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Abstract
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The field of two-dimensional (2D) layered materials provides a new platform for studying
diverse physical phenomena that are scientifically interesting and relevant for technological
applications. Novel applications in electronics and energy storage harness the unique electronic,
optical, and mechanical properties of 2D materials for design of crucial components. Atomically
thin, with large surface to volume ratio, these materials are attractive for broad applications
for hydrogen storage, sensing, batteries and photo-catalysis. Theoretical predictions from
atomically resolved computational simulations of 2D materials play a pivotal role in designing
and advancing these developments.

The central topic of this thesis is 2D materials studied using density functional theory and non-
equilibrium Green’s function. The electronic structure and transport properties are discussed for
several synthesized and predicted 2D materials, with diverse potential applications in nanoscale
electronic devices, gas sensing, and electrodes for rechargeable batteries. Lateral and vertical
heterostructures have been studied for applications in nanoscale devices such as graphene/hBN
heterostructure nanogap for a potential DNA sequencing device, while in case of twisted bilayer
black phosphorus nanojunction, where electronic and transport properties have been explored
for diode-like characteristics device. We also have addressed the structural, electronic and
transport properties of the recently synthesized polymorphs of 2D borons known as borophenes.
We have explored the conventional methods of tuning the material’s properties such as strain
in borophene and substitutional doping in black phosphorus with the further investigation of
their gas sensing application.

A significant portion of this thesis is also dedicated to the energy storage applications of
different 2D materials. Energy storage technologies arise with vital importance in providing
effective ways to transport and commercialize the produced energy, aiming at rechargeable
batteries with high energy and power density. In this context, first-principles simulations
have been applied together with other theoretical tools to evaluate structural properties, ion
intercalation kinetics, specific capacity and open circuit voltage of selected 2D materials at the
atomic level. The simulation study supports the understanding while improving the properties
of the materials to increase their efficiency in battery operation.
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Part I:
Introduction & Theoretical background





1. Introduction

For a long time, it was believed in the scientific community that two dimen-
sional (2D) materials might not, strictly speaking, exist [1, 2]. During the first
half of the last century, theoreticians predicted that the low dimensional crys-
tal would most likely disintegrate at finite temperature because of the large
displacement of lattice atoms resulting from diverse sources of thermal fluc-
tuations [2–4]. Typically, the amplitude of this displacement was suggested to
be in the same order of the interatomic distances in the material. Further, Mer-
min extended this theory in his publication, which was strongly supported by
experimental observations, presenting that the melting point of the thin films
material rapidly reducing with decreasing its thickness [5–7]. This proved to
give a solid understanding of the supported thin films and yielded the long-
standing belief that these materials can only be grown on the solid substrate
with a negligible lattice mismatch, but they cannot be stable in freestanding
(isolated) form. The common understanding largely prevailed until the im-
possible goal was achieved in the form of isolation of graphene sheet in 2004
by Novoselov et al. [8]. Although, it will not be justified to ignore the pre-
vious efforts on the isolation of monolayer materials as some of them even
dated long before 2004 [9–12], it was only the work from Novoselov and co-
workers, which successfully reported the exfoliation of few layers of graphene
and presented its physical properties [8]. The discovery proved to be a turning
point of significant research covering material science, physics, chemistry and
driving the exploration of novel 2D materials associated with vivid range of
applications.

Why these 2D materials are interesting? In general, the word "2D materi-
als" is quite obscure as there is a broad collection of materials that come into
this class with a wide range of characteristics. 2D materials are generally de-
fined as crystalline materials consisting of substances with a thickness of few
nanometers or less. There are layered metals, semi-metals, insulators, small
and moderate bandgap semiconductors in this class such as transition metal
dichalcogenides (TMDCs), hexagonal boron nitride (hBN), Mxenes and so
on. There also exist layered materials such as black phosphorus (BP) and
ReS2, which possesses in-plane electrical and optical anisotropy [13, 14]. The
only common string among all these materials is the strong intra-layer bond-
ing along with the weak inter-layer van der Waals (vdW) interaction. This
implies that they can be mechanically exfoliated in the form of mono or few-
layer on a substrate. 2D materials, such as molybdenum disulfide (MoS2)
and other members of TMDC family, Mxenes, BP, hBN represent the ultimate
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scaling of the materials dimension in the vertical direction [15–21]. How-
ever, there is also a class of materials, which can be synthesized from precur-
sors in a bottom-up approach and we call them here synthetic 2D materials
such as silicene, germanene, tellurene, several polymorph of borophene and
so on [22–28]. In addition to these materials, there are several other theoret-
ically predicted layered materials have been found, which are needed to be
experimentally synthesized [29, 30]. Some remarkable properties of the 2D
materials are superior elastic properties, meaning strength, stiffness and flex-
ibility; ability to interact with light, create heterostructures, trap free surfaces
and abundant active sites; high in-plane conductivity. The reasonable flexibil-
ity in 2D materials certainly allows the tailoring of their electronic properties
[31, 32]. The mechanical properties enable them for flexible and stretchable
electronic applications [33]. Beside these characteristics, they can be electri-
cally biased and operated at low bias voltages. It is also very promising that so
far isolated 2D materials can embrace the entire range of the electromagnetic
spectrum [34, 35].

The importance of 2D materials has been increased because of the problems
in the miniaturization of modern electronic devices. At present, we have en-
tered the era, where the modern laptops and smart-phones are made with more
than a billion transistors 1, but the conventional methods of further miniatur-
ization of electronic devices for increased productivity are facing challenges
[36, 37]. The search for novel devices and materials becomes the forefront of
technological research while sustaining with famous Moore’s law [38]. The
key requirement in present time is to look beyond the silicon-based CMOS
(Complementary Metal Oxide Semiconductor) technology and search for dif-
ferent alternatives, in which 2D crystals provide very interesting form-factors
with respect to traditional 3D crystals. Although, devices made from 2D ma-
terials are still in the laboratory scale but they have not failed to present strong
promise for future [39, 40]. The high-mobility in these materials offers an al-
ternative in the expanding field of low cost and large area electronics, which is
currently dominated by low-mobility organic semiconductors and amorphous
silicon [41].

For example, Meric et al. [42] reported one of the first demonstrations of
graphene-based device as top-gated graphene field effect transistor (GFET),
which was based on a high-k gate dielectric without any bandgap engineering.
Although Ion/Ioff ratio was poor, but high transconductance and current satu-
ration were achieved. Further experiments observed an extremely high charge
carrier mobility, which was remained high even after electron and hole doping
and this enables high current through the device [43–46]. However, absence of
band gap in graphene limits the associated applications in electronic devices

1The very first Central Processing Unit (CPU) on single chip (Intel 4004) had 2300 transistors.
Whereas modern standard core i7 quad-CPU has 731,000,000 transistors. This is still a low
number compared to the high-end 8-Core Xeon Nehalem-EX with 2,300,000,000 transistors.
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[44, 45]. As the solution for the lack of bandgap in graphene, 2D semiconduc-
tor materials such as TMDCs have been emerged as the possible alternatives
[47, 48]. Recently, many essential electronic components have been mani-
fested based on mono or few-layers of different TMDC materials, e.g., field-
effect transistors (FETs), sensors and photo-transistors [49–54]. However, re-
gardless of much encouraging theoretical foresight, the observed mobility of
TMDC based devices is still moderate due to the scattering mechanisms and
heavy effective mass of charge carriers [47, 50]. In 2014, Li et al. conducted
a study, where they showed that the high mobility (1000 cm2V−1s−1) in BP
was superior to that of commercial silicon-based devices and the drain cur-
rent modulation at room temperature was larger than that in graphene by four
orders [55].

Apart from the electronic application as a transistor material, graphene has
also proved to be the robust electrode for a molecular electronic device such as
single molecular rectifier, switches and negative differential resistance (NDR)
devices in several experimental and theoretical works [56–58]. The nonopore
and nanogaps in 2D materials have been well explored for the salt water fil-
tering and ambitious DNA sequencing due to atom layer thinness [59–68]. In
the recent trend, vertical heterostructure based on 2D vdW materials are being
synthesized [69–71]. This integrates their isolated properties and opens a new
possibility of utilizing 2D materials in nanoscale device applications such as
gate free rectifier, and transistor [72–77]. The lateral heterostructures are also
reported for tuning the electronic and structural properties of 2D materials and
their further applications [78]. In addition to the current controlling devices,
2D materials have been reported for the identification and quantification of
toxic gases and organic vapors. They have shown potential promise in the
form of chemiresistors, FET transistors sensors, conductometric sensors and
impedance sensors to detect the various types of gas [79].

Along with the miniaturization of electronic devices, it is also important to
have perfect power sources for those devices. IBM Linux watch 1.0, released
in 2000, showed many advances in mobile computing. Since then a rapid
growth has been recorded in the smart devices, which run not only algorithm
but also connected with the Internet [80–82]. These smart devices offer plenty
of applications while following strict size constraints, which also possess a
great challenge for the power supply. The developments of Li-ion battery
technology offer great possibilities. On the other hand, heavy electronics and
power grids also need large grid-based energy storage devices [83, 84]. In
heavy electronics, Na-ion batteries can be an alternative of Li-ion because of
the abundance of Na in the nature [85]. The demands for high energy density,
with relatively low-cost energy storage devices are proliferating and current
commercial batteries will not be able to fulfill the requirement. The first suc-
cessful incorporation of graphite in commercial Li-ion battery was introduced
by Sony Corporation in 1991 [86]. Graphite has been the dominant anode
materials in Li-ion battery industry since then due to its relatively low lithium
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intercalation voltage. However, only a single lithium can be intercalated in a
six-carbon ring, which results in theoretical capacity of 371 mAh/g and further
limits the energy density. Secondly, graphite works well for Li-ion battery but
in the case of Na-ion, it shows much less specific capacity due to the bigger
size of Na, which creates more specific requirements for electrode materials
than those of Li-ion batteries [87]. In order to extend the effective use of en-
ergy storage devices from portable devices to large-scale energy storage, solar
cells and electric vehicles, further breakthrough in Li or Na-ion battery are
imperative [87].

The main challenge is to develop the profound understanding of electrolytes
and electrode materials that will allow us to identify the alternative energy
storage strategies. In this regard, ultrathin 2D materials have shown numerous
advantages for electrochemical energy storage because of the highly accessi-
ble surface area, tunable electronic properties and fast charge transfer kinetics
[88]. The volume changes get relaxed during the insertion and de-insertion
process of Li/Na atoms in 2D electrode materials due to the vdW stacked
formations. Additionally, the large surface area apparently provides a higher
theoretical capacity compared to that of bulk form [89, 90]. For example,
graphene nanoflake produced via liquid phase exfoliation manifests higher
Li intake as LiC2 than the graphite and yields specific capacity up to 1500
mAh/g [32]. Furthermore, reduced graphene oxide (rGO) shows the specific
capacity of 1000 mAh/g, although it results poor reversibility in comparison
to graphene nanoflake [91]. Beyond graphene, BP exhibits exceptionally high
specific capacity as 2596 mAh/g, but suffers from poor cycling stability due to
the large intake of Li from P to Li3P [92]. Sun et al. readdressed this issue in
BP, and with ball milling approach they synthesized BP flake with graphene
flake. Further, this showed exceptionally high specific capacity as 2786 mAh/g
and improved capacity retains 80% after 100 cycles [93]. TMDCs have also
shown quite high specific capacity both in theory and experiment with good
cycling capacities [94]. In the series, recently synthesized Mxenes have shown
potential for Li and Na ion battery both in experiments and theory [18, 95–97].
Recent applications of 2D materials in rechargeable batteries has delivered the
significant promise, including enhancements in capacity retention, rate capa-
bility, and specific capacities.

However, the key issue here is the stability of these materials, which are of-
ten doubted from practical perspective (ambient gas/2D surface interaction).
It is reasonable due to the high surface to volume ratio, that nearly 100% of
forming atoms in the crystal lattice are directly exposed to ambient environ-
ment. Therefore, it is crucial to think how 2D materials perform when surface
molecular interactions take place. However, the stability of 2D layers can be
improved through the surface functionalization, molecular decoration and tec-
tonics. This can further change the properties of the 2D materials in ways that
can offer various options for a broad range of applications.
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1.1 Thesis Outline
In this thesis, mainly density functional theory (DFT) and non-equilibrium
Green’s function (NEGF) based methods have been used to investigate the
structural, electronic and transport properties of 2D materials and their appli-
cations in nanoscale devices, gas sensing and rechargeable battery electrode.
The thesis is arranged in three main parts. Part I includes the introduction
in Chapter 1, and a brief description of the DFT, NEGF formalisms, and
computational methods are given in Chapter 2. The part II of this thesis is
dedicated to the summary of the results produced during the doctoral work.
This part contains three chapters: Chapter 3, 4, and 5. Chapter 3 mainly dis-
cusses the nanoscale device application of the 2D materials, where lateral and
vertical heterostructures have been explored. We have specifically evaluated
graphene-hBN lateral heterostructure nanogap for DNA sequencing applica-
tion. Secondly, the symmetrically stacked and twisted bilayer BP is discussed.
Its application in nanojunction form for rectifying diode application has been
explored. In Chapter 4, mainly the 2D materials beyond the graphene are
discussed for structural, electronic, and transport properties. We have investi-
gated the newly synthesized various polymorph of 2D boron and further one
of them has been used to check the suitability in gas sensing application. In the
end, the effect of substitutional doping in structural, electronic and transport
in BP has been studied. Furthermore, its behavior with different gas molecule
adsorptions has been discussed. Chapter 5 is dedicated to energy storage ap-
plication of 2D materials, where we have investigated the different 2D ma-
terials for rechargeable battery anode. At first, brief description of modeling
methodologies is given, after that different cases such as Si2BN, B2H2, BH,
two different form of sulfur functionalized Mxene (Ti2NS2,V2NS2) have been
discussed for Li and Na-ion insertion potential, diffusion barrier and stability.
Final remarks on the thesis are arranged in part III. The conclusion and out-
look has been shown in Chapter 6 and the summary of this thesis in Swedish
is given in Chapter 7. For details of the methods and discussion of results, the
readers are encouraged to read the original paper and manuscripts attached at
the end of the thesis.
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2. Theoretical background

Density functional theory (DFT) has made its way to the central stage in quan-
tum chemistry and condensed matter physics. The main reason behind this is
the accuracy and computational economy of the calculations, which make the
choice of DFT natural and practical. In this chapter, we elucidate the theoret-
ical background of the DFT and the computational method, which has been
employed during the electronic structure and transport calculations in the the-
sis. In the first part of this chapter, an overview of the main theorems behind
the DFT is presented. Further, a brief description of the application of the DFT
for atomic scale calculations is given, as employed for the electronic structure
calculations in this thesis. The chapter ends with a glimpse of theory, describ-
ing electron transport with quantum transport theory based on non-equilibrium
Green’s function (NEGF).

2.1 The many-body problem
Materials consist of electrons and nuclei, hence the fundamental basis for
understanding materials and their properties ultimately depends upon under-
standing the electronic structure. To describe the electronic structure, one
needs to understand the underlying quantum mechanics: how a large num-
ber of electrons interacts with each other and atomic nuclei? their properties
can be obtained by solving a many-body equation, described as Schrödinger
equation:

ĤΨ(r1,r2, . . . ,R1,R2, . . .) = EΨ(r1,r2, . . . ,R1,R2, . . .) , (2.1)

where Ψ(r1,r2, . . . ,R1,R2, . . .) is a wavefunction, which corresponds to the
positions of electrons, ri, and the nuclei RI . In other words, Ψ contains all the
information that can be possibly known about a system under consideration.
Further, E is the energy of the system described by Ψ and Ĥ represents the
Hamiltonian of the interacting system, which can be explicated as:

Ĥ =− h̄2

2me
∑

i
∇2

i︸ ︷︷ ︸
T̂e

− h̄2

2 ∑
I

∇2
I

MI︸ ︷︷ ︸
T̂n

+
1
2 ∑

i�= j

e2

4πε0ri j︸ ︷︷ ︸
V̂ee

−∑
i,I

e2ZI

4πε0RiI︸ ︷︷ ︸
V̂en

+
1
2 ∑

I �=J

e2ZIZJ

4πε0RIJ︸ ︷︷ ︸
V̂nn︸ ︷︷ ︸

V̂

.

(2.2)
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Figure 2.1. Schematic representation of randomly positioned atoms and electrons
in a many body system. Big (red) and small (blue) balls describe atoms and elec-
trons, respectively. The springs red, blue and magenta show the interaction between
nuclei-nuclei, electron-electron and electron-nuclei respectively, (sizes are in imagi-
nary scale).

Here me and MI are the mass of the ith electron and Ith nucleus, respectively.
ZI is the atomic number of the Ith atom. The first two terms in the equation
are the kinetic energy of the electron and nuclei. Later three terms describe
the potential energy from the Coulomb interaction between electron-electron,
electron-nucleus, and nucleus-nucleus, respectively. The analytical solution
for the equation mentioned above is limited to the simple systems, for exam-
ple, hydrogen atom and molecule. To broaden its applicability in practically
interesting systems like solids where a large number of particles need to be
considered, approximations have to be made. The first approximation utilizes
the large mass differences between the nuclei and the electrons (proton-to-
electron mass ratio is slightly more than 1836). This makes the nuclei static
relative to motion of electrons, hence the dynamics of nuclei could be ne-
glected by considering them frozen (or very slow) related to electrons. This is
the basis of Born-Oppenheimer approximation (BOA) [98], which allows us to
separate the electronic and ionic degrees of freedom. The total wavefunction
in Eq. (2.1) can thus be rewritten as a product of wave functions for electrons
and ions as

Ψ(r1,r2, . . . ,R1,R2, . . .) = ψ(r1,r2, . . .)ψ(R1,R2, . . .) . (2.3)

The above simplification reduces the initial problem to a purely electronic
problem, where the nuclei coordinates enter only as a parameters. Considering
the nuclei as static, the last term of Eq. (2.2) can be treated as a constant-
valued term and the kinetic energy of the nuclei, i.e., the second term of Eq.
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(2.2) vanishes. Therefore, the many body Hamiltonian can be recast as

Ĥ =− h̄2

2me
∑

i
∇2

i︸ ︷︷ ︸
T̂e

+
1
2 ∑

i�= j

e2

4πε0ri j︸ ︷︷ ︸
V̂ee

−∑
i,I

e2ZI

4πε0RiI︸ ︷︷ ︸
V̂en︸ ︷︷ ︸

V̂

. (2.4)

Here the kinetic energy of nuclei is neglected and nuclear repulsion contributes
as a constant to the total energy. Although use of this approximation does not
help us to get simplified solution of the many body Schrödinger equation. The
problem of solving this equation of interacting N electron system still persists.

The use of BOA simplifies the many body Hamiltonian involving ions and
electrons to a many body Hamiltonian involving electrons only. However, the
solution of the electronic Hamiltonian in Eq. (2.4) is still cumbersome because
one has to solve the second-order differential equations for N electrons. The
latter task is theoretically possible only for systems where the number of elec-
trons is small, e.g., hydrogen atom. Once the number of electrons gets higher,
the solution of the Hamiltonian is practically impossible. Therefore, one must
look for another way to solve the many body problem by restricting the num-
ber of degrees of freedom. To this end, one way is to consider the density of
electrons instead of positions. In the next section, we discuss the density func-
tional theory that involves the many body Hamiltonian (energy) as a function
of density.

2.2 Density functional theory
The foundation of density functional theory (DFT) is based on the fact that the
property of interacting electron systems can be described via functional of its
ground state density instead of the many body wave functions. Thomas and
Fermi proposed the very first illustration of DFT for quantum system based on
the non-interacting homogeneous electron density [99, 100]. However, their
consideration of simple approximation lacked with the accurate description of
electrons in the many body system, which resulted in its failure. Thereafter,
density functional formalism as we know today was born with the landmark
paper of Hohenberg and Kohn [101], which introduced an exact theory of in-
teracting many body systems. The theorems proven in this report represent the
major theoretical pillars on which all modern day density functional theories
are erected.

2.2.1 Hohenberg-Kohn theorem
Hohengberg and Kohn established a solid foundation to DFT through their
theorems, shown that the properties of interacting system can be calculated by
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using the ground state density. These theorems are the core concept of DFT
which are described below.1

Theorem I

For any system of interacting particles in an external potential Vext (r), the po-
tential Vext (r) is determined uniquely, up to a constant, by ground state density,
n0(r).

The first theorem only furnishes the existence of a functional of electron den-
sity as basic variable but the true form of this function is not exactly known.
The second theorem defines the property of the functional.

Theorem II

Universal functional for the energy E[n] in terms of density n(r) can be de-
fined for any external potential Vext . For any particular Vext , the ground state
energy of the system is the global minimum of the energy functional, and the
density n(r) which minimizes the functional is the exact ground state density
n0 (r).

We do not intend to provide a heuristic proof of these theorems as it can be
found in textbooks on DFT [102–104]. Combining these two theorems, the
energy functional can be written as

EHK [n] = FHK [n]+
∫

d3rVext(r)n(r) . (2.5)

Here FHK defines all the internal energies including kinetic and potential en-
ergies. The total internal energy functional is expressed as

FHK [n] = T [n]+Eint [n] . (2.6)

The above equation does not depend on the external potential and only de-
pends upon the density. Hence this functional must be universal by its con-
struction. But in the theorem there are no any means to determine the exact
form of the functional and hence it has to be approximated in order to apply
in practical systems (Calculations). The global minimum of the functional in
(2.6) is the exact ground state total energy of the system E0 and particle density
which minimizes this functional would be the exact ground state density n0(r).
Using the variational principle, one can determine the ground state density as

δ
δn

EHK [n(r)]
∣∣∣∣
n=n0

= 0 . (2.7)

The HK theorems proved to be the bedrock of the modern DFT. These theo-
rems describe the unique mapping between ground state density and ground

1These theorems are directly taken from ref. [102]
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state energy. However, they do not present any recommendation on how the
functional (which delivers the ground state energy) can be formulated. Further,
Kohn-Sham in their formalism established the concept of a non-interacting ref-
erence system built from a set of orbitals such that the major part of the kinetic
energy can be computed to good accuracy.

2.2.2 Kohn-Sham Formalism
The two HK theorems were capable of solving the many body problem using
the particle density function and variation principle. However, for practical ap-
plications, the realization of DFT was first proposed by Kohn and Sham (KS)
[105]. The essential modification proposed in HK theorem is the replacement
of interacting electron system with an auxiliary system of non interacting par-
ticles having the same density. Thus, the total energy functional can be written
as

EKS[n] = Ts[n]+
∫

d3rVext(r)n(r)+
1
2

∫
d3rd3r′

n(r)n(r′)
|r− r′| +Exc[n] . (2.8)

The first three terms represent the functional for the kinetic energy of a non-
interacting electron gas, the external potential contribution due to nuclei and
other external potential and the classical Coulomb contribution (Hartree term)
for the electron-electron interaction, respectively. The last term, Exc[n], con-
tributes towards all the many body effects of exchange interactions and cor-
relations, also known as exchange and correlation functional. The analytical
expression of the functional, Exc[n] is still unknown and the implementation
of the KS formalism counts on the ability to find a good approximation for
it. Here the Coulomb repulsion in between the nuclei is directly added as a
constant term in the Eq. (2.8)

According to the second HK theorem, the solution of the KS auxiliary sys-
tem can be done as the minimization of the KS energy functional with respect
to the density n(r). The minimization of energy results in a Schrödinger-like
equation

ĤKSψi(r) =

[
− h̄2

2me
∇2 +VKS(r)

]
ψi(r) = εiψi(r) , (2.9)

where ψi(r) are the KS orbital, εi are the eigenvalues. VKS is the effective
potential that can be defined as

VKS(r) =Vext +
∫

d3r′
n(r)

|r− r′| +Vxc . (2.10)

Moreover, the exchange correlation potential can be defined by

Vxc =
δExc[n]
δn(r)

. (2.11)
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It must be noted that the KS orbitals, ψi(r), are not the wave functions of
electrons, in fact they do not have any direct physical interpretation. They are
the auxiliary functions for calculating electron density, which is described as
follows

n(r) = ∑
i
|ψi(r)|2 . (2.12)

The KS formalism is exact and would lead to the exact ground state of an
interacting many body system, provided that the true form of Exc is known.
Note that the effective potential in Eq. (2.10) depends on the electron density.
The latter, in turn, depends on the KS orbitals which are being searched within
KS formalism. Therefore, the KS equations has to be solved self-consistently
following an iterative method. At the end, the self-consistent solution ensures
that the true ground state density has been achieved.

2.3 Exchange-correlation functionals
As previously discussed, Kohn-Sham formalism replaces the real system with
an auxiliary non-interacting system and accommodates unknowns in the ex-
change and correlation functional. Therefore, the KS formalism is exact, only
when the form of Exc is exactly known. The accuracy of DFT calculations
exclusively relies on the accuracy of the chosen form of Exc. However, the
question of finding the best approximation for exchange and correlation po-
tential is itself a research problem that is still unsolved. The approximations
of this functional need to be made with respect to the energy of exact ground
state. In the following section, we describe the most commonly used approxi-
mation for the exchange-correlation functional.

2.3.1 Local density approximations
Local density approximations (LDA) was the first approximation proposed
by Kohn and Sham, when they introduced their formalism [105]. In this ap-
proximation, the exchange-correlation energy density has been treated locally
as a homogeneous electron gas. The reason for considering the homogeneous
electron gas is that it has the simplest form of exchange-correlation functional,
which works quite well for many systems and it is described as

ELDA
xc =

∫
n(r)εhom

xc [n(r)]dr , (2.13)

where εhom
xc defines the exchange correlation energy density of a homogeneous

electron gas with the density n(r) calculated locally at a point r. The εhom
xc can

further be divided into two parts of exchange εx and correlation εc terms. The
exchange part can be computed simply from analytical approach but correla-
tion part is again not known. Thus, the numerical form of εc is used, which
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comes from whole range of Monte-Carlo calculations combined with different
interpolation schemes [106]. Despite of simplicity, LDA works very well in
many systems. LDA was expected to work for the systems with slowly varying
density, for instance, the free electrons in metallic systems [107]. However,
the recent investigations have also shown that LDA also works very well for
several other systems, e.g., semiconductors and insulators and explains major-
ity of their properties [108, 109]. A list of drawbacks of LDA follows: the
LDA tends to overbind that means the computed cohesive energies are large.
There is lack of enough localization of electrons in the space, which is appro-
priate for s and p electrons, but not good for d and f electrons. The long-range
effects like van der Waals bonds are lacking, owing to the overly local nature
of the LDA. At last, the potential felt by an electron while approaching an
atom/surface is shoddily stipulated by the LDA. The hydrogen bond, is also
poorly reckoned for.

2.3.2 Generalized gradient approximations (GGA)
The improvement in LDA was proposed by Hohenberg and Kohn [101], where
they proposed to include the gradient of the local density in the expression for
the exchange and correlation. The latter provided the cornerstone of the GGA
[110, 111], where the exchange-correlation density not only depends on the
electronic density n(r), but also on the gradient of the electronic density ∇n(r).
Mainly, the exchange-correlation energy in GGA is obtained by modifying the
LDA energy density and can be written as

EGGA
xc =

∫
n(r)εGGA

xc [n(r),∇n(r)]dr

=
∫

εhom
x n(r)Fxc[n(r),∇n(r)]n(r)dr , (2.14)

where εhom
x is the exchange energy density of a uniform electron gas of den-

sity equal to n(r). Fxc is a dimensionless quantity that is a function of density
and its gradient. Fxc can further separated in the two parts as exchange and
correlations. The exchange part has been proposed to have several forms such
as Perdew, Burke and Ernzerhof (PBE) [112] and Becke (B88) [113]. Let
us make a small comparison between LDA and GGA schemes. Even though
LDA describes the physical properties for a wide range of systems, it fails
to describe the chemical properties, e.g., binding energies in particular [114].
The consideration of GGA has overcome such failures of LDA. GGA pro-
vides a more realistic description for the chemical energy barrier in metallic
and semi-conducting surfaces [115, 116]. Apart from this, GGA also faces
problems in describing long-range effects, such as Van der Waals. However,
hydrogen bonds are generally well justified.
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2.4 Electronic structure of periodic solids
So far, we have discussed the method, which is applicable for the system with
finite number of electrons, like atoms and molecules. However, there are infi-
nite number of electrons in a periodic model of a crystal. The above mentioned
DFT approximations cannot directly be used in such crystals, hence, further
developments are requisite. One of the development is to use periodic bound-
ary conditions. The periodicity in a crystal makes its potential also periodic in
nature, hence, the effective potential in the KS equation will follow the crystal
periodicity as

Ve f f (r+R) =Ve f f (r), (2.15)

with R as a translation vector. Using the Bloch theorem [117, 118], we can
write the single particle wavefucntion

ψk(r) = eikruik(r) , (2.16)

where uik(r) is periodic function in the lattice, which means uik(r)= uik(r+R).
k stands for the wave vector. One can express the periodic function uik(r) in
Fourier series, using the reciprocal lattice vector G and plane wave expansion
coefficient ciG as

uik(r) = ∑
G

ciGeiG·r . (2.17)

Note that due to the periodicity, the following condition has to be obeyed:
G ·R = 2πm, with m being an integer that defines the periodicity of the sys-
tem. Further, the single particle wave function can be written as a linear com-
bination of plane waves

ψik(r) = ∑
G

cik+G ei(k+G)·r (2.18)

This reduces the infinite solid problem (infinite number of electrons) to infinite
number of k-points, which might seem somewhat contradicting. Nevertheless,
it allows the great simplification because ψik(r) changes smoothly along the
close k-points hence by considering only one k-point, the small region can be
sampled. This implies that considering the discrete k-point grid in order to
calculate the electronic structure of solid is sufficient.

2.5 Pseudopotentials
Along with the proper treatment of exchange-correlation functional, the solu-
tion of the Kohn-sham equation is feasible for the electronic systems. Further,
for bigger systems having a higher number of electrons, it becomes compu-
tationally expensive. One solution could be use to decrease the number of
effective electrons in the system. The reduction of electrons effectively intro-
duces the concept of pseudopotential. The basic idea of the pseudopotential

25



is to replace the existing problem with another problem. It deals with the va-
lence electrons of the system and replaces the strong Coulomb potential of the
nucleus and effect of tightly bound core electron to an effective ionic potential
acting on the valence electron. The wave function of the core atom does not
change significantly with the environment of the parent atom. These core elec-
trons and nucleus are also associated with rapidly varying wave function with
many nodes. Therefore, the large number of basis functions are required to de-
scribe them. Accordingly, it is useful to combine these two (nucleus and core
electrons), and only deal with the valence electrons. The core electrons screen
the external potential and provide a softer potential to the valence electrons.
To understand the construction of the pseudopotential, let us first consider the

Figure 2.2. Schematic of a pseudopotential V ps and respective wave function ψ ps,
where pseudo wave function is node less and matches well with all-electron wave
function ψae over the cut off radius rc. This induces the much softer potential (pseudo)
than the all-electron potential V ae = −Z

r .

exact core and valence states, as |ψc〉 and |ψv〉 and Schrödinger equation can
be written as

Ĥ |ψi〉= Ei |ψi〉 , (2.19)

where i defines both the valence and core states. We are interested to get
smoother valence states in the core region. Defining a smooth pseudo-state
|ψ ps〉, we can write

|ψv〉= |ψ ps〉+∑
c
|ψc〉αcv, (2.20)

where αcv = −〈ψc|ψ ps〉 defines that valence band has to be orthogonal to all
of the core states. Further, using Eqs. (2.19) and (2.20) one can get,

Ĥ |ψ ps〉+∑
c
(Ev −Ec) |ψc〉〈ψc|ψ ps〉= Ev |ψ ps〉 (2.21)

=⇒ Ĥ ps |ψ ps〉= Ev |ψ ps〉 . (2.22)
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The last Eq. is analogous to the Schrödinger equation with a pseudo Hamilto-
nian and pseudopotential

Ĥ ps = Ĥ +∑
c
(Ev −Ec) |ψc〉〈ψc| (2.23)

V̂ ps = V̂e f f +∑
c
(Ev −Ec) |ψc〉〈ψc|= V̂e f f +V̂nl . (2.24)

The first term in Eq. (2.24) describes the true potential. The second term stands
for repulsive potential localized to the core region. Therefore, it cancels the
strong attractive nuclear Coulomb potential and softens the core potential. It
results in a weaker pseudopotential and nodeless pseudo wavefunction.

2.6 Basis sets
Undoubtedly, an excellent and relatively cheaper alternative to wave function
methods is KS-DFT. As described earlier, this scheme replaces the calculation
of true wave function ψ by that of a single Slater determinant that represents a
non-interacting model system, resulting the same ground state energy as of ψ .
But, the implementation of the KS-DFT method still faces several numerical
difficulties as the behavior of the wave function is not same everywhere. In
fact it is seen in Fig. 2.2 that the wave function has different shapes in different
regions of space, i.e., the core and valence regions. Henceforth, choosing the
appropriate basis set, which can describe the wave function in all the regions
of space, is the key requirement to obtain the accuracy in the results. There
are number of choices for the basis sets depending upon the system under
investigation and required accuracy. Some examples of these basis sets are:
plane waves (PW) , linearized augmented plane waves (LAPW), liner muffin
tin orbital waves (LMTO), linear combination of atomic orbitals (LCAO) etc.
[102–104]. However, there are several other basis sets proposed and used in
the literature mostly in quantum chemistry [119]. Below, we discuss briefly
about the PW and LCAO as the results presented in the thesis are mostly pro-
duced by using these two basis sets.

2.6.1 Plane waves
Plane wave (PW) basis set is a natural choice to solve the KS equations for
the periodic system, such as bulk solids [120, 121]. PW method has been
widely used and optimized and also implemented for abintio calculation for
periodic solid [122]. In KS-DFT the electrons moving in an effective potential
of a periodic lattice can be described by the Eqs. (2.9) and (2.10). Hence, the
KS orbitals ψ can be written as a product of the function uik(r) such that the
periodicity is followed according to Eqs. (2.16) and (2.17).
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If the PW basis set is used, the periodic function uik(r) can be expressed
as sum over the plane waves, which would have same periodicity as it. Such
plane waves are those ones corresponding to the reciprocal lattice vectors.
Hence, the KS orbitals can be written in a linear combination of the plane
waves as

ψik(r) = ∑
G

cik(G)× 1√
Ω

ei(k+G)·r , (2.25)

where cik is the expansion coefficient of the wave function in the plane wave
basis set ei(k+G)·r and G are the reciprocal lattice vector. Here, the states are
normalized and follow the periodic boundary condition in a large volume Ω,
which is allowed to reach up to infinity. Thus, 1√

Ω
serves as a normalization

factor. k stands for Bloch wave vector. Further, the KS equation can be written
as

ĤKSψi(r) =

[
− h̄2

2me
∇2 +VKS(r)

]
ψi(r) = εiψi(r) . (2.26)

Using Eq. (2.25) into (2.26) and left multiplication with e−i(k+G
′
)·r, further,

integration over r would give the matrix eigenvalue equation as:

∑
G′

(
h̄2

2me
|k+G|2δ

G
′
,G
+VKS(G−G

′
)

)
cik(G) = εikcik(G) . (2.27)

Note that the kinetic energy, i.e., the first term is diagonal and the potential en-
ergy VKS is defined in terms of its Fourier transform. The solution is obtained
by diagonalization of a Hamiltonian matrix and the size of the matrix is de-
termined by choice of the cut off energy, Ecut =

h̄2

2me

∣∣k+G
∣∣2. The size of the

matrix becomes intractably large for systems that contain both the valence and
core electrons. This makes the calculation computationally expensive and the
problem can be solved by using the pseudopotential approximations. There
are several advantages of PW basis sets like, it does not depend on the system
as a result it is easy to compute and compare the properties. PW has good
control referring to accuracy and convergence, since it is easy to increase the
number of plane waves in the calculation. The Schrödinger equation can be
solved efficiently because the fast Fourier transform algorithm can adequately
compute the expansion co-efficients.

2.6.2 Projector augmented wave
A significant part of the results presented in this treatise, the electronic struc-
ture calculations and geometry relaxations have been performed using the pro-
jector augmented wave (PAW) method, implemented in VASP [123]. It is
predominantly an all-electron frozen core method, which consists the simpler
energy and potential independent basis but retains the flexibility of augmented

28



wave method [124]. The behavior of the wave function differs with the dis-
tance from the nucleus (core and valence region) as can be seen in Fig. 2.2.
Since the full wave function vary rapidly near the nucleus and remains uniform
outside of the centered sphere, all the integrals are evaluated as a combinations
of integrals of smooth functions extending throughout the space plus localized
contributions described by radial integrals over the muffin tin sphere. Essen-
tially, the method is based on the linear transformation ℑ, which describes the
relation between all-electron single particle KS wave function ψn and compu-
tationally convenient smooth wave function ψ̃n as

|ψn〉= ℑ |ψ̃n〉 . (2.28)

The index n stands for the bands, k-points and spins. We can use the vari-
ational principle with respect to auxiliary wave function and write the trans-
formed KS equation as follows,

ℑ†Hℑ |ψ̃n〉= ℑ†ℑ |ψ̃n〉εn , (2.29)

where ℑ†Hℑ stands for pseudo Hamiltonian H̃ and ℑ†ℑ = Õ is the overlap
operator. The objective of this transformation is to avoid the nodal structure
of true wave function in the core region having radius rc. Therefore, the mod-
ification of the wave function in the core region would be governed by

ℑ = 1+∑
R

SR , (2.30)

with SR as deduction between the auxiliary wave function from all-electron
wave function and R is the atom site index. The SR acts within the augmented
region, which is basically the core radius as rc ∈ R. The core wave function is
then limited to augmented region and it is treated separately using frozen core
approximation. Hence, the ℑ operates on valence wave function, which can
be written within the augmented space as

ψ(r) = ∑
i∈R

φi(r)ci , (2.31)

where φi(r) is the all-electron partial wave solution of the radial Schrödinger
equation for the isolated atom and ci are the expansion coefficients. These
partial wave φi(r) are locally mapped to corresponding auxiliary partial wave
function φ̃i(r) by the transformation ℑ,

|φi〉= (1+SR) |φ̃i〉
=⇒ SR |φ̃i〉= |φi〉− |φ̃i〉 ∀ i ∈ R . (2.32)

It is worth reminding that due to the local transformation, these φ̃i and φi are
identical outside the augmented region. Once we have the realistic all-electron
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wave function and smooth wave function, they can further be expanded into
the all-electron partial and pseudo partial wave function (φi = φ̃i ∀ i ∈ R).
Hence, any auxiliary wave function can be formed with an auxiliary partial
wave basis within the augmented region as

ψ̃(r) = ∑
i∈R

φ̃i(r)ci = ∑
i∈R

φ̃i(r)〈p̃i|ψ̃〉 , (2.33)

where 〈pi| is the projector operator and satisfies the conditions for complete-
ness and orthogonality

∑
i∈R

|φ̃i〉〈 p̃i|= 1 (2.34)

〈φ̃i| p̃ j〉= δi j ∀ i, j ∈ R . (2.35)

Thus, using Eqs. (2.30) and (2.32), the transformation operator can finally be
expressed in terms of auxiliary and the true partial waves as

ℑ = 1+SR ∑
i
|φ̃i〉〈 p̃i|

=
(
1+∑

i
(|φi〉− |φ̃i〉

)〈p̃i| . (2.36)

Note that the involved sum runs over all the partial waves corresponding to
all the atoms. Further, following the Eq. (2.28), the true wave function can be
obtained as

|ψ〉= |ψ̃〉+∑
i

( |φi〉− |φ̃i〉
)〈p̃i|ψ̃〉

= |ψ̃〉+∑
R

( |ψ1
R〉− |ψ̃1

R〉
)
, (2.37)

where we can define, |ψ1
R〉= ∑i∈R |φi〉〈 p̃i|ψ̃〉 and |ψ̃1

R〉= ∑i∈R |φ̃i〉〈 p̃i|ψ̃〉. As
a result of this transformation, the wave function is partitioned in to the dif-
ferent part of space. Inside the core region, we see partial waves that holds
the nodal structure, i.e., |ψ̃R〉 =|ψ̃1

R〉, which describes the true function |ψR〉
merging in to |ψ̃1

R〉. Away from the augmented space, the auxiliary and true
wavefunctions are the same, i.e., |ψR〉=|ψ̃R〉. Although the PAW method con-
sists of some approximations like frozen core approximation, the expansion
of auxiliary wave function with finite number of plane waves and so on. De-
spite of these facts, PAW methods gives access to full electron wave function,
charge and spin densities with adequate basis sets.

2.6.3 LCAO basis set
In the plane wave basis, the number of plane waves needed for calculation is
generally much higher than the number of electrons. Therefore, it demands
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high computational resources for the matrix operations. The plane waves are
not only extended over all the space, but also over the space where there is no
charge density. Thus, the plane wave methods are not suitable for grid based
electronic structure calculations for large systems. The alternative route to
this is provided by real space basis sets that usually have some natural phys-
ical appearance which resembles to the nature of the problem. The linear
combination of atomic orbital (LCAO) is one of those. LCAO basis sets were
first introduced in quantum chemistry to describe the molecular orbitals, but,
they can also be used in the solid state calculations in the Order N-methods.
SIESTA uses the LCAO as the basis sets for the solution of Kohn-Sham equa-
tion [125]. LCAO basis sets are the superposition of atomic orbitals (AO) and
can be written as

φnlm = ∑
i

ci,nlmχi,nlm . (2.38)

Here, φnlm is the basis orbital and ci,nlm are the AO coefficients and the summa-
tion is over the number of AOs, χi,nlm. Further, the AOs are mostly described
as Slater type orbitals (STO) and the Gaussian type of orbitals (GTO). They
have the same form as the product of a radial function and spherical harmonics

χi,nlm(r,Θ,Φ) = Rnl(r)Ylm(Θ,Φ) . (2.39)

The radial part can further be defined differently for STO [126] and GTO
[127]. The radial part defines the orbital n and spherical harmonic stands for
angular momentum l and magnetic quantum number m, respectively. One has
to remember that the radial function becomes zero beyond certain radius.

The accuracy of the calculations in LCAO basis sets can be increased by
changing the size and shape of the basis. The basis function can be expanded
using multiple zeta basis sets [128, 129]. The term zeta (ζ ) describes the ex-
ponent of the STO basis function. The minimal basis set is single zeta, which
describes just one electron in Hydrogen and Helium case. Further down in
the periodic table, different shells in the atoms from the same row, are con-
sidered unitedly, e.g., 2sp(2s and 2p),3sp,3d shells. This minimal basis set
is very small and cannot produce correct results, but quantitatively it is pos-
sible to get observables. Further the increase in basis set, double zeta (DZ)
defines the splitting of the basis function and further triple zeta (TZ) increases
the basis function by one. The increase in the basis set, in turn, increases the
accuracy of the calculations. LCAO basis set can further be improved by in-
cluding the polarization function that means the function with higher angular
momentum. This polarization function is attributed to include the deformation
induced by bond formations in molecules and solids. The polarization func-
tion has angular momentum one unit higher than the maximum occupied or-
bitals, e.g., p-orbital can be used for polarizing s-orbitals and d-orbital can be
used for p-orbital. This polarization function denoted by P, e.g., DZ basis set
becomes double zeta polarized (DZP) after addition of polarization function.
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The choice of basis set can be obtained by comparing energies and geometries
at different levels, but DZP provides relatively high accuracy results with a
reasonable computational cost for most of the systems. We used DZP basis
set for producing the results in this thesis.

2.7 Force theorem and geometry optimization
In all the reported results in this thesis, geometrical optimizations have been
performed, i.e., the search for spatial equilibrium configuration in which atoms
are arranged in the ground state before calculation of other properties. Accord-
ing to Hellmann-Feynmann theorem [102], the force due to atomic displace-
ments can be written as

FI =− ∂ε
∂RI

, (2.40)

with ε is the total energy of the system, which can be described as

ε =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 . (2.41)

Here ψ represents the Kohn-Sham wave function, which must be normalized,
hence 〈ψ|ψ〉=1. Using Eqs. (2.40) and (2.41) we get.

FI =−〈ψ | ∂ Ĥ
∂RI

|ψ〉−〈 ∂ψ
∂RI

|Ĥ|ψ〉−〈ψ|Ĥ| ∂ψ
∂RI

〉 . (2.42)

At the exact ground state solution, the energy is extremal for all the possible
variations of the wave functions. The latter results in the vanishing of the last
two terms in the right hand side of Eq. (2.42). Therefore, the forces are deter-
mined by the terms, which is explicitly dependent upon the atomic positions,
and it can be further written as

FI =−〈ψ | ∂ Ĥ
∂RI

|ψ〉 . (2.43)

Thus, keeping the ψ at their ground state values, the partial derivative of the
total energy with respect to the ionic position can be calculated.

Force theorem can be used for the relaxation but the two main factors affect
this. First, an error due to non-self consistency and the second, the explicit
dependence of the basis function on the atomic positions (in LCAO basis set).
These two factors give rise to the Pulay force [130]. Therefore, one should be
careful to treat the force theorem. On the other hand, the Pulay force is always
zero for plane wave basis sets as they do not depend on the ionic positions.
However, one should carefully treat the plane wave basis for completeness for
better optimization of volume and shape. It can be done by using the large
energy cutoff.
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2.8 Quantum transport theory
A major portion of this thesis is devoted towards an understanding of elec-
tronic transport across nanoscale devices. Such applications involve molecular
systems or nanojunction coupled with 2D electrodes or transport in periodic
2D systems. In this section, the basic equations to describe the stationary elec-
tron transport in nano structures are discussed. Here, we first define the dif-
ferent transport regimes based on the two characteristic lengths as momentum
relaxation length (Lm) and phase relaxation length (Lφ ). The first one defines
the mean distance electron needs to travel before it original momentum lost,
i.e., mean free path and the later one represents the length over which electron
wave function retains information about its initial phase. If the length of the
conducting object (conducting wire) is much longer than these two distances
means L � Lm, Lφ then, one simply describes it as classical ohmic behavior
where the conductance depends upon the length of the wire. Further, due to
small size of the devices, quantum nature of electron needs to be considered,
where the electrons behave like waves, which may result in interference ef-
fects. Using these two relevant length scales, electron transport can be divided
in three parts:

◦ Ballistic transport regime, L << Lm,Lφ :
In this case, there is no scattering in between the leads. The resistance
can only arise in the contact regions. Graphene and carbon nanotube
(CNT) exhibit the ballistic conductance where conductance is quantized
on sub micrometer scale lengths.

◦ Elastic and coherent regime, L < Lm,Lφ :
The transport can be coherent, when the length of the wire is less then
the phase relaxations length. Electrons can get elastically scattered re-
sulting the reduction in transmission without involving energy or phase
change.

◦ Inelastic and incoherent regime, L > Lm,Lφ :
The sufficiently large length over which incoming electrons get inelasti-
cally scattered by phonons, destroying its phase memory.

2.8.1 The Landauer formula
Landauer applied the scattering theory of transport as a conceptual framework
to illustrate the electrical conductance and formulated that “Conductance is
transmission” [131]. In this approach, two ballistic leads are connected to
mesoscopic scatter (molecule or nanoscale structure) as described in Fig. 2.3.
Left and right leads behave like a reservoirs with electrochemical potential
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Left Lead Right Lead
(L) (R)

Reservoir ReservoirCentral Region (C)

Figure 2.3. Schematic of an mesoscopic system connected with two ballistic leads
as described in Landauer approach. These leads are connected with reservoir held
at equilibrium at different chemical potentials μL and μR, respectively. The central
region where the scattering process takes place is connected with the leads.

μL and μR where μL = μR at zero bias voltage. Further, the electrochemical
difference causes the flow of electrons from for L → R/R → L.

In his approach Landauer viewed the current flow as the probability of the
electron transmitted from one lead to another. Therefore, the current can be
written as

I =
2e
h

∫
T (ε)

(
fL(ε)− fR(ε)

)
dε , (2.44)

where e is the electronic charge, h is Plank’s constant, f is the Fermi Dirac
distribution function and the transmission T(ε) is given as

T (ε) = ∑
i, j

ti− j(ε) . (2.45)

If Vb is the applied bias on the left (right) electrode symmetrically, then
the electrochemical potential at the left and right electrode can be expressed
as μL = EF + eVb/2 and μR = EF − eVb/2, respectively, where EF defines
the Fermi energy. It is clear from Eq. (2.44), the current would be zero if
fL(ε) = fR(ε), because only the difference can contribute to the net current. If
the temperature is zero but voltage bias is finite then the current can be written
as,

I =
2e
h

∫ EF+
eVb

2

EF− eVb
2

T (ε)dε . (2.46)

Consequently, the conductance G = I/V can be obtained by averaging trans-
mission T (ε) over the energy window of the width eVb centered at the Fermi
energy of electrode. On the other hand, if T (ε) does not change significantly
over an energy range eV , then the Fermi function can be expanded using Tay-
lor expansion method at μ = EF as,

I =
2e
h

∫
dεT (ε)

(
− ∂ f (ε)

∂ε

)
(μL −μR) . (2.47)
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Here,(μL −μR) = eV . The electrical conductance G = I/V reads as

G =
2e2

h

∫
dεT (ε)

(
− ∂ f (ε)

∂ε

)
. (2.48)

At T = 0 K, −∂ f (ε −μ)
∂ε

= δ (μ), where δ (μ) is Kronecker delta. Further, for

an ideal periodic chain, where T (ε) = 1 at T = 0 K, the Landauer conductance
becomes

G0 =
2e2

h
= 77.5 μSiemens = 12.9(KΩ)−1 , (2.49)

where G0 is quantum conductance. Generally, in the nanodevices, its connec-
tion to the leads would not be ideal due to scattering. Hence, the formula for
the conductance can be rewritten as:

G = G0T (EF) , (2.50)

where EF is the Fermi energy of the system.
The above description is valid for two-electrode system. However, in the

device with e.g. a gate electrode, or a number of electrodes, carrying electrons,
the Landauer formula in its general form should be considered

G = G0 ∑
i, j

Ti j(EF) . (2.51)

In summary, the conductance calculation from Landauer formula suggests
that transmission function has a central significance. In a generalized way, this
transmission function can be evaluated as scattering matrix problem defined
as matrix S, related to incoming Φin and outgoing Φout wave functions on the
scattering potential,

|Φout〉= S |Φin〉 , (2.52)

with S is the scattering matrix, the elements of this matrix connect the incom-
ing and outgoing states. Absolute values of each squared element of matrix
yield the probability of transmission from particular incoming state to the cor-
responding outgoing state. Further, if these elements are arranged in the blocks
representing transmission t and reflection r, then one can write it as

S =

⎛
⎝ r t

r∗ t∗

⎞
⎠ . (2.53)

The indices with asterisk sign stand for the coefficient of wave function com-
ing from the right lead. This gives us the transmission function as

T (ε) = Tr[t∗t] , (2.54)
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where Tr stands for the trace of the matrix. To solve the general scattering
problem, one should know the shape of the scattering potential and solve it
for the asymptotic wave function in the leads. In this procedure only resulting
scattering potential is considered, but the electronic structure in the scattering
region is excluded. However, in general, the scattering potential depends on
the applied bias voltage and in this way it alters the electronic structure in the
scattering region.

2.9 Non-equilibrium Green’s function
In this section, Generalized approach to calculate the transmission coefficient
T of the electron with energy E traveling from one electrode to another using
non equilibrium Green’s function (NEGF) method will be discussed. A typical
transport setup is divided into three parts as described in Fig. 2.3: central
region (C), semi infinite left (L) and right leads (R), then, the Hamiltonian of
the system is determined as

H =

⎛
⎜⎜⎜⎝

HL τL 0

τ†
L HC τ†

R

0 τR HR

⎞
⎟⎟⎟⎠ . (2.55)

In the above mentioned equation, HL, HC, and HR denote the Hamiltonian ma-
trices of the left, center, and right components, respectively. τL(R) stands for
the interaction between the left (right) electrode and the scattering region (cen-
tral region). Interactions between the electrodes (left⇔right) is assumed to be
zero, means there is no direct tunneling between the leads. After describing
the Hamiltonian, in the next step, we will see the NEGF approach to solve the
Schrödinger equation, where the retarded Green’s function G corresponding
to the Hamiltonian matrix H can be written as:

[ES−H]G = I , (2.56)

where S is the overlap matrix, I stands for an identity matrix and G described
as

G =

⎛
⎜⎜⎜⎝

GL GCL GRL

GLC GC GRC

GLR GCR GR

⎞
⎟⎟⎟⎠ . (2.57)

It is easier to partition the whole system into different regions and calculate the
Green’s function as we are not interested in the process inside the electrode.
Further, the central region is only connected to the surface of the electrode.
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Hence, one can expect that the interaction term τL(R) would be much smaller
in size than H. Thus, after solving the Eqs. (2.56) and (2.57) we get,⎛

⎜⎜⎜⎝
ES−HL −τL 0

−τ†
L ES−HC −τ†

R

0 −τR ES−HR

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

GL GCL GRL

GLC GC GRC

GLR GCR GR

⎞
⎟⎟⎟⎠ = I . (2.58)

Further, after solving the Eq. (2.58), the full Green’s function described earlier
in Eq. (2.57), becomes

G =

⎛
⎜⎜⎜⎝

gL(1+ τLGLC) gLτLGC gLτLGRC

GLC GC GRC

gRτRGLC gRτRGC gR(1+ τRGRC)

⎞
⎟⎟⎟⎠ , (2.59)

where gL/R = (ES−HL/R)
−1 is the surface Green’s function of the left and

right lead uncoupled to the central region.
The solution of above mentioned equations gives the final expression for re-
tarded Green’s function of the central region, which can be described as

GC = [ES−HC −ΣL(E)−ΣR(E)]−1 , (2.60)

with ΣL(E) = τ†
LgLτL and ΣR(E) = τ†

RgRτR are the self energies. The self
energy is associated to the energy level shift and the energy level broadening.
The energy level shift and the energy level broadening can be defined from the
real and imaginary part as

ΔL/R(E) = Re
[
ΣL/R(E)

]
, (2.61)

ΓL/R(E) = i [ΣL/R(E)−Σ†
L/R(E)]

=−2Im[ΣL/R(E)] . (2.62)

The broadening of the molecular orbital is associated with the life time of the
electronic state on the molecule. An electron can escape from the lead when
it is coupled with the molecule and can spend some time on the molecular
state at the central region. This life time (I) is inversely proportional to the
broadening of the states such that IΓ = h̄.

Further, from Eq. (2.60), the infinite dimensional Hamiltonian is reduced to
the dimension of the central region, which has much smaller dimension. The
self energies ΣL/R includes all the information of the semi-infinite properties of
the lead. The central part only interacts with the surface region of the electrode
[132]. Thus, one can only focus on the Green’s function matrix of the central
region and effective Hamiltonian would be

Heff = HC +ΣL(E)+ΣR(E) . (2.63)
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2.9.1 The Schrödinger equation
According to the definition (2.56) and because of self adjoint Hamiltonian,
we can write retarded and advanced wave function for the inhomogeneous
Schrödinger equation as,

|ψ〉R =−G |ν〉 , (2.64)

|ψ〉A =−G† |ν〉 . (2.65)

Further, we can write the Schrödinger equation as

(E −H) |ψ〉=−|ν〉 . (2.66)

Here, the difference |ψ〉R−|ψ〉A is the solution to the homogeneous Schrödinger
equation. Thus, for any vector |ν〉, the vector representing wave function can
be obtained as

|ψ〉= A |ν〉 , (2.67)

where A has the form

A = i(G−G†) =−2Im(G) . (2.68)

A is known as the spectral function, which solves the homogeneous Schrödinger
equation and the Green’s function can be expanded in the eigen basis as

G = ∑
k

|ψk〉〈ψk|
E + iη −Ek

. (2.69)

Now, substituting Eq. (2.69) back in Eq. (2.68)

A(E) = i∑
k
|ψk〉〈ψk|

(
1

E + iη −Ek
− 1

E − iη −Ek

)

= ∑
k
|ψk〉〈ψk| 2η

(E −Ek)2 +η2 . (2.70)

Let η be zero then it becomes 2

A(E) = 2π ∑
k

δ (E −Ek)|ψk〉〈ψk| , (2.71)

where δ (E −Ek) is a delta function. Further, using the spectral function from
Eq. (2.68), we can write

AC(E) = i(GC −G†
C) = iGC(G

†−1
C −G−1

C )G†
C . (2.72)

2 Plemelj formula: limη→0
1

x±iη = ∓iπδ (x)+ Pr
( 1

x
)
, where Pr defines the Cauchy principal

value.
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Using Eq. (2.62), we can define identity as

AC(E) = iGC(E −HC −Σ†
L(E)−Σ†

R(E)−E +HC +Σ†
L(E)+Σ†

R(E))G
†
C

= iGC(ΓL(E)+ΓR(E))G
†
C . (2.73)

It shows that the spectral function at central region is defined by the spectral
functions of the left and right electrodes, which means that it is induced by the
states at these electrodes through the coupling.

2.9.2 Transport problem and charge density
In this section, we will discuss the transport problem by taking the case of
left to right transport problem. Using the standard screening problem, we can
write ⎛

⎜⎜⎜⎝
HL τL 0

τ†
L HC τ†

R

0 τR HR

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

ψL

ψC

ψR

⎞
⎟⎟⎟⎠= E

⎛
⎜⎜⎜⎝

ψL

ψC

ψR

⎞
⎟⎟⎟⎠= E|ψ〉 . (2.74)

Now, we first consider an isolated left electrode, where an incoming wave gets
totally reflected at the end of the contact. This will lead us to the interaction
term at the left electrode, τL = 0. If |ν〉 is the solution wave function then,⎛

⎜⎜⎜⎝
HL 0 0

0 HC τ†
R

0 τR HR

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

ν

0

0

⎞
⎟⎟⎟⎠= E ′

⎛
⎜⎜⎜⎝

ν

0

0

⎞
⎟⎟⎟⎠= E ′|ν〉 . (2.75)

For the connected left electrode to the central region, one can get the wave-
function of the whole system. We can start from the simple ansatz |ψ〉+ |ν〉⎛

⎜⎜⎜⎝
HL τL 0

τ†
L HC τ†

R

0 τR HR

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

ψL +ν

ψC

ψR

⎞
⎟⎟⎟⎠= E

⎛
⎜⎜⎜⎝

ψL +ν

ψC

ψR

⎞
⎟⎟⎟⎠ . (2.76)

From Eqs. (2.74) and (2.75), we get⎛
⎜⎜⎜⎝

HL τL 0

τ†
L HC τ†

R

0 τR HR

⎞
⎟⎟⎟⎠ |ψ〉+

⎛
⎜⎜⎜⎝

0 τL 0

τ†
L 0 0

0 0 0

⎞
⎟⎟⎟⎠ |ν〉= E|ψ〉+(E −E

′
)|ν〉 . (2.77)
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This yields Schrödinger equation as following⎛
⎜⎜⎜⎝

HL τL 0

τ†
L HC τ†

R

0 τR HR

⎞
⎟⎟⎟⎠ |ψ〉 = E |ψ〉−

⎛
⎜⎜⎜⎝

E ′ −E τL 0

τ†
L 0 0

0 0 0

⎞
⎟⎟⎟⎠ |ν〉 . (2.78)

Using Eqs. (2.59) and (2.78) and applying some algebra, we can write the
wave function for left and right leads and center due to incoming wave as,

|ψL〉= (gLτLGCτ†
L +1)|ν〉 ,

|ψC〉= GCτ†
L |ν〉 ,

|ψR〉= gRτRGCτ†
L |ν〉 . (2.79)

Now, these equations have physical significance. Once we know the incoming
solution for the electrode, we can get the total solution. After knowing the
electron population in the contact regions, we can fill the different transport
states of the system.

Further, we can calculate the charge density

ρ = e∑
k

f (Ek,μ) |ψk〉〈ψk| , (2.80)

where f stands for occupation of the states at energy E and with chemical po-
tential μ of the electrode. Now the charge density induced from left electrode
would be,

ρL = e∑
k

f (Ek,μL)GCτ†
L |νk〉〈νk|τLG†

C . (2.81)

Using the definition of delta function, we get

ρL = e
∫

dE ∑
k

f (E,μL)GCτ†
L |νk〉δ (E −Ek)〈νk|τLG†

C . (2.82)

In Eq. (2.82), we can identify spectral functional from Eq. (2.71) for the left
contact as

aL = 2π ∑
k
|νk〉δ (E −Ek)〈νk| . (2.83)

Further, using identity from Eq. (2.73), we can write

τ†
LaLτL = iτ†

L(gL −g†
L)τL = i(ΣL −Σ†

L) = ΓL . (2.84)

Using Eqs. (2.83) and (2.84) in Eq. (2.82), one can write the charge density as

ρL =
e

2π

∫
dE f (E,μL)GCΓLG†

C . (2.85)

Finally, the full charge density would be sum over the contacts

ρL =
e

2π

∫
dE ∑

i=L,R
f (E,μi)GCΓiG

†
C . (2.86)
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2.9.3 Calculation of current
The flow of current in the system occurs because of the imbalance of the elec-
tron population in the leads, e.g., because of different chemical potentials. Let
us assume from left to right in Fig. 2.3, electrons are getting transferred from
left to right reservoir. To deal with computational issues, we assume that the
process of refilling the reservoir is taking place continuously and it is far away
from the central region which makes the system stationary. Thus, all the tran-
sitional oscillations must have died out because of weak inelastic processes.
Hence, we assume that the probability of current in system does not change
overtime (steady state), hence the probability of finding an electron on the
device is conserved as

∂ 〈ψC|ψC〉
∂ t

=
∂ |ψC〉

∂ t
〈ψC|+ |ψC〉 ∂ 〈ψC|

∂ t
= 0 . (2.87)

Physically, it is equivalent to the case when the electrodes are not getting re-
filled with the electrons. Instead these electrodes are assumed to be enor-
mously big, enough to ensure the continuous flow of electrons from one elec-
trode to another. Actually, this happens during the experiments. Now the time
dependent Schrödinger equation is defined as,

∂ |ψ〉
∂ t

=− i
h̄

H |ψ〉 . (2.88)

By combining Eqs. (2.74) and (2.88), we get

∂ |ψC〉
∂ t

=
i
h̄

(
τ†

L |ψL〉+HC |ψC〉+ τ†
R|ψL〉

)
. (2.89)

Inserting Eq. (2.89) into (2.87), it becomes

− i
h̄

[(
−〈ψL|τL|ψC〉+ 〈ψC|τ†

L |ψL〉
)
+
(
〈ψC|τ†

L |ψR〉−〈ψR|τL|ψC〉
)]

= 0 .
(2.90)

In the equation above, the first and second term represent the incoming prob-
ability of current from left contact L and from right contact R, respectively.
Now, we can interpret the electric current from an arbitrary contact j into the
central part as the charge times the probability current

I j =
ie
h̄
[〈ψC|τ j|ψ j〉−〈ψ j|τ†

j |ψC〉] , (2.91)

where j stands for L or R, I j as a electric current from the jth contact to the
central region.

Further, to calculate the current one needs to insert the wave function of the
contacts ψ j and the central part ψC from Eq. (2.79) in the Eq. (2.91). Thus we
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get the current through the central region due to the incoming wave as,

Iν→R =
ie
h̄
[〈ν |τLG†

Cτ†
RgRτRGCτ†

L |ν〉−〈ν |τLG†
Cτ†

Rg†
RτRGCτ†

L |ν〉]

=
ie
h̄
[〈ν |τLG†

Cτ†
R(gR −g†

R)τRGCτ†
L |ν〉]

=
e
h̄
[〈ν |τLG†

CΓRGCτ†
L |ν〉] . (2.92)

We can obtain the total current through the device by summing over the in-
coming states |ν〉 (at the energy E) and integrating over the energy. Hence the
total current in the device would be:

IL→R =
2e
h̄

∫ ∞

−∞
dE ∑

ν
DOS(E)〈ν |τLG†

CΓRGCτ†
L |ν〉

=
2e
h̄

∫ ∞

−∞
dE ∑

m,ν
DOS(E)〈ν |τL|m〉〈m|G†

CΓRGCτ†
L |ν〉

=
2e
h̄

∫ ∞

−∞
dE ∑

m
〈m|G†

CΓRGCτ†
L ∑

ν
DOS(E)|ν〉〈ν |τL|m〉

=
2e
h̄

∫ ∞

−∞
dE ∑

m
〈m|G†

CΓRGCτ†
L

AL

2π
τL|m〉

=
2e
h̄

∫ ∞

−∞
dE Tr(G†

CΓRGCΓL) . (2.93)

Here, the factor 2 is included for spin. If the electrodes are connected to the
reservoirs with the electron gas at the chemical potential μL, then the states in
the electrodes are filled according to the Fermi distribution function f (μ,E).
Thus the total current between the two electrodes would be

IL→R =
e
h

∫ ∞

−∞
dE Tr(G†

CΓRGCΓL) [ f (E −μL)− f (E −μR)] . (2.94)

Eq. (2.94) is the famous Landauer formula for transport with the transmission
function as,

T (E) = Tr(G†
CΓRGCΓL) . (2.95)

At the equilibrium condition, when both the electrodes have same chemical
potential and temperature, there will be no current because the current from
left to right would be exactly equal to the current from right to left.
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Part II:
Summary of the Results





3. Nanoscale device applications of 2D
materials

In the modern world, electronic devices are associated with many aspects of
our day to day lives, and these devices are getting smaller and smaller with
time. Silicon has been the primary material for electronic device applications
For decades. However, silicon-based devices are reaching to their lowest scal-
ing limit and probably may not be longer sustain with the famous Moore’s
law, which suggests that the number of transistors on a chip will double ev-
ery two years[38]. The successful isolation of graphene in 2004 [8] paved
the way to go beyond the silicon-based technology, and one can look in the
quantum device regime. The astonishing progress in nanotechnology has ren-
dered the experimental realization of graphene electrodes using electro burnt
method and mechanical break junction has been employed in several state of
the art molecular and nanoelectronic applications [56–58]. In similar fashion,
graphene nanopores and nanogaps are compelling examples of application in
DNA (deoxyribonucleic acids) sequencing and salt water filtering, etc. [59–
62]. Graphene has its advantages and limitations as a material for nanoscale
electronic applications [133, 134], which pushed the scientific community to
look beyond, and a big family of 2D materials emerged with time with a va-
riety of electronic, optical and transport properties. Monolayer of black phos-
phorus (BP) also known as phosphorene is relatively new but very exciting
material for the semiconductor industry for its application in FET, photodetec-
tor and several other applications owing to its high mobility and on-off ratios
[13, 20]. In this chapter, we will discuss two different application of these ma-
terials in lateral and vertical heterostructure form with theoretical approach. In
the first part, graphene-hexagonal boron nitride (G/hBN) lateral heterostruc-
ture nanogap is discussed with the potential application in identification of the
DNA building blocks, nucleobases. In the second section, we have discussed
electronic and structural properties of BP in symmetric and twisted bilayer
form and further the transport behavior in the nanojunction device architec-
ture is discussed. It is proposed for the current rectifying application.

3.1 DNA sequencing in Graphene/h-BN nanogap
DNA carries the full genetic information of all the living organisms. DNA
sequencing is a process of determining the order of nucleotides in DNA. It is
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like reading the genetic code, which can be called as “alphabet of life”, A,
T, G, and C (adenine, thymine, guanine, and cytocine) nucleobase sequence.
Single-stranded DNA, have its bases ∼ 0.34 nm apart. These strands can be
dragged through the graphene nanogap/nanopores and they can be matched
with a width of graphene electrode, which makes graphene based pore ef-
ficient in comparison with traditional gold nanopore or nanogap. Graphene
nanogap has been reported computationally, where the nanogap formed with
an armchair edge of graphene could serve as a functioning device to sequence
DNA [59–61]. However, the practical implementation of graphene nanochan-
nels meets the challenges because of high reactivity at the edges [63–65]. In
this work, the idea of having atomic layer 2D material nanochannel is mixed
with recent advancement, where 2D heterostructures are the new trend to mod-
ify the materials property [78]. The graphene edges are terminated with hBN
strips to lower down the reactivity at the edges. The comparison of edge reac-
tivity with nucleobases suggests that the hBN edge is less reactive with respect
to the graphene edge. This gives rise to the idea that such a heterostructure
may be a suitable nanochannel device for DNA sequencing. In which dAMP,
dTMP, dGMP, and dCMP (deoxy adenosine monophosphate, deoxy thymi-
dine monophosphate, deoxy guanidine monophosphate, and deoxy cytosine
monophosphate, respectively) are the target nucleotides.

Figure 3.1. Schematic of the nanogap setup for the nucleotides (shown for dAMP
case), illustrating the semi infinite leads and scattering regions. [Atom color code: C
(green), N (blue), B (purple), O (red), P (light purple), H (white)]. Reproduced with
permission from Paper I. Copyright c©2016 American Chemical Society.

The target nucleotides are placed in the nanogap, which is maintained at
12.6 Å. Fig. 3.1 shows the schematic illustration of the nanogap having a nu-
cleotide in between. In the setup, graphene serves as the electrodes and hBN
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terminated with H forms the nanogap by directly interacting with the incom-
ing nucleobases. When nucleobases pass through the nanogap setup, it bridges
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Figure 3.2. Zero-bias transmission function of the four target nucleotides (dAMP,
dTMP, dGMP, dCMP). Reproduced with permission from Paper I. Copyright c©2016
American Chemical Society.

the nanogap, and the characteristics tunneling current can be measured which
forms the basis of recognition of the bases. In Fig. 3.2, zero bias transmission
shows a clear distinction among the nucleotides. Highest occupied molecular
orbital (HOMO) associated peaks appear between the energies of -1 and -2.2
eV, whereas lowest unoccupied molecular orbital (LUMO) ones are mainly
situated in between the range of 1 to 2 eV as can be seen in Fig. 3.2. The
projected density of states has confirmed these HOMO and LUMO position
of nucleotides in the gap [135]. Further, these HOMO and LUMO positions
vary upon shifting and rotating of the target nucleotides in between the gap
and this variation in HOMO and LUMO positions happen due to the change
in chemical interactions between the nucleotides and hydrogenated hBN edge
[135]. The calculated current-voltage (I-V) characteristics is shown in Fig.
3.3(a), which suggests that these nucleotides can be distinguished at the two
different voltage ranges in lower and higher bias regimes. For instance, one
can see almost two orders of magnitude higher current for dTMP than dCMP
at 3.2 V, which divulged the better sensitivity towards them. On the other
hand, the current trace for dAMP is smaller than that for dTMP, and at ∼2.9
V, one can observe a notable difference between these two bases. Therefore,
at this voltage, a clear classification of these two bases seems reasonable. Ad-
ditionally, scanning at the higher bias region, we find that current curves for
dGMP and dCMP, although they mostly run parallel to each other, tend to split
at ∼2.9 V, which makes it feasible to identify these bases distinctly. We, ac-
cordingly, put forward that the voltage window of 2.7-3 V will be optimal for
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a clearer distinction of all four nucleotides. In an attempt to demonstrate the
sensitivity of detection of the four target nucleotides at the higher bias regime,
the current responses of individual bases for a bias voltage between 2.8 and
2.9 V are presented in Fig. 3.3(b). This figure basically compiles the read-outs
of current traces of all four bases within a given bias window (2.8-2.9 V). It
is very clear from this figure that all four bases impart unique current signa-
tures at the given bias window. More accurately, dTMP yields highest current
while dCMP evinces lowest current, whereas dAMP and dGMP can be distin-
guished between the former two nucleobases. However, the low bias regime
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Figure 3.3. (a) Current-voltage characteristics of the four target nucleotides (dAMP,
dTMP, dGMP, dCMP). The current axis is shown on a logarithmic scale. (b) The
current responses (read-outs of current traces) for four target nucleotides within the
bias range 2.8-2.9 V. Reproduced with permission from Paper I. Copyright c©2016
American Chemical Society.

of the I-V plot shows that the distinction between all four bases is also possi-
ble. From Fig. 3.3(a), it is conspicuous that dAMP delivers higher current as
compared to the remaining bases up to 1 V, and it can be distinguished from
dTMP. Moreover, for the characterization of other bases, we need to extend
the voltage range up to 1.2 V, and all of the four target bases record differ-
ent current traces at this voltage window. Consequently, keeping both lower
and higher bias regimes in perspective, it is possible to detect all four bases
uniquely at two voltage regimes but we observe better sensitivity at a higher
bias window. Although, the I-V characteristics in this device exhibit relatively
low current and the small tunneling current remains a problem indeed for any
devices which measure the transverse current in DNA sequencing. Neverthe-
less, it must be possible to address this issue in well-tuned experiments. In
brief, this study establishes the utilization of nanogap setup in the form of a
lateral heterostructure of graphene with passivated hBN for DNA sequencing.
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See Paper I for a detailed discussion about the translocation and rotation of
nucleotides between the nanogap.

3.2 Twisted bilayer black phosphorus nanojucntion
Synthesis of new materials by stacking monolayers of same or two differ-
ent materials, i.e., the epitaxial growth of superlattices has been a subject of
intense research for decades [136]. The idea of van der Waals (vdW) het-
erostructures was conceptualized by A. Geim and I. Grigorieva a few years
back [69]. These vdW heterostructures are materialized by stacking of two
2D crystalline atomic layers, with no chemical bond between them [70, 71].
These stacking patterns unfold the world of the possibility of many desired
heterostructure with the specified chemical/physical and electronic proper-
ties. These heterostructures have been studied widely both theoretically and
experimentally, like G/hBN, MoS2/G, MoS2/WSe2 for band alignment and
charge transfer, which make them suitable for optoelectronic applications [72–
74]. WSe2/hBN/G heterostructure was reported for programmable p-n junc-
tion diodes [137], and the same property has also been recited for transition
metal dichalcogenides (TMD)/G, h-BN/TMD, and TMD/TMD, and several
others [75–77]. In this section, the possibility of using vdW heterostructures
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Figure 3.4. (a) Illustration of AA-stacked bilayer black phosphorus (BP) (c) 90◦
twisted stacked bilayer structure (Upper layer is twisted by 90◦ with respect to the
lower layer), band structures of (b) bilayer (d) twisted bilayer (Brillouin zone for the
twisted bilayer is a square).

of stacked 2D bilayer black phosphorus (BP) for nanoscale device applica-
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tion is explored. The symmetric and twisted bilayer structures are shown in
Fig. 3.4(a,c). The symmetric bilayer is considered in AA stacked form and
the second one is in 90◦ twisted form, where the top layer is rotated by 90◦
with respect to the bottom layer. The band structure in Fig. 3.4(b) shows the
anisotropic properties of the bilayer form in zigzag and armchair direction and
the bandgap is reduced to 0.39 eV as compared to 0.9 eV of the monolayer
BP [21]. Strong interlayer interaction due to two extra lone pair electrons of
the P atom is responsible for this reduction in the bandgap. Let us shift our
attention towards twisted bilayer, in Fig. 3.4(c), which is laterally symmetric
in structure. Supercell approach is used to reduce the lattice mismatch to 1%
in 5x7 times that of the unit cell. Twisted bilayer has square reciprocal lattice
geometry in the Brillouin zone, and the symmetric band structure is shown in
Fig. 3.4(d). Twisted bilayer yields a band gap of 0.48 eV, which is bigger than
that of the AA-stacked bilayer. This increment in band gap happens due to the
lower interlayer interaction in between the layers. The conduction band min-
imum (CBM) is singly degenerate, while the valence band maximum (VBM)
is doubly degenerate with the value of 0.01 eV. This degeneracy advocates the
lack of significant hybridization near the VBM, whereas the CBM are strongly
coupled. The degenerate states in VBM are localized either in the top layer
or the bottom layer. This degeneracy paves the way for symmetric electronic
structure, where X-G is defined by the top layer and G-Y is described by the
bottom layer. This degeneracy and symmetric nature are highly dependent on
vertical electric field and strain [138, 139].

Figure 3.5. Schematics of twisted bilayer nanojunction device. The device region
is composed of bilayer in the armchair, and zigzag direction and the left and right
electrodes are consisting of the monolayer of zigzag and armchair direction of BP.

Further, the twisted bilayer nanojunction is described in Fig. 3.5. The ML-
BL-ML (monolayer-bilayer-monolayer) architecture has one of the monolay-
ers in the armchair direction and the other one in zigzag direction. The central
region shows a structure of a vertically stacked 90◦ twisted bilayer, which is
isotropic unless now the twisted nanojunction setup is attached with the semi-
infinite electrodes in either direction. The upper layer defines the zigzag trans-
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port direction, and the lower layer exhibits armchair transport direction, and
both layers have one edge terminated with hydrogen, which makes the system
asymmetric in either directions. In this case, the junction length is 12 Å in the
transport direction, and the width is periodic. The current rectifying property
in I-V curve can be seen in Fig. 3.6. In the negative bias regime, when the
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Figure 3.6. Current-Voltage (I-V) characteristics for twisted nanojunction device (the
rectification ratio (I−/I+) of the respective device is shown in the inset).

electrons are injected from armchair to zigzag direction, yields higher current.
On the other hand, in positive bias, the current flows from zigzag direction to
armchair direction yielding lower current. The inset of Fig. 3.6, describes the
rectification ratio (I−/I+) with maximum of 35 achieved at ±1.8 V bias.

The rectifying behavior in the described nanojunction is further explained
with the help of transmission function plot at ±1.8 V bias, as shown in Fig.
3.7(a). In the negative bias regime, relatively higher transmission probability
is noticed at 0 eV, but the dominant peak comes at 0.35 eV, whereas a much
lesser transmission for positive bias (+1.8 V) can be seen in the bias window.
For more detailed understanding of these difference in transmission function,
corresponding eigenchannels are plotted for both the biases at ±1.8 V at 0 eV
energy, which can be seen in Fig. 3.7(b,c). In the negative bias as shown in
Fig. 3.7(c), there is a tunneling probability from armchair to zigzag layer as
the channel is spread all over the device region. This advocates the higher
current in negative bias as shown in Fig. 3.6. Furthermore, lower conduc-
tance in positive bias (+1.8 V) can be explained from Fig. 3.7(b), where more
localized eigenchannels towards the left side of the nanojunction are seen,
which remains only in the zigzag layer. This describes the lower tunneling
from the zigzag to armchair layer. As already discussed in Fig. 3.7(a) that
in the negative bias, higher transmission peak comes at +0.35 eV, henceforth
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Figure 3.7. (a) Transmission function at ±1.8 V biases for nanojunction (inset zooms
the picture of transmission around 0 eV) and eigenchannels for twisted bilayer nano-
junction at 0 eV (b) positive bias of 1.8 V (c) negative bias of 1.8 V and (d) eigen-
channel at 0.35 eV for negative 1.8 V bias.

the eigenchannels at this energy are shown in Fig. 3.7(d). This evidences a
strong tunneling channel, delocalized all over the nanojunction area, which is
responsible for much higher current in the negative bias regime.

Rectifying behavior in a device with no electron transfer between the layers
and no band bending is very interesting. In the positive bias when the current
flow is from the zigzag to armchair direction, the current limiting regime is
zigzag directional current. Whereas in the opposite direction, when the current
flow is from the armchair to zigzag direction, it follows the armchair direction
for limiting current. The detailed description of the current-voltage charac-
teristics in the symmetric armchair and zigzag nanojunction can be found in
paper II. We found the symmetric current in positive and negative bias regime
for both the symmetric nanojunctions, which strongly suggests that the rec-
tification that occurs in the twisted nanojunction device is only due to the
intrinsic anisotropic behavior of the BP. Furthermore, the gate tunable elec-
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tronic structure of the twisted bilayer presents the possibility to regulate the
electron transport in the real-time device, where the transport behavior can be
controlled by the applied gate voltage. This can even yield much higher recti-
fication, which makes the setup useful in nano-electronic applications. Further
details can be found in paper II.
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4. Electronic and transport properties of 2D
materials

During the last decade, the research on 2D material beyond graphene with
varying electronic characteristics such as metal, insulator, and semiconductor
has been actively pursued to make the dream of the atomically thin device a
reality. There are some established 2D materials like transition metal dichalco-
genides (TMDs) and hexagonal boron nitride (hBN), and these have already
been favorably explored in the nanoscale device applications [140, 141]. Usu-
ally, 2D materials exhibit the outstanding commitment for the futuristic elec-
tronic device applications due to their exceptional carrier mobility in a single
layer, strong mechanical nature, abundant active sites and a large surface to
volume ratios. This crusade has triggered new areas of research with rapid
growth from both experimental and theoretical aspects aimed at technological
advancements. With the progress in this area, many synthetic 2D materials
have been realized such as germanene, stanene, bismuthene, and tellurene,
etc. [23–26]. Although the study of these materials is yet at an early stage, the
computational predictions and commencing measurements of their properties
underpin that they are reciprocal to the conventional 2D materials (layered,
derived from bulk).

In the quest of new materials in 2D family, boron, the fifth element in the pe-
riodic table has recently been realized experimentally in the different form of
structures [27, 28]. Earlier, It was theoretically reported that the single layer of
boron exhibits rich polymorphism with multiple low energy structures because
it has one less valence electron than the available valence orbital [142–144].
The multicenter bonds and electron deficient features of boron make the syn-
thesis of 2D boron a challenging problem [145, 146]. Experimental evidence
for the first synthesis of 2D boron known as borophene was reported by Man-
nix et al. [27] in 2015 and nearly at the same time Feng et al. [28] reported two
different polymorphs of 2D boron known as β12 and χ borophene. In both the
cases, synthesis was performed under ultra-high vacuum conditions, and clean
Ag(111) surface was used as the substrate. Theoretical prediction suggested
that boron 2D sheets are metallic while the bulk boron polymorph are semi-
conducting in nature [147, 148]. Apart from the synthetic 2D boron, 2D black
phosphorus (BP), a material which belongs to the class of traditional 2D ma-
terial attracted significant attention because of its high mobility, anisotropic
electronic and transport properties and perfect semiconducting nature [13].
BP has already been explored for several applications [149–151]. Rectifying
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behavior of twisted bilayer nanojunction has been already discussed in the
previous chapter.

In this chapter, structural, electronic and transport properties of the newly
synthesized 2D boron polymorph known as β12 borophene, χ borophene, and
corrugated borophene will be discussed. We will further discuss the gas sens-
ing possibilities in corrugated borophene. In the later section, the case of
silicon and sulfur substituted BP monolayer and its application in gas sensing
with the use of density functional theory and NEGF is briefly discussed.

4.1 β12 and χ-borophene
The experimentally observed 2D boron was found to consist of triangular
boron grid and hexagonal holes, corresponding to a β12-borophene sheet and
a χ-borophene sheet as described earlier by theoretical calculations [28]. β12-
borophene has 5 atoms in the unit cell with p2mm symmetry and relaxed lattice
parameters are a = 2.92 Å , b = 5.09 Å which can be seen in Fig. 4.1(a).

Figure 4.1. Structures of (a) β12-borophene and (b) χ-borophene (dashed lines stand
for the unit cells) and the respective band structures of (c) β12-borophene (d) χ-
borophene (orbital projection of bands are defined with colors above the graph). This
figure is reproduced with permission from paper III. Copyright c©2018 Royal Society
of Chemistry.
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The band structure of β12-borophene is shown in Fig. 4.1(c), where the
metallic nature is visible. The bands near the Fermi level are mostly derived
from the pz orbital of boron atoms with some contribution from boron py or-
bitals. The structure of β12 has inhomogeneity as there are four-coordinated
(brown), five-coordinated (magenta) and six-coordinated (purple) atoms in the
unit cell. The structure has a linear, alternate atomic chain of the boron atom
in y-direction which gives rise the metallic band along Γ-Y, S-X and Γ-S,
whereas the x-direction is composed of the alternate filled hexagonal pattern.
One can see the metallic band along Γ-X and Y-S, which are mainly composed
of p orbitals of boron. This structure has inversion symmetry, where the mass-
less Dirac fermions are expected. These Dirac cones are seen above the Fermi
level at the energies 2 eV and 0.5 eV.

Further, the structure of χ-borophene can be seen in the Fig. 4.1(b), where
the unit cell is composed of 8 atoms and two kinds of coordination of boron
atom as 5-coordinated (purple) and 4-coordinated (brown) are shown. The
unit cell has lattice parameter a = 2.94 Å , b = 8.50 Å , and shows higher
inhomogeneity then β12-borophene. It is characterized by alternate chains of
hollow sites shifted by half of the lattice in the y-direction and chains of hollow
sites separated by zigzag boron rows in the x-direction, resulting in planar
c2mm symmetry. The band structure in Fig. 4.1(d) depicts the metallic nature
of χ-borophene and further shows anisotropic nature because of the gap in
X-S direction. Same as the previous one, this structure also possesses the
inversion symmetry and results a Dirac cone which is located below the Fermi
level at 0.4 eV. These Dirac cones can be shifted at the Fermi level through
strain or interaction with the substrate, which can compensate the electron
deficiency. These polymorph are not stable in isolated form and one would
need a substrate other than silver (metallic) to use these outstanding materials
for futuristic device applications. This motivates us further to understand the
effect of strain in these two polymorph. The detailed analysis of unidirectional
strain on the electronic structure can be found in paper III.

4.1.1 Electron transport properties
A closer inspection of the intrinsic electron transport properties helps to under-
stand the suitability of the material for electronic device applications. There-
fore, to further explore anisotropy in the transport behavior, the direction-
dependent zero bias transmission function for these borophenes are presented
in Fig. 4.2. β12-borophene does not exhibit anisotropy in transmission because
x-direction has higher transmission above the Fermi level, and y-direction has
higher transmission below the Fermi level in Fig. 4.2(a). At the Fermi level,
both of them present a nearly equivalent transmission which lasts for isotropic
nature of electron transport. This can be demonstrated from the band structure
in Fig. 4.1(c), where Γ-Y has a gap, and X-Γ has bands above the Fermi level
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that leads to higher transmission in Tx(E). Below the Fermi level, Γ-Y has the
higher number of bands than X-Γ, therefore, the Ty(E) shows higher trans-
mission. Overall transmission function does not show any anisotropy from -1
eV to 1 eV. Following the case of χ-borophene, the anisotropic behavior is
seen in Fig. 4.2(b). The anisotropy is higher when there are alternate hollow
sites in the y-direction.Transmission in x-direction Tx(E) has the value of 1.2
Channels/Å and the y-direction Ty(E) is 0.8 Channels/Å at the Fermi level.
It can also be seen that Tx(E) has higher value beyond the Fermi level. This
can be justified from the band structure in Fig. 4.1(d). We can see that Γ-Y
and X-S have only pz contribution around the Fermi level, whereas X-Γ and
Y-S have contributions from all the p orbitals. In the inset of the Fig. 4.2(a),
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Figure 4.2. Zero bias transmission function along the x and y-direction as Tx(E) and
Ty(E) in (a) β12-borophene (b) χ-borophene, insets stand for the current-voltage char-
acteristics in x-direction as Ix and y-direction as Iy. This figure is reproduced with
permission from paper III. Copyright c©2018 Royal Society of Chemistry.

the current-voltage (I-V) characteristic is presented for β12-borophene, which
shows the same current in x and y-directions. On the other hand, in the case
of χ-borophene, the anisotropic current can be seen in x and y-direction in the
inset of Fig. 4.2(b). Further, this anisotropy (Ix/Iy) is calculated as 1.5 at 100
mV. It is clear from this discussion that the structures belonging to the same
family show the different anisotropy in the current despite the fact that both of
the structures have hollow sites in the form of hexagons. It is particularly the
structural synergy which furnishes the anisotropy. Additionally, the anisotropy
in these two systems can be tuned with the unidirectional strain in the system.
β12-borophene shows the strain tunable anisotropy, and it happens because of
linear atomic chains in this structure, whereas χ-borophene rests nearly un-
changed against the 6% of unidirectional strain. The detailed analysis of the
strain tunable anisotropy can be found in paper III.
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4.2 Corrugated borophene
The first experimentally realized member of the 2D boron family is corru-
gated borophene (we will call it borophene). This was synthesized on the sil-
ver substrate under high vacuum condition by Mannix et al. [27]. Soon after
realization, it dragged attention and has been investigated for possible applica-
tions like Li and Na ion battery anode, hydrogen storage, and photo catalysis
[152–156]. Additionally, a theoretical investigation has been performed to
hydrogenate this borophene, which resulted in the graphene-like Dirac cone
[157, 158]. Fig. 4.3(a) depicts the structure of the borophene, where it clearly
shows the corrugation in y-direction and linear atomic chains of boron in x-
direction. The band structure in Fig. 4.3(b) shows the highly anisotropic be-
havior of this borophene in two directions. It is clear from the band structure
that there is no metallic band in Y-G and S-X direction, which is perpendicular
to linear atomic chain of boron. One can see the metallic band in X-G direc-
tion, which presents linear chains ruled by the formation of σ B-px bonds. The
elaborated discussion about the strain tunable anisotropy has been given by the
Padhila et al. [158], where applied unidirectional strain tuned the anisotropy
of borophene along with the hydrogenated borophene (borophane). There are
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Figure 4.3. (a) Top and side views of optimized structures of the borophene (dashed
lines stand for the unit cell) (b) orbital projected band structure of borophene.

several promising frontiers where borophene can find application, one such
area is gas adsorption and detection. In an attempt to understand the feasibil-
ities of gas sensing, it is essential to understand the interaction between the
gas molecules and the borophene surface. Table 4.1 presents the adsorption
energies of the gas molecules on the top of the surface along with distance and
charge transfers.

The values represented in Table 4.1 stand for the most suitable (highest ad-
sorption energies) cases. Borophene confers high adsorption strength towards
the nitrogen-containing gases, whereas for carbon-based gases the adsorption
energies are also moderate in comparison with most of the already explored
2D materials [159–162]. Particularly, in CO2 case, the low adsorption energy
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Figure 4.4. Top (a-e) and side (f-j) views of optimized structures of the borophene
sheet with adsorbed gases CO, NO, NO2, CO2, and NH3, respectively. Color code
as B-purple, gray-N, red-O, cyan-H and brown-C. Reproduced with permission from
Paper IV. Copyright c©2017 American Chemical Society.

Table 4.1. Calculated binding energies (Eb), net (Bader) charges on the gas molecules
for different Gas+Borophene systems (ΔQ), and bonding distance (da). Reproduced
with permission from Paper IV. Copyright c©2017 American Chemical Society.

Device Gas Eb(eV) ΔQ ( ρ) da (Å)

Borophene CO -1.38 -0.39 1.49

CO2 -0.36 -0.09 1.82

NH3 -1.75 +0.18 1.63

NO -1.79 -0.62 1.44

NO2 -2.32 -0.72 1.51

Figure 4.5. (a-e) Charge density difference for gas adsorptions (CO, NO, CO2, NO2,
and NH3, respectively) on borophene sheet. Isovalues cutoff is taken as 0.003 e/Å3.
Red and blue color indicates the electron gain and electron loss respectively. Repro-
duced with permission from Paper IV. Copyright c©2017 American Chemical Society.

advocates the physisorption. For a better conclusion of the adsorption process,
the charge transfer (Bader charges) associated with the binding of the gases on
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the borophene surface is tabulated in the Table 4.1. These charge transfers are
validated from the spatial charge distribution in Fig. 4.5, which has been cal-
culated by using the expression Δρ(r) = ρB+gas(r)−ρB(r)−ρgas(r), where
ρB+gas(r) is the charge distribution on borophene with adsorbed gases, ρB(r)
is the charge distribution on borophene and ρgas(r) is the charge distribution
on isolated gas molecules. Charge density difference picture confirms the
stronger binding for all the gases except CO2. These charge transfer tabulated
in the Table 4.1 matches well with the Fig. 4.5. Detailed explanations have
been provided in paper IV. Furthermore, the influence of gas adsorption on the
electronic structure of borophene is depicted in Fig. 4.6, where it presents the
density of states (DOS) of gas adsorbed sheet with projected density on the
gas molecule for all the gases. As described earlier, CO2 gas shows the low-
est adsorption energy in Table 4.1 and from Fig. 4.6(b), it can be confirmed
because there is a negligible influence of the CO2 adsorption on borophene
electronic structure. However, remaining gases induce some changes in the
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Figure 4.6. Total density of states (black) and projected density of states for different
gases in red color (a-e). Density of states for pristine borophene is represented with
dash lines. Fermi level is shifted to zero in each case. Reproduced with permission
from Paper IV. Copyright c©2017 American Chemical Society.

DOS (broaden the peak) particularly around the Fermi level, which can be con-
firmed by comparing the total DOS with the pristine borophenes DOS (dashed
lines in Fig. 4.6). In the case of CO molecule, the broadening of peak happens
around 1 eV due to hybridization of LUMO level of the gas molecule with the
states of borophene. For the tetra atomic gas NH3, one can see hybridization
around the Fermi level results in broadening of the of DOS. Further, para-
magnetic gases NO and NO2 withdraw charge from the borophene surface
which can be seen in the Table 4.1. In the case of NO gas, the broadening of
the peak around the Fermi level advocates the strong binding and charge trans-
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fers. Spin-up and spin-down cases of DOS in Fig. 4.6(e), suggest the magnetic
behavior of the adsorbed system [163]. This magnetization occurs because of
the unpaired electron in NO gas. The NO2 adsorbed system deserves spe-
cial attention because it does not show magnetic behaviors in DOS. The states
below the Fermi level are hybridized with boron p orbital, which makes it
non-magnetic [163]. The clear picture of non-magnetic DOS of NO2 can be
found in supporting information of paper IV, where the pDOS of the molecule
is presented with variable distance from the surface, which describes relaxed
configuration (bonding) as nonmagnetic and the nonbonding configuration as
magnetic one. From strong binding energy, charge transfer, and DOS analysis,
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Figure 4.7. Zero bias transmission for pristine borophene and borophene with gas
systems. Reproduced with permission from Paper IV. Copyright c©2017 American
Chemical Society.

it is pertinent that the influence of gas molecule on the borophene surface will
produce different sensitivity in the resistivity measurements. To understand
this, the zero bias transmission functions are represented in Fig. 4.7 for all the
systems. These transmission functions are plotted for the transport setup in
x-direction of borophene sheet, which stands for high conducting direction. A
noticeable difference can be seen due to the effect of gas adsorption in trans-
mission spectra. Reduced transmission advocates the back scattering which
inhibits the conduction channels in borophene sheet. CO gas induces small
change in transmission whereas CO2 has a negligible effect. As discussed be-
fore from DOS pictures, the paramagnetic gases show clear variation, which is
relevant to their adsorption energies and charge transfers. The same trend can
be seen for NH3 gas adsorption also. Furthermore, these changes in transmis-
sion are also explained with the current-voltage characteristics and this can be
found in Paper IV. In summary, the high adsorption energies for most of the
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gases, charge transfer and quenched transmissions demonstrate the possibility
of designing a borophene based gas sensor nanodevice.

4.3 S/Si substituted black phosphorus
Among several applications, black phosphorus (BP) has also been reported
for selective gas sensing in both experiment and theory [164–167]. BP mono-
layer shows good sensitivity and selectivity towards the gas molecules. In the
theoretical report, Kou et al. [164] showed that the changes in the I-V char-
acteristics emerge at relatively higher bias in transport calculations due to its
band gap of 0.9 eV in GGA calculation. In this work, the structural, electronic
and transport properties of the silicon and sulfur doped BP sheet have been in-
vestigated. Further, the properties of gas molecule adsorption on these doped
BP sheets are demonstrated. Fig. 4.8 (top panel) presents the top and side

Figure 4.8. (a) The optimized structures of Si- and S-doped BP with bond length
defined by d1 and d2. The dashed line shows one unit cell of BP (b) The electron
densities plotted for isovalues of 0.08e× bohr−3.

view of the relaxed structures of Si-BP and S-BP supercells, respectively. The
intraplanar and interplanar bond lengths (d1 and d2) along with the intraplanar
and interplanar bond angle (θ1 and θ2) are illustrated in Table 4.2.

For Si-BP, the geometrical configurations (d1, d2, θ1 and θ2) are slightly
different from those of pristine BP because the radius of silicon is comparable
with phosphorous. Still, the substitution of Si atom (four valence electrons)
with a phosphorus atom (five valence electrons) modifies the electronic struc-
tures and chemical properties of BP. Only three of four valence electrons of
Si are utilized for bonding with neighboring P atoms, leaving one electron
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Table 4.2. Intraplanar (d1) and interplanar (d2) bond lengths and bond angles (θ1
and θ2) in pristine BP, Si-doped BP and S-doped BP.

Device d1(Å) d2(Å) θ1 (◦) θ2 (◦)

BP 2.24 2.26 96.6 101.6

Si-BP 2.29 2.30 93.2 106.8

S-BP 2.20 2.92 101.1 102.6

Figure 4.9. (a) Device setup used for Si-BP (upper) and S-BP (lower). The first-
principles quantum transport simulation consists of a scattering region and two semi-
infinite leads. One unit cell of lead is shown in blue (b) zero-bias transmission coeffi-
cients as a function of energy for Si-BP (solid line) and S-BP (dotted line) devices.

relatively free to move. Whereas, in the case of S-BP, sulfur has six valence
electrons and requires two electrons to get stabilized. As a result, the sulfur
atom forms chemical bonds with only two P atoms. This is consistent with
d1 and d2 bond lengths between phosphorous and sulfur atoms in Table 4.2,
since the interplanar P-S bond length (d2 = 2.92 Å) is too large to form a co-
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valent bond. Additionally, Fig. 4.8 (bottom panel) stands for the total charge
density redistribution map due to the dopant atoms in BP by comparing the
charge density of Si-BP and S-BP with the pristine BP, using the expression:
Δρ(r) = ρSi/S−BP(r)− ρBP(r). It explains the fluctuation of charge density
mostly around the dopant atoms. For Si-BP, one can see the less charge den-
sity (green) on Si atom, and the charge is accumulated around the P atom.
This is due to different electronegativity values (Si � P < S). Conversely, the
electronic charge is concentrated (pink) to S atom, which reinforces the as-
sumption that the charge is localized on the dopant for S-BP following from
the presence of two electron lone pairs.

Further, concentrating on electronic transport, the zero-bias transmission
coefficients, T (E) for Si- and S-BP devices are displayed in Fig. 4.9(b). By
looking at the transmission coefficients of the Si-BP device (solid line), one
can perceive that there are two conducting channels which are associated with
the Si dopant in the energy window range of approximately from -0.15 to 0.15
eV around the Fermi level. In the case of S-BP device (dash line), there is
a narrow resonant peak in the transmission at the Fermi energy. At lower
energies, however, S-BP exhibits a transmission enhancement due to a more
conducting path, mimicking its pDOS for those corresponding energy ranges
(−0.5 eV > E > 0.5 eV) (see in paper V). Therefore, it is reasonable to con-
clude that the nonbonding 3p electrons of neighboring P atom around S atom
are more localized, whereas in Si case, the unpaired valence electron of Si
atom is free to move and contributed to the metallic property and conductance.

Table 4.3. Calculated binding energies (Eb)
and shortest distance between the molecule and
surface (da).

Si-BP S-BP

Gas Eb (eV) da (Å) Eb (eV) da (Å)

CO −0.02 2.53 −0.04 3.02

NH3 −0.18 2.40 −0.06 2.97

NO −1.48 2.07 −1.50 1.78

NO2 −2.09 1.98 −1.18 2.10

After deliberation of electronic structure and transport properties of peri-
odically doped BP, the gas sensing capabilities of these nanodevices are ex-
plored with four different gases (CO, NO, NO2 and NH3). Fully relaxed and
the most stable configuration of adsorbed gas systems are shown in Fig. 4.10.
Binding energies for these configurations are tabulated in Table 4.3 along with
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the smallest binding distances from the surfaces. All these four gases prefer
binding with Si impurity for Si-BP case, as shown Fig. 4.10(a). The binding
energies for NO and NO2 show higher values than those for the NH3 and CO.
This shows Si-BP device is more sensitive towards former two gases. The rea-
son behind this is an extra electron in the Si atom, which can be shared by the
paramagnetic gases during binding. The case of S-BP shows that NO and NO2
prefer to be chemisorbed on the P atom close to the doping site, whereas CO
and NH3 absorbed weakly on the top of S atom due to very weak interaction.
NO and NO2 are electron withdrawing gases, but S site in the surface is more
electronegative than rest of the surface, therefore these radicals move on the
top of the P atom. To further indulge into adsorption process and understand

Figure 4.10. The most stable adsorption configurations of the NO2, NH3, NO, and CO
molecules (upper) and charge density differences of (a) Si-BP and (b) S-BP, blue and
red color represent charge depletion and accumulation, respectively.

the charge reorganizations, the spatial charge distribution is plotted for these
two set of devices with different gases adsorbed, are shown in Fig. 4.10 in the
form of the two-dimensional contour plot. Strong charge accumulations can
be seen for Si-BP and S-BP in the case of NO and NO2 between the layer and
gas. This charge accumulation is associated with the hybridization of orbitals.
In the case of Si-BP device, gases sit on the top of Si atom and bind with
N atom, sharing charge to the unpaired electron induced by Si dopant. For
S-BP, the charge is concentrated on the S dopant since its electronegativity is
higher than that of P atoms. As discussed in the previous section, the S atom
forms two chemical bonds with P atoms. As a result, there is nonbonding 3p
electron of neighboring P atom which adsorbs the NO and NO2 gases. Or-
bital hybridization is absent for CO molecule on the sensor surface implies no
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charge sharing, whereas for NH3 there is less charge accumulation in between
surface and gas in both the devices. Therefore, it is correct to argue that Si-
and S-BP are sensitive towards the nitrogen-based gases, especially for NO
and NO2.

The most important feature of an experimental device for sensing is resis-
tivity/conductivity measurements. The variation in conductance proffers the
signature of the adsorbate. This property is referred as sensitivity and de-
fined as S(%) = |G−Gr|

Gr
, where G and Gr are the zero bias conductance for

the nanosensor with and without the gas molecule, respectively. Transmission
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Figure 4.11. (a) Zero-bias transmission coefficients as a function of energy for NO,
NO2, CO and NH3 adsorbed on Si-BP (left panel) and S-BP (right panel), respectively,
as compared to that in the absence of gas (b) sensitivity for different gases on two
respective devices.

for paramagnetic gases NO and NO2 are shown in the upper panel, whereas
lower panel stands for CO and NH3 in Fig. 4.11(a). Si-BP device exhibits
the complete suppression of transmission peak around Fermi level for NO and
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NO2 adsorption. Moreover, NH3 adsorption shows damped transmission at
the Fermi level, and upon the CO gas adsorption, it remains nearly the same
due to the lowest adsorption energy and no charge transfer (see Table 4.3). Ad-
ditionally, S-BP device shows nearly the same trend for NO2, but the NO gas
adsorption does not suppress the transmission peak entirely. For the adsorp-
tion of CO and NH3, the T(E) peaks at the Fermi energy are slightly shifted to
the lower energy, as compared to that of the S-BP without gas. As we have dis-
cussed above regarding the unpaired valence electron of the Si-doped devices
and the nonbonding electron of neighboring P atom around S, it is reasonable
to assume that the charge sharing between the adsorbate and surface gives
rise to valence saturated device and attributes to the decrease in conductance.
These changes in the transmissions for different gases in both the devices are
in agreement with the binding energies presented in Table 4.3.

Fig. 4.11(b) displays the sensitivity in the two nanodevices for different
gases. It is evident that both the nanodevices have high sensitivity towards the
paramagnetic gases. NH3 adsorption reveals the relatively lower sensitivity for
S-BP device than the Si-BP devices. In the case for CO, we have negligible
sensitivity in S-BP and no sensitivity in Si-BP device. It is visible that these
two nanodevices are sensitive towards most of the gases, but selectivity can
be the issue in resistivity measurements for the paramagnetic gases. However,
It is possible that these two paramagnetic gases may differ in transmission at
increased bias. From this study, one can understand that the periodically doped
BP has higher sensitivity than the pristine BP at zero bias transmission around
the Fermi level. For both devices, the sensitivity is seen to be ordered in the
following hierarchy: SNO2

≥ SNO � SNH3
> SCO. These sensitivities are

significantly correlated with the amount of binding energy; more is the binding
energy of the absorbed gas, greater is the sensitivity it has. For further detailed
analysis, see Paper V.
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5. 2D materials for anode application in
rechargeable batteries

Materials have played important roles in energy production, conversion, and
storage. However, nowadays there are even more significant challenges to con-
quer, i.e., whether the materials can meet their high-performance demands. Li-
ion batteries have been widely embraced in modern-day technologies working
as a vital power source for portable electronic devices. The traditional Li-ion
battery anodes based on graphite and commonly used cathodes are undergo-
ing constant developments due to the vast emphasis on high energy density,
efficiency and as well as low cost. Therefore, the need for next-generation en-
ergy storage devices which can produce high capacity and capability inspires
the community to search for new electrode materials. Taking these issues into
account and considering high surface to volume ratio, abundant active sites,
while maintaining the low dimensions which help them to outperform con-
cerning their bulk counterpart, makes 2D materials a promising choice for an
electrode in Li/Na-based batteries.

Taking earlier mentioned advantages as an inspiration, in this chapter, re-
sults produced using first principles methods to model the various newly pre-
dicted and synthesized 2D materials for battery anode applications are dis-
cussed. In the first three sections, some background information about the
modeling are introduced; further, the different cases of 2D materials are dis-
cussed briefly with essential results.

5.1 Intercalation profile
In the intercalation process (reaction), lithium atoms are incorporated into the
crystalline structure of the host material, and electrons are added to its band
structure. The first establishment of lithium insertion voltage by the use of
first principles calculations was proposed in 1992 for LixAl system [168, 169].
Further, in 1997 Ceder with his co-workers explained, how the lithium inser-
tion voltage of transition metal oxides can be surmised from the calculated
total energies of the host compound and that of the lithium metal [170–172].
Although their method was reported for cathode electrode, where they con-
sidered the pure Li metal as an anode but this same method can be applied to
investigate the intercalation profile in the anode materials. The intercalation
reaction that occurs in the process of adsorption of Li in the host compound
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for two different phases can be expressed as

(x2 − x1)Li+(Lix1h) = (Lix2h) , (5.1)

where x1 and x2 stand for two different concentration of adsorbed Li-ions. Li
stands for the metallic lithium in body centered cubic (bcc) structure with a
constant chemical potential μLi, and h describes the host material as an anode.
The cell voltage of the intercalation reaction described in Eq. (5.1) depends
upon the partial molar free energy, G or chemical potential, μ . As the amount
of host moles Nh are constant and NLi = xLiNh, one can write chemical poten-
tial as a variation of Gibbs free energy for Li concentration xLi as

μ =

(
∂Gr

∂NLi

)
T,P,Nh

≈
(

∂Gr

∂xLi

)
T,P,Nh

. (5.2)

Here Gr defines the Gibbs free energy of the intercalation process of the reac-
tion defined in Eq. (5.1). Further, using Nernst equation the average voltage
(V ) of reaction (5.1) can be written as

V (x2,x1) =− ΔGr

(x2 − x1)zF
, (5.3)

here F stands for the Faraday constant, z is the charge of the intercalating ion
(z = 1 in the case of lithium). Further, the Gibbs free energy can be written
approximately in terms of energies as

ΔGr = ΔEr +PΔVr −T ΔSr . (5.4)

The above equation can be approximated by considering that only the solid
phases are involved at equilibrium. The term PΔVr is of the order 10−5 eV
and ΔEr is normally in the order of 3 to 4 eV. Therefore, PΔVr term can be
ignored. All the stability assessments in this process are carried out at zero
temperature. Hence, the entropy term will not be taken into account [173].
Finally, the Eq. (5.4) becomes ΔGr = ΔEr, and ΔEr can be determined directly
from the electronic structure calculations for the reaction (5.1). Further, by
using Eq. (5.4) into Eq. (5.3), the average voltage of the reaction, V (x2,x1)
can be calculated as

V (x2,x1) =−E(Lix2h)− (x2 − x1)E(Li)−E(Lix1h)
(x2 − x1)

. (5.5)

Here, E refers to the total energies per formula unit of the respective com-
pounds. Thus, the calculation of ΔEr yields the predicted cell voltage that is
averaged over the value of the concentration limit x1 and x2, where x2 > x1.

At equilibrium condition, the free energy function of the system, ΔGr,
must be a convex function of the reaction extent because the electrode should
achieve the thermodynamic stability at each given concentration. However,
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Eq. (5.3) can be used to calculate the stepwise approximation to the voltage
curve. Here comes the real challenge in determining the thermodynamically
stable phases and their respective structures. The stability of the different
phases can be compared by the quantity ΔEr, which is also referred as the
formation energy with respect to the stable reference materials. For example,
we consider two end structure as the full coverage of host material (1 Li per
formula unit of the host) Lih and the host materials as h. Further, the formation
energy for any concentration (x) of Li is described as

ΔEr(Lixh) = E(Lixh)− (x)E(Lih)− (1− x)E(h) . (5.6)

If the different phases of Lixh are thermodynamically stable, then the forma-
tion energies of these phases of Lixh with its reference phase must lie on the
convex hull of ΔEr versus Li concentration x.

Once the convex hull construction is defined, one can calculate the piece-
wise voltage profile by using Eq. (5.3). The composition of xmax for which
the electrochemical potential (voltage) vanishes and sets the end of the elec-
trochemical reaction, defines the theoretical specific capacity of the electrode
material. This theoretical specific capacity can be calculated using the formula

Cm =
x · z ·F

3.6 ·MW (h)
, (5.7)

where x stands for the total number of Li intercalated in the systems and z de-
scribes the number of electrons involved in the process. MW (h) is the molec-
ular weight of the host material.

5.2 Basin-hopping
It has been discussed in the previous section that one can figure out the sta-
ble phases with different concentration of Li in the host material by using Eq.
(5.6), which further participates in calculating the average voltage. Therefore,
it is important to define the accurate description of the equilibrium structure of
modified compound during the lithiation of the surface at each given concen-
tration of Li given by x. It can be probed by exploring the material’s potential
energy surface (PES) and searching for its energy minimum (most thermody-
namically stable structure). These procedures are known as Steepest Descent
and Conjugate gradient, are implemented in most of the DFT codes which use
the Hellmann-Feynman scheme [123, 125]. However, these methods are not
good when the structure is far away from the equilibrium or different poly-
morph exist at a given chemical composition. Therefore, more sophisticated
methods are required to ensure that the materials PES are accurately sampled.
We start with an arbitrary structure and generate new structures by randomly
displacing the Li atoms on the top of the surface.
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Basin-Hopping (BA) scheme, firstly proposed by David J Wales et al. [174],
has been used in the work in this thesis. It is based on the idea of transform-
ing the PES into interpenetrating local minima forming basin, see Fig. (5.1).
In this scheme, a local structural relaxation is performed for each newly gen-
erated structure by randomly displacing Li. The total energy related to any
configuration is mapped to that of local minima computed with the local op-
timization method. After this, the PES is transformed into a set of staircase
with plateaus correlated to a given minima after local optimization. Predicted
structures are accepted or discarded on the basis of change in the total energy
(ΔE) via Metropolis algorithm. If ΔE ≤ 0, the composite structure is used
as the new guess structure and if ΔE > 0, the new structure is assigned to

a probability P(E) = e−
ΔE

kBT , which leads to a canonical ensemble of atomic
configurations at T .
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Starting Structure

Rejected Structure

Local Minima

Global Minima

Figure 5.1. Schematic representation of the Basin-hopping procedure. Arrows show
stochastic transformations and the solid blue line stands for transformed PES.

5.3 Nudged elastic band method
Diffusion mechanisms reported in this part of the thesis are computed us-
ing Nudged Elastic Band (NEB) method implemented in VASP [123]. This
method was developed by H. Jónsson et al. [175] as an enhancement of the
chain states method, where the main objective is to determine the minimum
energy pathway (MEP) connecting two local minima on a potential energy
surface. The activation barrier and the transition state associated with the re-
action can be obtained from the minimum energy pathway. First, the set of
images ([r0,r1,r2 . . .rn], n−1 replicas) in the linear interpolation between the
two ends are initiated. This is the most important part of the NEB method to
get the optimum initial guess of the images to converge the MEP. The force,
minimizing the energy of each image is defined as F = ∇∇∇E(ri), where E(ri)
can be obtained from a ground state DFT calculation. Further, to prevent the
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movement of the images from their minimum energy path configurations, a
spring constant is added. Hence, the total force on an atom will be the sum
of the true force perpendicular to the local tangent and the spring term along
the local tangent. The projection of the parallel component of the true force
acting on the images and the perpendicular component of the spring force is
canceled. Hence, one can write as

Fi = Fs
i |‖ −∇E(ri)|⊥ , (5.8)

further, these projections in Eq. (5.8) are described as

∇E(ri)|⊥ = ∇E(ri)−∇E(ri)τ̂i , (5.9)

and
Fs

i = k
(|ri+i − ri|− |ri − ri−1|

)
τ̂i . (5.10)

Here, E is the energy of the system, which is a functional of all the atomic
coordinates, τ̂i is the normalized local tangent at any described image i, and
k is the spring constant. The program runs each image simultaneously and
describes the forces at the end of the each ionic cycle to compute the forces
acting on each replica. Spring force defined in Eq. (5.10) assures the same
spacing in the images. The minimization of the forces acting on the images
tries to bring the NEB to MEP. However, due to a small number of images for
the length of the path, typically none of the images lands over at the saddle
point at the end of the minimization process, hence, the saddle point energy
needs to be estimated by interpolation [176]. The climbing image NEB (CI-
NEB) method was developed to solve this problem with a small modification
to the NEB method. A precise convergence to a saddle point is achieved while
maintaining the information about the shape of MEP. This does not cost ex-
tra computational effort since all the images are being relaxed synchronously.
During the iteration of regular NEB, the image with the highest energy is de-
termined. The force on this identified image is not described by Eq. (5.8), but
calculated by,

Fimax =−∇E(rimax)+2∇E(rimax)|‖ , (5.11)
with 2∇E(rimax)|‖ is doubled opposite of the true force parallel to the local tan-
gent. This reverse force can adjust the climbing image to an energy minimum
in all the directions perpendicular to the path and an energy maximum along
the path. Thus, the image converges under this condition would be the exact
saddle point. The highest energy image is no longer influenced by the spring
constant. Therefore, the image spacing is no longer equal in CI-NEB method.

5.4 2D Si2BN anode for rechargeable battery
Recently, Andriotis et al. [29] proposed a monolayer of 2D Si2BN using
first-principle calculations. Si2BN monolayer was shown to be stable us-
ing phonon dispersion calculations and high-temperature molecular dynamics
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simulations. The structure is composed of Si-Si-B-N arrangement in a sin-
gle layer with each Si atom having Si, B, and N atoms as nearest neighbors,
whereas, B (N) atom has two Si atoms and one N (B) atom as nearest neighbor.
The structural arrangement can be seen in Fig. 5.2, where it is clear that this
configuration avoids the formation of energetically unfavorable B-B and N-N
bonds. Si2BN shows metallic property, and Si centers are in electron deficient
condition, which works as an electron reservoir. Metallic behavior and active

Figure 5.2. Global minimum structures of LixSi2BN appearing in the tie line of the
convex hull are shown in (a-d), where x assumes the values of (a) 0, (b) 0.25, (c)1 and
(d) 3.5. Buckling of the original planar structure happens after x = 1 is noteworthy.
(e) Convex hull and (f) potential with respect to the concentration of Li are shown
in the bottom panel. Reproduced with permission from Paper VI. Copyright c©2017
ELSEVIER.

sites in this material prove advantageous for an advance battery anode ap-
plication. Relatively high adsorption energy for Li/Na atoms and good charge
transfer from Li/Na atom to the surface established it for further investigations.
To further investigate the ionic insertion potential, different concentrations of
Li/Na atoms in host compound are calculated to find out the global minimum
structure and further, these structures were converged with high convergence
criteria to calculate the ground state energy. The concentrations (x) are varied
from 0 to 3.50 for Li case and from 0 to 3.25 for the Na case in the form of
Li/NaxSi2BN. The computed internal energies of these structures are analyzed
for the relative thermodynamic stabilities through the convex hull plot, that can
be seen in Fig. 5.2(e) for Li case. Phases existing on the tie lines of the convex
hull are only the stable structures and rest of them may be disproportionate and
form the two-phase electrode. Hence, the computation of adsorption potential
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is done by considering only the stable phases lying on the tie line of convex
hull, shown in Fig. 5.2(f). It can also be seen that this material undergoes a
phase transformation from planar to puckered after the insertion of 1 Li/Na
per formula unit and at a potential of 0.67 V for Li/Li+ adsorption, and 0.60
V for Na/Na+ adsorption. It is concluded that the filling of antibonding states
creates some level of stress in the structure leading to the puckered phase for-
mation [177]. Further, insertion of Li/Na gives us the ultimate potential which
comes out to be 0.34 V vs. Li/Li+ at the concentration of 3.50 Li and 0.09
V vs. Na/Na+ for the concentration of 3.0 Na per Si2BN, respectively. This
leads to a very high theoretical specific capacity of 1158 mAh/g for Li and
1076 mAh/g for Na based systems.

Another parameter, which decisively governs the performance of the bat-
tery is the kinetics of the electrochemical reaction. Therefore, it is essential to
quantify the diffusion barrier for Li and Na on the Si2BN surface. In most of
the cases, ionic mobility influences the power delivered by the battery. How-
ever, unlike graphene, there can be different pathways possible for Si2BN be-
cause of its tri-elemental surface [177]. Only the diffusion between two simi-
lar configurations specific to the case of the most favorable binding site (at the
center of Si4B2 ring) is considered. The first case shows that the ions move
from the center of the hexagonal ring (Si4B2) to the center of the next Si4B2
ring through a Si4N2 ring. In the second investigated path, ions hop from the
center of the Si4B2 hexagonal ring to another Si4B2 ring through Si2BN ring.
The diffusion barriers are calculated using CI-NEB methods. In Li-ion case
the barrier comes out to be 0.48 eV for both the defined pathways, whereas
for Na-ion case these barriers are 0.32 eV and 0.4 eV for the two respective
pathways. The detailed explanations, schematic illustrations, and MEP plots
are given in Paper VI in this thesis.

5.5 Hydrogenated 2D boron anode for rechargeable
battery

The two-dimensional polymorph of boron (borophenes) have been discussed
in the previous chapter. However, its synthesis involved stringent condition
such as the use of ultra-high vacuum and Ag substrate [27, 28]. Few practical
challenges such as high energy and chemically reactive surface of the sheet,
make it difficult to have it in the free-standing form. However, it is essen-
tial to have a stable sheet for further application of 2D boron. In this quest,
several experimental and theoretical efforts have been made to realize the sta-
bilized boron in 2D forms [178–180]. Boron atoms are electron-deficient as
their three valence electrons occupy four available s and p orbitals, which
encourages various bonding characters. In the attempt to compensate the elec-
tron deficiency of boron, its hydrogenation is a practical approach to stabilize
the sheet [178, 179]. Keeping the context of limited stability in free-standing
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form, the first-principles study by Xu et al. [157] proposed that borophene
can be stabilized by complete surface hydrogenation. The resulting materi-
als called as borophane, possess directional dependent Dirac cone and lin-
ear dispersion relation, which is reminiscent of graphene. Further, borophane
structure is explored for various properties using DFT, like ferroelastic and
auxetic properties of borophane explored by Kou et al. [181] with asserting its
application in microelectromechanical and nanoelectronic devices. Similarly,
the directional dependence of the electronic transport properties of pristine
borophene and borophane were explored in recent ab initio calculations [158].
These theoretical reports drive the inquisitiveness for the experimental real-
ization of 2D sheet of hydrogen boride (alternatively, hydrogenate borophene,
borophane or boron hydride). Nishino et al. [179] used robust cation exchange
method to experimentally realize the boron hydride sheet, which differs from
the theoretically predicted borophane. Soon after the realization, this got a
significant attention and was investigated for thermal conductivity, electronic
and optical properties [182]. Inspired by the previous investigation of pristine
borophene polymorphs for possible battery anode application and their excit-
ing results, it is interesting to investigate hydrogen boride for its possible role
as an anode electrode in rechargeable batteries. In the next section, both the
polymorph, referred as B2H2 and BH, will be discussed for Li/Na ion battery
application.

5.5.1 2D B2H2 case
Surface of 2D B2H2 possesses a buckled structure with corrugations that are
anisotropic (uncorrugated along x and corrugated along y) in nature as can
be seen in Fig. 5.3. Hydrogenation alters the lattice parameter in direction x,
whereas lattice parameter in y direction remains unchanged. Further, the buck-
ling height comes out to be 0.84 Å, and B-H bond length is 1.18 Å. Metallic
nature of the electronic structure is same as pristine, and the lower molecular
weight suggests it to be a promising material for battery anode. Before ex-
ploring the potential of borophane as Li/Na battery anode, the structure has
been proved to be dynamically stable by phonon dispersion curve. Further-
more, ab initio molecular dynamics (AIMD) simulation has also been con-
ducted to check the stability. Partial hydrogenation has also been tried, which
resulted in dynamically unstable structures. After defining the stability, ad-
sorption energies are calculated for Li/Na atoms at different adsorption sites,
which convey that the top of B-atom is the most favorable site with effective
adsorption energies of -2.58 eV and -1.08 eV for Li and Na ions, respectively.
To model the effect of operational battery, the concentration (number of atoms
= 4,8,12, and16) of Li/Na is varied systematically on the surface. For this
purpose, swapping basin hopping method is employed, and after getting the
lowest energy structures, ground state calculation is performed with a high
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Figure 5.3. (a-c) Stable phase structure of LixB2H2 existing on the tie line of the
convex hull along the intercalation process. In the lower panel (d) shows the formation
energies of the compound LixB2H2 as a function of concentration (x) in eV per f.u.
and (e) Li intercalation potential profile deals with only the phases appearing on the
tie line of the convex hull for B2H2 substrate shown vs. Li/Li+. Reproduced with
permission from Paper VII. Copyright c©2017 American Chemical Society.

level of accuracy. Fig. 5.3(d) shows that the phases with concentration x as
0.22, 0.45, 0.67, and 0.89 are stable between the two end structures, B2H2
and Li0.89B2H2. These stable phases are further considered for calculation of
insertion potential. Fig. 5.3(e) depicts the voltage profile with varying a con-
centration of Li in B2H2 and manifests two main plateaus. The first plateau
shows a voltage of 0.61 V vs. Li/Li+, corresponding to the lithium concentra-
tion varying from x = 0 to 0.22. The second plateau lowers down to 0.23 V
vs. Li/Li+ with x value changing from 0.22 to 0.45. The next transformation,
Li0.45B2H2 → Li0.67B2H2, yields a negative value suggesting that the maxi-
mum concentration this sheet can be loaded with is x = 0.45. Hence, only the
phases stable from the convex hull and possible from the intercalation potential
are shown in Fig. 5.3(a-c). On the other hand, in Na case only one stable phase
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described as Na0.45B2H2 exits between the two end structure of the same con-
centration as Li case [183]. The average voltage for Na is computed as 0.03
V with the plateau from B2H2 → Na0.45B2H2. Further insertion results in the
negative voltage. The details of sodium intercalation can be found in Paper
VII in this thesis.

The maximum Li/Na concentration realized, i.e., Li/Na0.45B2H2, brings out
to an electrode with maximum theoretical specific capacity of the order of 504
mAh/g for both the Li and Na-ions, together with an average open circuit
voltage of 0.43 V vs. Li/Li+ for the Li insertion and 0.03 V vs. Na/Na+ for
the Na intercalation. Borophane offers higher capacity than the graphite (371
mAh/g), well established as the anode material for Li rechargeable battery.
In case of Na, the theoretical capacity of borophane (504 mAh/g) is greater
than that of reported for MoS2 [184] with a theoretical capacity of 146 mAh/g
or the case of Ti3C2 [185] with a capacity of 351.8 mAh/g. The diffusion
barrier of Li and Na on the B2H2 surface has two different minimum energy
paths as defined along the linear atomic boron (in x-direction) and along the
corrugation (in y-direction) [183]. The estimated barrier for Li case comes out
to be 0.21 and 0.68 eV for the two pathways, respectively, whereas for Na,
it comes out to be 0.09 and 0.37 eV in the respective directions. The detail
description for diffusion pathways and barrier is given in paper VII.

5.5.2 2D BH case
After the brief description of the results from borophane (B2H2), we further
take the case of experimentally realized 2D boron hydride (BH) sheet to ex-
plore its potential application in Li/Na ion battery. BH sheet possesses plan-
ner structure different than the previously discussed corrugated structure, pre-
dicted with first-principles calculations. This structure has hexagonal sym-
metry and metallic nature in electronic structure, which opens up a practical
avenue to test this experimental structure for battery applications. Keeping
this in hindsight, this 2D sheet is investigated to estimate the possibility as an
anode for Li/Na battery. Adsorption energies calculation and charge transfer
process supports the potential strength of BH to be tested as an electrode. The
intercalation profile of Li and Na atoms in the BH sheet has been investigated.

Li concentration is systematically varied on both sides of the BH sheet.
Swapping basin hopping scheme has been performed to check the minimum
energy structure and further the stringent DFT calculation is performed to
check the ground state energy. Li atom is varied from 0 to 18 (concentra-
tion x = 0 to 0.5) in 3x3 supercell. It gives the stable intermediate phases with
4, 10, and 14 Li atoms (x = 0.11,0.27,0.38 in LixBH), which can be seen in
Fig. 5.4(b-d). From the idea of the convex hull, stable phases along the in-
tercalation process can be identified in Fig. 5.4(e). These stable phases are
responsible for the charging/discharging voltage profiles accompanying the
ion intercalation. Fig. 5.4(f) depicts the different plateaus of potential (volt-
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Figure 5.4. (a-d) Ground state structure of LixBH existing on the tie line of the convex
hull along the intercalation process. Lower panel represents (e) the formation energies
of the compound LixBH as a function of concentration (x) in eV per f.u. (these for-
mation energies were calculated using the ground state structure resulted from basin
hopping algorithm) and (f) Li intercalation potential profile deals with only the phases
appearing on the tie line of the convex hull for BH substrate shown vs. Li/Li+. Repro-
duced with permission from Paper VIII. Copyright c©2018 Royal Society of Chem-
istry.

Table 5.1. Comparison of specific capacity, diffusion barrier and open cir-
cuit voltage (OCV) of two hydrogenated boron sheets (B2H2 and BH ) materi-
als for Li/Na-battery anode. Reproduced with permission from Paper VII and
VIII. Copyright c©2017 American Chemical Society and c©2018 Royal Society
of Chemistry.

Host Li Na

OCV Barrier Capacity OCV Barrier Capacity

(V) (eV) (mAh/g) (V) (eV) (mAh/g)

B2H2 0.43 0.21/0.68 504 0.03 0.09/0.37 504

BH 0.24 0.8 861.8 − − −

age) profiles with respect to Li concentration. The first plateau is related to
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a step where the ionic concentration changes as x = 0 → 0.11 and the de-
livered the potential as 0.27 V. In the similar fashion, the second and third
plateaus correspond to the change in Li concentration as x = 0.11 → 0.27 and
x = 0.27 → 0.38 with potentials of 0.24 V and 0.22 V, respectively. Further
increment in concentration leads to the negative potential, which indicates that
more lithiation would lead to dendrite formation. The computed average po-
tential comes out to be 0.24 V, which is rather lower than most of the 2D
materials. A noteworthy point about the potential profile is that the potential
drop is rather constant along the lithiation process, which can be advantageous
for the performance of the battery. On the contrary, in the case of the Na ion,
we observe that the potential takes negative values right from the beginning
of the intercalation process. Such estimations (potential profiles) are benefi-
cial for checking the stability of the material from a thermodynamics point
of view, and results indicate the unsuitability of BH for Na-ion battery. BH
yields a high specific capacity of 861.78 mAh/g, which is considerably larger
than that obtained by considering the computational structure of B2H2 (504
mAh/g). Table 5.1 stands for comparison of the potential of B2H2 and BH
sheets for rechargeable battery applications. To understand the ionic mobility
on the surface, diffusion barrier is estimated for Li-ion case. Only one path is
possible for diffusion in this surface, and can be defined as ion moving from
one hexagonal ring to another through the B-B bridge [186]. The diffusion
barrier calculated using CI-NEB method is described in Table 5.1, and this
comes out to be 0.8 eV, which is relatively high in comparison to the other 2D
materials. See Paper VIII for the details.

5.6 S-Mxene and application in battery anode
Mxenes (transition metal carbides/nitrides/carbonitrides) are the emerging class
of layered 2D materials [19]. These are found to be electrically conductive
and stable in aqueous environments, a rare combination indeed, with huge po-
tential in many applications [18]. Several reports delved the role of Mxenes
for electrode materials in Li/Na-ion batteries, both experimentally and theo-
retically [95–97]. Mxene exhibits excellent capability to handle high cycling
rates with good gravimetric capacities [187]. In this section, the investigation
of the sulfur functionalized nitride Mxenes (V2NS2 and Ti2NS2) for Li/Na-
ion battery anode application are discussed. These functionalized Mxenes are
also metallic same as their pristine counterparts. The metallic behavior comes
mainly because of d-orbital in the metal atom and some states also come from
p orbital of the S atom. The adsorption strength for both the Li and Na atoms
comes out to be better than several existing 2D material electrodes.

Further, same as the previous cases, the swapping basis hopping algorithm
is performed to check the global minimum structures for the different Li/Na
concentrations on the surfaces. Interestingly, for the Li case, both the sur-
faces can adsorb up to tri-layer of Li but the interplay between the formation
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Figure 5.5. Formation energies vs. concentration of Li (x) in eV/f.u. for V2NS2 host.
Fully relaxed structure with the concentration of stable phases (x = 0.11, 0.22, 1, and
2) are presented. (color code: V(red), N(gray), S(yellow) and Li(green)).

Table 5.2. Comparison of specific capacity, diffusion barrier and OCV
of two host (Ti2NS2 and V2NS2 ) materials for Li/Na-battery anode.

Host Li Na

OCV Barrier Capacity OCV Barrier Capacity

(V) (eV) (mAh/g) (V) (eV) (mAh/g)

Ti2NS2 0.642 0.19 308.28 0.83 0.09 84.77

V2NS2 0.82 0.17 299.52 0.53 0.09 99.8

energy and OCV only allows up to bi-layer of Li coverage. To understand
the intercalation of Li in bi-layer form the fully covered (full lithiation) sur-
face, Li2V2NS2 and Li2Ti2NS2 are considered as the host material for further
search of global minimum structure in the bilayer. This same process is re-
peated for tri-layer, where the host materials were considered as Li4V2NS2
and Li4V2NS2.

Furthermore, the higher level of accuracy is used to get the energies of
ground state structure of lithiated systems. Convex hull plotted with two end
structure as V2NS2 and Li2V2NS2 (x = 0 to 2.2) is shown in Fig. 5.5. It can be
seen that concentrations with x = 0.22, 0.33, 1.0 and 2.0 are the stable phases.
In the case of Ti2NS2, all the phases below the full coverage (Li2Ti2NS2) are
the stable phases and above the monolayer coverage only fully covered bilayer
is a stable phase that can be seen in Fig. 5.6. In addition to this, the stepwise in-
tercalation potential with respect to concentration of Li is shown in Fig. 5.7 for
both the host materials. Intercalation potential in V2NS2 has four plateaus and
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Figure 5.6. Formation energies as a function of Li concentration x in eV/f.u., global
minimum structures of LixTi2NS2 appearing in the tie line of the convex hull. (color
code: Ti(purple), N(gray), S(yellow) and Li(green)).

Figure 5.7. Li intercalation potential profiles for V2NS2 and Ti2NS2. The results
presented here are shown vs. Li/Li+.

the average OCV is calculated as 0.82 V vs. Li/Li+, whereas Ti2NS2 shows
several steps in intercalation potential and the average OCV comes out to be
0.64 V vs. Li/Li+. In the Na-ion case, the two end structures are described
as V2NS2 ↔ Na0.78V2NS2, and Ti2NS2 ↔ Na0.67Ti2NS2, respectively. All
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the phases between the two end compounds are stable and average OCVs are
computed as 0.53 V for Na/Na+ in V2NS2 and 0.83 V for Na/Na+ in Ti2NS2
host. For better understanding, the comparison of results in both surfaces for
Li and Na case are summarized in Table 5.2. OCVs for these two hosts are
higher than most of the 2D materials, but higher concentration of ion interca-
lation yields the good theoretical specific capacities. V2NS2 surface shows the
specific capacity of 300 mAh/g for Li-ion and 99.8 mAh/g for Na-ion. Addi-
tionally, Ti2NS2 yields the specific capacity as 308 mAh/g for Li-ion and 85
mAh/g for Na-ion. Further, diffusion barriers on these two surfaces are de-
scribed in Table 5.2 for both the Li and Na in case, which yields a fast kinetic
process. Detailed discussions of minimum energy pathways are given in Paper
IX in this thesis.
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Part III:
Final Remarks





6. Summary and Outlook

Design and development of new materials are the intrinsic part of the techno-
logical advancements. Understanding and improving material properties for
electronic and energy applications is a cornerstone of human civilization in
digital era. Along with the advancement in technology, the critical require-
ment of the present and the future civilization is the new sources and storage
methods for energy. As of now, the silicon-based technology is reaching its
miniaturization limit, while the materials are required to fill this gap. The
nanoscale-structured materials are one of the base points in this research. In
particular, the central topic of this thesis is 2D materials studied from theoret-
ical perspective. Electronic structure along with the potential applications are
discussed for newly synthesized and predicated 2D materials, varying from
nanoscale electronic devices to rechargeable batteries.

In recent years, there has been a continuous progress in constructing the
heterostructures of 2D materials either in vertical or in lateral dimension and
tune the electronic properties suitable to the desired applications. An example
of vertical heterostructure is van der Waals (vdW) bonded heterostructure that
have been used for the experimental realization of field effect transistor, rec-
tifier and photodiode during last decade. Lateral heterostructures perform as
electrodes when arranged as nanogap or nanopore. With a suitable choice of
materials, we have studied all these setups in this thesis.

It is essential to put forward the experimental efforts with these materials
for different applications, but to perform the experiments, one needs enough
resources and workforce. In many occasions, the density functional theory
(DFT) supported the experimental finding very well, as well as in some cases
the theoretical prediction was made much before the experimental realization
happened. Modern-day DFT has proven to be an essential tool in describing
and understanding the materials properties and also their applications. This
thesis discussed the DFT and Non-equilibrium Green’s function (NEGF) for-
malism and computational methods, which have been used to perform all the
theoretical work presented in this thesis.

The prototype 2D material is graphene, which has been extensively dis-
cussed and much more explored as compared to the other 2D materials. It has
been utilized as an ultrathin electrode for nanoelectronics and single molec-
ular devices. Graphene nanogap and nanopore have been proved to be an
attractive setup for DNA sequencing, but the fundamental problem of the re-
activity of the graphene edge is unsolved. In particular, graphene edge can
be decorated with hexagonal boron nitride. In the first work of this thesis,
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graphene-hBN lateral heterostructure forming nanogap has been used into se-
quencing the single-stranded DNA. The sensitivity in the setup demonstrated
to be lower than the pristine graphene, however, the lower edge reactivity sug-
gests that this can be a potential setup for future DNA sequencing. The success
of graphene has been followed by other contemporary 2D materials exfoliated
from the bulk counterpart in the form of layered structures. These 2D materi-
als exhibit remarkable electronic and physical properties and have been inves-
tigated for the range of applications in electronics and energy storage. In this
quest, several other synthetic layered materials are also synthesized from pre-
cursor unlike the layer-derived 2D materials: silicene, stanene, tellurene, etc.
Recently, the lightest 2D material, 2D boron monolayer has been synthesized
in different polymorphic forms. In this thesis, we have explored structural,
electronic and transport properties of the different polymorph of 2D borons
known as borophenes. We have also reported the tunable strain anisotropy in
the two different polymorphs, β12-borophene and χ-borophene. Additionally,
the electronic structure and transport properties of corrugated borophene are
also addressed, and its applicability as potential gas sensing application is ex-
plored. Besides applying strain, doping is a conventional method of tuning
material’s properties. We explore silicon and sulphur doped black phosphorus
(BP), that shows metallic characteristics in electronic structure and transport
properties. Considering the metallic nature, the gas sensing application has
been investigated in these doped-BP sheets.

In the 90◦ twisted bilayer form, the intrinsic anisotropy of the BP disap-
pears because of the degeneracy in the valence band maximum. However,
when it has been used in the nanojunction setup made of the twisted bilayer, it
shows the current rectifying properties, which is orginated from the intrinsic
anisotropy of the BP layer. Furthermore, this rectifying behavior can be tuned
with the associated gate voltage.

The last part of the thesis is dedicated to the energy storage applications of
different 2D materials. Presently nearly one-third of the energy storage market
is occupied by the Li-ion batteries, ranging from a cell phone in our pocket to
household electronic devices. To deliver higher power with enhanced stability
and safety, new materials are required to replace the traditional electrode in Li-
ion batteries, and 2D materials show the great promise to deal with these high
demands. DFT framework has been applied to investigate the ionic insertion
reaction and ionic diffusion mechanism in the 2D host compounds. Specific
capacity, stability and ion intercalation kinetics of selected 2D materials are
explored from the application perspective for battery operation.

A recently predicted material is Si2BN, where Si atom is in electron defi-
cient state. In contrast to pristine silicene, which is naturally buckled, Si2BN
is planar. Si2BN delivered relatively high specific capacity in comparison to
most of the 2D anode materials. Nevertheless, an exciting transition from pla-
nar to a buckled structure occurs upon insertion of more than one Li and Na
ions per formula unit. Subsequently, this transition in the structure is corre-
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lated with a higher specific capacity, which is significantly superior to several
other 2D analogs. Moreover, the substrate Si2BN retrieves the planar structure
on succeeding desorption of ions and stability of the material remains intact.

Two different hydrogenated 2D boron polymorphs have been explored for
the potential application in rechargeable battery. From all the obtained results,
it is argued that borophane (B2H2) could be a potentially useful anode material
both for Li and Na-ion batteries with a relatively high specific capacity. On
the other hand, BH (boron hydride) has delivered remarkably higher specific
capacity than the B2H2 for Li-ion case.

Two different sulfur functionalized Mxenes, V2NS2 and Ti2NS2 have been
studied with the focus to envisage these 2D materials to be optimally func-
tioning battery electrodes. It is found that the multilayer ion intercalation is
viable, which exhibits high capacity, especially for Li-ion case. Further, the
faster kinetics for battery operation has been shown with lower barrier heights
of the ionic diffusion. In contradiction to various other recent 2D materials,
especially the elemental ones such as silicene, phosphorene, borophene, or
even graphene, that have been extensively explored for electrode applications,
Mxenes can be a new paradigm, where the ion intercalation in a multilayer
fashion and ultrafast diffusion suggests exciting possibilities. All these unique
characteristics enable these Mxenes to be potential anode materials and likely
to attract immediate attention.

6.1 Future prospects
The techniques which have been used to produce the results in this thesis will
prove to be useful to investigate different kind of nanoscale device applications
and electronic properties of the materials. The world of 2D materials is full
of opportunities, and only graphene has shown the tremendous possibilities
for application in different fields. Apart from graphene, there are almost 40
different possible transition metal dichalcogenides (TMDCs) and more than
100 possible structure of Mxene. There is extensive research also going on
to synthesize the several 2D materials using synthetic methods like stanene,
silicene, germanene, borophene, bismuthene, Si2BN and so on. Using lateral
and vertical heterostructure of same or different 2D materials opens the new
door of possibilities fo exploring new 2D materials with a range of physical
and chemical properties. To design a successful 2D material heterostructures,
understanding the structural and electronic properties of interfaces between
those 2D materials plays a significant role. The electronic properties of het-
erostructure can be further tuned by the relative rotation of the layer on the
surface, external strain and vertical electric field. Looking at electronic trans-
port and optical properties of these heterostructures would be quite interesting
from future aspects.
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The field of nanoscale molecular electronics has emerged rapidly, which
aims to utilize individual molecules as the building blocks for electronic de-
vices. This may improve the functionality and enable the scientific community
to achieve an extreme level of device miniaturization and control. The central
hindrance in the progress of this field is the inadequacy in stable contacts be-
tween the molecules and metal electrodes used that can both function at room
temperature and provide reproducible results. Gold has been the preferred
material for making nanoscale spaced electrode for the model experiments,
but these electrodes are unstable at the room temperature, which results in
poor reproducibility and does not allow the spin injection. Graphene, on the
other hand, possesses not only outstanding mechanical stability but also ex-
ceptionally high thermal and electronic conductive properties. These prop-
erties make graphene very attractive for a range of possible applications in
molecular electronics. Furthermore, one can functionalize the chemical con-
tact of the molecule to graphene-based materials, which can be further useful
in switching the rectifying behavior of a single molecular device by chang-
ing the chemical contact of the molecule. Theoretical tools such as DFT and
NEGF can be helpful to understand the properties the electrode after function-
alization and it is possible to perform the electron transport calculation, which
can give a direct insight of the behavior of the electrical current in the molecu-
lar scale device. It will be interesting to see, how does the rectifying property
of a standard rectifying molecule with graphene electrodes and different cou-
pling moieties behave. Additionally, edge reactivity issues of the graphene
have been already discussed for the nanogap and nanopore cases in DNA se-
quencing devices. Nowadays, it is possible to fold graphene controllably. One
can use these two ideas and use bilayer folded graphene nanogap to detect the
DNA molecule and for other applications. This will be interesting to see how
the folded edge of graphene reacts with the DNA molecule and up to which
extent it can identify the different DNA molecules.
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7. Svensk sammanfattning

Utformning och utveckling av nya material är den grundläggande delen av
teknologiska framsteg. Att förstå och förbättra materialens egenskaper för an-
vändning inom elektronik och energi är en hörnsten för den mänskliga civil-
isationen i den digitala eran. Vid sidan av framsteg inom teknologin, är nya
energikällor och metoder för att lagra energi en nödvändighet för nuvarande
och kommande generationer.
Den kiselbaserade teknologin har redan nått sin nedre storleksgräns, så det
krävs nya material för att fylla gapet. Materialstrukturer på nanonivå är i fokus
i den här forskningen. Speciellt är dem 2D-material studerade från ett teo-
retiskt perspektiv som tar den centrala delen i den här avhandlingen. Elektro-
nisk struktur tillsammans med möjliga användningsområdena diskuteras för
nyligen syntetiserade eller förutsagda 2D-material, vilka användningsområ-
dena varierar från elektroniska komponenter på nanonivå till uppladdnings-
bara batterier.
På senare år har det blivit möjligt att framställa heterostrukturer ifrån 2d-
material både i lodrät samt sidoställda och manipulera deras egenskaper, för
att anpassa till valfritt användningsområde. T.ex. har vi lodrätta strukturer som
under det senaste årtiondet har använts i field effect transistor (FET), likriktare
och fotodioder. Sidoställda strukturer används som elektroder utformade som
nanogap eller nanopor. Materialer anpassade för alla dessa system studeras i
den här avhandlingen.
Det är nödvändigt att framhålla den experimentella insatsen med de här 2D
materialen, men för att bedriva experiment behöver man tillräckligt med resu-
rser och arbetskraft. I många tillfällen överensstämde densitetsfunktionalte-
orin (DFT) väl med experimentella resultat, i andra gjordes den teoretiska
förutsägelsen innan det experimentella förverkligandet gjordes. Det har visat
sig att dagens DFT är ett viktigt verktyg för att beskriva och förstå materi-
alens egenskaper och i vissa fall även deras användningsområden. I det andra
kapitlet i den här avhandlingen diskuteras DFT och Non-equilibrium Green’s
function (NEGF)-metoden, vilka har använts för att göra allt teoretiskt arbete
i den här avhandlingen.
Grafen är prototypen för 2D-material. Den hade omfattande diskuterats och
undersökts mer än alla andra 2D-material. Den har använts som en ultratunn
elektrod i nanoelektronik och för en-molekylskonstruktioner. Grafen-nanogap
och -nanoporer har visat sig vara lysande system för DNA-sekvensering, men
det grundläggande problemet med de reaktiva grafenkanterna är olöst. Grafen-
kanterna kan i det här fallet kläs i hexagonalt bornitrat (hBN). I den första ar-
tikeln i den här avhandlingen har grafen-hBN, som bildar ett nanogap, använts
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för att sekvensera en-strängs-DNA. Känsligheten hos systemet visar sig vara
lägre än hos rent grafen, dock gör den lägre kantreaktiviteten systemet till en
lovande kandidat för framtida DNA-sekvenseringar.
Succén hos grafen uppföljdes av andra moderna 2D-material, som framställdes
från lager av motsvarande bulkmaterial. De här 2D-materialen visar enastående
elektroniska och fysikaliska egenskaper och har undersökts för många olika
användningsområden inom elektronik och energilagring. I sökandet har även
andra, syntetiska material syntetiserats från sina föregångsmaterial, de olika
lagerframställda 2D-materialen: silicen, stanen, telluren, etc. Nyligen synte-
tiserades det lättaste 2D-materialet - 2D-bor i olika polymorfiska former. In
den här avhandlingen uforskade vi strukturer, elektroniska- och transportegen-
skaper hos olika polymorfiska former av 2D-bor s.k. borofen. Vi visar också
justerbar anisotropi i två polymorfiska former, β12-borofen och χ-borofen
med hjälp av sträckning. Dessutom har elektronisk struktur och transporte-
genskaper hos vågig borofen tagits upp och dess lämplighet som en möjlig
gassensor har undersökts. Förutom sträckning är dopning en av etablerade
metoder för att ändra på ett materials egenskaper. Vi undersöker Si-dopad
svart forsfor (SF), som har endimensionell, metallisk, trådliknande karakteris-
tik i elektronstruktur och transportegenskaper. S-dopad SF beter sig också som
en metall i elektronisk struktur och transportegenskaper, det visar en skarp
topp i övergångsdiagrammet. P.g.a. sin metalliska karaktär undersöktes det
dopade SF-monolagret med avseende på gassensorstillämpningar.
I den 90◦vridna formen försvinner den inre anisotropin i SF p.g.a. degenera-
tion i valensbandsmaximumet. När den användes i en nanoelektronikkoppling,
kunde man se korrigerande strömmar som kommer från den inre anisotropin
i den vridna formen av SF. Vidare kan detta beteende hos kopplingen justeras
med spänning från grindelektroden.
Den sista delen i den här avhandlingen är avsatt för energilagringstillämp-
ningar av olika 2D-material. Nu för tiden är nära en tredjedel energilagrings-
marknaden mättad av Li-jonbatterier, där användning sträcker sig från mobil-
telefoner i våra fickor till elektroniska hushållsapparater. För att kunna lever-
era högeffektiv elkraftförsörjning med ökad stabilitet och säkerhet, måste nya
material användas för att ersätta den traditionella elektroden i Li-jonbatterier
och 2D-material visar sig lovande för de här höga kraven. DFT-ramverket har
använts för att undersöka joninsättningsreaktionen och jondiffusionsmekanis-
men i 2D-värdföreningarna. Specifik kapacitet, stabilitet och joninskjutsning-
skinetik hos utvalda 2D-material har undersökts med fokus på batterifunktion-
stillämpningar. Ett nyligen beräknat material är Si2BN, där Si-atomen saknar
några elektroner. Si2BN levererade relativt hög specifik kapacitet jämfört med
de flesta 2D-anodmaterialen. Dessutom sker en spännande övergång från plan
till vågig struktur med mer än en Li- och Na-jon per formelenhet. Den här
ändringen i strukturen hänger samman med en högre specifik kapacitet, vilken
är märkbart överlägsen flertal andra 2D-analogier. Dessutom återfår substratet
Si2BN plan struktur vid lyckad borttagning av joner och stabiliteten av mate-
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rialet förblir intakt.
Två olika vätegenererade 2D-borpolymorfer har undersökts för en möjlig till-
ämpning inom uppladdningsbara batterier. Från alla uppmätta resultat talade
det för, att B2H2 skulle kunna vara ett användbart anodmaterial både för Li-
och Na-jonbatterier med relativt hög specifik kapacitet. Å andra sidan lev-
ererade BH (borhydrid) anmärkningsvärt högre specifik kapacitet än B2H2 i
Li-jon fallet.
Två olika svavelfunktionaliserade mxener, V2NS2 och Ti2NS2, har studerats
med fokus på att simulera meningsfulla markörer för att bedöma om dessa
2D-material kan vara optimalt fungerande batterielektroder. Det upptäcktes
att multilagersjoninskjutning är möjlig, vilket visar en hög kapacitet, särskilt i
Li-jon fallet. Vidare har snabbare batterifunktionskinetik visats med lägre bar-
riärer för jondiffusionen. I skillnad till många andra nya 2D-material, speciellt
elementära så som silicen, forsforen, borofen eller även grafen som har studer-
ats omfattande, kan mxener vara ett nytt paradigm, där joninskjutningen på ett
multilagerssätt och ultrasnabb diffusion medför spännande möjligheter. Alla
de här unika dragen meriterar dessa mxener till att vara möjliga anodmaterial
och troliga att få omedelbart uppmärksamhet.
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