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AB S T RACT

ELNES-spectra of the 𝐿3 and 𝐿2-edge of bcc-iron are simulated using a Bloch
wave method for the calculation of the DDSCS within a 1st-order Born ap-
proximation of the inelastic electron scattering process in order to study the
influence of non-dipole terms on the EMCD-signal. The necessary electronic
structure information is obtained from a DFT-calculation using WIEN2k.

Two different different ways of extracting the EMCD-signal are considered:
the pEMCD-signal, which is extracted from the pure imaginary part of the
MDFF, and the eEMCD-signal, extracted via an EMCD difference method.

A non-negligible contribution of the 13 cross term to the eEMCD-signal
is found. Furthermore it is shown that the double difference method and
the single left-right difference method cancel out the contributions of the
01-term to the eEMCD-signal. The pEMCD-signal is found to be influenced by
non-dipole terms only for large scattering angles. Conclusive quantitative
results on the influence of non-dipole contributions to the eEMCD-signal re-
main to be found, however, since it is uncovered that the eEMCD-signal is
strongly disturbed by the choice of the post-edge normalization range due
to the inaccurate description of the post-edge region in the present simula-
tion. Furthermore a not anticipated ”apparent anisotropy” of the real part of
the MDFF is found, whose cause is presently unknown.

As a byproduct of these investigations deeper insight is gained on a rea-
son, why the double difference method is superior to the other extraction
methods. It practically eliminates the effect of non-dipole terms 01 and 12.

Lastly two effects are encountered that might pave the way to a deeper
understanding of why the 𝐿2-edge is experimentally often observed to be
weakened or suppressed relative to the 𝐿3-edge in comparison with simula-
tions.
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PO P U LÄRV E T EN S KA P L I G SAMMANFAT TN I NG PÅ
SV EN S KA

Inom fysiken skiljer man mellan två olika sätt som två objekt kan kollid-
era. Om ett av objekten är en våg så kallas kollisionen för att vågen sprids.
Det finns elastisk och inelastisk spridning. Vid elastisk spridning överförs in-
gen energi mellan de båda objekten. Vid inelastisk spridning å andra sidan
förandras energin hos båda objekten. Omman skjuter elektroner på ett prov
växelverkar de med de elektroner och atomkärnor som utgör provmateri-
alet. En maskin som gör detta är transmissionselektronmikroskopet (TEM)
där strömmen av eletroner kallas för en stråle. Efter växelverkan med provet
mäts elektroner med hjälp av en elektrondetektor. Det finns olika typer av
detektorer men man kan förenklat klassificera dem i detektorer som mäter
energin av elektroner och detektorer som enbart mäter att en elektron har
detekterats.

Små objekt som elektroner beskrivs inom kvantfysiken som en våg och
därfor är växelverkan mellan strålelektroner och provmaterialet en sprid-
ning av elektronvågor. Som sagt skiljer man mellan elastiska och inelastiska
processer och elektroner sprids huvudsakligen elastiskt i interaktion med
atomkärnor. Växelverkan mellan provmaterialets elektroner och strålelek-
troner är å andra sidan huvudsakligen en inelastisk process. Det finns tre
huvudprocesser som skapar den inelastiska signalen: phonon spridning,
plasmon spridning och så kallade kärnnivåexcitationer. Det här arbetet
fokusserar på simulationer av kärnnivåexcitationer där en elektron exciteras
från en kärnnivå till ett fritt tillstånd i materialets bandstruktur. Hos elek-
troner som undergår en sådan inelastisk process visar deras fördelning över
energierna en skarp kant där den inelastiska processen blir möjlig. I fack-
språket kallas det för ”electron energy loss near-edge structures (ELNES)”.

Alla inelastiska signaler ger tillsammans information om flertalet egen-
skaper hos provmaterialet. Genom ELNES-kantens form och position kan ma-
terialets komposition och kemiska uppbyggnad bestämmas. Dessutom kan
en magnetisk signal som kallas ”electron energy loss magnetic chiral dichro-
ism (EMCD)” mätas; genom att subtrahera två ELNES-spektra som har mättes
vid två särskilda detektorpositioner. EMCD utlovas att vara en teknik som kan
användas till att mäta styrkan hos enkla atomers magnetism. Beräkningar
och teoretiska resultat visar att det skulle vara möjligt att mäta denna signal,
men det finns ännu inget publicerat framgångsrikt experiment där det har
lyckats och frågan är om beräkningar kanske förenklar någon aspekt eller
effekt som väsentligt minskar EMCD-signalen.

Det här arbetet försöker att hitta ett svar på frågan hur stor påverkan
av olika så kallade multipol-övergånger på den teoretiska EMCD-signalen
är. För att hitta ett svar så simuleras ELNES-kantor av bcc-järn och detta
används sedan till att beräkna EMCD-signalen. Det här arbetet ger inget
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avgörande svar på påverkan av multipol-övergångar, men avslöjar att den
experimentella rutinen som kallas post-edge normalisation tillsammansmed
ett annat, oförväntat tillskott påverkar EMCD-signalen starkare än multipol-
övergångar. Post-edge regionen behöver mer forskning generellt eftersom
dess skepnad inte matchar bra med experiment och att EMCD-signalen är
väldigt känslig för post-edge regionen. Därför behövs det mer forskning om
processer som skapar post-edge regionen.

Vågfunktioner är generellt komplexa tal i kvantmekaniken och de har
därför en realdel och en imaginärdel. Nu är det så att imaginärdelen av
kvantiteten som beskriver inelastiska ELNES-spridningen ger information
ommagnetismen och man kan genom att subtrahera ELNES-signaler frilägga
imaginärdelen. Därefter antas att realdelen faller bort och resulterande sig-
nalen enbart kommer från imaginärdelen. Det oförväntade tillskottet anty-
dar att detta antagande inte är helt korrekt och att realdelen visar någon
form av asymmetri som påverkar EMCD-signalen väsentligt. Grunden för
denna asymmetrien är oklar tillsvidare och det behövs mer forskning även
här.
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1
I N T RODUCT I ON

By combining the high spatial resolution of modern transmission electron
microscopes (TEMs) down to the atomic level while being element specific
and accessible with more or less lab sized experimental equipment, electron
energy loss magnetic chiral dichroism (EMCD) promises to be a powerful in-
vestigation technique for magnetic materials. EMCD was first theorized to
be accessible in an interferometric electron energy loss spectroscopy (EELS)
experiment by exploiting the properties of a special scattering geometry in
2003 [1]. In 2006 Schattschneider et al. demonstrated that it is feasible to ex-
tract a magnetic signal in the proposed experiment, which is similar in shape
to the signal seen in x-ray magnetic circular dichroism (XMCD) [2]. In this
experiment the magnetic signal is obtained by taking the difference of two
electron energy loss near-edge structures (ELNES)-spectra of the 𝐿2- and 𝐿3-
edges of Fe measured in said scattering geometry from a two-beam case of
a systematic row of Bragg spots. However, the measured signal was found
to be considerably weaker than a computer simulation predicted it to be.

Until today many successful EMCD measurements have been carried out:
the technique has been extended to scanning transmission electron micro-
scope (STEM) [3] and the resolution of the technique has been improved to
the sub-nanometer regime by use of convergent beams and the double differ-
ence method [3–7]. In 2010 electron vortex beams (EVBs) were experimentally
demonstrated [8] and they were predicted to enhance the EMCD-signal to al-
low for atomic resolution microscopy of the magnetic state of materials [9].
In the case of EVBs a successful EMCD measurement is yet to be reported
and this discrepancy between theory and experiment leads naturally to the
question if the experimental setup is to be improved or if there are certain
effects that are not properly considered in the simulations. One such possi-
ble effect are non-dipole transitions since most of the published results from
simulations of EMCD were carried out in a convenient and computationally
less expensive dipole approximation. As it will become clear in section 2.1.1
the dipole approximation amounts to a Taylor expansion of an exponential
in the expression for the double differential scattering cross section (DDSCS)
according to

𝑒𝑖𝐪⋅𝐑 = 1 + 𝑖𝐪 ⋅ 𝐑 + 𝒪(2), (1.1)

i.e. only terms up to the first order are taken into account. This approach
is justified as long as the argument of the exponential is small. In ELNES,
however, one has often situations where 𝐪 ⋅ 𝐑 ≈ 1. Theoretical results, how-
ever, show that the dipole approximation gives reasonable results in 3d-
ferromagnetic systems [10]. A more accurate, yet computationally more de-
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manding, treatment of said exponential factor is based on the Rayleigh ex-
pansion, i.e.

𝑒𝑖𝐪⋅𝐑 = 4𝜋
∞
∑
𝜆=0

𝜆
∑
𝜇=−𝜆

𝑖𝜆𝑌 𝜇
𝜆 (𝐪/𝑞)𝑌𝜆𝜇 ∗ (𝐑/𝑅)𝑗𝜆(𝑞𝑅), (1.2)

where 𝑌 𝜇
𝜆 are spherical harmonics and 𝑗𝜆 spherical Bessel functions.

As the title suggests the outset for the present work was to investigate
the role of non-dipole transitions on the EMCD-signal obtained from ELNES-
spectra simulations. In order to do so, ELNES-spectra of the 𝐿2- and 𝐿3-edge
of bcc-Fe need to be simulated in dipole approximation and up to some or-
der of the Rayleigh expansion, which is a computationally expensive task.
These theoretical spectra, however, allow at the same time for further in-
vestigations on the influence of certain experimental technicalities such as
the post-edge normalization range, the chosen difference method for EMCD-
extraction, and the detector position.

This work is structured into 4 chapters: A description of the theoretical
framework of the computational method used to simulate ELNES-spectra is
given in chapter 2. Chapter 3 describes thereafter the method and results of
the electronic structure calculation of the ground state of bcc-Fe. Chapter 4
is dedicated to the description of the method used to simulate the required
ELNES-spectra and other computational or procedural details. Chapter 5 deals
with the analysis od the results and their discussion. Final conclusions are
drawn in chapter 6.



2
THEOR Y O F E LN E S AND EMCD

This chapter is dedicated to a brief overview of the necessary theory required
to understand the simulations performed in this work. Section 2.1 contains
a brief introduction into the concept of ELNES. The remainder of this chap-
ter will deal with a description of the theoretical concepts and equations
needed in order to calculate ELNES-spectra: First an overview of the theoret-
ical concepts of inelastic electron scattering and the mixed dynamic form
factor (MDFF) are given in section 2.1.1. The theory of Bloch waves and dy-
namical diffraction is briefly developed in section 2.1.2 and section 2.1.3 uses
these concepts to motivate the idea behind EMCD. Finally an expression used
for the calculation of the mixed dynamic form factor (MDFF) is given in sec-
tion 2.1.4.

2.1 e l ectron energy lo s s near - edge structure s

This section gives a qualitative introductory overview of the physics of
ELNES and motivates the following more mathematical sections. It summa-
rizes some of the key aspects of chapters 4, 38 and 39 of the book byWilliams
and Carter [11].

The transmission electron microscope (TEM) is a powerful yet complicated
device for the investigation of material properties. In a TEM so-called fast
electrons of kinetic energy of typically 60-300 keV produced by an electron
gun are focused onto a specimen using electron optical lenses. For thin
enough specimen the electrons pass through it as the ”T” in in the abbrevia-
tion ”TEM” emphasizes. A fraction of the electrons in the beam interacts with
the electronic structure and nuclei of the specimen via elastic and inelastic
scattering processes. Using another set of electron lenses in the beam line
of the microscope and behind the specimen, it is possible to form either a
diffraction pattern (DP) or image of the specimen in the detector plane of
the instrument. A scintillator-photomultiplier (PM) tube or charge-coupled
device (CCD) camera is located in the detector plane behind the sample in
order to detect the scattered electrons and thus record the formed image
or DP. The electron optics of a TEMs can be adjusted to produce a variety of
different beam types, such as more conventional parallel beams and conver-
gent beams, but eventually also more complex ones such as electron vortex
beams (EVBs) [9, 12].

Imaging and diffraction are the classical core functions of a TEM. Inelas-
tic processes, however, generate a wealth of additional signals that require
the TEM to be outfitted with specialized hardware: on one hand one has sec-
ondary signals, such as x-rays and secondary electrons, and on the other
hand electron energy loss spectroscopy (EELS), i.e. the analysis of the energy
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spectrum of the scattered beam electrons. The EELS-signal can be measured
experimentally using a magnetic-prism spectrometer.

The beam electrons do not experience a change in their energy in an elas-
tic scattering event. Examples of elastic scattering are Rutherford scattering
of electrons on nuclei and Bragg scattering observed for crystalline specimen.
The beam electrons in a TEM scatter mainly elastically on the specimen’s nu-
clei since the large difference in mass between an electron and a nucleus
reduces the energy transfer to basically zero. Bragg scattering occurs due to
elastic electron scattering on crystal planes and similar to x-rays, electrons
can be used to form DPs of the specimen, which allow for the investigation
of its crystal structure. The formation of these DPs is in comparison with x-
rays much more complicated due to the electrons’ stronger interaction with
matter: in the case of x-rays the scattering process can often be simplified to
single elastic scatteringwhich allows in turn for good prediction of the inten-
sity of Bragg spots. DPs formed in a TEM on the other hand exhibit so-called
pendellösung-oscillations as a result of plural or multiple elastic scattering
on the lattice planes of the specimen, called dynamical diffraction. These os-
cillations are effectively (periodic) variations in the intensity of Bragg spots
due to changes of the thickness of the specimen. Dynamical diffraction is
one of the reasons why the interpretation of TEM images requires often the
comparison to the results of image simulations as there is no simple mathe-
matical expression to account for it.

In contrast one describes a process as inelastic scattering if the scatter-
ing object experiences a change in its energy. There exists a multitude of
different interactions with the specimen which form the inelastic part of
EELS spectra but they all have in common that they are somewhat related
to the electronic structure of the specimen. Without going into too much
detail, Williams and Carter group them into three major groups [11, p. 54]:
processes that generate x-rays, processes that generate other (secondary)
electrons, and processes that result from collective interactions with many
electrons or atoms. All these processes produce valuable secondary signals
that can be analyzed with different tools such as x-ray and Auger electron
spectrometers. In EELS, however, one detects the beam electrons after their
interaction with the specimen and analyzes the information carried in their
energy-loss spectrum.

In figure 2.1 an example EELS spectrum is depicted and features of some of
the aforementioned processes are indicated: at zero energy loss the spectrum
shows the so-called zero loss peak (ZLP), which is by far the strongest signal
in the spectrum. The ZLPs is formed by mainly elastically scattered electrons
and these electrons can be used to enhance contrast and resolution of TEM
images [11, p. 702]. The second strongest contribution to the spectrum in
figure 2.1 stems from the so-called plasmon peak(s) at low energy losses.
Plasmons are collective excitations of almost free electrons in the valence
and conduction band. For thin specimen only one plasmon peak is observed
due the low probability for plural scattering. However as the thickness in-
creases, the intensity of the plasmon peak increases because of the greater
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Figure 2.1: Schematic overview of the features commonly seen in EELS spectra.
Modified reprint of the original figure uploaded by Wikipedia user Mag-
nunor [13].

probability of scattering and further peaks appear due to plural scattering
[14].

At energy losses of more than about 50 eV one often speaks of high en-
ergy loss spectra and the signal of interest in this regime stems from ioniza-
tion edges, i.e. core-loss processes, where tightly bound electrons are excited
from core-shells into the conduction band.The sharp onset of the edges gives
them their name and is due to the quantization of atomic energy levels and
the conservation of energy: at the onset energy the beam electron have lost
just enough energy to excite a core-electron to the lower edge of the con-
duction band, right above the Fermi-energy. The energy-loss, at which the
ionization edges appear, is element specific and allow thus for the analy-
sis of the elemental composition of the specimen. The ionization edges are,
however, superimposed on a rapidly decreasing background which is due
to random plural plasmon scattering. The background is often assumed to
follow a simple power law of the form [11, p. 726]

𝐼 = 𝐴 ⋅ 𝐸−𝑟 , (2.1)

where 𝐴 and 𝑟 are fitting parameters and 𝐸 is the energy loss.
The term electron energy loss near-edge structures (ELNES) describes the

EELS spectrum close to these ionization edges, which contains information
on the unoccupied density of states (DOS) of the specimen.The investigations
carried out in this work focus solely on results from simulated ELNES-spectra
of bcc-Fe which governs the rest of this chapter.

The calculation of ELNES spectra can generally be thought of as a 4 step
process: first the ground state electronic structure of the specimen’s atoms
including their core-electrons and the unoccupied DOS need to be calculated.
Next the beam electron’s wave function at the sites of the target atoms needs
to be computed, followed by the calculation of the transitionmatrix elements
between initial and final states of the target atoms. Finally the electron’s
wave function needs to be ”propagated” to the detector. In the following
sections this process will be described in more detail.
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2.1.1 Inelastic Scattering and DDSCS

The so-called double differential scattering cross section (DDSCS) 𝜕2𝜎
𝜕Ω𝜕𝐸 is the

key quantity that needs to be computed in order to simulate ELNES-spectra. It
quantifies the probability that an electron, which lost an energy 𝐸 as a result
of inelastic scattering, is scattered towards the (infinitesimal) solid-angle dΩ.
Experimentally the integrated DDSCS,

𝜕𝜎
𝜕𝐸 = ∫Ω

𝜕2𝜎
𝜕Ω𝜕𝐸 dΩ , (2.2)

is proportional to the energy-loss loss spectrum recorded by a detector cov-
ering the scattering angle Ω.

Thin specimen justify a first-order Born or single scattering approxima-
tion of the inelastic scattering event. The incident electron is in this approx-
imation idealized to undergo only one core loss event and the DDSCS for in-
elastic scattering of a fast incident electron described by a plane wave with
initial wave vector 𝝌𝑖 into a plane wave with wave vector 𝝌𝑓 on a core-
electron in the initial state |𝑖⟩ reads [10, 15]

𝜕2𝜎
𝜕Ω𝜕𝐸 = 4𝛾 2

𝑎20
𝜒𝑓
𝜒𝑖

𝑆(𝐪, 𝐸)
𝑞4 , (2.3)

where 𝛾 = 1/√1 − (𝑣/𝑐)2 is a relativistic factor correcting themass of the elec-
tron with velocity 𝑣 , 𝐪 = 𝝌𝑖 − 𝝌𝑓 is the momentum transfer in the scattering
process and

𝑆(𝐪, 𝐸) = ∑
𝑖,𝑓

|| ⟨𝑓 |𝑒𝑖𝐪⋅�̂� |𝑖⟩||
2
𝛿(𝐸𝑖 − 𝐸𝑓 + 𝐸) (2.4)

is the so-called dynamic form factor (DFF). �̂� is the position operator of
the target electron and |𝑓 ⟩ is its final state. The transition matrix element
𝑓 (𝐪) = ⟨𝑓 |𝑒𝑖𝐪⋅�̂� |𝑖⟩ is also called form factor. Here and in the following low
temperatures will be assumed such that the Fermi-Dirac distribution govern-
ing the occupancy of initial and final states can be approximated by a step
function. The sum over initial states, first appearing in equation 2.4, is then
only to be taken over occupied states and the sum over final states only over
unoccupied states.

In dipole approximation only the linear term in the Taylor expansion of
the exponential factor is kept according to equation (1.1) and equation (2.3)
becomes thus

𝑆dipole(𝐪, 𝐸) = ∑
𝑖,𝑓

|| ⟨𝑓 |𝐪 ⋅ �̂�|𝑖⟩||
2𝛿(𝐸𝑖 − 𝐸𝑓 + 𝐸). (2.5)

This equation will be used to motivate the idea behind the first EMCD ex-
periment.

The information about the phase of the form factor 𝑓 (𝐪) is lost in the
DDSCS according to (2.3) which leads to the so-called phase-problem in
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diffraction experiments. Kohl and Rose derived an expression for the DDSCS
in an experiment, in which the incident wave is a coherent superposition
𝑢𝑒𝑖𝐤 + 𝑣𝑒𝑖𝐤′ of two plane waves with wave vectors 𝐤 and 𝐤′, which can be
thought of as being generated by a biprism [16]. The DDSCS reads then [1]

𝜕2𝜎
𝜕Ω𝜕𝐸 = 4𝛾 2

𝑎20
𝑘𝑓
𝑘𝑖

[|𝑢|2 𝑆(𝐪, 𝐪, 𝐸)𝑞4 + |𝑣|2 𝑆(𝐪
′, 𝐪′, 𝐸)
𝑞′4 (2.6)

+ 2ℜ{𝑢𝑣
∗𝑆(𝐪, 𝐪′, 𝐸)}
𝑞2𝑞′2 ] , (2.7)

where 𝐪 = 𝐤𝑖 − 𝐤𝑓 and 𝐪′ = 𝐤′𝑖 − 𝐤𝑓 , i.e. both incoming plane waves are
scattered in the same direction 𝐤𝑓 , and the dynamic form factor of equation
2.3 is generalized to the so-called mixed dynamic form factor (MDFF)

𝑆(𝐪, 𝐪′, 𝐸) = ∑
𝑖,𝑓

⟨𝑖|𝑒𝑖𝐪⋅�̂� |𝑓 ⟩ ⟨𝑓 |𝑒−𝑖𝐪′⋅�̂� |𝑖⟩ 𝛿(𝐸𝑖 − 𝐸𝑓 + 𝐸). (2.8)

For 𝐪 = 𝐪′ one notes that the MDFF reduces to the DFF of equation 2.4. In
dipole approximation the MDFF becomes

𝑆dipole(𝐪, 𝐪′, 𝐄) = ∑
𝑖,𝑓

⟨𝑖|𝐪 ⋅ �̂�|𝑓 ⟩ ⟨𝑓 |𝐪′ ⋅ �̂�|𝑖⟩ 𝛿(𝐸𝑖 − 𝐸𝑓 + 𝐸). (2.9)

It shall be noted here for reference purposes that the MDFF satisfies always

𝑆(𝐪, 𝐪′, 𝐸) = 𝑆∗(𝐪′, 𝐪, 𝐸). (2.10)

as one sees from equation (2.8) and it furthermore satisfies [2]

𝑆(𝐪, 𝐪′, 𝐸) = 𝑆(−𝐪, −𝐪′, 𝐸), if the system has an inversion center (2.11)
𝑆(𝐪, 𝐪′, 𝐸) = 𝑆(−𝐪′, −𝐪, 𝐸), if time-reversal symmetry holds. (2.12)

As a byproduct of these equations one finds that if both symmetries hold,
the MDFF becomes a real quantity.

Equation 2.7 reminds qualitatively of the expression for the intensity in
a double slit experiment, where the last term is the interference term. It de-
pends on the relative phase of the two incoming waves and it should be
possible to extract the phase information from the DDSCS in a suitable ex-
periment. In section 2.1.3 it will be described how a magnetic field can give
rise to an imaginary part of the MDFFwhich in turn leads to a dichroic signal
known as EMCD. The following section deals with a description of the effects
of the crystal symmetry.

2.1.2 Bloch waves and dynamical diffraction

Crystals are highly symmetric and periodic assemblies of atoms. In theory
one idealizes them often to be infinitely periodic which is a good approxima-
tion in many cases.The crystal symmetry is conveniently described by defin-
ing a unit cell of the crystal structure, which is infinitely often repeated in
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θB θB

θB θB
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Figure 2.2: Schematic drawing of the fundamental process of dynamical diffraction:
If an electron wave is scattered under the Bragg angle 𝜃B on a lattice
plane (blue colored), there is a high probability of subsequent scattering
under the Bragg angle 𝜃B on an adjacent lattice plane, which effectively
reverses the first scattering event. As a result of such a double scattering
the electron is still part of the direct, unscattered beam. Note that the
angles are greatly exaggerated for clarity of presentation.

all spatial directions to form the crystal. The repetition is described in terms
of the so-called direct lattice 𝐑𝑝𝑞𝑟 = 𝑝𝐚 + 𝑞𝐛 + 𝑟𝐜. Here the so-called direct
lattice vectors 𝐚, 𝐛, and 𝐜 are used and 𝑝, 𝑞, and 𝑟 are integers. The direct
lattice vectors satisfy in a cubic crystal structure such as bcc

𝑎 = |𝐚| = |𝐛| = |𝐜|, 𝐚 ⟂ 𝐛 ⟂ 𝐜, (2.13)

where 𝑎, 𝑏, and 𝑐 are the direct lattice parameters. The direct lattice is ac-
companied by the so-called reciprocal lattice, which is essentially the fourier
transform (FT) of the direct lattice. The reciprocal lattice vectors 𝐚∗, 𝐛∗, and
𝐜∗ satisfy for a cubic crystal structure

𝑎∗ = |𝐚∗| = |𝐛∗| = |𝐜∗| = 2𝜋
𝑎 , (2.14)

𝐚∗ ∥ 𝐚, 𝐛∗ ∥ 𝐛, 𝐜∗ ∥ 𝐜 ⇒ 𝐚∗ ⟂ 𝐛∗ ⟂ 𝐜∗. (2.15)

Points in the reciprocal lattice are indexed by the integerMiller-indices (ℎ𝑘𝑙),
which describes the direction of the normal 𝐠ℎ𝑘𝑙 = ℎ𝐚∗ + 𝑘𝐛∗ + 𝑙𝐜∗ of a set of
lattice planes in the crystal structure. After introducing the concepts of the
direct and reciprocal lattices the focus is now shifted towards the process of
elastic electron scattering in crystals.

An electron wave incident on a crystal is elastically scattered on the crys-
tal lattice planes and the constructive interference of the scattered waves
creates a characteristic spot pattern, the diffraction pattern (DP). The posi-
tion of the spots in the DP is governed by the Laue condition, which states
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that resonant elastic scattering occurs inside a crystal for scattering vectors
𝚫𝐤 = 𝐤o − 𝐤i, which satisfy

𝐚 ⋅ 𝚫𝐤 = 2𝜋ℎ (2.16)
𝐛 ⋅ 𝚫𝐤 = 2𝜋𝑘 (2.17)
𝐜 ⋅ 𝚫𝐤 = 2𝜋𝑙. (2.18)

𝐤i is thereby the wave vector of the incoming electron wave and 𝐤o the wave
vector of the outgoing electron wave. The Laue condition states thus that
𝚫𝐤 = 𝐠ℎ𝑘𝑙 = ℎ𝐚∗ + 𝑘𝐛∗ + 𝑙𝐜∗𝐠, i.e. 𝚫𝐤 is a vector of the reciprocal lattice.
The spots in a DP can therefore be labeled by the Miller-indices (ℎ𝑘𝑙) of the
reciprocal lattice and they are often called Bragg spots since one can show
that the Laue condition is equivalent to the Bragg condition [17, pp. 99-100]

2𝑑 sin(𝜃B) = 𝑛𝜆, (2.19)

where 𝑑 is the distance between lattice planes, 𝜃B the Bragg angle, 𝜆 the
wave length and 𝑛 an integer. Pictorially a Laue peak for a given scattering
vector 𝚫𝐤 corresponds to a Bragg peak for the reflection off a lattice plane
perpendicular to 𝚫𝐤 under Bragg angle 𝜃B[17, pp. 100]. The Laue condition
motivates the picture of the crystal as a beam splitter: the intensity of a Bragg
spot is basically the square modulus of a plane wave component of the final
wave function exiting the crystal in the direction of the Bragg spot, i.e. the
intensity of a beam split off by the crystal.

The description of elastic scattering is not complete with this suggestive
image, however. The elastic electron scattering cross section is considerably
larger than the inelastic scattering cross section and even in thin specimen
strong multiple elastic scattering occurs [11]. It thus does not suffice to con-
sider only the 1st-order Born approximation, i.e. only single elastic scattering.
Instead one needs to take into account so-called dynamical diffraction. The
basic process behind dynamical diffraction is depicted in figure 2.2: the large
elastic scattering cross section of electrons causes a considerable fraction of
the incident electron beam to be scattered into diffracted beams character-
ized by their Miller-indices (ℎ𝑘𝑙) after passing through just a few Å of the
sample. These diffracted beams can easily be scattered again on the crystal’s
lattice planes since their angle of incidence is exactly the Bragg angle 𝜃B. In
this way a scattered beam can be scattered again into the direct beam 𝟎 or
a different scattered beam (ℎ′𝑘′𝑙′). The most striking feature of dynamical
diffraction are periodic thickness-dependent intensity variations of Bragg
spots known as Pendellösung [11].

After motivating the process of dynamical diffraction the remainder of
this section is dedicated to the (brief) description of the mathematical frame-
work used to simulate dynamical diffraction.

The beam electron’s wave function incident on a crystal, however, does
not necessarily satisfy the symmetry of the crystal potential and is thus not
an eigenstate of the crystal Hamiltonian. A better description of the wave
functionΨ(𝐫) is obtained if it is expanded into a set of Blochwaves 𝑏𝑗 (𝐤𝑗 , 𝐫𝑗),
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which satisfy the crystal’s periodicity by construction [18, p. 118-120]. The
expansion of the electron wave function reads inside the crystal

Ψ(𝐫) = ∑
𝑗
𝜖𝑗𝑏𝑗 (𝐤𝑗 , 𝐫𝑗) (2.20)

𝑏𝑗 (𝐤𝑗 , 𝐫𝑗) = 𝑒𝑖𝐤𝑗 ⋅𝐫∑
𝐠
𝐶(𝑗)𝐠 𝑒𝑖(𝐤𝑗−𝐠)⋅𝐫, (2.21)

where 𝐤𝑗 is the wave vector of the 𝑗-th Bloch wave and 𝜖𝑗 is an expansion
coefficient determining the excitation strength of the 𝑗-th Bloch wave. 𝐶(𝑗)𝐠
are Bloch coefficients. The incident wave function is taken to be a single
plane wave,

Ψi(𝐫) = 𝑒𝑖𝝌in⋅𝐫, (2.22)

where 𝝌i is the incident wave vector outside the crystal. The 𝑧-axis is from
here on chosen to be parallel or anti-parallel to the direction of the incident
beam and the entrance surface of the crystal is chosen to be parallel to the
𝑥-𝑦-plane and intersect with the 𝑧-axis at 𝑧 = 𝑡0. The wave functions in- and
outside the crystal and their derivatives need to be continuous on the en-
trance surface of the electron beam. This requirement constraints the Bloch
wave vectors to read [10, 18]

𝐤𝑗 = 𝝌in + 𝛾 (𝑗)𝐧, (2.23)

where 𝐧 is a unit vector normal to the entrance surface. This shows that
the 𝑥- and 𝑦-component of the wave vector are continuous and only the
𝑧-component may change by a small value 𝛾 (𝑗) due to the difference in the
potential inside and outside the crystal. This boundary condition fixes the
value of the excitation coefficient [10]

𝜖𝑗 = 𝐶(𝑗)∗
𝟎 𝑒−𝑖𝛾 (𝑗)𝑡0 . (2.24)

The star (*) signals here complex conjugation. Inserting this into equation
(2.20) and rewriting 𝐤𝑗 according to equation (2.23) the wave function inside
the crystal becomes

Ψ(𝐫) = ∑
𝑗𝐠

𝐶(𝑗)∗
𝟎 𝐶(𝑗)𝐠 𝑒𝑖𝛾 (𝑗)(𝐧⋅𝐫−𝑡0)𝑒𝑖(𝝌in+𝐠)⋅𝐫. (2.25)

Among others, Rusz et al. [10] describe how the Schrödinger equation (SEQ) is
solved inside the crystal in the high energy limit in order to obtain the wave
vector changes 𝛾 (𝑗) and the Bloch coefficients𝐶(𝑗)𝐠 as the eigenvalues and the
components of the eigenvectors of a linear eigenvalue problem, respectively
[18].

It should be noted that equation (2.25) mathematically includes the effect
of dynamical diffraction: the exponential term is periodic in the product 𝐧⋅𝐫,
which is the thickness, at which the wave function is evaluated. This shows
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that the contribution of a term corresponding to a certain vector of the re-
ciprocal lattice 𝐠 reciprocal lattice (a beam) is strongly thickness dependent,
which leads to the Pendellösung-oscillations in the diffraction pattern.

The last topic in this section concerns the so-called systematic row approx-
imation: by tilting a specimen inside the TEM one can select to a certain
degree, which Bloch waves are strongly excited. This is understood by con-
sidering the geometry of the Ewald sphere and how it intersects points in the
reciprocal lattice. Tilting the incoming beam with respect to the reciprocal
lattice changes, which and how many points the Ewalds sphere intersects.
Since only reciprocal lattice points, which lie on the Ewald sphere, are visi-
ble in a diffraction pattern, the tilt can be used to suppress reflections. Two
cases are important for the measurement of EMCD: the so-called two-beam
case and the three-beam case. In the two-beam case only the direct beam
𝟎 = 𝐠000 and the beam associated with a selected reciprocal lattice vector
+𝐆 ≡ 𝐠ℎ𝑘𝑙 are visible. A three-beam case DP on the other hand shows three
excited reciprocal lattice points or beams: −𝐆 ≡ 𝐠ℎ̄�̄� ̄𝑙 , 𝟎 and +𝐆.

In the next section the phenomenon of EMCD is explained by drawing from
the concepts developed in this section.

2.1.3 Electron energy-loss magnetic chiral dichroism

Themomentum transfer 𝐪 in inelastic electron scattering plays an analogous
role to the polarization vector 𝜺 in x-ray absorption spectroscopy and be-
sides EMCD, magnetic linear dichroism (MLD) has been demonstrated as well
in EELS [1, 2, 19, 20]. In XMCD-measurements the difference in absorption of
left- and right-circularly polarized x-ray photons allows to probe the spin-
dependent unoccupied density of states of magnetic materials. The question
is, however, how this concept can be carried over to inelastic electron scat-
tering since electrons do not have a polarization: it turns out that circular
polarization is replaced by the concept of ”chirality” in EMCD as it is moti-
vated below.

Circularly polarized light is a superposition of two linearly polarized plane
waves with polarization vectors 𝜺 and 𝜺′ and resulting polarization vector
𝜺 ± 𝑖𝜺′, which satisfy

𝜺 ⟂ 𝜺′, |𝜺| = |𝜺′| (2.26)

i.e. the polarization vectors are orthogonal and the phase of the plane waves
differs by 𝜋

2 . If one naively replaces the momentum transfer 𝐪 by the chiral
momentum transfer 𝐪 ± 𝑖𝐪′, equation (2.5) becomes

∑
𝑖,𝑓

[|| ⟨𝑖|𝐪 ⋅ �̂�|𝑓 ⟩||
2 + || ⟨𝑖|𝐪′ ⋅ �̂�|𝑓 ⟩||

2

± 2ℑ{ ⟨𝑖|𝐪 ⋅ �̂�|𝑓 ⟩ ⟨𝑓 |𝐪′ ⋅ �̂�|𝑖⟩}]𝛿(𝐸𝑖 − 𝐸𝑓 + 𝐸). (2.27)

This result is effectively the DDSCS of equation (2.7) in dipole approximation
of the MDFF according to equation (2.9) for 𝑢 = 1 and 𝑣 = ±𝑖. One notices
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further that the difference of the DDSCS for right- and left- chirality (𝑣 = 𝑖
and 𝑣 = −𝑖, respectively) gives access to the imaginary part of the MDFF, i.e.

[ 𝜕2𝜎
𝜕Ω𝜕𝐸 ]

𝑣=𝑖

dipole
− [ 𝜕2𝜎

𝜕Ω𝜕𝐸 ]
𝑣=−𝑖

dipole

= 4∑
𝑖,𝑓

ℑ{ ⟨𝑖|𝐪 ⋅ �̂�|𝑓 ⟩ ⟨𝑓 |𝐪′ ⋅ �̂�|𝑖⟩}𝛿(𝐸𝑖 − 𝐸𝑓 + 𝐸)

= 4ℑ{𝑆dipole(𝐪, 𝐪′, 𝐸)} (2.28)

and thus a dichroic effect appears by changing the chirality of the electron
beam.

The physics of EMCD is, however, more subtle than this naive replacement
suggests. If one recalls the physical situation for which (2.7) is derived, one
notes that the incident wave is a coherent superposition of two plane waves
of differing wave vectors 𝐤𝑖 and 𝐤′𝑖 which are scattered towards the same di-
rection 𝐤𝑓 . The equivalence of equations (2.27) and (2.9) in dipole approxima-
tion for 𝑎 = 1 and 𝑏 = ±𝑖 suggests that one can observe the ELNES-equivalent
of XMCD in the interference term of the scattering cross section of a coher-
ent super position of plane waves. For closest similarity to XMCD one should
setup the experiment such that |𝐪| = |𝐪′|, i.e., one studies the EMCD equiva-
lence of circular polarization and not the equivalent of elliptical polarization.

It needs to be stressed at this point, however, that none of these conditions
need to be strictly satisfied for the observation of EMCD, as the presence of a
dichroic signal is connected to a non-vanishing imaginary part in the MDFF
as equation (2.28) illustrates. This can be understood further by rewriting
the MDFF in dipole approximation according to

𝑆dipole(𝐪, 𝐪′, 𝐸) = ∑
𝑖,𝑓

⟨𝑖|𝐪 ⋅ �̂�|𝑓 ⟩ ⟨𝑓 |𝐪′ ⋅ �̂�|𝑖⟩ 𝛿(𝐸𝑖 − 𝐸𝑓 + 𝐸)

= 𝐪𝑇(𝐸)𝐪′, (2.29)

where 𝑇(𝐸) is a complex 3 × 3 matrix. As such it can be written as

𝑇(𝐸) = 𝑅(𝐸) + 𝑖𝐼 (𝐸), (2.30)

𝑅(𝐸) = ℜ {𝑇 (𝐸)} and 𝐼 (𝐸) = ℑ {𝑇 (𝐸)}, i.e., as a sum of its real and imagi-
nary part. Since the MDFF satisfies equation (2.10) it follows that 𝑅(𝐸) is a
real symmetric and 𝐼 (𝐸) is a real antisymmetric matrix. One notes here that
the imaginary part of the MDFF explicitly carries the notion of anisotropy
with respect to the momentum transfer, since its trace is zero and only off-
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diagonal elements are non-zero. Inserting equation (2.30) into equation (2.29)
and explicitly performing the matrix multiplications in the imaginary part,

𝐪𝐼 (𝐸)𝐪′ =
⎛
⎜⎜
⎝

𝑞𝑥
𝑞𝑦
𝑞𝑧

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 𝐼𝑥𝑦(𝐸) 𝐼𝑥𝑧(𝐸)
−𝐼𝑥𝑦(𝐸) 0 𝐼𝑦𝑧(𝐸)
−𝐼𝑥𝑧(𝐸) −𝐼𝑦𝑧(𝐸) 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

𝑞′𝑥
𝑞′𝑦
𝑞′𝑧

⎞
⎟⎟
⎠

=
⎡⎢⎢⎢
⎣

⎛
⎜⎜
⎝

𝑞𝑥
𝑞𝑦
𝑞𝑧

⎞
⎟⎟
⎠
×
⎛
⎜⎜
⎝

𝑞′𝑥
𝑞′𝑦
𝑞′𝑧

⎞
⎟⎟
⎠

⎤⎥⎥⎥
⎦
⋅
⎛
⎜⎜
⎝

𝐼𝑦𝑧(𝐸)
𝐼𝑥𝑧(𝐸)
𝐼𝑥𝑦(𝐸)

⎞
⎟⎟
⎠
, (2.31)

one can identify the off-diagonal terms of the imaginary part 𝐼 (𝐸) with a
cross product of the momentum transfers. Equation (2.29) reads then

𝐪𝑇(𝐸)𝐪′ = 𝐪𝑅(𝐸)𝐪′ + 𝑖(𝐪 × 𝐪′) ⋅ 𝐦(𝐸), (2.32)

where 𝐦(𝐸) = (𝐼𝑦𝑧(𝐸), 𝐼𝑥𝑧(𝐸), 𝐼𝑥𝑦(𝐸))𝑇 carries information about the mag-
netic moment of the target atom. This is not a clean derivation why the
imaginary part of theMDFF is connected to themagnetic moment and a quali-
tative motivation shall suffice at this point: as noted in section 2.1.1 theMDFF
has only an imaginary part if time-reversal or inversion symmetry breaking
occurs. In a cubic crystal such as bcc-iron inversion symmetry is not broken
and thus time-reversal symmetry needs to be broken in order to observe an
imaginary part. Note that this is the case in the presence of magnetic fields
and the interested reader can find a more detailed discussion in the work of
Schattschneider et al. [2, 4] and included references.

Equation (2.32) has a useful form for discussing the geometry used to mea-
sure EMCD: in a TEM the sample is subject to a strongmagnetic field along the
optical axis of the instrument, which stems from the electron optical lenses.
This field acts on the atomic magnetic moments and in the case of a ferro-
magnet such as bcc-iron all magnetic moments align in the same direction,
parallel to the magnetic field lines. Choosing the optical axis of the micro-
scope along the 𝑧-axis𝐦(𝐸) aligns parallel to the 𝑧-axis too. In this case the
imaginary part of the MDFF in dipole approximation becomes

ℑ{𝑆dipole(𝐪, 𝐪′, 𝐸)} = (𝐪 × 𝐪′) ⋅ 𝐦(𝐸) = (𝑞𝑥𝑞′𝑦 − 𝑞𝑦𝑞′𝑥 )𝑚𝑧(𝐸). (2.33)

Note that only the 𝑥- and 𝑦-components of the momentum transfers 𝐪 and
𝐪′ are of concern in obtaining an EMCD-signal in this geometry. Observe fur-
thermore how the sign of the EMCD-signal changes with respect to changes
of the sign of the 𝑞𝑥 -, 𝑞𝑦-components

𝑞𝑥 , 𝑞′𝑥 → −𝑞𝑥 , −𝑞′𝑥 ∶ ℑ{𝑆dipole(𝐪, 𝐪′, 𝐸)} → −ℑ{𝑆dipole(𝐪, 𝐪′, 𝐸)} (2.34)
𝑞𝑦 , 𝑞′𝑦 → −𝑞𝑦 , −𝑞′𝑦 ∶ ℑ{𝑆dipole(𝐪, 𝐪′, 𝐸)} → −ℑ{𝑆dipole(𝐪, 𝐪′, 𝐸)} (2.35)

𝐪, 𝐪′ → −𝐪, −𝐪′ ∶ ℑ{𝑆dipole(𝐪, 𝐪′, 𝐸)} → ℑ{𝑆dipole(𝐪, 𝐪′, 𝐸)}. (2.36)
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The real part in equation (2.32) does not change sign under these transfor-
mations of the 𝑞𝑥 -, 𝑞𝑦-components. Under the assumption of a 𝑅(𝐸) being
diagonal the difference between MDFFs reads in dipole-approximation

𝑆dipole(𝐪𝟏, 𝐪′𝟏, 𝐸) − 𝑆dipole(𝐪𝟐, 𝐪′𝟐, 𝐸)
= 𝐪𝟏𝑅(𝐸)𝐪′𝟏 + 𝑖(𝐪𝟏 × 𝐪′𝟏) ⋅ 𝐦(𝐸)
− 𝐪𝟐𝑅(𝐸)𝐪′𝟐 − 𝑖(𝐪𝟐 × 𝐪′𝟐) ⋅ 𝐦(𝐸)
= 2𝑖(𝐪𝟏 × 𝐪′𝟏) ⋅ 𝐦(𝐸), (2.37)

where 𝐪𝟏 = (𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧), 𝐪′𝟏 = (𝑞′𝑥 , 𝑞𝑦 , 𝑞𝑧), 𝐪𝟐 = (−𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧), and 𝐪′𝟐 =
(−𝑞′𝑥 , 𝑞𝑦 , 𝑞𝑧). Property (2.34) of the MDFF is used in this derivation.

The next question is thus how one can obtain a chiral electron beam, i.e.,
a beam that allows for the extraction of the imaginary part of the MDFF. Ac-
cording to equation (2.8) any phase shift between the coherent incoming
waves, which is not an integer multiple of 𝜋 , gives rise to a non-vanishing
imaginary part. However, the strength of the signal is theoretically maxi-
mized if the incoming waves are dephased by 𝜋

2 in the simple case described
by equation (2.8). EMCD experiments exploit the beam splitter properties of a
crystal in order to obtain a coherent superposition of incoming waves: as de-
scribed in section 2.1.2 the electron’s wave function becomes a superposition
of Bloch waves inside the crystal and all partial waves of differing recipro-
cal lattice vector 𝐠 can give rise to a MDFF. In the first EMCD-experiments the
two-beam case was used used, in which only the 𝟎 and𝐆-components of the
Bloch wave are exited. These plane waves have as well a phase shift of close
to 𝜋

2 for specimen that are not too thick [2]. The remainder of this section
is dedicated to the description of how the Bloch wave formalism enters the
calculation of the DDSCS for inelastic electron scattering on a crystal.

So far the discussion of the DDSCS and the MDFF was centered around the
inelastic electron scattering on a single atom and thus a generalization to
crystals is due: Kohl and Rose argue that this generalization is straightfor-
ward as the specimen’s atoms can be considered as single, independent en-
tities in ELNES since a core-electron is excited to an unoccupied state above
the Fermi-level and this process is in good approximation unaffected by the
other surrounding atoms [16, p. 206] and the DDSCS becomes an incoherent
sum of the DDSCSs

𝜕2𝜎�̃�
𝜕Ω𝜕𝐸 of a single atom at position �̃� according to equation

(2.7). Thus

𝜕2𝜎
𝜕Ω𝜕𝐸 =∑

�̃�

𝜕2𝜎�̃�
𝜕Ω𝜕𝐸

=4𝛾
2

𝑎20
𝑘𝑓
𝑘𝑖

∑
�̃�
[|𝑢|2 𝑆�̃�(𝐪, 𝐪, 𝐸)𝑞4 + |𝑣|2 𝑆�̃�(𝐪

′, 𝐪′, 𝐸)
𝑞′4

+ 2ℜ{𝑢𝑣
∗𝑆�̃�(𝐪, 𝐪′, 𝐸)}
𝑞2𝑞′2 ] . (2.38)
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Furthermore the momentum transfers 𝐪 and 𝐪′ need to satisfy in an infinite
crystal [16]

𝐠 = 𝐪 − 𝐪′ = 𝐤𝑖 − 𝐤′𝑖 , 𝐠 = ℎ𝐚∗ + 𝑘𝐛∗ + 𝑙𝐜∗ (2.39)

in addition to the properties of the MDFF already shown in equations (2.10),
(2.11), and (2.12). 𝐠 is a reciprocal lattice vector and equation 2.39 restricts the
incoming wave vectors such that only those pairs of waves contribute to the
MDFF in a crystal, whose wave vectors differ by a reciprocal lattice vector
𝐠. This strict requirement is partly lifted, however, for finite thickness of the
crystal. Due to breaking of infinite translational symmetry in 𝑧-direction the
reciprocal lattice ”smears” out and initial wave vectors satisfying 𝐤𝑖 − 𝐤′𝑖 =
𝐠 + 𝐬 contribute as well to the DDSCS. 𝐬 is non-zero in some vicinity of 𝐠 and
called excitation error.

This incoherent sum can be extended to the case where the incoming and
outgoing waves for the inelastic scattering event are Bloch waves. The in-
coming wave reads then according to equation (2.25)

Ψin(𝐫) = ∑
𝑗𝐠

𝐶(𝑗)∗
𝟎 𝐶(𝑗)𝐠 𝑒𝑖𝛾 (𝑗)(𝐧⋅𝐫−𝑡0)𝑒𝑖(𝝌in+𝐠)⋅𝐫. (2.40)

The inelastic event changes the energy of the electron and one finds

𝐪 = 𝐤(𝑙) − 𝐤(𝑗) + 𝐡 − 𝐠 (2.41)
𝐪′ = 𝐤(𝑙′) − 𝐤(𝑗′) + 𝐡′ − 𝐠′, (2.42)

where 𝐤(𝑙), 𝐤(𝑙′) are the wave vectors of the outgoing wave. The principle of
reciprocity is invoked for the outgoing wave: different beams in the DP can
be viewed as the plane wave components of the beam electron’s wave func-
tion after exiting the sample. Time reversal and the exchange of the source
and detector allow then to solve the SEQ in the crystal for the outgoing wave
in a similar way as one obtained the incoming wave [10]. One effectively
propagates a plane wave back into a Bloch wave which is propagated back-
wards through the specimen to the site of the inelastic event. The outgoing
wave reads then

Ψout(𝐫) = ∑
𝑙𝐡

𝐷(𝑙)
𝟎 𝐷(𝑙)∗

𝐡 𝑒𝑖𝛾 (𝑙)(𝐧⋅𝐫−𝑡)𝑒𝑖(𝝌out+𝐡)⋅𝐫. (2.43)

𝐷(𝑙)
𝐡 are the Bloch coefficients of the outgoing wave. The thickness of the

crystalline specimen is taken to be 𝑡 and the exit surface of the crystal is
taken to be parallel to the entrance surface. In this geometry the DDSCS be-
comes [10]

𝜕2𝜎
𝜕Ω𝜕𝐸 = ∑

𝐠𝐡𝐠′𝐡′
1
𝑁𝐮

∑
𝐮

𝑆𝐮(𝐪, 𝐪′, 𝐸)
𝑞2𝑞′2 𝑒−𝑖(𝐪−𝐪′)⋅𝐮 ∑

𝑗𝑙𝑗′𝑙′
𝑌 𝑗𝑙𝑗′𝑙′
𝐠𝐡𝐠′𝐡′𝑇𝑗𝑙𝑗′𝑙′(𝑡), (2.44)

where

𝑌 𝑗𝑙𝑗′𝑙′
𝐠𝐡𝐠′𝐡′ = 𝐶(𝑗)∗

𝟎 𝐶(𝑗)𝐠 𝐷(𝑙)
𝟎 𝐷(𝑙)∗

𝐡 𝐶(𝑗′)
𝟎 𝐶(𝑗′)∗𝐠 𝐷(𝑙′)

𝟎 𝐷(𝑙′)∗
𝐡 , (2.45)

𝑇𝑗𝑙𝑗′𝑙′(𝑡) = 𝑒𝑖[(𝛾 (𝑗)−𝛾 (𝑗
′))+(𝛾 (𝑙)−𝛾 (𝑙′))]⋅ 𝑡2 sinΔ(𝑡/2)Δ(𝑡/2) (2.46)
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Table 2.1: Comparison of the relativistic quantum numbers of the initial states of
the 𝐿2 and 𝐿3-edge of the bcc-Fe.

edge initial state 𝑛 𝑙 𝑗 𝑗𝑧 𝜅
𝐿2 2𝑝1/2 2 1 1/2 -1/2, 1/2 1

𝐿3 2𝑝3/2 2 1 1/2 -3/2, -1/2, 1/2, 3/2 -2

and

Δ = (𝛾 (𝑗) − 𝛾 (𝑗′)) − (𝛾 (𝑙) − 𝛾 (𝑙′)). (2.47)

The sum over 𝐮 in equation (2.44) is effectively a sum over the basis of the
lattice, i.e., all the atoms in the primitive cell of the crystal structure.The next
section deals with a description of how the MDFF is evaluated in practice.

2.1.4 Evaluation of mixed dynamic form factor

This section is dedicated to a description of the evaluation process of the
mixed dynamic form factor (MDFF). In order to simulate ELNES-spectra and
EMCD equation (2.44) needs to be evaluated. In order to do so theMDFFmust
be rewritten into a tractable from.

First a suitable form of the initial and final state needs to be found. The
initial state |𝑖⟩ in ELNES is a deep-lying atomic core state, that does not partic-
ipate in the bonding. The crystal potential for these states is to good approx-
imation spherically symmetric. For precise ELNES calculations of the spin-
orbit split 𝐿2 and 𝐿3-edge of bcc-iron relativistic effects giving rise to the
fine structure of atomic orbitals need to be taken into account. The initial
state is thus taken to be a solution of the Dirac equation and is as such simi-
lar to an orbital of the free relativistic hydrogen atom, adapted to the larger
nuclear charge of iron 𝑍 = 26. The quantum numbers of the initial states are
the main quantum number 𝑛, the total angular momentum quantum number
𝑗, the magnetic quantum number 𝑗𝑧 and the relativistic quantum number 𝜅.
𝐸𝑛𝑙𝜅 is furthermore its relativistic energy. The values of these quantum num-
bers are tabulated for the initial states of the bcc-Fe 𝐿2 and 𝐿3-edge in table
2.1. Considering each edge on its own the sum over the final state is replaced
by the sum over 𝑗𝑧 , i.e.,

∑
𝑖
(… ) ⟶ ∑

𝑗𝑧
(… ) (2.48)

The final state |𝑓 ⟩ in ELNES is an itinerant Bloch-state, i.e. an unoccupied
continuum state |𝜈𝐤⟩ in the band structure of the investigated material: in
the energy-loss window covered by ELNES the energy transfer from the beam
electron to the core-electron in initial state |𝑖⟩ is just large enough to promote
it into an unoccupied band state close to the Fermi level. The quantum num-
bers of the Bloch-state 𝐤 and 𝜈 correspond to the band index 𝜈 and the Bloch
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wave vector 𝐤. The sum over the final state is thus replaced by the sum over
bands and 𝐤

∑
𝑓
(… ) ⟶ ∑

𝜈𝐤
(… ). (2.49)

A complete derivation of the MDFF is included in the supplementary infor-
mation to the paper by Schattschneider et al. [2]. The result of this derivation
reads

𝑆(𝐪, 𝐪′, 𝐸) = ∑
𝑚𝑚′

∑
𝐿𝑀𝑆

∑
𝐿′𝑀 ′𝑆′

∑
𝜆𝜇

∑
𝜆′𝜇′

4𝜋𝑖𝜆−𝜆′(2𝑙 + 1)√[𝜆, 𝜆′, 𝐿, 𝐿′]

⋅ 𝑌 𝜇
𝜆 (𝐪/𝑞)∗𝑌

𝜇′
𝜆′ (𝐪′/𝑞′) ⟨𝑗𝜆(𝑞)⟩𝐸𝐿𝑆𝑗 ⟨𝑗𝜆′(𝑞′)⟩𝐸𝐿′𝑆′𝑗

⋅ (𝑙 𝜆 𝐿
0 0 0

) (𝑙 𝜆′ 𝐿′
0 0 0

) ( 𝑙 𝜆 𝐿
−𝑚 𝜇 𝑀

)( 𝑙 𝜆′ 𝐿′
−𝑚′ 𝜇′ 𝑀′)

⋅∑
𝑗𝑧
(−1)𝑚+𝑚′(2𝑗 + 1) ( 𝑙 1

2 𝑗
𝑚 𝑆 −𝑗𝑧

)( 𝑙 1
2 𝑗

𝑚′ 𝑆′ −𝑗𝑧
)

⋅∑
𝜈𝐤

𝐷𝜈𝐤𝐿𝑀𝑆𝐷𝜈𝐤∗𝐿′𝑀 ′𝑆′𝛿 (𝐸 + 𝐸𝑛𝑙𝜅 − 𝐸𝜈𝐤) , (2.50)

where [𝜆, 𝜆′, 𝐿, 𝐿′] = (2𝜆 + 1)(2𝜆′ + 1)(2𝐿 + 1)(2𝐿′ + 1).
In the derivation of equation 2.50 exponential 𝑒𝑖𝐪⋅�̂� was expanded accord-

ing to the Rayleigh expansion given in equation (1.2) and 𝑌 𝜇
𝜆 are the spheri-

cal harmonics that stem from this expansion. All radial integrals are grouped
together in equation 2.50 and read

⟨𝑗𝜆(𝑞)⟩𝐸𝐿𝑆𝑗 = ∫
𝑅MT

0
d𝑟 𝑟2𝑢𝐸𝐿𝑆(𝑟)𝑅𝑗𝑆(𝑟)𝑗𝜆(𝑞𝑟), (2.51)

where 𝑢𝐸𝐿𝑆(𝑟) is the radial wave function of the final state projected onto the
𝐿𝑀𝑆 subspace within themuffin tin radius 𝑅MT (c.f. chapter 3 for a definition
of 𝑅MT). 𝑅𝑗𝑠(𝑟) is the radial wave function of the initial state projected onto
the position-spin basis |𝑟 , 𝑠⟩ and 𝑗𝜆 are spherical Bessel functions. Wigner
3-𝑗 symbols,

( 𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

) = (−1)𝑗1−𝑗2−𝑚3

√2𝑗3 + 1 ⟨ 𝑗1𝑚1𝑗2𝑚2| 𝑗3(−𝑚3)⟩ , (2.52)

and Wigner 3-𝑗𝑚 symbols

√
(2𝑙1 + 1)(2𝑙2 + 1)(2𝑙3 + 1)

4𝜋 (𝑙1 𝑙2 𝑙3
0 0 0

) ( 𝑙1 𝑙2 𝑙3
𝑚1 𝑚2 𝑚3

) (2.53)

= ∫𝑌𝑙1𝑚1(𝜃, 𝜑)𝑌𝑙2𝑚2(𝜃, 𝜑)𝑌𝑙3𝑚3(𝜃, 𝜑) sin 𝜃 d𝜃 d𝜑 (2.54)

are used in equation (2.50) to express the summation of involved angular
momenta. The last sum in equation (2.50) is the so-called cross-DOS

∑
𝜈𝐤

𝐷𝜈𝐤𝐿𝑀𝑆𝐷𝜈𝐤∗𝐿′𝑀 ′𝑆′𝛿 (𝐸 − 𝐸𝜈𝐤) (2.55)



2.1 e l ectron energy lo s s near - edge structure s 18

shifted by an energy 𝐸𝑛𝑙𝜅 . This quantity can be evaluated in from electronic
structure calculations. In the present work the WINE2k density functional
theory (DFT)-code is used as described in chapter 3.

It is evident that equation (2.50) cannot be calculated to all orders in 𝜆, 𝜆′
and the expansion needs to be cut off: the terms

lamb1 ∶ 0 ≤ 𝜆, 𝜆′ ≤ 1
lamb2 ∶ 0 ≤ 𝜆, 𝜆′ ≤ 2
lamb3 ∶ 0 ≤ 𝜆, 𝜆′ ≤ 3,

will be used in the following to describe an approximation to the MDFF,
which is computed for multipole terms up to a certain order. The lamb3-
approximation is most accurate approximation level included in this work.

Sorting the components of the lamb3-MDFF according to 𝜆, 𝜆′ and repre-
senting it in matrix-form, one gets

⎛
⎜
⎜
⎜
⎝

00 01 02 03
10 11 12 13
20 21 22 23
30 31 32 33

⎞
⎟
⎟
⎟
⎠

, (2.56)

which visualizes nicely what is meant by the term cross term: the cross terms
(off-diagonal elements) of this matrix correspond to terms that mix different
multipole terms. The matrix in equation (2.56) is hermitian and the contribu-
tions of cross terms are thus summed according to

̃01 = 01 + 10
̃02 = 02 + 20
⋮

̃33 = 23 + 32.
Equation (2.56) becomes then

⎛
⎜
⎜
⎜
⎝

00 ̃01 ̃02 ̃03
− 11 ̃12 ̃13
− − 22 ̃23
− − − 33

⎞
⎟
⎟
⎟
⎠

.

For the remainder of this work the following notation is adopted for the
cross terms:

01 ≡ ̃01
02 ≡ ̃02

⋮
23 ≡ ̃23



3
E L E C T RON I C S T RUCT UR E CA LCU LAT I ON O F
BCC - I R ON

This chapter is dedicated to the brief presentation of the results of a DFT-
simulation of bcc-iron using the WIEN2K software package [21]. Section 3.1
deals with a brief description of the performed DFT-calculation and the ob-
tained DOS is presented and checked for convergence in section 3.2.

3.1 method of wien2k

The WIEN2k software package [21–23] is used to compute the electronic
structure of bcc-iron in the framework of scalar-relativistic DFT. DFT is based
on the Hohenberg-Kohn theorems, which state the existence of a unique
correspondence between the external potential in the many-body SEQ and
the ground state electron density [24]. Therefore the density gives access to
all properties of a material and it is the only quantity one needs to know.
The Hohenberg-Kohn theorems do, however, not provide a way of obtain-
ing the density. The second fundamental ingredient to DFT are thus the self-
consistent Kohn-Sham equations, which provide an algorithm for calculat-
ing the density in a single electron mean-field picture [25].

WIEN2k employs by default the full-potential APW+lo+LO- and linearized
augmented plane wave (LAPW)+LO-methods to solve the Kohn-Sham equa-
tions for all electrons in the studied system. A very good introductory text
about these methods by S. Cottenier is freely available [26]. The interested
reader is referred to this text for mathematical details and further references
as these are omitted here for the sake of brevity.

The crystal is divided into two separate spatial regions in the spirit
of the muffin tin approximation within the linearized augmented plane
wave (LAPW)- and augmented plane wave (APW)(+lo)-method: spheres of a
so-called muffin tin radius 𝑅MT are centered around each atomic site of the
crystal and the region in between the atomic spheres is called the interstitial
region. Inside the atomic spheres the potential varies rapidly but it is in good
approximation spherically symmetric. Thus the Kohn-Sham equations can
be efficiently solved in a basis of spherical harmonics and spherical Bessel
functions. The potential is on the other hand relatively flat in the interstitial
region and obeys the crystal symmetry, which allows to efficiently use a
plane wave basis. The boundary condition is that the wave functions inside
the atomic region and inside the interstitial region need to match on the
boundary of both regions.

TheAPW- and linearized augmented planewave (LAPW)-basis use the same
plane wave expansion in the interstitial region but differ in the basis set
used in the atomic region and in the matching conditions at the boundary

19
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between the atomic and the interstitial region: The APWs have an energy-
dependent radial part part in the atomic region. This makes the APW-basis
inherently inefficient since the radial part needs to be computed again and
again for every Kohn-Sham eigenvalue (KSE) even though the basis set re-
quired for a certain accuracy is smaller than for a plane wave basis [26].
The LAPWs-method remedies this energy-dependence by linearizing the ra-
dial part around the center energy of the respective band. The linearization
error increases thereby with the square of the difference between the KSE
and the band center energy. Doing so increases the basis set compared to
the APW-basis but the overall computational costs are lowered. The APW+lo
method on the other hand adds local orbitals (therefore ”+lo”) to the basis set
in the atomic region, which are required to have zero value at the boundary
between the atomic and interstitial region. It thereby achieves to have an
energy-independent basis set of similar size as the APW-basis for a certain
accuracy and is thus inherently faster than a calculation using the LAPW-
basis.

In all the named methods the quality and thus size of the basis set is com-
monly chosen to be determined by the product

𝑅min
MT 𝐾max

of theminimal muffin tin radius 𝑅min
MT of all atoms in the system and themaxi-

mummagnitude of the wave vector considered in the plane wave basis 𝐾max.
This makes intuitively sense since the potential in the interstitial region is
more flat the larger one chooses 𝑅min

MT and the plane wave basis requires less
plane waves to sufficiently describe the wave function. Conversely shrink-
ing 𝑅min

MT means that 𝐾max needs to increase in order to produce results of
comparable quality, i.e., constant 𝑅min

MT 𝐾max.
Furthermore local orbitals (LOs) can be added to the LAPW- and APW+lo-

basis in order to improve the description of so-called semi-core states, i.e.,
states whose wave function is mainly contained in the muffin tin sphere but
has a non-negligible value outside the muffin tin radius. These states can
therefore not be considered pure core states. The LOs are added to the basis
in the atomic region and are required to have zero value at the boundary
between the interstitial and atomic regions. Lastly the LOs are not to be con-
fused with the local orbitals of the APW+lo-basis.

As mentioned before WIEN2k uses by default fully relativistic solutions
to the Dirac equation for core states and a mix of the APW+lo+LO- and lin-
earized augmented plane wave (LAPW)+LO-basis. Using the same 𝑅min

MT 𝐾max
the APW+lo-basis is considerably larger than the LAPW-basis. One can thus
treat states that require a larger basis, such as 𝑑 and 𝑓 states, in the APW+lo-
basis and keep using LAPW for the other states. This procedure allows to
reduce 𝑅min

MT 𝐾max in comparison with a pure LAPW-calculation and reduces
thus the computational costs while maintaining the accuracy.

Since the initial states of the 𝐿2 and 𝐿3-edge of bcc-iron are the spin-orbit
split states 2𝑝1/2 and 2𝑝3/2, respectively, on needs to include the effects of
spin-orbit coupling into the electronic structure calculation. WIEN2k allows
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to treat relativistic effects such as spin-orbit fully relativistically for core
states and in a scalar relativistic approximation for valence states and local
orbitals [27]. The procedure for obtaining a self-consistent relativistic calcu-
lation in WIEN2k is to first obtain a non-relativistic self-consistent density
and to use this density as an input to the relativistic calculation. The rela-
tivistic calculation needs another initialization since the number of symme-
try operations is often reduced in the relativistic calculation in comparison
with the non-relativistic case.

3.2 computat ional deta i l s of the dft s imulat ion

The first part of this section is focused on the description of the simulation
parameters used to obtain a converged WIEN2k-simulation of bcc-iron: a
bcc-lattice parameter of 2.8665Å is used [28] and the muffin tin radius is
set to 𝑅MT = 2.3 𝑎0. In the initialization of the non-relativistic calculation
the PBE-GGA exchange correlation potential of Perdew, Burke and Ernzerhof
[29] is used and the energy-cutoff separating core and band states is set to
−6.0 Ry. LOs are added for 3𝑝 semi-core states and the APWs+lo-basis is used
for the 3𝑝-, 3𝑑-, and 4𝑠-states. A charge convergence criterion of 0.000 001
is used throughout all self-consistent calculations. The GMAX parameter is
set to 15.0 a0−1 and during the initialization of the relativistic calculation
the magnetic moment is chosen to be aligned to the 𝑧-axis. The number of
𝑘-points 𝑁𝑘 in the Brillouin zone (BZ) and the parameter 𝑅MT𝐾max are the
main parameters governing the quality of the WIEN2k-simulation.

The second part of this section deals with the convergence test of the
WIEN2k-simulation: the projected DOS is one of the main quantities influ-
encing the overall quality of the calculation of the MDFF. Therefore the con-
vergence of the DOSwith respect to the number of 𝑘-points 𝑁𝑘 in the BZ and
the basis size given by the parameter 𝑅MT𝐾max is examined by comparing
the resulting total DOS. The results of this convergence test are depicted in
the subfigures of figure 3.1. All figures show a typical DOS of bcc-iron with
the so-called pseudo-gap in the minority-spin channel (here spin-down with
respect to the 𝑧-axis) and a magnetic moment arising from the asymmetry
of the DOS with respect to the spin-direction. The convergence tests show
that the DOS is well converged for 𝑁𝑘 ≥ 10 000 and 𝑅MT𝐾max ≥ 7.0. The
calculation using 𝑁𝑘 ≥ 15 000 and 𝑅MT𝐾max = 8.5 is chosen for subsequent
calculations of the MDFF. The value of the total spin-magnetic moment per
atom is in this calculation 𝑚𝑆 = 2.22 𝜇B.
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Figure 3.1: Visualization of the convergence behavior of the DOS of bcc-Fe with
respect to the number of k-points in the BZ 𝑁𝑘 (a) and the LAPW/APW-
convergence parameter 𝑅MT𝐾max (b). (c) shows the DOS for 𝑁𝑘 = 15 000
and 𝑅MT𝐾max = 8.5 a0−1 of the calculation used for the simulation of ELNES
and EMCD. All calculations include spin-orbit coupling on the DOS is plot-
ted around the Fermi energy 𝐸𝐹 . Refer to the text of section 3.2 for further
details on the other used parameters.



4
S IMU LAT I ON METHOD

This chapter deals with a description of the performed simulations. The gen-
eral aim of the DDSCS-calculation and the subsequent postprocessing is to
produce ELNES-spectra that reflect the state of the current theoretical un-
derstanding of the contributing processes. The extraction procedure of the
EMCD-signal closely resembles the procedure performed on experimental
spectra in order to observe its influence on the obtained EMCD-signal. Special
emphasis is put on the analysis and discussion of non-dipole contributions
to the measured signal.

This section is divided into three subsections: in subsection 4.1 themethod
of calculating the DDSCS is described and all simulation parameters are de-
scribed.Thereafter the extraction procedure for the EMCD-signal is described
in subsection 4.2. Subsection 4.3 deals with a description of how the ratio of
orbital to spin-magnetic moment is extracted from the EMCD-signal.

4.1 computat ional procedure for calculat ion of the
ddsc s

Equations (2.44) and (2.50) are solved using an algorithm developed by Rusz
et al. [30]. In a first step the cross-DOS is calculated for an energy range
of 0 eV to 30 eV above the Fermi level using the parameters described and
converged in section 3.2. This is a rather large energy range and the cross-
DOS will suffer from linearization errors in the WIEN2k-basis for states far
from the Fermi level (c.f. chapter 3).

The unoccupied part of the electronic structure of bcc-iron is thereby ap-
proximated by the unoccupied DFT-states. It should be noted at this point
that this is an approximation since the Hohenberg-Kohn theorems hold only
for the ground state electron density [24] and DFT is fundamentally a theory
for the electronic ground state. However, the use of DFT states has a long tra-
dition and many spectral features are well reproduced [31, 32]. Apart from
the cross-DOS the radial wave functions of the core states are also taken from
the converged WIEN2k-simulation.

In a next step the Bloch wave expansion according to equations (2.44)-
(2.47) is calculated for thicknesses 1 nm to 50 nm. The EMCD-signal has been
found to be strongest between 10 nm to 20 nm [10], which is as well chosen
to be the range of thicknesses that the present work focuses on.

Furthermore the calculation makes another simplifying assumption for
the momentum transfer vector 𝐪 (and similarly 𝐪′)

𝐪 = 𝐤(𝑙) − 𝐤(𝑗) + 𝐡 − 𝐠 ≈ 𝝌out − 𝝌in + 𝐡 − 𝐠, (4.1)

23
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Figure 4.1: Convergence of the unbroadened DDSCS with respect to the Bloch wave
cutoff 𝑃min at the 𝐿3-edge (subfigure (a)) and at the 𝐿2-edge (subfigure (b)).
These spectra are computed for a scattering angle of (𝜃𝑥 , 𝜃𝑦) = (9.0, 9.0)
and thickness 15 nm.



4.1 computat ional procedure for calculat ion of the ddsc s 25

i.e., the change of the electron’s wave vector in 𝑧-direction is neglected
(𝛾 (𝑗) = 0 in equation (2.23)).

The cut-off criterion for the Bloch wave expansion is given by the require-
ment that those Bloch waves are neglected for which the Bloch coefficients
in equation (2.45) satisfy [30]

||𝑌 𝑗𝑙𝑗′𝑙′
𝐠𝐡𝐠′𝐡′ || < 𝑃min. (4.2)

Rusz et al. found further that DPs are well converged for a choice of 𝑃min =
0.0001 [30] and this value is chosen for this work too. A convergence check of
the entire diffraction pattern is not feasible due to limited computational re-
sources. A convergence check of the DDSCSwith respect to 𝑃min is displayed
in figure 4.1, which shows that the chosen value 𝑃min = 0.0001 delivers well
converged spectra.

The incident beam is a single plane wave of energy 𝐸kin = 200 keV beam,
which corresponds to parallel illumination of the specimen. The bcc-iron
crystal is tilted to an exact three beam case by an angle 𝛼 ≈ 10° in the 𝑦-𝑧-
plane. The crystallographic [016]-direction is then parallel to the 𝑧-axis. For
a bcc-structure reflections 𝐠ℎ𝑘𝑙 satisfying ℎ + 𝑘 + 𝑙 = odd are forbidden and
in the exact three beam case the Bragg spots

𝐆 ≡ 𝐠200,
𝟎 ≡ 𝐠000,

and − 𝐆 ≡ 𝐠2̄00
are excited. As in mentioned in section 3.2 the lattice constant of bcc-iron is
𝑎 = 2.8665Å and the length of |𝐆| is thus

|𝐆| = 2 ⋅ 2𝜋𝑎 = 4.383Å−1. (4.3)

The corresponding scattering angle is

𝜃𝐆 = 2𝜃B ≈ 2𝜆
2𝑑 = 2𝜆

𝑎 ≈ 17.51mrad, (4.4)

𝜃B is the Bragg angle and 𝑑 = 𝑎
2 = 2𝜋

|𝐆| the spacing of lattice planes, which
correspond to the 𝐆-reflection. 𝜆 is the relativistic de-Broglie wave length of
the electron, i.e,

𝜆 = ℎ
𝑝 = ℎ

𝑚e𝑣√
1 − 𝑣2

𝑐20
= ℎ
𝑚e𝑐0

[√
(𝑅 + 𝐸kin)2

𝑅2 − 1]
−1

≈ 2.51 pm, (4.5)

where 𝑣 = 𝑐0√1 − 𝑅2
(𝑅+𝐸kin)2

is the relativistic velocity of the beam electron
and 𝑅 = 𝑚e𝑐20 its energy in the rest-frame.

For a given pixel and given set of energy losses, i.e., a final wave vector
𝝌out, the convergence criterion in equation 4.2 limits the number of excited
Bloch waves to a finite set. Thus only a finite set of vectors 𝐠, 𝐠′, 𝐡, 𝐡′ enter



4.2 extract ion of the emcd - s i gnal 26

equation 4.1 resulting in a finite set of momentum transfers 𝐪, 𝐪′. The MDFF
is then evaluated for this finite set of momentum transfers using the elec-
tronic structure information from WIEN2k according to equation (2.50). In a
last step the calculated MDFF and Bloch coefficients are used to compute the
DDSCS according to equation 2.44.

The calculation of the Bloch coefficients, the MDFF and the final summa-
tion are performed by executing the programs DYNDIF, MDFF and DYNDIF in
that order. The programs are developed by Dr. Ján Rusz at the Department
of Physics and Astronomy at Uppsala University. The MDFF-code is modi-
fied for the present work to allow the output of all cross-terms for pairs of
momentum transfers 𝐪, 𝐪′ as well as the imaginary part of the total MDFF
and the 11 term. Similarly the DYNDIF-code is modified to be able to sum
these cross terms to DDSCSs, which stem solely from the different diagonal
and cross-terms as well as approximation levels described in section 2.1.4.
Furthermore a collection of analysis tools is developed for the subsequent
post-processing and analysis steps required for this work [33].

The result of these simulations is a data cuboid of edge-, energy- and thick-
ness resolved diffraction patterns: the DDSCS is computed for a range of scat-
tering angles 𝜃𝑥 , 𝜃𝑦 , energy losses 𝐸𝑗 , 𝑗 ∈ {𝐿2, 𝐿3} and thicknesses 𝑡 :

𝜃𝑥 , 𝜃𝑦 ∈ [−25mrad, 25mrad], 51 × 51−grid
𝐸𝐿3 ∈ [708 eV, 738 eV], step size 0.13 eV
𝐸𝐿3 ∈ [721 eV, 751 eV], step size 0.13 eV
𝑡 ∈ [1 nm, 50 nm], step size 0.5 nm.

An edge-resolved DP is thus effectively formed at every value of 𝐸𝑗 and 𝑡 .

4.2 extract ion of the emcd - s i gnal

Experimentally the EMCD-signal is commonly extracted by means of so-
called difference methods. As their name suggests these methods yield the
EMCD-signal as a difference between spectra captured at special detector
positions in the DP. These detector positions are closely connected to the
geometrical considerations for the diffraction pattern presented in section
2.1.3. At every detector position the detector covers a certain area of the
diffraction pattern, whose size is determined by the collection angle of the
detector, in order to obtain a sufficiently high count rate and the captured
ELNES-spectrum stems thus from a range of scattering angles. The power-
law background due to plural plasmon scattering is commonly removed
from the measured spectra by fitting the pre-edge region (c.f. figure 2.1) to
a function of the form of equation (2.1). Before extracting the EMCD-signal a
so-called post-edge normalization is applied to the spectra processed in this
way in order to account for differences in the count rate at the different de-
tector positions. Lastly the difference of the post-edge normalized spectra is
taken according to one of the difference methods and thus the EMCD-signal
is obtained.
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There are two principal approaches to the extraction of the EMCD-signal
from a theoretical point of view: one can either use the real and imaginary
part, or only the imaginary part of the MDFF to compute the DDSCS and
thus the DP. The first extraction variant resembles more closely the exper-
imental reality and will be called extracted EMCD (eEMCD) in the following.
The second variant corresponds to the direct extraction of the ”pure” mag-
netic signal since the imaginary part of the MDFF is in dipole approxima-
tion solely due to the presence of magnetic moments as described in section
2.1.1 and 2.1.3. The EMCD-signal obtained in this way will be termed pure
EMCD (pEMCD) in the following. It should be noted here that the pEMCD rep-
resents an ideal case in which one has a complete cancellation of the real
parts of the MDFF by means of the chosen difference method which is most
certainly not fully attainable in an experiment. From a theoretical point of
view it is however to be expected that eEMCD and pEMCD yield very similar
results. It should be noted here that the terms eEMCD and pEMCD are not used
in the literature and serve the sole purpose of a convenient terminology in
this work.

eEMCD and pEMCD do not differ in anything other than the way the raw
DDSCS is computed and the subsequent post processing steps are similar in
both cases: In order to account for core-level broadening the raw DDSCS is
convoluted with a Loentzian profile as detailed in section 4.2.1 below. The
theoretical ELNES-spectrum at a certain thickness and detector position is ob-
tained by summing the broadened spectra over the pixels covered by the de-
tector. After post-edge normalization the spectra obtained in this way should
closely resemble experimental ELNES-spectra after background removal and
post edge normalization if all the processes contributing to the spectrum are
addressed properly in the theory. The EMCD-signal is extracted from such
spectra via a difference method as in the case of experimental spectra. The
EMCD-signal obtained in this way should in theory be very close to exper-
imentally obtained signals and allows for the investigation of the effects,
which the post-edge normalization and difference method have on the the-
oretically expected EMCD-signal.

The following section deals with a brief description of the broadening of
the raw DDSCS computed by the procedure detailed in section 4.1. Thereafter
section 4.2.2 contains procedural details about the post-edge normalization
and section 4.2.3 describes the three difference methods for the extraction of
EMCD.

4.2.1 Spectral broadening

ELNES-spectra exhibit three distinct types of broadening: core-hole or core-
level broadening, broadening of the excited state, and instrumental broaden-
ing [34]. The first two types are broadenings of electron energy levels due
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Figure 4.2: Visualization of the effect of spectral broadening on the calculated DDSCS:
subfigure (a) displays the raw DDSCS at thickness 15 nm and scattering an-
gle (9.0mrad, 9.0mrad). In subfigure (b) the broadened DDSCS is depicted.
Refer to the main text of section 4.2.1 for details on the broadening.
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to their finite-lifetime, which is usually taken into account by a convolution
of the calculated raw DDSCS with a Lorentzian profile of the form

𝐿(𝑥; 𝑥0, 𝛾 ) =
1
𝜋𝛾 [ 𝛾 2

(𝑥 − 𝑥0)2 + 𝛾 2 ] , (4.6)

where 𝛾 specifies the half width at half maximum (HWHM) and 𝑥0 is the
position of the central maximum.

The broadening parameter for the excited state broadening, however, is
energy dependent and different models exist on how to take it into account.
A simple model increases the broadening parameter linearly with the elec-
tron energy loss [34]. Instrumental broadening on the other hand is caused
by the finite energy spread of the electron beam in the TEM and can be mod-
eled by a convolution of the spectrum with a Gaussian function [34]. In this
work only core-level broadeningwith parameters 𝛾2 = 1.2 eV and 𝛾3 = 0.7 eV
for 𝐿2 and 𝐿3 edge, respectively, is taken into account in order to keep the
broadening model simple and free from experimental peculiarities. It should
be noted that the chosen values for the broadening parameter have been rec-
ommended to Dr. Ján Rusz by Prof. Dr. Peter Oppeneer in private communi-
cation for the calculation of x-ray absorption near-edge structures (XANES)-
spectra: they are larger than for pure core-level broadening but take to some
degree other effects into account such as final state broadening. Given their
independence on energy it is to be expected that the broadening of the ELNES-
spectra is underestimated for large energies.

4.2.2 Post-edge normalization

Experimentally one needs a way to reduce the effect of differences in the
count rate between different detector positions due to slight misorientations
of the specimen and other effects. In order to achieve this result experimen-
talists resort to the procedure of post-edge normalization in which the en-
ergy loss integral over the mostly featureless post-edge region [𝐸−, 𝐸+] of an
ELNES-spectrum is normalized to unity, i.e.

𝜕�̃�
𝜕𝐸 =

𝜕𝜎
𝜕𝐸

∫𝐸+𝐸−
𝜕𝜎
𝜕𝐸 d𝐸

, (4.7)

where 𝜕�̃�
𝜕𝐸 is the post-edge normalized ELNES-spectrum. The definition of the

post-edge region [𝐸−, 𝐸+] is to some extent arbitrary and often 𝐸− is taken to
be the beginning of the more or less constant part of the post-edge spectrum
and 𝐸+ the end of the measured energy loss window. The interested reader
is referred to section 5.1 for an example of an experimental spectrum.

From a theoretical point of view the procedure of post-edge normalization
implicitly assumes that the EMCD-signal is somewhat confined to a small
region below the 𝐿3 and 𝐿2-edge and that the spectral intensity of the post-
edge region is of a similar origin and shape in all four quadrants of the diffrac-
tion pattern. Any incomplete cancellation of the real part of theMDFF or con-
tributions of non-dipole cross-terms can thus influence the eEMCD-signal.
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Judging from figure 4.2 three choices for the post-edge normalization
range are identified:

[730.0 eV, 740.0 eV] (4.8)
[730.0 eV, 750.0 eV] (4.9)
[740.0 eV, 750.0 eV]. (4.10)

Both edges are almost entirely calculated for the first choice and it is thus the
most justified choice. The second range has the advantage of covering the a
larger interval and the normalization integral has thus a larger value. As a
result the normalized spectra are in theory less sensitive to small differences
in the exact choice of the normalization range. However, only the 𝐿2-edge
contributes for energy losses larger than about 740 eV, which has in conse-
quence a greater weight on the normalization value. The last choice is the
least justified choice for the calculation performed in this work since only
edge is calculated in this interval and the numerical value of the post-edge
integral is rather small, making the spectra more sensitive to the post-edge
normalization. The influence of these choices for the post-edge normaliza-
tion range on a range of signals is considered throughout chapter 5.

4.2.3 Difference methods for EMCD extraction

Generally one can extract EMCD via one of three methods in the three-beam
case geometry: single up-down difference, single left-right difference or a
double difference method. It should be noted that apart from the double dif-
ference method these terms are not commonly used in the literature and will
in this work only be defined for convenience.

The definition of the directions ”up”, ”down”, ”left”, and ”right” is further-
more somewhat arbitrary and done here with respect to a standard diffrac-
tion pattern in the three-beam case of a systematic row of Bragg spots: the
𝑥-axis is taken to point along the systematic row and go through the three
Bragg spots. ”Right” is then the direction of the positive and ”left” the direc-
tion of the negative 𝑥-axis. The 𝑦-axis is perpendicular to the direction of
the systematic row of Bragg spots and for a right-handed coordinate system
”up” corresponds to the positive and ”down” to the negative 𝑦-axis. Due to
the tilt of the specimen the only true mirror plane of the diffraction pattern
is the 𝑦-𝑧-plane in the two- and three-beam case, whereas the 𝑥-𝑧-plane is
not a true mirror plane.
The naming scheme of Thersleff at al. is adopted for the four distinct de-

tector positions in the three-beam case [7]: 𝑝𝑝, 𝑝𝑚,𝑚𝑝, and𝑚𝑚. The single
up-down difference is the only method one can use in the two-beam case
geometry and was as such used in the first successfully reported EMCD mea-
surement [2]. In the three-beam case the up-down difference eEMCD-signal
becomes

Δ𝜎ud(𝐸) ≡ eEMCDud(𝐸) = 𝜎(𝑝𝑝, 𝐸) − 𝜎(𝑝𝑚, 𝐸), (4.11)
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where

𝜎(𝑝𝑝, 𝐸) = 𝜕𝜎
𝜕𝐸

|||𝑝𝑝
= ∫Ω(𝑝𝑝)

𝜕2𝜎
𝜕Ω𝜕𝐸 dΩ , (4.12)

where Ω𝑝𝑝 is the scattering angle covered by the detector at position 𝑝𝑝 in
the diffraction pattern. Since the DDSCS is a linear function of the MDFF one
can split the signal at the detector up according to

𝜎(𝑝𝑝, 𝐸) = 𝜎re(𝑝𝑝, 𝐸) + 𝜎im(𝑝𝑝, 𝐸), (4.13)

where 𝜎re(𝑝𝑝, 𝐸) and 𝜎im(𝑝𝑝, 𝐸) are the energy-integrated DDSCS due to the
real part imaginary of the MDFF, respectively. The pEMCD-signal reads thus
in the case of the up-down difference method

Δ𝜎ud,im(𝐸) ≡ pEMCDud(𝐸) = 𝜎im(𝑝𝑝, 𝐸) − 𝜎im(𝑝𝑚, 𝐸) (4.14)

The single left-right difference reads on the other hand

Δ𝜎lr(𝐸) ≡ eEMCDlr(𝐸) = 𝜎(𝑝𝑝, 𝐸) − 𝜎(𝑚𝑝, 𝐸). (4.15)

Generally, an EMCD-signal extracted by means of the double difference
method is more stable with respect to small misalignments of the specimen
and it is thus the preferred extraction method today [5]. The eEMCD-signal
reads in this case

Δ𝜎dd(𝐸) ≡ eEMCDdd(𝐸)
= [𝜎(𝑝𝑝, 𝐸) + 𝜎(𝑚𝑚, 𝐸)] − [𝜎(𝑝𝑚, 𝐸) + 𝜎(𝑚𝑝, 𝐸)] . (4.16)

The expressions for the pEMCD- and eEMCD-signal carry over top the left-
right and double difference method as

Δ𝜎lr,im(𝐸) ≡pEMCDlr(𝐸) = 𝜎im(𝑝𝑝, 𝐸) − 𝜎im(𝑝𝑚, 𝐸) (4.17)
Δ𝜎dd,im(𝐸) ≡pEMCDdd(𝐸)

=[𝜎im(𝑝𝑝, 𝐸) + 𝜎im(𝑚𝑚, 𝐸)]
− [𝜎im(𝑝𝑚, 𝐸) + 𝜎im(𝑚𝑝, 𝐸)]. (4.18)

4.3 extract ion of the rat io of orb ital and sp in mag -
net i c moment

Using sum rules for EMCD [35–37] one finds for the ratio of the orbital mag-
netic moment 𝑚𝐿 to the spin magnetic moment 𝑚𝑆

𝑚𝐿
𝑚𝑆

= −23
∫𝐿3+𝐿2 Δ𝜎(𝐸) d𝐸

2 ∫𝐿3+𝐿2 Δ𝜎(𝐸) d𝐸 − 3 ∫𝐿3 Δ𝜎(𝐸) d𝐸
= 2𝑞
9𝑝 − 6𝑞 , (4.19)

where

𝑝 = ∫𝐿3
Δ𝜎(𝐸) d𝐸 , (4.20)

𝑞 = ∫𝐿3+𝐿2
Δ𝜎(𝐸) d𝐸 . (4.21)
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Δ𝜎(𝐸) is thereby the EMCD-signal. Experimentally 𝑞 is determined by aver-
aging the energy-integrated EMCD-signal according to

𝑞 = 1
𝐸𝑞+ − 𝐸𝑞− ∫

𝐸𝑞+

𝐸𝑞−
Δ𝜎(𝐸) d𝐸 . (4.22)

over an interval [𝐸𝑞−, 𝐸𝑞+] of the post-edge region. A common choice is to
set [𝐸𝑞−, 𝐸𝑞+] ≡ [𝐸−, 𝐸+], i.e., to use the same interval for post-edge normal-
ization and 𝑞-averaging.

The 𝑚𝐿/𝑚𝑆-ratio is a quantity that can be directly compared to experi-
ments and it should thus be a good indicator for the influence of non-dipole
transitions in practice.

The extracted value of the 𝑚𝐿/𝑚𝑆-ratio depends also on the extraction
procedure and experimental values of 0.22 to 0.02, 0.12 to 0.10 and 0.08 have
been reported for the single up-down, single left-right and double differ-
ence method, respectively [6]. The value for the double difference method
is thereby slightly larger in comparison with 𝑚𝐿/𝑚𝑆-ratios obtained from
other measurement techniques such as XMCD or neutron scattering [5]. Sim-
ulations have yielded values of 0.19 to −0.11, 0.071 to 0.003 and 0.036 for the
up-down, left-right and double difference methods, respectively [6].



5
S IMU LAT I ON R E S U L T S

This chapter deals with the computational results of this work and their dis-
cussion. The aim is to investigate the effect of non-dipole transitions on the
(extracted) eEMCD-signal. The procedure is thereby the following: First the
main features of simulated spectra at different approximation levels of the
MDFF are compared with experiment in section 5.1.

Thereafter edge-resolved energy-integrated maps of the pEMCD- and
eEMCD-signal are compared to each other in section 5.2 in order to spot dif-
ferences in the angular distribution of the signals that might be attributable
to non-dipole effects.

Section 5.3 continues with the investigation of non-dipole effects by con-
sidering the energy-dependence of the contributions of the strongest cross
terms to the pEMCD- and eEMCD-signal.

The ratio of the orbital magnetic moment to the spin magnetic moment
𝑚𝐿/𝑚𝑆 is one of the key quantities that are directly accessible from the EMCD-
signal as described in section 4.3. Computing𝑚𝐿/𝑚𝑆 as a function of approxi-
mation level and experimental parameters should enable one to quantify the
effect of non-dipole terms on the EMCD-signal and possibly on how to avoid
them. The results of such calculations are included in subsection 5.4.

It will, however, become apparent that the shape of the post-edge region
of the calculated spectra is of such form that experimental procedures such
as the choice of the post-edge normalization region and the averaging range
for determining the 𝑞-parameter (c.f. equation (4.22)) have a much stronger
influence on the value of the extracted 𝑚𝐿/𝑚𝑆-ratio than it is seen in ex-
periments. Furthermore it is found that the calculated DDSCS exhibits a phe-
nomenon that shall be called an apparent anisotropy which stems from an
incomplete cancellation of the real part of theMDFF.The apparent anisotropy
is analyzed and discussed further in section 5.5.

5.1 s imulated elne s - s p ectra and emcd - s i gnal s : g eneral
feature s

This section is dedicated to the description of some general features of the
calculated ELNES-spectra and the extracted EMCD-signal. Emphasis is thereby
put on similarities and differences to experimental spectra. Figure 5.1 dis-
plays two experimental ELNES-spectra of the 𝐿3- and 𝐿2-edge of bcc-ironmea-
sured by Thersleff et al. at a thickness of 50 nm using a convergent electron
beam [7]. Furthermore a collection angle 𝛽 = 8.5mrad is used and the EMCD-
signal is extracted by the double difference method. The even spectrum cor-
responds to the spectrum measured at the detector positions pp=(17.0mrad,

33
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Figure 5.1: Example of ELNES-spectra for the 𝐿3- and 𝐿2-edge of bcc-iron and the
extracted EMCD-signal measured in a double difference geometry. Refer
to the main text for further details. Reprinted figure with permission
from Thersleff et al., Phys. Rev. B 94, 134430 [7]. Copyright 2016 by the
American Physical Society.

17.0mrad) and mm (c.f. section 4.2). The odd spectrum is on the other hand
measured at positions pm and mp.

The even and the odd spectra show a sharp onset of the 𝐿3 edge at about
708 eV in figure 5.1. The intensity of the 𝐿3-edge is larger in the even spec-
trum than in the odd spectrum. At the 𝐿2-edge the odd spectrum is more
intense than the even one but the difference is smaller than at the 𝐿3-edge.
These differences between both spectra give rise to the EMCD-signal, which
is obtained as the difference of both spectra as explained in section 4.2. The
EMCD-signal is stronger at the 𝐿3-edge than at the 𝐿2-edge, where it is of
magnitude comparable to the noise, which is a common observation in ex-
periments.

The last feature of the experimental spectrum that is of importance for the
remainder of this chapter is the shape and intensity of the post-edge region
of the spectrum. It is somewhat featureless and nearly constant up to about
765 eV. The relative intensity of the post edge region is in comparison to the
cumulative intensity below the 𝐿3- and 𝐿2-edge is as a result relatively large
and choosing a post-edge normalization range of [730 eV, 740 eV] shouldn’t
give much different results than choosing it as [730 eV, 750 eV].
After considering some of the features commonly seen in experiments

the attention is in the following put on the simulated spectra: figure 5.2
and figure 5.3 display simulated spectra calculated in dipole and in lamb3-
approximation of the MDFF, respectively. The simulated spectra show simi-
larly the 𝐿3 and 𝐿2-edge as the two main peaks and reproduce the differing
peak heights well. However, the general shape differs quite substantially
from the spectra depicted in figure 5.1. The onset of the 𝐿3-edge is less
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sharp in comparison with these experimental spectra. The Lorentz broad-
ening function is said to have heavy tails, i.e., it falls rather slowly to zero
far away from the central maximum.

Another apparent difference is the appearance of a smaller intermediate
peak between the 𝐿3- and 𝐿2-edge peak. This peak in the simulation is ex-
plained by the features of the DOS for energies 7 eV to 8 eV above the Fermi
level in both spin-channels. The DOS has a rather large peak in this energy
range according to figure 3.1c and contributes a peak to the raw DDSCS of
the 𝐿3-edge at an energy loss of about 715 eV to 717 eV as depicted in figure
4.2.

Another difference between experimental spectrum and simulation re-
gards the post-edge region. In the simulations the postedge region is char-
acterized by a decreasing background as the electron loss energy increases.
On top of this decreasing background two peaks are superposed at energy
losses between 730 eV to 740 eV. The shape of the experimental spectrum
is in contrast nearly constant over a large part of the post-edge region as
described before.

Comparing the subfigures of figure 5.2 and 5.3 one notes that the spectral
shape is similar for the dipole- and lamb3-approximation. The spectra show
as well similar features such as the peaks between the 𝐿3- and 𝐿2-edge and
in the post-edge region.

The post-edge normalization achieves in figures 5.2b, 5.2c, 5.3b, and 5.3c
that the spectra for even and odd detector positions coincide in the post-edge
region for energy losses above about 735 eV. It does thereby notmattermuch
if the normalization region is chosen as [730.0 eV, 740.0 eV] or [730.0 eV,
750.0 eV].

Turning to the discussion of the EMCD-signal one notes that the shape
and relative intensity of the pEMCD-signal is not changed much by applying
a post-edge normalization. The eEMCD-signal on the other hand is strongly
affected by applying a post-edge normalization: In the case without normal-
ization the pEMCD-signal and eEMCD-signal agree well at the 𝐿2 edge. Ap-
plying the post-edge normalization shifts the eEMCD-signal upwards and the
negative valued signal at the 𝐿2-edge disappears almost entirely. This is in-
dependent of the exact choice the post-edge normalization region. A similar
observation is made at the 𝐿3-edge, where the positive signal at the 𝐿3-edge
gets enhanced by the post-edge normalization. At the 𝐿3-edge, however, the
agreement between the pEMCD- and eEMCD-signals is worse than at the 𝐿2
edge. In the region between the edges the eEMCD-signal is furthermore larger
and has a different shape compared to the pEMCD-signal.

The pEMCD-signals have very similar shape and relative intensity for
dipole- and lamb3-approximations of the MDFF. The eEMCD-signal is similar
to the pEMCD-signal in strength and general shape in the case of no applied
post-edge normalization. However, by applying a post-edge normalization
the eEMCD-signal in dipole approximation is mainly shifted upwards and the
dip in the signal at the 𝐿2-edge weakens a bit and in lamb3-approximation
the signal at the 𝐿2-edge is almost entirely suppressed. The signal at the 𝐿3-
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edge is on the other hand greatly enhanced by post-edge normalization. A
poor cancellation of non-dipole terms by the post-edge normalization could
explain these large differences between the dipole and lamb3-approximation
with respect to the post-edge normalization.

The emphasis has so far been on the differences between the pEMCD- and
eEMCD-signals. However comparing the shape of the pEMCD- and eEMCD-
signal in dipole and lamb3 approximation (figures 5.2, 5.3) to the shape of
the experimental EMCD-signal depicted in figure 5.1 one notes that the agree-
ment between the shape of the signals is closest in the case of an applied
post-edge normalization and lamb3-approximation: in the experimental and
the simulated signals the signal at the 𝐿2-edge is suppressed. Perhaps this is
the first step to an explanation of the origin of the suppressed 𝐿2-edge fea-
ture often seen in experiments. The signal at the 𝐿3 edge, however, is a lot
stronger in the simulation than in experiment. It should be noted here that it
is a reassuring result that the most realistic simulation (lamb3, applied post-
edge normalization) comes closest to the experiment but a couple of open
issues remain, first and foremost the shape of the post-edge region and the
magnitude of the post-edge integral in (4.7).

The reason for the different shapes of the post-edge region is not clear at
the moment and one could improve upon the description of the post-edge re-
gion in several ways, all of which are aimed at increasing the relative ELNES-
intensity in the post-edge region: as noted before the broadening scheme
could be revised by adding an additional energy-dependent broadening as
explained in section 4.2.1. Furthermore the description of the unoccupied
cross-DOS could be improved upon by, e.g., adding additional LOs above the
Fermi level to the LAPW-basis in the electronic structure calculation. Lastly
the cross-DOS post-edge region could be calculated for a larger energy range
at the cost of an increased linearization error in LAPW for these high-lying
post-edge states.
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Figure 5.2: Simulated spectra for a dipole approximation of the MDFF at thickness
15 nm: in subfigure (a) no post-edge normalization is applied. In sub-
figure (b) and (c) the post-edge normalization range is set to [730.0 eV,
740.0 eV] and [730.0 eV, 750.0 eV], respectively. The spectra are labeled
in the same way as in figure 5.1 for easier comparison. The collection
angle is set to 8.0mrad and the 𝑝𝑝 detector position is set to a scattering
angle of (17.0mrad, 17.0mrad). 𝑝𝑚, 𝑚𝑝, and 𝑚𝑚 follow accordingly.
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Figure 5.3: Simulated spectra, eEMCD- and pEMCD-signal for a lamb3-approximation
of the MDFF at thickness 15 nm: no post-edge normalization is applied in
subfigure (a). In subfigure (b) and (c) the post-edge normalization range
is set to [730.0 eV, 740.0 eV] and [730.0 eV, 750.0 eV], respectively. Refer
to the caption figure 5.2 for other details.
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Edge-resolved maps of the unbroadened energy-integrated pEMCD-signal ex-
tracted from the 11-diagonal term of the MDFF and from the MDFF in dipole-,
and lamb3-approximation are depicted in figure 5.4 at a thickness of 15 nm.
Maps of the unbroadened energy-integrated pEMCD-signal for thicknesses
10 nm and 20 nm are displayed in figures A.1 and A.2 in appendix A.1. These
maps show the strength of the pEMCD-signal as a function of the scattering
angle (𝜃𝑥 , 𝜃𝑦).

The pure EMCD (pEMCD)-signal at the 𝐿3-edge is in comparison to the sig-
nal at the 𝐿2-edge of opposite sign in the four quadrants of the diffraction
pattern. It varies furthermore smoothly with respect to the scattering angle
and is strongest for scattering angles lying on or close to the Thales circle.
The signal localizes with increasing thickness around the center position of
the Thales circle and an additional narrow region of non-zero EMCD-signal
starts to appear at a thickness of 20 nm. These findings are in very good
agreement with results from other calculations [38, p. 210].

The maps of the pure EMCD (pEMCD)-signal extracted from the dipole-
approximated MDFF, the 11-term and the lamb3-approximation to the MDFF
are visually almost indistinguishable. Upon close inspection the signal seems
to be generally a bit stronger in dipole-approximation than in the case of the
bare 11-term and the lamb3-approximation. The pure EMCD (pEMCD)-signal
due to the 11-term is visually indistinguishable from the pure EMCD (pEMCD)-
signal due to the lamb3-approximation. This means that the imaginary part
of the MDFF is almost solely attributable to the dipole or 11-term and non-
dipole terms do not contribute substantially in lamb3-approximation.

Figure 5.5 displays edge-resolved maps of the energy-integrated, un-
broadened eEMCD-signal calculated for the same parameters as in figure
5.4. Appendix A.1 contains additionally maps of the unbroadened energy-
integrated eEMCD-signal for thicknesses 10 nm and 20 nm, which are dis-
played in figures A.3 and A.4, respectively.

The maps of the unbroadened energy-integrated pEMCD-signal at the 𝐿3-
edge are to be discussed: in comparison with the pEMCD-signal in figure 5.4
the eEMCD-signal is much stronger at across all approximation-levels of the
MDFF. The shape of the signal is furthermore much different. It exhibits a
pronounced x-shaped feature at the center of the maps which connects at
larger scattering angles with a region of stronger signal, which are similar
in shape to the regions seen in the maps of the pEMCD-signal.

At the 𝐿2-edge the eEMCD-signal is overall much weaker than it is at the
𝐿3-edge. It exhibits furthermore four dot-shaped features at the center of
the maps. These features are not connected to the regions of stronger signal
close to the Thales circle, which are similar in shape to the regions seen in
figure 5.4. However, one notes that the sign between the four dot-shaped
features and the eEMCD-signal differs in all four quadrants of the diffraction
plane. The dots have the same sign in the quadrants as the EMCD-signal at
the 𝐿3-edge has.
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Figure 5.4: Edge-resolved comparison of maps of the unbroadened energy-
integrated pEMCD-signal computed using different approximation levels
of the MDFF as indicated in the captions of the subfigures. All maps are
calculated using the double difference method at thickness 15 nm.
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The maps of the unbroadened energy-integrated pEMCD-signal look very
similar in shape for all considered approximation levels in figure 5.4. The
signal calculated using the dipole-approximation seems to be the strongest,
especially for large scattering angles in 𝑦-direction.

These results for the pEMCD-signal show overall that the calculated DDSCS
data-cuboid contains an anisotropy due to the imaginary part of the MDFF,
i.e., it contains an EMCD-signal. The eEMCD-signal is furthermore found to be
substantially different from the pEMCD-signal. The difference between both
types of EMCD-signal can be attributed to an incomplete cancellation of the
real part ofMDFF in the dipole- and 11-term, since no cross terms contributes
to these signals. In section 5.5 this apparent anisotropy of the real part of the
MDFF is analyzed in more detail.
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Figure 5.5: Edge-resolved comparison of maps of the unbroadened energy-
integrated eEMCD-signal computed using different approximation levels
of the MDFF as indicated in the captions of the subfigures. All maps are
calculated using the double difference method at thickness 15 nm.
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In figure 5.6 the contributions of the main cross terms of the MDFF to the
eEMCD-signal are compared to the lamb3- and dipole-approximations for the
difference methods discussed in section 4.2.3. The detector is thereby cen-
tered around scattering angle 𝜃𝑥 , 𝜃𝑦 =(9.0, 9.0) in the diffraction pattern and
covers a collection angle of 𝛽 = 5.0mrad. In general all difference methods
show a signal of similar overall shape for the 11 cross term and in dipole-
and lamb3-approximation. The signal for the double difference method is
thereby about twice as strong as it is for the other two methods.

At closer inspection, however, one notes a difference for the 01 term: it
contributes substantially over a wide range of energy-losses to the signal at
the 𝐿2-edge for the single up-downmethod. Using the single left-right differ-
ence method removes this contribution of the 01 term to a large extent and
it is practically canceled out by the double difference method. This suggests
that the 01 cross term exhibits an asymmetry under mirroring on the 𝑥-axis.
But it is more or less symmetric under mirroring at the 𝑦-axis.

The 13 cross term on the other hand contributes substantially at the 𝐿3-
edge for all difference methods which suggests that it has similar symmetry
properties as the EMCD-signal itself. It should be mentioned that the con-
tributions due to all calculated cross terms other than 01 an 13 are basically
zero at detector position 𝜃𝑥 , 𝜃𝑦 = (9.0, 9.0) and they are thus not shown in
figure 5.6. This is interesting insofar as that the 13 term contributes more
strongly than for example the 12 term that could be anticipated to be larger
due to being of lower order in 𝜆, 𝜆′.

The dipole- and 11-term coincide over the whole range of energies but in
close vicinity around the minimum andmaximum of the signal for the single
up-down difference. This behavior has been observed before [10]. Moving
to the single left-right difference, the difference between the dipole- and 11-
term remains around the minimum andmaximum of the signal. Both signals
start to differ additionally in the region between the edges. In the case of the
double difference method on the other hand, dipole and 11-term coincide
everywhere but in close vicinity around the 𝐿3-edge.

Considering the lamb3-signal one notes that the signal coincides with the
11 term at the 𝐿2-edge for the double difference method. At the 𝐿3 edge,
however, a difference between the lamb3-signal and the 11 contribution of
similar relative magnitude to the difference in the case of the single left-right
difference method remains. The lamb3-signal is furthermore always smaller
than the dipole-signal but the difference is small except for the close vicinity
of the 𝐿2 and 𝐿3-edge for the single left-right and double difference method.

These results suggest the double difference method is effectively suppress-
ing the effects of non-dipole transitions at the 𝐿2 edge for a detector cen-
tered around scattering angle 𝜃𝑥 , 𝜃𝑦 = (9.0, 9.0) and collection angle of 𝛽 =
5.0mrad. This result is not too surprising given that the double difference
method is considered to be superior to the other two methods as mentioned
in section 4.2.3. It might, however, shed new light on the more fundamen-
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tal reasons of why that is the case. The double difference method does not
deliver a satisfactory suppression of the 13 cross term at the 𝐿3 edge for the
considered detector centered around scattering angle 𝜃𝑥 , 𝜃𝑦 = (9.0, 9.0) and
collection angle of 𝛽 = 5.0mrad, however. Lastly it remains to be seen how
influential the difference between the dipole- and lamb3-approximations is
in the evaluation of the 𝑚𝐿/𝑚𝑆-ratio in section 5.4 before a conclusive an-
swer can be given to the question of which approximation one should use
in the future for highly precise calculations and experiments.

Figure 5.7 is to be discussed to the end of this section, where the largest
contributions of all cross terms are compared to the dipole-approximation
and the lamb3-approximations at detector position 𝜃𝑥 , 𝜃𝑦 = (17.0, 17.0) and
collection angle 𝛽 = 5.0mrad. More cross terms contribute to for the single
up-down and the single left-right difference method and their relative con-
tribution across all difference methods is much larger compared to figure 5.6.
However, moving then from the single up-down to the single left-right to the
double difference method the contributions of the cross terms 01 and 12 are
successively diminished and the same terms as in figure 5.6 contribute to the
signal. The relative magnitude of the signal due to the 13 cross term is a lot
larger compared with figure 5.6 and it does as well contribute substantially
at the 𝐿2-edge.

Dipole- and lamb3-approximation differ significantly at this detector posi-
tion, especially at the 𝐿2 edge where the lamb3-signal is strongly suppressed
with respect to the dipole-approximation and the 11-term.Thismight be part
of the explanation why the 𝐿2 edge is often seen to be suppressed in exper-
iments as detailed in section 5.1 and suggests furthermore that at least the
lamb3-approximation is required for precise calculations at large scattering
angles. This result is not too surprising either given that the dipole approxi-
mation according to equation 1.1 requires the product 𝐪 ⋅ �̂� to be small. It is
thus expected to perform worse than the Rayleigh expansion at larger scat-
tering angles and these results suggest that the difference is substantial. It
remains to be seen, however, how this effects the extraction of the 𝑚𝐿/𝑚𝑆-
ratio in section 5.4.
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Figure 5.6: Comparison of the contributions of the main cross terms to the eEMCD-
signal and the eEMCD-signal in dipole- and lamb3-approximation for dif-
ferent extractionmethods at thickness 15 nm.The pp detector is centered
around scattering angle 𝜃𝑥 , 𝜃𝑦 = (9.0, 9.0) in the diffraction pattern and
the collection angle is 𝛽 = 5.0mrad. No post-edge normalization is ap-
plied and the legend key full refers to the lamb3-approximation.
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Figure 5.7: Comparison of the contributions of the main cross terms to the eEMCD-
signal and the eEMCD-signal in dipole- and lamb3-approximation for dif-
ferent extractionmethods at thickness 15 nm.The pp detector is centered
around scattering angle 𝜃𝑥 , 𝜃𝑦 = (17.0, 17.0) in the diffraction pattern and
the collection angle is 𝛽 = 5.0mrad. No post-edge normalization is ap-
plied and the legend key full refers to the lamb3-approximation.
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In order to quantify the strength of the EMCD-signal and compare the in-
fluence of non-dipole transitions on the extraction of the magnetic signal
maps of the 𝑚𝐿/𝑚𝑆-ratio are calculated. The quantities that are varied in-
clude within each figure the detector collection angle 0 ≤ 𝛽 ≤ 8 and the
post-edge normalization ranges, for which the ranges singled out in section
4.2.2 are considered. Apart from these parameters thicknesses of 10 nm to
20 nm are considered and three choices of the averaging range of 𝑞 (c.f. equa-
tion (4.22)) are evaluated. Lastly three approximation levels to the MDFF are
taken into account: dipole- and lamb3-approximation, and the 11-term. It is
not instructive to consider all computed maps in this section and the major-
ity of these maps is contained in appendix A.2. The maps of the𝑚𝐿/𝑚𝑆-ratio
computed from the pEMCD- and eEMCD-signal are presented and discussed in
subsections 5.4.1 and 5.4.2, respectively. In both subsections only the double
difference method is featured and maps for the other difference methods are
included in appendix A.2.

5.4.1 𝑚𝐿/𝑚𝑆-ratio computed from pEMCD-signal

Figures 5.8, 5.10, and 5.9 display 𝑚𝐿/𝑚𝑆-maps computed from the pEMCD-
signal in dipole-approximation and lamb3-approximation as well as com-
puted from the 11-term of the MDFF, respectively. Overall a good agreement
with the literature values of the 𝑚𝐿/𝑚𝑆-ratio listed in section 4.3 is found.

In dipole-approximation the 𝑚𝐿/𝑚𝑆-ratio does not depend strongly on
the the scattering angle, i.e., the center position of the detector, or the detec-
tor size. In the case of the 11-term the 𝑚𝐿/𝑚𝑆-ratio increases slightly at the
boundaries of the calculated region of detector positions. These variations
are slightly damped by an increased detector size. In comparison with the
results for the dipole-approximation this means that the different shape of
the 11-term has a (small) influence on the extracted 𝑚𝐿/𝑚𝑆-ratio. In lamb3-
approximation the 𝑚𝐿/𝑚𝑆-ratio exhibits slightly lower values than the 11-
term does within a narrow band that is almost parallel to the 𝑦-axis at the
𝑥-coordinate of 𝐆. This means that (small) contributions from cross terms
or higher-order diagonal terms affect the 𝑚𝐿/𝑚𝑆-ratio compared. The effect
of increased detector size is again a dampening of the variations.

Seemingly all maps exhibit a strong dependence of the numerical value of
the𝑚𝐿/𝑚𝑆-ratio on the post-edge normalization range. However the averag-
ing range for 𝑞 (c.f. equation (4.22)) is equal to the post-edge normalization
range in figures 5.8, 5.9, and 5.10 as it is often done in experiments. In order
to single out the effect of the post-edge normalization the 𝑞-averaging range
is kept at [745.0 eV, 750.0 eV] in figure 5.11.

Comparing the maps displayed in figure 5.11 to the ones in figure 5.10
one notes that the 𝑞-averaging range has a much bigger influence on the
𝑚𝐿/𝑚𝑆-ratio extracted from the pEMCD-signal than the post-edge normaliza-
tion range has.
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Figure 5.8: 𝑚𝐿/𝑚𝑆-map calculated from the pEMCD-signal in dipole approximation at
thickness of 15 nm and extracted by the double difference method: rows
correspond to different detector collection angles 𝛽 and columns to dif-
ferent post-edge normalization ranges. The first row (collection angle
𝛽=0.0mrad) corresponds to the 𝑚𝐿/𝑚𝑆-ratio at the exact pixel position,
i.e. no integration over pixel is performed. The no penorm-tag indicates
that no post-edge normalization was performed in the first column. The
average of the energy integrated pEMCD for determination of 𝑞 is taken
over the post-edge normalization range (c.f. equation 4.19). In the case
of no post-edge normalization the average is taken over the interval
[730.0 eV, 740.0 eV]. Each pixel corresponds within a given map to the
𝑝𝑝 center-position (𝜃𝑥 , 𝜃𝑦) of the detector in the diffraction pattern. The
value of the 𝑚𝐿/𝑚𝑆-ratio is encoded as indicated by the color bar. White
pixel correspond to values which lie outside of the bounds of the color
bar or which are not computed due to only a partly overlap of the detec-
tor with the calculated region of the diffraction pattern.
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Figure 5.9: 𝑚𝐿/𝑚𝑆-map calculated from the pEMCD-signal obtained from the 11-term
of the MDFF at thickness of 15 nm and extracted by the double difference
method. Refer to the caption of figure 5.8 for a detailed description of
the technicalities of these maps.
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Figure 5.10: 𝑚𝐿/𝑚𝑆-map calculated from the pEMCD-signal in lamb3-approximation
at thickness of 15 nm and extracted by the double difference method.
Refer to the caption of figure 5.8for a detailed description of the techni-
calities of these maps.
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Figure 5.11: 𝑚𝐿/𝑚𝑆-maps for the same parameters as figure 5.10 except that the 𝑞-
averaging range (c.f. equation (4.19)) is set to [745 eV, 750 eV].
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5.4.2 𝑚𝐿/𝑚𝑆-ratio computed from eEMCD-signal

Figures 5.12, 5.13, 5.14, and 5.15 contain maps of the𝑚𝐿/𝑚𝑆-ratio calculated
for the same parameters and cases as figures 5.8, 5.9, 5.10 and 5.11 discussed
in the previous section. It is apparent that the post-edge normalization has a
large influence on the obtained𝑚𝐿/𝑚𝑆-ratio since a band of𝑚𝐿/𝑚𝑆-ratios is
found in the case of no applied post-edge normalization, which is suppressed
by the post-edge normalization procedure. Within this band the values of
the 𝑚𝐿/𝑚𝑆-ratio are comparable in magnitude to literature values listed in
section 4.3.

Given the shape of these maps a discussion of non-dipole effects is not
possible: The post-edge normalization has a much larger influence on the
𝑚𝐿/𝑚𝑆-ratio than any non-dipole effect and the remainder of this chapter is
thus focused on the post-edge normalization.

It is found here that the 𝑚𝐿/𝑚𝑆-ratio is very sensitive to the choice of
post-edge normalization for the pEMCD-signal. Experimentally the 𝑚𝐿/𝑚𝑆-
ratio depends on the choice for the post-edge normalization range but it is
less sensitive to it.

As described in section 5.1, a major difference between the simulated and
the experimental spectra regards the shape and magnitude of the spectrum
in the post-edge region.The experimental spectra show a featureless, in good
approximation constant post-edge region, whereas the theoretical spectra
show a decreasing post-edge region exhibiting some spectral features. The
integral over the post-edge region is furthermore in relation to the integral
over the edge region considerably smaller in the simulated spectra than in
the experimental one. As a result of these differences in the properties of
the post-edge region, the simulated spectra are much more sensitive to the
procedure of post-edge normalization than the experimental ones.

There are two options one might explore to move forward from this result.
The first one is of empirical nature and orients itself on the procedure of
double step background subtraction used in experiments. On the theoretical
side one could add instead of subtract such a double-step background in
order to obtain a post-edge region that is more in line with experimental
reality. Such a procedure has been carried out with success in the past [39]
but it lacks rigorous theoretical justification and would go beyond the scope
of this thesis.

Alternatively one could go back to the fundamental processes that shape
the post-edge region and improve their description in the present computa-
tional approach. Several possibilities on how this could be done have been
proposed in section 5.1.

The large differences between the maps of the 𝑚𝐿/𝑚𝑆-ratio presented in
this section and the maps for the pEMCD-signal presented in the previous
section cannot only be explained by effect of post-edge normalization as the
maps of the eEMCD-signal show in the case of no applied post-edge normal-
ization. These differences can only come from an incomplete cancellation of
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the real part of the MDFF. In section 5.2 this phenomenon was termed appar-
ent anisotropy and more light will be shed on this in the next section.
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Figure 5.12: 𝑚𝐿/𝑚𝑆-map calculated from the eEMCD-signal in dipole approximation
at thickness of 15 nm and extracted by the double difference method.
Refer to the caption of figure 5.8 for a detailed description of the tech-
nicalities of these maps. The 𝑞-averaging range (c.f. equation (4.19)) is
equal to the post-edge normalization range except for the column, in
which no post-edge normalization is applied and it is set to [730 eV,
740 eV].
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Figure 5.13: 𝑚𝐿/𝑚𝑆-map calculated from the eEMCD-signal obtained from the 11-
term at thickness of 15 nm and extracted by the double difference
method. Refer to the caption of figure 5.8 for a detailed description of
the technicalities of these maps. The 𝑞-averaging range (c.f. equation
(4.19)) is equal to the post-edge normalization range except for the col-
umn, in which no post-edge normalization is applied and it is set to
[730 eV, 740 eV].



5.4 map s of the 𝑚𝐿/𝑚𝑆- rat io 56

1.0

6.0

11.0

16.0

θ y
 / 
m
ra
d

no penorm

β
=
0.
0 
m
ra
d

[730.0, 740.0] [730.0, 750.0] [740.0, 750.0]

1.0

6.0

11.0

16.0

θ y
 / 
m
ra
d

β
=
1.
0 
m
ra
d

1.0

6.0

11.0

16.0

θ y
 / 
m
ra
d

β
=
3.
0 
m
ra
d

1.0

6.0

11.0

16.0

θ y
 / 
m
ra
d

β
=
5.
0 
m
ra
d

1.0 6.0 11.0 16.0
θx / mrad

1.0

6.0

11.0

16.0

θ y
 / 
m
ra
d

β
=
8.
0 
m
ra
d

1.0 6.0 11.0 16.0
θx / mrad

1.0 6.0 11.0 16.0
θx / mrad

1.0 6.0 11.0 16.0
θx / mrad

−0.30

−0.15

0.00

0.15

0.30

Figure 5.14: 𝑚𝐿/𝑚𝑆-map calculated from the eEMCD-signal in lamb3-approximation
at thickness 15 nm and extracted by the double differencemethod. Refer
to the caption of figure 5.8for a detailed description of the technicalities
of these maps. The 𝑞-averaging range (c.f. equation (4.19)) is equal to
the post-edge normalization range except for the column, in which no
post-edge normalization is applied and it is set to [730 eV, 740 eV].
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Figure 5.15: 𝑚𝐿/𝑚𝑆-map calculated from the eEMCD-signal in lamb3-approximation
for the same parameters as figure 5.14 except that the 𝑞-averaging range
(c.f. equation (4.19)) is set to [745 eV, 750 eV]
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5.5 ap parent an i sotropy of the real part of the mdff

This section is dedicated to a more detailed analysis of what is named an
apparent anisotropy in section 5.2. This term is chosen here since the con-
tribution of the real part of the MDFF is generally believed to be somewhat
isotropic. It would thus cancel out in equation (2.37) or contribute weakly
in comparison with the imaginary part. The large difference between the
pEMCD- and eEMCD-signal seen in section 5.2 and plotted in figure 5.16 sug-
gest that this is not necessarily the case.

The energy-integrated DDSCS due to the real part of the MDFF,

Δ𝜎𝜖dd,re = ∫ d𝐸 Δ𝜎𝜖dd(𝐸) − ∫ d𝐸 Δ𝜎dd,im(𝐸) (5.1)

shows a strong contribution around the center of the diffraction pattern at
both edges 𝜖 ∈ {𝐿2, 𝐿3} in figure 5.16. The relative sign of this contribution
in the four quadrants of the map is similar for both edges. The eEMCD-signal
is thus enhanced at the 𝐿3-edge with respect to the pEMCD-signal. At the
𝐿2-edge, however, the differing relative sign of the pEMCD-signal and Δ𝜎dd,re
reduces the strength of the eEMCD-signal.

The edge-resolved relative strength Δ𝜎 𝑗dd,re/Δ𝜎 𝑗dd,im of the contribution
Δ𝜎 𝑗dd,re to the eEMCD-signal is displayed in figure 5.17 at thickness 15 nm
for different approximation levels of the MDFF. The maps show that the rela-
tive strength ranges from −2.0 to 2.0 throughout the diffraction plane at both
edges: at the center of the maps, where the direct beam is located, the real
part contribution dominates the contribution of the imaginary part. Moving
out of the center the absolute value of the relative strength of real and imagi-
nary part contributions decreases to around 0.5 to 1.0, depending on the edge.
A broad oval region of smaller relative strength forms around the center of
the map. The imaginary part contributions are in this region of comparable
magnitude to the contributions of the real part. The oval region extends fur-
thermore in 𝑥-direction to the position of the +𝐆- and −𝐆-reflections in the
DP. In 𝑦-direction its extent is larger and goes beyond the range of calculated
scattering angles.

At the 𝐿3-edge these maps of the relative strength Δ𝜎 𝑗dd,re/Δ𝜎 𝑗dd,im of
Δ𝜎 𝑗dd,re show lower relative strengths in the mentioned oval region com-
pared to the 𝐿2-edge. Furthermore these maps show at the 𝐿3-edge, that a
narrow band of very low relative strength forms at the boundary of regions
of large and lower relative strength at all approximation levels. The eEMCD-
signal is dominated by the imaginary part contributions at these positions
and the magnetic signal contained in the imaginary part is thus expected to
be less disturbed by contributions from the real part.

A similarly shaped region of lower relative strength is found at the 𝐿2-
edge. In comparison with the 𝐿3-edge the relative strength has, however,
a larger magnitude throughout the whole region. The eEMCD-signal is thus
more strongly influenced by the real part contribution at the 𝐿2-edge than it
is at the 𝐿3-edge.Thismight therefore be another part required to understand
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Figure 5.16: Maps showing the contribution to the eEMCD-signal, which is at-
tributable to the real part of the MDFF, i.e., maps showing the difference
between the maps shown in figure 5.5 and 5.4 the pEMCD-signal for the
following approximations to theMDFF: dipole approximation, computed
from the 11-term, and in lamb3-approximation at the 𝐿3- and 𝐿2-edge
at thicknesses 15 nm.
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the origin of the often weak signal at the 𝐿2-edge in experiments (c.f. section
5.1 and 5.3).

It is furthermore found that the shape of the region of lower relative
strength Δ𝜎 𝑗dd,re/Δ𝜎 𝑗dd,im of Δ𝜎 𝑗dd,re correlates to some extent with the shape
of the region of a lower 𝑚𝐿/𝑚𝑆-ratio in figures 5.12, 5.12, 5.12 and 5.15. This
observation suggests that the𝑚𝐿/𝑚𝑆-ratio is sensitive to the relative magni-
tudes of real and imaginary part contributions.

Considering figures A.46 and A.47 it is found that the edge-resolved rel-
ative strength Δ𝜎𝐿𝑗dd,re/Δ𝜎

𝐿𝑗
dd,im is strongly thickness-dependent. At a thick-

ness of 10 nm the region of low relative strength Δ𝜎 𝑗dd,re/Δ𝜎 𝑗dd,im is broad
and extends to the edges of the calculated region of scattering angles. In the
corners of these maps, however, that eEMCD-signal is dominated by the real
part contributions.
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Figure 5.17: Edge-resolved maps of the relative strength of the contribution due
to the real part of the MDFF to the energy-integrated eEMCD-signal
Δ𝜎𝐿𝑗

dd,re/Δ𝜎𝐿𝑗
dd,im for selected approximation levels of the MDFF at thick-

nesses 15 nm.



6
CONC LU S I ON

ELNES-spectra of the 𝐿3 and 𝐿2-edge of bcc-iron are simulated in this work in
order to study the influence of non-dipole terms on the EMCD-signal, which
can be extracted from these spectra. This work distinguishes between the
pEMCD-signal and the eEMCD-signal. Both signals were initially anticipated
to be comparable in magnitude but a somewhat large difference between
both is found in the performed simulation. This apparent anisotropy has not
been reported in the literature and its cause remains unclear in the present
work.

A conclusive quantitative answer to the initially posed problem of the in-
fluence of non-dipole terms on the extraction of EMCD remains to be found
in the case of the eEMCD-signal because of the not anticipated influence
of the post-edge normalization range and the apparent anisotropy in this
work. Both effects have a much stronger influence on the eEMCD-signal than
non-dipole terms have md any further research needs to address both ef-
fects properly before proceeding with the investigation of non-dipole effects.
However, the 13-term can already be singled out for further investigation
based on its found contributions to the eEMCD-signal.

The pEMCD-signals on the other hand do not show a strong effect at-
tributable to non-dipole terms. Only small differences in the 𝑚𝐿/𝑚𝑆-ratio
are found at large scattering angles, which are weakened by practicable
detector sizes. The pEMCD-signal remains, however, a quantity that is only
accessible in theoretical treatments and any simulation trying to get closer
to the experimental results needs to be based upon the eEMCD-signal.

As a byproduct of these investigations some deeper insight into one of the
reasons why the double difference method is superior to the other extraction
methods has been found. The double difference method reduces the effect of
the 01- and 12-terms on the eEMCD-signal.

The calculated eEMCD-signals show in parts a lowering or suppression of
the eEMCD-signal at the 𝐿2-edge and two contributing effects are identified
as the apparent anisotropy of the real part of the MDFF and the contribution
due to the 13-term at large scattering angles. These effects might provide an
explanation for the weak EMCD-signal often observed experimentally at the
𝐿2-edge in the future if it is investigated further.

In conclusion this Master thesis is a progress report on the road towards
a deeper understanding of the effect of non-dipole terms on the extraction
of EMCD and it opened up unanticipated questions regarding a proper the-
oretical description of the post-edge region and the physical origin of the
apparent anisotropy.
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A
AP P END I X

This appendix contains additional figures, which were calculated for this
work but did not make it into the main text. Section A.1 contains more maps
of the energy-integrated EMCD-signal for thicknesses of 10 nm and 20 nm.
Section A.2 contains similarly additional maps of the 𝑚𝐿/𝑚𝑆-ratio and sec-
tion A.3 additional maps showing the apparent anisotropy.
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a.1 add it ional map s of the energy- integrated emcd -
s i gnal
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Figure A.1: Edge-resolved comparison of maps of the unbroadened energy-
integrated pEMCD-signal computed using different approximation levels
of the MDFF as indicated in the captions of the subfigures. All maps are
calculated using the double difference method at thickness 10 nm.
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Figure A.2: Edge-resolved comparison of maps of the unbroadened energy-
integrated pEMCD-signal computed using different approximation levels
of the MDFF as indicated in the captions of the subfigures. All maps are
calculated using the double difference method at thickness 20 nm.
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Figure A.3: Comparison of maps of the eEMCD-signal in dipole approximation, com-
puted from the 11-term, and in lamb3-approximation at the 𝐿3- and 𝐿2-
edge at thicknesses 10 nm.
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Figure A.4: Comparison of maps of the eEMCD-signal in dipole approximation, com-
puted from the 11-term, and in lamb3-approximation at the 𝐿3- and 𝐿2-
edge at thicknesses 20 nm.
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a.2 add it ional 𝑚𝐿/𝑚𝑆-map s

For reference purposes this section of the appendix lists some additional
maps of the 𝑚𝐿/𝑚𝑆-ratio. Subsection A.2.1 lists additional maps for the
pEMCD-signal and subsection A.2.1 for the eEMCD-signal.

a.2.1 pEMCD

Maps of the 𝑚𝐿/𝑚𝑆-ratio for the double difference methods are depicted in
the figures in A.2.1.1. Refer to sections 4 and 5.4 for more information on the
calculation procedure.

a.2.1.1 Double difference method
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Figure A.5: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed from the pEMCD-signal in dipole
approximation at thickness 10 nm using the double difference method.
The averaging range for determination of 𝑞 is equal to the post-edge
normalization range.
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Figure A.6: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed from the pEMCD-signal in dipole
approximation at thickness 20 nm using the double difference method.
The averaging range for determination of 𝑞 is equal to the post-edge
normalization range.
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Figure A.7: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed from the pEMCD-signal for the 11-
term at thickness 10 nm using the double difference method.The averag-
ing range for determination of 𝑞 is equal to the post-edge normalization
range.
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Figure A.8: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the pEMCD-signal for
Rayleigh expansion up to third order at thickness 20 nm using the dou-
ble difference method. The averaging range for determination of 𝑞 is
equal to the post-edge normalization range.
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Figure A.9: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the pEMCD-signal for
Rayleigh expansion up to third order at thickness 10 nm using the dou-
ble difference method. The averaging range for determination of 𝑞 is
equal to the post-edge normalization range.
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Figure A.10: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the pEMCD-signal for
Rayleigh expansion up to third order at thickness 20 nm using the dou-
ble difference method. The averaging range for determination of 𝑞 in
is equal to the post-edge normalization range.
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a.2.1.2 𝑚𝐿/𝑚𝑆-averaging range for 𝑞: 745 eV to 750 eV
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Figure A.11: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed in dipole approximation at thick-
ness 10 nm using the double difference method from the pEMCD-signal.
The averaging range for determination of 𝑞 is [745 eV, 750 eV].
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Figure A.12: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed in dipole approximation at thick-
ness 15 nm using the double difference method from the pEMCD-signal.
The averaging range for determination of 𝑞 is [745 eV, 750 eV].
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Figure A.13: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed from the pEMCD-signal in dipole
approximation at thickness 20 nm using the double difference method.
The averaging range for determination of 𝑞 is [745 eV, 750 eV].
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Figure A.14: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed from the pEMCD-signal of the
𝜆 = 𝜆′ = 1-term at thickness 10 nm using the double difference method.
The averaging range for determination of 𝑞 is [745 eV, 750 eV].
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Figure A.15: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed from the pEMCD-signal of the
𝜆 = 𝜆′ = 1-term at thickness 15 nm using the double difference method.
The averaging range for determination of 𝑞 is [745 eV, 750 eV].
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Figure A.16: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed from the pEMCD-signal of the
𝜆 = 𝜆′ = 1-term at thickness 20 nm using the double difference method.
The averaging range for determination of 𝑞 is [745 eV, 750 eV].
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Figure A.17: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the pEMCD-signal for
Rayleigh expansion up to third order at thickness 10 nm using the dou-
ble difference method. The averaging range for determination of 𝑞 is
[745 eV, 750 eV].
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Figure A.18: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the pEMCD-signal for
Rayleigh expansion up to third order at thickness 20 nm using the dou-
ble difference method. The averaging range for determination of 𝑞 is
[745 eV, 750 eV].
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a.2.1.3 𝑚𝐿/𝑚𝑆-averaging range for 𝑞: [750 eV, 760 eV]
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Figure A.19: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed in dipole approximation at thick-
ness 10 nm using the double difference method from the pEMCD-signal.
The averaging range for determination of 𝑞 is [750 eV, 760 eV].
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Figure A.20: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed in dipole approximation at thick-
ness 15 nm using the double difference method from the pEMCD-signal.
The averaging range for determination of 𝑞 is [750 eV, 760 eV].
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Figure A.21: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed in dipole approximation at thick-
ness 20 nm using the double difference method from the pEMCD-signal.
The averaging range for determination of 𝑞 is [750 eV, 760 eV].
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Figure A.22: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed in dipole approximation at thick-
ness 10 nm using the double difference method from the pEMCD-signal.
The averaging range for determination of 𝑞 is [750 eV, 760 eV].
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Figure A.23: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed in dipole approximation at thick-
ness 15 nm using the double difference method from the pEMCD-signal.
The averaging range for determination of 𝑞 is [750 eV, 760 eV].
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Figure A.24: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed in dipole approximation at thick-
ness 20 nm using the double difference method from the pEMCD-signal.
The averaging range for determination of 𝑞 is [750 eV, 760 eV].
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Figure A.25: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed for Rayleigh expansion up to
third order at thickness 10 nm using the double difference method
from the pEMCD-signal. The averaging range for determination of 𝑞 is
[750 eV, 760 eV].
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Figure A.26: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed in dipole approximation at thick-
ness 15 nm using the double difference method from the pEMCD-signal.
The averaging range for determination of 𝑞 is [750 eV, 760 eV].
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Figure A.27: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed for Rayleigh expansion up to
third order at thickness 20 nm using the double difference method
from the pEMCD-signal. The averaging range for determination of 𝑞 is
[750 eV, 760 eV].
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a.2.2 eEMCD

Maps of the 𝑚𝐿/𝑚𝑆-ratio for the double, up-down, and right-left differ-
ence methods are depicted in the figures in subsections A.2.2.1, A.2.2.3, and
A.2.2.2, respectively. Refer to sections 4 and 5.4 for more information on the
calculation procedure.

a.2.2.1 Double difference method
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Figure A.28: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed from the eEMCD-signal in dipole
approximation at thickness 10 nm using the double difference method.
The averaging range for determination of 𝑞 is equal to the post-edge
normalization range.
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Figure A.29: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge nor-
malization range. Maps are computed from the eEMCD-signal in dipole
approximation at thickness 20 nm using the double difference method.
The averaging range for determination of 𝑞 is equal to the post-edge
normalization range.
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Figure A.30: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the eEMCD-signal for
Rayleigh expansion up to third order at thickness 10 nm using the dou-
ble difference method. The averaging range for determination of 𝑞 is
equal to the post-edge normalization range.
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Figure A.31: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the eEMCD-signal for
Rayleigh expansion up to third order at thickness 20 nm using the dou-
ble difference method.
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a.2.2.2 Right-left difference method
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Figure A.32: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the eEMCD-signal in
dipole approximation at thickness 10 nm using the up-down difference
method. The averaging range for determination of 𝑞 is equal to the
post-edge normalization range.
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Figure A.33: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the eEMCD-signal in
dipole approximation at thickness 15 nm using the right-left difference
method. The averaging range for determination of 𝑞 is equal to the
post-edge normalization range.
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Figure A.34: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the eEMCD-signal in
dipole approximation at thickness 20 nm using the right-left difference
method. The averaging range for determination of 𝑞 is equal to the
post-edge normalization range.
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Figure A.35: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the eEMCD-signal for
Rayleigh expansion up to third order at thickness 10 nmusing the right-
left difference method. The averaging range for determination of 𝑞 is
equal to the post-edge normalization range.
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Figure A.36: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the eEMCD-signal for
Rayleigh expansion up to third order at thickness 15 nmusing the right-
left difference method. The averaging range for determination of 𝑞 is
equal to the post-edge normalization range.
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Figure A.37: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the eEMCD-signal for
Rayleigh expansion up to third order at thickness 20 nmusing the right-
left difference method. The averaging range for determination of 𝑞 is
equal to the post-edge normalization range.
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a.2.2.3 Up-down difference method
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Figure A.38: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the eEMCD-signal in
dipole approximation at thickness 10 nm using the up-down difference
method. The averaging range for determination of 𝑞 is equal to the
post-edge normalization range.
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Figure A.39: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the eEMCD-signal in
dipole approximation at thickness 15 nm using the up-down difference
method. The averaging range for determination of 𝑞 is equal to the
post-edge normalization range.
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Figure A.40: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the eEMCD-signal in
dipole approximation at thickness 20 nm using the up-down difference
method. The averaging range for determination of 𝑞 is equal to the
post-edge normalization range.
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Figure A.41: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the eEMCD-signal for
Rayleigh expansion up to third order at thickness 10 nm using the up-
down difference method. The averaging range for determination of 𝑞
is equal to the post-edge normalization range.
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Figure A.42: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the eEMCD-signal for
Rayleigh expansion up to third order at thickness 15 nm using the up-
down difference method. The averaging range for determination of 𝑞
is equal to the post-edge normalization range.
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Figure A.43: 𝑚𝐿/𝑚𝑆-maps comparing the effects of detector size and post-edge
normalization range. Maps are computed from the eEMCD-signal for
Rayleigh expansion up to third order at thickness 20 nm using the up-
down difference method. The averaging range for determination of 𝑞
is equal to the post-edge normalization range.
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(c) 11-diagonal term @ 𝐿3-edge
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(d) 11-diagonal term @ 𝐿2-edge
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(e) lamb3-approximation @ 𝐿3-edge
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(f) lamb3-approximation @ 𝐿2-edge

Figure A.44: Maps showing the contribution to the eEMCD-signal, which is at-
tributable to the real part of the MDFF, i.e., maps showing the difference
between the maps shown in figure A.3 and A.1 the pEMCD-signal for
the following approximations to the MDFF: dipole approximation, com-
puted from the 11-term, and in lamb3-approximation at the 𝐿3- and
𝐿2-edge at thickness 10 nm.
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(a) dipole-approximation @ 𝐿3-edge
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(b) dipole-approximation @ 𝐿2-edge
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(c) 11-diagonal term @ 𝐿3-edge

−20 −10 0 10 20
θx / mrad

−20

−10

0

10

20

θ y
 / 
m
ra
d

−0.0008

−0.0006

−0.0004

−0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

(d) 11-diagonal term @ 𝐿2-edge

−20 −10 0 10 20
θx / mrad

−20

−10

0

10

20

θ y
 / 
m
ra
d

−0.0008

−0.0006

−0.0004

−0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

(e) lamb3-approximation @ 𝐿3-edge
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(f) lamb3-approximation @ 𝐿2-edge

Figure A.45: Maps showing the contribution to the eEMCD-signal, which is at-
tributable to the real part of the MDFF, i.e., maps showing the difference
between the maps shown in figure A.4 and A.2 the pEMCD-signal for
the following approximations to the MDFF: dipole approximation, com-
puted from the 11-term, and in lamb3-approximation at the 𝐿3- and
𝐿2-edge at thickness 20 nm.
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(a) dipole-approximation @ 𝐿3-edge
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(b) dipole-approximation @ 𝐿2-edge
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(c) 11-diagonal term @ 𝐿3-edge
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(d) 11-diagonal term @ 𝐿2-edge
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(e) lamb3-approximation @ 𝐿3-edge
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(f) lamb3-approximation @ 𝐿2-edge

Figure A.46: Edge-resolved maps of the relative strength of the contribution due
to the real part of the MDFF to the energy-integrated eEMCD-signal
Δ𝜎𝐿𝑗

dd,re/Δ𝜎𝐿𝑗
dd,im for selected approximation levels of the MDFF at thick-

ness 10 nm.
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(b) dipole-approximation @ 𝐿2-edge
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(c) 11-diagonal term @ 𝐿3-edge
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(d) 11-diagonal term @ 𝐿2-edge
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(e) lamb3-approximation @ 𝐿3-edge
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(f) lamb3-approximation @ 𝐿2-edge

Figure A.47: Edge-resolved maps of the relative strength of the contribution due
to the real part of the MDFF to the energy-integrated eEMCD-signal
Δ𝜎𝐿𝑗

dd,re/Δ𝜎𝐿𝑗
dd,im for selected approximation levels of the MDFF at thick-

ness 20 nm.
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