store in the combined SQ/SB. This position does not
change when the store commits.

• When the store resolves its target address, it does not
search the LQ for speculative loads —it is the load that
is responsible to re-check its value.

• The store can commit (pass from the SQ part to the SB
part) without any further action.

• However, a committed store carrying a sentinel that
reaches the head of the SB cannot be written in the L1
until the load that set the sentinel re-checks its value.
A blocked store at head of the SB blocks all younger
stores. This cannot result in a deadlock as it is explained
in Section III-G.

• On commit, the D-speculative load re-checks its value
by searching the SB (Fig. 3, lower diagram). It does not
need to check the SQ, since any older store has already
committed by the time of the load’s commit (see the
dividing line “commit front” in Fig. 3).2 A D-speculative
load searches the SB part for a matching address.

2As we mentioned previously, it is more difficult to check only the SB
part of a combined SQ/SB than it is to check a separate SB, but with the
appropriate modification of the CAM logic [14]–[16] it is possible to do as
an optimization.
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Fig. 4. Setting and updating sentinels

• When the D-speculative load re-checks its value it re-
moves its sentinel from the store and the store is allowed
to exit the SB and write the L1. Removing the sentinel is
a direct access to the SQ/SB as the position of the store
with the sentinel is known to the load.

To summarize: a store resolves its address while in the SQ; if
it is matched by a load before that point, the store is marked
with a sentinel (the load’s ROB order) and cannot leave the SB
until the same load reaches the commit stage and re-checks its
value. At that point the load will find that the store’s address
is either: the same (a dependence violation) and the load (and
subsequent instructions) must be squashed and re-executed;3

or different (no dependence), in which case the load commits.

F. Setting and Updating Sentinels

The discussion thus far is from the perspective of a single D-
speculative load and a single unresolved-address store. How-
ever, the situation in out-of-order execution can be significantly
more complex with multiple D-speculative loads and multiple
unresolved-address stores at the same time. In particular, we
discussed how a load sets a sentinel on a store but what
happens when multiple loads need to set sentinels on the
same store? Similarly, what happens when a load is under the
shadow of multiple stores with unresolved addresses? Despite
the chaos of out-of-order execution, our approach is based on
a very simple principle: A sentinel is always set between the
youngest issuing load and the oldest unresolved-address store.
From a store’s perspective:

• A store in the SQ with an unresolved address can be
marked with a sentinel by any newly issued load. The
only condition when a store’s sentinel is replaced is that
the new sentinel must be younger than the old (e.g., ld_b
in Fig. 4).

• Once a store resolves its address, its sentinel cannot be
updated any longer, simply because the store cannot be
matched as an unresolved-address store. The store will
commit (pass from the SQ to the SB) with its current
sentinel and it must be matched while in the SB by the
corresponding load.

From a load’s perspective: At issue, the load searches the
SQ/SB to match stores (older than the load) with the same

3A trivial opimization here is to check if the store is silent, i.e., if it writes
the same value as the one loaded speculatively. In this case no squash is
needed.
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address or unresolved addresses (which can be thought as
wildcards). The following cases exist:

• There are one or more stores with a matching address:
the load must take its value from the youngest of these
stores only if there is no other store with an unknown
address, even younger than that.

• There are one or more stores with an unresolved address,
younger than any store with a matching address: the load
must set its sentinel on the oldest of these unresolved-
address stores (e.g., st1? in Fig. 4) and save the store’s
position in its ROB entry for the replay.

Because we assume that the SQ/SB is a non-compacting FIFO
CAM structure, the operations described above require oldest-
first selection logic (to select the oldest among unresolved-
address matches) and its reverse, youngest-first selection logic
(to select the youngest among address matches). In both
cases, the selection is based on the ROB order of the stores
(Section III-C). Such age-based selection logic is described in
detail by Buyuktosunoglu et al. [17]. In case both selection
circuits produce a result, an additional step is required for the
final selection. This step is typically just a simple comparison
or the ROB order of the two results (the oldest unresolved-
address match against the youngest address match) and in rare
cases an additional selection of an unresolved-address match
may be needed for setting the sentinel on the correct store.
This additional step, however, is off of the critical path of the
load.

G. Absence of Deadlock

Blocking a store at the head of the SB raises concerns for
deadlock. In particular, the situation that can lead to a deadlock
is when a store blocking the head of the SB causes the SB
to fill up (consume all the space of the combined SQ/SB),
leaving no space in the SQ to accept new stores. This situation
is depicted in Fig. 5. The question is: can this prevent the
load that set the sentinel from reaching the head of the ROB,
replaying, and removing the sentinel from the blocked store?

Consider, first, that the SQ contains exactly the same stores
as the ROB. Any store that is inserted in the ROB is also
inserted in the SQ at the dispatch stage. If the SQ cannot accept
any more stores, the front-end stops inserting instructions in

the ROB (stalls). For deadlock to occur the distance of st_b
and ld_a , when counted in the number of stores (depicted
by a red double arrow in Fig. 5), must be larger than the
maximum size the SQ can take (i.e., larger than the size of the
combined SQ/SB).

However, the distance between the load and the store is fixed
while they are both in the ROB, at the moment st_? resolves
its address, becomes st_b, and prevents any further update of
its sentinel by any younger load. The store resolves its address
while still in the SQ; it could not have been committed with an
unknown address. Thus, deadlock is impossible as it implies
that at some point more stores were inserted in the ROB than
what the maximum size of the SQ can fit.

H. Fending-Off Conflicting Stores

The non-speculative load reordering approach of Ros et
al. [9] delays conflicting stores in their SB so that a reordering
cannot be observed and violate a consistency model (such
as TSO). Delaying a conflicting store in its store buffer is
achieved by withholding the acknowledgement to its invalida-
tion, thereby preventing the store from obtaining write permis-
sion as it tries to exit the store buffer and write to its L1. At
the coherence level, a new directory state called WriterBlock
and the use of non-cacheable tear-off data guarantee absence
of deadlock and livelock [9].

The important feature of the approach, however, relevant to
our work, is that speculative loads do not need to be squashed
by invalidations or cache evictions.

In the value-based approach of Cain and Lipasti [4] invalida-
tions and cache evictions are responsible for causing the replay
(in the L1) of 20-40% of all loads in their workloads, while the
corresponding percentage for uniprocessor dependence specu-
lation is only 2-15%. Even with sophisticated (but complex
and costly) re-execution filtering techniques introduced by
Roth [6], more than 15% of the loads have to be replayed
in the L1. A technique that avoids the squashing of loads on
invalidations and evictions is therefore invaluable as it obviates
replay for these cases.

The problem is that the Ros et al. approach is intimately
connected to the LQ, as we mention in Section II-D. More
specifically, the LQ is used to: i) determine when a load
is reordered with respect to older loads; ii) collect any in-
validation that matches one or more loads; iii) determine
when a load becomes ordered with respect to older loads
and release the invalidation acknowledgement to unblock the
corresponding conflicting store. In our approach, there is
no LQ to provide this functionality. Instead, lockdowns are
implemented directly in the L1 which is also accessed by
invalidations. We determine if a load issues over older non-
performed loads by selectively ORing status bits from the load
in question to the head of the ROB. A load that speculatively
issues over older non-performed loads, accesses the L1 and
sets its sentinel in the accessed cacheline. When the load
receives the data from the L1, it records in its ROB entry the
location of the cacheline in the cache (way and index). The
cacheline goes in lockdown mode which means that it is under



a speculative read and cannot be invalidated nor evicted. The
sentinel can be updated by younger speculative loads, up until
the time the cacheline is matched by an invalidation. At this
point the sentinel cannot be updated any longer. This prevents
a livelock from an endless update of the sentinel. A cacheline
in lockdown that receives an invalidation, withholds the Ack
to the invalidation until the time that the speculative load that
last set the sentinel reaches the head of the ROB and commits.
At that point the load removes the sentinel form the cacheline,
with a direct access, using the location information stored in
its ROB entry.

Updating the sentinel is no different than updating state bits
of the tag (for example, coherence or replacement bits) which
is a frequent operation. Thus, when updating tag state, we
can set a new sentinel or replace an older sentinel. Upon
receiving an invalidation (or on an eviction), the L1 cache
controller checks for the existence of a sentinel, alongside with
the checking of other state bits (coherence/ replacement bits).
When a snoop hits a valid sentinel, the specific sentinel is
simply not allowed to change any more. This takes one extra
state bit to enforce. Snoops never pass the L1 to go into the
core.

When a sentinel is removed from a cacheline, any in-
validation acknowledgement that was withheld is released.
Acknowledgments are queued in the L1 coherence controller
and simply wait for a signal form the corresponding cacheline
(that enqueued them) to return.

As with the proposal by Ros et al., the coherence layer
ensures that loads are not blocked anywhere in the memory
system, using WriterBlock states in the directory and, if
required, non-cacheable tear-off data. The latter is particularly
evident in our solution for evictions. Recall that evictions
are not allowed for cachelines in lockdown. In such cases, a
conflict with a lockdown cacheline, turns into a non-cacheable
access.

Our approach achieves the same functionality with non-
speculative reordering of loads but without an LQ. In this
respect, it is simpler that the Ros et al. proposal. No replay is
required for M-speculative loads that reach the commit stage as
it is guaranteed that the cacheline has not changed in any way.
Instead, only the removal of the sentinel is required, which
takes place in the same pipeline stages used for the replay of
D-speculative loads. The end result is a substantial reduction
of replays compared to the previous value-based approaches.

IV. SENTINEL REMOVAL ON SQUASH

Thus far, we discussed the removal of sentinels (from the
SB or the L1) when the corresponding loads (D-speculative or
M-Speculative respectively) reach the head of the ROB. Note
that mispeculated D-speculative loads always flow to the head
of the ROB to be re-checked and only then can be squashed,
while M-speculative loads are never squashed by invalidations
or evictions. However, an important question is how do loads
remove their sentinels if they are squashed by any other reason:
control mispeculation, exceptions, or mispeculation by prior
instructions.

The sentinel removal technique depends on how the proces-
sor squashes and discards mispeculated instructions: lazily or
eagerly.

A. Lazy Squash (a.k.a. “Bogus Retirement”)

In lazy squash, squashed instructions are marked in place
in the ROB and are discarded when they reach the head of
the ROB. Thus, each and every squashed load removes any
sentinel it may have set (in the SB or the L1) when it reaches
the commit stage and is discarded.

B. Eager Squash

Our approach is equally applicable in architectures with
eager squash where instructions are squashed in bulk, their
ROB entries are immediately reclaimed and allocated to newly
issued instructions. However, in this case, the removal of
sentinels is more involved.

Assume that an instruction (e.g., speculated branch, D-
speculative load, etc.),4 henceforth called point-of-squash
causes a squash of all subsequent instructions. All the sentinels
after the point-of-squash (i.e., younger) must be canceled in
the SB and in the L1. However, this cannot happen before
the point-of-squash reaches the head of the ROB so we can
guarantee that all the instructions before the point-of-squash
(i.e., older) had their chance to re-check on commit:

• D-speculative loads flow to the head of the ROB to be re-
checked and only then can become the point-of-squash.
In this case, there are no sentinels left before the point-of-
squash and, therefore, all remaining sentinels are flash-
cleared both in the SB and in the L1.5

• In all other cases, we wait for the point-of-squash to
reach the head of the ROB, guaranteeing that any older
instruction, before the point-of-squash, is able to re-check
(if needed) on commit. At that point, we do a flash-clear
or all remaining sentinels in the SB and in the L1 (and
release any blocked invalidation acknowledgments).

While waiting for the point-of-squash to reach the head of
the ROB we choose, for simplicity, not to set any new
sentinels.6 While this implies that we may have to delay
issuing speculative loads, this practically does not happen. Our
data shows that the time it takes for the point-of-squash to
reach the head of ROB is almost always shorter than the time
a new sentinel would be needed after the squash. In the vast
majority of our benchmarks, almost 100% of the mispredicted
branches reach the head of ROB before a new sentinel needs
to be set in the correct path. We only found few benchmarks
with a notable percentage of the mispredicted branches that
delay sentinels, on average for very few (less than 3) cycles,
see Table I.

4Exceptions are handled as mispeculated branches
5Only one bit per SB-entry or L1 cacheline needs to be cleared which is

feasible.
6New sentinels can be set but the overlapping numbering with the old set

of squashed sentinels requires complex handling.



TABLE I
MISSPREDICTED BRANCHES THAT CAUSE STALLS OF SPECULATIVE LOADS

Misspredicted Stall
Benchmark branches speculative loads
lu-ncp 0.59% 11.4%
dedup 1.4% 4.7%
lu-cp 0.59% 1.4%
streamcluster 0.46% 0.9%
canneal 7.8% 0.3%
all other < 0.1%

C. Benefits and Costs

To summarize, the benefits of our approach compared to a
standard architecture with an LQ are:

• Area and complexity: We do not have an LQ.
• D-speculative loads: We perform a replay only in the SB

—not in the SQ— instead of a search in the LQ.
• M-speculative loads: We eliminate all LQ searches, re-

placing each with a direct access to the cache to remove
the sentinel.

Compared to the Cain/Lipasti [4] and Roth [6] replay:
• We have the same filtering of loads to replay for de-

pendence speculation as with the Store Vulnerability
Window [6].

• We have no L1 accesses for the replay of D-speculative
loads (we search the SB instead of the L1).

• We have no L1 replay accesses for M-speculative loads
that are matched by an invalidation but simply a removal
of the sentinel with a direct access.

• We are free to use memory dependence prediction that
correlates loads to stores [7], [8] as we know the conflict-
ing store in the SB. In contrast, in previous value-based
approaches the identity of the store is lost when it writes
the L1 and a conflict detected by the re-checked L1 value
provides no useful information about the store (see the
discussion in [4]).

On the other hand, we incur a number of costs:
• We store ROB order, SQ/SB position of stores and L1

position of cachelines, in ROB entries to enable the direct
accesses.

• We store sentinels in the SQ/SB and in L1 cachelines.
• Selection logic in SQ/SB searches for both oldest and

youngest entries.
• Finally, we need an extra search port in SQ/SB to handle

the increased contention due to replay.

V. EVALUATION

Our simulation infrastructure is based on the cycle-accurate
GEMS simulator [19] for multicore systems, which offers a
timing model of the memory hierarchy, the cache coherence
protocol, and the interconnect (GARNET [20]). A detailed
x86-like in-house out-of-order processor model driven by a
Sniper [21] front-end has been incorporated into GEMS. The
processor model implements a TaglessCHT memory depen-
dence predictor [10] and a Tournament branch predictor [22].

TABLE II
SYSTEM CONFIGURATION

Processor class: Silvermont (Nehalem / Haswell)
Issue / Commit width 4 instructions
Instruction queue (IQ) 16 (32 / 60) entries
Reorder buffer (ROB) 32 (128 / 192) entries (Lazy squash)
Load queue (LQ) 10 (48 / 72) entries
Store queue/buffer (SQ/SB) 16 (36 / 42 ) entries

Memory
Private L1 I&D caches 32KB, 8 ways,

1 (addr calc) + 3 hit cycles, pipelined,
64 MSHRs, next-line prefetcher

Private L2 cache 128KB, 8 ways, 12 hit cycles
Shared L3 cache 1MB per bank, 8 ways, 35 hit cycles
Directory (8 banks) 512 sets, 8 ways (200% coverage)
Memory access time 160 cycles

Network
Topology Fully connected
Data / Control msg size 5 / 1 flits
Switch-to-switch time 6 cycles

The TaglessCHT memory dependence predictor does not rely
on the identity of the stores and thus is appropriate for all
techniques we evaluate, including the value-based techniques
that replay in the L1 (see Section IV-C). Our L1 cache model
implements fully pipelined read and write ports and a next-line
prefetching [13]. We simulate a multicore processor consist-
ing of 8 out-of-order cores. The architectural details of the
simulated system, modeling an Intel Silvermont processor, are
displayed in Table II. We also modelled Nehalem and Haswell-
class processors but since the LQ is not a bottleneck in these
larger cores we only see minor performance improvements.
The energy benefits over the baseline, however, are comparable
to those of Silvermont.

We run both parallel and sequential applications. The par-
allel applications are from the SPLASH-3 [23] and PARSEC
3.0 [24] benchmark suites, with simsmall (fmm, ocean cp,
oceanncp, radiosity, radix, raytrace, volrend, water nsquared,
water spatial, freqmine, streamcluster, swaptions, and vips)
and simmedium (barnes, cholesky, fft, lu cb, lu ncb, blacksc-
holes, bodytrack, canneal, dedup, ferret, fluidanimate, and
x264) inputs. Results are presented for their parallel region.
The sequential applications are from SPEC CPU2006 bench-
mark suite with the ref input set. Results correspond to the
most representative region of 1 billion instructions chosen
using the SimPoint methodology [25].

We model four different techniques to guarantee memory
dependence and memory ordering. LQ is the approach im-
plemented in most commodity processors. It employs a LQ
which is searched every time a store resolves its target address
or an L1 cache invalidation or eviction happens. Replay is
the alternative proposed by Cain and Lipasti [4] based on an
in-order load replay and value comparison before retirement.
Since this alternative does not require searching the LQ, we
have optimized the design by completely removing the LQ.
In addition, we model replay filter optimizations, and we have
adapted the proposal for a TSO consistency model, where the
SB also needs to be accessed on load replays. The SB and L1



TABLE III
ENERGY CONSUMPTION PER ACCESS

LQ: 1 read port, 1 write port, 2 search ports
Search (nJ) 0.000665415
Read (nJ) 0.000501724
Write (nJ) 0.000541147
SQ/SB: 1 read port, 1 write port, 2 search ports
Search (nJ) 0.000856529
Read (nJ) 0.000541555
Write (nJ) 0.000810883
SQ/SB (replay): 1 read port, 1 write port, 3 search ports
Search (nJ) 0.000920791
Read (nJ) 0.000627735
Write (nJ) 0.000930685
L1 cache: 2 read ports, 1 write port
Tag access (nJ) 0.00123128
Read (nJ) 0.0133430
Write (nJ) 0.0139019
L1 cache (replay): 2 read ports, 1 read/write port
Tag access (nJ) 0.00135552
Read (nJ) 0.0158799
Write (nJ) 0.0161259

cache ports have been adapted to efficiently support replay.
In particular, the SB implements one extra search port and
the L1 cache replaces the write port with a read/write port.
NoLQCommit is our approach that also replaces LQ searches
with a replay but does not necessitate an L1 replay since it
guarantees that no local or remote writes take place. It still
requires a replay on the SB on commit for D-speculative
loads. Finally, NoLQEager is an idealized version of the
NoLQCommit, optimized by not waiting until the in-order
commit stage to replay in the SB. Loads replay when they
stop being speculative and there is a free SB search port. No
ports are added to the SB and the time stores are delayed is
reduced, but on the other hand the mechanism for detecting
when loads stop being speculative is not modelled.

The energy consumption for the LQ, SQ/SB, and L1 cache
required for each of the previous techniques has been modelled
with CACTI-P [26] for a 22nm process technology. Table III
shows the number and type of ports and their dynamic
energy consumption. “SQ/SB (replay)” applies to Replay and
NoLQCommit; “L1 cache (replay)” is only required for Replay.

A. Results

The main benefit of NoLQ over the traditional LQ imple-
mentation is that the LQ bottleneck is removed, and therefore,
stalls due to LQ capacity are eliminated. The main benefit
over the Replay is that it completely removes the expensive
L1 cache replays, making for the first time a replay policy
efficient and feasible.
Load replays on the SB. In replay mechanisms, loads
executed when previous stores have unresolved addresses (D-
speculative) have to perform a replay on the SB to check that
the loaded value still matches the value of the previous store
(if any). Fig. 6, shows the percentage of loads that replay in
the SB and that are filtered since they are not D-speculatively
executed. The percentage of replayed loads on the SB is
33.4%–38.6% for SPLASH-3, 18.5%–20.6% for PARSEC and

27.2%–31.1% for SPEC. The percentage of replays increase
slightly for the NoLQ schemes since the application runs faster
and more loads are executed D-speculatively.
Load replays on the L1. Replays in the L1 only happen
in the state-of-the-art replay mechanism, for loads that are
performed before older loads (M-speculative) and when the
invalidation/eviction filters do not prevent the replay [4].
Fig. 7, shows the percentage of loads that replay in the L1
and loads that are filtered. Replay manages to filter most of
the replays, but still the percentage of blocks replayed in L1
is 11.2% for SPLASH-3, 7.6% for PARSEC, and 15.2% for
SPEC. Even with a low percentage of L1 replays there are
three main problems: (i) the L1 cache requires a read/write
port, therefore increasing energy consumption (Table III); (ii)
replays share the read/write port with writes so extra L1
contention is introduced; and (iii) L1 latency can be long
(3 cycles for hits, but for shared blocks replay misses can
increase). NoLQ filters all L1 replays since it ensures that the
data has not been updated since the load was performed.
Processor stalls. Fig. 8 accounts for the percentage of cycles
that the processor cannot make progress due to a full ROB, a
full SQ-SB, or a full LQ. Processor stalls due to a full LQ only
happen in LQ (12.4% for SPLASH, 11.2% for PARSEC, and
6.0% for SPEC). Replay and NoLQ do not incur LQ stalls. In
some cases, the lack of LQ stalls translates into fewer overall
stalls (as in barnes, water-spatial and swaptions). In other cases
the bottleneck moves to the ROB or the SQ/SB (as in ftt, radix,
canneal, and lbm). Note that applying out-of-order commit [9]
will be even more beneficial for NoLQ techniques than for
current LQ implementations since in NoLQ the ROB is by
far the predominant bottleneck. We leave this evaluation for
future work.

On the other hand, NoLQ sets a sentinel in the SQ/SB,
preventing stores from performing. This potentially puts more
pressure on the SQ/SB. WritersBlock coherence can also add
more pressure to the SQ/SB, but it has previously shown to
be negligible [9]. As observed in figure 8, the stall percentage
due to full SQ/SB does not increase significantly from LQ
(4.0% for SPLASH, 2.5% for PARSEC, and 0.7% for SPEC)
to NoLQ (4.4% for SPLASH, 2.8% for PARSEC, and 0.8% for
SPEC). Although in NoLQCommit the sentinel is released later
than in NoLQEager, the pressure on the SQ/SB is not affected.
Overall, processor stalls are reduced from LQ to NoLQ by
7.3% for SPLASH, 10.2% for PARSEC, and 9.9% for SPEC.
Execution time. The reduction in the percentage processor
stalls translates into lower applications’ execution time, as
Fig. 9 shows. The extra L1 replays of Replay cause however
a performance degradation (-8.0% for SPLASH, -3.9% for
PARSEC, and -3.5% for SPEC), despite the advantages of
not using the LQ. In contrast NoLQEager improves execution
time compared to the state-of-the-art replay technique (7.8%
for SPLASH, 8.3% for PARSEC, and 10.0% for SPEC) and to
the LQ technique (3.6% for SPLASH, 4.1% for PARSEC, and
5.9% for SPEC). NoLQCommit has an execution time close to
NoLQEager as the longer blocking time does not considerably
affect execution time.
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Fig. 6. Load replays in the SB
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Fig. 7. Load replays in the L1
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Fig. 8. Processor stalls
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Fig. 9. Normalized execution time
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Fig. 10. Normalized energy consumption

Energy consumption. Fig. 10 shows the dynamic energy
consumption of the L1 cache, the SQ/SB, and the LQ. L1
access energy is split in L1 Tag (accesses that only check
the tag, that is, cache misses or prefetches), L1 Read and
L1 Write (hits). Both Replay and NoLQ save the LQ energy as
they do not need such a queue. On the other hand, L1 reads
increase for Replay. There are some applications where the
replay technique increases considerably the L1 Read energy
despite a modest number of replays. The reason is that
these applications are memory bound and a large fraction
of the accesses miss in L1 cache. The replay is frequently
a hit (mostly in sequential applications) and that is why the
L1 Read increases more than expected. Finally, SQ/SB energy
increases in replay techniques, but is not significant since
only the committed part of the SQ/SB (the SB) needs to be
seached. Overall, NoLQEager improves energy consumption
of the L1, LQ and SQ/SB both compared to the state-of-the-art
replay technique (17.6% for SPLASH, 18.7% for PARSEC,

and 22.1% for SPEC) and compared to the LQ technique
(5.7% for SPLASH, 5.1% for PARSEC, and 8.3% for SPEC).
For Nehalem: 11.3%, 11.3%, 11.8%; Haswell: 13.7%, 15.2%,
15.2% for SPLASH, PARSEC, and SPEC respectively.

VI. CONCLUSION

The main contribution of this work is to show that the LQ
is superfluous for out-of-order execution even under a strong
memory consistency model such as TSO. The key concept
is to delay stores in the store buffer until we can ensure: i)
proper uniprocessor store-to-load forwarding and ii) proper
multiprocessor memory ordering. For the former, we employ
a novel value-based approach that does not burden the L1 for
load replay (value re-check) but instead is confined entirely
in the store buffer. For the latter, we employ the concept of
delaying remote conflicting stores in their store buffer at the
coherence layer but we achieve this in a novel way that does
not rely on an LQ.
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