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Abstract
Schött, J. 2018. Theoretical and Computational Studies of Strongly Correlated Electron
Systems. Dynamical Mean Field Theory, X-ray Absorption Spectroscopy and Analytical
Continuation. Digital Comprehensive Summaries of Uppsala Dissertations from the
Faculty of Science and Technology 1729. 112 pp. Uppala: Acta Universitatis Upsaliensis.
ISBN 978-91-513-0471-7.

This thesis encompasses theoretical and computational studies of strongly correlated elec-
tron systems. Understanding how electrons in solids interact with each other is of great im-
portance for future technology and other applications. From a fundamental point of view, the
Coulomb interaction in a solid leads to a very challenging many-body problem, encapsulating
many physical phenomena, e.g. magnetism. Treating this interaction, with a focus on local
contributions, is the subject of this thesis. Both models and materials have been investigated, to
obtain insight on the mechanisms determining the macroscopic properties of matter. This thesis
is divided in four parts, each corresponding to a different project or topic.

In the first project a many body method called dynamical mean field theory (DMFT) is used
to study the paramagnetic phase of the Hubbard model. A stochastic version of the exact di-
agonalization technique is developed for solving the effective impurity model arising in DMFT
and generating real frequency spectral functions. In the next project, by combining density
functional theory (DFT) with a static solution of the DMFT equations (DFT+U), magnetic ex-
change interactions in transition metal oxides (TMOs) are investigated. The spin dependence
of the functional is shown to be important for mapping magnetic excitations form the quantum
mechanical system to a classical model.

The next topic in this thesis concerns the x-ray absorption spectroscopy of TMOs. Spectral
functions, in good agreement with experimental data, are calculated by combining DFT with
multiplet ligand field theory (MLFT). The effects of the presence of a core-hole are studied in
detail for NiO, as well as double counting issues related to higher order terms of the multiple ex-
pansion of the Coulomb interaction. A strained induced linearly polarized spectrum is obtained
for CaTiO3. Lastly, charge disproportionation is seen in Mo doped LaFeO3.

Finally, a critical step in DMFT, called analytical continuation, to obtain physical observ-
ables of interest is investigated. Analytical continuation means a transformation of a function
in the complex plane. Several methods for performing this transformation are explained, and
in particular steps for improving the robustness and accuracy of the Padé approximant method
are described.
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1. Introduction

Technology and material design have been very important for the global de-
velopment. For instance, since the industrial revolution about 200 years ago
the number of people living in extreme poverty has dropped from 85% to
9% [1–3], permanent magnets have allowed us to transform mechanical and
electrical energy, and in recent decades both the total global information stor-
age and the transistor density in computers have doubled in less than every
second year [4, 5]. But despite these and other remarkable achievements, new
advances in material science are necessary in order to sustainably exploit the
earth’s limited resources and at the same time facilitate a high standard of liv-
ing for everyone [6–8]. One pressing issue in materials science is that the size
of transistors is approaching a length scale of a few nano meters (10−9 m),
prohibiting the impressive development mentioned above to continue. The
problem is that classical mechanics is not applicable at these length scales. In
this domain, quantum mechanics, introduced in the 20th century, dictates the
rules of nature. Hence, for smaller transistors and more efficient electronics,
we need to master the laws of quantum physics. In general, an important goal
in material science is to be able to predict properties of solids from the basic
rules of quantum mechanics. However, even though the equations governing
the behaviour of the electrons are known, solving them is hard. Approximate
theoretical methods exist for solving these equations numerically, exploiting
the large computational power of todays supercomputers. Thus, simulations
allow us to understand materials, predict their properties and find new materi-
als. In many materials, these approximate and computationally fast methods
are accurate enough to describe and predict the reality. The perhaps most suc-
cessful theoretical method is the Nobel prize awarded density functional the-
ory (DFT) [9, 10]. Nevertheless, for a group of materials, where the electrons
interact strongly with each other, DFT fails. This PhD thesis deals with un-
derstanding and modeling the physics of strongly correlated electron systems.
The latter show a vast amount of remarkable phenomena, including supercon-
ductivity, magnetism and metal to insulator transitions. This rich physics may
be utilized in many future technological applications, e.g. for improving en-
ergy efficiency [11]. There are many methods to describe strongly correlated
systems. This thesis is focused on the combination of approximate ab initio
electronic structure methods, such as DFT, with model Hamiltonian methods,
such as dynamical mean field theory (DMFT).
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The thesis is organized as follows:

Chapter 1: The ab initio electronic structure problem is discussed, focus-
ing on how to approximately solve the problem within a single particle ap-
proach. The introduction chapter also introduces the Hubbard model Hamil-
tonian, which incorporates the important local electronic interaction, as well
as Green’s function formalism, which will be useful in the later chapters.

Chapter 2: In this chapter DMFT is presented, which is a method for solving
the Hubbard model in a many body fashion. A crucial step in DMFT is the
solution of an effective impurity problem. A stochastic method called distri-
butional exact diagonalization (DED) is presented in section 2.4 and applied
in paper I for the insulating phase of the Hubbard model on the Bethe lattice.
Section 2.5.6 and paper II discuss magnetic exchange between atomic spins
in various transition metal oxides (TMOs). In particular, the role of the spin
polarization of the DFT functional is analyzed, as well as the mapping of the
electronic structure to a effective classical Heisenberg model.

Chapter 3: Theory of x-ray absorption spectroscopy (XAS) and simulated re-
sults of several TMOs, which stem from three separate projects, are contained
in this chapter. In the first project the methodology for calculating L-edge
x-ray absorption (XA) spectra is established and applied to MnO, FeO, CoO
and NiO. This work was published in paper III. The second project is about
atomic-plane resolution of Ti L-edges. Calculations show that strain induces
a linear polarization dependence, which results in changes in the L-edge line
shapes as a function of spatial coordinates on an atomic scale. Experimentally,
one can obtain this atomic plane information by measuring the electron energy
loss spectroscopy (EELS) signal. The third project presented in this chapter,
and in paper IV, is about Mo doped LaFeO3, which shows interesting coex-
istence of metallicity, anti-ferromagnetism and charge disproportionation. To
see if we could verify the experimental findings, Fe L-edges were calculated
for two different doping concentrations. This chapter ends with a section de-
scribing the on-going project on the development of projecting the momentum
dependent representation of the XAS dipole transition operator, and how it can
be generalized beyond the dipole approximation.

Chapter 4: The problem of analytical continuation is discussed in this chapter.
In finite temperature Green’s function formalism one employs imaginary times
and energies. Analytical continuation becomes necessary to transform observ-
ables from imaginary variables to the physically relevant real variables. Sev-
eral different methods for performing analytical continuation are introduced
and results from papers V,VI and VII are discussed.
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Chapter 5: Short summaries and outlooks of the papers are contained in this
chapter.

1.1 Ab initio electronic structure
For studying electrons in condensed matter physics, it is common to treat the
much heavier nuclei as stationary [12]. Using this Born-Oppenheimer approx-
imation the non-relativistic many-body Hamiltonian operator for N electrons
is in first quantization

H̃ =
N

∑
i=1

(
−1

2
∇̃2

i +Vext.(r̃rri)

)
+

N

∑
i=1

N

∑
j>i

1
|r̃rri − r̃rr j| , (1.1)

where the external potential from the assumed stationary nuclei at positions
RRRk and atomic numbers Zk is given by

Vext.(r̃rr) =−∑
k

Zk

|RRRk − r̃rr| , (1.2)

with k running over all atomic nuclei. Hartree atomic units are used throughout
the thesis unless explicitly said otherwise, thus h̄ = me = e = 1. Operators in
first (second) quantization are indicated by a ˜ ( ˆ ) on top of the variable. The
time-independent Schrödinger equation

H̃|Ψ〉= E|Ψ〉 (1.3)

contains all information necessary to calculate every property of the electrons.
In Eq. (1.3), Ψ(rrr1,rrr2,rrr3, ...,rrrN) is the many electron wave function and E
its corresponding energy. Solving the Schrödinger Eq. (1.3) for the Hamilto-
nian in Eq. (1.1) is a great challenge because of the exponential growth of the
Hilbert space with the number of particles N [13]. Typically a finite single par-
ticle basis set is chosen when treating Eq. (1.1). Let us denote these functions
with indices (i,σ), where i labels the orbital character of the wavefunction
ψi,σ , and let L be the number of basis functions. This allows us to write the
Hamiltonian operator in Eq. (1.1) in second quantization notation as [13–15]

Ĥ = ∑
i j,σ

ti jĉ
†
i,σ ĉ j,σ +

1
2 ∑

i jkl,σσ ′
Ui jkl ĉ

†
i,σ ĉ†

j,σ ′ ĉk,σ ′ ĉl,σ , (1.4)

where the ĉi,σ operator annihilates an electron with spin σ from orbital ψi. For
orthonormal basis functions, the operator ĉ†

i,σ creates an electron with spin σ
at orbital ψi [13]. The matrix elements are given by integrals over the basis
functions together with the single- and two-particle Hamiltonian terms respec-
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Ui jkl ĉ
†
i,σ ĉ†

j,σ ′ ĉk,σ ′ ĉl,σ =
Ui jkli,σ

l,σ

j,σ ′

k,σ ′

Figure 1.1. Feynman diagram of the Coulomb interaction.

tively:

ti j =
∫

d3rψ∗
i (rrr)

(
−1

2
∇2 +Vext.(rrr)

)
ψ j(rrr) (1.5)

Ui jkl =
∫ ∫

d3rd3r′ψ∗
i (rrr)ψ

∗
j (rrr

′)
1

|rrr− rrr′|ψk(rrr′)ψl(rrr). (1.6)

The ti j can be thought of as a hopping magnitude between the basis orbital
functions and the electron-electron interaction can be visualized with a Feyn-
man diagram, see Fig. 1.1.

1.1.1 Bloch theorem
Finding the groundstate energy of Eq. (1.4) is in general not possible. How-
ever, there are strategies and cases where it is possible. If the electron-electron
interaction in the system of interest is very weak (U ≈ 0) the electrons are
independent of each other and the problem reduces to a single-particle prob-
lem with hopping ti j. For a periodic crystal the eigenstates are single particle
Bloch functions φkkk,n,σ (rrr) = eikkk·rrrun,kkk(rrr) with quantum numbers kkk, n, σ for re-
spectively lattice momentum, band-index and spin [16]. The non-interacting
Hamiltonian in this representation is diagonal:

Ĥ = ∑
kkk,n,σ

εkkk,n,σ n̂kkk,n,σ , (1.7)

where n̂kkk,n,σ = ĉ†
kkk,n,σ ĉkkk,n,σ is the occupation operator and εkkk,n,σ the band en-

ergy. Due to the lattice periodicity of the function u(rrr) the solution can be
obtained and studied inside only one primitive lattice cell, which greatly sim-
plifies the calculations. Note that certain phenomena, e.g. magnetism, can
reduce the symmetry in the system and hence require a bigger unit cell than
the primitive lattice cell [17].

1.1.2 Density functional theory
When interaction is present, famous approximations can be formulated for
solving the many-body problem in Eq. (1.4), by mapping it to a single-particle
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problem with an effective potential. Both the Hartree-Fock (HF) method and
DFT belong to this category. In the HF approximation one assumes indepen-
dent electrons, by making an ansatz on the many-body wave function to be a
single Slater determinant, which is then used to minimize the total energy.

In principle DFT is an exact theory for ground state properties [9]. The
key idea is to describe the ground state in terms of the charge density instead
of the many body wave function. Kohn and Sham showed [10] how to find
the ground state density by working with an auxiliary non-interacting system
of particles, having the same charge density n(rrr) as the system with interact-
ing electrons. The Kohn-Sham Hamiltonian and the corresponding eigenvalue
problem for these quasiparticles are

H̃KS =−1
2

∇̃2 +Vext.(r̃rr)+
∫

d3r′
n(rrr′)
|r̃rr− rrr′| +

δExc[n]
δn(r̃rr)

(1.8)

H̃KS|φ〉= ε|φ〉. (1.9)

In Eq. (1.8) the first term is the kinetic energy of non-interacting electrons,
the second the external potential from the nuclei, the third the Hartree poten-
tial (which is the classical electrostatic term) and the forth is the exchange-
correlation term (which is unknown and has to be approximated). 〈rrr|φ〉 is the
single-particle Kohn-Sham eigenstate wavefunction, with the corresponding
eigenenergy ε . After choosing an appropriate single-particle basis, {|ψ〉}, the
hopping matrix reads

tKS
i j =

∫
d3rψ∗

i (rrr)HKSψ j(rrr). (1.10)

Notice the similarity to Eq. (1.5). By expanding the eigenstates in this basis,
i.e. |φ〉= ∑i bi|ψi〉, Eq. (1.9) becomes a generalized eigenvalue problem:

∑
j

tKS
i j b j = ε ∑

j
Si jb j, (1.11)

with the overlap matrix Si j =
∫

dr3ψ∗
i (rrr)ψ j(rrr) being the identity matrix in

case of an orthonormal basis.
In a periodic lattice the Bloch theorem reduces the problem to a single

unit cell and in the KS-eigenvalue basis the many-body Hamiltonian looks
the same as Eq. (1.7). Nevertheless, the KS eigenenergies include the Hartree
term and approximate exchange and correlation terms from the Coulomb in-
teraction in a mean field fashion. Since the KS Hamiltonian depends on the
charge density, which can be calculated from the KS wavefunctions, Eq. (1.9)
has to be solved iteratively until the charge density is converged.

Functionals

The drawback of DFT is that the unknown universal exchange-correlation
functional must be approximated. The commonly used local density approxi-
mation (LDA) assumes that the functional solely depends on the value of the
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charge density at each point in space. This limits the applicability of DFT to
weakly correlated systems where the density is almost homogeneous in space,
such as normal metals, band insulators and semiconductors. But for strongly
correlated systems, such as many compounds containing 3d transition metals,
lanthanides or actinides, DFT fails in predicting the material properties [18].
One of the problems with the LDA functional (and many other approximate
DFT functionals) is that the electron in an orbital interacts spuriously with
its own charge density [19]. Another popular functional worth mentioning is
called the generalized gradient approximation (GGA), which takes into ac-
count not only the density at a given point, but also its gradient. This offers
a way to include some effects associated to less homogenous densities, al-
though many correlated materials are still insufficiently described. To study
magnetism, spin polarized functionals have been developed, such as the local
spin density approximation (LSDA) [20].

DFT basis

The choice of basis functions matters and the number of orbitals in the basis
should be kept as low as possible for computational reasons but big enough for
accurate calculations. The shape of the orbitals preferably should be tailored
to the system of study, e.g. plane waves for free electron like systems and
atomic centered orbitals for molecules and atoms. For electrons in a solid nei-
ther of these two basis types are ideal since some electrons are localized, some
are delocalized and some are something in between. This is why more com-
plicated basis sets are often used for solids. Another approach is to not treat
all electrons, by replacing inner fully localized shells with a pseudo-potential
and simulate only the valence electrons with e.g. a plane wave basis.

In papers II, III and IV we have used the Relativistic Spin Polarized Toolkit
(RSPt) code [21] which is an all-electron full-potential linear muffin-tin or-
bital (FP-LMTO) method [22, 23]. In this method, the space is divided into
two regions, spheres around the atoms and the interstitial space between these
spheres. This division is motivated by the observation that the potential close
to the nuclei is almost spherical, while far away the potential is almost flat. The
LMTO basis consists of solutions to the Schrödinger equation with a spheri-
cal potential inside the muffin-tin (MT) spheres, augmented with free electron
solutions expressed in radial coordinates (i.e. Bessel and Neumann functions)
in the interstitial region. At the boundary of the MT sphere the two solutions
are matched by smoothness conditions. The radial part of the basis functions
inside the MT sphere depend on the energy, f = f (r,ε), and for computational
efficiency a linearizing Taylor expansion is used around a given energy εν ,
thus f (r,ε) ≈ f (r,εν)+

∂ f
∂ε (r,εν)(ε − εν). Since the basis functions are solu-

tions to the Schrödinger equation and depend on the potential, their shapes are
modified during charge self-consistency. Fig. 1.2 shows basis functions inside
the MT in NiO, at the beginning (having an atomic density) and at the end of
the DFT self-consistency cycle. Two advantages with this DFT basis are its
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Figure 1.2. Radial part of the RSPt basis functions inside the MT spheres for NiO.
Notice that oxygen and nickel have different MT radii. The solid (dashed) lines rep-
resent basis functions for a converged (atomic) charge density. Normalization is such
that

∫ | f (r)|2r2dr = 1.

compactness and that no approximation of the potential is needed. However,
compared to e.g. the linearized augmented plane wave (LAPW) method, with
the LMTO basis it is hard to systematically increase the number of basis func-
tions to check if sufficient completeness has been obtained. Actually, the most
commonly used DFT codes of today give very similar results, at least for the
equation of state of many elemental crystals [24]. For more information about
the RSPt basis, please see Refs. [17, 22, 25–29].

1.2 Hubbard model
To model a solid where electrons experience a strong Coulomb interaction,
Hubbard proposed a simple model which today is known as the Hubbard
model [30]. It captures the competing processes of delocalization, favoured
by the hopping term t, and localization, induced by the electron-electron inter-
action U . Starting either directly from the Schrödinger equation or from DFT,
a few approximations lead to the Hubbard model and will be outlined here.
The difference between the two starting points is what is included in the hop-
ping term, either one uses Eq. (1.5) or Eq. (1.10). In the latter case a double
counting term is also needed, as described in section 2.5.3.

The Hubbard model is used to study localized d or f electrons. Let us use an
atom centered orbital basis and introduce the orbital super index notation i =
{RRRi,τττ i,ai}, to denote unit cell, atom within unit cell, and atomic orbital index.
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The index a can for example include the angular momentum projected on the
z-axis if the basis functions are expressed in terms of spherical harmonics. Of
all interaction processes the intra-atomic ones are typically the strongest for
systems with localized wavefunctions. Neglecting all inter atomic interactions
means:

Ui jkl ≈ δRRRi,RRR j,RRRk,RRRl δτττ i,τττ j,τττk,τττ lUτττ,aia jakal (1.12)
This approximation gives a multi-band Hubbard model, namely

Ĥ = ∑
i, j,σ

ti, jĉ
†
i,σ ĉ j,σ

+
1
2 ∑

RRR,τττ,σσ ′
aia jakal

Uτττ,aia jakal ĉ
†
RRR,τττ,ai,σ ĉ†

RRR,τττ,a j,σ ′ ĉRRR,τττ,ak,σ ′ ĉRRR,τττ,al ,σ , (1.13)

where no restriction is done on the hopping. To illustrate the physical mean-
ing of this model we will perform a few further simplifications. Let us assume
the studied system only has one atom per unit cell and consider a basis with
only one orbital per atomic site. With these great simplifications, the origi-
nal problem has been reduced to a single-band model and the indices τττ and
a can be dropped. The interaction is then intra-orbital and is usually denoted
as U = Uiiii. Rewriting the creation and annihilation operators into occupa-
tion operators and excluding processes removing two electrons from the same
state, the interaction term simplifies to U ∑RRR n̂RRR,↑n̂RRR,↓. For localized orbitals
the hopping ti j = tRRRRRR′ is approximately either within the same unit cell or to
the nearest neighbours:

tRRRRRR′ ≈ (δRRR,RRR′ +δ〈RRRRRR′〉)tRRRRRR′ , (1.14)

where 〈 〉 means nearest neighbours. The local hopping is reduced to counting
the number of electrons and can be treated as a part of the chemical potential.
Let us also assume hopping is the same to all nearest neighbours. The single-
band Hubbard model thus reads

Ĥ =−t ∑
〈RRRRRR′〉,σ

(ĉ†
RRRσ ĉRRR′σ + ĉ†

RRR′σ ĉRRRσ )+U ∑
RRR

n̂RRR,↑n̂RRR,↓, (1.15)

with hopping parameter t =−δ〈RRRRRR′〉tRRRRRR′ . This problem is much easier to solve
than the original problem but still captures the competition between the hop-
ping (favoring delocalization) and the local Coulomb interaction (favoring lo-
calization), which is behind many important phenomena, such as the Mott
metal to insulator transition. In Chapter 2 we will solve Eq. (1.15) using
DMFT. Fig. 1.3 illustrates the Hubbard model on a square lattice.

1.2.1 Atomic and non-interacting limits
Here we briefly discuss two important limits of the single orbital Hubbard
model in Eq. (1.15). In the limit of no interaction (U → 0), the eigenstates are
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U t

Figure 1.3. The Hubbard model on a square lattice with hopping parameter t and local
interaction parameter U .

Figure 1.4. Schematic picture of the atomic (black) and non-interacting (grey) spectral
function of the single-band Hubbard model at half-filling. A cubic lattice geometry is
used in the non-interacting case. Figure inspired by [31].

delocalized Bloch waves with eigenenergies εkkk =−t ∑〈RRR,000〉 e−ikkk·RRR (obtained by
Fourier transforming the hopping term). The width, W , of the band is propor-
tional to the hopping strength t and the system is metallic for any site occupa-
tion between 0 and 2. In Fig. 1.4 the density of states, ρ(ω) = ∑kkk δ (ω − εkkk),
is shown (grey line) for a system of cubic lattice geometry at half filling.

In the atomic limit the hopping goes to zero (t → 0). From bandpicture
one might then expect to have a narrow band and metallic behavior at partial
occupation. However, the U term dominates in the atomic limit and favors
localization, i.e. the four Fock states of a single site, |0〉, |↑〉, |↓〉 and |↑↓〉, are
eigenstates. Corresponding discrete eigenenergies are 0, μ , μ and U + 2μ ,
respectively, where the chemical potential μ for a half-filled system is −U/2.
This results in an insulating spectral function (a definition of the spectral func-
tion is given in section 1.3) with peaks at ±U/2, see the black line in Fig. 1.4.
The double occupancy 〈n̂↑n̂↓〉 = 0 ( 
= 〈n̂↑〉〈n̂↓〉 = 1

2
1
2 ), indicates that correla-

tions are present. A Mott transition is an interaction driven phase transition
between a metal and an insulator, and occurs roughly when U ≈W .
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1.2.2 Beyond density functional theory
Due to the failure of DFT to describe partially occupied localized states (many
3d, 4d, 5d, 4 f and 5 f systems), a popular strategy is to improve upon the
KS system, by using it as a starting point and adding the local intra atomic
Coulomb interaction from the Hubbard model for a subset of all the orbitals in
the system, e.g. only the 3d orbitals. This is preferable compared to starting
from the Schrödinger Eq. (1.4) and approximating the Coulomb interaction
to be local, as in the Hamiltonian in Eq. (1.13). This can be understood by
the fact that this would cut away much of the long-ranged interaction, such as
the Hartree interaction. Instead, using the KS system as a starting point the
Hartree interaction is included in the hopping tKS

i j . Two such approaches are
DFT+U [32–38] and DFT+DMFT [15, 39–42], where the former can be seen
as a static approximation to the latter. Due to its simplicity and computational
speed, DFT+U has been used for many insulating systems where pure DFT
fails. In paper II and section 2.5.6 DFT+U is used to study various insulating
3d systems, and comparing the LDA functional with the LSDA functional. In
Chapter 3 a simplified DFT+DMFT approach is used to study x-ray absorption
spectroscopy of strongly correlated systems.

1.3 Green’s functions
Green’s functions are mathematical tools for solving differential equations.
However in many-body theory Green’s functions act as propagators and are
sometimes also referred to as correlation functions. They are defined as time
dependent expectation values of products of operators. There are many dif-
ferent flavours of Green’s functions and one can find various relations among
them. A short overview will be given here of some basic Green’s function con-
cepts but for a more complete description please consider the text-books [43–
45].

1.3.1 Two operator propagator
The imaginary time two operator Green’s function is defined in the Heisenberg
picture as

GA,B(τ,τ ′) =−〈Tτ,τ ′Â(τ)B̂(τ ′)〉. (1.16)

By choosing the operator Â and B̂ to be fermionic annihilation and creation op-
erator respectively, G is a fermionic one particle Green’s function. For Â and
B̂ each consisting of pairs of fermionic creation and annihilation operators, G
is a bosonic two particle Green’s function, e.g. the charge-charge correlation
function [45]. Imaginary time is introduced to formulate a finite temperature
theory, and corresponds to substituting it by τ , where i is the imaginary num-
ber and t is the time. The operators as functions of imaginary time in the
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G(iνn)

G(ω + i0+)

G(z)

Figure 1.5. Analytical continuation in the complex plane from Matsubara frequencies
iνn to points distanced i0+ above the real axis.

Heisenberg picture are of the form Â(τ) = eτĤ Âe−τĤ . The time ordering su-
per operator T in Eq. (1.25) reorders the operators by moving the later time
to the left. If the Hamiltonian for the system does not explicitly depend on
the time, the Green’s function only depends on the relative time difference
τ = τ − τ ′, which can easily be shown using the cyclic properties of the trace.
The Green’s function G(τ) is defined for τ ∈ (−β ,β ] and cyclic permuta-
tions inside the trace give an anti-periodic (periodic) property for fermionic
(bosonic) fields

G(τ) =∓G(τ +β ) (1.17)

for −β < τ < 0 [46], where the upper (lower) sign is for fermions (bosons).
The Green’s function can formally be periodically repeated from τ ∈ (−β ,β ]
and hence expressed by a Fourier series expansion

G(τ) =
1
β

∞

∑
n=−∞

e−iνnτGn (1.18)

with Fourier coefficients

Gn =
1
2

∫ β

−β
dτeiνnτG(τ) (1.19)

and νn =
πn
β . However, coefficients for even (odd) n are zero due to the anti-

periodicity (periodicity) in Eq. (1.17) for fermions (bosons) and the ones for
odd (even) n simplifies to

Gn =
∫ β

0
dτeiνnτG(τ). (1.20)

For an easier notation of the non-zero coefficients, we redefine νn as

νn = (2n+1)π/β for fermions (1.21)
νn = 2nπ/β for bosons, (1.22)
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with n ∈ Z, and call them the fermionic and bosonic Matsubara frequencies
respectively. The corresponding values in Eq. (1.20) are called the Matsubara
Green’s function. Given the set of infinitely many Gn values, there exists
a corresponding unique function ρ , called the spectral function, having the
property:

Gn =
∫ ∞

−∞
dω

1
iνn −ω

ρ(ω). (1.23)

This equation can be generalized by replacing the points on the imaginary axis
in the complex plane, iνn, by a general complex number z, hence

G(z) =
∫ ∞

∞
dω

1
z−ω

ρ(ω). (1.24)

Given a set of Gn, by solving Eq. (1.23) for ρ , ρ can be used in Eq. (1.24) to
calculate G(z) in the upper and lower complex plane. On the real axis G(z) has
a branch cut with a discontinuity of −2πiρ(ω). The unique mapping in the
complex plane from G(iνn) = Gn to G(z) is an example of analytical contin-
uation, see Fig. 1.5. The proof of the uniqueness by Maym and Mermin [47]
uses the Carleman’s theorem [48]. How to numerically perform the analyti-
cal continuation is one of the main topics of this thesis and will be discussed
in Chapter 4. The Green’s function G(τ) can directly be related to the spec-
tral function by using its Fourier representation, i.e. Eq. (1.18), together with
Eq. (1.23). However, to reach a compact expression, a summation over the
Matsubara points is needed, see Appendix A. Finally one gets

G(τ) =
∫ ∞

−∞
dω

−e−τω

1± e−βω ρ(ω), for 0 < τ < β . (1.25)

Analytical properties can be obtained by expressing the imaginary time
Green’s function in terms of all the (many-body) eigenstates of the system.
For 0 < τ < β

G(τ) =− 1
Z

Tr[e−β ĤeτĤ Âe−τĤ B̂] (1.26)

=− 1
Z ∑

n
〈n|e−β ĤeτĤ Â Î︸︷︷︸

∑m |m〉〈m|
e−τĤ B̂|n〉 (1.27)

=− 1
Z ∑

n,m
e−βEn〈n|Â|m〉〈m|B̂|n〉eτ(En−Em), (1.28)

where Z = ∑n e−βEn is the partition function and En is the eigenenergy for the
eigenstate |n〉. By Fourier transforming Eq. (1.28) and replacing iνn → z we
get

G(z) =
1
Z ∑

n
∑
m
(e−βEn ± e−βEm)〈n|Â|m〉〈m|B̂|n〉 1

z− (Em −En)
. (1.29)
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The Lehmann representation of the spectral function

ρ(ω) =
1
Z ∑

n,m
(e−βEn ± e−βEm)〈n|Â|m〉〈m|B̂|n〉δ (ω − (Em −En)), (1.30)

corresponds to Eq. (1.29) by satisfying Eq. (1.24) together with the uniqueness
property.

Common operator case: Â = B̂†

Note that the spectral function in general is complex valued, but if Â = B̂†, we
get:

ρ(ω) =
1
Z ∑

n,m
(e−βEn ± e−βEm)|〈m|B̂|n〉|2δ (ω − (Em −En)) (1.31)

which is clearly a real quantity and obeys the relations

ρ(ω)≥ 0 , for fermions (1.32)
ρ(ω)/ω ≥ 0 , for bosons. (1.33)

Also, the imaginary part of the Green’s function evaluated just above the real
axis is actually directly related to the spectral function. This is easily seen
from Eq. (1.24) and by exploiting the fact ρ ∈ R. We get

Im[G(ω + iδ )] =
∫ ∞

−∞
dω ′ −δ

(ω −ω ′)2 +δ 2 ρ(ω ′) →
δ→0+

−πρ(ω). (1.34)

The Green’s function evaluated in the limit of δ → 0+ is called the retarded
Green’s function. Let us define it as Gret(ω) = G(ω + i0+). Hence

ρ(ω) =− 1
π

Im[Gret(ω)] =− 1
π

Im[G(ω + i0+)]. (1.35)

There exists an important mirror symmetry for the Green’s function, namely

G(z) = G(z∗)∗ (1.36)

which can be obtained from Eq. (1.24) and by using ρ ∈ R. For one of the
analytical continuation methods, the Padé approximant method, discussed in
section 4.6, explicitly enforcing this mirror symmetry of the Green’s function
sometimes significantly improvs its accuracy.

In the following a special Green’s function will be studied, namely the
single-particle Green’s function, and in Chapter 3 a two-particle Green’s func-
tion is investigated.
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1.3.2 Single-particle Green’s function
The single-particle Green’s function is physically important not only for its re-
lation with experimental observables but also for its fundamental significance.
Let us consider a system with several single-particle orbitals, and let us denote
them with orbital index i and spin index σ . The single-particle Green’s func-
tion corresponds to setting A = ci,σ and B = c†

j,σ ′ . Hence its imaginary time
definition is

Giσ , jσ ′(τ) =−〈Tτ(ĉi,σ (τ)ĉ
†
j,σ ′(0))〉. (1.37)

The spectral function ρiσ , jσ ′(ω) is a hermitian matrix (visible from Eq. (1.30)),
for a fixed energy ω . This means ρ ∈ C on the off-diagonal (i 
= j or σ 
= σ ′)
and ρ ∈ R on the diagonal (i = j and σ = σ ′). Another important property
of the spectral function, easily obtained using the Lehmann representation and
the fermionic commutation rules [43], is the following property:∫ ∞

−∞
dωρiσ , jσ ′(ω) = δσσ ′δi j. (1.38)

For a non-orthogonal orbital basis, the normalization above becomes equal to
δσσ ′(S−1)i j [13], where S is the overlap matrix. In the following an orthonor-
mal basis is assumed.

Diagonal elements

The diagonal elements of the single particle Green’s functions are arguably
the most important in electronic structure calculations and they also have
many symmetry properties. First note that the spectral function property in
Eq. (1.38) for diagonal elements simply states that the spectral function should
be normalized to integrate to one, which is advantageous to enforce when do-
ing analytical continuations. Another important property, exploited when per-
forming analytical continuations, is the non-negativeness in Eqs. (1.32), (1.33),
which enables us to interpret the spectral functions as a probability distribu-
tion. For clarity, let us explicitly write down the diagonal single particle func-
tions:

ρiσ ,iσ (ω) =
1
Z ∑

n,m
(e−βEn + e−βEm)|〈m|ĉ†

iσ |n〉|2δ (ω − (Em −En)) (1.39)

Giσ ,iσ (z) =
1
Z ∑

n,m
(e−βEn + e−βEm)|〈m|ĉ†

iσ |n〉|2
1

z− (Em −En)
(1.40)

Giσ ,iσ (τ) =− 1
Z ∑

n,m
e−βEn |〈m|ĉ†

iσ |n〉|2eτ(En−Em), for 0 < τ < β . (1.41)

From the spectral function many quantities can be calculated, e.g. the occu-
pation for that orbital. The occupation is equal to the imaginary time Green’s
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Figure 1.6. Green’s function expressed by Feynman diagrams in the Hartree-Fock
approximation [46].

function at τ = 0−. By using its Fourier transform and Cauchy’s integral for-
mula the occupation is given by [45]

〈ĉ†
iσ ĉiσ 〉= G(τ = 0−) =

∫ ∞

−∞
dωnF(ω)ρ(ω), (1.42)

where nF(z) = 1/(eβ z +1) is the Fermi-Dirac distribution.

Non-interacting Green’s function

The ab initio electronic structure Hamiltonian (see Eq. (1.4)) consists of two
terms, a non-interacting term and an interacting term. Such separation is also
done for the Hubbard model (see Eq. (1.15)) and is in fact a common situation
for other models as well. In these cases, it is useful to introduce the Green’s
function for only the non-interacting Hamiltonian. This is called bare, non-
interacting or undressed Green’s function, and is typically denoted by G0. For
a lattice system, using the Bloch theorem the hopping/non-interacting Hamil-
tonian is diagonal in the basis of lattice momentum kkk, band index n and spin
σ , as seen in Eq. (1.7). The imaginary time Green’s function is [45, 46]

G0,(kkk,n,σ)(τ) = (nF(ε(kkk,n,σ))−1)e−τε(kkk,n,σ) , for 0 < τ < β , (1.43)

with Fourier transform

G0,(kkk,n,σ)(iνn) = 1/(iνn − ε(kkk,n,σ)). (1.44)

From Eq. (1.35) the corresponding spectral function is

ρ0,(kkk,n,σ)(ω) = δ (ω − ε(kkk,n,σ)), (1.45)

which has Dirac-delta peaks at the band energy ε(kkk,n,σ). When the interaction
is slowly turned on, the electrons become Fermi-Liquid quasi-particles. It is
reflected in the interacting spectral function by a broadening of the Dirac-delta
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peaks, due to a finite life-time, and an energy shift, due to a mass enhancement.
For stronger interaction non quasi-particle features arise and are contained in
the spectral function. Experimentally the spectral function can be measured
with angle-resolved photoemission spectroscopy [49].

Self-energy and Dyson’s equation

The Dyson equation is the link between the non-interacting and the interacting
Green’s function:

G(z)−1 = G0(z)−1 −Σ(z), (1.46)

where Σ(z) is called self-energy. The self-energy is responsible for the changes
of the spectral function described just above, when the interaction is turned
on. The meaning of Dyson’s equation can be illustrated by using Feynman
diagrams. The interacting Green’s function is viewed as a propagator and is
expressed as a sum of diagrams describing all possible interaction events be-
tween an electron and all the other electrons in the system. The contributing
diagrams can be written as a geometrical sum of irreducible diagrams. The
self-energy is the sum of all the irreducible diagrams [46]. In practice, calcu-
lating all irreducible diagrams is usually infeasible. However approximating
the self-energy with only a few irreducible diagrams is common, such as the
Hartree-Fock approximation, where the self-energy is a sum of a ring and an
open oyster diagram, see Fig. 1.6. Instead of using a partial summation of
all irreducible self-energy diagrams one can device other approximations. For
example, one can approximate the self-energy to be local in space. It is one of
the key ideas behind dynamical mean field theory (DMFT), which is the topic
of the next chapter [27].
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2. Dynamical mean field theory

Dynamical mean field theory (DMFT) is a method for obtaining a proper
many-body solution of a system of interacting electrons on a lattice. Histori-
cally its development started by studying the Hubbard model, in Eq. (1.15), on
a hyper-cubic lattice of d dimensions, when d goes to infinity [39]. It was real-
ized that taking this limit simplified the calculations but still lead to non-trivial
physics. A second breakthrough in the DMFT development was made when
the Hubbard model was mapped onto a self-consistent impurity problem [40].
The mapping is exact for d → ∞ with the lattice self-energy Σ(kkk,z) becoming
momentum independent [15, 41, 42], thus

Σ(kkk,z) →
d→∞

Σ(z). (2.1)

By Fourier transforming Eq. (2.1), the self-energy in real space becomes local,
which is another way of expressing the limit of d → ∞. For finite dimensional
systems, the locality of the self-energy is an approximation. Despite this ap-
proximation, DMFT has been applied with great success to many-body prob-
lems such as the Mott metal to insulator transition, doping of Mott insulators
and phase separation, and improved the simulation accuracy for properties like
spectral satellites, spin exchange, bulk modulus and lattice constants for var-
ious materials [15, 41, 42, 50–54]. Actually, DMFT is also exact in two other
limits, the non-interacting and the atomic limits, see section 1.2.1.

2.1 Single impurity Anderson model
The single impurity Anderson model (SIAM) contains an interacting impurity
site, a bath of non-interacting sites and a coupling between the impurity site
and the bath:

ĤSIAM = Ĥimp + Ĥbath + Ĥcoupling. (2.2)

As for the Hubbard model in Eq. (1.15), let us consider a single-orbital model.
The impurity term Ĥimp contains an energy level ε0 and the same interaction
term as for one site in the Hubbard model, namely

Ĥimp = ε0(n̂↑+ n̂↓)+Un̂↑n̂↓, (2.3)

where n̂↑ (n̂↓) is the number operator for the spin up (down) impurity level.
The chemical potential for the SIAM can conveniently be included in ε0. The
bath is described by

Ĥbath = ∑
b,σ

εbn̂b,σ , (2.4)
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with bath energy levels εb and their occupation operator n̂b,σ . The coupling
between bath and impurity is described by hopping elements and reads

Ĥcoupling = ∑
b,σ

Vb(ĉ
†
b,σ ĉσ + ĉ†

σ ĉb,σ ), (2.5)

where Vb are the hopping strengths from bath to impurity (and vice versa),
while ĉb,σ and ĉ†

b,σ are the annihilation and creation operators for the bath
sites. The non-interacting Green’s function for the impurity site is obtained by
neglecting the Coulomb term in Eq. (2.3), and becomes [55]

g0(z)−1 = z− ε0 −Δ(z). (2.6)

Notice that the lower case letter g is used to label impurity Green’s functions
and to distinguish them from lattice Green’s functions, which we will intro-
duce later. Δ(z) is the hybridization function which incorporates all the effects
of the bath on the impurity site. In terms of the coupling and bath parameters,
Δ is expressed as

Δ(z) = ∑
b

|Vb|2
z− εb

. (2.7)

The SIAM is fully defined by Δ(z), ε0 and U . There are many different nu-
merical methods, called impurity solvers, for solving the SIAM and obtaining
the self-energy Σimp(z) at the impurity site. Using the Dyson equation and
Eq. (2.6), the interacting Green’s function for the impurity reads

g(z)−1 = g0(z)−1 −Σimp(z) = z− ε0 −Δ(z)−Σimp(z). (2.8)

Various QMC algorithms are used as impurity solvers. Most of them require
working with Matsubara Green’s functions for a finite temperature. Analyti-
cal continuation is therefore necessary in order to obtain dynamical quantities,
such as the spectral function. An explicit parameterization of the Hamiltonian
is unnecessary in QMC, since the impurity is formulated through its action
which contains Δ, not the parameters Vb and εb. This is an advantage com-
pared to other methods, such as exact diagonalization (ED), where one has to
approximate the hybridization function Δ, by representing it with a few bath
sites:

Δ(z)≈ ΔED(z) =
nb

∑
b=1

|Vb|2
z− εb

. (2.9)

As nb → ∞, this approximation becomes exact but due to the exponential scal-
ing of the Hilbert space, only a few bath states are currently computationally
feasible. After this discretization, an explicit form of the SIAM Hamiltonian
is obtained and can be numerically diagonalized. Once the many-body states
are found, the Green’s function g(z) is evaluated using the Lehmann represen-
tation in Eq. (1.40). QMC and ED are not the only solvers available, but are
those mostly related to this thesis. Many other techniques can be found in the
literature, as discussed in Ref. [42].
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Figure 2.1. The mapping of the Bethe lattice with a coordination number of three to a
SIAM with a finite number of bath states.

2.2 Self-consistency conditions
So far the connection between the impurity problem and the lattice problem
has not yet been discussed. This is achieved by using the locality of the self-
energy, see Eq. (2.1). The interacting lattice Green’s function for a local self-
energy can be written as

G(kkk,z)−1 = z+μ − εkkk −Σ(z). (2.10)

Here and in the following, the upper case letter G is used to indicate a lattice
Green’s function. Since the momentum dependence only enters through the
dispersion energy εkkk, the interacting local Green’s function for the site at the
origin becomes [31]

G(z) = ∑
kkk

eikkk·000G(kkk,z) =
∫

dω
D0(ω)

z−Σ(z)+μ −ω
, (2.11)

where the non-interacting density of states of the lattice is denoted by D0(ω).
The Dyson equation for the local lattice Green’s function can hence be writ-
ten [56]

G(z) = G0(z−Σ(z)). (2.12)

The mapping of the lattice problem in Eq. (1.15) to the impurity problem in
Eq. (2.2) can be derived by a cavity construction for the action [31, 41] or by
showing that the two systems have the same local dressed skeleton diagrams
in the limit of d → ∞ [56]. The mapping states that the local lattice self-energy
is the same as the impurity self-energy if the local Green’s function is equal to
the impurity Green’s function [56], thus we seek

Σ(z) = Σimp(z) (2.13)
G(z) = g(z). (2.14)
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Please note that this does not at all imply that G0(z) is equal to g0(z). In-
stead, g0(z) and the dynamical mean field Δ(z) have to be determined by the
self-consistency Eqs. (2.13) and (2.14), while G0 is fixed and determined by
the lattice dispersion εkkk. The set of equations in DMFT are usually solved
by fixpoint iteration [31]. Given the non-interacting lattice Green’s function
G0(z) and a starting guess for the self-energy Σ(z), the following steps provide
a converged Δ:

1. Calculate the impurity Green’s function by g(z) = G0(z−Σ(z))
2. Evaluate the non-interacting impurity Green’s function g−1

0 (z)= g−1(z)+
Σ(z) and the hybridization function Δ(z) = z− ε0 −g−1

0 (z).
3. Use an impurity solver to provide a new impurity Green’s function g(z).
4. With the help of g0(z) and the new g(z), calculate a new self-energy by

Σimp = g−1
0 (z)−g−1(z).

5. Obtain a new value for the lattice self-energy by Σ(z) = Σimp(z).
The steps are repeated until the dynamical mean field Δ(z) is converged within
a chosen tolerance. Note, if the the impurity problem is solved only once, the
impurity to lattice feedback is missing, i.e. the mean-field Δ(ω) is not updated,
and the translational invariance of the lattice breaks [41].

2.3 Bethe lattice
In the example above, DMFT is exact for d =∞, but in general it is the number
of neighbours in the lattice, d́, that has to reach this limit. The Bethe lattice
(Cayley tree) is another commonly studied system in the DMFT community.
This lattice, depicted in Fig. 2.1, has in the limit d́ → ∞ the non-interacting
semicircular density of states

D0(ω) =
2
π

√
1−ω2, (2.15)

for |ω| < 1 and zero otherwise. The non-interacting DOS D0 is illustrated in
Fig. 2.2. The Bethe lattice is often studied because D0 has a finite bandwidth,
like real materials, and Eq. (2.11) can be integrated analytically. At half-filling
we get

G0(z) = 2z
(

1−
√

1− z−2
)
, (2.16)

leading to the simplified self-consistency loop [55]

Δ(z) =
1
4

G(z). (2.17)

2.4 Distributional exact diagonalization
As we pointed out in the previous sections, there are several techniques to
solve the SIAM. Distributional exact diagonalization (DED) is a stochastic
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Figure 2.2. The non-interacting density of states for the Bethe lattice for d́ = ∞.

and non-perturbative quantum impurity solver and will be briefly described in
this section. In ED the hybridization is approximated with a finite number of
bath states, as shown in Eq. (2.9). In standard ED one has to obtain the best
possible set of hybridization parameters Vb and εb to satisfy the Eq. (2.9). This
can be done by minimizing a deviation measure between g0(z) from Eq. (2.6)
and its discretized counterpart g−1

0,ED(z) = z− ε0 −ΔED, e.g. [57]

χ2 = ∑
n
|g0,ED(iνn)

−1 −g0(iνn)
−1|2. (2.18)

Once all the parameters in the Hamiltonian of the SIAM are determined, a
many-body basis is chosen and the Hamiltonian is expressed as a matrix. Af-
ter finding the eigenstates of the Hamiltonian, the Lehman representation is
used to calculate g(z). For nb bath sites and one impurity orbital, the dimen-
sion of the Hilbert space is 4nb+1. This exponential growth as a function of
nb hinders a big nb in brute force computations. Symmetries of the system,
such as conservation of particles and spin, can be used to block diagonalize
the matrix to gain computational speed and reduce memory usage. Despite
these tricks, the feasibility of ED calculations for multi-orbital systems is lim-
ited to a few bath states. This may not be enough for systems with a complex
hybridization function. DED tries to circumvent the exponential growth of the
Hilbert space by considering an ensemble of N SIAMs, instead of one SIAM.
The bath parameters for each SIAM are determined stochastically. The result-
ing self-energies are averaged over the ensemble and the average is assumed
to be local lattice self-energy, closing the DMFT loop. DED was applied in
paper I (Ref. [58]) to study the Mott insulating state of the half-filled para-
magnetic Hubbard model on the Bethe lattice. The DED method is briefly
described in this context, even though its applicability extends to more gen-
eral types of lattices and fillings. The particle-hole symmetry at half-filling
gives ε0 =−U/2. Given the non-interacting impurity Green’s function g0(z),
we want to represent it with a finite number of poles, like in ED. For DED it
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is technically convenient to have g0 particle-hole symmetric, so we redefine it
as

g0(z)−1 = z−Δ(z), (2.19)

thus without ε0. This imply the impurity level ε0 is treated as an interaction
term, like the self-energy, so that the interacting Green’s function will be the
same. The hybridization function is zero in the vicinity of the zero energy,
which allows us to separate g0 into a pole contribution at zero energy and a
residual part, ǵ0, which has a zero imaginary part in the vicinity of zero energy,
namely

g0(z) =
a0

z
+ ǵ0(z), (2.20)

with ρ́0(ω) = − 1
π Imǵ0(ω + i0+) = 0 for ω close to zero energy. By Taylor

expanding the hybridization function, the residue a0 can be estimated with
a−1

0 = 1− ∂zΔ(z = 0). We interpret ρ́0(ω) as a probability distribution and
use it to stochastically sample nb points {bν

1 ,b
ν
2 , ...,b

ν
nb
}, see Fig. 2.3. The N

different SIAMs we consider are labeled with ν and are chosen such that their
ensemble average should fulfill

g0(z) = lim
N→∞

1
N

N

∑
ν=1

gν
0,ED(z). (2.21)

For each SIAM ν we approximate g0 according to

g0(z)≈ gν
0,ED(z) =

a0

z
+

nb

∑
i=1

aν
i

z−bν
i
, (2.22)

where the normalization condition for g0 demands
nb

∑
i=1

aν
i = 1−a0. (2.23)

Due to the particle-hole symmetry only nb/2 points bν
i needs be sampled by

demaning bν
nb+1−i = −bν

i and aν
nb+1−i = aν

i for i ≤ nb/2. The parameters aν
i

are chosen to be constants and aν
i = 1−a0

nb
to fulfil Eq. (2.23). The next step

in the DED algorithm is to map gν
0,ED, with parameters aν

i and bν
i , to the non-

interacting Green’s function of the SIAM, with parameters V ν
b and εν

b . The
mapping is done by demanding

a0

z
+

nb

∑
i=1

aν
i

z−bν
i
= gν

0,ED(z) =
1

z−Δν
ED(z)

, (2.24)

where the hybridization is

Δν
ED(z) =

nb

∑
b=1

|V ν
b |2

z− εν
b
. (2.25)
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ρ́0(ω)

Figure 2.3. Schematic representation of the discretization of g0(z) to gν
0 (z) by using

ρ́0(ω) as a probability density.

The bath energies εν
b are found by gν

0,ED(ε
ν
b ) = 0 and once found, V ν

b are
determined by ∂zgν

0,ED(z = εν
b ) = |V ν

b |−2. The SIAM is now defined and exact
diagonalization followed by the Lehmann sum (see Eq. (1.39)) gives gν

ED and
the self-energy

Σν
ED(z) = (gν

0,ED(z))
−1 − (gν

ED(z))
−1 + ε0. (2.26)

The self-energy has a pole at z = 0 and the corresponding pole in (gν
ED)

−1 is
treated separately and not by Eq. (2.26). Taylor expanding gν

ED enables us to
estimate the self-energy residue at z = 0 with αν = −(∂zgν

ED(z = 0))−1. As
the last step all the self-energies from the N SIAMs are averaged:

Σ(z) =
1
N

N

∑
ν=1

Σν
ED(z). (2.27)

The pole at z = 0 is separately calculated according to α = 1/N ∑N
ν=1 αν . No-

tice that Eq. (2.27) is an approximation, even for N → ∞. In the next iteration,
a0 can be calculated from Eqs. (2.17) and (2.19), giving a0 = 1/(1+α/4).
This algorithm was used for different U , nb and distances δ above the real
axis. In article I, agreement was found at the Matsubara points with CTQMC,
within the statistical uncertainty of the CTQMC data. Close to the real axis,
δ ≤ 0.001, quasiparticles at the inner edge of the Hubbard bands were ob-
tained, see the spectral function in Fig. 2.4. A D-DMRG spectral function
is shown for comparison. The D-DMRG gives similar shape of the Hubbard
band except for the quasiparticle peaks at the inner edge. Small wiggles are
present at both the inner and the outer band and the insulating gap is slightly
smaller than what is obtained using the DED method.
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Figure 2.4. The spectral function − 1
π Img(ω+ iδ ) for U = 4 and δ = 0.001. Quasipar-

ticles are visible at the inner edge of the upper Hubbard band. Results are compared
with D-DMRG data from Ref. [56].

2.5 DFT+DMFT
So far in this chapter, DMFT has been discussed for the single band Hubbard
model and the corresponding SIAM. However, to reliably calculate properties
of materials, typically more than one band has to be considered. On the other
hand, we also know that DFT for many systems is not accurate enough. This
section describes how to combine DFT with DMFT, in order to study corre-
lated materials in a ab-initio fashion. With this approach, DFT is used as a
starting point and its electronic structure is projected onto a subset of (a few)
localized orbitals to which the Coulomb interaction is explicitly added. This
means one has to study the Hamiltonian in Eq. (1.13), but with hoppings tKS

i, j
determined from DFT, and with the explicit Coulomb interaction only acting
on a subset of all orbitals. Also, since the KS hopping approximately include
the Coulomb interaction, a double counting terms needs to be added to the
Hamiltonian, and this is discussed in section 2.5.3. Information about the lo-
calized orbitals and the projection procedure of quantities from the DFT basis
to these localized orbitals is described below in section 2.5.1. In section 2.5.2,
an expansion and a parameterization of the Coulomb interaction for the lo-
calized orbitals is shown. There are different flavours of DFT+DMFT and a
common approach is to keep the charge density and the DFT hoppings fixed
and converge the DMFT cycle. But once this is achieved, a new charge density
can be calculated, incorporating the information from the self-energy. This re-
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sults in updated DFT hoppings, and how to converge this cycle is outlined
in section 2.5.4. Note that the content of this section is used extensively in
section 2.6, where results of paper II are summarized, and in chapter 3, about
x-ray absorption spectroscopy.

2.5.1 Projection to localized basis
Let us start by considering a DFT basis {|kkk,a〉}, describing all valence elec-
trons on a lattice, where kkk is the lattice momentum and a an orbital and spin
index. This basis may be chosen rather freely, see section 1.1.2. Then we can
define a local basis {i} describing a subset of the valence electrons, where i is
an orbital and spin index. One can now define projectors from the DFT basis
to the local basis, and use them to recover the DMFT equations. Let us write
down the lattice Green’s function operator

G̃ = ((z+μ)1̃− H̃KS − Σ̃+ Σ̃DC)
−1. (2.28)

This operator equation is analogous to Eq. (2.10), up to the additional double
counting term Σ̃DC, which is described in section 2.5.3.

The DFT basis is typically not orthonormal within a kkk-point, with an over-
lap matrix Sa,b(kkk) = 〈kkka|kkkb〉. Due to this non-orthonormality, it is helpful to
introduce the dual basis set {|kkká〉}, which is defined by the relations [27]

〈kkk1á|kkk2b〉= 〈kkk1a|kkk2b́〉= δa,bδkkk1,kkk2 (2.29)

1̃ = ∑
kkk,a
|kkká〉〈kkka|= ∑

kkk,a
|kkka〉〈kkká|. (2.30)

Inserting the identity operator 1̃ twice, the local Green’s function becomes

Gi, j(z) = 〈i|G̃| j〉= ∑
k1,a

∑
k2,b

〈i|kkk1, á〉︸ ︷︷ ︸
Pi,a(kkk1)

〈kkk1,a|G̃|kkk2,b〉︸ ︷︷ ︸
Ga,b(kkk1,z)δkkk1,kkk2

〈kkk2, b́| j〉︸ ︷︷ ︸
P∗

j,b(kkk2)

= ∑
kkk,a,b

Pi,a(kkk)Ga,b(kkk,z)P∗
j,b(kkk) = ∑

kkk
(P(kkk)G(kkk,z)P†(kkk))i, j, (2.31)

where P(kkk) is called projector matrix, G(kkk,z) lattice Green’s function and the
last expression is written in implicit matrix multiplication form1. Similarly, the

1From the properties of the dual basis, the projector element Pi,a(kkk) can be expressed as
Pi,a(kkk) = 〈i|kkká〉 = ∑b(S−1)b,a〈i|kkkb〉, which in case of an orthonormal DFT basis simplifies
to 〈i|kkka〉. To evaluate the Green’s function elements Ga,b(kkk) = 〈kkk,a|G̃|kkk,b〉, we can intro-
duce Ã = G̃−1 = (z+ μ)1̃− H̃KS − Σ̃+ Σ̃DC and investigate the expression: 〈kkka|Ã−1Ã|kkkb〉 =
〈kkka|1̃|kkkb〉. Inserting the identity operator on the left hand side and expanding dual states gives:
∑c,d Ga,c(kkk)(S−1(kkk))c,dAd,b(kkk) = Sa,b(kkk). This matrix equation can easily be reshuffled to fi-
nally obtain the matrix expression G = SA−1S.
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non-interacting local impurity Hamiltonian is constructed by down-folding the
KS Hamiltonian, i.e.

H imp,(0)
i, j = 〈i|H̃KS| j〉= ∑

kkk
(P(kkk)HKS(kkk)P†(kkk))i, j. (2.32)

Also here an implicit matrix multiplication form is used. The requirements
of the local basis are stricter than those of the DFT basis. First of all the
local basis should describe well the Hilbert space associated to those degrees
of freedom which are treated wrongly in DFT. Also, the local basis is often
chosen (for technical reasons) to be orthonormal (in contrast to the DFT basis
in RSPt) and its overlap matrix can be expressed in terms of the DFT overlap
matrix, i.e.

si, j = 〈i| j〉= ∑
kkk
(P(kkk)SKS(kkk)P†(kkk))i, j. (2.33)

In the DMFT cycle, a projection onto the local basis is required, but also the
inverse process. In particular, the local self-energy calculated from the impu-
rity problem can be up-folded to the DFT basis according to

Σa,b(kkk,z) = 〈kkk,a|Σ̃|kkk,b〉= ∑
kkk
(P(kkk)†Σloc(z)P(kkk))a,b. (2.34)

In RSPt there are two different types of localized orbitals, called orthogonal-
ized LMTO (ORT) basis and muffin-tin heads (MT) basis. The ORT orbitals
consist of linear combinations of the DFT orbitals. This results in rather de-
localized orbitals, without any pure angular momentum character and with
si, j = δi, j Instead an MT orbital is constructed only from the muffin-tin part
of a LMTO. This results in localized orbitals with pure angular momentum.
However, since the DFT basis is not entirely complete the local overlap matrix
calculated according to Eq (2.33) is typically only approximately equal to the
identity matrix. Or more precisely, the deviation from the identity matrix is
small if the intersection between the two basis sets is big [17, 27].

2.5.2 Coulomb expansion
The interacting part of the impurity Hamiltonian in DMFT for a multi-orbital
system reads

Ĥint. =
1
2 ∑

abcd,σσ ′
Uabcdĉ†

a,σ ĉ†
b,σ ′ ĉc,σ ′ ĉd,σ , (2.35)

where each term describs a process illustrated by Fig. 1.1, and Uabcd is given
by Eq. (1.6). By expanding the Coulomb interaction 1/|rrr − rrr′| in terms of
spherical harmonics and with basic functions of the form

ψi(rrr) = fni,li(r)Yli,mi(θ ,φ), (2.36)
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the Coulomb interaction tensor becomes [14]

Uabcd = δma+mb,mc+md

kmax

∑
k=0

ck(la,ma; ld ,md)ck(lc,mc; lb,mb)

×Rk(nala,nblb,nclc,ndld). (2.37)

The term δma+mb,mc+md in Eq. (2.37) simply states that the z-component of the
angular momentum has to be conserved in the scattering event. The Gaunt
coefficients

ck(l,m; l′,m′) =
√

4π
2k+1

∫ 2π

0
dφ

∫ π

0
dθ sinθY ∗

l,m(θ ,φ)Yk,m−m′(θ ,φ)

×Yl′,m′(θ ,φ) (2.38)

take care of the angular integrals in Eq. (1.6) and are easily evaluated. By
considering the parity of the spherical harmonics in Eq. (2.38), only Gaunt
coefficients with l + l′+ k being an even number can be non-zero. The two
Gaunt coefficients in Eq. (2.37) constrain the k-expansion to a maximum of
kmax = min(|la + ld |, |lc + lb|). The last factor to discuss in Eq. (2.37) is the
parameter

Rk(nala,nblb,nclc,ndld) =
∫ ∞

0

∫ ∞

0
drdr′r2r′2 fna,la(r) fnb,lb(r

′)
rk
<

rk+1
>

× fnd ,ld (r) fnc,lc(r
′), (2.39)

where r< (r>) indicates min(r,r′) (max(r,r′)). It is customary to define the
Slater-Condon parameters

Fk(nl,n′l′) = Rk(nl,n′l′,n′l′,nl)

Gk(nl,n′l′) = Rk(nl,n′l′,nl,n′l′), (2.40)

where F and G describe Coulomb and exchange integrals, respectively. For
the Coulomb interaction between d-orbitals, for any given principal quantum
number, Fk = Gk, and only the three parameters F0,F2 and F4 are relevant,
due to the constrains mentioned above. The orbital average of Ui j ji for a (n, l)-
shell is

1
(2l +1)2 ∑

i, j
Ui j ji = F0, (2.41)

and is often denoted as the parameter U , without any indices. For l = 2 the
sum over Ui ji j terms gives

∑
i, j

Ui j ji = 5F0 +20
F2 +F4

14︸ ︷︷ ︸
J

, (2.42)
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where J is the Hund’s intrasite exchange parameter. Since the ratio F2/F4 ap-
proximately is constant (≈ 0.6) for 3d elements [59], one can express the full
Coulomb tensor by the two parameters U and J. So far we have considered
the bare Coulomb interaction 1/|rrr− rrr′|. However, there are screening effects
from uncorrelated electrons. This screening reduces the Fk parameters, espe-
cially F0. Constrained RPA aims to take the screening into account [60], but
in practice F0 is often used as a free parameter.

2.5.3 Double counting
After the projection of the DFT bandstructure, a Coulomb interaction term
is explicitly added to the Hamiltonian for these localized orbitals. This re-
sults in a double counting of certain components of the full Coulomb interac-
tion. Hence we have to remove the approximate Coulomb interaction added
by DFT for these correlated states by introducing a double counting term.
This is a non-trivial task since DFT functionals are non-linear and do not
have a diagrammatic representation [61, 62]. Several different double count-
ing expressions exist, e.g. around mean-field (AMF) [35], fully localized limit
(FLL) [63, 64] and the so called exact double counting [65]. In paper II the
FLL double counting potential

ΣDC =U(N −1/2)− J(Nσ −1/2), (2.43)

is used, where N is the total electron occupation, Nσ the occupation with spin
σ , and U and J the Coulomb and Hund’s exchange parameters respectively.
For a non-spin polarized functional, n/2 is used instead of nσ in Eq. (2.43).

2.5.4 Charge self consistency
Once the lattice self-energy has been calculated by, e.g. DMFT, the charge
density n(rrr) can be updated and inserted into the DFT functional. By repeat-
ing this additional step charge self-consistency can also be achieved. Fig. 2.5
shows a charge self-consistent DFT+DMFT flow diagram. The one-particle
density operator can be expressed as the Green’s function operator at imagi-
nary time τ → 0− and by using the Fourier series expansion in Eq. (1.18), the
charge density can be written

n(rrr) = 〈rrr|ñ|rrr〉= 〈rrr| lim
τ→0−

1
β ∑

νn

G̃(iνn)e−iνnτ |rrr〉, (2.44)

where G̃(iνn) is given by Eq. (2.28). This is further simplified by inserting the
identify operator 1̃ twice, namely

n(rrr) = ∑
kkk,a,b

ψkkk,á(rrr)nkkk,a,bψ∗
kkk,b́(rrr), (2.45)

34



g0(z) = (G−1(z) + Σ(z))−1Σa,b(�k, z)

Solver
Σ(z) ← {g0(z), U,H imp

0 }

HKS
k,a,b = 〈k, a| − 1

2
∇̃2 + Ṽeff[n]|k, b〉

Gi,j(z) =
∑
k,a,b

Pi,a(k)((z + μ)S −HKS − Σ(z) + ΣDC)−1
a,bP

∗
j,b(k)

H
imp,(0)
i,j =

∑
k,a,b

Pi,a(k)H
KS
a,b (k)P

∗
j,b(k)

n(r) =
1

β

∑
k,a,b

ψk,a(r)ψ
∗
k,b(r)

∑
νn

Ga,b(k, iνn)e
−iνn0

−

Sk,a,b = 〈k, a|k, b〉

Figure 2.5. Flow diagram of charge self-consistent DFT+DMFT.

where nkkk,a,b = lim
τ→0−

1
β ∑νn Ga,b(kkk, iνn)e−iνnτ , ψkkk,á(rrr) = ∑c(S−1)c,aψkkk,c(rrr), and

ψkkk,c(rrr) being a DFT basis function.

2.5.5 DFT+U
This section describes the DFT+U method, which is a historically successful
method for improving the description beyond plain DFT of correlated insu-
lators [34–38]. The DFT+U method requires convergence over two separate
entities; the whole electron density, as in DFT, and the local one-particle den-
sity matrix of chosen orbitals. In this sense, DFT+U can be seen as a special
case of DFT+DMFT, with a Hartree-Fock (HF) like method as the impurity
solver. Consequently, the self-energy becomes static (energy independent)
and for a (n, l)-shell can be written as [64]

Σσ
i, j = ∑

k,l
(Uikl j ∑

σ ′
nσ ′

k,l −Uik jlnσ
k,l), (2.46)

where the one-particle density matrix nσ
i, j is calculated from the local interact-

ing Green’s function and here assumed to be spin-diagonal.
A problem with DFT+U is that the converged results sometimes depend on

the initial one-particle density matrix or, equivalently, the initial self-energy.
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This problem is illustrated by the fact that in literature one can find different
DFT+U results (band gaps gaps, spins and orbital moments, etc.) for identical
systems [66–70]. Among the systems studied in paper II, FeO and CoO have
a partially occupied shell (t2g) and therefore many local minima solutions.

2.5.6 Exchange integrals
In many materials the magnetization density is localized around the atoms,
forming atomic magnetic moments. In this case, macroscopic magnetism is
a collective phenomenon where these atomic magnetic moments order [71].
The driving force for magnetic moments ordering originates from pair-wise
exchange interaction. The exchange interaction between atomic sites i and j
usually is denoted as J́i, j and is a microscopic quantity of quantum mechani-
cal origin. Together with the magnetic moments it gives rise to macroscopic
observables such as Curie temperature, magnon dispersion and magnetic sus-
ceptibility. The total energy variations of the electronic system due to infinites-
imally small rotations of spins can be simulated by the classical Heisenberg
spin model [72]

H =−∑
i
= j

Ji, jeeei · eee j, (2.47)

where the sum is over all atomic pairs and eeei denotes the unit vector along
the magnetic moment at the atomic site i. Ji, j = J́i, jsis j contains the exchange
interaction as well as the size of the spin moments. This mapping to a classical
system enables large scale simulations in the thermodynamic limit, e.g. using
Monte Carlo methods or the time-dependent Landau-Lifshitz-Gilbert equa-
tion. The extraction of Ji, j from the electronic structure can be done even for
correlated systems with a local self-energy [73], using the expression

Ji, j =
1

4β ∑
n,a
〈a|Δ̃xs

i (iνn)G̃
↑
i, j(iνn)Δ̃xs

j (iνn)G̃
↓
j,i(iνn)|a〉, (2.48)

where a here denotes a localized orbital index at site i and Δ̃xs
i is the local

(dynamic) exchange splitting, namely

Δ̃xs
i (iνn) = H̃KS

i,↑ + Σ̃i,↑(iνn)− H̃KS
i,↓ − Σ̃i,↓(iνn). (2.49)

Variables in the two equations above are diagonal in spin-space since spin-
orbit coupling has been neglected. This formalism is implemented in the RSPt
code [53]. Note that Eq. (2.48) can not be used for a paramagnetic configura-
tion where the exchange splitting Δxs

i is zero, and that Ji j may depend on the
initial magnetic configuration. In paper II we study this configuration depen-
dence and the role of spin polarization of the DFT functional. A summary of
that work is presented in section 2.6.

There are other ways of extracting Ji, j from the electronic structure than the
magnetic force theorem (MFT) expression in Eq. (2.48), such as the frozen
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magnon approach [74] or by considering total energy differences of several
magnetic configurations [75].

2.6 Exchange integrals using L(S)DA+U of transition
metal oxides

In this section results presented in paper II (Ref. [76]) are summarized. The
main finding in the paper is that a spin nonpolarized functional (e.g. LDA) is
preferable, compared to a spin polarized functional (e.g. LSDA), for extract-
ing exchange integrals directly from DFT+U total energy differences. This
conclusion is obtained by studying the ferromagnetic (FM) and the antiferro-
magnetic (AFM) configurations using both LDA+U and LSDA+U .

We calculated exchange integrals according to Eq. (2.48). From the Heisen-
berg model in Eq. (2.47), we extracted the energy difference ΔEJ between the
FM and the AFM configuration. The total energy difference ΔEtot obtained
directly from the electronic structure was also calculated. By comparing these
energy differences for both DFT functionals, ΔEtot using LSDA+U stands out,
as can be seen in Fig. 2.6. The discrepancies in LSDA+U between ΔEtot and
ΔEJ(R), where R denotes either a FM or a AFM reference configuration, in-
dicate an inconsistency of the mapping from the electronic structure system to
the Heisenberg model. However, for LDA+U , ΔEtot agrees reasonably well
with ΔEJ . Furthermore, ΔEJ shows less functional dependence than ΔEtot. The
reference configuration dependence of ΔJ indicate a non-Heisenberg behavior
and is depicted with the shaded areas in Fig. 2.6. This behaviour is explained
as a consequence of the different electronic structures of the FM and AFM
configurations (see paper II). The generality of the conclusions are ensured by
studying five different insulating TMOs, namely CaMnO3 (CMO), MnO, FeO,
CoO and NiO, having different crystal structures and d-shell occupations.

To gain insights on the total energy results, we calculated the density of
states. In Fig. 2.7, the DOS of NiO is shown. By considering both the band
gaps EG, obtained from the DOS, and the total exchange field J0 = ∑ j Ji, j, we
noticed that the EG is larger, and J0 smaller, in LSDA+U than in LDA+U .
Also, AFM has a larger EG and a smaller J0 than in FM. The bigger band
gap in AFM than in FM can be understood from the simple dimer system
illustrated in Fig. 2.8. In LSDA+U the double counting is spin polarized, but
by using J = 0 the double counting is the same in LDA+U and LSDA+U
and only the exchange correlation functionals are different. We observe also
for J = 0 an inverse relationship between band gaps and exchange parameters.
From simple super-exchange arguments one would expect J0 ∝ E−1

G but our
results show a weaker dependence.

We also tested how robust our results are by varying the U parameter.
Both functionals show a increasing Heisenberg behavior with increasing U
but LDA+U consistently provides a better agreement between direct total en-
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Figure 2.6. Total energy differences (ΔE =EFM−EAFM) obtained from LDA+U (red)
and LSDA+U (blue) calculations. Solid lines are total energies whereas dashed lines
with upward (downward) triangles represent total energies obtained from Ji, j extracted
from a AFM (FM) configuration.

ergy differences Δtot and exchange parameter derived total energy differences
ΔJ , than with LSDA+U .
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Figure 2.7. Total density of states (grey) of NiO and projected density of states of Ni
3d orbitals of one site (red).

U

FM AFM

EG EG

Figure 2.8. Two site system with spin conserving hopping of FM (left panel) and AFM
(right panel) order at half-filling. The gaps are different in FM and AFM configura-
tions, due to different hybridization between the two sites.
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3. X-ray absorption spectroscopy

X-ray absorption spectroscopy (XAS) is a widely used technique for study-
ing materials and can provide information about e.g. elemental composition,
electronic structure, coordination environment, atomic binding lengths and
magnetic moments. Spectroscopy is used to characterize materials used for
instance for hydrogen storage [77, 78], batteries [79], and catalysis [80, 81].
Readers interested in more details on core-level spectroscopy are referred to
textbooks [82–85]. In XAS the samples can be gases, solutions or solids,
and experiments are usually performed at synchrotron radiation facilities, like
MAX IV [86], where tunable, monochromatic and intense x-ray beams of high
quality are generated. In the x-ray absorption (XA) process a core electron is
excited to an unoccupied orbital by an incoming photon. An XA spectrum
is obtained by tuning the photon energy and measuring the absorption of the
light. XA spectra are labelled by which core electrons are excited, see Fig. 3.1.
In this thesis excitations of core 2p electrons, resulting in absorption edges la-
beled L2,3, are studied for various TMOs, see Fig. 3.2. Transition selection
rules, which are described in Section 3.1, determine which valence orbitals
an electron can be excited into. For a specific absorption edge, the bind-
ing energy increases monotonically and significantly with the atomic num-
ber, making XAS an element specific technique. For the materials studied in
this thesis, soft x-rays in the regime ≈ 102 − 103 eV are used to measure the
L2,3-edges. An XA spectrum edge is commonly divided into extended x-ray
absorption fine structure (EXAFS) and x-ray absorption near-edge structure
(XANES). The latter, which is also called near-edge x-ray absorption fine
structure (NEXAFS), is studied in this thesis. In XANES of strongly cor-
related systems, a many body description is needed to understand and model
the physical process accurately, whereas for weakly correlated systems the ab-
sorption spectra approximately resembles the unoccupied part of the valence
density of states [87]. As is illustrated later in this chapter, oxidation state and
site symmetry are important for the line shape of the NEXAFS spectrum.

For a homogenous and isotropic material the light intensity is described by
Lambert-Beer’s law [88]

I = I0e−μs, (3.1)

where s is the sample thickness, I (I0) the transmitted (initial) light intensity
and μ = μ(ω) the energy dependent and material characteristic attenuation ab-
sorption coefficient μ . There are various experimental techniques to measure
the XA coefficient. Transmission detection means that the initial and trans-
mitted light intensity is measured, which puts constraints in sample thickness
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and is the standard technique for hard x-rays. Another approach is to measure
electrons, photons and ions created as a result of the core excitation, escaping
the sample surface. In fluorescence yield detection the number of photons are
measured. By also detecting their energies (partial fluorescence yield), further
information can be obtained which is not restricted by the short life time of
the intermediate state where the core hole is present [89]. For soft x-rays with
photon energy smaller than 1 keV, electron yield dominates over fluorescence
yield. By also measuring the kinetic energy of the electrons (partial electron
yield), different Auger decay channels can be analyzed [90, 91]. A technique
that is related to XAS is electron energy loss spectroscopy (EELS). In this
transmission electron microscopy (TEM) technique, high kinetic energy elec-
trons are transmitted through the sample and measured at different scattering
angles, see review [92]. Because of the short de Broglie wavelength atomic
scale resolution can be obtained, see Ref. [93] and section 3.4, and for very
high kinetic energy electrons and small scattering angles the EELS spectrum
is identical to the XA spectrum.

The x-ray magnetic linear dichroism (XMLD) and x-ray magnetic circular
dichroism (XMCD) are two powerful techniques to investigate the absorption
dependence on the light polarization. In XMCD the so called sum-rules can
be used to extract spin and orbital magnetic moments in ferromagnetic mate-
rials [94, 95]. In section 3.4 the linear polarization dependence is shown to
be crucial for understanding the experimental atomic scale variations of the
EELS spectrum.

Calculating the absorption coefficient is a vast research field and there are
historically two approaches, either using a delocalized single-particle picture
with DFT [96] or a localized atomic multiplet description [97]. Both of these
methods have shortcomings and more advanced approaches have been devel-
oped, such as time-dependent DFT [98, 99], multiple scattering theory [100],
multiplet ligand field theory (MLFT) [101], Bethe-Salpeter method [102,103],
configuration interaction (CI) [104], DFT+DMFT [105–107], and DFT+MLFT
[108]. A DFT+MLFT approach based on the DMFT formalism is presented
in paper III and summarized in section 3.3. The same approach is applied to
study L2,3-edges of strained CaTiO3, see section 3.4, and Mo doped LaFeO3,
see paper IV and its summary in section 3.5.

3.1 Dipole transition operator
The XA spectrum can be calculated using the Green’s function formalism out-
lined in Section 1.3.1 with operators Â = B̂† and B̂ = T̂ , where T̂ is the tran-
sition operator which describes the excitation from a core state into a valence
state. This transition can be written in terms of the photon electron interac-
tion according to Fermi’s golden rule, and in the weak-field approximation
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Figure 3.1. Schematic picture of a XA spectrum as a function of the photon energy
for 3d-elements. XA edges and corresponding core states are labeled.
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Figure 3.2. Schematic picture of the L2,3-edge XA process. An electron is ex-
cited from the 2p core states to the 3d valence states. Note that the energy scale is
schematic, and not representative of real energy differences.

becomes [84, 109]
T̃ ∝ AAA · p̃pp, (3.2)

where AAA is the light vector potential and p̃pp the electron momentum operator. In
the dipole approximation of small photon momentum qqq, the light vector poten-
tial factor eiqqq·rrr ≈ 1, which reduces the transition operator to T̃ ∝ εεε · p̃pp, where εεε
is the light polarization unit vector. In the case of the same Hamiltonian with
and without a core hole, the transition operator can also be expressed as

T̃ = εεε · r̃rr, (3.3)

where r̃rr is the position operator [110].
In a (localized) single-particle basis, the dipole transition operator in second

quantization can be written as

T̂ = ∑
i, j,σ

Ti, jĉ
†
i,σ ĉ j,σ , (3.4)

where i, j are indices belonging to the orbitals involved in the XA process, and
Ti, j = 〈i|T̃ | j〉. Note that the spin polarization is conserved in the transitions
(Δσ = 0). If each single-particle basis function is composed of a spherical
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harmonic Yl,m together with a radial function fn,l , which depends on the prin-
ciple quantum number and the angular momentum (but not its z-projection m),
like in Eq (2.36), the transition matrix becomes

T (k)
i, j = 〈 fni,li Yli,mi |r̃k| fn j,l j Yl j,m j〉

=
∫ ∞

0
dr f ∗ni,li(r) fn j,l j(r)r

3
∫ π

0
dθ

∫ 2π

0
dφ sinθY ∗

li,mi
(θ ,φ)Yl j,m j(θ ,φ)

rk

r
,

(3.5)

for cartesian light polarization vector εεε = eeek, with k ∈ {x,y,z}. The angular
part can be calculated analytically and expressed in terms of Gaunt coeffi-
cients [14,110], and gives the dipole selection rule Δl = li− l j =±1. Left and
right polarized lights are written as vectors

εεε l =
−1√

2
(eeex + ieeey) (3.6)

εεεr =
1√
2
(eeex − ieeey), (3.7)

which together with z-polarized light obey the additional selection rules:

εεεz : Δm = 0 (3.8)
εεε l : Δm = 1 (3.9)
εεεr : Δm =−1 (3.10)

according to the angular part of Eq. (3.5).
For L2,3-edge XAS, which is addressed in this thesis, a 2p core electron is

excited to an empty 3d state. For this process the elements of the radial part of
the transition matrix in Eq. (3.5) are the same and can be ignored. The angular
part is

T (z) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
1√
5

0 0
0 2√

15
0

0 0 1√
5

0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,T (l) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
1√
15

0 0
0 1√

5
0

0 0
√

2
5

⎤
⎥⎥⎥⎥⎥⎥⎦ ,T (r) =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2
5 0 0

0 1√
5

0
0 0 1√

15
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(3.11)
where incremental ordering of m is used for both 3d and 2p orbitals.

Dipole transition elements using Bloch states

In the RSPt code the dipole transition matrix elements for the localized or-
bitals are calculated through the Bloch states in the DFT basis. This implies a
projection of the DFT transition matrix elements. The transition elements of
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the localized orbitals {i} can be written as a vector with three light polarization
components {x,y,z}, namely

TTT i, j = 〈i|p̃pp| j〉. (3.12)

Similar to the projection steps discussed in section 2.5.1, we evaluate Eq. (3.12)
by using the DFT basis:

TTT i, j = ∑
kkk1,a

∑
kkk2,b

〈i|kkk1, á〉〈kkk1,a|p̃pp|kkk2,b〉〈kkk2, b́| j〉

= ∑
kkk∈BZ

∑
a,b
〈i|kkk, á〉〈kkk,a|p̃pp|kkk,b〉〈kkk, b́| j〉

= ∑
R∈g

∑
kkk∈IBZ

∑
a,b
〈i|Rkkk, á〉〈Rkkk,a|p̃pp|Rkkk,b〉〈Rkkk, b́| j〉= {RR−1 = I}

= ∑
R∈g

R ∑
kkk∈IBZ

∑
a,b
〈i|Rkkk, á〉〈Rkkk,a|R−1 p̃pp|Rkkk,b〉〈Rkkk, b́| j〉

= ∑
R∈g

R ∑
kkk∈IBZ

∑
a,b
〈i|Rkkk, á〉〈kkk,a|p̃pp|kkk,b〉︸ ︷︷ ︸

pppa,b(kkk)

〈Rkkk, b́| j〉, (3.13)

where 〈kkk1,a| p̃pp|kkk2,b〉= 〈kkk1,a|p̃pp|kkk1,b〉δkkk1,kkk2 is used in the first step, R is a sym-
metry operation of the crystallographic point group g, and we have used the
Bloch state property φRkkk(rrr) = φkkk(R−1rrr) in the last step. The momentum op-
erator in the Bloch basis, pppa,b(kkk), can be evaluated and we consider it in the
following to be a known quantity. For localized orbitals whose angular part
is described by spherical harmonics, thus i = (li,mi), we can use the Wigner
rotation matrix D to write

ψi(Rrrr) =
li

∑
mk=−li

D(li) ∗
mi,mk(R)ψli,mk(rrr). (3.14)

This is useful in order to formulate the inner products between the localized
states and the Bloch states in Eq. (3.13) in terms of the projectors (see sec-
tion 2.5.1) and Wigner matrices. Then we get

TTT i, j = ∑
R∈g

R
li

∑
mk=−li

D(li)
mi,mk(R)

l j

∑
ml=−l j

ppplocal
mk,ml

D
(l j) ∗
m j,ml (R), (3.15)

where
ppplocal

mk,ml
= ∑

kkk∈IBZ,a,b
〈limk|kkk, á〉pppa,b(kkk)〈kkk, b́|l jml〉 (3.16)

is the projected momentum operator (without kkk-point symmetrization). With
tensor notation Eq. (3.15) becomes more compact:

Ta,i, j = ∑
R∈g

Ra,bDi,k(R)plocal
b,k,l (D

†(R))l, j. (3.17)
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This was recently implemented in the RSPt code. Generalizing this formalism
beyond the dipole approximation, using T̃ = εεε · p̃ppeiqqq·r̃rr, would be an interesting
project relevant for high photon energy studies.

3.2 Green’s function
Since the dipole transition operator T̂ is a sum of pairs of creation and anni-
hilation operators the corresponding Green’s function is of two-particle type
and of bosonic character. The spectral function ρ associated with the Green’s
function G, see Eq. (1.35), represents the absorption coefficient μ . The en-
ergies of the eigenstates in the presence of a core-hole are much higher than
those without it. Actually this energy difference is equal to the absorption
edge energy. This mathematically means that the Boltzmann weight e−βEm/Z
for eigenstates |m〉 with a core-hole is negligible. In principle the transition
matrix in Eq. (3.5) also has non-zero 3d → 2p elements, making T̂ Hermitian
(T̂ = T̂ †). Including also these transition elements in T̂ , the Green’s function
describing the XA process, see Eq. (1.29), becomes

G(z) =
1
Z ∑

n∈g,m∈e
e−βEn

(
1

z− (Em −En)
− 1

z+(Em −En)

)
|〈m|T̂ |n〉|2,

(3.18)
where g (e) refers to the set of all eigenstates without (with) a core-hole. From
Eq. (3.18) the corresponding spectral function, see Eq. (1.35), is clearly an odd
function of energy. However, often only the 2p → 3d transitions are included
in T̂ , simplifying Eq. (1.29) to

G(z) =
1
Z ∑

n∈g,m∈e
e−βEn

|〈m|T̂ |n〉|2
z− (Em −En)

. (3.19)

The corresponding spectral function is in this case zero for negative energies
and coincides with the spectral function corresponding to Eq. (3.18) for pos-
itive energies. From Eq. (3.19), we see that the XAS process excites eigen-
states (with maximum energy of a few kBT above the lowest eigenenergy) to
all possible core-hole eigenstates allowed by the dipole transition operator T̂ ,
resulting in a spectral peak at energy Em −En. An equivalent, but more com-
putationally suitable [111], expression of the Green’s function in Eq. (3.19) is

G(z) =
1
Z ∑

n∈g
e−βEn〈n|T̂ † 1

z− (Ĥ −En)
T̂ |n〉. (3.20)

In this form the Green’s function can efficiently be evaluated using the Lanczos
algorithm, see Appendix B. The life time of the core hole is finite, actually it
is very short (∼ 10−15 s). The corresponding decay rate δ can be incorporated
in the Green’s function expression in Eq. (3.20) by using z = ω + iδ , which
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will broaden the delta-peaks in the spectral function into Lorentzians, with δ
the half-width at half-maximum (HWHM). For numerical values of δ please
see e.g. Appendix B in Ref. [83].

In the following, the results of three projects will be presented. In the first
project, a method to calculate XA spectra was developed and four TMOs were
studied. The work resulted in paper III and section 3.3 contains a summary
of the main results. The second project, see section 3.4, is about atomic-plane
resolution of strained CaTiO3. The third project, see section 3.5 and paper IV,
is about Mo doped LaFeO3.

3.3 Transition metal oxides: MnO, FeO, CoO and NiO
In this section results included in paper III (Ref. [112]) are summarized. Be-
fore discussing them, it is better to present some general discussion of the
construction of the SIAM Hamiltonian Ĥ, which is needed to describe the XA
process (see Eq. (3.20)). The methodology used in this and following XA
projects is DFT+MLFT. This means the DFT band structure is projected onto
the TM 3d and 2p orbitals to generate a SIAM Hamiltonian which is diagonal-
ized and used to generate the XA spectra. From a DFT+DMFT perspective,
this approach corresponds to only solving the impurity problem once, thus
skipping the self-consistency and therefore breaking the lattice translational
invariance [41]. Indeed, performing the DMFT self-consistency loop, like in
Ref. [106], should give more accurate results and is currently under develop-
ment in the RSPt code. The projection procedure onto localized orbitals, in
this case ORT-orbitals (see section 2.5.1), and how to describe the Coulomb
interaction is described in section 2.5. For L2,3-edges, the relevant Slater-
Condon parameters are F0

dd ,F
2
dd ,F

4
dd ,F

0
pd ,F

2
pd ,G

1
pd , and G3

pd . The screened
values of F0

dd and F0
pd are difficult to calculate and are set to values found

in literature [106,113,114]. The other Slater-Condon parameters are assumed
to be unscreened or weakly screened (a few percentage points).

Spin orbit coupling

Spin orbit coupling (SOC) is an atomic property with relativistic origin1. The
SOC Hamiltonian in first quantized form for a (n, l)-shell with N electrons and
SOC parameter ζ is

H̃SOC = ζ
N

∑
i=1

l̃lli · s̃ssi = ζ
N

∑
i=1

(
l̃z
i s̃z

i +
1
2
(l̃+i s̃−i + l̃−i s̃+i )

)
, (3.21)

1The SOC originates from expanding the Dirac equation in terms of the ratio of the electron
speed over the speed of light. The SOC parameter is ζ ∝ 〈 f | 1

c2r
dV (r)

dr | f 〉, where f is the radial
part of the wavefunction and V (r) is a spherically symmetric potential. The SOC parameter ζ
is big for localized orbitals.
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where for particle i, l̃lli (s̃ssi) is the orbital (spin) angular momentum vector op-
erator, l̃z

i (s̃z
i ) the z-projected orbital (spin) angular momentum operator and l̃±i

(s̃±i ) the raising and lowering orbital (spin) angular momentum operators. In
the last expression in Eq. (3.21), the first term is diagonal in the (l,m,σ) basis
and in second quantized form becomes

ζ
l

∑
m=−l

∑
σ∈{− 1

2 ,
1
2}

σmĉ†
l,m,σ ĉl,m,σ . (3.22)

The other terms flip the spin and can be written as

ζ
1
2

l−1

∑
m=−l

√
(l −m)(l +m+1)(ĉ†

l,m+1,↓ĉl,m,↑+ ĉ†
l,m,↑ĉl,m+1,↓). (3.23)

For 3d orbitals ζ is rather small (less than 100 meV) in comparison to other
relevant energies, e.g. bandwidth. But for core 2p orbitals in transition metal
oxides ζ is of the order of several eVs and thus absolutely necessary to include
in the simulations. This is the only term breaking the degeneracy of the single
particle Hamiltonian for the 2p shell in our simulations. Thus, the 2p shell is
described without any spin or crystal-field splitting, or hybridization with the
environment.

Double counting

In this work we have used the MLFT double counting

ΣDC = ndUdd +6Upd −δCT, (3.24)

which acts as a chemical potential for the 3d orbitals. The expression is de-
rived from energy considerations of different configurations [115], and nd is
the nominal 3d occupation, Udd and Upd average repulsion energies defined in
Ref. [112], and δCT charge transfer correction energy [116].

No double counting is needed for the 2p core states since the energy po-
sition of the 2p orbitals only determines the absolute position of the L2,3-
edge spectrum. This is anyway hard to get correct, and typically calculated
spectrum is shifted in energy for better comparison with the experimental L2,3
spectrum.

Hybridization function discretization

The studied systems have octahedral (Oh) symmetry, which implies that four
degenerate eg spin-orbitals and six degenerate t2g spin-orbitals diagonalize the
non-relativistic single particle Hamiltonian and the hybridization function of
the 3d shell. This simple representation allows us to parameterize the hy-
bridization function by a few discrete bath states. The discretization of the
independent eg and t2g hybridization functions in paper III starts by selecting a
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Figure 3.3. Continuous and discretized DFT hybridization function of FeO. The inset
shows the hybridization with oxygen 2s orbitals. A HWHM broadening of 0.07 eV is
used.

few bath energies, εb, at positions where the spectral weight of the hybridiza-
tion function is large. Then the corresponding hopping terms, Vb, are deter-
mined such that the integrated spectral weight of the continuous and discrete
hybridization functions match in the vicinity of the bath energies. As an ex-
ample, the discretized and continuous hybridization spectra of FeO are shown
in Fig. 3.3.

The bath and coupling Hamiltonian terms are

∑
i

εbi b̂
†
i b̂i +∑

i, j
Vi, j(d̂

†
i b̂ j +h.c.), (3.25)

where b̂ (d̂) annihilates an electron on a bath (3d) orbital, parameterized by
the bath energies εb and hoppings V . We can then adjust the local 3d energies
to correct for the hybridization approximation error. This is only needed if
zero or a few bath states are used to capture the correct crystal-field splitting.
Without this adjustment the eg orbitals have lower energies than the t2g orbitals
for the systems studied in paper III. This is due to the hybridization between
eg and oxygen 2s orbitals, which is especially strong with the ORT basis, see
e.g. the inset of Fig. 3.3. In paper III the on-site energy adjustment is achieved
by demanding the local non-interacting Green’s function g0, see Eq. (2.6), and
its discretized version to resemble each other. In Fig. 3.3, the absence of a
bath state around -19 eV in the eg shell is justified since it is too far away from
the Fermi level to enable charge transfer. Instead the hybridization effect is
captured by the on-site energy shift.
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Total Hamiltonian

Finally, the total impurity Hamiltonian for the 3d and 2p shells is summarized
as

Ĥ =∑
i, j

ti, jd̂
†
i d̂ j +∑

i
εbi b̂

†
i b̂i +∑

i, j
Vi, j(d̂

†
i b̂ j +h.c.)

+ ĤSOC
3d + ĤSOC

2p + εp ∑
i

p̂†
i p̂i −ΣDC ∑

i
d̂†

i d̂i + ĤU , (3.26)

where the first term contains the non relativistic and adjusted 3d on-site en-
ergies, the second and third terms describe the bath and its coupling to the
impurity, the fourth and fifth terms are due to the SOC (see Eq. (3.21)), then
the onsite energy of the 2p orbitals. The last two terms are the double counting
correction and the last term the Coulomb interaction (see Eq. (2.35)). Please
note that ti, j in Eq. (3.26) is diagonal in the cubic harmonics basis with a
splitting between eg and t2g orbitals which can be described by a crystal-field
parameter 10Dq.

Work flow summary

In all the XAS projects discussed in this thesis, the FP-LMTO software RSPt
[22] was used for the DFT calculations, projections to the localized orbitals,
calculations of the Slater integrals, calculations of the SOC parameters and
generation of hybridization functions and projected DOS. A Python package
has been developed, as a part of RSPt, and used, if needed, to transform corre-
lated orbitals to a local single-particle Hamiltonian diagonal form, discretize
hybridization functions, correct on-site energies due to this approximation,
and construct single-particle Hamiltonians in a format suitable for Quanty.
The many body script language Quanty [117,118] was used to find the lowest
relevant eigenstates and calculate the corresponding spectra, using the Lanczos
algorithm outlined in Appendix B. A recently developed open source Python
implementation of the exact diagonalization algorithm has also been used, as
a complement to Quanty [119].

Results

To characterize the ground states of the four investigated TMOs in terms of
eigenstates and their degeneracies, we start the discussion from an atomic
limit with a nominal occupation of n electrons in the 3d-shell. Let us at the
very beginning consider the case of no hybridization, no crystal field, no SOC
and no Coulomb interaction, thus with no degeneracy splitting terms in the
Hamiltonian of Eq. (3.26). There are

(10
n

)
ways of distributing the electrons in

the 3d-shell and all of these configurations are degenerate. By introducing the
Coulomb interaction term, these configurations split up and it is useful to char-
acterize the eigenstates according to their expectation values of the square of
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the orbital and spin angular momentum operators, L̂LL2 and ŜSS2, respectively2.
For each eigenstate, the expectation values 〈L̂LL2〉 and 〈ŜSS2〉 will take values
L(L+ 1) and S(S+ 1), where L (S) is an (half) integer. For each pair of L
and S, the energy degeneracy of states is (2S+1)(2L+1). We can use Hund’s
rules to find the pair of L and S with the lowest energy. For example, in case
of Fe+2, where n = 6, Hund’s rules give S = 2 and L = 2, and we will have 25
states with the lowest eigenenergy. When SOC is also included in the Hamil-
tonian for the d-shell, we get further degeneracy splitting and the expectation
value of the square of the total angular momentum operator, ĴJJ2, character-
izes the eigenstates. Similarly as above, for each eigenstate, 〈ĴJJ2〉 = J(J +1),
where J is a half-integer. Possible J values are |S−L|, |S−L|+1, ..., |S+L|,
each with a degeneracy of 2J+1. Hund’s third rule dictates which J will have
the lowest energy, and for Fe it is J = S+ L = 2+ 2 = 4. The ground state
degeneracy is thus 9. In paper III the XA spectrum with these terms in the
Hamiltonian is shown, alongside spectra in other interesting limits.

Let us now instead consider the system from a non-interacting limit and
start with only crystal field splitting present in the Hamiltonian. Without ĤU ,
Hund’s rules do not apply and the ground state is obtained by simply occupy-
ing the lowest single particle states. For Fe+2 with n = 6 and a positive 10Dq,
this means that the t2g-shell is fully occupied, while the eg-shell is empty,
hence a so-called low-spin solution is obtained. Since there is only one way to
have this configuration, the ground state has no degeneracy. When Ĥ includes
crystal-field splitting and ĤU , there is a competition between crystal-field split-
ting, favoring a low-spin solution, and ĤU , favoring a high-spin solution. For
the materials in paper III, all solutions are high-spin. For Fe in FeO, this means
that one spin channel is full, and the remaining electron occupy the t2g orbitals
with the opposite spin. To analyze the system, let us consider the orbitals
|d1〉= 1√

2
(−|dxz〉− i|dyz〉), |dxy〉 and |d−1〉= 1√

2
(|dxz〉− i|dyz〉) to represent the

t2g-shell. They have a projected angular momentum along the z direction of
−1,0 and 1, respectively. It is therefore natural to introduce a pseudo angular
momentum of Ĺ = 1 for the t2g-shell [120–122]. We can now apply the same
reasoning as above, when the Hamiltonian only contained ĤU , but instead of
using S and L, we use S and Ĺ. For Fe, with S = 2 and Ĺ = 1, this means the
lowest eigenenergy will have a degeneracy of (2S+1)(2Ĺ+1) = 15. A small
SOC term will further split these states into groups with different pseudo total
angular momentum J́. In the case of Fe, the different J́ are 1,2 and 3 [121].
The lowest states have J́ = 1 and degeneracy 2J́ + 1 = 3. There are 5 (al-

2The square of the orbital angular momentum operator L̂LL2 can be written as
L̂zL̂z + 1/2(L̂+L̂− + L̂−L̂+). For a (l,m)-shell, L̂z = ∑l

m=−l ∑σ mĉ†
l,m,σ ĉl,m,σ , L̂+ =

∑l−1
m=−l ∑σ

√
(l −m)(l +m+1)ĉ†

l,m+1,σ ĉl,m,σ , and L̂− = (L̂+)†. Hence for a many body state

|Ψ〉, the expectation value 〈Ψ|L̂LL2|Ψ〉 can be evaluated as 〈Ψ1|Ψ1〉+1/2(〈Ψ2|Ψ2〉+ 〈Ψ3|Ψ3〉),
with |Ψ1〉= L̂z|Ψ〉, |Ψ2〉= L̂−|Ψ〉, and |Ψ3〉= L̂+|Ψ〉. The reasoning for ŜSS2 is analogous [14].
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Table 3.1. Eigenstate information of the four studied materials. Only states relevant
at 300 K are shown. Calculated eigenenergies (in meV) with (approximate) degenera-
cies, pseudo total (orbital) angular momentum J́ (Ĺ), expected Hund’s rule values of
S and L for an atom without SOC, and expectation values 〈Sz〉 and 〈Lz〉 of the 3d-shell
from the impurity model calculations.

E −E0 degen. J́ Ĺ S L 〈Sz〉 〈Lz〉
MnO 0 6 5/2 0 5/2 0 ±1.5,±0.7,±0.5 6×0
FeO 0 3 1 1 2 2 ±1.4,0 ±0.6,0
FeO ≈ 30 5 2 1 2 2 ±0.7,3×0 ∓0.3,3×0
FeO ≈ 75 7 3 1 2 2 ±0.8,±0.1,3×0 ∓0.4,∓0.1,3×0
CoO 0 2 1/2 1 3/2 3 ±0.8 ±0.6
CoO ≈ 50 4 3/2 1 3/2 3 ±0.4,±0.4 ±0.2,∓0.2
CoO ≈ 140 6 5/2 1 3/2 3 ±1.0,±0.5,±0.2 ∓0.7,∓0.6,∓0.5
NiO 0 3 1 0 1 3 ±0.9,0 ±0.4,0

most) degenerate eigenstates above the lowest eigenenergy with J́ = 2. Above
those, a second group of excited states have J́ = 3 and consists of 7 (almost)
degenerate states. Hybridization with the bath is the last missing term in the
Hamiltonian in Eq. (3.26). This term has small influence on the eigenstates
contributing to the thermal ground states, and their energies.

After parameterizing the impurity model Hamiltonian in Eq. (3.26) using
non-spin polarized DFT calculations, the impurity calculations of FeO result
in excited eigenenergies that are about 30 meV and 75 meV (respectively for
J́ = 2 and J́ = 3) above the lowest eigenstate. These states will therefore
be thermally populated at room temperature. With similar considerations as
above, applied for the other materials, we obtain Table 3.1.

After the eigenstates have been calculated we can calculate their XA spec-
tra. In Fig. 3.4 the L2,3 spectra of FeO are shown and resolved into the three
different J́ values. Since the lineshapes are rather different and the states dif-
fer only a few kBT from each other (with T ≈ 300 K), one can expect changes
of the Boltzmann averaged spectrum by varying the temperature. Theoretical
isotropic XA spectra of MnO, FeO, CoO and NiO are presented in paper III.
As the number of bath states used to represent the hybridization function in-
creases, a higher accuracy is expected. According to Fig 3.5, where the num-
ber of bath states per impurity orbital is increased from zero to three, changes
in the line shapes are moderate, with a few exceptions. For example, in NiO
the small peak around 859 eV is absent without any bath states. This is be-
cause this peak corresponds to a charge transfer process.

In paper III, we used two different DFT functionals, one with a warped LDA
potential and the other with the full LDA potential. A warped potential is de-
signed to be spherical inside the MT sphere, and was suggested in Ref. [108]
as a way to avoid double counting the non-spherical part of the Coulomb in-
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Figure 3.4. XA L2,3 spectra of FeO, resolved in the lowest energy eigenstate groups
and labeled by J́. Three bath states per impurity orbital are considered.

Figure 3.5. Computed XA L2,3 spectra for four different number of bath states
per impurity orbital. Experimental spectra (red curves) of MnO [123], FeO [124],
CoO [125], and NiO [126] are included for comparison.
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teraction. In practice the main difference in the band structure between the
two potentials is that using the warped potential results in higher crystal field
splitting. By comparing the XA spectra with the experimental spectra, some
features are in better agreement when using the warped potential.

The effect of the presence of a core-hole is also investigated. By considering
a core-hole in the DFT calculations (using a supercell), its effect on the valence
electronic structure is determined. The hybridization functions of the four
TMs decrease and the Slater-Condon parameters increase up to 17% due to
the presence of the core-hole. The changes of the XA spectra when including
these effects are seen in paper III.

In summary, a DFT+MLFT approach for calculating L2,3-edge XA spec-
tra is presented in paper III and applied to MnO, FeO, CoO, and NiO. Good
agreement with experiment is obtained. For a more accurate description of the
hybridization function, a combination of DFT and DMFT can be used [106].

3.4 Atomic-plane resolution of strained CaTiO3
In this ongoing project, Ti and Ca L2,3-edge EELS spectra with atomic-plane
resolution are measured across an interface of CaTiO3/SrTiO3. As mentioned
in the introduction of this chapter, the spectra of EELS and XAS coincide if an
EELS setup, with very high kinetic energy electrons and small scattering an-
gles, is used. Theoretical calculations of the Ti L2,3-edge have been performed,
using DFT combined with MLFT [108, 112]. The hybridization between the
3d orbitals with their surrounding is treated with one bath orbital per Ti 3d-
orbital, and a nominal occupation of d0 is used. Due to the different lattice
parameters of Ca and Sr, a lattice strain is present, distorting the local octa-
hedral environment at the Ti site. In Fig. 3.6, theoretical Ti L2,3-edge spectra
are shown. The linear polarization dependence is due to the local distortion
and has important implications, as we will discuss later. The four main ab-
sorption peaks in the electron energy-loss spectra can be understood already
from a single-particle picture with a perfect octahedral environment [108] as
the transitions 2p3/2 → t2g,2p3/2 → eg,2p1/2 → t2g, and 2p1/2 → eg. The
single-particle picture predicts a decreasing spectral intensity as the photon
energy is increased, with expected relative intensities 6,4,3, and 2, respec-
tively. However, the Coulomb interaction mixes the spectral intensity from
the p1/2 and p3/2 edges and, in agreement with observations, gives the oppo-
site trend. The distortion of the local octahedral environment of the Ti atoms
splits up both the eg and the t2g sets, and in the calculations the local symme-
try is treated as D4h. The crystal-field parameters ε̄d = 3.029 eV, Dq = 0.144
eV, Ds = −0.064 eV, and Dt = −0.033 eV and the hybridization parame-
ters ε̄b = −2.48 eV, Dqb = 0.13 eV, Va1g = 4.2 eV, Vb1g = 3.7 eV, Veg = 2.5
eV and Vb2g = 2.3 eV are obtained from the projected density of states and
by discretizing the hybridization function [112]. The calculated spin-orbit pa-
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rameters are ζ2p = 3.83 eV and ζ3d = 0.03 eV. The anisotropic Slater integrals
F2

pd ,G
1
pd and G3

pd are assumed to be unscreened and F2
dd and F4

dd to be screened
with factors 0.82 and 0.88, respectively. The Slater integral value F0

dd = 6.3
eV [114] is not calculated but determined from core-level x-ray photoemis-
sion spectra, the Slater integral value F0

pd = 8.2 eV is set by the empirical rule
F0

pd ≈ 1.3F0
dd [106, 108, 114], and the correction of the bare charge-transfer

energy δCT = 1.5 eV is taken from Ref. [112]. A Lorentzian broadening of
0.4 eV (FWHM) is used for the core-hole lifetime and a Gaussian broadening
of 1.2 eV (FWHM) is used to account for experimental broadening. Notice
that there are different crystal field notations and the conversion between the
crystal field parameters {Dq,Dt,Ds} and {Δd ,Δeg ,Δt2g} , where Δd indicates
the splitting between the eg and the t2g-shell, Δeg the splitting between dx2−y2

and dz2 orbitals, and Δt2g the splitting between dxy and {dyz,dxz} orbitals, can
be written as

Δd = 10Dq− 35
6

Dt

Δeg = 4Ds+5Dt

Δt2g = 3Ds−5Dt. (3.27)

The distortion, splitting both the eg set and the t2g set, results in the po-
larization dependent spectra, reported in Fig. 3.6. Using these spectra and a
combined Bloch-waves/multislice method [127], a Ti L2,3-edge spectrum can
be calculated also at a Ca-O plane, see Fig. 3.7. This spectrum, compared to
the spectrum at the Ti-O2 plane, is not just lower in intensity, but there are also
changes in the line-shape. These changes are in fact due to the polarization
dependence. Preliminary experimental spectra [128], shown in Fig. 3.8, qual-
itatively agree with the theoretical results. In particular, the second peak has
lower relative intensity at the Ca-O plane compared to the Ti-O2 plane.

Convergence of theoretical spectra

Here follows a short discussion on the many body ground state, as well as
some technical considerations for calculating the spectra. The ground state
can be expressed as a linear combination of many Slater determinants |Ψ〉 =
∑i ci|i〉, where |i〉 represents a Slater determinant. We can group the determi-
nants according to the number of holes in the bath orbitals: d0b0, d1b1, d2b2,
d3b3, d4b4, .... The corresponding weights for each of these groups are shown
in Fig 3.9. Using one bath orbital per impurity orbital, the number of all pos-
sible configurations for the group with nb bath holes is

(10
nb

)2
, and according to

Fig 3.9 we see that all determinants contribute for small nb. The small weights
for configurations with high nb justifies restricting the number of possible bath
holes for computational speed up, without sever loss of accuracy. In Fig. 3.10,
the XA spectra for different values of the maximum allowed number of bath
holes, nmax

b , are shown, and compared with the unrestricted CI spectrum.
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Figure 3.6. Theoretical Ti L2,3-edge spectra of strained CaTiO3, resolved in x,y and z
polarizations.
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Figure 3.7. Theoretical Ti L2,3-edge spectra of strained CaTiO3.
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Figure 3.8. Preliminary experimental Ti L2,3-edge spectra of strained CaTiO3.
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Figure 3.9. Configurational weights of the many body ground state of the Ti impurity
model, resolved in the number of holes in the bath orbitals. The number on top of the
bars indicate how many Slater determinants contribute to the ground state. One bath
orbital per impurity orbital was used.

Figure 3.10. Ti L2,3 spectra for polarization in the x direction. Different values of
the configurational restriction parameter nmax

b are used. As nmax
b increases the spectra

converge to the CI spectrum. No experimental broadening is applied.
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3.5 Mo doped LaFeO3
This section is a summary of the theoretical XAS results obtained in paper IV.
The studied system is LaFe1−xMoxO3 with a maximum Mo concentration of
x = 0.25. The undoped system (i.e. x = 0) is insulating and antiferromagnetic
(AFM). However, with Mo doping, charge disproportionation among the Fe-
sites develops, as well as metallicity, while the AFM order is preserved. The
calculations of the XA spectra are based on the same combined approach dis-
cussed above. The theoretical L2,3-edge calculations of Fe are performed at
0% and 25% Mo doping. The Fe sites are treated with D4h symmetry. The hy-
bridization is modelled with two bath orbitals per Fe 3d-orbital. One of them
is assumed to be fully occupied, while the other one is assumed to be com-
pletely empty before covalency. The Fe sites before covalency are considered
to be d6. One difference with the other projects in this thesis is that the double
counting here is determined such that the 3d occupations in the impurity cal-
culations match the occupations obtained in DFT+U . This is an approximate
attempt to improve the charge disproportionation description from pure DFT.
To calculate the spectra using a more accurate method, such as DFT+DMFT
would be a natural and interesting future project. At 25% Mo, there are three
inequivalent Fe-sites in the computational unitcell. Two of those sites have
similar local environment as in the undoped system, while the third Fe-site
has a more distorted local environment. Corresponding DFT+U occupations
are 5.4 and 5.7, respectively. The MT localized orbitals (see section 2.5.1) are
used in this project. They typically give smaller occupations compared to the
ORT orbitals. In the supplementary information of paper IV the theoretical
XA spectra are compared to the experimental spectra. In the case of 25% Mo
doping, the total XA spectrum consists of a sum over all three Fe-sites. Two
distinct spectra are obtained with a difference between the two maximum peak
positions, similar to the maximum peak position difference between Fe+3 and
Fe+2 spectra in Ref. [129].
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4. Analytical continuation

This chapter discusses analytical continuation of fermionic and bosonic Green’s
functions and self-energies. The main focus is on fermionic single-particle
Green’s functions. In the introduction chapter, the analytical continuation was
described mathematically as a technique to extend the domain of a given an-
alytical function in the complex plane. In the field of DMFT, this extension
is typically from Matsubara frequency points to the upper half of the complex
plane. Most interesting are function values on the real axis, containing dy-
namical information on the studied system. Also note that, once the function
is known on the real axis, the corresponding spectral function is also trivially
known, due to Eq. (1.35), and thus the function is known everywhere in the
complex plane, according to Eq. (1.24).

The analytical continuation problem of going from imaginary to real fre-
quency can be tackled in three ways. One approach of doing analytical con-
tinuation is possible only if an analytical expression of the function is known.
Then the analytical continuation simply means changing argument from iνn to
ω + iδ . Note this trivial way requires the function be given as a rational func-
tion [45]. For example, if one takes Eq. (1.20) and replaces iνn with ω + iδ the
continuation to the real axis would be completely wrong. Another approach is
to generalize the domain of the function of interest by fitting a parameterized
function ansatz to the Matsubara frequency data. The obtained function is then
evaluated on the real axis. The Padé approximant method, described in sec-
tion 4.6, does exactly this. The third and last approach directly calculates the
spectral function by solving an integral equation. If the input is represented
by Matsubara frequency data, this means solving Eq. (1.23). For imaginary
time input data for a fermionic Green’s function, instead, Eq. (1.25) has be
solved. This kind of integral equations are known as Fredholm integral equa-
tions of the first kind and are discussed below. How to solve the Fredholm
equation, using non-negative least-squares method, non-negative Tikhonov
method, maximum entropy method and stochastic optimization method, is
discussed in sections 4.2, 4.3, 4.4 and 4.5 respectively. See Fig. 4.1 for a
summary of the discussed methods for analytical continuation.

Due to the similarities of the analytical properties of fermionic Green’s
functions and self-energies, it is easy to rescale the self-energy to the form
of a Green’s function. Thus the methods for doing continuations of fermionic
Green’s functions can be used also for self-energies. A self-energy can be
written as Σ(z) = Σ∞ +ΣD(z), where Σ∞ ∈ R is the asymptotic value that the
self-energy has for |z| ∈ ∞. The dynamical part ΣD(z) only differs from a
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Figure 4.1. Classification diagram of the analytical continuation methods discussed in
the text.

Green’s function by its asymptote. Instead of decaying as 1/z it decays as s/z
with s ∈R [130]. By diving the Matsubara frequency data by s, the dynamical
part of the self-energy can be treated as a fermionic Green’s function. Once the
continuation is done, one can rescale the function values by s. Therefore we
only discuss fermionic and bosonic Green’s function below, unless explicitly
saying otherwise.

4.1 Fredholm equation
The analytical continuation can be done by solving a Fredholm equation of
the first kind:

f (y) =
∫

dωk(y,ω)ρ(ω), (4.1)

where ρ(ω) is the desired function, f (y) is the input data and k(y,ω) is a
known integral kernel. In our case the spectral function is ρ , f represents the
Matsubara Green’s function and the shape of the kernel k(x,y) will depend
on which Matsubara representation is used and whether f is a fermionic or
bosonic function. The goal will be to numerically solve Eq. (4.1) with the help
of any a priori knowledge. There are many numerically methods for solving
the Fredholm equation. We will discuss four different methods in sections 4.2,
4.3, 4.4 and 4.5 respectively.

The Fredholm equation arises in many fields of science and engineering [131].
According to Hadamard [131,132], there are three properties to classify Fred-
holm equations. The first is the existence of a solution, the second is the
uniqueness of a solution and the third is the continuous dependence of the so-
lution on the input data. Continuous dependence means that a small change
of the input data will cause small changes in the solution. To have a well-
defined problem all three properties have to be fulfilled, otherwise the problem
is called ill-posed. Solving the Fredholm equation of the first kind is consid-
ered an ill-posed problem [132]. Assuming that the function ρ was given, any
sharp feature would be washed out during the integration to generate f from
Eq. (4.1). This also means that, given f , it is hard to extract ρ since many ρ
give similar f . As pointed out in [133] and proven in [132], the ill-posedness
is due to the infinite dimensional space which ρ belongs to, and not to the
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shape of the kernel. In fact there are infinitely many solutions to Eq. (4.1) for
a finite set of values fi = f (yi) [134]. Stochastic noise on the input data makes
the analytical continuation even harder.

4.1.1 Kernels
The Matsubara Green’s function can be represented in imaginary time, imag-
inary frequency or by Legendre polynomials. All these representations have
corresponding kernels. The kernels are also different depending on the bosonic
or fermionic character of the Green’s function. The non-negative property for
the spectral function significantly reduces the domain for the solution to find,
which helps when solving the Fredholm equation. Since the non-negativity is
a property of the fermionic spectral function, see Eq. (1.32), it is easy to en-
force. For bosons, with the property in Eq. (1.33), an effective spectral func-
tion is usually introduced, let us denote it as ρ̃ , that satisfies the non-negative
property. For convenience it may be useful to work with normalized spectral
functions integrating to one. Fermionic spectral functions normalize to one,
see Eq. (1.38), but bosonic spectral functions do not. Therefore, an effective
spectral function normalized to one is introduced in the bosonic case. For a
system with particle-hole symmetry, fermionic k-integrated spectral functions
are even (ρ(ω) = ρ(−ω)). For bosonic operators with Â = B̂† and hermitian
symmetry (B̂= B̂†), the bosonic spectral functions are odd (ρ(ω)=−ρ(−ω)),
according to Eq. (1.31). These spectral symmetries help in the analytical con-
tinuation and are included by modifying the kernels.

4.1.2 Imaginary frequency
The expression for doing analytical continuation from imaginary frequencies
is found in Eq. (1.23). This is true for both fermions and bosons. To fulfil the
non-negativity we introduce ρ̃(ω) = ρ(ω)/ω and solve the Fredholm equa-
tion for ρ̃ in the bosonic case. Once the solution is found one transforms back
to get ρ . The kernels thus become:

kn(ω) =
1

iνn −ω
, for fermions (4.2)

kn(ω) =
ω

iνn −ω
, for bosons. (4.3)

To work with a normalized bosonic spectral function, one can introduce ρ̃(ω)=
1

−χ0

ρ(ω)
ω which makes the kernel look like

kn(ω) =
−χ0ω

iνn −ω
, (4.4)
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where χ0 is the bosonic Green’s function at the Matsubara point ν = 0. Let us
hereafter separate fermionic and bosonic Green’s functions by using the letters
G and χ respectively.

Even (odd) symmetry

For even (odd) fermionic (bosonic) spectral functions the integral in Eq. (1.23)
can be rewritten such that the left integration limit is changed from −∞ to
0. Furthermore the real (imaginary) part of the Matsubara Green’s function
becomes zero for fermions (bosons). The Fredholm equations, including the
kernels, become:

Im[Gn] =
∫ ∞

0
dω

−2νn

ν2
n +ω2 ρ(ω) , for fermions (4.5)

Re[χn] =
∫ ∞

0
dω

−2ω
ν2

n +ω2 ρ(ω) , for bosons. (4.6)

Halving the integration limits reduces the integral of the fermionic spectral
function to 1/2. To work with normalized spectral functions, one can intro-
duce ρ̃(ω) = 2ρ(ω) and ρ̃(ω) = 2

−χ0

ρ(ω)
ω in the fermionic and bosonic case

respectively. The kernels then read:

kn(ω) =
−νn

ν2
n +ω2 , for fermions (4.7)

kn(ω) =
χ0ω2

ν2
n +ω2 , for bosons. (4.8)

4.1.3 Imaginary time
The expression for the imaginary time Green’s function is found in Eq. (1.25).
The imaginary time kernels have the form:

kτ(ω) =
−e−τω

1± e−βω , (4.9)

where + (−) is for fermions (bosons). To obey the non-negativity condition
we introduce ρ̃(ω) = ρ(ω)/ω and solve the Fredholm equation for ρ̃ in the
bosonic case. The bosonic kernel for ρ̃ is thus

kτ(ω) =
−ωe−τω

1− e−βω . (4.10)

One way of normalizing the spectral function to one is to work with the effec-
tive spectral function ρ̃(ω) = 1

−χ(τ=0+)
ρ(ω)

1−e−βω , which has the corresponding
modified kernel

kτ(ω) = χ(τ = 0+)e−τω . (4.11)

The effective spectral function ρ̃ has the desired normalization, which can be
seen by studying the limit τ → 0+.
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Even (odd) symmetry

For even (odd) fermionic (bosonic) spectral functions Eq. (4.9) can simplified
to

G(τ) =
∫ ∞

0
dω

−cosh((β
2 − τ)ω)

cosh(β
2 ω)

ρ(ω) , for fermions (4.12)

χ(τ) =
∫ ∞

0
dω

−cosh((β
2 − τ)ω)

sinh(β
2 ω)

ρ(ω) , for bosons. (4.13)

If spectral function normalization is desired, we can change to ρ̃(ω) = 2ρ(ω)

for fermions and ρ̃(ω) = 1
−χ0+

coth β
2 ωρ(ω) for bosons, resulting in kernels:

kτ(ω) =
−cosh((β

2 − τ)ω)

2cosh(β
2 ω)

, for fermions (4.14)

kτ(ω) =
−χ0+ cosh((β

2 − τ)ω)

cosh(β
2 ω)

, for bosons. (4.15)

4.1.4 Legendre polynomials
In the context of DMFT, CTQMC is a popular impurity solver which sam-
ples the fermionic Green’s function G(τ) [135]. Instead of directly measuring
G(τ), in CTQMC one can also expand G(τ) in a basis of Legendre polynomi-
als Pl(x) defined on the intervall [0,β ) [136]:

G(τ) =
∞

∑
l=0

Gl

√
2l +1
β

Pl(2τ/β −1). (4.16)

Then one can directly sample the coefficients

Gl =
√

2l +1
∫ β

0
dτPl(2τ/β −1)G(τ). (4.17)

To make a direct connection between Gl and the spectral function ρ(ω), we
combine Eq. (4.16) and Eq. (1.25) and use the orthogonality of the Legendre
polynomials by multiplying with P′

l and integrating over [0,β ). To get rid of
the remaining integral over τ we also use:

∫ 1
−1 dxPl(x)e−ax = 2il jl(ia), where

jl is the spherical Bessel function. This gives us a new analytical continuation
kernel

kl(ω) =
−√

2l +1β ile−βω/2 jl(iβω/2)
1+ e−βω (4.18)

and the corresponding integral equation

Gl =
∫ ∞

−∞
dωkl(ω)ρ(ω). (4.19)
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The spectral function can thus be calculated using the Legendre coefficients
Gl . Even though the kernel expression in Eq. (4.18) has imaginary numbers,
kl ∈ R. The kernel kl(ω) is even (odd) for even (odd) l. Furthermore, for
even l, kl(ω) is non-positive. Particle-hole symmetry thus simply implies that
Gl = 0 for all odd l. This kernel was not used in any of the papers but is
described here to offer a more complete picture of possible analytical contin-
uation kernels.

4.1.5 Complex decomposition
For any kernel k(ω) ∈ C and input data f (y) ∈ C we can use the linearity of
the Fredholm equation and the fact that ρ ∈R to obtain separate equations for
the real and the imaginary parts:

f (y) = fr(y)+ i fi(y) =
∫

dxk(y,x)ρ(x) =
∫

dx(kr(y,x)+ iki(y,x))ρ(ω)

⇒
{

fr(y) =
∫

dxkr(y,x)ρ(x)
fi(y) =

∫
dxki(y,x)ρ(x)

(4.20)

This allows working with real numbers when solving the Fredholm equation.

4.2 Least squares
The least-squares (LS) method is a computationally fast and simple method for
solving the Fredholm Eq. (4.1). A finite number M of input data fi = f (yi) has
to be chosen. Then the integral has to be approximated to reduce the problem
to algebraic equations.

Mesh discretization

The first step is the discretization of the real-axis with a finite mesh defined on
an energy window where the unknown spectral function is expected to have a
finite weight. In the papers V and VI we use the trapezoidal rule and a loga-
rithmic distribution of N grid points to obtain a linear algebraic problem [137]:

fi =
N

∑
j=1

w jki, j︸ ︷︷ ︸
Ki, j

ρ j , for i = 1,2, ...,M, (4.21)

where w j are the integration weights. Using vectors fff ∈ R
M, ρρρ ∈ R

N and
matrix K ∈ R

M×N , Eq. 4.21 takes the form

fff = Kρρρ, (4.22)

where Ki, j includes both w j and ki, j. An alternative discretization method is to
use a basis to represent the spectral function, ρ(x) = ∑i ρibi(x), which results
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Figure 4.2. Condition number of kernel matrix, varying number of real-axis points
N and number of input data M ( M

2 Matsubara frequency points). Use the generalized
condition number, see Eq. (4.36) and double precision with machine epsilon ≈ 2.2 ·
10−16.

in
fi = ∑

j
ρ j

∫
dxki(x)b j(x)︸ ︷︷ ︸

Ki, j

. (4.23)

This expression can also be recast into Eq. (4.22). The fermionic spectral func-
tions should normalize to one. Instead of explicitly enforcing this normaliza-
tion, one can consider a Matsubara frequency point at high energy which, in
absence of noise, will also enforce the normalization of the spectral function.

Condition number

The condition number is an estimate of the relative solution error of a linear
equation, like Eq. (4.22), compared to a relative error in the input data. This
has nothing to do with computational round-off errors but is a property of the
matrix, telling how much the solution will change due to small change δ f in
the input data. The condition number is defined as

κ(K) = ||K−1|| ||K||, (4.24)

where || · || is the norm and K−1 is the inverse of K. In case of N ≤ M and
K having full rank, let K−1 denote the LS inverse, see Eq. (4.28). One can
show [132], that the condition number gives an upper bound for the relative
solution error: ||δρρρ||

||ρρρ|| ≤ κ
||δ fff ||
|| fff || , (4.25)
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where δρρρ is the solution of Kδρρρ = δ fff . Note that the condition number will
depend on the discretization. A perhaps unintuitive fact for ill-posed prob-
lems, is that the denser real-axis mesh is used, hence a more precise integral
discretization, the higher will the condition number be, thus making the solu-
tion less reliable [132]. This can be verified by a direct evaluation of the con-
dition number. Let us consider the Matsubara frequency kernel in Eq. (4.2),
choose the lowest M

2 Matsubara frequency points and discretize the real-axis
with N points from −5 to 5 using a logarithmic mesh. Since the kernel is com-
plex, we get M rows in the matrix kernel K. The condition number is shown
in Fig. 4.2, where both N and M are varied. It is clear that κ increases strongly
with N. Another point worth noticing is that the condition number decreases
as more Matsubara points are used, but this behaviour is weaker for many Mat-
subara points. Even though the condition number does not measure round-off
errors, the double precision routines used artificially introduces a saturation in
κ around 1018 (see brown area). The problem clearly becomes more stable
by using a small N. However the error introduced by discretizing the integral
using the trapezoidal rule is O(N−2) [138], making a large N a more accurate
choice. A compromise is needed between stability and accuracy. Another re-
mark about the real-axis discretization can be made with respect to Runge’s
phenomenon [139]. It states that interpolation with a polynomial of high de-
gree on a uniform grid will create oscillations at the edges of the interpolation
interval. Runge also showed that using a higher order polynomial does not im-
ply a higher interpolation accuracy. In the context of analytical continuation,
it means that using a dense real-axis mesh to represent the spectral function
with many unknown coefficients may lead to oscillatory behaviour of the spec-
tral function for high energy. A practical advise is to not use a denser mesh
than the real-axis resolution one is interested in, and also test the discretization
dependence on ρ .

Solving LS

The next step after the mesh discretization is the LS minimization. The LS
formulation of Eq. (4.22) is

min
ρρρ

||Kρρρ − fff ||22, (4.26)

where the subscript 2 stands for the L2 norm (Euclidean norm). Setting the
gradient with respect to ρ to zero gives the normal equation

KT Kρρρ = KT fff , (4.27)

which always has a solution, although not necessarily unique. For a unique
least-squares solution the matrix K needs to have full rank [139]. Then an LS
inverse can be defined as

K−1
LS = (KT K)−1KT , (4.28)
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Figure 4.3. Spectral function of the susceptibility for simple two-pole model. NNLS
is accurately recovering the two peaks in the presence of statistical Matsubara noise
of the order of 10−4.

which is easily obtained from Eq. (4.27). However, for analytical continuation
problems, K is typically rank deficient, i.e. has a null-space, thus there are
infinitely many least-squares solutions. The LS inverse in Eq. (4.28) does not
exist and the condition number in Eq. (4.24) is infinite. To obtain a unique LS
solution an extra condition is required; a common choice is to minimize the
norm of ρρρ .

Non-negative property

The fermionic and bosonic symmetry of the spectral function, given by Eq. (1.32)
and (1.33) respectively, help when performing analytical continuations by
greatly reducing the solutions domain. In section 4.1.1 we showed that it is
possible to modify the kernel to make the solution non-negative. This means
that we, instead of Eq. (4.26), want to solve a non-negative least-squares
(NNLS) problem:

min
0≤ρρρ

||Kρρρ − fff ||22. (4.29)

The method for solving Eq. (4.29) is described in [140] and is referred to as
the NNLS method. In practice it involves iteratively solving reduced least-
squares problems. For simple spectral functions, using NNLS can give accu-
rate analytical continuations. An example is the susceptibility of a two-pole
model where NNLS almost perfectly reobtains the exact spectral function, as
is shown in Fig. 4.3. However for more complicated spectra, NNLS is known
to give sharp fictitious sawtooth spectra, which can be seen in paper VI and
in Fig. 4.4. Another typical spectrum artefact from using the NNLS is the
presence of spectral function values ρi identical to zero. This is due to over-
fitting to the input data together with the non-negative constrain. However for
simple spectra, consisting of a few well defined peaks, this method sometimes
perform very well, which is also shown in paper VI. This unreliability and its
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Figure 4.4. Spectral function of the susceptibility for a band-gap model. NNLS inac-
curately gives a sharp sawtooth spectrum in the presence of statistical Matsubara noise
of the order of 10−4.

instability to handle stochastic noise on the input data, leads us to investigate
more robust methods, where regularizations typically are imposed on ρρρ .

4.3 SVD and Tikhonov regularization
The singular value decomposition (SVD) and the Tikhonov regularization are
two important methods for solving ill-posed problems. SVD can be used to
solve the LS equations seen in section 4.2. It also provides a natural starting
point for more robust methods, such as the Tikhonov method.

4.3.1 SVD
A matrix K ∈ R

M×N can always be decomposed in the form

K =UΣV T , (4.30)

where U ∈R
M×M and V ∈R

N×N are unitary matrices and Σ ∈R
M×N is diago-

nal with non-negative values σi, called singular-values. For N ≤ M, Σ has the
shape:

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1
. . . 0

σr

0
. . .

σN

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.31)
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The columns uuui in U make an orthonormal basis in R
M and the columns vvvi

in V make an orthonormal basis in R
N . A matrix with rank r has r non-zero

singular-values σi. By using the SVD definition it is easy to show that

Kvvvi = σiuuui , for i ∈ [1,min(N,M)]. (4.32)

Using this property and expanding in the SVD basis the input data fff and the
sought solution ρρρ in Eq. (4.22), one finds the solution

ρρρ =
r

∑
i=1

σ−1
i (uuuT

i fff )vvvi. (4.33)

This is actually nothing else than the minimum norm LS solution to Eq. (4.22).
Thus the obtained ρρρ solves the normal equation in Eq. (4.27). Moreover if sev-
eral solutions exist, ρρρ has the smallest norm of all solutions. This procedure
can be done by using the LAPACK routine DGELSD [141], which is the ap-
proach used in paper V and VI. The Moore-Penrose pseudoinverse of K is

K+ =V Σ+UT , (4.34)

with Σ+ ∈ R
N×M being diagonal and having elements σ−1

i [142]. The mini-
mum norm LS solution can now be formulated as

ρρρ = K+ fff . (4.35)

For numerical computation, note that only the r biggest singular-values σi and
their corresponding column vectors uuui and vvvi are needed to calculate ρρρ .

4.3.2 Condition number
Let us discuss the condition number in the language of SVD. The classical
condition number in Eq. (4.24) is equal to σmax/σmin in the L2 norm and is
infinite for a rank deficient matrix, since σmin = 0. Instead one can use the
generalized condition number of a (possibly rank deficient) matrix to study
the problem stability. It is defined as

κ(K) = ||K||2||K+||2, (4.36)

which is equivalent to κ = σ1/σr [142]. For a rank deficient matrix, thus hav-
ing at least one singular value being zero, SVD will in practise not provide any
singular values being zero due to round-off errors in the calculations. Instead
the smallest calculated singular value will be of the order of the computers ma-
chine epsilon, hence artificially presenting K as a full rank matrix. By studying
the magnitude of the singular values, one can approximately determine which
ones of them are non-zero due to round-off errors. The calculated singular-
values to a rank deficient matrix, using double precision, is shown in Fig. 4.5.
The rank of the matrix is about 50 since the 10 smallest singular values have
values around the machine epsilon.
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Figure 4.5. Singular values, in descending order, for kernel matrix with N = 60 real-
axis points and M = 80 input values (40 Matsubara frequency points). Double preci-
sion with machine epsilon ≈ 2.2 ·10−16 is used in for the SVD.

4.3.3 Truncated SVD
We see that small singular-values in Eq. (4.33) will have big impact on ρρρ . To
improve solution stability we can reduce the weight for small singular-values.
Truncated SVD means we only use the t < r biggest singular-values in the
SVD expression in Eq. (4.33). This is a form of regularization which makes
the solution ρρρ more stable to numerical noise. At what value t one should
cut the sum is hard to know a priori. To make the transition from included
singular values to those not included less sharp Tikhonov smoothly filters the
singular-values, see below.

4.3.4 Tikhonov regularization
Tikhonov regularization is one of the most used methods of regularization for
ill-posed problems [132]. It can be interpreted as a process for filtering away
the smallest singular values of the minimum norm LS solution in Eq. (4.33).
The filter (called Wiener filter) has the form:

d(x,α) =
x2

x2 +α2 (4.37)

The Tikhonov method therefore modifies Eq. (4.33) into

ρρρ =
r

∑
i=1

d(σi,α)σ−1
i (uuuT

i fff )vvvi. (4.38)

The regularization parameter α determines the value around which singular-
values start to be filtered away. Another formulation of the Tikhonov method
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is given by the minimization problem [143]:

min
ρ

||Kρρρ − fff ||22 +α2||ρρρ||22. (4.39)

By introducing a modified kernel matrix and input data vector

K′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣ K

⎤
⎥⎥⎥⎥⎦

⎡
⎣ αI

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, fff ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣ fff

⎤
⎥⎥⎥⎥⎦

⎡
⎣000

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.40)

where I is the identity matrix, Eq. (4.39) can be rewritten as

min
ρ

||K′ρρρ − fff ′||22. (4.41)

This is simply a LS problem, but with modified fff ′ and K′ [133]. To see that
the solution to the minimization problem in Eq. (4.39) truly is the filtered SVD
formula in Eq. (4.38), we can look at the normal equation to Eq. (4.41):

(KT K +α2I)ρρρ = KT fff . (4.42)

Using SVD for the matrix K, the solution of Eq. (4.42) becomes:

ρρρ =V (ΣT Σ+α2I)−1ΣTUT fff (4.43)

=
r

∑
i=1

σi

σ2
i +α2 (uuu

T
i fff )vvvi, (4.44)

which indeed coincides with Eq. (4.39). The value for the regularization pa-
rameter α can be determined by the L-curve method [144], where α is selected
corresponding to the smallest value of (||Kρρρα − fff ||22 ||ρρρα ||22). Here ρρρα means
the solution of Eq. (4.39) for a given α .

The Tikhonov method can be generalized by modifying the second term in
Eq. (4.39) to

α2||Λρρρ −mmm||22, (4.45)

with fixed matrix Λ and vector mmm. If, for example, a priori knowledge of
the approximative shape of the spectral function ρρρ exists, one can incorporate
that information by setting Λ = I and letting mmm take the approximate solution
shape.
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Figure 4.6. Spectral function of the susceptibility for a band-gap model. NNT smears
the peaks due to the regularization. The Matsubara points have a statistical noise of
the order of 10−4.

Non-negative property

The non-negative Tikhonov (NNT) method is the Tikhonov method with the
additional constrain of 0 ≤ ρρρ , which means:

min
0≤ρ

||Kρρρ − fff ||22 +α2||ρρρ||22. (4.46)

In practice, Eq. (4.46) is solved by considering Eq. 4.41 and enforcing the
non-negativity by the iterative algorithm in Ref. [140]. By comparing with the
NNLS spectral function of the band-gap model in Fig. 4.4, the NNT spectral
function in Fig. 4.6 better resemble the exact function. The spectral weight
weight between the peaks are captured well and the two peaks are present,
even though they are smeared. Sometimes this smearing effect removes struc-
ture and is discussed more in section 4.7.

4.4 Maximum entropy method
Probably the most used method for analytical continuation in the DMFT com-
munity is the maximum entropy method (MEM) [137,145–151]. The solution
of the ill-posed inversion problem is sought by regularization, so that the en-
tropy is maximized, as following. Similar to the Tikhonov method, there is a
regularization parameter α , which needs to be determined.

Bayesian inference

Using Bayesian inference, a posterior probability P(ρ| f̃ ) for the spectrum
ρ(ω) and the input data f̃ is defined as

P(ρ| f̃ ) = P( f̃ |ρ)P(ρ)/P( f̃ ). (4.47)
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The MEM finds ρ by maximizing P(ρ| f̃ ). In Eq. (4.47), P( f̃ |ρ) is the likeli-
hood function, P(ρ) is the a priori probability function and P( f̃ ) is a constant
(since the input data is fixed) which we can ignore.

Likelihood function

The likelihood probability function P( f̃ |ρ) is a multivariate Gaussian distri-
bution. In section 4.8 we will show how to remove correlation between the
different Matsubara points, allowing us to write P( f̃ |ρ) simply as a product of
Gaussian distributions for each Matsubara point:

P( f̃ |ρ) =
M

∏
i=1

1√
2πσi

e
−( fi− f̃i)

2

2σ2
i =

1
Z

e
−χ2

2 , (4.48)

with the normalization factor Z = (2π)
M
2 ∏M

i=1 σi and fitting-function

χ2 =
M

∑
i=1

( fi − f̃i)
2

σ2
i

, (4.49)

where fi is the Matsubara value corresponding to the spectrum ρ .

Entropic prior

The MEM is characterized by its a priori probability function P(ρ). Statistical
inference arguments exist [145], showing that the entropic prior P(ρ|m,α) can
be expressed as

P(ρ|m,α) =
1
ZS

eαS, (4.50)

where ZS is a normalization factor and the Shannon entropy is

S =
∫

dω
[

ρ(ω)−m(ω)−ρ(ω) ln
(

ρ(ω)

m(ω)

)]
. (4.51)

The so called default model m(ω) should incorporate any prior knowledge
about the spectrum, such as positiveness, normalization, high-frequency asymp-
tote, etc. The entropic prior is maximized when ρ(ω) = m(ω). The different
options for choosing α will be discussed below.

Probability maximization

The most probable spectral function is found by maximizing Eq. (4.47). Us-
ing the expressions for the likelihood function and the entropic prior means
maximizing the functional

Q[ρ] =
−χ2

2
+αS. (4.52)
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For numerical calculations, the real-axis is typically discretized, which is dis-
cussed in section 4.2. The discretized version of the functional Q[ρ], denoted
as Q(ρρρ), is maximized by setting its gradient to zero:

0 =
∂Q(ρρρ)

∂ρi
=

M

∑
j=1

( f j − f̃ j)Kj,i

σ2
j

−αwi ln
(

ρi

mi

)
. (4.53)

The kernel expression fi = ∑N
j=1 Ki, jρ j has been used in Eq. (4.53) and wi are

integration weights. A commonly used FORTRAN library for solving systems
of non-linear equations is MINPACK. Let us call the solution to Eq. (4.53) ρρρα
since it will depend on which α-value is used. Instead of discretizing the func-
tional in Eq. (4.52), one can instead take the functional derivative with respect
to ρ . This avoids real-axis discretization errors. Instead one gets a analytic
expression for spectral function, with some unknown parameters which can
be determined by solving a set of non-linear equations, see Ref. [152,153] for
more information.

Regularization parameter α
The value of α determines the competition between S and χ2. For a small
α , overfitting will occur in presence of statistical noise on the input data and
result in χ2 � M. For a big α , the entropic prior will instead dominate over
the likelihood function and the solution ρ will be close to the default model
m. There are several ways of choosing the α value, common choices are la-
beled Historic, Classic and Bryan’s method. In the Historic MEM, χ2 = M is
desired. This is achieved by adjusting α and using the fact that χ2 is monoton-
ically increasing as a function of α . The Historic MEM usually underfits the
input data which leads to smeared spectra. In the Classic MEM, α is estimated
from Bayesian reasoning [145,147,151]. A probability distribution P(α| f̃ ,m)
is constructed and α is chosen to maximize it. The expression for P(α| f̃ ,m)
is [151]

P(α| f̃ ,m) =
1

Zα

α
N
2 −1eQ(ρρρα )√

∏N
i=1(α +λi)

, (4.54)

where Zα is a normalization factor and λi are the eigenvalues of the matrix
with elements

√ρiρ j

M

∑
n=1

Kn,iKn, j

σ2
n

. (4.55)

The Bryan method [148] calculates ρρρ as an average over α , using P(α| f̃ ,m)
in Eq. (4.54) as weights, as well as the solutions ρρρα from Eq. (4.53):

ρρρBryan =
∫

dαP(α| f̃ ,m)ρρρα . (4.56)

Viewing the entropy S as a regularization factor makes the MEM similar to
the Tikhonov method. For the Tikhonov method we use the L-curve method
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ω

ρ̃(ω)

Figure 4.7. Representation of the spectrum given by a configuration C, consisting of
4 rectangles (solid blue lines). The green dashed line indicates a proposed elementary
update, increasing the height of one rectangle while keeping its center position and
spectral weight fixed.

to estimate α [144]. Applying the L-curve method to the MEM leads to α
minimizing −χ2S. This approach is used in paper V and paper VI and gives
similar result to the Classic MEM.

4.5 Stochastic optimization method
The stochastic optimization method (SOM) [151, 154] belongs to a class of
stochastic sampling methods to solve the Fredholm equation for the analytical
continuation, see Fig. 4.1. The general idea in stochastic sampling methods is
to average calculated spectra with a probability distribution P(ρ| f̃ ). The dis-
tribution should impose as little a priori knowledge as possible to avoid biased

solutions. In Ref. [155] Sandvik uses P(ρ| f̃ ) = e
−χ2

T to sample spectra, where
T acts a artificial temperature. The temperature T is adjusted to sample solu-
tions with small χ2, but not only very small χ2, since that leads to overfitting
and sawtooth spectral functions. It can also be shown the MEM is a special
case of the stochastic sampling methods [156].

The SOM formulated in [154] is briefly described below and is used in our
papers VI and VII, where SOM is referred to as Mishchenko’s method. A
central difference with respect to the methods described in the other sections
concerns how a spectral function ρ(ω) is represented. Instead of discretizing
the real-axis to a fixed mesh, approximating the integral equation in Eq. (4.1)
and finding the unknown heights at the grid points, SOM uses a set of rectan-
gles for representing the spectrum. A spectrum of Nr rectangles can be written
as

ρ̃(ω) =
Nr

∑
i=1

R{hi,wi,ci}(ω), (4.57)

where the parameters hi,wi,ci respectively represent height, width and cen-
ter position for the rectangle i, see Fig. 4.7. The corresponding Matsubara
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function, obtained from Eq. (4.1), becomes

f (y) =
Nr

∑
i=1

hi

∫ ci+
wi
2

ci−wi
2

dxk(y,ω), (4.58)

which for some kernels can be calculated analytically. This representation
avoids a systematic mesh error. To evaluate how good a spectrum is, a devia-
tion measure similar to the χ2 is used, namely

D =
M

∑
j=1

| f j − f̃ j|
| f̃ j|

, (4.59)

where f̃ j are the input data and Eq. (4.58) gives the f j. The algorithm starts
with randomly initializing a set of rectangles, forming a start configuration
C(start). Then, Ne quasi-random elementary updates of the rectangles are per-
formed: C(start) → C(1) → ... → C(r) → ... → C(Ne). There are 7 types of el-
ementary updates, such as changing the center position of one rectangle or
changing the height but keeping the weight fixed, see Fig. 4.7. A proposed up-
date is accepted with a probability which depends on the ratio of the deviation
values between the current and the proposed configuration. The configuration
C(r) with the smallest deviation value among the Ne configurations are picked
as starting point for a new sequence of Ne updates. In total, Ng sequences,
each with Ne updates, are performed. The number Ng should be big enough so
that the last configuration has a deviation value about the size of the stochastic
noise on the input data. To avoid sawtooth features in the spectrum, the above
steps are repeated Na times and the final spectrum is the average of the last
spectra from the Na independent runs:

ρ(ω) =
1

Na

Na

∑
i=1

ρi(ω). (4.60)

GPU and MPI implementations

The minimization procedure of the deviation measure D might require long
simulation times, due to the presence of many local minima. A prior knowl-
edge of the overall shape of the spectrum can partially be included in the
starting configurations to arrive more rapidly at a reasonable spectrum, which
reduces the computational cost. Since the Na different runs are trivially inde-
pendent of each other, parallelization with message passing interface (MPI)
or a graphics processing unit (GPU) can be used to reduce the time to get the
solution. In a collaborative effort, involving Master and Bachelor students,
both these approaches have been investigated. The original FORTRAN code
of Mishchenko [154] was parallelized using MPI, while a GPU implementa-
tion of SOM was written from scratch. This implementation is presented in
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Figure 4.8. Spectral function of the susceptibility for a band-gap model. SOM spectral
functions, for various Ng values, are shown using the MPI (GPU) implementation in
the top (down) panel. The Matsubara points have a statistical noise of the order of
10−4.

paper VII (Ref. [157]) and also in more details, in the bachelor thesis of Johan
Nordström [158]. It is not easy to make a fair comparison between a GPU
program and a program using MPI, but the examples below gives a hint of
the actual times and the computational resources used. The examples are the
analytical continuations of the two different tight binding models (for one k-
point) in paper VI. Ng = 240000 updates and Na = 128 attempts were used.
With MPI 128 CPUs were used. The simulation using the GPU implementa-
tion was around 4 times faster than using MPI. One shall also note that 128
CPUs consume more energy than a single GPU and require access to a super-
computer facility. Using MPI and GPU, the spectra for the doped tight binding
model are similar. However for the band-gapped tight binding model, the out-
put spectral functions were not identical, as shown in Fig. 4.8. Using the MPI
code, the spectra contain the two-peak structure and change when vary Ng.
The GPU code barely resolves the two peaks and gives smaller changes by
varying Ng. One reason of the difference output and speed is related to that
Ne was fixed to 400 in the GPU case but varied stochastically between 1 to
7000 in the MPI case. There are also other optimization differences, such as
the number of starting rectangles, the maximum allowed number of rectangles
and the proposal and acceptance distributions for an elementary update. Com-
paring with the NNLS and NNT methods, shown in Fig. 4.4 and 4.6, the SOM
method gives an accurate description of the exact spectrum for the considered
noise level 10−4.
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4.6 Padé approximants
A Padé approximant can be expressed as a [k/r] rational polynomial [159,
160]:

Pk,r(z) =
∑k+1

i=1 aizi−1

∑r
i=1 bizi−1 + zr , (4.61)

with coefficients ai,bi ∈ C. Analytical continuations in the complex plane
from e.g. Matsubara frequency points on the imaginary axis to the real axis,
see Fig 1.5, can be performed with the Padé approximant method. The Green’s
functions G(z) and the dynamical part of the self-energy ΣD(z) decay with
asymptote s/z when |z| increases, as can be seen from Eq. (1.24). For self-
energies, s ∈ R

+ [161], while for fermionic Green’s functions, s = 1, due
to the normalization condition of the spectral function. For bosonic Green’s
functions with an odd spectral function, s = 0. Therefore its asymptote be-
haves instead as ∼ 1/z2. The Padé approximant defined in Eq (4.61) has the
asymptote ak+1zk−r for large |z|. Self-energies and fermionic Green’s func-
tions are hence suitably represented by [(r−1)/r] approximants:

P(z) =
∑r

i=1 aizi−1

∑r
i=1 bizi−1 + zr , (4.62)

with N = 2r coefficients and asymptote ar/z, where ar = s ∈ R
+. A correct

asymptote for odd bosonic Green’s functions is obtained by either using a
[(r−2)/r] Padé approximant or setting ar = 0. Given M function values f (zi),
at points zi in the complex plane, the task to find a Padé approximant P(z) such
that

P(zi) = f (zi), for i ∈ {1,2, ...,M}, (4.63)

is discussed below. In the context of the Matsubara formalism, the points zi
are Matsubara frequency points and the approximant is evaluated just above
the real axis.

4.6.1 Thiele’s reciprocal difference method
Thiele’s reciprocal difference method [159,162,163] for determining the Padé
approximant was first applied in the field of condensed matter physics by Vid-
berg and Serene [162]. The method is fast and recursive, and starts by formu-
lating the Padé approximant as a terminated continued fraction:

PN(z) =
c1

1+
c2(z− z1)

1+
c3(z− z2)

· · ·+ cN(z− zN−1)

1

, (4.64)
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where the subscript N denotes the number of (unknown) coefficients ci, which
in Thiele’s algorithm coincides with the number of input points M. By de-
manding the approximant to fulfil Eq. (4.63), the coefficients ci are given by
the recursion

gi(z) =
gi−1(zi−1)−gi−1(z)
(z− zi−1)gi−1(z)

, for i ∈ {2,3, ...,N}
c j = g j(z j) , g1(z j) = f j, for j ∈ {1,2, ...,N}.

(4.65)

By viewing gi(z j) as a N ×N matrix, the initially unknown Padé coefficients
ci are on the diagonal, the first row has elements f j and the recursion relation
can be used to determine the elements one row below. To attain the diagonal
elements gi(zi) the elements in the upper triangle of the matrix have to be de-
termined, which is a O(N2) process. Once the coefficients ci are determined,
the continued fraction can be calculated at a point z according to

PN(z) =
AN(z)
BN(z)

, (4.66)

where

An+1(z) = An(z)+(z− zn)cn+1An−1(z)
Bn+1(z) = Bn(z)+(z− zn)cn+1Bn−1(z)

(4.67)

and
A0 = 0,A1 = c1,B0 = B1 = 1. (4.68)

For odd N, PN(z) is a [N−1
2 /N−1

2 ] approximant and for even N, the approximant
is of the order [N

2 −1/N
2 ]. To have the asymptote of Green’s functions, an even

N is suitable and makes PN(z) of the form as in Eq. (4.62).

4.6.2 Square matrix formulation
The square matrix formulation by Beach et al. [161] requires the Padé approx-
imant in Eq. (4.62), with N = 2r coefficients, to fulfil Eq. (4.63) for M = N.
By introducing the vectors

vvv =
[

aaa
bbb

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1
...

ar
b1
...

br

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, yyy =

⎡
⎢⎢⎢⎣

zr
1 f (z1)

zr
2 f (z2)

...
zr

N f (zN)

⎤
⎥⎥⎥⎦ (4.69)
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and the matrix

K =

⎡
⎢⎢⎢⎣

1 · · · zr−1
1 − f (z1) · · · − f (z1)zr−1

1
1 · · · zr−1

2 − f (z2) · · · − f (z2)zr−1
2

...
...

...
...

...
...

1 · · · zr−1
N − f (zN) · · · − f (zN)zr−1

N

⎤
⎥⎥⎥⎦ , (4.70)

the problem of finding the coefficients for the Padé approximant is given by

Kvvv = yyy. (4.71)

Once Eq. (4.71) is solved, the Padé approximant at a point z can be written as

P(z) =
[1,z,z2, ...,zr−1]aaa

[1,z,z2, ...,zr−1]bbb+ zr . (4.72)

Solving a linear system of equations requires O(N3) operations, making it
slower than Thiele’s algorithm. On the other hand, for matrix problems, highly
efficient routines are available.

4.6.3 Zero-pole pairs
The ill-posed nature of the analytical continuation manifests itself by a big
condition number of the matrix K. By looking at the ratio between the largest
and the smallest elements in K, ξ = νr

max, the numerical precision needed to
invert K can be estimated to be 2log10 ξ decimal digits [161,164]. If extremely
high precision input data exists, which seldom is the case in electronic struc-
ture calculations, and equally high inversion precision routines are used, the
Padé approximant is known to perform very well [161]. However, for mod-
erate precision, approximate Padé approximant coefficients can give rise to
spurious peaks or breaking of required symmetries, such as the non-negativity
of the spectral function. The optimal choice of the number of coefficients N
in the approximant is in general not known a priori. If very high precision
data are available, Ref. [161] showed that the value of the coefficient ar can be
used to estimate a good value of N. Since fermionic Green’s functions have
an asymptote 1/z and the Padé approximant has an asymptote ar/z, the imag-
inary part of ar should be zero. The number N giving the smallest imaginary
part works as a criterion for choosing the optimal N. Another approach for
choosing N is focused on the zeros and the poles of the approximant. By find-
ing the zeros of the polynomials in the numerator and denominator of P(z),
the approximant can be written as [165]

P(z) =C
∏r−1

i=1 (z− pi)

∏r
i=1(z−qi)

, (4.73)
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with C ∈ C being a constant. Let us assume that the function to analytically
continue f (z) can be written as a sum of a finite number, r0, of poles. When the
number of poles in the approximant, r, is smaller than r0, the approximant will
not be able to model the true function perfectly, even if an arbitrary precision
is accessible. If instead r0 < r, some zeros in the numerator will cancel out re-
dundant poles [161]. But due to the finite precision, these zero-pole pairs will
not cancel out completely, and can potentially cause artefacts in the spectral
function. The higher r, the more of these non-canceling zero-pole pairs will
appear. Assuming that a spurious non-canceling zero-pole pair (p j,q j) exists
in P(z), it can be removed by multiplying P with (z− q j)/(z− p j). Many
techniques exist for identifying and removing these zero-pole pairs. As dis-
cussed in Ref. [165], one approach defines zero-pole pairs as spurious if the
zero and the pole are within a certain distance from each other. To check the
stability of poles and zeros, Ref. [166] shows that adding a random number to
the input data changes spurious zeros and poles more than actual ones. If high
order poles do not exist in P(z), the approximant can be expressed as a sum of
poles [165]

P(z) =
r

∑
i=1

wi

z−qi
, (4.74)

where wi is the residue corresponding to the pole at position qi. Ref. [165]
also argues that poles with a negative residue shall be removed to make the
approximant more similar to a sum of poles on the real axis with positive
residues, which is know to have a positive spectral function (see the Lehmann
representation in Eq. (1.39)).

4.6.4 LS Padé
This subsection and the following ones contain an overview of the method
development on the Padé approximant done in paper V (Ref. [167]), aiming
at improving the stability and accuracy of the analytical continuation. Both
Thiele’s reciprocal difference method and Beach’s square matrix formulation
presented in subsection 4.6.1 and 4.6.2, use equally many input points M as
approximant coefficients N. As discussed in subsection 4.6.3, the absence of
very precise input data may lead to unstable spectral functions, due to over-
fitting of the noisy data. To reduce the risk of overfitting we proposed to use
equal or more input points M than the number of approximant coefficients N,
thus N ≤ M, and seek a LS solution, which was also suggested in Ref. [164].
By generalizing the square matrix formulation in subsection 4.6.2, the matrix
and vector shapes are modified to K ∈ C

M×N , vvv ∈ C
N and yyy ∈ C

M . For highly
noisy input data one can not expect to retrieve as many and sharp spectral fea-
tures as for high precision data. It is in such cases reasonable to work with
fewer degrees of freedom in the approximant, meaning a low N. The advan-
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tage of the LS Padé is that we are not restricted to use equally few input points,
but can still include as many points as desirable.

4.6.5 Averaging
Instead of looking at zeros and poles of the Padé approximant for determin-
ing the number of coefficients to use in the approximant, we here discuss the
possibility of considering several different independent pairs of N and M, and
then taking an average over the resulting spectral functions. Let us denote each
such pair as a configuration c. Since spurious non-canceling zero-pole pairs
arise from the absence of arbitrary precise numerical data, one can expect them
to be different for different configurations. The non-negative property of the
spectral function, see Eqs. (1.32) and (1.33), allows us to discard unphysical
configurations breaking it. In the averaging, to avoid the risk of one or a few
configurations with spurious spectral function structure of degrading the av-
erage, only configurations with spectra similar to each other are considered.
This can be achieved by using the deviation measure

Δc = ∑
c′ 
=c

∫ ∞

−∞
dω|ρ(ω)−ρ ′(ω)|, (4.75)

where the sum runs over physical configurations. We can then discard con-
figurations with a big relative Δc. This mechanism is illustrated in Fig. 4.9,
where Δc for various LS Padé approximants is reported. How the spectral
function improves by the ideas outlined above is shown in Fig. 4.10 (taken
from paper V).

4.6.6 Mirror symmetry
When doing the analytical continuation, one solves the Fredholm integral in
Eq. (4.1) or performs a Padé approximant fit of Matsubara frequency data.
In the first case, the mirror symmetry in Eq. (1.36) is automatically fulfilled.
However, using Padé, this is not the case. One way of trying to enforce the
mirror symmetry in the Padé approximant is to include in the fitting also neg-
ative Matsubara points. As pointed out in Ref. [168], symmetrically including
positive and negative frequencies tends to put the poles in the Padé approx-
imant near the real axis, giving a spuriously peaky spectrum. However, this
problem can be avoided by including only a limited number of negative fre-
quencies. This is shown in paper V to give a more accurate spectral function,
as can be also seen in Fig. 4.10.

As a test to see how well the Padé method actually fulfils the mirror symme-
try, we perform the analytical continuation of a Green’s function from Matsub-
ara frequencies to axes at distances ±0.2 away from the real axis. According
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Figure 4.9. Illustration of configurations in (N,M) space. The black crosses denote
unphysical continuations and the circles denote physical continuations. The color of
the circles denotes the deviation Δc. The test model is the self-energy of a Sm atom,
with relative noise of magnitude σ = 10−6 added on the Matsubara points before the
continuation. More details can be found in paper V.
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ω [Ry]

Average similar LS Padé
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Figure 4.10. Illustration of the different improvements done on the square matrix
formulation of Padé. Description of the four obtained spectra (from left to right panel):
Padé approximant using N = M = 70, and characterised by unphysical features; LS
Padé average, including unphysical continuations; LS Padé using Δc; LS Padé using
Δc and with mirror symmetry imposed using 6 negative Matsubara points. The test
model is the self-energy of a Sm atom, with relative noise of magnitude σ = 10−6

added on the Matsubara points before the continuation. More details can be found in
paper V.
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Figure 4.11. Imaginary part of Green’s functions obtained by analytical continuation
using Padé from Matsubara frequencies iνn to distances ±0.2 above the real axis. The
test model is the Green’s function from a tight-binding model of Graphene where the
exact function is known. In the Padé approximant fit, 9 negative Matsubara points are
included.

to the mirror symmetry in Eq. (1.36), the imaginary part of the Green’s func-
tion along those axes should have opposite sign. However this is fulfilled only
for small ω , where the Padé Green’s function coincides with the exact one, see
Fig. 4.11. For large ω , instead of having opposite sign, the Green’s functions
become similar, thus the mirror symmetry is not fulfilled. These results hold
for this test function both with and without including a few negative Matsubara
points.

4.6.7 Inversion precision
The numerical precision in the inversion routine should be high enough so
that the spectral function does not alter by further increasing the inversion
precision. In the case of noise-free input data, the precision needed to solve
the matrix problem in Eq. (4.71) is approximately 2log10 ξ decimal digits,
with ξ = νr

max being the ratio of the largest to the smallest elements in the
matrix K [161, 164]. This precision is much higher than double or quadruple
precision. In paper V, we instead investigated the inversion precision needed
in the presence of input noise. By using a multiple precision library [169],
precision around quadruple was shown to be sufficient for a range of noise
levels. Double precision resulted in absent peaks in the spectrum compared
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Figure 4.12. Spectra attained using double and quadruple precision LAPACK routines.
The test model is the self-energy of a Sm atom, with relative noise of magnitude
σ = 10−5 added on the Matsubara points before the continuation. More details can be
found in paper V.

to higher precisions, unless very big noise was used. An example of this is
shown in Fig. 4.12.

4.6.8 Summary of method development
In paper V we developed a Padé scheme to perform the analytic continuation
of Green’s functions and self-energies. First the LS approach was introduced.
Secondly an average scheme over several LS spectra, rejecting spectra with
negative weight, was shown to improve the stability and the accuracy. Includ-
ing a few negative Matsubara points was shown to better resolve peak struc-
tures, under the condition of small spectral weight at zero energy. We obtained
the insight that quadruple precision, but not less, is enough in the presence of
stochastic noise with magnitudes typical in electronic structure calculations.
By comparing the developed Padé algorithm with NNLS, NNT and MEM, it
was shown to perform well, e.g. to resolve two closely positioned peaks.

4.7 A comparision between methods for bosonic
functions

In paper VI (Ref. [170]), three different physically relevant bosonic models
are analytically continued, using the methods described above: NNLS, NNT,
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MEM, SOM and Padé. The influence of numerical noise in the input data on
the spectra is investigated. In general, the SOM is the most robust approach for
various magnitudes of the input noise. For the smallest investigated noise, the
Padé scheme and the SOM are the most accurate methods. Spectral functions
with broad modes away from zero are shown to be difficult to resolve cor-
rectly, causing spurious wiggles, especially for the simple NNLS method. In
such cases MEM, NNT and SOM are preferable. Functions with two distinct
peaks, on the other hand, are much easier to continue and the NNLS method
performs very well. Another observation is that a single sharp peak close to
zero energy is accurately captured even at high noise levels by all methods.
The function dependence for the performance shows it is important to con-
sider several test cases for evaluating analytical continuation algorithms. The
MEM, NNT and Padé tend to smear the spectra and sometimes merge two
actual peaks into one peak. The tendency to merge peaks and the risk of creat-
ing spurious peaks makes it hard to analyze a single spectrum. Nevertheless,
considering several different continuation methods helps in understanding the
most important features of the true spectrum.

4.8 Correlation
Matsubara Green’s function data can contain undesired correlation if it is sam-
pled by a QMC algorithm. This should be taken into account before the ana-
lytical continuation. There are two types of correlations within the QMC data.
Correlations between samples of an observable in one QMC Markov chain
can be eliminated by binning analysis. Another type of correlation is between
different observables, in this case Green’s function points. By decomposing
the covariance matrix of the input data, uncorrelated observables are created.
In practice this means the analytical continuation is performed using modified
input data as well as kernel.

4.8.1 Binning analysis
Let us denote N eventually correlated sample measurements of an observable
from a distribution, perhaps created by a QMC simulation, by O(0)

i , with i ∈
1,2, ...,N. These raw data have the super script (0). The procedure to remove
correlations from these measurements involves averaging the raw data into
bins [171]:

O( j)
i =

O( j−1)
2i−1 +O( j−1)

2i

2
, for i ∈ [1,2, ...,Nj ≡ N

2 j ]. (4.76)
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As j increases, the bins O( j)
i become less correlated. This allows us to estimate

the variance of the mean value of O(0)
i by

σ2 = lim
j→∞

Var[O( j)
i ]

Nj
. (4.77)

From Ref. [171] the correlation length τ is equal to

τ =
1
2

(
Nσ2

Var[O(0)
i ]

−1

)
. (4.78)

Hence bins with τ < 2 j should be used to get uncorrelated samples. The upper
bound for possible j is in practice determined by the precision needed for the
covariance matrix, see below.

4.8.2 Covariance matrix
Let f̃i,k denote measured Matsubara Green’s function data, where k∈{1,2, ...,N}
labels different uncorrelated data sets. Each set contains M different, possibly
correlated, observables which are labeled by i ∈ {1,2, ...,M}. For example,
f̃i,k represent the data from a binning analysis of QMC data. The averages

f̃i =
1
N

N

∑
k=1

f̃i,k (4.79)

have the covariance estimator

Ci, j =
1

N(N −1)

N

∑
k=1

( f̃i,k − f̃i)( f̃ j,k − f̃ j). (4.80)

For a precise estimation of the covariance matrix, the number of data sets has
to be at least bigger than the number of observables (N > M). Using the co-
variance matrix we can formulate the χ2 deviation measure for the analytically
continued function as

χ2 = Δ fff TC−1Δ fff . (4.81)

The element Δ fi = fi − f̃i expresses the difference between the input data in
Eq. (4.79) and the Matsubara data fi corresponding to the analytically con-
tinued function. For uncorrelated data, the covariance matrix is diagonal
with Cii = σ2

i , where σi is the estimated standard deviation for f̃i. Then

χ2 = ∑M
i=1

Δ f 2
i

σ2
i

, which we have seen before in Eq. (4.49). The covariance ma-

trix is related to the correlation matrix defined as Ci, j/(σiσ j), which takes
values between −1 and 1. In paper VI the Hubbard dimer is studied and cor-
relation matrices of the QMC data in shown in Fig. 4.13.
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We here present two ways of reformulating Eq. (4.81) into a rotated un-
correlated representation, enabling us to employ the analytical continuation
methods discussed earlier in this chapter. For a more extensive description
than the one that follows below, please look in Ref. [151].

Cholesky decomposition

The covariance is positive definite which allows for a Cholesky decomposition
as C−1 =W TW . Inserted in Eq. (4.81), this gives

χ2 = ||Δ fff ′||22, (4.82)

where Δ fff ′ = WΔ fff . The integral kernel K and the input data f̃ff for the Fred-
holm equation are thus modified to K′ =WK and f̃ff

′
=W f̃ff .

Eigendecomposition

The eigendecomposition C =UDUT simplifies Eq. (4.81) to

χ2 =
M

∑
i=1

Δ f ′2i

σ2
i
, (4.83)

where σ2
i are the eigenvalues of C, occurring on the diagonal of D, and Δ fff ′ =

UT Δ fff . The integral kernel K and the input data f̃ff when solving the Fredholm
equation are thus modified to K′ =UT K and f̃ff

′
=UT f̃ff .
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(a) Relative standard deviation, in τ space. (b) Correlation matrix, in τ space.

(c) Relative standard deviation, in Matsubara
frequency space.

(d) Correlation matrix, in Matsubara frequency
space.

Figure 4.13. The noise characteristics of QMC data for the Hubbard dimer.
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5. Summary and outlook

This thesis is based on in the following works:

Paper I: The Mott phase of the Hubbard model is studied using DMFT with
a stochastic impurity solver. The self-energy is constructed from an average
over a distribution of impurity models. Few bath states are used for each
impurity model, enabling ED to be used. Spectral functions with sharp fea-
tures are obtained, for moderate computational cost. An interesting project for
the DED method would be to study larger impurity systems, with more bath
sites, to investigate the convergence of the observed finite-size effects. An-
other interesting area of applicability of DED is multi-orbital systems, where
computational efficiency is an important concern.

Paper II: Inter-site Ji j’s are obtained by means of DFT+U through the MFT.
Good estimates of ordering temperatures and magnon dispersions are pro-
vided, if combined with atomistic spin dynamics simulations [172–175]. Our
results suggest that if one extracts the Ji j’s from the DFT+U total energies, the
use of a spin non-polarized functional (e.g. LDA) is preferable. To investigate
if this conclusion also holds for DFT+DMFT could be an interesting project.

Papers III-IV: In paper III, a DFT+MLFT approach is developed and applied
to four TMOs, leading to good agreement between theoretical and experimen-
tal spectra. In paper IV, Mo doped LaFeO3 is studied. Experimental and
theoretical XA spectra are compared, primarily to investigate the charge dis-
proportionation as a function of Mo the doping. To analyze the system using
DFT+DMFT would be an interesting continuation.

Papers V-VII: In paper V, a Padé approximant scheme is developed. It can
be applied to several problems arising in strongly correlated physics. To ex-
tract the spectral function within DMFT an analytical continuation is needed
for impurity solvers working on the Matsubara axis. It may also be useful for
codes working on the Matsubara axis in order to more accurately discretize the
hybridization function in ED [51,113]. Finally, a number of LDA+DMFT im-
plementations have analytical continuations in their computational cycle, such
as e.g. the KKR/EMTO implementations of Refs. [163, 176, 177]. There our
Padé scheme, with improved stability and enhanced accuracy, may be benefi-
cial. In paper VI, several analytical continuation methods are compared with
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each other for various test systems, in terms of accuracy and precision. To
use several methods is seen to help in the analysis of obtained spectral func-
tions. A stochastic optimization method is among the tested methods, and a
GPU implementation of this method is presented in paper VII. To study the
analytical continuation of the off-diagonal elements of single-particle Green’s
functions, having a normalization condition described by Eq. (1.38), could be
a challenging and interesting future project.
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6. Populärvetenskaplig sammanfattning

Klassisk fysik beskriver naturen på en vanlig (makroskopisk) skala. Men
för att förstå, beskriva och förutse verkligheten på en längdskala på några
atomer (ungefär 0.0000000001 m), kan inte längre klassisk fysik tillämpas
utan kvantfysik behövs. Som namnet kvantfysik antyder är kvantiteter så
som energi, rörelsemängd och rörelsemängdsmoment begränsade till kvan-
tiserade värden. Under de senaste ca 100 åren har förståelsen för kvantfysik
ökat enormt. Detta har varit nödvändigt för utvecklingen av t.ex. transis-
torer i datorer, magnetisk datalagring, lasrar och tekniker för medicinsk bild-
behandling. Ett fascinerande exempel på en nylig tillämpning av kvantfysik
är då forskare 2014 lyckades överföra informationsdata 3 meter med hjälp av
kvantteleportering, vilket i framtiden kan komma att användas för kvantkom-
munikation och kvantberäkningar [178]. Förra året, ett annat imponerande
vetenskapligt framsteg gjordes, då den redan världsledande tokamak fusion-
srektorn i Kina slog sitt eget världsrekord genom att upprätthålla plasma i 101
sekunder [179]. Utan förståelse av kvantfysik hade denna bedrift, att efter-
likna solen, inte varit möjlig. Inom materialfysik är ett mål att kunna förutse
materials egenskaper med hjälp av universella kvantmekaniska lagar. Trots att
dessa lagar är kända är ekvationerna, som beskriver elektronerna i det aktuella
materialet, svåra att lösa och datorsimuleringar används i stor utsträckning. I
många material kan approximativa och beräkningseffektiva metoder tillräck-
ligt noggrant beskriva verkligheten. Den hittills kanske mest framgångsrika
metoden är den Nobelprisbelönta täthetsfunktionalteorin (DFT) [9, 10]. Men
för en grupp material, där växelverkan mellan elektronerna är stor, fallerar
DFT. I dynamisk medelfältsteori (DMFT) behandlas elektron-elektron väx-
elverkan mer explicit än i DFT, vilket gör den lämplig för att beskriva dessa
starkt korrelerade system. I DMFT översätts systemet med elektroner som rör
sig i ett gitter till ett enklare system med en atom med elektroner och dess
omgivning. Att lösa problemet med en atom som är kopplad till en omgivning
kan dock fortfarande innebära tidskrävande datorberäkningar. I Artikel I an-
vänds och utvecklas en stokastisk metod för att snabbare lösa detta problem.
Att kombinera DFT med DMFT (DFT+DMFT) är idag en av de mest populära
och noggranna metoderna för att beskriva material på en atomär längdskala.
För att simulera magnetism i material kan först kvantmekaniska beräkningar
göras, t.ex. med DFT+DMFT. De erhållna resultaten kan sedan användas i en
klassisk modell för att förutsäga magnetiska egenskaper på en makroskopisk
skala. I Artikel II genomförs dessa steg för fem olika övergångsmetalloxider
(TMOs).
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För att karaktärisera material används många olika experimentella metoder.
Spektroskopi, studien av material-ljus växelverkan, är en dessa verktyg. Genom
att lysa ljus med en viss frekvens, mäta hur mycket av ljuset som absorberas
av materialet, och sedan variera frekvensen kan ett absorptionsspektrum sam-
las in. I den här avhandlingen har röntgen absorptions spektroskopi (XAS)
studerats, vilket ger kunskap om elektronstrukturen och den lokal geometrin
i materialet. Det som händer inne i materialet är att ljuset exciterar en hårt
bunden elektron (kärnelektron) till oockuperade orbitaler (så kallade valens
orbitaler) . Då elektronerna i materialet känner av att en kärnelektron har fly-
ttats bort och lämnat ett hål efter sig kommer en växelverkan uppstå mellan
hålet och valenselektronerna. För att korrekt simulera XAS behöver denna
växelverkan behandlas explicit, vilket görs i Artiklarna III och IV för olika
TMOs. God överensstämmelse fås med experimentellt uppmätta spektrum. I
kapitel 3 beskrivs ytterligare ett spektroskopi projekt, där en väldigt fokuserad
stråle med elektroner av väldigt hög energi propagerar genom CaTiO3. Spek-
trum med en atomär rumslig upplösning uppmäts och överensstämmer kvali-
tativt med genomförda teoretiska simuleringar.

Ett kritiskt steg i DMFT, kallat analytisk fortsättning, är nödvändigt för att
erhålla fysikaliska storheter. Analytisk fortsättning betyder en transformation
av en funktion in det komplexa talplanet, och innebär en övergång från imag-
inära frekvenser till reella frekvenser. Detta är ett numeriskt ostabilt problem
som erfordrar robusta algoritmer med avseende på numeriskt brus. Metoden
att anpassa Padé approximanter studeras och utvecklas i Artikel V. En GPU
implementering av en stokastisk metod presenteras i Artikel VII. I Artikel VI
jämförs flera olika metoder för analytisk fortsättning. För och nackdelar med
respektive metod presenteras tillsammans med resultat för olika brusnivåer på
indatan.
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A. Matsubara summation

To relate the imaginary time Green’s function G(τ) with the spectral function
ρ(ω) we combine Eq. (1.18) and Eq. (1.23), which gives us

G(τ) =
1
β

∞

∑
n=−∞

e−iνnτGn =
∫ ∞

−∞
dωρ(ω)

1
β

∞

∑
n=−∞

e−iνnτ

iνn −ω
. (A.1)

We have to perform the summation of the Matsubara points following the pro-
cedure outlined in Ref. [133]. We introduce g(z) = e−zτ

z−ω and an auxiliary func-
tion h(z). We require h(z) to have poles at the Matsubara points with residues
equal to one. The sum can now be expressed as an integral in the complex
plane by using Cauchy’s residue theorem:

∞

∑
n=−∞

g(iνn) = ∑
zp∈poles of h

Res(gh,zp) =
1

2πi

∮
C

dzg(z)h(z), (A.2)

where the integration path C is shown in Fig. A.1. If g(z)h(z) decays for large
|z| the only remaining contribution of the integral is from the path around the
pole of g(z). This enables us to again use Cauchy’s residue theorem, hence

1
2πi

∮
C

dzg(z)h(z) =
1

2πi

∮
C′

dzg(z)h(z) =−Res(gh,w) =−e−ωτh(ω).

(A.3)
Note that the minus sign occurs since the path C′ is anti-clock wise. For 0 <
τ > β , an auxiliary function which has poles at the Matsubara points with
residues of one, and balances the divergence in g(z) at large |z| in the left half
plane is h(z) = β

1±e−β z . This finally gives us an expression for the imaginary
time Green’s function

G(τ)=
∫ ∞

−∞
dωρ(ω)

1
β
∗−e−τωh(ω)=

∫ ∞

−∞
dωρ(ω)

−e−τω

1± e−βω , for 0< τ < β .

(A.4)
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Re z

Im z

C

C'

Figure A.1. Integration paths C and C′, the Matsubara points and the pole of g(z) at
z = ω .
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B. Lanczos algorithm

In this Appendix an overview of the Lanczos algorithm for calculating the XA
spectrum is presented. For more detailed descriptions, please see Refs. [111,
180–183]. Our starting point is the Green’s function in Eq. (3.20). We want
to calculate the corresponding spectral function ρ(ω) =− 1

π ImG(ω + iδ ), for
a small positive δ . The first thing is to find the eigenstates |n〉 and the corre-
sponding eigenenergies En. In the Lanczos method eigenstates are obtained
by the iterative construction of an orthonormal basis and the diagonalization
of the Hamiltonian in this so called Krylov basis. Starting from a random nor-
malized state |v0〉, the Krylov basis {|v0〉, |v1〉, ..., |vm−1〉} is defined according
to the initializations

|w′
0〉= Ĥ|v0〉
α0 = 〈w′

0|v0〉
|w0〉= |w′

0〉−α0|v0〉. (B.1)

and the recurrent relations:

β j−1 =
√

〈w j−1|w j−1〉

|v j〉= 1
β j−1

|w j−1〉

|w′
j〉= Ĥ|v j〉

α j = 〈w′
j|v j〉

|w j〉= |w′
j〉−α j|v j〉−β j−1|v j−1〉. (B.2)

The Hamiltonian in the Krylov basis is tridiagonal,

Hkrylov =

⎡
⎢⎢⎢⎢⎢⎣

α0 β0 0 0 0
β0 α1 β1 0 0

0 β1 α2
. . . 0

0 0
. . . . . . βm−2

0 0 0 βm−2 αm−1

⎤
⎥⎥⎥⎥⎥⎦ (B.3)

and diagonalizing it gives eigenstates and eigenenergies of the full Hamilto-
nian.

Once the eigenstates are found, for each eigenstate |n〉, we want to calculate

G(n)(ω + iδ ) = 〈n|T̂ † 1
ω̃ 1̂− Ĥ

T̂ |n〉, (B.4)

97



where ω̃ = ω + iδ +En is introduced for compactness. Starting from the nor-
malized state

|v0〉= 1√
〈n|T̂ †T̂ |n〉

T̂ |n〉 (B.5)

we construct the Krylov basis {|v j〉} of Ĥ according to Eq. (B.1) and Eq. (B.2),
and formulate the Green’s function as

G(n)(ω + iδ ) = 〈n|T̂ †T̂ |n〉 (ω̃I −Hkrylov
)−1
[0,0] , (B.6)

where [0,0] simply are indices to the inverse matrix and I is the identity matrix.
Finally, the [0,0] element of the inverse of the tridiagonal matrix in Eq. (B.6)
is expressed as a continued fraction [184]

G(n)(ω + iδ ) = 〈n|T̂ †T̂ |n〉 1

ω̃ −α0 − β 2
0

ω̃−α1−
β2

1
ω̃−α2...

. (B.7)

In practice there are several things to consider. For finding the ground
state, instead of using a relatively large Krylov basis, often it is faster to use a
small Krylov basis and restart the Lanczos algorithm from the obtained ground
state [183]. For a certain precision, how small the Krylov basis can be depends
on the Hamiltonian and the operator T̂ but typically it is much smaller than the
size of the full Hamiltonian. To find the eigenenergies of interest, it might be
necessary to subtract a constant to the Hamiltonian such that the eigenval-
ues are all negative [111]. Also note, The Lanczos algorithm is numerically
unstable and therefor often requires additional orthogonalization steps. For
computational reasons, sometimes, only certain occupation configurations are
allowed. This approach is called the restricted active space configuration in-
teraction [185]. An important further consideration in order to minimize the
number of needed Slater determinants is which single-particle basis to use in
the many body calculations. One strategy is to have orbitals which diagonalize
the density matrix [111].
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Exchange parameters and adiabatic magnon energies from spin-spiral
calculations. Phys. Rev. B, 88:134427, Oct 2013.

[174] I. V. Solovyev and K. Terakura. Effective single-particle potentials for MnO in
light of interatomic magnetic interactions: Existing theories and perspectives.
Phys. Rev. B, 58:15496–15507, Dec 1998.

[175] R Logemann, A N Rudenko, M I Katsnelson, and A Kirilyuk. Exchange
interactions in transition metal oxides: the role of oxygen spin polarization.
Journal of Physics: Condensed Matter, 29(33):335801, 2017.

[176] L. Chioncel, L. Vitos, I. A. Abrikosov, J. Kollár, M. I. Katsnelson, and A. I.
Lichtenstein. Ab initio electronic structure calculations of correlated systems:
An EMTO-DMFT approach. Phys. Rev. B, 67:235106, Jun 2003.

109



[177] J. Minár, L. Chioncel, A. Perlov, H. Ebert, M. I. Katsnelson, and A. I.
Lichtenstein. Multiple-scattering formalism for correlated systems: A
KKR-DMFT approach. Phys. Rev. B, 72:045125, Jul 2005.

[178] W. Pfaff, B. Hensen, H. Bernien, S. B. van Dam, M. S. Blok, T. H. Taminiau,
M. J. Tiggelman, R. N. Schouten, M. Markham, D. J. Twitchen, and
R. Hanson. Unconditional quantum teleportation between distant solid-state
quantum bits. Science, 2014.

[179] China’s ’artificial sun’ sets world record with 100 second steady-state high
performance plasma. https://phys.org/news/
2017-07-china-artificial-sun-world-steady-state.html.
Accessed: 2018-10-09.

[180] C. Lanczos. An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. Journal of Research of the National
Bureau of Standards, 45, Oct 1950.
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