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Abstract
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This thesis theoretically studies the dynamics of molecular magnets under electrical control.
Molecular magnets are nanoscale magnets that can, e.g., consist of single-molecules or single-
atoms. In these magnets, the electronically mediated exchange and transport can be controlled
by external fields. In this thesis, we study the effect of electrical control and voltage pulses on
the transport properties, spin dynamics and the exchange of the molecular magnets.

Nonequilibrium Green's functions is the method used to describe the underlying electronic
structure of the magnetic molecule. The studied systems consists of single-molecule magnets
in a tunnel junction between metallic leads. Here, the transport characteristics are derived for
charge, spin and heat currents in the system for time-dependent voltage pulses. Furthermore,
a generalized spin equation of motion is derived for the molecular spin moment, using
nonequilibrium field theory. The equation of motion incorporates nonequilibrium conditions
and is of nonadiabatic character. The effective model for the spin moment can be decomposed
into effective magnetic field, isotropic Heisenberg interaction, and anisotropic Ising and
Dzyaloshinskii-Moriya interactions. These effective fields depends on the electronic structure
of the molecule and can be controlled by, e.g., gate and bias voltages.

The thesis encompasses studies on the effect of a sudden on-set of a voltage pulse for a single-
molecule magnet and its effect on the spin dynamics and transport properties of the molecule.
Different approximations schemes for the spin equation of motion and their regimes of validity
are investigated. Moreover, spin-dependent signatures in the heat transport characteristics of
the single-molecule magnet are connected to the dynamics of the molecular spin moment. A
phase induced switching mechanism of the molecular moment is shown for voltage pulses of
varying temporal length. In the stationary limit, it is shown that one can electrically control the
interaction and transport of two molecular magnets in a series. Furthermore, investigations on
the electrictronically mediated anisotropy in a vibrating single-molecule magnet show that the
anisotropy can be tuned by a temperature difference or a voltage bias.
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Part I:
Introduction
The first part of this thesis will give an overall introduction and background to
put the thesis into context. The focus is to describe the topics of interest and
to give a brief overview of the different fields which the thesis touch upon.





1. Introduction

Due to the experimental progress in the past decades, it is now possible to
study a vast range of phenomena in the atomic regime. This has led to intrigu-
ing possibilities of understanding quantum mechanics on the scale of single
atoms and molecules, providing further insights into the physics of nanoscale
systems. Experimental techniques enables for control and read-out on the
nanoscale, opening up for realizing new types of technologies for future ap-
plications, and to the attosecond time-scale, enabling for real-time observation
and time-domain control of atomic-scale electron dynamics [1, 2]. Further-
more, techniques for probing ultrafast spin dynamics have been developed [3],
facilitating advancement in the study of ultrafast quantum dynamics of small
systems. Together with a better understanding of molecules and their magneti-
zation [4], it now provides access to study single-molecule magnets in the fast
regime.

The realization of single-molecule magnets and simple quantum systems on
the nanoscale have also led to break-throughs on the theoretical side. Due to the
simplicity of such systems, the systems degrees of freedom decrease, allowing
us to study single phenomena in more detail. Studying these systems far from
equilibrium both questions our understanding of thermodynamics and provides
new insights into nonequilibrium phenomena [5, 6]. It also interconnects with
the active field of forming a field-theoretical description of spin systems and
systems out-of-equilibrium [7, 8].

This thesis aims to theoretically investigate molecular magnets in an out-of-
equilibrium environment using field theoretical methods. Here, we describe
the molecular magnets as a set of distinct energy levels, represented by quantum
dots, connected to two large electronic reservoirs through tunneling coupling
and to single-spin moments via exchange interaction. The single-spin moment
could be an effective spin of a magnetic molecule, while the quantum dot
represents the electronic levels of the molecule. Investigations are then done
on the electronically mediated exchange with the localized spin moment, the
spin dynamics of the localized moment and the transport properties of the
molecule.

The studies and accompanying papers in this thesis can be divided into
two categories. The first category considers the dynamics of a single-molecule
magnet. It treats the transient effects of sudden pulses, non-adiabatic properties
of the spin dynamics and the transport properties of the molecule. Control
of switching, charge, spin and heat currents using pulses are examined and
connected with the dynamics of the exchange interaction in the molecule. The
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second category treats the static limit of molecular magnets. Here, studies
include control of the exchange interaction in multi-spin systems and the effect
of vibrations on the electronically mediated anisotropy of a single-molecular
magnet.

The thesis is organized as follows. First, in Chapter 2, the background of the
study is introduced, both regarding theory as well as experimental research. In
the later chapters, the theoretical part of the study is derived and described. It
starts with a short introduction to nonequilibrium Green’s functions in Chapter
3. In Chapter 4, the system of focus in this thesis, a single-spin moment
connected to the quantum dot, is introduced and the Green’s function derived.
Thermoelectricity for single-molecule magnets are then described in Chapter
5. In Chapter 6, the theory for the dynamics of the single-spin moment is
derived. In Chapter 7 and 8, the results in the papers are briefly presented for
the first and second category described above, respectively. Then, in Chapter
9, the thesis is summarized and future prospects are described.
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2. Background

This chapter serves as a brief review of the relevant topics related to molecular
magnets and to put the thesis into context. Modern research is performed
in a vibrant community. Therefore it is highly relevant to go through and
understand what has been done in the field before laying out the theory and
results. The chapter starts with a short review of nonequilibrium physics, then
we go through molecular magnets and spin dynamics. After that the topics
of quantum dynamics, thermoelectricity of molecular systems and quantum
thermodynamics are addressed.

2.1 Nonequilibrium physics
The field of nonequilibrium physics is about studying systems that are driven
out of their relaxed equilibrium state by some external disturbance. It is
highly relevant in small quantum systems, such as quantum dots and single
molecules, as they can be strongly coupled to the environment and easily dis-
turbed. Nonequilibrium properties are both of interest when probing currents
through the system, but also in order to study various thermodynamic proper-
ties [9]. The realization of cold atoms in optical cavities, driven by an external
field, has also pushed for an deepened exploration of the theory behind driven
quantum systems [10–13].

Several theoretical methods to describe nonequilibrium phenomena have
been developed. These range from stationary to time-dependent approaches
[14], and include, among others, master equations [15], generalized Langevin
equations [16], and Keldysh Green’s functions techniques [17–19]. Here,
topics of interest can be, e.g., vibrating molecules in junctions [20, 21].

In order to deal with the extra complexity provided by treating a system
out-of-equilbrium, different numerical techniques have been established. One
example of these techniques is the wave function method [22, 23], where one
uses a source-sink Schrödinger equation, providing convenient problem in
order to simulate time-resolved electron dynamics in multi-terminal devices.
Other numerical approaches incorporate nonequilibrium Green’s functions
within the framework of time-dependent density functional theory [24–26],
where one extends the theory to perform ab-initio calculations for different
materials out-of-equilibrium.

In this thesis we focus on nonequilibrium Green’s functions defined on the
Keldysh contour [17–19, 27, 28], since it provides a good analytical tool for
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describing nonequilibrium and time-dependent phenomena. Our aim is to go
beyond the equilibrium and stationary regime and to achieve an appropriate
description of the effects of electrical and time-dependent drive of molecular
magnets.

2.2 Molecular magnets
Molecular magnets and molecular spintronics provides interesting prospects
for technical applications [29, 30]. These types of devices use the intrinsic
spin moment of magnetic molecules for logical operations, and serve as model
systems to study various physical phenomena. Within the field of molecular
spintronics, much interest have circulated around single-molecule magnets [4],
where one make use of a large effective single-spin moment of a molecule or
atom.

Experimentally it has been shown that one can control and detect the mag-
netization of molecules by electrical current [31–38]. This, and other new
methods for probing single-molecule spin states [39–41], enable both con-
trol and read-out of single molecules. Experiments on magnetic atoms and
molecules show interesting effects in their exchange [42–45], large anisotropy
of individual molecules [46–49], as well as collective spin excitations and
Kondo effect [50–53], thus revealing new kinds of interesting physics on the
nanoscale.

When it comes to creating molecular devices, experiments have looked into
the possibility of creating quantum mechanical logical gates [54, 55], and to
use molecular spintronics for quantum computation [56, 57]. Other interesting
developments is that one can engineer and control the magnetic anisotropy of
molecular magnets [58, 59] and stabilize the effective spin moment of single
atoms for longer times [60]. This, together with other works [61–64], show the
way towards realization of single-atom and single-spin memory devices.

On the theoretical side we have witnessed great progress over the course
of the past decades. Studies have been performed on the possibilities for
electrical control of, e.g., the exchange interaction [65], magnetic anisotropy
induced by ferromagnetic leads [66], and electron paramagnetic resonance of
single-molecule magnets [67]. Effects of a localized spin and its anisotropy
has also been investigated in the terms of the Kondo effect [68–73] and the
Pauli spin blockade in molecular dimers [74]. Superconducting spintronics is,
moreover, a fertile ground for further research [75–79], enhancing the central
effects of spintronics devices. Furthermore, several works have been done
within the field of switching dynamics of molecular magnets which we will
discuss in Section 2.3.3.

In this thesis, we are primarily interested in molecules consisting of a local
spin moment separated from the electronic current mediated by the molecule.
As the molecule usually comprises a set of atoms, which gives rise to a
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description in terms of molecular orbitals, one talks about the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO).
This would be in contrast to the valence and conduction band for a crystal
structure. A separation between the HOMO and LUMO levels and the local
spin moment can be done in, e.g., molecular structures containing transition
metal atoms. In these compounds the d-levels of the transition metal, which
are deeply localized, constitute the localized magnetic moment. Molecules
that show these kinds of properties are, among others, molecular complexes
[80–87]. Using this picture, we also neglect the local Coulomb interaction in
the molecule. We note that this is a severe simplification, but it is justified since
the Coulomb interaction is typically negligible in the sp-orbitals that constitute
the conducting levels in the molecular ligand structure.

2.3 Spin dynamics
Spin dynamics is the field of describing the magnetization dynamics of ma-
terials. It was first established to describe large scale materials. Then there
has been a push towards atomistic systems and to describe fast phenomena in
materials. Here we go through the developments in atomistic spin dynamics,
ultra-fast spin dynamics and the dynamics of single-molecule magnets.

2.3.1 Atomistic spin dynamics
The usual way of describing the dynamics of the magnetization of materials is
to employ the Landau-Lifshitz-Gilbert (LLG) equation of motion [88]. Here,
one describes the magnetic moment as a classical spin. This has successfully
been applied to describe the magnetization dynamics of different materials. It is
also the commonly used approach when calculating properties and dynamics of
interesting systems and phenomena, such as skyrmions [89] and magnons [90].
In-depth studies have been performed on the Gilbert damping [91–93], which
play an important role in the LLG equation. The model has been extended
to take into account other effects, such as temperature, moment of inertia
and stochastic forces, by adding extra terms into the equation of motion. For
example, by adding a Langevin term to the equation, one can induce, e.g., noise
and temperature effects. In order to make use of the LLG equation, one of the
assumptions is usually that the material is in quasi-equilibrium and sometimes
with a thermal gradient. There are several works that has investigated thermal
effects on the spin dynamics using the LLG equation, e.g., [94–98].

2.3.2 Ultra-fast demagnetization
Ultrafast demagnetization was found by experimentalist in the late 1990s [99–
101] and has since then gotten a lot of attention, since people are not convinced
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of the theoretical picture. The area spans over several fields, including ab-initio
methods, such as time-dependent density functional theory, and atomistic spin
dynamics [102]. This has led to further investigation of the LLG equation
itself in the ultra-fast regime [103, 104], and magnetic interactions in strongly
correlated systems [105]. Several proposals have been made for the describing
the ultra-fast demagnetization [102, 106, 107], and pushed for further under-
standing of ultra-fast effects in the spin dynamics. Furthermore, for a more
detailed description of ultrafast spin dynamics, several works have been per-
formed in order to calculate dynamical exchange interactions. Extensions have
been made to include nonequilibrium and time-dependent interactions when
calculating the exchange in materials [105]. The formalism was later extended
to study dynamical magnetic susceptibility and exchange parameters [108].
Other studies on dynamical exchange parameters have shown the importance
of dynamical exchanges in their calculations [109] and that the exchange in-
teractions quench for ultrafast laser pulses [110]. Also, ab-initio studies using
time-dependent density functional theory have been performed on dynamical
exchange interactions, where consequences on ultrafast spin dynamics were
studied [111]. Experimental techniques have pushed towards probing of ultra-
fast exchange interactions [112, 113].

2.3.3 Spin dynamics of molecular magnets
In order to describe the spin dynamics of single molecules, it is important to
consider nonequilibrium effects since they easily can be disturbed by external
forces. Methods using quantum master equations [15, 114–117] and stochastic
LLG equation [118, 119] have been thoroughly investigated. Another tech-
nique, which will be used in this thesis, is to derive a spin equation of motion
from the spin action defined on the Keldysh contour, considering the full
nonequilibrium properties of the effective spin moment [91, 120–123]. This
provides a general description of the spin dynamics, and one also allows for
other types of exchange interactions appearing in the nonequilibrium regime
[65, 124–133]. Field-theoretical methods have also shown interesting prop-
erties in single-spin systems, such as geometric phases and chaotic behaviors
[134, 135]. Magnetic tunnel junctions are of related interest where studies
have been performed on systems having noncollinear leads [136, 137] and on
the spin-switching by spin-torque [138–140]. So far most approaches do not
consider nonadiabatic effects, which are important in molecular magnets as the
small system opens up for back-action. In this thesis we try to include nona-
diabatic effects and extend the formalism to the time-dependent regime, thus
giving time and history dependent parameters in the spin equation of motion,
see Chapter 6.
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2.4 Quantum dynamics of open systems
Dynamics of open systems is an active area of research [11, 141] where
nonequilibrium open systems, such as nanojunctions, quantum dots, and single
molecules, have been studied extensively, both experimentally and theoreti-
cally. Studies include electron dynamics [142, 143], vibrating quantum dots
[144], pulse-enhanced thermoelectric efficiency [145, 146], time-dependent
driving of a molecular junction [147], and optoelectronics and spectroscopy
[148, 149]. Due to size confinement, the systems exhibit intrinsic out-of-
equilibrium properties which can be controlled by pulses and external forces.
Hence, such set-ups are well suited for studying non-adiabatic quantum dy-
namics. This has lead to extensive works of using field theoretical models
for driven open quantum systems [12]. Recent theoretical predictions have
also suggested that periodical out-of-equilibrium driving can induce temporal
phases of matter [150], which subsequently have been experimentally corrob-
orated [151, 152]. Specially interesting in these systems are the possibility of
probing non-Markovian effects, i.e., effects dependent on changes in the past,
appearing due to their quantum nature. This has several implications and is
of interest because of non-locality. The workhorse of the field is the quantum
master equation, and work has been done to extend it with nonequilibrium
Green’s functions [14], which is the language used in this thesis.

2.5 Thermoelectricity of molecular systems
Thermoelectricity in nanosystems, such as single-molecules and nanojunc-
tions, have been under investigation during recent years [153]. Here the focus
has been on figuring out the relationships between the heat and electrical cur-
rents in these systems and to improve thermoelectric efficiencies. Furthermore,
the relation between heat and spin currents has been studied in several differ-
ent molecular systems and quantum dots [154–161]. It has been shown that
strongly correlated phenomena and interference could have interesting effects
on the thermoelectric properties [162–167]. Other studies involve the effect of
time-dependent control on the energy and heat transfer of molecular systems
[145, 146, 168–171] to, e.g., improve the thermoelectric efficiency or design
thermal machines.

The discoveries of spin Seebeck and spin Peltier effects have also led to
increase the interest in spin-dependent thermoelectric effects [98, 172–175]. It
includes investigations of spin-dependent Seebeck and Peltier effects where the
heat current is coupled to the spin-dependent electron channels in the material.
In the context of molecular magnets, local anisotropies have been suggested
to have an effect on the spin-dependent thermoelectric transport properties
[157, 158, 176]. Experiments of molecular magnets show thermodynamic
signatures of the change of spin configurations in the magnet [177]. Moreover,
experimental progress in nanoscale systems has pushed towards the realizations
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of devices where one can observe heat using nanothermometry [9, 178, 179].
This, together with the detection of ultrafast spin dynamics with nanoscale
resolution [3], opens up the possibility to probe and study the relation between
heat and spin dynamics on the nanoscale.

2.6 Quantum thermodynamics
Quantum thermodynamics treats the thermodynamics of microscopic systems,
such as single molecules, where quantum effects play a crucial role. The topic
has been under recent investigation, since finding viable definitions of quantum
thermodynamics for strongly coupled systems is an open problem [180, 181].
Proposals have been done to extend the models to include system-bath coupling
and time-dependent drives [182–184], creating an extra component in the
heat current named the energy reactance [182]. It does, though, not fully
comply with the laws of thermodynamics in all set-ups [185], and there have
been further suggestions to improve the description [186, 187]. Using new
definitions for quantum thermodynamics in terms of nonequilibrium Green’s
functions has also been investigated [180]. We will not treat the full quantum
thermodynamics of molecular magnets in this thesis, however, the progress in
the field is important for further investigations.
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Part II:
Theory
In this part of the thesis we go through and develop the theory that is used to
describe the transport properties and spin dynamics of a molecular magnet.
In Chapter 3 we introduce some basic concepts and nonequilibrium Green’s
functions which is central for calculating the properties of the molecular mag-
net. In Chapter 4 we derive the Green’s function for a molecular magnet with
a single spin and in Chapter 5 we study the thermoelectric properties of such
a system. In Chapter 6 we look at the spin dynamics of a molecular mag-
net and derive a generalized spin equation of motion which we relate to the
Landau-Lifshitz-Gilbert equation.





3. Nonequilibrium Green’s function

In this chapter we introduce some basic concepts in order to derive properties
of the molecular magnet in the following chapter. We use the language of
nonequilibrium Green’s functions and describe the physics in a second quan-
tized form, i.e., in the language of many-particle states. Note that this overview
is meant to be brief in order to introduce the concepts used in the thesis. For
more information regarding Green’s functions and their properties see, e.g.,
Ref. [17, 27, 28, 188].

3.1 Commutation and anti-commutation relations
Different quantum mechanical particles follow different statistics. There are
mainly two classes, fermions and bosons. Other types of particles also exist,
but are not considered in this thesis. Typical examples of fermions are, e.g.,
electrons, while typical bosonic particles are, e.g., phonons and photons.

3.1.1 Bosons
In second quantized form we can define a bosonic creation b† and annihilation
b operator. This operators will create (annihilate) a bosonic particle acting on
a Fock state that counts the number of particles occupying each state. In a
bosonic system, the amount of particles occupying each state is not restricted.
Therefore, they have the following commutation relations

[b†
α, b†

β] = [bα, bβ] = 0, (3.1)

[bα, b†
β] = δαβ .

3.1.2 Fermions
Fermions follow the Pauli exclusion principle. Thus, they can’t occupy the
same state. If we define the fermionic creation c† and annihilation c operator
this will give us the anti-commutation relations

{c†
α, c†

β} = {cα, cβ} = 0, (3.2)

{cα, c†
β} = δαβ .
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3.1.3 Commutators and anti-commutators
In order to evaluate the statistics imposed by the bosonic and fermionic parti-
cles, it is useful to rewrite commutators including several operators. Expanding
[A, BC] gives

[A, BC] = ABC − BCA

= ABC + BAC − BAC + BCA

= {A, B}C − B{A, C}. (3.3)

Similarly

[AB, C] = A{B, C} − {A, C}B. (3.4)

Using the same procedure, the expression [AB, CD] can be expressed as follows

[AB, DC] = [AB, C]D + C[AB, D]
= (A{B, C} − {A, C}B)D + C(A{B, D} − {A, D}B). (3.5)

3.2 Heisenberg equation of motion
It is helpful to define the Heisenberg equation of motion in order to derive the
Green’s functions for the molecular magnet. The Heisenberg picture defines the
operators, e.g., the creation and annihilation operators, to be time-dependent
acting on stationary state vectors. It is in contrast with the Schrödinger picture,
where the operators are stationary and the state vectors are time-dependent,
or the interaction picture, where both the operators and state vectors are time-
dependent. In the Heisenberg picture, the evolution of a time-dependent oper-
ator A(t) is described by the Heisenberg equation of motion

dA(t)
dt

= i[H, A(t)], (3.6)

where H the Hamiltonian and we set � = 1.

3.3 Green’s function
Propagation between two times, t and t′, for the time-dependent creation
(annihilation) operators c(t)(c†(t′)) can be calculated through the time-ordered
Green’s function defined as

G(t, t′) = −i
〈
T c(t)c†(t′)

〉
= −iθ(t − t′)

〈
c(t)c†(t′)

〉
+ iθ(t′ − t)

〈
c†(t′)c(t)

〉
, (3.7)
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where T denotes the time-ordering operator. The Green’s function provides
the correlation of the field operators between time t and t′. The spatial Green’s
function is defined analogously. The Green’s function could be understood as
the overlap between the fields at time t and t′ and is a convenient tool since it
can be used to derive the properties and observables of the system of interest.

It is helpful to define the greater and lesser Green’s function

G>(t, t′) = −i
〈
c(t)c†(t′)

〉
,

G<(t, t′) = i
〈
c†(t′)c(t)

〉
, (3.8)

representing the backwards and forwards propagation, respectively, such that
G(t, t′) = θ(t − t′)G>(t, t′) + θ(t′ − t)G<(t, t′). In turn we can define the
advanced and retarded Green’s function as

Ga =iθ(t′ − t)
〈{

c(t), c†(t′)
}〉

=θ(t′ − t)
[
G<(t, t′) − G>(t, t′)

]
, (3.9)

and

Gr = − iθ(t − t′)
〈{

c(t), c†(t′)
}〉

=θ(t − t′)
[
G>(t, t′) − G<(t, t′)

]
. (3.10)

3.4 Equation of motion for the Green’s function
Taking the time-derivative with respect to t of the Green’s function in Eq. (3.7)
gives the equation of motion for the Green’s function

∂tG(t, t′) = −i
〈
{c(t), c†(t′)}

〉
−
〈
T[c(t), H]c†(t′)

〉
. (3.11)

When taking the derivative, we used the fact that ∂tθ(t − t′) = δ(t − t′) and
the Heisenberg equation of motion, i∂tc(t) = [c(t), H].

3.5 Green’s function in nonequilibrium
For a system in nonequilibrium, the Green’s function is extended on a contour
in the complex plane. We perform this extension since we cannot be sure that
the system is the same at minus and plus infinity, and since we want to end
up with a system being the same at the end-points when defining the Green’s
function. Thus, we define the contour ordered Green’s function

G(t, t′) = (−i)
〈
Tc c(t)c†(t′)

〉
, (3.12)
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Figure 3.1. The Keldysh contour.

where Tc orders the operators c(t)
(
c†(t′)

)
on the Keldysh contour, see Fig.

3.1. We can also define the greater and lesser Green’s function depending on
the time-ordering as

G> = − i
〈
c(t)c†(t′)

〉
t > t′ ∈ C,

G< =i
〈
c†(t′)c(t)

〉
t < t′ ∈ C. (3.13)

3.6 Analytical continuation
For a Green’s function, defined on the Keldysh contour, it is convenient to
make use of analytical continuation when it constitutes two Green’s functions.
Our equation of interest is

A(t, t′) =
˛

C

dτB(t, τ)C(τ, t′). (3.14)

By deforming the contour, see Fig. 3.2, we can rewrite it as

A<(t, t′) =
˛

C1

dτB(t, τ)C<(τ, t′) +
˛

C2

dτB<(t, τ)C(τ, t′). (3.15)

Due to the deformation, the integration variable τ , is always strictly smaller
than t′, and we could therefore write C<(τ, t′) in the first term. Expanding the
first term on the real axis, we rewrite it as
˛

C1

dτB(t, τ)C<(τ, t′) =
ˆ t

−∞
dτB>(t, τ)C<(τ, t′) +

ˆ −∞

t

dτB<(t, τ)C<(τ, t′)

=
ˆ ∞

−∞
dτBr(t, τ)C<(τ, t′), (3.16)

where we have used the connection between the lesser/greater Green’s function
and the retarded Green’s function in Eq. 3.10. Doing the same for the second
term, the expression becomes

A<(t, t′) =
ˆ

dτ
[
Br(t, τ )C<(τ, t′) + B<(t, τ )Ca(τ, t′)

]
. (3.17)

24



Figure 3.2. The deformed Keldysh contour used in analytical continuation.

Using the same method for the greater Green’s function we find similar result,
with the difference that one exchanges the lesser functions to greater functions.

For the retarded and advanced Green’s function we can use the same tricks
that we used for the lesser/greater Green’s function, as they are connected
through Eq. 3.9-3.10. The retarded component becomes

Ar(t, t′) =θ(t − t′)
[
A>(t, t′) − A<(t, t′)

]
=θ(t − t′)

ˆ
dτ
[
Br(C> − C<) − (B> − B<)Ca]

=θ(t − t′)
[ˆ t

−∞
dτ(B> − B<)(C> − C<)

+
ˆ t′

−∞
dτ(B> − B<)(C> − C<)

]

=
ˆ

dτBr(t, τ)Cr(τ, t′). (3.18)

In the case of A =
¸

C dτBCD the rules translates as

A<(t, t′) =
ˆ ˆ

dτdτ ′ [ArBrC< + ArB<Ca + A<BaCa] ,
Ar(t, t′) =

ˆ ˆ
dτdτ ′ArBrCr. (3.19)

3.7 Dyson and Keldysh equation
The Dyson equation is defined as

G(t, t′) = G0(t, t′) +
ˆ ˆ

dτdτ ′G0(t, τ)Σ(τ, τ ′)G(τ ′, t′), (3.20)
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where Σ(τ, τ ′) is the self-energy functional. Using analytical continuation we
can define the Keldysh equation by expanding the Dyson equation for the lesser
Green’s function

G< = G<
0 + Gr

0ΣrG< + Gr
0Σ<Ga + G<

0 ΣaGa

= (1 + Gr
0Σr)G<

0 (1 + ΣaGa) + (Gr
0 + Gr

0Gr
0)Σ<Ga + Gr

0ΣrGr
0ΣrG<,

(3.21)

where we dropped the indication of time-dependence for clarity. We see that
by iterating the procedure to infinite order, we get

G< = (1 + GrΣr)G<
0 (1 + ΣaGa) + GrΣ<Ga. (3.22)

3.8 Electron gas
To exemplify the framework with a simple example we choose the free electron
gas [27] for which the Hamiltonian is H =

∑
k εkc†

kck. The Heisenberg
equation of motion then becomes

i
dck

dt
= [ck, H] = [ck,

∑
k′

εk′c†
k′ck′ ]

=
∑
k′

εk′
(
{ck, c†

k′}ck′ − c†
k′{ck, ck}

)

=
∑
k′

εk′δk,k′ck′ = εkck. (3.23)

Inserting it into the equation of motion for the Green’s function gives

∂tG(t, t′) = −iδ(t − t′)
〈
{ck(t), c†

k(t′)}
〉

−
〈
T[ck(t), H]c†

k(t′)
〉

= −iδ(t − t′) − εk
〈
T ck(t)c†

k(t′)
〉

. (3.24)

Multiplying with i and identifying G(t, t′) = −i
〈
T ck(t)c†

k(t′)
〉
, the whole

expression can be rewritten as

(i∂t − εk) G(t, t′) = δ(t − t′). (3.25)

For a free electron gas, the time-independent expectation value of the elec-
tron operators are

〈
c†

kck
〉

= f(εk) and
〈
ckc†

k

〉
= f(−εk), where f(εk) =

1/(eεkβ + 1) is the Fermi function and f(−εk) = 1 − f(εk). Integrating the
Heisenberg equation for constant energy εk, one gets ck(t) = e−iεktck(0). Us-
ing these results, we get

〈
c†

k(t′)ck(t)
〉

= f(εk)e−iεk(t−t′) and
〈
ck(t)c†

k(t′)
〉

=
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f(−εk)e−iεk(t−t′). Thus, we can express the Green’s function for the free
electrons as

G(t, t′) = −iθ(t − t′)
〈
ck(t)c†

k(t′)
〉

+ iθ(t′ − t)
〈
c†

k(t′)ck(t)
〉

= −i [θ(t − t′)f(εk) − θ(t′ − t)f(−εk)] e−iεk(t−t′). (3.26)

The Fourier transform of G(t) is defined as G(ω) =
´∞

−∞ dteiωt. As our
Green’s function is stationary, i.e., G(t, t′) = G(t− t′), we can write τ = t− t′

and then get the Fourier transform

G(ω) = −i

ˆ ∞

−∞
dτeiωτ [θ(τ)f(εk) − θ(τ)f(−εk)] e−iεk(τ)

= −i

[ˆ ∞

0
dτf(εk)eiτ(ω−εk+iδ) −

ˆ 0

−∞
dτf(−εk)eiτ(ω−εk−iδ)

]

= f(εk)
ω − εk + iδ

+ f(−εk)
ω − εk − iδ

. (3.27)
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4. Green’s function for a single-molecule
magnet with a single spin

We now turn to treat the Green’s function for a single-molecule magnet with a
single-spin moment. A single-molecule magnet has many degrees of freedom
and there could be several types of contributions in the Hamiltonian for the
system. In this derivation we are primarily interested in the electronic and spin
degrees of freedom of the molecular magnet under a time-dependent drive.
We restrict the system to include leads that are metal baths of noninteracting
electrons with wide-bands, a single-level quantum dot as the electronic level
of the molecule and the magnetic moment of the molecule being a single-spin
moment coupled via exchange interaction to the quantum dot. The physical
motivation of the molecular system is given in Section 2.2 and using that
motivation we do not treat the Coulomb interaction in the molecule. For a
comprehensive review of transport properties in molecular junctions we refer
the reader to Ref. [189].

4.1 Hamiltonian
The system studied is a single-spin moment S in a tunnel junction interacting
with a single-level quantum dot, see Fig. 4.1. The quantum dot is coupled
through tunneling coupling to metal contacts with respective chemical potential
μχ, where χ = L, R denotes the left/right reservoir. The Hamiltonian for the
system becomes

H = HL + HR + HT + HQD + HS + Hint. (4.1)

We write the electron operator in the reservoirs as ckσ and in the quantum dot
as dσ, where c†

kσ creates an electron in the reservoir with momentum k and
spin σ, and ckσ annihilates it. The same goes for the quantum dot, but as there
is only one energy level it is simplified to d†

σ and dσ. The Hamiltonian for the
reservoirs, thus, becomes

Hχ =
∑
kχσ

(εkχσ − μχ(t))c†
kχσckχσ. (4.2)

Here, εkχσ is the energy levels of the reservoir, k denotes the momentum vector
and σ the spin. The chemical potential depends on a time-dependent voltage
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Figure 4.1. The system studied in this chapter, representing a single-molecule magnet.
It consist of a single-spin moment S interacting with a quantum dot in a tunnel junction.
The spin in the quantum dot illustrates the spin of the electrons s interacting with the
magnetic moment.

eV (t) = μL(t) − μR(t) across the junction. The tunneling Hamiltonian is
defined as HT = HT L + HT R, where

HT χ = Tχ

∑
kχσ

c†
kχσdσ + H.c., (4.3)

i.e., it creates an electron in the reservoir and annihilates it in the quantum dot,
and vice versa. The quantum dot has the Hamiltonian

HQD =
∑

σ

εσd†
σdσ, (4.4)

where εσ = ε0 +gμBBσz
σσ/2 is the energy of the electron level in the quantum

dot. The second term in the energy arises from that the quantum dot is Zeeman
coupled to a magnetic field, B = Bẑ, where g is the g-factor, and μB the Bohr
constant. The spin system has the Hamiltonian

HS = −gμBS · B, (4.5)

where S is the spin vector. The interactions between the spin and the quantum
dot is given by

Hint = −vs · S, (4.6)

where v is the exchange interacting strength and s =
∑

σσ′ d†
σσσσ′dσ′/2 denotes

the spin of the electrons in the quantum dot. We can then write the full
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Hamiltonian as

H =
∑
kχσ

(εkχσ − μχ(t))c†
kχσckχσ +

∑
kχσ

Tχ

(
c†

kχσdσ + H.c
)

+
∑

σ

εσd†
σdσ − gμBS · B − vs · S. (4.7)

4.2 Quantum dot Green’s function
The quantum dot Green’s function is defined as

Gσσ′(t, t′) = −i
〈
T dσ(t)d†

σ′(t′)
〉

. (4.8)

The equation of motion is

∂tGσσ′(t, t′) = −i
〈
{dσ(t), d†

σ′(t′)}
〉

−
〈
T[dσ(t), H]d†

σ′(t′)
〉

. (4.9)

The anti-commutation relations for fermions give {dσ, d†
σ′} = δσσ′ and {dσ, dσ′} =

{d†
σ, d†

σ′} = {dσ, ckχσ′} = {dσ, c†
kχσ′} = 0. Evaluating the term [dσ(t), H] by

using Eq. 3.4 gives

[dσ, Hχ] =
∑
kχσ

(εkχσ′ − μχ(t))[dσ, c†
kχσ′ckχσ′ ] = 0,

[dσ, HT χ] =
∑
kχσ′

Tχ[dσ, c†
kχσ′dσ′ + H.c.] =

∑
kχ

Tχckχσ,

[dσ, HQD] =
∑
σ′

εσ′ [dσ, d†
σ′dσ′ ] = εσdσ,

[dσ, HS ] = 0,

[dσ, Hint] = −v
∑
ss′

[dσ, d†
sσss′ · Sds′ ] = −v

∑
s′

σσs′ · Sds′ . (4.10)

Inserting the results into the equation of motion, yields the expression

∂tGσσ′(t, t′) = − iδσσ′δ(t − t′)

−
〈

T

⎛
⎝∑

kχ

Tχckχσ(t) + εσdσ(t) − v
∑

s

σσs · Sds(t)

⎞
⎠ d†

σ′(t′)
〉

.

(4.11)

We can now identify the following Green’s functions in the previous expression

Gkχσσ′(t, t′) = −i
〈
T ckχσ(t)d†

σ′(t′)
〉

, (4.12)

Gσσ′(t, t′) = −i
〈
T dσ(t)d†

σ′(t′)
〉

. (4.13)
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By multiplying with i gives

i∂tGσσ′(t, t′) =δσσ′δ(t − t′) +
∑
kχ

TχGkχσσ′(t, t′)

+ εσGσσ′(t, t′) − v 〈S · σσσ′〉 Gσσ′(t, t′). (4.14)

In the last step we did the approximation −i
〈
T
∑

s σσs · Sds(t)d†
σ′(t′)

〉
≈

〈S · σσσ′〉 (−i)
〈
T dσ(t)d†

σ′(t′)
〉
.

4.3 Bare Green’s function
In order to solve the Eq. (4.14), we start with solving the equation

i∂tgσσ′(t, t′) = δσσ′δ(t − t′) + εσgσσ′ +
∑
kχ

TχGkχσσ′(t, t′). (4.15)

Here, we defined gσσ′(t, t′) = −i
〈
T dσ(t)d†

σ′(t′)
〉

as the bare quantum dot
Green’s function and as the solution to this equation. This equation represents
the quantum dot with a time-dependent applied bias voltage without any inter-
action with the localized magnetic moment. The derivation is an extension of
the time-dependent transport in a quantum dot, Ref. [19], in order to include
spin degrees of freedom.

First, we compute the equation of motion for the tunneling Green’s function
Gkχσσ′(t, t′). It is

∂tGkχσσ′(t, t′) = −i
〈
{ckχσ(t), d†

σ′(t′)}
〉

−
〈
T[ckχσ(t), H]d†

σ′(t′)
〉

. (4.16)

Evaluating the Heisenberg equation gives [ckχσ(t), H] = (εkχσ −μχ(t))ckχσ +
Tχdσ. Inserting it into the equation of motion gives

i∂tGkχσσ′(t, t′) = (εkχσ − μχ(t))Gkχσσ′(t, t′) + Tχgσσ′(t, t′), (4.17)

where we multiplied with i and identified the Green’s functions as above. We
move the first term on the right hand side to the left hand side

(i∂t − εkχσ + μχ(t))Gkχσσ′(t, t′) = Tχgσσ′(t, t′). (4.18)

By introducing the Green’s function for the leads, gkχσ(t, t′) =
−i
〈
T c†

kχσ(t′)ckχσ(t)
〉
, that follows (i∂t −εkχσ +μχ(t))gkχσ(t, t′) = δ(t−t′)

one can identify the term in the brackets on the left hand side as the inverse of
the lead Green’s function. Operating with the lead Green’s function from the
right gives

Gkχσσ′(t, t′) = Tχ

ˆ
dτgσσ′(t, τ)gkχσ(τ, t′). (4.19)
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Inserting the expression into Eq. (4.15) gives

(i∂t−εσ)gσσ′(t, t′) = δσσ′δ(t−t′)+
∑
kχ

T 2
χ

ˆ
dτgσσ′(t, τ)gkχσ(τ, t′). (4.20)

Making use of the Born approximation we can solve the previous equation
with introducing the Green’s function g

(0)
σσ′(t, t′) as the solution to (i∂t −

εσ)g(0)
σσ′(t, t′) = δ(t − t′). It gives the Dyson equation

gσσ′(t, t′) = δσσ′g
(0)
σσ′(t, t′) +

¨
dτdτ ′gσσ′(t, τ)Σ(τ, τ ′)g(0)

σσ′(τ ′, t′). (4.21)

Now it is convenient to resort to the lesser/greater and retarded/advanced
Green’s functions. It is for g

(0)
σσ′(t, t′) the following

g
(0)r/a
σσ′ (t, t′) = ∓iθ(±t ∓ t′)

〈{
dσ(t), d†

σ′(t′)
}〉

= ∓iθ(±t ∓ t′)e−iεσ(t−t′),

(4.22)
and

g
(0)</>
σσ′ (t, t′) = ±i

〈
dσ(t), d†

σ′(t′)
〉

= ±if(±εσ)e−iεσ(t−t′). (4.23)

Analogously, the lead Green’s functions becomes

g
r/a
kχσ(t, t′) = ∓iθ(±t ∓ t′)e−iεkχσ(t−t′)−i

´ t
t′ dτμχ(τ), (4.24)

and
g

</>
kχσ (t, t′) = ±if(±εkχσ)e−iεkχσ(t−t′)−i

´ t
t′ dτμχ(τ). (4.25)

Making use of the wide band limit, the retarded self-energy in the Dyson
equation (4.21) can be rewritten as

Σr(t, t′) =
∑
kχ

T 2
χgr

kχσ(t, t′)

= −i
∑
kχ

T 2
χθ(t − t′)e−iεkχσ(t−t′)−i

´ t
t′ dτμχ(τ)

=
∑
kχ

T 2
χe−i

´ t
t′ dτμχ(τ)

ˆ
dω

2π

e−iω(t−t′)

ω − εkχσ + iδ

=
∑

χ

T 2
χe−i

´ t
t′ dτμχ(τ)

ˆ
dω

2π

ˆ
dεχσ

ρ(εχσ)e−iω(t−t′)

ω − εχσ + iδ

≈ −i
∑

χ

πρχσT 2
χe−i

´ t
t′ dτμχ(τ)

ˆ
dω

2π
e−iω(t−t′)

= −i
∑

χ

(Γχ
σ/2)e−i

´ t
t′ dτμχ(τ)δ(t − t′)

= −i
∑

χ

Γχ
σδ(t − t′)/2. (4.26)
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Here, we used the Fourier transform of the free electron Green’s function,

−i
∑
kχ

θ(t − t′)e−iεkχσ(t−t′) =
∑
kχ

ˆ
dω

2π

e−iω(t−t′)

ω − εkχσ + iδ
, (4.27)

and defined the tunneling coupling constant

Γχ
σ = 2T 2

χ

∑
k

δ(ω − εkσ) = 2T 2
χ

ˆ
dεχσρ(εσ)δ(ω − εχσ) = 2πT 2

χρχσ.

(4.28)

In the integration over εχσ only the principal value is left due to the wide-band
limit (ω → ∞) and the density of states is assumed constant ρχσ(ω) = ρχσ.

We can also derive the lesser/greater self-energies as

Σ</>(t, t′) =
∑
kχ

T 2
χg

</>
kχσ (t, t′)

= ±i
∑
kχ

T 2
χf(±εkχσ)e−iεkχσ(t−t′)−i

´ t
t′ dτμχ(τ)

= ±i
∑

χ

Γχ
σ

ˆ
dω

2π
f(±ω)e−iω(t−t′)−i

´ t
t′ dτμχ(τ). (4.29)

Here, we replaced
∑

k T 2
χf(±εkχσ)e−iεkχσ(t−t′) = Γχ

σ

´
dω
2π f(±ω)e−iω(t−t′).

Now, if we insert the Green’s function in Eq. (4.22) and the self-energy in
Eq. (4.26), we can calculate the Dyson equation in Eq. (4.21). It is important
to note Eq. (4.21) is defined on the Keldysh contour and we perform the
analytical continuation of Eq. (3.18). This yields for the retarded Green’s
function

gr
σσ′(t, t′) = − iθ(t − t′)e−iεσ(t−t′)δσσ′ +

¨
dτdτ ′gr

σσ′(t, τ)

×
(

−i
∑
χσ

Γχ
σ/2δ(τ − τ ′)

)(
−iθ(τ ′ − t′)e−iεσ(τ ′−t′)

)

= − iθ(t − t′)e−iεσ(t−t′)δσσ′

− i
∑
χσ

Γχ
σ/2
ˆ

dτgr
σσ′(t, τ)

(
−iθ(τ − t′)e−iεσ(τ−t′)

)
. (4.30)

The solution for this equation becomes

gr
σ(t, t′) = −iθ(t − t′)e−i(εσ−iΓσ/2)(t−t′), (4.31)

where we define Γσ =
∑

χ Γσχ.
By defining the coupling parameters Γχ

0 =
∑

σ Γχ
σ and Γχ

1 =
∑

σ σz
σσΓχ

σ ẑ
and introducing the spin-polarization in the leads pχ ∈ [−1, 1], such that
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Γχ
σ = Γχ

0 (1 + σz
σσpχ)/2, we can write Γχ

1 = pχΓχ
0 ẑ. With this notation we can

introduce the coupling matrix Γ = Γ0σ0 + Γ1 · σ, where Γ0 =
∑

χ Γχ
0 and

Γ1 =
∑

χ Γχ
1 . Analogously, we write the retarded/advanced and lesser/greater

self-energies as Σr/a = Σr/a
0 σ0 + Σr/a

1 · σ and Σ</> = Σ</>
0 σ0 + Σ</>

1 · σ,
where

Σr/a
0 (t, t′) =(±i)δ(t − t′)Γ0/2, (4.32)

Σr/a
1 (t, t′) =(±i)δ(t − t′)Γ1/2, (4.33)

Σ</>
0 (t, t′) =(±i)

∑
χ

Γχ
0

ˆ
dω

2π
f(±ω)e−iω(t−t′)−i

´ t
t′ dτ μχ(τ), (4.34)

Σ</>
1 (t, t′) =(±i)

∑
χ

Γχ
1

ˆ
dω

2π
f(±ω)e−iω(t−t′)−i

´ t
t′ dτ μχ(τ). (4.35)

Using this notation we partion the bare Green’s functions in terms of its
charge and magnetic components according to g = g0σ0 + σ · g1. The
retarded/advanced form of g can then be written

g
r/a
0 (t, t′) =(∓i)θ(±t ∓ t′)

∑
σ

e−i(εσ∓iΓσ/2)(t−t′)/2, (4.36a)

gr/a
1 (t, t′) =(∓i)θ(±t ∓ t′)

∑
σ

σz
σσe−i(εσ∓iΓσ/2)(t−t′)ẑ/2. (4.36b)

Analogously, the lesser/greater form of g is given by the Keldysh equation in
Eq. (3.22)

g</>(t, t′) =
¨

dτdτ ′gr(t, τ)Σ</>(τ, τ ′)ga(τ ′, t′)

=g
</>
0 (t, t′)σ0 + σ · g</>

1 (t, t′), (4.37)
where

g
</>
0 (t, t′) =

¨
dτdτ ′

(
gr

0Σ</>
0 ga

0 + gr
1Σ</>

0 · ga
1

+gr
0Σ</>

1 · ga
1 + gr

1 · Σ</>
1 ga

0

)
, (4.38)

g</>
1 (t, t′) =

¨
dτdτ ′

(
gr

0Σ</>
1 ga

0 + gr
1 · Σ</>

1 ga
1

+gr
0Σ</>

0 ga
1 + gr

1Σ</>
0 ga

0

)
. (4.39)

Here, and further on, we sometimes suppress the time-dependence of the
propagators for clarity.

4.4 Dressed quantum dot Green’s function
By using the bare Green’s function, we can now write the dressed quantum dot
Green’s function for the full system including the interactions with the local
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spin moment. We achieve this goal by defining it as the first order expansion
in terms of the local moment, that is,

G(t, t′) =g(t, t′) + δG(t, t′)

=g(t, t′) − v

˛
C

dτg(t, τ) 〈S(τ)〉 ·σg(τ, t′), (4.40)

where g is the bare Green’s function and δG is the correction from the in-
teractions with the local magnetic moment. This is analogous to the Dyson
equation with the self-energy defined as Σ = −v 〈S(τ)〉 · σ. As above, we
write G = G0σ0 + σ · G1, where G0 = g0 + δG0 and G1 = g1 + δG1, and
the corrections are given by

δG0(t, t′) = − v

˛
C

dτ
(
g0〈S〉 · g1 + g1 · 〈S〉g0 + i[g1 × 〈S〉] · g1

)
, (4.41)

δG1(t, t′) = − v

˛
C

dτ
(
g0〈S〉g0 + (g1 · 〈S〉)g1 + i[g1 × 〈S〉]g0

+ ig0[〈S〉 × g1] + i[g1 × 〈S〉] × g1

)
. (4.42)

Here, we have used the identity (A · σ)(B · σ) = A · Bσ0 + i[A × B] · σ,
which gives

g〈S〉 · σg =(g0σ0 + g1 · σ)(〈S〉 · σ)(g0σ0 + g1 · σ)

=
(
g1 · 〈S〉 + (g0〈S〉 + i [g1 × 〈S〉]) · σ

)(
g0σ0 + g1 · σ

)
,

=
[
g1 · 〈S〉g0 + g0〈S〉 · g1 + i([g1 × 〈S〉] · g1)

]
σ0

+
[
g0〈S〉g0 + (g1 · 〈S〉)g1 + i[g1 × 〈S〉]g0

+ ig0[〈S〉 × g1] + i([g1 × 〈S〉] × g1)
]

· σ. (4.43)

Performing the analytical continuation the retarded/advanced form of the cor-
rection to the dressed Green’s function becomes

δG
r/a
0 (t, t′) = − v

ˆ
dτ
(
g

r/a
0 〈S〉 · gr/a

1 + gr/a
1 · 〈S〉gr/a

0

+ i[gr/a
1 × 〈S〉] · gr/a

1

)
, (4.44)

δGr/a
1 (t, t′) = − v

ˆ
dτ
(
g

r/a
0 〈S〉gr/a

0 + (gr/a
1 · 〈S〉)gr/a

1 + i[gr/a
1 × 〈S〉]gr/a

0

+ ig
r/a
0 [〈S〉 × gr/a

1 ] + i[gr/a
1 × 〈S〉] × gr/a

1

)
. (4.45)
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The lesser/greater form of the correction becomes

δG</>(t, t′) = − v

ˆ
dτ
(
gr(t, τ)〈S(τ)〉 · σg</>(τ, t′)

+ g</>(t, τ)〈S(τ)〉 · σga(τ, t′)
)
, (4.46)

and decomposing into the charge and magnetic components we have

δG
</>
0 (t, t′) = − v

ˆ
dτ
(
gr

0 〈S〉 ·g</>
1 + g

</>
0 〈S〉 ·ga

1

+gr
1 · 〈S〉 g

</>
0 + g</>

1 · 〈S〉 ga
0

+i [gr
1 × 〈S〉] ·g</>

1 + i
[
g</>

1 × 〈S〉
]

·ga
1

)
, (4.47)

δG</>
1 (t, t′) = − v

ˆ
dτ
(
gr

0 〈S〉 g
</>
0 + g

</>
0 〈S〉 ga

0

+ (gr
1 · 〈S〉)g</>

1 + (g</>
1 · 〈S〉)ga

1 + i [gr
1 × 〈S〉] g

</>
0

+ i
[
g</>

1 × 〈S〉
]

ga
0 + igr

0

[
〈S〉 × g</>

1

]
+ ig

</>
0 [〈S〉 × ga

1]

+ i [gr
1 × 〈S〉] ×g</>

1 + i
[
g</>

1 × 〈S〉
]

×ga
1

)
. (4.48)

4.5 Time-independent Green’s functions
For time-independent processes we can assume that the Green’s functions can
be written as G(t, t′) = G(t − t′) and we can perform a Fourier transform.
Applying it on the bare Green’s function gives

g
r/a
0 (ω) =1

2
∑

σ

gr/a
σ (ω), (4.49)

gr/a
1 (ω) =1

2
∑

σ

σz
σσgr/a

σ (ω), ẑ, (4.50)

where

gr/a
σ (ω) = 1

ω − εσ ± iΓσ/2 , (4.51)

and the self-energies become

Σ</>
0 (ω) =(±i)

∑
χ

Γχ
0 fχ(±ω), (4.52)

Σ</>
1 (ω) =(±i)

∑
χ

Γχ
1 fχ(±ω). (4.53)

In Fourier space, the lesser/greater Green’s function is defined as

g
</>
0 (ω) = gr

0Σ</>
0 ga

0 + gr
1Σ</>

0 ga
1 + gr

0Σ</>
1 ga

1 + gr
1Σ</>

1 ga
0 , (4.54)
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g</>
1 (ω) =

(
gr

0Σ</>
1 ga

0 + gr
1Σ</>

1 ga
1 + gr

0Σ</>
0 ga

1 + gr
1Σ</>

0 ga
0

)
ẑ. (4.55)

Solving these equations gives

g
</>
0 (ω) =(±i)1

2
∑
χσ

( Γχ
0 fχ(±ω)

(ω − εσ)2 + (Γσ/2)2 + σz
σσ

Γχ
Sfχ(±ω)

(ω − εσ)2 + (Γσ/2)2

)
,

(4.56)

g
</>
1 (ω) =(±i)1

2
∑
χσ

( Γχ
Sfχ(±ω)

(ω − εσ)2 + (Γσ/2)2 + σz
σσ

Γχ
0 fχ(±ω)

(ω − εσ)2 + (Γσ/2)2

)
ẑ.

(4.57)

Finally, doing the Fourier transform on the correction gives

δG
</>
0 (ω) = − v

(
gr

0 〈S〉 ·g</>
1 + g

</>
0 〈S〉 ·ga

1+gr
1 · 〈S〉 g

</>
0

+g</>
1 · 〈S〉 ga

0 + i [gr
1 × 〈S〉] ·g</>

1 + i
[
g</>

1 × 〈S〉
]

·ga
1

)
,

(4.58)

δG</>
1 (ω) = − v

(
gr

0 〈S〉 g
</>
0 + g

</>
0 〈S〉 ga

0 + i [gr
1 × 〈S〉] g

</>
0

+ (gr
1 · 〈S〉)g</>

1 + (g</>
1 · 〈S〉)ga

1

+ i
[
g</>

1 × 〈S〉
]

ga
0 + igr

0

[
〈S〉 × g</>

1

]
+ ig

</>
0 [〈S〉 × ga

1]

+ i [gr
1 × 〈S〉] ×g</>

1 + i
[
g</>

1 × 〈S〉
]

×ga
1

)
. (4.59)

4.6 Non-polarized case
In the case of non-polarized leads, i.e., ΓS = 0, and with a vanishing external
magnetic field, the Green’s functions are reduced. The bare Green’s function
becomes

gr/a(ω) = 1
ω − ε0 ± iΓ0/4 , (4.60)

and the self-energy becomes

Σ</>(ω) =(±i)
∑

χ

Γχ
0 fχ(±ω). (4.61)

In Fourier space, the lesser/greater Green’s function is defined as

g</>(ω) = grΣ</>ga, (4.62)
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and inserting the retarded/advanced Green’s function and the self-energy it
becomes

g</>(ω) = (±i)
∑

χ

Γχ
0 fχ(±ω)

(ω − ε0)2 + (Γ0/4)2 . (4.63)

Finally, the retarded/advanced dressed Green’s function becomes

Gr/a(ω) =gr/aσ0 − vg
r/a
0 〈S〉 g

r/a
0 · σ, (4.64)

and the lesser/greater

G</>(ω) =g</>σ0 − v
(
gr

0 〈S〉 g
</>
0 + g

</>
0 〈S〉 ga

0

)
· σ. (4.65)

4.7 Particle number and local magnetic occupation
The local particle number of the QD is defined as

n(t) =
〈
ψ†(t)ψ(t)

〉
=
∑

σ

〈
d†

σ(t)dσ(t)
〉

= Im spG<(t, t)

= 1
2π

Im sp
ˆ

dωG<(ω) = 1
π

Im
ˆ

dωG<
0 (ω), (4.66)

where we used the notation of spinors ψ = (d↑, d↓). The local magnetic
occupation is defined as

m(t) = 〈s(t)〉 = 1
2
〈
ψ(t)†σψ(t)

〉
= 1

2 Im spσG<(t, t)

= 1
4π

Im spσ

ˆ
dωG<(ω) = 1

2π
Im
ˆ

dωG<
1 (ω). (4.67)

In the case of non-polarized leads and a vanishing external field it is

m(t) = − v

2π
Im
ˆ

dω
(
gr

0 〈S〉 g<
0 + g<

0 〈S〉 ga
0
)

. (4.68)

4.8 Currents through the single-molecule magnet
In this section we go through the currents flowing through the system. We
define it as the change of particles and energy in respective lead, thus, the
particle current becomes

IN
χ =

〈
dNχ

dt

〉
= − i

�

∑
kσ

〈[
c†

kσχckσχ, H
]〉

, (4.69)

the charge current

IC
χ = −eIN

χ = −e

〈
dNχ

dt

〉
= ie

�

∑
kσ

〈[
c†

kσχckσχ, H
]〉

, (4.70)
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the spin current

IS
χ = −e

∑
kσσ′

d

dt

〈
c†

kσχσσσ′ckσ′χ

〉
= ie

�

∑
kσσ′

〈[
c†

kσχσσσ′ckσ′χ, H
]〉

, (4.71)

the energy current

IE
χ =

〈
dHχ

dt

〉
= − i

�

∑
kσ

εkσ

〈[
c†

kσχckσχ, H
]〉

, (4.72)

and the heat current

IQ
χ = IE

χ − μχIN
χ = − i

�

∑
kσ

(εkχσ − μχ)
〈[

c†
kσχckσχ, H

]〉
. (4.73)

We can easily see that the important quantity is i
�

∑
kσ

〈[
c†

kσχckσχ, H
]〉

. Eval-

uating the term
[
c†

kσχckσχ, H
]

by using Eq. (3.5) gives the only non-vanishing
term [

c†
kσχckσχ, HT χ

]
=
∑

k′σ′χ′
Tχ′ [c†

kσχckσχ, c†
k′σ′χ′dσ′ + H.c.]

=Tχ

(
c†

kχσdσ − d†
σckχσ

)
. (4.74)

Here we can identify the transfer Green’s function G<
kχσσ′(t, t) =

i
〈
ckχσ(t)d†

σ′(t)
〉

and
[
G<

kχσσ′(t, t)
]∗

= −i
〈
d†

σ′(t)ckχσ(t)
〉

which is defined

in Eq. (4.19). Seeing that G<
kχσσ′(t, t) = −

[
G<

kχσσ′(t, t)
]∗

we thus get

i

�

∑
kσ

〈[
c†

kσχckσχ, H
]〉

= i

�

∑
kσ

Tχ

(
c†

kχσdσ − d†
σckχσ

)

=2
�

∑
kσ

TχG<
kχσσ′(t, t). (4.75)

Applying the analytical continuation rules in Eq. (3.17) to the Keldysh equation
of the transfer Green’s function gives

G<
kχσσ′(t, t′) =Tχ

˛
C

dτgkχσ(t, τ)G(τ, t)

=Tχ

ˆ
dτ
(
gr

kχσ(t, τ)G<(τ, t) + g<
kχσ(t, τ)Ga(τ, t′)

)

= − iTχ

ˆ t

−∞
dτ
[
G<(τ, t) − f(εkχσ)Ga(τ, t)

]
× e−iεkχσ(t−τ)−i

´ t
τ

dτ ′μχ(τ ′), (4.76)

39



where we inserted the retarded and lesser Green’s functions for the leads defined
in Eq. (4.24) and (4.25). Rewriting the terms in the brackets using Eq. (3.9)
gives

G<(τ, t) − f(εkχσ)Ga(τ, t) =G<(τ, t) − f(εkχσ)θ(t − τ)
× [G<(τ, t) − G>(τ, t)

]
=G>(τ, t)f(εkχσ)θ(t − τ)

+ G<(τ, t)(1 − f(εkχσ)θ(t − τ)), (4.77)

and

2
�

∑
kσ

TχG<
kχσσ′(t, t) = − 2

�

∑
kσ

T 2
χ

ˆ t

−∞
dτ
[
G>(τ, t)f(εkχσ)

+G<(τ, t)(1 − f(εkχσ))
]
e−iεkχσ(t−τ)−i

´ t
τ

dτ ′μχ(τ ′)

= − 2
�

∑
σ

ˆ t

−∞
dτ
[
Σ<

χ (t, τ)G>(τ, t)

−Σ>
χ (t, τ)G<(τ, t)

]
. (4.78)

In the last step we identified the self-energies given in Eq. (4.29).
In the case of the energy current in Eq. (4.72) we identify that the expression

we solved for is multiplied by
∑

kσ εkσ. Furthermore, in our identification of
the self-energies we made use of the wide-band limit and integrated over all
energies. In order to do the same and include the energies of the energy current
we thus need to define a specific "energy current self-energy" as

Σ</>
Eχ (t, t′) = ±i

∑
k

T 2
χεkχσf(±εkχσ)e−iεkχσ(t−t′)−i

´ t
t′ dτμχ(τ)

= ±iΓχ
σ

ˆ
dω

2π
ωf(±ω)e−iω(t−t′)−i

´ t
t′ dτμχ(τ). (4.79)
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Finally, this gives the currents

IN
χ =2

�

∑
σ

ˆ t

−∞
dτ
[
Σ<

χ (t, τ)G>(τ, t) − Σ>
χ (t, τ)G<(τ, t)

]
, (4.80)

IC
χ = − 2e

�

∑
σ

ˆ t

−∞
dτ
[
Σ<

χ (t, τ)G>(τ, t) − Σ>
χ (t, τ)G<(τ, t)

]
, (4.81)

IS
χ = − 2e

�

∑
σ

σ

ˆ t

−∞
dτ
[
Σ<

χ (t, τ)G>(τ, t) − Σ>
χ (t, τ)G<(τ, t)

]
, (4.82)

IE
χ =2

�

ˆ t

−∞
dτ
[
Σ<

Eχ(t, τ)G>(τ, t) − Σ>
Eχ(t, τ)G<(τ, t)

]
, (4.83)

IQ
χ =2

�

ˆ t

−∞
dτ
[(

Σ<
Eχ(t, τ) − μχΣ<

χ (t, τ)
)

G>(τ, t)

−
(
Σ>

Eχ(t, τ) − μχΣ>
χ (t, τ)

)
G<(τ, t)

]
. (4.84)

4.9 Time-independent currents
As in Section 4.5, we can perform a Fourier transform of the currents for
time-independent processes. Performing the transform on the particle current
gives

− 2
�

∑
σ

ˆ t

−∞
dτ
[
Σ<(t, τ)G>(τ, t) − Σ>(t, τ)G<(τ, t)

]

= − 2
�

∑
σ

ˆ t

−∞
dτ

ˆ
dω

2π

ˆ
dω′

2π

[
Σ<(ω)e−iω(t−τ)G>(ω′)e−iω′(τ−t)

−Σ>(ω)e−iω(t−τ)G<(ω′)e−iω′(τ−t)
]

= − 2
�

∑
σ

ˆ t

−∞
dτ

ˆ
dω

2π

ˆ
dω′

2π

[
Σ<(ω)G>(ω′)

−Σ>(ω)G<(ω′)
]
e−i(ω−ω′)(t−τ)

= − 2
�

∑
σ

ˆ
dω

2π

ˆ
dω′

2π

[
Σ<(ω)G>(ω′) − Σ>(ω)G<(ω′)

]
πδ(ω − ω′)

= − 1
�

∑
σ

ˆ
dω

2π

[
Σ<(ω)G>(ω) − Σ>(ω)G<(ω)

]
.

(4.85)

Here, we used the Kramer-Kronig relations, i.e., Ref(ω) = 1
π

´
dω′ Imf(ω′)

ω′−ω . In
our case we used the fact that 1

ω−ω′+iδ = 1
ω−ω′ − iπδ(ω − ω′).
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This gives the currents in their time-independent form

IN
χ = −1

�

∑
σ

ˆ
dω

2π

[
Σ<

χ (ω)G>(ω) − Σ>
χ (ω)G<(ω)

]
, (4.86)

IC
χ = − e

�

∑
σ

ˆ
dω

2π

[
Σ<

χ (ω)G>(ω) − Σ>
χ (ω)G<(ω)

]
, (4.87)

IS
χ = − e

�

∑
σ

σ

ˆ
dω

2π

[
Σ<

χ (ω)G>(ω) − Σ>
χ (ω)G<(ω)

]
, (4.88)

IE
χ = −1

�

∑
σ

ˆ
dω

2π
ω
[
Σ<

χ (ω)G>(ω) − Σ>
χ (ω)G<(ω)

]
, (4.89)

IQ
χ = −1

�

∑
σ

ˆ
dω

2π
(ω − μχ)

[
Σ<

χ (ω)G>(ω) − Σ>
χ (ω)G<(ω)

]
. (4.90)

4.10 Time-dependent currents for pulses
We are now interested in describing the time-dependent currents for different
pulses over the junction. We start by rewriting our Green’s function for treating
the different pulses. We first do this for the case of non-polarized leads and a
degenerate quantum dot, i.e., pχ = Γ1 = 0, Γχ

↑ = Γχ
↓ = Γχ

0 /2 and a vanishing
external field B. This leads to the simplification of the bare Green’s functions,
such that they can be expressed as

g</>(t, t′) =
¨

dτdτ ′gr(t, τ)Σ</>(τ, τ ′)ga(τ ′, t′), (4.91)

where the self-energy and retarded/advanced Green’s function are defined as

Σ</>(t, t′) =(±i)
∑

χ

Γχ
0

ˆ
dω

2π
f(±ω)e−iω(t−t′)−i

´ t
t′ dτμχ(τ), (4.92)

gr/a(t, t′) =(∓i)θ(±t ∓ t′)e−i(ε0∓iΓ0/4)(t−t′). (4.93)

The dressed quantum dot Green’s function that takes the local magnetic moment
into account becomes

G</>(t, t′) =g</>(t, t′) − v

ˆ
dτ
(
gr(t, τ)g</>(τ, t′)

+g</>(t, τ)ga(τ, t′)
)

〈S〉 · σ. (4.94)

In order to compute the effects of the pulses, the time-integration kernel in
the currents can be written in a more convenient form. The pulse information is
considered in the integral

´ t

t′ dτμχ(τ), which can be rewritten as
´ t

t′ dτμχ(τ) =´ t

−∞ dτμχ(τ) − ´ t′

−∞ dτμχ(τ). This leads to that the integration over τ and τ ′
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in the self-energy can be separated into two parts. We rewrite the self-energy
as

Σ</>(t, t′) = (±i)
∑

χ

Γχ
0 K</>

χ (t, t′), (4.95)

where we defined

K</>
χ (t, t′) =

ˆ
dω

2π
f(±ω)e−iω(t−t′)−ie

´ t
t′ dτΔχ(τ). (4.96)

We note that the integration can be performed over exp[−iωt−i
´ t

−∞ dτμχ(τ)]
and exp[iωt′ + i

´ t′

−∞ dτμχ(τ)] separately. This leads to the separation of the
bare Green’s function as

g
</>
0 (t, t′) = (±i)

∑
χ

Γχ
0

ˆ
dω

2π
f(±ω)Aχ(ω, t)Bχ(ω, t′) (4.97)

where

Aχ(ω, t) =(−i)
ˆ t

−∞
dτe−i(ε0−iΓ0/4)(t−τ)−iωτ−i

´ τ
−∞ dsΔχ(s), (4.98)

Bχ(ω, t′) =i

ˆ t

−∞
dτ ′ei(ε0+iΓ0/4)(t′−τ ′)+iωτ ′+i

´ τ ′
−∞ dsΔχ(s). (4.99)

The spin-dependent part of the Green’s function becomes

G</>
1 (t, t′) =(∓i)v

∑
χ

Γχ
0

ˆ
dω

2π
f(±ω)

(
Cχ(ω, t)Bχ(ω, t′)

+ Aχ(ω, t)Dχ(ω, t′)
)

〈S〉 , (4.100)

where we defined

Cχ(ω, t) =
ˆ

dτgr(t, τ)Aχ(ω, τ)

= −
ˆ t

−∞
dτe−i(ε0−iΓ0/4)(t−τ)

×
(ˆ τ

−∞
dτ ′e−i(ε0−iΓ0)(τ−τ ′)−iωτ ′−ie

´ τ ′
−∞ dsΔχ(s)

)
, (4.101)

Dχ(ω, t′) =
ˆ

dτga(t, τ)Bχ(ω, τ)

= −
ˆ t′

−∞
dτei(ε0+iΓ0/4)(t′−τ)

×
(ˆ τ

−∞
dτ ′ei(ε0+iΓ0)(τ−τ ′)+iωτ ′+ie

´ τ ′
−∞ dsΔχ(s)

)
. (4.102)

43



The charge and spin current can be written as

IC(t) = − 4e

�
ΓL

0 Im
ˆ t

−∞
dt′ (K>

L (t, t′)G<
0 (t′, t) + K<

L (t, t′)G>
0 (t′, t)

)
,

(4.103)

IS(t) = − 4e

�
ΓL

0 Im
ˆ t

−∞
dt′ (K>

L (t, t′)G<
1 (t′, t) + K<

L (t, t′)G>
1 (t′, t)

)
.

(4.104)

4.10.1 Current for a step-like bias voltage
A step-like bias voltage at time t0 gives that Δχ(τ) becomes Δχθ(t − t0). We
can now calculate the current using the theory above. We get that

K</>
χ (t, t′) =

ˆ
dω

2π
f(±ω)e−iω(t−t′)−i

´ t
t′ dsΔχθ(s−t0)

=
ˆ

dω

2π
f(±ω)e−iω(t−t′)−iΔχ((t−t0)θ(t−t0)−(t′−t0)θ(t′−t0))

(4.105)

This yields

Aχ(ω, t) = (−i)
tˆ

−∞
dτe−i(ε0−iΓ0/4)(t−τ)−iωτ−iΔχ(τ−t0)θ(τ−t0), (4.106)

Bχ(ω, t′) = i

t′ˆ

−∞
dτ ′ei(ε0+iΓ0/4)(t′−τ ′)+ωτ ′+iΔχ(τ ′−t0)θ(τ ′−t0). (4.107)

Solving A - D we get

Aχ(ω, t) =θ(t0 − t) e−iωt

ω − ε0 + iΓ0/4

+ θ(t − t0)
(

e−i(ε0−iΓ0/4)(t−t0)−iωt0

ω − ε0 + iΓ0/4

+e−iΔχ(t−t0)−iωt − e−i(ε0−iΓ0/4)(t−t0)−iωt0

ω + Δχ − ε0 + iΓ0/4

)
, (4.108)
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Bχ(ω, t′) =θ(t0 − t′) e+iωt′

ω − ε0 − iΓ0/4

+ θ(t − t0)
(

e−i(ε0+iΓ0/4)(t0−t′)+iωt0

ω − ε0 − iΓ0/4

+eiΔχ(t′−t0)+iωt′ − e−i(ε0+iΓ0/4)(t0−t′)+iωt0

ω + Δχ − ε0 − iΓ0/4

)
, (4.109)

Cχ(ω, t) =θ(t0 − t) e−iωt

(ω − ε0 + iΓ0/4)(ω − ε0 + iΓ0/4)

+ θ(t − t0)
(

e−i(ε0−iΓ0/4)(t−t0)−iωt0

(ω − ε0 + iΓ0/4)(ω − ε0 + iΓ0/4)

+ e−iωt−iΔχ(t−t0) − e−i(ε0−iΓ0/4)(t−t0)−iωt0

(ω + Δχ − ε0 + iΓ0/4)(ω + Δχ − ε0 + iΓ0/4)

)
, (4.110)

Dχ(ω, t′) =θ(t0 − t) e+iωt′

(ω − ε0 − iΓ0/4)(ω − ε0 − iΓ0/4)

+ θ(t − t0)
(

ei(ε0+iΓ0/4)(t′−t0)+iωt0

(ω − ε0 − iΓ0/4)(ω − ε0 − iΓ0/4)

+ eiωt′+iΔχ(t′−t0) − ei(ε0+iΓ0/4)(t′−t0)+iωt0

(ω + Δχ − ε0 − iΓ0/4)(ω + Δχ − ε0 − iΓ0/4)

)
. (4.111)

4.10.2 Current for a rectangular bias pulse
A rectangular bias pulse applied at time t0 and stopped at time t1 gives an
extension of the previous solution for the step-like bias voltage. We then get

K</>
χ (t, t′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

´
dω
2π f(±ω)e−iω(t−t′), t, t′ < t0´
dω
2π f(±ω)e−iω(t−t′)−iΔχ(t0−t′) t < t0 < t′ < t1´
dω
2π f(±ω)e−iω(t−t′)−iΔχ(t−t0) t′ < t0 < t < t1´
dω
2π f(±ω)e−iω(t−t′)−iΔχ(t−t0) t0 < t, t′ < t1´
dω
2π f(±ω)e−iω(t−t′)−iΔχ(t−t1) t0 < t < t1 < t′´
dω
2π f(±ω)e−iω(t−t′)−iΔχ(t1−t′) t0 < t′ < t1 < t´
dω
2π f(±ω)e−iω(t−t′) t1 < t, t′
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Solving A and B we get for t, t′ < t0

Aσ,χ(ω, t) = e−iωt

ω − ε0 + iΓ0/4 , (4.112)

Bσ,χ(ω, t′) = e+iωt′

ω − ε0 − iΓ0/4 , (4.113)

and for t0 < t, t′ < t1

Aχ(ω, t) =e−i(ε0−iΓ0/4)(t−t0)−iωt0

ω − ε0 + iΓ0/4 + e−iΔχ(t−t0)−iωt − e−i(ε0−iΓ0/4)(t−t0)−iωt0

ω + Δχ − ε0 + iΓ0/4 ,

(4.114)

Bχ(ω, t′) =e−i(ε0+iΓ0/4)(t0−t′)+iωt0

ω − ε0 − iΓ0/4 + eiΔχ(t′−t0)+iωt′ − e−i(ε0+iΓ0/4)(t0−t′)+iωt0

ω + Δχ − ε0 − iΓ0/4 ,

(4.115)

and for t1 < t, t′

Aχ(ω, t) =e−i(ε0−iΓ0/4)t

×
(

ei(ε0−iΓ0/4−ω)t0 + ei(ε0−iΓ0/4−ω)t − ei(ε0−iΓ0/4−ω)t1

ω − ε0 + iΓ0/4

+ei(ε0−iΓ0/4−ω)t1−iΔχ(t1−t0) − ei(ε0−iΓ0/4−ω)t0

ω + Δχ − ε0 + iΓ0/4

)
, (4.116)

Bχ(ω, t′) =ei(ε0+iΓ0/4)t′

×
(

e−i(ε0+iΓ0/4−ω)t0 + e−i(ε0+iΓ0/4−ω)t′ − e−i(ε0−iΓ0/4−ω)t1

ω − ε0 − iΓ0/4

+e−i(ε0+iΓ0/4−ω)t1+iΔχ(t1−t0) − e−i(ε0+iΓ0/4−ω)t0

ω + Δχ − ε0 − iΓ0/4

)
. (4.117)

The different parameters, C and D, in the Green’s function then becomes for
t, t′ < t0

Cχ(ω, t) = e−iωt

(ω − ε0 + iΓ0/4)(ω − ε0 + iΓ0/4) , (4.118)

Dχ(ω, t′) = e+iωt′

(ω − ε0 − iΓ0/4)(ω − ε0 − iΓ0/4) , (4.119)
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and for t0 < t, t′ < t1

Cχ(ω, t) = e−i(ε0−iΓ0/4)(t−t0)−iωt0

(ω − ε0 + iΓ0/4)(ω − ε0 + iΓ0/4)

+ e−iωt−iΔχ(t−t0) − e−i(ε0−iΓ0/4)(t−t0)−iωt0

(ω + Δχ − ε0 + iΓ0/4)(ω + Δχ − ε0 + iΓ0/4) , (4.120)

Dχ(ω, t′) = ei(ε0+iΓ0/4)(t′−t0)+iωt0

(ω − ε0 − iΓ0/4)(ω − ε0 − iΓ0/4)

+ eiωt′+iΔχ(t′−t0) − ei(ε0+iΓ0/4)(t′−t0)+iωt0

(ω + Δχ − ε0 − iΓ0/4)(ω + Δχ − ε0 − iΓ0/4) , (4.121)

and for t1 < t, t′

Cχ(ω, t) =e−i(ε0−iΓ0/4)t

×
(

ei(ε0−iΓ0/4−ω)t0 + ei(ε0−iΓ0/4−ω)t − ei(ε0−iΓ0/4−ω)t1

(ω − ε0 + iΓ0/4)(ω − ε0 + iΓ0/4)

+ ei(ε0−iΓ0/4−ω)t1−iΔχ(t1−t0) − ei(ε0−iΓ0/4−ω)t0

(ω + Δχ − ε0 + iΓ0/4)(ω + Δχ − ε0 + iΓ0/4)

)
, (4.122)

Dχ(ω, t′) =ei(ε0+iΓ0/4)t′

×
(

e−i(ε0+iΓ0/4−ω)t0 + e−i(ε0+iΓ0/4−ω)t′ − e−i(ε0−iΓ0/4−ω)t1

(ω − ε0 − iΓ0/4)(ω − ε0 − iΓ0/4)

+ e−i(ε0+iΓ0/4−ω)t1+iΔχ(t1−t0) − e−i(ε0+iΓ0/4−ω)t0

(ω + Δχ − ε0 − iΓ0/4)(ω + Δχ − ε0 − iΓ0/4)

)
. (4.123)

4.10.3 Time-dependent current with polarized leads
Generalizing the previous treatment to polarized leads is just an extension
of the previous procedure. As the expressions become rather lengthy but
straightforward we do not show it in this thesis.
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5. Thermoelectricity of a single-molecule
magnet

The thermoelectric effects considered in this thesis can be classified into differ-
ent types of phenomena. We have either electrically, spin or thermally driven
effects in the system.

First, an electrical bias voltage will drive a charge current in a conducting
material. This charge current can generate a thermal bias through the Peltier
effect. A thermal bias can generate an electrical bias through the Seebeck
effect. This are considered the conventional thermoelectric effects and were
found in the 19th century.

Secondly, regarding the spin-dependent thermoelectric effects, we have a
spin bias that can drive a spin current. This spin current can generate a thermal
bias in the system through the spin Peltier effect. It is classified as a spin Peltier
effect if it is driven by a collective motion of the magnetic structure, while it is
called a spin-dependent Peltier effect if it is driven by the transport of charges.

On the other hand a thermal bias can generate a spin Seebeck effect. It
is called spin Seebeck if it is driven by a collective motion of the magnetic
structure, and spin-dependent Seebeck effect if it is driven by the independent
electric spin-up and spin-down channels.

In this chapter we go through some basic concepts regarding thermoelec-
tricity of a single-molecule magnet. For more information regarding thermo-
electricity in the context of atomic and molecular junctions we refer the reader
to the review of Ref. [153]. For a review of spin caloritronics see Ref. [174].

5.1 Thermoelectricity in a single-molecule magnet
A single-molecule magnet might exhibit both conventional thermoelectric ef-
fects and spin thermoelectric effects of both kinds. In this thesis, we will study
spin-dependent Seebeck and Peltier effect due to the net transport of spins
related to the charges in the system. Spin Seebeck and spin Peltier has also
been studied in single-molecule magnets and it has been shown that they can
exhibit pure spin currents [157, 158, 176]. The case is also true for a quantum
dot under a magnetic field [160] or connected to ferromagnetic leads [154].

5.2 Heat current
Using the generic separation of a matrix A = A0σ0 + σ · A1, we partition the
particle and energy current from the previous chapter into a spin-independent
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and spin-dependent part according to IN
χ (t) = IN

0χ(t) + IN
1χ(t), where

IN
0χ(t) =4

�

ˆ t

−∞
dt′
(
Σ>

0χG<
0 + Σ<

0χG>
0

)
, (5.1a)

IN
1χ(t) =4

�

ˆ t

−∞
dt′
(
Σ>

1χ · G<
1 + Σ<

1χ · G>
1

)
. (5.1b)

Analougsly, the spin-independent and spin-dependent part of the energy current
becomes

IE
0χ(t) =4

�

ˆ t

−∞

(
Σ>

E0χG<
0 + Σ<

E0χG>
0

)
dt′, (5.2a)

IE
1χ(t) =4

�

ˆ t

−∞

(
Σ>

E1χ · G<
1 + Σ<

E1χ · G>
1

)
dt′. (5.2b)

Note that we here only considers the heat current, related to the Peltier and
spin-dependent Peltier effect, in terms of the current exiting each lead. As the
system is strongly coupled, this means that it does not correspond to the heat
current in the molecule due to the strong system-bath coupling. Thus, further
considerations need to be made for considering the quantum thermodynamics
of the molecular magnet, as stated in Section 2.6.

5.3 Fourier and Peltier heat
The expressions above relate both to the Fourier and Peltier heat flowing
through the molecule. The Fourier heat describes the heat flow due to a
temperature difference, while the Peltier heat relates to a heat flow due to the
electric and spin current. In the case of the same temperature in the system,
we can ignore the Fourier heat and only consider the Peltier heat current. In
that case, IQ

0χ(t) represents the heat current generated by the Peltier effect, and
IQ

1χ(t) the heat current generated by the spin-dependent Peltier effect.

5.4 Seebeck coefficient and Peltier coefficient
In linear response, we can define the Seebeck coefficient for a molecular
magnet and relate it to the Peltier coefficient [158, 166]. As previously stated,
the Seebeck effect is a resulting voltage difference due to a thermal gradient
over the junction. The charge Seebeck coefficient is thus defined as

SC = −ΔV

ΔT
. (5.3)

Here, ΔV is the thermoelectric voltage over the junction, generated by the
thermal gradient ΔT . This is also called the thermopower, and is the transfer
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of charge due to a thermal gradient, i.e., the conventional thermoelectric effect.
Analogously, the spin Seebeck coefficient is defined as

SS = −ΔVS

ΔT
. (5.4)

Here, ΔVS is the spin voltage over the junctions, generated by the thermal gra-
dient ΔT . The spin voltage corresponds to a nonequilibrium spin accumulation
at the interfaces between the leads and the quantum dot making the chemical
potential spin-polarized. The spin voltage can then drive a spin current through
the system without any transport of charges.

As the Seebeck and Peltier effect are the result of the same effect, they are
related through the second Thomson relation as ΠC = TSC and ΠS = TSS ,
for an absolute temperature T .
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6. Spin dynamics of a single-molecule magnet

6.1 General concepts and background
A single-molecule magnet can be represented by its intrinsic spin moment,
either by a quantum or a classical spin. In order to give the proper description,
there are several things to consider in the system. Among such are:

• Is the intrinsic spin moment of the molecule large enough in order to be
considered classical?

• Is it strongly correlated to the electronic structure, i.e., does one need to
treat it with the Anderson model and consider Kondo screening?

• Is the system small such that nonequilibrium conditions need to be
treated?

In this thesis, we are considering the case of a classical spin that is connected
by exchange interaction with the electronic background without strong correla-
tions. We will discuss the exchange interaction and strongly correlated models,
such as the Anderson model, briefly. The main focus is the spin dynamics of
the classical spin and how to incorporate quantum and nonequilibrium effects
into the description. For more information regarding the basic concepts of
magnetism in condensed matter see, e.g., Ref. [190].

6.1.1 Exchange interaction
Exchange interaction is an interaction between identical particles, mediated by
the overlap of the one-particle wave functions. It is related to the Coulomb in-
teraction and Pauli exclusion principle of fermionic particles, such as electrons,
and is part of the mediating exchange between different spins in a material. In
the case of single-molecule magnets, the electrons of the embedded spin, i.e.,
the spin moment, interact via exchange interaction with the surrounding elec-
trons. The exchange between different spins is thereby mediated by an electron
gas. When the spins in a single-molecule magnet can be treated classically, e.g.,
in the case of a transition metal atom in a phthalocyanine, the electron degrees
of freedom can be integrated out. The effective exchange is then approximated
by an exchange integral between the localized and the delocalized electrons,
i.e., the electrons of the molecular magnet and the surrounding electrons.

6.1.2 Kondo model
The Kondo model describes a quantum impurity coupled to a large reservoir of
noninteracting electrons, i.e., a fermi gas. The quantum impurity is represented
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by a spin coupled to the electrons by an antiferromagnetic exchange v. The
antiferromagnetic exchange v is an exchange integral and originates from the
exchange interaction described in the previous section. The Hamiltonian for
the Kondo model reads

Hχ =
∑
kσ

εkσc†
kσckσ − vs · S. (6.1)

Here, c†
kσ (ckσ) is the electron creation (annihilation) operator which creates

(annihilates) an electron with momentum k and spin σ, v is the exchange
interaction strength and s =

∑
σσ′ c†

σσσσ′cσ′/2 represent the spin states of
the surrounding electrons. In the context of a single-molecule magnet, the
magnetic impurity S can be interpreted as the spin moment of the magnet.
Evaluating the sum representing s gives

∑
σσ′

c†
σσσσ′cσ′/2 =

(
c†

↑ c†
↓
)(σ↑↑ σ↑↓

σ↓↑ σ↓↓

)(
c↑
c↓

)

= c†
↑σ↑↑c↑ + c†

↑σ↑↓c↓ + c†
↓σ↓↑c↑ + c†

↓σ↓↑c↓

=
(
c†

↑c↓ + c†
↓c↑, −ic†

↑c↓ + ic†
↓c↑, c†

↑c↑ − c†
↓c↓
)

, (6.2)

where σσσ′ is the vector of Pauli matrices, i.e., (σx, σy, σz), where, for instance,
σ↑↑ = (σx

↑↑, σy
↑↑, σz

↑↑). Thus, in the z-direction, sz represents the difference
between the spin-up and spin-down states of the surrounding electrons.

6.1.3 Strongly correlated models and effects
When the interaction between the localized electrons of the local spin moment
of the molecular magnet and the delocalized ones are strong, the Kondo model
does not suffice. In that case, one need to use the Anderson model. The
Hamiltonian of the Anderson model is

Hχ =
∑

σ

εσd†
σdσ + Ud†

↑d↑d†
↓d↓ +

∑
kσ

εkσc†
kσckσ +

∑
σ,k

Vk(d†
σckσ + c†

kσdσ).

(6.3)
Here, d†

σ (dσ) is the impurity creation (annihilation) operator which creates
(annihilates) an electron with spin σ. U is the on-site Coulomb repulsion and
Vk is the coupling between the impurity and the conduction electrons.

The Anderson model suits for strongly correlated problems and can be used
in order to describe effects such as Kondo screening. The Kondo screening is
an effect where impurities increase resistivity as the spin of the electrons scatter
on the impurities, resulting in a zero-bias Kondo peak, and can be present in,
e.g., molecular magnets [51, 52, 73].

Methods for solving models with electron-electron interaction includes,
among others, numerical renormalization group (NRG) [73, 191] and Hubbard
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operators [192]. In the former, one uses renormalization to rewrite the con-
duction band to a chain of interacting states with an interaction strength that
exponentially decays for each state. This makes the infinite problem to a finite
one and allows to solve the impurity problem. In the latter case, one rewrites
the Hamiltonian with Hubbard operators and then calculates the Green’s func-
tions for these operators. As we are not considering strongly correlated effects
of the molecular moment in this thesis we will not use these approaches. Using
Hubbard operators could be a suitable extension of the current work in order
to include electron-electron interactions, see, e.g., Ref. [192, 193].

6.2 Single-molecule magnet with a classical spin and its
spin dynamics

In this section, we focus on deriving the spin equation of motion for a molecular
magnet with a classical spin. We start by considering the spin-spin interaction
from the Keldysh action. After that, we add other contributions to create an
effective action of the spin. We, thus, derive a generalized spin equation of
motion following Ref. [65, 124, 126, 127, 192]. Lastly, we show how we can
simplify the generalized spin equation of motion and get the commonly used
phenomenological equation Landau-Lifshitz-Gilbert (LLG) [128]. For more
information about field theory of condensed matter see, e.g., Ref. [7, 8, 194].

6.2.1 Effective spin-spin interaction
For calculating the effective spin-spin interaction in an electronic background
we start by deriving an expression for the effective interaction. We are interested
in the interaction between spins in a nonequilibrium environment, thus, we start
from a field theoretical approach on the Keldysh contour.

The partition function can be defined as a path integral over the bosonic and
fermionic degress of freedom as

Z = Z−1
0

ˆ
Dη

ˆ
D(ψ, ψ̄)eiS[ψ,ψ̄,η], (6.4)

where the Keldysh action is given by

S[ψ, ψ̄, η] =
ˆ

dtψ̄(t)
(

i�
∂

∂t
− H0 − HI

)
ψ(t). (6.5)

Here, ψ(t) denotes the fermionic fields (Grassman variables) and is a spinor
specified by the upper and lower Keldysh components ψ(t) = (ψu(t), ψl(t))T

on the Keldysh contour. The Hamiltonian H0 denotes the Hamiltonian for the
fermionic degrees of freedom, excluding the interaction with the spins, whereas
the Hamiltonian HI contains the electron-spin interaction and the spin degrees
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of freedom. The bosonic field operator η(t) for the spins is constructed such
that η(t) = (η1(t), η2(t), η3(t)) ∈ S2.

Performing the integral over the fermionic degrees of freedom gives

Z = Z−1
0

ˆ
Dη det

∣∣∣∣(−i)
(

i�
∂

∂t
− H0 − HI

)∣∣∣∣
= Z−1

0

ˆ
Dη det

∣∣∣(−i)
(
G−1 − HI

)∣∣∣
= Z−1

0

ˆ
Dη exp

[
ln
(
det
∣∣∣(−i)

(
G−1 − HI

)∣∣∣)]

= Z−1
0

ˆ
Dηe−SI

eff [η], (6.6)

where we defined G−1 = i� ∂
∂t − H0 as the bare fermionic Green’s function

and

SI
eff [η] = − ln

(
det
∣∣∣(−i)

(
G−1 − HI

)∣∣∣) . (6.7)

SI
eff [η] represents the effective action for the spin interactions and can be

expanded as

SI
eff [η] = − ln

(
det
∣∣∣(−i)

(
G−1 − HI

)∣∣∣)
= −Tr

(
ln
∣∣∣(−i)G−1 (1 − GHI)

∣∣∣)
= −Tr

(
ln
∣∣∣(−i)G−1

∣∣∣)− Tr (ln |(1 − GHI)|)

= −Tr
(
ln
∣∣∣(−i)G−1

∣∣∣)+ Tr (GHI) + 1
2Tr (GHI) (GHI) + ...

(6.8)

In the last step, we used the Taylor expansion of the natural logarithm. We
limit our discussion to the second order, ignoring higher order terms.

In the case of spin-spin interactions given by the Kondo model, the interac-
tion Hamiltonian will become HI = −vσ · S, where S denotes the spin, v the
exchange interaction strength and where we have integrated out the fermionic
degrees of freedom. As the Green’s function G contains the fermionic de-
grees of freedom, the combined product GHI can be written as −vs · S where
s = ψ†σψ/2 =

∑
σσ′ d†

σσσσ′dσ′/2.
We now evaluate the effective action for the spin interactions given by the

Kondo model. The first term can be ignored as it only contains fermionic
degrees of freedom. Evaluating the second term of the effective action gives
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the interaction with the effective local electronic spin moment

Tr (G(t, t)HI(t)) = −v

˛
C

dt 〈T s(t) · S(t)〉

= −v

˛
C

dt

〈
T
∑
σσ′

(d†
σσσσ′dσ′)(t)/2 · S(t)

〉

= −v

2
∑
σσ′

˛
C

dt
〈
T(d†

σdσ′)(t)
〉

σσσ′ · S(t)

= i
v

2
∑
σσ′

˛
C

dtG<
σσ′(t, t+)σσσ′ · S(t)

= i
v

2
∑
σσ′

ˆ ∞

−∞
dtG<

σσ′(t, t+)σσσ′ · (Su(t) − Sl(t))

= i
v

2

ˆ ∞

−∞
dt spσG<(t, t) · Sq(t)

= −v

ˆ ∞

−∞
dtm(t) · Sq(t). (6.9)

Here, we replaced Tr with
¸

C dt < x >, T is the time-ordering operator and
and sp is the trace over spin space. The spin operators Sc and Sq, represent
the classical and quantum spin operators, defined as Sc = (Su + Sl)/2 and
Sq = Su − Sl. Here, the superscripts u (l) denotes the spin operators on
the upper and lower part of the Keldysh contour, respectively, and we have
performed a rotation in Keldysh space in order to get the classical and quantum
spin operators. We defined the local magnetic occupation as m(t) = 〈s(t)〉 =
1
2
〈
ψ(t)†σψ(t)

〉
= − i

2spσG<(t, t) = 1
2 Im spσG<(t, t) where G<(t, t) is the

equal-time lesser Green’s function in spin space.
The third term of the effective action gives the spin-spin interaction through

the electronic background

1
2Tr (G(τ, t)HI(t)) (G(τ, t′)HI(t′))

= 1
2v2
˛

C

dt 〈T s(t) · S(t)〉
˛

C′
dt′ 〈T s(t′) · S(t′)〉

= v2

2

˛
C

˛
C′

dtdt′S(t) · sp (σG(t, t′)σG(t′, t)) · S(t′). (6.10)

The term sp (σG(t, t′)σG(t′, t)) is the electronically mediated spin-spin in-
teraction and will be investigated in more detail. Note that S is here a contour
ordered operator and G(t, t′) is a contour ordered Green’s function and needs to
be expanded onto the upper and lower branch in order to be properly addressed,
see Chapter 12 in Ref. [192] for more detail.
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6.2.2 Effective spin action
We define the effective spin action for the free spin in order to derive the spin
equation of motion. It is done on the Keldysh contour as the system is treated
in nonequilibrium. For a spin system, the effective action is defined as

Seff =SWZWN +
˛

C

dtH. (6.11)

Here, SWZWN =
´

dtSq(t) · [Sc(t) × ∂tSc(t)]/|S|2 is the Wess-Zumino-Witten-
Novikov (WZWN) term. This term originates from taking the path integral of
the quantum mechanical spins over the sphere S2 describing the topological
Berry phase accumulated by the local spins. For more information, see Chapter
7 in Ref. [194].

Following the derivation that is presented in Chapter 12 in Ref. [192], the
effective action can then be written as

Seff =SWZWN − gμB

ˆ
dtB(t) · Sq(t) − v

ˆ
dtm(t) · Sq(t)

+ 1
e

¨
dtdt′j(t, t′) · Sq(t) + 1

e

¨
dtdt′Sq(t) · J(t, t′) · Sc(t′)

+ 1
e

¨
dtdt′Sq(t) · JK(t, t′) · Sq(t′). (6.12)

Here, the second term denotes the Zeeman coupling to a magnetic field and
B(t) is the external magnetic field. The last three terms originates from
the previously derived spin-spin interaction sp(σGσG) after performing the
Keldysh rotation. The fourth term, j(t, t′) = ievθ(t − t′)〈

[
s(0)(t), s(t′)

]
〉,

provides the magnetic field due to the electron flow where s(0) =
∑

σ εσd†
σdσ′/2

represents the charge flow. This field can be approximated as

j(t, t′) ≈ ievθ(t − t′)spε
(
G<(t, t′)σG>(t′, t)

−G>(t, t′)σG<(t′, t)
)

/4. (6.13)

Here, ε = diag{ε↑, ε↓} represent the electron energy states and we did the
approximation

〈T s0(t)s(t′)〉 =1
4
∑
σss′

εσ〈T d†
σ(t)dσ(t)d†

s(t′)σss′ds′(t′)〉

=1
4
∑
σss′

εσσss′
(
−〈T dσ(t)d†

s(t′)〉〈T ds′(t′)d†
σ(t)〉

+〈T d†
σ(t)dσ(t)〉〈T d†

s(t′)ds′(t′)〉
)

≈ − (i)2

4
∑
σss′

εσσss′Gσs(t, t′)Gs′σ(t′, t)

=1
4spεG(t, t′)σG(t′, t). (6.14)
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Here, the correlated contribution of the electrons is assumed to be negligible.
The fifth term, which involves the field J(t, t′) = i2ev2θ(t −

t′) 〈[s(t), s(t′)]〉, carries the memory of magnetic anisotropy and exchange
interactions for the local magnetic moment. It can be approximated as

J(t, t′) ≈ ie

2 v2θ(t − t′)spσ
(
G<(t, t′)σG>(t′, t)

−G>(t, t′)σG<(t′, t)
)

, (6.15)

where we did the analogues approximation

〈T s(t)s(t′)〉 = 1
4
∑

σσ′ss′
〈T d†

σ(t)σσσ′dσ′(t)d†
s(t′)σss′ds′(t′)〉

= 1
4
∑

σσ′ss′
σσσ′σss′

(
−〈T dσ′(t)d†

s(t′)〉〈T ds′(t′)d†
σ(t)〉

+〈T d†
σ(t)dσ′(t)〉〈T d†

s(t′)ds′(t′)〉
)

≈ −(i)2

4
∑

σσ′ss′
σσσ′σss′Gσs(t, t′)Gs′σ(t′, t)

= 1
4spσG(t, t′)σG(t′, t). (6.16)

The last term, which involves the Keldysh component, JK(t, t′) =
iev2〈{s(t), s(t′)}〉, defines the electronically mediated interactions between
the spin operators Sq(t) and Sq(t′). It carries the quantum-quantum correla-
tions and is usually viewed as a quantum fluctuation. By doing a Hubbard-
Stratonovich transformation, that will linearize the equation, one introduces a
stochastic field represented by the Gaussian random variables ξ(t). This can
be treated by a Fokker-Planck type of equation, where one get a contribution of
the form γS(t) × ξ(t) in the spin equation of motion. Under certain conditions
this contribution can be interpreted as a random magnetic field acting on the
spin and the random variable ξ is defined by the electronic correlations through
(gμB)2〈ξ(t)ξ(t′)〉 = −i2JK(t, t′)/e. In the wide band limit, used in this thesis,
it can be shown that the stochastic fields is of Gaussian white noise character,
and we choose to omit this contribution as it will result in a thermal smearing
of the results. Although, for a more complete description of the problem, it
can be of importance, and it is important to be aware of the fact that we do not
take it into consideration when analyzing the results.

6.2.3 Spin equation of motion
We are interested in the dynamics of the spin moment and its exchange in-
teraction with the quantum dot. Thus, we want to focus on the equation of
motion for the local spin moment. It is derived from the effective action of the
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spin, defined in the previous section. By taking the functional derivative of the
effective action and setting it to zero gives

0 = Seff

δSq(t) = 1
S2 Sc(t) × Ṡc(t) − gμBB(t) − vm(t)

+ 1
e

ˆ
dt′
(
j(t, t′) + J(t, t′) · Sc(t′)

)
. (6.17)

Here, we omit the quantum-quantum fluctuations carried in the term
1
e

˜
dtdt′Sq(t) · JK(t, t′) · Sq(t′), as discussed in the previous section. We

can drop the superscript and take the cross product from the left with S(t)× to
get

0 = 1
S2 S(t)×

[
S(t) × Ṡ(t)

]
−gμBS(t)×Beff(t)+1

e

ˆ
dt′S(t)×J(t, t′)·S(t′),

(6.18)
where an effective magnetic field is defined as Beff(t) = B(t) + v

gμB
m(t) −

1
egμB

´
dt′j(t, t′). Assuming that the length of the spin is constant and that it

can be treated classically, we set ∂t |S(t)|2 = 0, such that the first term can be
simplified to −Ṡ(t) and moved to the left hand side. The resulting equation of
motion becomes

Ṡ(t) = −gμBS(t) × Beff(t) + 1
e

S(t) ×
ˆ

dt′
J(t, t′) · S(t′). (6.19)

This current mediated interaction can be decomposed into an isotropic Heisen-
berg, JH , anisotropic Dzyaloshinski-Moriya (DM), D, and Ising, I, interac-
tions. This can be seen from the product S · J · S, which is the corresponding
contribution in the effective spin model to S(t) × J(t, t′) · S(t′) in the spin
equation of motion. Using the general partitioning G = G0σ0 +G1 ·σ, where
G0 and G1 describes the electronic charge and spin, it is straight forward to
see that

spS · σGσG · S
=spS · σ(G0σ0 + G1 · σ)σ(G0σ0 + G1 · σ) · S

=sp
(
S · G1 + [SG0 + iS × G1] · σ

)(
G1 · S + [G0S − iG1 × S] · σ

)
,

(6.20)

where we have used the identity mentioned in Section 4.4. As the Pauli matrices
are traceless, the above expression reduces to

2
(
S · (G1G1) · S + [SG0 + iS × G1] · [G0S − iG1 × S]

)
. (6.21)

58



After a little more algebra we obtain the Heisenberg (JH), anisotropic Ising (I)
and anisotropic Dzyaloshinskii-Moriya (D) interactions

JH(t, t′) = iev2θ(t − t′)
(
G<

0 (t, t′)G>
0 (t′, t)

−G>
0 (t, t′)G<

0 (t′, t) − G<
1 (t, t′) · G>

1 (t′, t)

+G>
1 (t, t′) · G<

1 (t′, t)
)
, (6.22a)

I(t, t′) = iev2θ(t − t′)
(
G<

1 (t, t′)G>
1 (t′, t)

−G>
1 (t, t′)G<

1 (t′, t) +
[
G<

1 (t, t′)G>
1 (t′, t)

−G>
1 (t, t′)G<

1 (t′, t)
]t)

, (6.22b)

D(t, t′) = −ev2θ(t − t′)
(
G<

0 (t, t′)G>
1 (t′, t)

−G>
0 (t, t′)G<

1 (t′, t) − G<
1 (t, t′)G>

0 (t′, t)

+G>
1 (t, t′)G<

0 (t′, t)
)
. (6.22c)

This leads to that we can partition the current mediated spin-spin interaction
in the spin equation of motion into

S(t) × J(t, t′) · S(t′) =JH(t, t′)S(t) × S(t′)
+ S(t) × I(t, t′) · S(t′)
− S(t) × D(t, t′) × S(t′). (6.23)

It can be noted that in the case of a spin-independent Green’s function, i.e.,
G1 = 0, there is only Heisenberg interaction. In the case where one treats
the back-action from the local magnetic moment in the quantum dot there will
always be spin-dependence in the Green’s function as it induces a local Zeeman
split in the quantum dot, see Eq. (4.40).

Calculating the current j(t, t′) gives

j(t, t′) =2vieθ(t − t′)
([

ε0G<
0 (t, t′) + Δẑ · G<

1 (t, t′)
]
G>

1 (t′, t)
− [ε0G>

0 (t, t′) + Δẑ · G>
1 (t, t′)

]
G<

1 (t′, t)
+
[
ε0G<

1 (t, t′) + Δẑ + iẑ × G<
1 (t, t′)

]
G>

0 (t′, t)
− [ε0G>

1 (t, t′) + Δẑ + iẑ × G>
1 (t, t′)

]
G<

0 (t′, t)
− i
[
ε0G<

1 (t, t′) + Δẑ + iẑ × G<
1 (t, t′)

]× G>
1 (t′, t)

+ i
[
ε0G>

1 (t, t′) + Δẑ + iẑ × G>
1 (t, t′)

]× G<
1 (t′, t)

)
, (6.24)

where Δ = gμBBz/2 is defined.
Furthermore, the local magnetic occupation can be simplified as m(t) =

1
2 Im spσG<(t, t) = ImG<

1 (t, t).
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6.2.4 The effective field and exchange
The generalized spin equation of motion is quite complex and constitutes of
several parts. In order to get a clear description we go through the different
terms of the equation in this section.

The effective magnetic field Beff(t) constitutes of three different parts. The
first one, B(t), is a simple Zeeman coupling to an external magnetic field,
which makes the spin precess in the corresponding field direction. The second
term, m(t), is the local magnetic occupation of the quantum dot. It provides
a local field similar to the external field for the spin to precess. The third
term, given by j(t, t′), corresponds to the field generated by the current flowing
through the dot.

The field generated by the current is the most important term when consid-
ering high currents and can be of three to four orders of magnitude larger than
the local dot occupation. For low currents, the local dot magnetic occupation
is of more importance as it interacts more strongly with the localized spin
moment in the molecule.

The exchange interaction between the spins, described by the spin-spin
susceptibility tensor, J(t, t′), can be partitioned into three different parts, as
stated in the previous section. Effectively this corresponds to the Hamiltonian

H =S · (JHS + I · S + D × S) . (6.25)

Here, the first term corresponds to a Heisenberg-like interaction and is therefore
a scalar interaction which is minimized as the two spins are parallel for a
negative JH . It is isotropic, i.e., direction independent, and will create a
degenerate ground-state of spin-up and spin-down solution for a single spin.

The second term, I, is a tensorial quantity and corresponds to a Ising-like
interaction. It will introduce an uniaxial anisotropy in the system, creating an
easy axis for the spins to align. In the case of a single spin, there needs to
be a magnetization in the local environment for it to effect the spin dynamics,
either from an external magnetic field or polarized leads. This is due to that
I ∝ G1G1 ∝ SS if there is no magnetization, i.e., it will want to align with
itself.

The third term, D, is a Dzyaloshinskii-Moriya-like interaction and corre-
sponds to a vector. This will apply a spin-transfer torque to the spin, partly due
to the flow of spins in the system. This term usually arises as one includes spin-
orbit coupling, although, in this case it appears as one breaks time-reversal and
inversion symmetry of the out-of-eqilibrium system. Therefore it will provide
an effective torque on the local spin, either through a pulse or a spin current.
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6.2.5 Landau-Lifshitz-Gilbert equation
In this section, we will show how we can derive the LLG equation from the
generalized equation of motion. The extended LLG equation is defined as

Ṡ = S × (−γB + ĜṠ + ÎS̈), (6.26)

where Ĝ and Î is the Gilbert damping and the moment of inertia tensor,
respectively. The difference between this equation and the previously derived
generalized spin equation of motion, is that the parameters, in the spin equation
of motion itself, is time-dependent and depends on the history of the system.
Usually, in the treatment of LLG, one solves for a history-independent and
time-independent parameters.

In order to retrieve the LLG equation from the spin equation of motion, we
perform a Taylor expension of the spin, i.e., S(t′) = S(t) − (t − t′)Ṡ(t) + (t −
t′)2S̈(t)/2, and get that

1
e

ˆ
J(t, t′) · S(t′)dt′ ≈1

e

(ˆ
J(t, t′)dt′S(t) −

ˆ
J(t, t′)(t − t′)dt′Ṡ(t)

+
ˆ

J(t, t′)(t − t′)2dt′S̈(t)/2
)

. (6.27)

Here, the second term corresponds to the Gilbert damping and the third term to
the moment of inertia. Just considering the Gilbert damping, the spin equation
of motion simplifies to

Ṡ(t) = S(t) ×
(

−gμBBeff
1 (t) − 1

e

ˆ
J(t, t′)(t − t′)dt′Ṡ(t)

)
, (6.28)

where the first term is defined as Beff
1 (t) = Beff(t) − 1

egμ

´
J(t, t′)dt′S(t). We

identify the factor in front of the first term as γ, the second term as the damping
tensor and define it as Ĝ = −1

e

´
J(t, t′)(t − t′)dt′. Thus, the equation can be

written on the form Ṡ = S × (−γB + ĜṠ).
The big difference between this LLG equation and the generalized spin

equation of motion is that the full history of the spin is discarded and that
it is approximated to the first or second order. In many cases this is a valid
approximation, although in the present study, the focus is to get all effects, even
the ones depending on the history of the spin. So far, the parameters are still
treated to be time-dependent, although, they are usually treated as constant in
atomistic spin dynamics calculations. In the next section we will look at the
further simplification and see how one can derive constant parameters for the
LLG equation.
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6.2.6 LLG with constant exchange coupling
For slow dynamics, the exchange parameters in the LLG equation can be
considered constant. For the most simple case, the LLG equation simplifies to

Ṡ(t) =S(t) ×
(
−gμBBeff

1 + Ĝ · Ṡ(t)
)

. (6.29)

First, we derive the parameters in the effective magnetic field, Beff
1 (t) =

Beff(t) − ´ J(t, t′)dt′S(t). In the time-independent limit, the electron spin-
spin correlation function can be Fourier transformed into energy space

J(ε) =e

2v2
ˆ

dω

2π

dω′

2π

1
ω + ε − ω′ + iδ

spσ
(
G<(ω)σG>(ω′)

− G>(ω)σG<(ω′)
)
. (6.30)

Here, we used the fact that in the stationary limit, the Green’s function can be
rewritten as G(t, t′) = G(t − t′) = G(τ), and δ was added in order for the
integration to converge as τ = t− t′ goes to infinity, lim

τ→∞ exp(i(ω′ −ε−ω)τ −
δτ).

If we take the limit ε → 0, we get for the internal field

j(t, t′) = −2v

ˆ
dω

2π

dω′

2π

1
ω + ε − ω′ + iδ([

ε0G<
0 (ω) + Δẑ · G<

1 (ω)
]
G>

1 (ω′)
− [ε0G>

0 (ω) + Δẑ · G>
1 (ω)

]
G<

1 (ω′)
+
[
ε0G<

1 (ω) + Δẑ + iẑ × G<
1 (ω)

]
G>

0 (ω′)
− [ε0G>

1 (ω) + Δẑ + iẑ × G>
1 (ω)

]
G<

0 (ω′)
−i
[
ε0G<

1 (ω) + Δẑ + iẑ × G<
1 (ω)

]× G>
1 (ω′)

+i
[
ε0G>

1 (ω) + Δẑ + iẑ × G>
1 (ω)

]
×G<

1 (ω′), (6.31)
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and for the decomposed exchange interaction

J (H) = − v2
ˆ

dω

2π

dω′

2π

1
ω + ε − ω′ + iδ

(
G<

0 (ω)G>
0 (ω′) − G>

0 (ω)G<
0 (ω′)

−G<
1 (ω) · G>

1 (ω′) + G>
1 (ω) · G<

1 (ω′)
)

, (6.32a)

I = − v2
ˆ

dω

2π

dω′

2π

1
ω + ε − ω′ + iδ

(
G<

1 (ω)G>
1 (ω′) − G>

1 (ω)G<
1 (ω′)

+
[
G<

1 (ω)G>
1 (ω′) − G>

1 (ω)G<
1 (ω′)

]t)
, (6.32b)

D =v2

2 Re
ˆ

dω

2π

(
G<

0 (ω + ε)G>
1 (ω) − G>

0 (ω + ε)G<
1 (ω)

−G<
1 (ω + ε)G>

0 (ω) + G>
1 (ω + ε)G<

0 (ω)
)

. (6.32c)

Here, Kramer-Kronig relations were used in the last row.
In the time-independent limit the Gilbert damping can be derived from

Ĝ = −1
e

ˆ
J(t, t′)(t − t′)dt′ = −1

e
limε→0i∂εJ(ε). (6.33)

Following a similar procedure as for the effective magnetic field, one can get
the Gilbert damping in terms of Heisenberg, Ising and Dzyaloshinskii-Moriya
interaction.

63





Part III:
Results
In this part, we will go through the results of the thesis which have been
published in the accompanying papers. The results are based onto the theory
defined in the previous part, where the majority of the contribution is derived.
In some of the papers, further developments were made by co-authors and
will be discussed in respective section. Chapter 7 treats Paper I-IV which
considers the time-dependent transport characteristics of a dynamic single-
molecule magnet. Chapter 8 considers the results of Paper V-VI, where
electrical control of single- and multi-molecular systems is performed, and the
effect on their exchange and anisotropy are considered.





7. Transport and spin dynamics in a
single-molecule magnet

This chapter treats the developments in the thesis regarding dynamic properties
of single-molecule magnets. More specifically, it considers a single-molecule
magnet under the influence of time-dependent pulses. The calculations rely
on the theory derived in the previous part of the thesis. There, the dynamical
charge and spin-transport in a single-molecule magnet is considered, together
with dynamical exchange fields and the dynamics of the magnetic moment.
The results are divided into four separate works with different focus. All are
briefly presented in this chapter. For more information see the papers.

First, in Paper I, general results for time-dependent spin and transport prop-
erties are calculated. It includes a thorough investigation of the system, in-
cluding the stationary limit, the effect of the different exchange fields, the
effect of changing the tunneling and exchange coupling as well as bias and
gate voltage. Paper II investigates the difference of using a generalized spin
equation of motion and the Landau-Lifshitz-Gilbert equation when calculating
single-molecule spin dynamics. Paper III shows the emergence of a phase-
induced switching phenomena due to applied pulses and dynamic exchange
fields. The induced switching depends on the applied voltage and temporal
length of the pulse. Lastly, Paper IV considers spin-dependent heat signatures
of single-molecule spin dynamics driven by the spin-dependent Peltier effect.

7.1 Paper I: Time-dependent spin and transport
properties of a single-molecule magnet in a tunnel
junction

In Part II, the theory of a system representing a single-molecule magnet in a
tunnel junction was derived. In Paper I, this theory is used to compute the
result for such a system in the case of a sudden on-set of the voltage bias, see
Fig. 7.1. In this transient regime, we can study the transient properties of the
system.

The analysis starts with considering how the system properties can be tuned
in the stationary limit, i.e., when there is no time-dependence. We show
that by tuning the gate and bias voltage one can tune the effective exchange
interaction of the molecule. The exchange interaction is decomposed into
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Figure 7.1. The system studied in Paper I representing a single-molecule magnet in a
tunnel junction. At a time t0 their is a sudden on-set of a bias voltage and the transient
dynamics is then studied.

isotropic Heisenberg and anisotropic Ising and DM-interaction, following the
procedure in section 6.2.4, which all can be tuned.

The results in the stationary limit is then extended to the time-domain by
applying an abrupt on-set of a voltage bias. This initiates the dynamics of
the molecule, calculated using the generalized spin equation of motion. The
effective exchange fields are then calculated and a clear time-dependence in
the effective exchange interaction emerges. The time-dependent exchange is
clearly different than in the stationary limit. Specially, e.g., the DM-interaction
is of finite character in the transient regime, although, it tends towards zero in
the long-time limit. This is because the system exhibits broken time-reversal
symmetry in the time-domain, due to the sudden pulse. Thus, it is of importance
to treat the full dynamic exchange fields when studying pulses.

For non-magnetic leads, the system and the resulting charge current, spin
currents and spin dynamics are then considered. First, the effect of different
external nonequilibrium forces are investigated, such as applied gate and bias
voltage. Secondly, the effect of changing the molecular interactions are in-
vestigated, such as the local exchange coupling and tunneling coupling. The
evolution of the magnetic moment and the currents are then considered in order
to give a description of the dynamic evolution of the system. There is a clear
relation depending on the different parameters that control the dynamics. E.g.,
the bias and gate voltage tune the effective exchange and the resulting solu-
tions, while the exchange coupling tunes the interaction rate and the tunneling
coupling tunes the damping of the system.

The last part of the paper studies the case of ferromagnetic leads. The leads
will then inject a spin-polarized current into the system, which will result in
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larger anisotropies and different dynamics. There is a clear signature in the
spin current depending on the different polarization of the leads as expected.
This leads to a change in the potential landscape of the molecular spin, such
as it alters the resulting spin dynamics. The results show that the interaction
is highly anisotropic and depends on the direction of the current. That means,
one can control the spin moment by driving current through one lead or the
other, in agreement with previous studies [66].

In summary, we have in the paper studied the transient response and the time
evolution of a local magnetic moment in a tunnel junction. We have shown that
non-trivial exchange interaction appears in the time-dependent domain, espe-
cially for small time scales. Anisotropic effects occur due to time-dependence
which will effect the direction of the magnetic moment. A large effective
internal magnetic field occurs for small time scales and adjusts the evolution
of the local magnetic moment, an effect not usually considered as it vanishes
for the stationary solution. Considering time-dependent exchange interaction
is thus important in small time-scale calculations and shows potential for a
deeper understanding of the exchange interaction.

7.2 Paper II: Transient spin dynamics in a
single-molecule magnet

In Paper II, the validity of different approximation schemes for calculating
the spin dynamics of a single-molecule magnet are investigated. The main
motivation is to investigate how a generalized spin equation of motion compares
to the commonly used Landau-Lifshitz-Gilbert equation. The paper considers
the case of transient response to an applied bias voltage over a junction with
non-magnetic leads containing a single-molecule magnet.

The three different approximations used in the paper include the following.
First, the generalized spin equation of motion (generalized SEOM), where the
spin is treated classically using the Born-Oppenheimer approximation, for sys-
tems not in the Anderson limit where strong correlations need to be considered.
Second, a time-dependent Landau-Lifshitz-Gilbert equation (tdLLG), where
the generalized spin equation of motion has been Taylor expanded following the
procedure in 6.2.5, keeping the interaction parameters time-dependent. Third,
a Landau-Lifshitz-Gilbert equation with constant parameters (LLG), where the
parameters of the equation are calculated in the stationary limit and used in
order to simulate the dynamics.

The results are summarized in Fig. 7.2. It shows that for longer time-scales
and smaller exchange couplings, the LLG equation suffice. When approaching
stronger coupling and faster dynamics, quantum effects and the underlying
dynamics of the junction needs to be considered. It is an interplay of the local
exchange coupling and tunneling coupling that determines the need for more
inclusive description of the underlying dynamics, and the regimes scale with
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Figure 7.2. Diagram showing regimes of validity for the different approximation
schemes used in Paper II. The regimes scale with time t as t1/4. Going from slower
to faster time-scales, and from low to high exchange coupling, one needs to extend the
LLG equation to incorporate quantum effects. Here, the generalized SEOM denotes
the general approach used in the paper, and tdLLG denotes a LLG equation with time-
dependent parameters. The horizontal dotted lines indicates the limits of the exchange
coupling in terms of the model parameters.

time t as t1/4. Thus, for fast dynamics and somewhat strongly coupled systems,
the generalized SEOM is needed for a full description of the dynamics.

7.3 Paper III: Dynamical exchange and phase induced
switching of localized molecular spin

In Paper III, the focus is on studying the effect of a bias pulse of varying length
over a junction containing a single-molecule magnet. The paper studies the
effect of the dynamical exchange, which results in a phase induced switching
of a localized molecular spin, see Fig. 7.3.

The phase is defined as ϕ ≡ eV (t1 − t0)/� where e is the electron charge, V
is the applied bias voltage, t0 is the time the pulse starts, t1 is the time when the
pulse ends and � is Plancks constant divided by 2π. The main results are shown
in Fig. 7.4. Fig. 7.4 clearly shows that for ϕ ∈ (2π, 4π) mod 4π the spin
flips and aligns with the magnetic field that points in the positive z-direction,
while it does not for ϕ ∈ (0, 2π) mod 4π.

The results are explained by dynamical exchange interaction, internal tran-
sient fields and self-interactions on the localized spin moment through the gen-
eralized spin equation of motion. Furthermore, the limits of the phase-induced
switching is investigated. The results show that the uniaxial anisotropy and
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Figure 7.3. The system studied in Paper III due to pulses of varying length. A switching
occurs if the pulse has a certain phase.

Figure 7.4. Main results of Paper III, which shows the resulting evolution of Sz ,
showing the spin flip for different pulse lengths, here plot against ϕ/2π. The dotted
line indicates when the pulse ends.
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exchange coupling have to be sufficiently large to overcome temperature fluc-
tuations and damping mechanisms of the spin moment. There are also upper
bounds on the temperature and the magnetic field for the switching to occur.

7.4 Paper IV: Spin-dependent heat signatures of
single-molecule spin dynamics

Paper IV is considering thermoelectric transport through a single-molecule
magnet, specially spin-dependent, and relating it to the spin dynamics of the
molecular spin. The theory used is presented in Chapter 5 of this thesis. The
system is investigated after applying a sudden on-set of a bias voltage.

The paper shows that one can relate the generated heat in the molecule to
its charge and spin degrees of freedom. It shows that the currents can be
controlled by a bias voltage and that one can create a reversal of the net heat
transfer. The net reversal can be described by the presence of a magnetic
field and the coupling to the magnetic moment, which creates a local Zeeman
splitting in the quantum dot. This creates an energy difference for the spin-up
and spin-down electrons tunneling to the junction, creating a net heat transfer.
Furthermore, there is a clear relation between the spin heat current and the
anisotropies of the magnetic molecule, and both can be controlled by both
tunneling coupling and the local exchange interaction.

The conclusions of the paper is that the heat transfer in the molecule is
related to both the charge and spin degrees of freedom. The latter is then
connected to the spin-dependent Peltier effect, which can be related to the spin
dynamics of the magnetic molecule.
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8. Electrical control of molecular multi-spin
systems and vibrating magnetic molecules

The previous chapter treated the dynamics of a single-molecule magnet and its
related transport properties. This chapter treats similar systems, although, in
the stationary limit. Approaching the systems in the stationary limit simplifies
the treatment and means that we can consider more complicated set-ups, such
as systems consisting of multiple spins and the effect of vibrations. The
underlying theory is the same as in Part II of the thesis and the equations are
considered in the stationary limit.

There are two papers treated in this chapter. First, Paper V treats the
switching dynamics of a molecular dimer by an externally applied bias voltage.
It considers the effect of non-magnetic transport through a molecular spin pair
and the effects on the indirect exchange between the spins. Paper VI treats
the electronically mediated magnetic anisotropy in a vibrating single-molecule
magnet and the effect of vibrations on the molecular anisotropy.

8.1 Paper V: Voltage-Induced Switching Dynamics of a
Coupled Spin Pair in a Molecular Junction

Paper V treats the effect of an externally applied voltage bias on a molecular
spin pair coupled through electronic exchange. The system is modelled as
two spins separately connected to two degenerate quantum dots. These two
quantum dots are then connected to two separate metallic non-magnetic leads
and between themselves. The quantum dots provide the electronic structure
for which the two spins interact, much like the case of the quantum dot in a
single-molecule magnet as treated in the previous chapter. As the electronic
structure is non-magnetic, the interaction between the two spins is of isotropic
Heisenberg interaction. By applying a bias voltage over the junction, the
interaction between the two spins can be tuned, and this tuning is the main
investigation of the paper.

The results in the paper show that there are three main regimes for an
applied bias voltage. First, there is a ferromagnetic regime, where the two
spins create a spin triplet state. This leads to that the molecular spin-projected
density of states become delocalized in the molecular structure. In this regime,
there is a finite charge current through the junction. The second regime is the
antiferromagnetic regime where the two spins create a spin singlet state. This
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leads to that the spin-projected density of states becomes strongly localized
on one of the molecules. The strong localization creates a blockade of charge
transport through the junction. The third regime occurs when the voltage bias
is large enough to diminish the interaction between the spins, leading to four
states that are equally probable (1/4), and the electronic structure becomes
completely delocalized. In this regime there is a large charge transport.

By tuning the levels of the quantum dots, the interaction and charge transport
can be changed. Adjusting both levels, using a gate voltage, the interactions
in the molecule can be tuned. The gate voltage introduces an antiferromag-
netic region at zero bias voltage, and splits the ferromagnetic peaks in the
exchange. As described before, this changes the transport in the molecular
structure. Similarly, one can create a rectifier by adjusting the levels with
respect to each other, increasing the localization in the molecules. This creates
a strictly ferromagnetic (antiferromagnetic) interaction for negative (positive)
bias voltage.

8.2 Paper VI: Electronically Mediated Magnetic
Anisotropy in Vibrating Magnetic Molecules

Paper VI treats the effect of vibrations on the electronically mediated magnetic
anisotropy in a single-molecule magnet. The paper considers a molecular
magnet between two leads coupled to a vibrational mode through electron-
phonon coupling. The electronically mediated anisotropy is calculated from
the molecular electronic structure using the apporach introduced in Chapter 6.
Here, the focus lies on calculating the uniaxial anisotropy D. In the set-up, it is
the same as the Ising component in the zz-direction, i.e., D = Izz , of the current
mediated exchange interaction J in Chapter 6, as the magnetic properties are
all aligned with the global z-direction. In the paper, it is shown that the
expression for the uniaxial anisotropy can be divided into a part corresponding
to the electronic states near the Fermi surface and a part corresponding to the
occupied electron density (Fermi sea). Furthermore, the anisotropy depends
on the spin imbalances in the molecular electronic system.

The coupling to the vibrations is treated by doing a separation using the
Lang-Firsov transformation. The decoupling separates the Green’s function
for the full system to a Green’s function for the electrons and one for the
phonons. This approximation is valid for weak couplings, thus, restricts the
applicability of the results to the weak coupling regime.

The results show that the anisotropy can be changed from easy-axis to
easy-plane by applying a temperature difference or a voltage bias across the
junction. For increasing coupling strength between the molecular vibrations
and the electrons, the anisotropy is locked into favoring easy-plane anisotropy.
Furthermore, for unequal spin polarization in the leads, the character of the
anisotropy is determined by the properties of the weaker ferromagnet. This
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dominance can be interchanged with the stronger ferromagnet by applying
either a temperature or voltage bias on the system.
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9. Summary and outlook

Experimental progress has led to the realization of magnets consisting of single
atoms or molecules, which can be controlled by external fields, e.g., electric
or magnetic fields. To study the molecular magnets response requires an
understanding of their properties under nonequilibrium conditions. In this
thesis, we perform a theoretical investigation on external control of transport
properties, spin dynamics and exchange interaction of magnetic molecules
consisting of a single-spin moment.

The language used for describing the electronic properties is nonequilibrium
Green’s functions. We show how to derive the Green’s functions for a single-
molecule magnet in a tunnel junction under the influence of a time-dependent
voltage pulse. The molecular magnet is mounted between metallic leads of
normal- or ferromagnetic character, and is under the influence of an external
magnetic field. The resulting observables are the charge, spin and heat currents
of the system.

The spin dynamics of a single-molecule magnet is derived from nonequi-
librium field theory. The fields acting on the spin are derived from treating the
spin on the Keldysh contour. These exchange fields can be decomposed into
effective magnetic field, isotropic Heisenberg interaction, and anisotropic Ising
and Dzyaloshinskii-Moriya interactions. The interactions describe the effec-
tive fields due to the electronic structure of the molecule on the molecular spin
system. The resulting equation of motion for the spin will be of nonadiabatic
character and incorporate nonequilibrium conditions.

In Paper I-IV, we study the dynamics of a single-molecule magnet under the
influence of an external pulse. In Paper I, the transient response of a sudden
on-set of a bias voltage is studied. We investigate how the molecular magnet
responds to different nonequilibrium conditions, the effect on the charge and
spin currents and the spin dynamics of the molecular spin moment. In Paper II,
we compare three different approximation schemes for the spin dynamics of a
single-molecule magnet, and study their regimes of validity. They include the
generalized spin equation of motion developed in this thesis, and the Landau-
Lifshitz-Gilbert equation with time-dependent and stationary parameters. In
Paper III, we study the temporal effect of a voltage pulse and find a phase
induced switching of the localized molecular spin. We, furthermore, study
regimes where this phase induced switching occurs. Then, in Paper IV, we
investigate the heat transport of the molecular magnet and connect it to the
spin dynamics of the molecular spin moment.

The effect of electrical control in the stationary limit is studied in Paper
V-VI. In Paper V, it is studied for a dimer consisting of two single-molecule
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magnets coupled through the tunnelling electrons in a tunnel junction. Here,
the effective switching dynamics is studied. Paper VI considers the effect
of vibrations on the electronically mediated magnetic anisotropy of a single-
molecule magnet. It is shown that the anisotropy can be tuned by a temperature
difference, or a voltage bias, and that the molecular vibrations can lock the sign
of the anisotropy of the molecule.

The theoretical studies and results of this thesis is mainly of interest for
molecular magnets. It would be interesting to generalize the study to quantum
mechanical spins where the electrons participating in the transport consti-
tutes the molecular spin. Furthermore, future investigations could include the
Coloumb blockade and Kondo effect, both of relevance to molecular magnets.
A full description of the quantum thermodynamics of single-molecule mag-
nets is also an interesting extension, as quantum thermodynamics is still under
investigation for strongly coupled systems and few works have been done in
the context molecular magnets.

Even though the main interest has been molecular magnets, parts of the
theory is general, and it would be interesting to see if some results apply to
neighboring fields. The importance of time-dependent parameters and nona-
diabatic effects in the spin equation of motion could be relevant in atomistic
spin dynamics and provide insight to the field of quantum dynamics. Lastly,
experimental verification, especially of the phase-induced switching proposed
in the thesis, would be really exciting.
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10. Svensk sammanfattning

Magneter och magnetiska material är något vi känner till i vardagen som objekt
av metallisk karaktär, exempelvis järn. Dessa makroskopiska objekt utgörs av
en mängd atomer som kollektivt bestämmer deras magnetiska karaktär. Ex-
periment har gjort det möjligt att realisera magneter av enstaka molekyler,
objekt på nanometerskala, där enstaka atomer, av exempelvis övergångsmetal-
ler, utgör det magnetiska momentet. Då det endast handlar om ett fåtal atomer
och elektroner behöver molekylerna beskrivas med kvantfysikaliska metoder.
I denna avhandling studerar vi teorin för molekylära magneter och deras egen-
skaper under extern elekrisk styrning.

Vi använder oss av icke-jämvikts Greenfunktioner för att studera en mole-
kylär magnet som består av ett enskilt magnetiskt spinnmoment. Greenfunk-
tionerna skapar en fältteoretisk bild över elektronerna i molekylen och deras
koppling till det magnetiska spinnmomentet. Vi härleder, utöver detta, en ef-
fektiv rörelseekvation för det moleklyära spinnmomentet som tar hänsyn till
minneseffekter vid applicering av en spänningspuls. Denna effektiva modell
behandlar kopplingen mellan elektronerna som överförs genom molekylen och
molekylens magnetiska frihetsgrader. De effektiva fälten som agerar på det
molekylära spinnmomentet kan delas upp i ett effektivt magnetfält, ett isotropt
Heisenberg bidrag och de anisotropa Ising och Dzyaloshinskii-Moriya bidra-
gen. Med hjälp av denna modell kan vi studera vad som händer när vi applicerar
externa elektriska pulser på den magnetiska molekylen.

Vi studerar det transienta svaret hos en magnetiska molekyl med ett enskilt
molekylärt spinnmoment vid en steg-liknande spänningspuls. Fokus ligger på
hur laddnings-, spinn- och värmeströmmarna beter sig i systemet. Vi analy-
serar effekten av olika begynnelsevillkor, de interna fälten i den magnetiska
molekylen, samt kopplar effekterna till dynamiken hos det molekylära spinn-
momentet. Vidare studerar vi olika approximationer i rörelseekvationen för det
molekylära spinnmomentet. Vi visar på vikten av att ha tidsberoende paramet-
rar och parametrar som beror av spinnets historik. Utifrån vår studie kan vi få
fram olika regimer där de olika approximationerna är giltiga. Hur spinnmo-
mentet i en magnetisk molekyl reagerar på en spänningspuls beror också på
längden av den applicerade pulsen. Genom att applicera pulser av olika längd
kan vi styra spinnmomentets riktning. Detta beror på fasen hos den applice-
rade spänningspulsen och vi får ett fasinducerad växlande av det molekylära
spinnet.

I avhandlingen studeras också elektrisk kontroll av två magnetiska mole-
kyler i serie. Genom att applicera en spänning går det att styra växelverkan
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mellan de två molekylerna. Vi visar på att det finns tre olika regimer för olika
spänningar vilka styr spinnkonfigurationen och laddningsströmmarna genom
molekylerna. I ett annat arbete studerar vi vad för effekter vibrationer har på
den elektroniskt överförda anisotropin i ett system bestående av ett enskilt mo-
lekylärt spinnmoment. Vi visar att det går att förändra styrkan på anisotropin
med en applicerad elektrisk spänning eller temperaturgradient. Dessutom visar
vi att för starkare koppling till vibrationerna går det att låsa anisotropin i ett
tillstånd.

79



11. Acknowledgements

First and foremost, I would like to acknowledge the vast amount of work and
theoretical prerequisites done by my supervisor Jonas Fransson, from which
a large proportion of this work originates. I also want to thank him for his
patience and guidance, and for giving me freedom in my research and everyday
work. His attention to detail is something I hopefully will carry with me for the
rest of my career. Furthermore, I would like to thank Annica, my co-supervisor.

I would like to thank the friends and colleagues at the Division for Materials
Theory at Uppsala University. It is due to the good social and scientific envi-
ronment at the division that made the journey towards this thesis to a pleasant
ride. I would like to thank Juan-David Vasquez Jaramillo for our numerous
talks, his curious mind, and our interesting discussions and collaborations. I
would also like to thank my fellow students and colleagues during my years
in the division; Anna, Kristofer, Johann, Tomas, Charlotta, Johan, Samara,
Seif, Francesco, Ola, Andreas, Alhun, Altug, Anders, Mahroo, Peter, Lucia,
Dushko, Adrien, Saurabh, and others, for all discussions and pleasant times at
lunch, fika, and outside work. Many of the discussions contributed to the work
and my understanding of concepts presented in this thesis.

Lastly, I want to thank my friends and family that made life enjoyable outside
work. I thank my parents, and the rest of my family, for their continuing support,
and that they always encourage me to pursue the things I want to do. I also
thank Josefine for being with me, making my last years of the PhD joyful, and
being supportive in both this and my other ventures.

80



References

[1] Ferenc Krausz and Misha Ivanov. Attosecond physics. Rev. Mod. Phys.,
81(1):163–234, 2009.

[2] P. B. Corkum and Ferenc Krausz. Attosecond science. Nat Phys,
3(6):381–387, 06 2007.

[3] Shoji Yoshida, Yuta Aizawa, Zi-Han Wang, Ryuji Oshima, Yutaka Mera, Eiji
Matsuyama, Haruhiro Oigawa, Osamu Takeuchi, and Hidemi Shigekawa.
Probing ultrafast spin dynamics with optical pump-probe scanning tunnelling
microscopy. Nat Nano, 9(8):588–593, 2014.

[4] Lapo Bogani and Wolfgang Wernsdorfer. Molecular spintronics using
single-molecule magnets. Nat Mater, 7(3):179–186, 03 2008.

[5] Abigail Klopper. Topics in non-equilibrium physics. Nat Phys, 11(2):103–103,
02 2015.

[6] Christopher Jarzynski. Diverse phenomena, common themes. Nat Phys,
11(2):105–107, 02 2015.

[7] Alexander Altand and Ben Simons. Condensed Matter Field Theory.
Cambridge University Press, second edition, 2010.

[8] Alex Kamanev. Field Theory of Non-Equilibrium Systems. Cambridge
University Press, first edition, 2011.

[9] Jukka P. Pekola. Towards quantum thermodynamics in electronic circuits. Nat
Phys, 11(2):118–123, 02 2015.

[10] J. Eisert, M. Friesdorf, and C. Gogolin. Quantum many-body systems out of
equilibrium. Nat Phys, 11(2):124–130, 02 2015.

[11] Heinz-Peter Breuer, Elsi-Mari Laine, Jyrki Piilo, and Bassano Vacchini.
Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys.,
88(2):021002, 2015.

[12] L M Sieberer, M Buchhold, and S Diehl. Keldysh field theory for driven open
quantum systems. Rep. Prog. Phys., 79(9):096001, 2016.

[13] Heinz-Peter Breuer and Frencesco Petruccione. The Theory of Open Quantum
Systems. Oxford University Press, 2007.

[14] Pedro Ribeiro and Vitor R. Vieira. Non-markovian effects in electronic and
spin transport. Phys. Rev. B, 92:100302, Sep 2015.

[15] V Moldoveanu, I V Dinu, B Tanatar, and C P Moca. Quantum turnstile
operation of single-molecule magnets. New J. Phys., 17(8):083020, 2015.

[16] L. Stella, C. D. Lorenz, and L. Kantorovich. Generalized langevin equation:
An efficient approach to nonequilibrium molecular dynamics of open systems.
Phys. Rev. B, 89:134303, Apr 2014.

[17] J. Rammer and H. Smith. Quantum field-theoretical methods in transport
theory of metals. Rev. Mod. Phys., 58(2):323–359, 1986.

[18] Ned S. Wingreen, Antti-Pekka Jauho, and Yigal Meir. Time-dependent
transport through a mesoscopic structure. Phys. Rev. B, 48:8487–8490, Sep
1993.

81



[19] Antti-Pekka Jauho, Ned S. Wingreen, and Yigal Meir. Time-dependent
transport in interacting and noninteracting resonant-tunneling systems. Phys.
Rev. B, 50:5528–5544, Aug 1994.

[20] P. Roura-Bas, L. Tosi, and A. A. Aligia. Nonequilibrium transport through
magnetic vibrating molecules. Phys. Rev. B, 87:195136, May 2013.

[21] R. Härtle, M. Butzin, O. Rubio-Pons, and M. Thoss. Quantum interference and
decoherence in single-molecule junctions: How vibrations induce electrical
current. Phys. Rev. Lett., 107:046802, Jul 2011.

[22] Joseph Weston and Xavier Waintal. Linear-scaling source-sink algorithm for
simulating time-resolved quantum transport and superconductivity. Phys. Rev.
B, 93:134506, Apr 2016.

[23] Benoit Gaury, Joseph Weston, Matthieu Santin, Manuel Houzet, Christoph
Groth, and Xavier Waintal. Numerical simulations of time-resolved quantum
electronics. Physics Reports, 534(1):1–37, 1 2014.

[24] Emil Boström, Anders Mikkelsen, and Claudio Verdozzi. Time-resolved
spectroscopy at surfaces and adsorbate dynamics: insights from a
model-system approach. Phys. Rev. B, 93:195416, 2015.

[25] M. Hopjan, D. Karlsson, S. Ydman, C. Verdozzi, and C.-O. Almbladh.
Merging Features from Green’s Functions and Time Dependent Density
Functional Theory: A Route to the Description of Correlated Materials out of
Equilibrium? Phys. Rev. Lett., 116(23):236402, 2016.

[26] N. Schlünzen, S. Hermanns, M. Bonitz, and C. Verdozzi. Dynamics of
strongly correlated fermions: Ab initio results for two and three dimensions.
Phys. Rev. B, 93:035107, 2016.

[27] Hartmut J.W. Haug and Antti-Pekka Jauho. Quantum Kinetics in Transport
and Optics of Semiconductors. Springer, second edition, 2007.

[28] Jørgen Rammer. Quantum Field Theory of Non-equilibrium States. Cambridge
University Press, 2007.

[29] N. Locatelli, V. Cros, and J. Grollier. Spin-torque building blocks. Nat Mater,
13(1):11–20, 01 2014.

[30] Claude Chappert, Albert Fert, and Frederic Nguyen Van Dau. The emergence
of spin electronics in data storage. Nat Mater, 6(11):813–823, 11 2007.

[31] J. R. Hauptmann, J. Paaske, and P. E. Lindelof. Electric-field-controlled spin
reversal in a quantum dot with ferromagnetic contacts. Nat Phys,
4(5):373–376, 05 2008.

[32] Sebastian Loth, Kirsten von Bergmann, Markus Ternes, Alexander F. Otte,
Christopher P. Lutz, and Andreas J. Heinrich. Controlling the state of quantum
spins with electric currents. Nat Phys, 6(5):340–344, 05 2010.

[33] Sebastian Loth, Christopher P. Lutz, and Andreas J. Heinrich. Spin-polarized
spin excitation spectroscopy. New J. Phys., 12:125021, 2010.

[34] Sebastian Loth, Markus Etzkorn, Christopher P Lutz, D M Eigler, and
Andreas J Heinrich. Measurement of fast electron spin relaxation times with
atomic resolution. Science, 329(5999):1628–1630, 2010.

[35] Romain Vincent, Svetlana Klyatskaya, Mario Ruben, Wolfgang Wernsdorfer,
and Franck Balestro. Electronic read-out of a single nuclear spin using a
molecular spin transistor. Nature, 488:357–360, 2012.

82



[36] Stefan Wagner, Ferdinand Kisslinger, Stefan Ballmann, Frank Schramm,
Rajadurai Chandrasekar, Tilmann Bodenstein, Olaf Fuhr, Daniel Secker, Karin
Fink, Mario Ruben, and Heiko B. Weber. Switching of a coupled spin pair in a
single-molecule junction. Nat Nano, 8(8):575–579, 08 2013.

[37] Fabian D. Natterer, Kai Yang, William Paul, Philip Willke, Taeyoung Choi,
Thomas Greber, Andreas J. Heinrich, and Christopher P. Lutz. Reading and
writing single-atom magnets. Nature, 543:226–228, 03 2017.

[38] Clément Godfrin, Stefan Thiele, Abdelkarim Ferhat, Svetlana Klyatskaya,
Mario Ruben, Wolfgang Wernsdorfer, and Franck Balestro. Electrical read-out
of a single spin using an exchange-coupled quantum dot. ACS Nano,
11(4):3984–3989, 2017.

[39] Markus Ternes. Spin excitations and correlations in scanning tunneling
spectroscopy. New J. Phys., 17(6):63016, 2015.

[40] Yung-Chang Lin, Po-Yuan Teng, Po-Wen Chiu, and Kazu Suenaga. Exploring
the single atom spin state by electron spectroscopy. Phys. Rev. Lett.,
115:206803, Nov 2015.

[41] Sujoy Karan, Na Li, Yajie Zhang, Yang He, I-Po Hong, Huanjun Song,
Jing-Tao Lü, Yongfeng Wang, Lianmao Peng, Kai Wu, Georg S. Michelitsch,
Reinhard J. Maurer, Katharina Diller, Karsten Reuter, Alexander Weismann,
and Richard Berndt. Spin manipulation by creation of single-molecule radical
cations. Phys. Rev. Lett., 116:027201, Jan 2016.

[42] Cyrus F. Hirjibehedin, Christopher P. Lutz, and Andreas J. Heinrich. Spin
coupling in engineered atomic structures. Science, 312(5776):1021–1024,
2006.

[43] P. Wahl, P. Simon, L. Diekhöner, V. S. Stepanyuk, P. Bruno, M. A. Schneider,
and K. Kern. Exchange interaction between single magnetic adatoms. Phys.
Rev. Lett., 98:056601, Jan 2007.

[44] Lihui Zhou, Jens Wiebe, Samir Lounis, Elena Vedmedenko, Focko Meier,
Stefan Blugel, Peter H. Dederichs, and Roland Wiesendanger. Strength and
directionality of surface ruderman-kittel-kasuya-yosida interaction mapped on
the atomic scale. Nat Phys, 6(3):187–191, 03 2010.

[45] Focko Meier, Lihui Zhou, Jens Wiebe, and Roland Wiesendanger. Revealing
magnetic interactions from single-atom magnetization curves. Science,
320(5872):82–86, 2008.

[46] Ileana G Rau, Susanne Baumann, Stefano Rusponi, Fabio Donati, Sebastian
Stepanow, Luca Gragnaniello, Jan Dreiser, Cinthia Piamonteze, Frithjof
Nolting, Shruba Gangopadhyay, Oliver R Albertini, Roger M Macfarlane,
Christopher P Lutz, Barbara A Jones, Pietro Gambardella, Andreas J Heinrich,
and Harald Brune. Reaching the magnetic anisotropy limit of a 3d metal atom.
Science, 344(6187):988–992, 2014.

[47] K. Bairagi, A. Bellec, V. Repain, C. Chacon, Y. Girard, Y. Garreau, J. Lagoute,
S. Rousset, R. Breitwieser, Yu-Cheng Hu, Yen Cheng Chao, Woei Wu Pai,
D. Li, A. Smogunov, and C. Barreteau. Tuning the magnetic anisotropy at a
molecule-metal interface. Phys. Rev. Lett., 114:247203, Jun 2015.

[48] S. Voss, O. Zander, M. Fonin, U. Rüdiger, M. Burgert, and U. Groth.
Electronic transport properties and orientation of individual mn12
single-molecule magnets. Phys. Rev. B, 78:155403, Oct 2008.

83



[49] T. Balashov, T. Schuh, A. F. Takács, A. Ernst, S. Ostanin, J. Henk, I. Mertig,
P. Bruno, T. Miyamachi, S. Suga, and W. Wulfhekel. Magnetic anisotropy and
magnetization dynamics of individual atoms and clusters of fe and co on
pt(111). Phys. Rev. Lett., 102:257203, Jun 2009.

[50] Xi Chen, Ying-Shuang Fu, Shuai-Hua Ji, Tong Zhang, Peng Cheng, Xu-Cun
Ma, Xiao-Long Zou, Wen-Hui Duan, Jin-Feng Jia, and Qi-Kun Xue. Probing
superexchange interaction in molecular magnets by spin-flip spectroscopy and
microscopy. Phys. Rev. Lett., 101:197208, Nov 2008.

[51] A. F. Otte, M. Ternes, S. Loth, C. P. Lutz, C. F. Hirjibehedin, and A. J.
Heinrich. Spin excitations of a kondo-screened atom coupled to a second
magnetic atom. Phys. Rev. Lett., 103:107203, Sep 2009.

[52] Henning Pruser, Martin Wenderoth, Piet E. Dargel, Alexander Weismann,
Robert Peters, Thomas Pruschke, and Rainer G. Ulbrich. Long-range kondo
signature of a single magnetic impurity. Nat Phys, 7(3):203–206, 03 2011.

[53] Alexander Ako Khajetoorians, Benjamin Baxevanis, Christoph Hübner, Tobias
Schlenk, Stefan Krause, Tim Oliver Wehling, Samir Lounis, Alexander
Lichtenstein, Daniela Pfannkuche, Jens Wiebe, and Roland Wiesendanger.
Current-driven spin dynamics of artificially constructed quantum magnets.
Science, 339(6115):55–59, 2013.

[54] Alexander Ako Khajetoorians, Jens Wiebe, Bruno Chilian, and Roland
Wiesendanger. Realizing all-spin–based logic operations atom by atom.
Science, 332(6033):1062–1064, 2011.

[55] Sebastian Loth, Susanne Baumann, Christopher P. Lutz, D. M. Eigler, and
Andreas J. Heinrich. Bistability in atomic-scale antiferromagnets. Science,
335(6065):196–199, 2012.

[56] Grigore A. Timco, Stefano Carretta, Filippo Troiani, Floriana Tuna, Robin J.
Pritchard, Christopher A. Muryn, Eric J. L. McInnes, Alberto Ghirri, Andrea
Candini, Paolo Santini, Giuseppe Amoretti, Marco Affronte, and Richard E. P.
Winpenny. Engineering the coupling between molecular spin qubits by
coordination chemistry. Nat Nano, 4(3):173–178, 03 2009.

[57] Michael N. Leuenberger and Daniel Loss. Quantum computing in molecular
magnets. Nature, 410:789–793, 04 2001.

[58] Benjamin W. Heinrich, Lukas Braun, Jose I. Pascual, and Katharina J. Franke.
Tuning the Magnetic Anisotropy of Single Molecules. Nano Lett.,
15(6):4024–4028, 2015.

[59] Victoria E. Campbell, Monica Tonelli, Irene Cimatti, Jean-Baptiste Moussy,
Ludovic Tortech, Yannick J. Dappe, Eric Rivière, Régis Guillot, Sophie
Delprat, Richard Mattana, Pierre Seneor, Philippe Ohresser, Fadi Choueikani,
Edwige Otero, Florian Koprowiak, Vijay Gopal Chilkuri, Nicolas Suaud,
Nathalie Guihéry, Anouk Galtayries, Frederic Miserque, Marie-Anne Arrio,
Philippe Sainctavit, and Talal Mallah. Engineering the magnetic coupling and
anisotropy at the molecule–magnetic surface interface in molecular spintronic
devices. Nat Commun, 7:13646, 12 2016.

[60] F Donati, S Rusponi, S Stepanow, C. Wäckerlin, A Singha, L Persichetti,
R. Baltic, K. Diller, F. Patthey, E. Fernandes, J. Dreiser, Z. Sljivancanin,
K. Kummer, C. Nistor, P. Gambardella, and H. Brune. Magnetic remanence in
single atoms. Science, 352(6283):318–321, 2016.

84



[61] Matteo Mannini, Francesco Pineider, Philippe Sainctavit, Chiara Danieli,
Edwige Otero, Corrado Sciancalepore, Anna Maria Talarico, Marie-Anne
Arrio, Andrea Cornia, Dante Gatteschi, and Roberta Sessoli. Magnetic
memory of a single-molecule quantum magnet wired to a gold surface. Nat
Mater, 8(3):194–197, 03 2009.

[62] M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, Ph. Sainctavit, M. A.
Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli. Quantum
tunnelling of the magnetization in a monolayer of oriented single-molecule
magnets. Nature, 468:417–421, 11 2010.

[63] S. Carretta, P. Santini, G. Amoretti, M. Affronte, A. Candini, A. Ghirri, I. S.
Tidmarsh, R. H. Laye, R. Shaw, and E. J. L. McInnes. High-temperature slow
relaxation of the magnetization in ni10 magnetic molecules. Phys. Rev. Lett.,
97:207201, Nov 2006.

[64] Alexander Ako Khajetoorians and Andreas J. Heinrich. Toward single-atom
memory. Science, 352(6283):296–297, 2016.

[65] Jonas Fransson, Jie Ren, and Jian-Xin Zhu. Electrical and thermal control of
magnetic exchange interactions. Phys. Rev. Lett., 113:257201, Dec 2014.

[66] Maciej Misiorny, Michael Hell, and Maarten R. Wegewijs. Spintronic
magnetic anisotropy. Nat Phys, 9(12):801–805, 12 2013.

[67] P. Berggren and J. Fransson. Electron paramagnetic resonance of single
magnetic moment on a surface. Scientific Reports, 6:25584, 05 2016.

[68] C. Romeike, M. R. Wegewijs, W. Hofstetter, and H. Schoeller. Kondo-transport
spectroscopy of single molecule magnets. Phys. Rev. Lett., 97:206601, Nov
2006.

[69] C. Romeike, M. R. Wegewijs, W. Hofstetter, and H. Schoeller.
Quantum-tunneling-induced kondo effect in single molecular magnets. Phys.
Rev. Lett., 96:196601, May 2006.

[70] Florian Elste and Carsten Timm. Resonant and kondo tunneling through
molecular magnets. Phys. Rev. B, 81:024421, Jan 2010.

[71] Maciej Misiorny, Ireneusz Weymann, and Józef Barnaś. Interplay of the kondo
effect and spin-polarized transport in magnetic molecules, adatoms, and
quantum dots. Phys. Rev. Lett., 106:126602, Mar 2011.

[72] Maciej Misiorny, Ireneusz Weymann, and Józef Barnaś. Temperature
dependence of electronic transport through molecular magnets in the kondo
regime. Phys. Rev. B, 86:035417, Jul 2012.

[73] Maciej Misiorny, Ireneusz Weymann, and Józef Barnaś. Underscreened kondo
effect in s = 1 magnetic quantum dots: Exchange, anisotropy, and temperature
effects. Phys. Rev. B, 86:245415, Dec 2012.

[74] Anna Płomińska and Ireneusz Weymann. Pauli spin blockade in double
molecular magnets. Phys. Rev. B, 94:035422, Jul 2016.

[75] Jacob Linder and Jason W. A. Robinson. Superconducting spintronics. Nat
Phys, 11(4):307–315, 04 2015.

[76] P. Stadler, C. Holmqvist, and W. Belzig. Josephson current through a quantum
dot coupled to a molecular magnet. Phys. Rev. B, 88:104512, Sep 2013.

[77] C. Holmqvist, S. Teber, and M. Fogelström. Nonequilibrium effects in a
josephson junction coupled to a precessing spin. Phys. Rev. B, 83:104521, Mar
2011.

85



[78] C. Holmqvist, M. Fogelström, and W. Belzig. Spin-polarized shapiro steps and
spin-precession-assisted multiple andreev reflection. Phys. Rev. B, 90:014516,
Jul 2014.

[79] Nino Hatter, Benjamin W. Heinrich, Michael Ruby, Jose I. Pascual, and
Katharina J. Franke. Magnetic anisotropy in shiba bound states across a
quantum phase transition. Nat Commun, 6:8988, 11 2015.

[80] H. Wende, M. Bernien, J. Luo, C. Sorg, N. Ponpandian, J. Kurde, J. Miguel,
M. Piantek, X. Xu, Ph. Eckhold, W. Kuch, K. Baberschke, P. M. Panchmatia,
B. Sanyal, P. M. Oppeneer, and O. Eriksson. Substrate-induced magnetic
ordering and switching of iron porphyrin molecules. Nat Mater, 6(7):516–520,
07 2007.

[81] I. Fernández-Torrente, K. J. Franke, and J. I. Pascual. Vibrational kondo effect
in pure organic charge-transfer assemblies. Phys. Rev. Lett., 101:217203, Nov
2008.

[82] A. Chiesa, S. Carretta, P. Santini, G. Amoretti, and E. Pavarini. Many-body
models for molecular nanomagnets. Phys. Rev. Lett., 110:157204, Apr 2013.

[83] Karthik V. Raman, Alexander M. Kamerbeek, Arup Mukherjee, Nicolae
Atodiresei, Tamal K. Sen, Predrag Lazic, Vasile Caciuc, Reent Michel,
Dietmar Stalke, Swadhin K. Mandal, Stefan Blugel, Markus Munzenberg, and
Jagadeesh S. Moodera. Interface-engineered templates for molecular spin
memory devices. Nature, 493:509–513, 01 2013.

[84] Sarah Fahrendorf, Nicolae Atodiresei, Claire Besson, Vasile Caciuc, Frank
Matthes, Stefan Blügel, Paul Kögerler, Daniel E. Bürgler, and Claus M.
Schneider. Accessing 4f-states in single-molecule spintronics. Nat Commun,
4:2425, 09 2013.

[85] S. Carretta, P. Santini, G. Amoretti, T. Guidi, R. Caciuffo, A. Candini,
A. Cornia, D. Gatteschi, M. Plazanet, and J. A. Stride. Intra- and
inter-multiplet magnetic excitations in a tetrairon(iii) molecular cluster. Phys.
Rev. B, 70:214403, Dec 2004.

[86] M Urdampilleta, S Klyatskaya, J-P Cleuziou, M Ruben, and W Wernsdorfer.
Supramolecular spin valves. Nat Mater, 10(7):502–506, 2011.

[87] Marc Ganzhorn, Svetlana Klyatskaya, Mario Ruben, and Wolfgang
Wernsdorfer. Strong spin-phonon coupling between a single-molecule magnet
and a carbon nanotube nanoelectromechanical system. Nat Nano, 8(3):165–9,
2013.

[88] D.C. Ralph and M.D. Stiles. Spin transfer torques. J. Magn. Magn. Mater.,
320(7):1190 – 1216, 2008.

[89] Wanjun Jiang, Gong Chen, Kai Liu, Jiadong Zang, Suzanne G.E. te Velthuis,
and Axel Hoffmann. Skyrmions in magnetic multilayers. Physics Reports,
704:1 – 49, 2017.

[90] Burkard Hillebrands. Magnon Spintronics. Nat Phys, 11(June):1–39, 2012.
[91] Hosho Katsura, Alexander V. Balatsky, Zohar Nussinov, and Naoto Nagaosa.

Voltage dependence of landau-lifshitz-gilbert damping of spin in a
current-driven tunnel junction. Phys. Rev. B, 73:212501, Jun 2006.

[92] M. C. Hickey and J. S. Moodera. Origin of intrinsic gilbert damping. Phys.
Rev. Lett., 102:137601, Mar 2009.

86



[93] Danny Thonig, Jürgen Henk, and Olle Eriksson. Gilbert-like damping caused
by time retardation in atomistic magnetization dynamics. Phys. Rev. B,
92:104403, Sep 2015.

[94] Se Kwon Kim and Yaroslav Tserkovnyak. Landau-lifshitz theory of
thermomagnonic torque. Phys. Rev. B, 92:020410, Jul 2015.

[95] Liliana Arrachea and Felix von Oppen. Nanomagnet coupled to quantum spin
hall edge: An adiabatic quantum motor. Phys. E (Amsterdam), 74:596–602, 11
2015.

[96] Simone Borlenghi, Stefano Iubini, Stefano Lepri, Jonathan Chico, Lars
Bergqvist, Anna Delin, and Jonas Fransson. Energy and magnetization
transport in nonequilibrium macrospin systems. Phys. Rev. E, 92:012116, Jul
2015.

[97] Ulrike Ritzmann, Denise Hinzke, and Ulrich Nowak. Propagation of thermally
induced magnonic spin currents. Phys. Rev. B, 89:024409, 2014.

[98] Jiang Xiao, Gerrit E W Bauer, Ken Chi Uchida, Eiji Saitoh, and Sadamichi
Maekawa. Theory of magnon-driven spin Seebeck effect. Phys. Rev. B,
81:214418, 2010.

[99] E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot. Ultrafast spin
dynamics in ferromagnetic nickel. Phys. Rev. Lett., 76:4250–4253, May 1996.

[100] J. Hohlfeld, E. Matthias, R. Knorren, and K. H. Bennemann. Nonequilibrium
magnetization dynamics of nickel. Phys. Rev. Lett., 78:4861–4864, Jun 1997.

[101] A. Scholl, L. Baumgarten, R. Jacquemin, and W. Eberhardt. Ultrafast spin
dynamics of ferromagnetic thin films observed by fs spin-resolved two-photon
photoemission. Phys. Rev. Lett., 79:5146–5149, Dec 1997.

[102] Jakob Walowski and Markus Münzenberg. Perspective: Ultrafast magnetism
and thz spintronics. J. Appl. Phys., 120(14):140901, 2016.

[103] R F L Evans, W J Fan, P Chureemart, T A Ostler, M O A Ellis, and R W
Chantrell. Atomistic spin model simulations of magnetic nanomaterials. J.
Phys.: Condens. Matter, 26(10):103202, 2014.

[104] M. O. A. Ellis, R. F. L. Evans, T. A. Ostler, J. Barker, U. Atxitia,
O. Chubykalo-Fesenko, and R. W. Chantrell. The Landau-Lifshitz equation in
atomistic models. Low Temperature Physics, 41(9):705–712, 2015.

[105] A. Secchi, S. Brener, A.I. Lichtenstein, and M.I. Katsnelson. Non-equilibrium
magnetic interactions in strongly correlated systems. Ann. Phys., 333:221–271,
2013.

[106] M. Battiato, K. Carva, and P. M. Oppeneer. Superdiffusive spin transport as a
mechanism of ultrafast demagnetization. Phys. Rev. Lett., 105:027203, Jul
2010.

[107] Raghuveer Chimata, Anders Bergman, Lars Bergqvist, Biplab Sanyal, and Olle
Eriksson. Microscopic model for ultrafast remagnetization dynamics. Phys.
Rev. Lett., 109:157201, Oct 2012.

[108] A. Secchi, A. I. Lichtenstein, and M. I. Katsnelson. Nonequilibrium
itinerant-electron magnetism: A time-dependent mean-field theory. Phys. Rev.
B, 94:085153, Aug 2016.

[109] B. Y. Mueller, A. Baral, S. Vollmar, M. Cinchetti, M. Aeschlimann, H. C.
Schneider, and B. Rethfeld. Feedback effect during ultrafast demagnetization
dynamics in ferromagnets. Phys. Rev. Lett., 111:167204, Oct 2013.

87



[110] J. H. Mentink and M. Eckstein. Ultrafast quenching of the exchange interaction
in a mott insulator. Phys. Rev. Lett., 113:057201, Jul 2014.

[111] Jacopo Simoni, Maria Stamenova, and Stefano Sanvito. Ultrafast
demagnetizing fields from first principles. Phys. Rev. B, 95:024412, Jan 2017.

[112] BatignaniG., BossiniD., Di PaloN., FerranteC., PontecorvoE., CerulloG.,
KimelA., and ScopignoT. Probing ultrafast photo-induced dynamics of the
exchange energy in a heisenberg antiferromagnet. Nat Photon, 9(8):506–510,
08 2015.

[113] D. Bossini, S. Dal Conte, Y. Hashimoto, A. Secchi, R. V. Pisarev, Th. Rasing,
G. Cerullo, and A. V. Kimel. Macrospin dynamics in antiferromagnets
triggered by sub-20 femtosecond injection of nanomagnons. Nat Commun,
7:10645, 02 2016.

[114] Carsten Timm and Florian Elste. Spin amplification, reading, and writing in
transport through anisotropic magnetic molecules. Phys. Rev. B, 73:235304,
Jun 2006.

[115] Maciej Misiorny and Józef Barnaś. Magnetic switching of a single molecular
magnet due to spin-polarized current. Phys. Rev. B, 75:134425, Apr 2007.

[116] A. Metelmann and T. Brandes. Transport through single-level systems: Spin
dynamics in the nonadiabatic regime. Phys. Rev. B, 86:245317, Dec 2012.

[117] Klemens Mosshammer and Tobias Brandes. Semiclassical spin-spin dynamics
and feedback control in transport through a quantum dot. Phys. Rev. B,
90:134305, Oct 2014.

[118] Niels Bode, Liliana Arrachea, Gustavo S. Lozano, Tamara S. Nunner, and Felix
von Oppen. Current-induced switching in transport through anisotropic
magnetic molecules. Phys. Rev. B, 85:115440, Mar 2012.

[119] Milena Filipović, Cecilia Holmqvist, Federica Haupt, and Wolfgang Belzig.
Spin transport and tunable gilbert damping in a single-molecule magnet
junction. Phys. Rev. B, 87:045426, Jan 2013.

[120] Jonas Fransson. Detection of spin reversal and nutations through current
measurements. Nanotechnology, 19(28):285714, 2008.

[121] Jonas Fransson. Subnanosecond switching of local spin-exchange coupled to
ferromagnets. Phys. Rev. B, 77:205316, May 2008.

[122] Sebastián Díaz and Álvaro S Núñez. Current-induced exchange interactions
and effective temperature in localized moment systems. J. Phys.: Condens.
Matter, 24(11):116001, 2012.

[123] Alvaro S. Núñez and R. A. Duine. Effective temperature and gilbert damping
of a current-driven localized spin. Phys. Rev. B, 77:054401, Feb 2008.

[124] Jian-Xin Zhu, Z. Nussinov, A. Shnirman, and A. V. Balatsky. Novel spin
dynamics in a josephson junction. Phys. Rev. Lett., 92:107001, Mar 2004.

[125] R. A. Duine, A. S. Núñez, Jairo Sinova, and A. H. MacDonald. Functional
keldysh theory of spin torques. Phys. Rev. B, 75:214420, Jun 2007.

[126] Jonas Fransson and Jian-Xin Zhu. Spin dynamics in a tunnel junction between
ferromagnets. New J. Phys., 10(1):013017, 2008.

[127] J. Fransson. Dynamical exchange interaction between localized spins out of
equilibrium. Phys. Rev. B, 82:180411, Nov 2010.

[128] Satadeep Bhattacharjee, Lars Nordström, and Jonas Fransson. Atomistic spin
dynamic method with both damping and moment of inertia effects included

88



from first principles. Phys. Rev. Lett., 108:057204, Jan 2012.
[129] T. Saygun, J. Bylin, H. Hammar, and J. Fransson. Voltage-Induced Switching

Dynamics of a Coupled Spin Pair in a Molecular Junction. Nano Lett.,
16(4):2824–2829, 2016.

[130] H. Hammar and J. Fransson. Time-dependent spin and transport properties of
a single-molecule magnet in a tunnel junction. Phys. Rev. B, 94:054311, Aug
2016.

[131] H. Hammar and J. Fransson. Transient spin dynamics in a single-molecule
magnet. Phys. Rev. B, 96(21):214401, 2017.

[132] H. Hammar and J. Fransson. Dynamical exchange and phase induced
switching of a localized molecular spin. Phys. Rev. B, 98:174438, Nov 2018.

[133] Juan David Vasquez Jaramillo, Henning Hammar, and Jonas Fransson.
Electronically mediated magnetic anisotropy in vibrating magnetic molecules.
ACS Omega, 3(6):6546–6553, 06 2018.

[134] Masaru Onoda and Naoto Nagaosa. Dynamics of localized spins coupled to the
conduction electrons with charge and spin currents. Phys. Rev. Lett.,
96:066603, Feb 2006.

[135] Alexander Shnirman, Yuval Gefen, Arijit Saha, Igor S. Burmistrov, Mikhail N.
Kiselev, and Alexander Altland. Geometric quantum noise of spin. Phys. Rev.
Lett., 114:176806, Apr 2015.

[136] Hao Zhang, Guang-Ming Zhang, and Lu Yu. Spin transport properties of a
quantum dot coupled to ferromagnetic leads with noncollinear magnetizations.
J. Phys.: Condens. Matter, 21(15):155501, 2009.

[137] Silas Hoffman and Yaroslav Tserkovnyak. Magnetic exchange and
nonequilibrium spin current through interacting quantum dots. Phys. Rev. B,
91:245427, Jun 2015.

[138] A. L. Chudnovskiy, J. Swiebodzinski, and A. Kamenev. Spin-torque shot noise
in magnetic tunnel junctions. Phys. Rev. Lett., 101(6):066601, 2008.

[139] A. Chudnovskiy, Ch. Hübner, B. Baxevanis, and D. Pfannkuche. Spin
switching: From quantum to quasiclassical approach. Phys. Status Solidi B,
251(9):1764–1776, 2014.

[140] Tim Ludwig, Igor S. Burmistrov, Yuval Gefen, and Alexander Shnirman.
Strong nonequilibrium effects in spin-torque systems. Phys. Rev. B, 95:075425,
Feb 2017.

[141] Inés De Vega and Daniel Alonso. Dynamics of non-Markovian open quantum
systems. Rev. Mod. Phys., 89(1):015001, 2017.

[142] Annika Kurzmann, Benjamin Merkel, Bastian Marquardt, Andreas Beckel,
Arne Ludwig, Andreas D. Wieck, Axel Lorke, and Martin Geller. Electron
dynamics in transport and optical measurements of self-assembled quantum
dots. Phys. Status Solidi B, 254(3):1600625, 2017.

[143] B Roche, R-P Riwar, B Voisin, E Dupont-Ferrier, R Wacquez, M Vinet,
M Sanquer, J Splettstoesser, and X Jehl. A two-atom electron pump. Nat
Commun, 4:1581, 2013.

[144] J. Fransson, a. V. Balatsky, and Jian-Xin Zhu. Dynamical properties of a
vibrating molecular quantum dot in a Josephson junction. Phys. Rev. B,
81:155440, 2010.

89



[145] Adeline Crépieux, Fedor Simkovic, Benjamin Cambon, and Fabienne
Michelini. Enhanced thermopower under a time-dependent gate voltage. Phys.
Rev. B, 83:153417, 2011.

[146] Hangbo Zhou, Juzar Thingna, Peter Hänggi, Jian-Sheng Wang, and Baowen
Li. Boosting thermoelectric efficiency using time-dependent control. Scientific
reports, 5:14870, 2015.

[147] Bogdan Popescu and Ulrich Kleinekathöfer. Treatment of time-dependent
effects in molecular junctions. Phys. Status Solidi B, 250(11):2288–2297, 2013.

[148] Michael Galperin. Photonics and spectroscopy in nanojunctions: a theoretical
insight. Chem. Soc. Rev., 46:4000, 2017.

[149] Christoph Grosse, Markus Etzkorn, Klaus Kuhnke, Sebastian Loth, and Klaus
Kern. Quantitative mapping of fast voltage pulses in tunnel junctions by
plasmonic luminescence. Appl. Phys. Lett., 103:183108, 2013.

[150] Frank Wilczek. Quantum time crystals. Phys. Rev. Lett., 109:160401, Oct
2012.

[151] N. Y. Yao, A. C. Potter, I. D. Potirniche, and A. Vishwanath. Discrete Time
Crystals: Rigidity, Criticality, and Realizations. Phys. Rev. Lett., 118:030401,
2017.

[152] Soonwon Choi, Joonhee Choi, Renate Landig, Georg Kucsko, Hengyun Zhou,
Junichi Isoya, Fedor Jelezko, Shinobu Onoda, Hitoshi Sumiya, Vedika
Khemani, Curt Von Keyserlingk, Norman Y. Yao, Eugene Demler, and
Mikhail D. Lukin. Observation of discrete time-crystalline order in a
disordered dipolar many-body system. Nature, 543:221–225, 2017.

[153] Yonatan Dubi and Massimiliano Di Ventra. Colloquium: Heat flow and
thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys.,
83(1):131–155, 2011.

[154] Yonatan Dubi and Massimiliano Di Ventra. Thermospin effects in a quantum
dot connected to ferromagnetic leads. Phys. Rev. B, 79:081302, Feb 2009.

[155] R. Świrkowicz, M. Wierzbicki, and J. Barnaś. Thermoelectric effects in
transport through quantum dots attached to ferromagnetic leads with
noncollinear magnetic moments. Phys. Rev. B, 80:195409, Nov 2009.

[156] Jie Ren, Jonas Fransson, and Jian-Xin Zhu. Nanoscale spin seebeck rectifier:
Controlling thermal spin transport across insulating magnetic junctions with
localized spin. Phys. Rev. B, 89:214407, Jun 2014.

[157] Maciej Misiorny and Józef Barnaś. Spin-dependent thermoelectric effects in
transport through a nanoscopic junction involving a spin impurity. Phys. Rev.
B, 89:235438, Jun 2014.

[158] Maciej Misiorny and Józef Barnaś. Effect of magnetic anisotropy on
spin-dependent thermoelectric effects in nanoscopic systems. Phys. Rev. B,
91:155426, 2015.

[159] Sun-Yong Hwang, Rosa López, and David Sánchez. Large thermoelectric
power and figure of merit in a ferromagnetic–quantum dot–superconducting
device. Phys. Rev. B, 94:054506, Aug 2016.

[160] J. P. Ramos-Andrade, F. J. Peña, A. González, O. Ávalos-Ovando, and P. A.
Orellana. Spin-seebeck effect and spin polarization in a multiple quantum dot
molecule. Phys. Rev. B, 96:165413, Oct 2017.

90



[161] J. D. Vasquez Jaramillo and J. Fransson. Charge Transport and Entropy
Production Rate in Magnetically Active Molecular Dimer. J. Phys. Chem. C,
121(49):27357–27368, 2017.

[162] Piotr Trocha and Józef Barnaś. Large enhancement of thermoelectric effects in
a double quantum dot system due to interference and coulomb correlation
phenomena. Phys. Rev. B, 85:085408, Feb 2012.

[163] I. Weymann and J. Barnaś. Spin thermoelectric effects in kondo quantum dots
coupled to ferromagnetic leads. Phys. Rev. B, 88:085313, Aug 2013.

[164] Ł Karwacki, P Trocha, and J Barnaś. Spin-dependent thermoelectric properties
of a kondo-correlated quantum dot with rashba spin–orbit coupling. J. Phys.:
Condens. Matter, 25(50):505305, 2013.

[165] Ireneusz Weymann. Boosting spin-caloritronic effects by attractive
correlations in molecular junctions. Scientific Reports, 6:19236, 01 2016.

[166] Łukasz Karwacki and Piotr Trocha. Spin-dependent thermoelectric effects in a
strongly correlated double quantum dot. Phys. Rev. B, 94:085418, Aug 2016.

[167] Piotr Trocha and Józef Barnaś. Spin-dependent thermoelectric phenomena in a
quantum dot attached to ferromagnetic and superconducting electrodes. Phys.
Rev. B, 95:165439, Apr 2017.

[168] M Bagheri Tagani and H Rahimpour Soleimani. Time-dependent thermopower
effect in an interacting quantum dot. Int. J. Thermophysics, 35:136–144, 2012.

[169] Wei Liu, Kenji Sasaoko, Takahiro Yamamoto, Tomofumi Tada, and Satoshi
Watanabe. Elastic transient energy transport and energy balance in a
single-level quantum dot system. Jap. J. Appl. Phys., 51:094303, 2012.

[170] A.-M. Daré and P. Lombardo. Time-dependent thermoelectric transport for
nanoscale thermal machines. Phys. Rev. B, 93:035303, Jan 2016.

[171] F. G. Eich, M. Di Ventra, and G. Vignale. Temperature-driven transient charge
and heat currents in nanoscale conductors. Phys. Rev. B, 93:134309, Apr 2016.

[172] K Uchida, J Xiao, H Adachi, J Ohe, S Takahashi, J Ieda, T Ota, Y Kajiwara,
H Umezawa, H Kawai, G E W Bauer, S Maekawa, and E Saitoh. Spin Seebeck
insulator. Nat Mater, 9(11):894–897, 2010.

[173] Sebastian T.B. Goennenwein and Gerrit E.W. Bauer. Spin caloritronics:
Electron spins blow hot and cold. Nat Nano, 7(3):145–147, 2012.

[174] Gerrit E.W. Bauer, Eiji Saitoh, and Bart J. Van Wees. Spin caloritronics. Nat
Mater, 11(5):391–399, 2012.

[175] Hiroto Adachi, Ken-ichi Uchida, Eiji Saitoh, and Sadamichi Maekawa. Theory
of the spin Seebeck effect. Rep. Prog. Phys., 76(3):036501, 2013.

[176] Rui-Qiang Wang, L. Sheng, R. Shen, Baigeng Wang, and D. Y. Xing.
Thermoelectric effect in single-molecule-magnet junctions. Phys. Rev. Lett.,
105:057202, Jul 2010.

[177] Joseph W Sharples, David Collison, Eric J L Mcinnes, Elias Palacios, and
Marco Evangelisti. Quantum signatures of a molecular nanomagnet in direct
magnetocaloric measurements. Nat Commun, 5:6321, 2014.

[178] Kyeongtae Kim, Wonho Jeong, Woochul Lee, and Pramod Reddy. Ultra-high
vacuum scanning thermal microscopy for nanometer resolution quantitative
thermometry. ACS Nano, 6(5):4248–4257, 05 2012.

[179] Fabian Menges, Heike Riel, Andreas Stemmer, and Bernd Gotsmann.
Quantitative thermometry of nanoscale hot spots. Nano Letters,

91



12(2):596–601, 02 2012.
[180] Massimiliano Esposito, Maicol A. Ochoa, and Michael Galperin. Quantum

thermodynamics: A nonequilibrium green’s function approach. Phys. Rev.
Lett., 114:080602, Feb 2015.

[181] Udo Seifert. First and second law of thermodynamics at strong coupling. Phys.
Rev. Lett., 116:020601, Jan 2016.

[182] María Florencia Ludovico, Jong Soo Lim, Michael Moskalets, Liliana
Arrachea, and David Sánchez. Dynamical energy transfer in ac-driven
quantum systems. Phys. Rev. B, 89:161306, 2014.

[183] Maria Florencia Ludovico, Michael Moskalets, David Sanchez, and Liliana
Arrachea. Dynamics of energy transport and entropy production in ac-driven
quantum electron systems. Phys. Rev. B, 94:035436, 2016.

[184] Patrick Haughian, Massimiliano Esposito, and Thomas L. Schmidt. Quantum
thermodynamics of the resonant-level model with driven system-bath coupling.
Phys. Rev. B, 97:085435, 2018.

[185] Massimiliano Esposito, Maicol A. Ochoa, and Michael Galperin. Nature of
heat in strongly coupled open quantum systems. Phys. Rev. B, 92:235440,
2015.

[186] Anton Bruch, Mark Thomas, Silvia Viola Kusminskiy, Felix Von Oppen, and
Abraham Nitzan. Quantum thermodynamics of the driven resonant level
model. Phys. Rev. B, 93:115318, 2016.

[187] Anton Bruch, Caio Lewenkopf, and Felix von Oppen. Landauer-büttiker
approach to strongly coupled quantum thermodynamics: Inside-outside duality
of entropy evolution. Phys. Rev. Lett., 120:107701, Mar 2018.

[188] Gerald D. Mahan. Many-Particle Physics. Kluwer Academic/Plenum
Publishers, third edition, 2000.

[189] Natalya A. Zimbovskaya. Transport Properties of Molecular Junctions.
Springer, 2013.

[190] Stephen Blundell. Magnetism in Condensed Matter. Oxford University Press,
2001.

[191] Ralf Bulla, Theo A. Costi, and Thomas Pruschke. Numerical renormalization
group method for quantum impurity systems. Rev. Mod. Phys., 80:395–450,
Apr 2008.

[192] Jonas Fransson. Non-Equilibrium Nano-Physics: A Many-Body Approach.
Springer, 2010.

[193] Feng Chen, Maicol A. Ochoa, and Michael Galperin. Nonequilibrium
diagrammatic technique for hubbard green functions. J. Chem. Phys.,
146:092301, 2017.

[194] Eduardo Fradkin. Field Theories of Condensed Matter Physics. Cambridge
University Press, second edition, 2013.

92





Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1751

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-368542

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2019


	Abstract
	List of papers
	Contents
	Part I: Introduction
	1. Introduction
	2. Background
	2.1 Nonequilibrium physics
	2.2 Molecular magnets
	2.3 Spin dynamics
	2.3.1 Atomistic spin dynamics
	2.3.2 Ultra-fast demagnetization
	2.3.3 Spin dynamics of molecular magnets

	2.4 Quantum dynamics of open systems
	2.5 Thermoelectricity of molecular systems
	2.6 Quantum thermodynamics

	Part II: Theory
	3. Nonequilibrium Green’s function
	3.1 Commutation and anti-commutation relations
	3.1.1 Bosons
	3.1.2 Fermions
	3.1.3 Commutators and anti-commutators

	3.2 Heisenberg equation of motion
	3.3 Green’s function
	3.4 Equation of motion for the Green’s function
	3.5 Green’s function in nonequilibrium
	3.6 Analytical continuation
	3.7 Dyson and Keldysh equation
	3.8 Electron gas

	4. Green’s function for a single-molecule magnet with a single spin
	4.1 Hamiltonian
	4.2 Quantum dot Green’s function
	4.3 Bare Green’s function
	4.4 Dressed quantum dot Green’s function
	4.5 Time-independent Green’s functions
	4.6 Non-polarized case
	4.7 Particle number and local magnetic occupation
	4.8 Currents through the single-molecule magnet
	4.9 Time-independent currents
	4.10 Time-dependent currents for pulses
	4.10.1 Current for a step-like bias voltage
	4.10.2 Current for a rectangular bias pulse
	4.10.3 Time-dependent current with polarized leads


	5. Thermoelectricity of a single-molecule magnet
	5.1 Thermoelectricity in a single-molecule magnet
	5.2 Heat current
	5.3 Fourier and Peltier heat
	5.4 Seebeck coefficient and Peltier coefficient

	6. Spin dynamics of a single-molecule magnet
	6.1 General concepts and background
	6.1.1 Exchange interaction
	6.1.2 Kondo model
	6.1.3 Strongly correlated models and effects

	6.2 Single-molecule magnet with a classical spin and its spin dynamics
	6.2.1 Effective spin-spin interaction
	6.2.2 Effective spin action
	6.2.3 Spin equation of motion
	6.2.4 The effective field and exchange
	6.2.5 Landau-Lifshitz-Gilbert equation
	6.2.6 LLG with constant exchange coupling


	Part III: Results
	7. Transport and spin dynamics in a single-molecule magnet
	7.1 Paper I: Time-dependent spin and transport properties of a single-molecule magnet in a tunnel junction
	7.2 Paper II: Transient spin dynamics in a single-molecule magnet
	7.3 Paper III: Dynamical exchange and phase induced switching of localized molecular spin
	7.4 Paper IV: Spin-dependent heat signatures of single-molecule spin dynamics

	8. Electrical control of molecular multi-spin systems and vibrating magnetic molecules
	8.1 Paper V: Voltage-Induced Switching Dynamics of a Coupled Spin Pair in a Molecular Junction
	8.2 Paper VI: Electronically Mediated Magnetic Anisotropy in Vibrating Magnetic Molecules

	9. Summary and outlook
	10. Svensk sammanfattning
	11. Acknowledgements
	References



