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1.  Introduction

Mechanical twinning and ε-martensite transformation are 
two primary deformation mechanisms competing with full 
dislocation glide in the so-called twinning-induced plasticity 
(TWIP) and transformation-induced plasticity (TRIP) steels. 
These steels possess a balanced combination of strength and 
elongation, making them promising materials for applications 
in automotive industry.

Carbon plays a central role in the properties of TRIP/TWIP 
steels, e.g. increasing lattice parameter, stabilizing austenite, 

reducing Néel temperature, and facilitating solid solution 
hardening [1]. Among the various roles of C, its effect on the 
stacking fault energy (SFE) has been extensively studied since 
the plastic deformation mechanisms are often correlated to the 
size of the SFE. Theoretically, C effect on the SFE in aus-
tenites has been studied by ab initio calculations at various 
levels of approximations. One central problem is related to 
modelling the magnetic state of austenitic steels [2], whose 
Curie/Néel temperatures are usually lower than room temper
ature [3]. Therefore, austenites should be properly described 
at the paramagnetic (PM) state [4]. The total magnetization 
at the PM state is zero, but the local magnetic moment on 
each atomic site may survive and changes with increasing 
temperature due to the longitudinal thermal spin fluctuation 
[5]. Since describing the paramagnetic regime by classical 
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Abstract
Generalized stacking fault energy (GSFE) is an important parameter for understanding 
the underlying physics governing the deformation mechanisms in face-centred cubic (fcc) 
materials. In the present work, we study the long-standing question regarding the influence 
of C on the GSFE in austenitic steels at paramagnetic state. We calculate the GSFE in both 
γ-Fe and Fe–C alloys using the exact muffin-tin orbitals method and the Vienna Ab initio 
Simulation Package. Our results show that the GSFE is increased by the presence of interstitial 
C, and the universal scaling law is used to verify the accuracy of the obtained stacking 
fault energies. The C-driven change of the GSFE is discussed considering the magnetic 
contributions. The effective energy barriers for stacking fault, twinning and slip formation are 
employed to disclose the C effect on the deformation modes, and we also demonstrate that 
the magnetic structures as a function of volume explain the effect of paramagnetism on the 
C-driven changes of the stacking fault energies as compared to the hypothetical non-magnetic 
case.
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theoretical tools is not a straightforward task, the oversimpli-
fied models such as the non-magnetic (NM) state are often 
adopted. Calculations performed for the NM fcc Fe show that 
C increases the SFE by more than 300 mJ m−2 per wt.% C 
[6], whereas the C effect is significantly suppressed at the PM 
state according to our previous work (96 mJ m−2 per wt.% C 
[7]).

Noticeably, the reported C effects on SFE are not always 
consistent in the literature [8, 9]. For example, the reported 
C effect on the SFE in austenites by Schramm and Reed [8]  
(∼410 mJ m−2 per wt.% C) is one magnitude larger than that 
given by Brofman et al (∼26–40 mJ m−2 per wt.% C) [9]. An 
accurate determination of SFE is limited by the complexity of 
the atomic-scale defects [10] using the existing experimental 
methods, e.g. x-ray diffraction (XRD), neutron diffraction 
(ND), and transmission electron microscopy (TEM) [11–13]. 
Recently, Hickel et  al [14] demonstrated that the electron 
beam may locally heat the samples and causes C atoms to 
diffuse out of the stacking fault during the examination period 
in TEM observation. Such a mechanism reduces the measured 
SFE by around 30% and may cause an artificial interpreta-
tion of the C effect on the SFE [14]. Theoretical calculations, 
such as the ab initio methods, provide alternative ways to 
tackle the problem and give a consistent description of the 
composition and magnetic effects on the SFE. Furthermore, 
the ab initio calculations are capable of describing generalized 
stacking fault energy (GSFE or γ-surface), which describes 
the energy change in the process of shearing a crystal along 
given crystallographic directions on the slip plane, e.g. in 
fcc materials commonly the 〈1 1 2〉 direction on the {1 1 1} 
plane. The GSFE includes several stacking fault energies, 
such as intrinsic stacking fault energy (γisf), unstable stacking 
fault energy (γusf ), unstable twinning fault energy (γutw) and 
extrinsic stacking fault energy (γesf), which are significant 
materials parameters for quantitatively predicting the critical 
twinning stress [15] and evaluating twinnability [16]. Recently, 
the most advanced theory for plasticity in fcc materials shows 
that the competition between plastic deformation mechanisms 
can be rationalized from the intrinsic energy barriers given by 
GSFE [17, 18]. Furthermore, the GSFE can be used as input in 
the elasto-plastic models, e.g. the Peierls–Nabarro and phase-
field models [19, 20].

The GSFE in the NM C-alloyed γ-Fe has been studied 
by Gholizadeh et  al [21] and Medvedeva et  al [22]. Their 
work reveals that C significantly increases the entire γ-sur-
face, and the C effect rapidly decays with increasing distance 
between C atoms and the stacking fault. This rapid energy 
drop is believed to provide a strong thermodynamic driving 
force for the out-diffusion of C from a stacking fault/twin at 
elevated temperatures (anti-Suzuki effect) [14, 23]. In our 
previous work [7], the PM state in γ-Fe and Fe–Cr–Ni aus-
tenitic steels was described by the disordered local magnetic 
moment (DLM) approximation [24]; the C effect on SFE (γisf) 
was investigated at the PM state using the axial interaction 
model (AIM), which is however not suitable for calculating 
the GSFE. The significantly reduced C effect on SFE at the 
PM state draws further interest in the paramagnetism-altered 
C effect on the GSFE as compared to the NM behaviours. 

Hitherto, no complete description of the C effect on the GSFE 
in PM γ-Fe or austenitic steels has been reported in the litera-
ture. This paper aims to fill the gap and uncover the C effect 
on the GSFE of the PM γ-Fe.

The rest of this paper is organized as follows. In section 2, 
the computational models, tools and numerical details are pre-
sented. In section 3, we first compare the obtained GSFE at 
the NM state by the exact muffin-tin orbitals (EMTO) method 
[25, 26] and the Vienna Ab initio Simulation Package (VASP) 
[27, 28], in order to evaluate the accuracy of the results 
obtained using EMTO with current settings. Then we present 
the GSFE of the C-alloyed γ-Fe at the PM state. In section 4, 
the results are discussed in terms of the universal scaling law 
[29] and the effects of paramagnetism are further investigated. 
The conclusions are given in section 5.

2. Theoretical methodology

2.1.  Atomic model for GSFE calculation

In the present work, the GSFE calculations follow the meth-
odology developed in [21]. A hexagonal supercell with 6 
(1 1 1) layers along c direction is employed. The lattice vectors 
a, b and c are (a/2)[1̄ 1 0]fcc, (a/2)[0 ̄1 1]fcc and (2a)[1 1 1]fcc, 
respectively, in which a is the lattice parameter of a conven-
tional fcc cell. To obtain the energy variation (GSFE), the c 
axis is tilted along the [1̄ 1̄ 2] direction by a vector u, i.e. c 
changes to c + u. When u = b = (a/6)[1̄1̄2]fcc , the supercell 
contains one ISF. The extrinsic stacking fault (ESF), which is 
also seen as a two-layer twin nucleus, is obtained by creating 
a new stacking fault on an adjacent (1 1 1) plane to the exiting 
stacking fault plane. The GSFE is obtained by monitoring the 
energy variation when the structure changes gradually from 
the ideal fcc to the ISF, and then to the ESF, via

γ = (Eu − Eu=0)/A,� (1)

where E is the total energy of the corresponding structure 
and A is the area of the stacking fault. We illustrate the main 
temperature effect on the GSFE through the thermal lattice 
expansion and neglect the electronic, magnetic and vibra-
tional terms. We notice that at temperatures less than 300 K, 
contributions from the electronic, magnetic and vibrational 
entropies are estimated to be small [30, 31].

For the GSFE calculation in the C-alloyed γ-Fe, we double 
the size of the above supercell along the a and b directions. One 
C atom is placed at the octahedral interstitial site. This system 
is denoted as Fe24C1. The corresponding C concentration is 
4.0 at.% (∼0.9 wt.%). Depending on the distance between the 
C atom and the stacking fault plane, we denote the obtained 
GSFE as γd0, γd1, γd2, γd3, ... , where dx (x = 0, 1, 2, 3, ...) indi-
cates that the C atom is placed at x interlayer spacing away 
from the slip plane. When C is in the slip plane, its position 
is properly relaxed at the constraint of a generalized stacking 
fault. To achieve the GSFE for the Fe–C alloy with homoge-
neously distributed C, the energy surface corresponding to the 
shear process from fcc to ISF can be evaluated by taking an 
average of the γd0, γd1, γd2 and γd3 values, i.e.
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γfcc→isf = (γd0 + γd1 ∗ 2 + γd2 ∗ 2 + γd3)/6.� (2)

For the GSFE corresponding to the ESF part (from 
u = (a/6)[1̄ 1̄ 2]fcc to u = (2a/6)[1̄ 1̄ 2]fcc, the average has to 
consider all the six different C occupations, i.e.

γisf→esf = (γd0 + γd1 + γd2 + γd3 + γd4 + γd5)/6.� (3)

2.2.  Ab initio methods

We adopt both the VASP and EMTO methods for NM calcul
ations. In the VASP calculations, the Projector Augmented 
Wave (PAW) scheme [32, 33] is used. The exchange-corre-
lation functional is the Perdew–Burke–Ernzerhof (PBE) [34] 
version of the generalized-gradient approximation (GGA). A 
plane-wave basis set with energy cut-off 500 eV is adopted. 
The k-point meshes of 13 × 13 × 5 and 9 × 9 × 5 are gener-
ated using the Monkhorst and Pack scheme [35] for the γ-Fe 
and Fe24C1 supercells, respectively. The interatomic forces 
are converged to less than 0.02 eV Å

−1
 in the cases where the 

atomic relaxation is performed.
The PM state with DLM approximation [24] is approxi-

mated using the coherent potential approximation (CPA)  
[25, 36] as implemented in the EMTO package. In the EMTO 
calculations, the one-electron equations are solved within the 
scalar-relativistic approximation and the soft-core scheme. 
The calculation of the Green function for valence states is 
implemented with 16 complex energy points. The s , p , d , 
f  orbitals are included in our muffin-tin basis set. The PBE 
approximation [34] is employed for the exchange-correlation 
functional. The potential sphere radius of interstitial C (wC) 
is optimized to be 0.77 w0

C, where w0
C is the atomic sphere 

radius of the corresponding Voronoi polyhedron around the 
C site. With such settings, the obtained C effect on the SFE 
of γ-Fe is shown to be well reproduced by the AIM model 
[7]. The detailed assessment of the EMTO method for the 
GSFE calculations using the supercell technique is presented 
in section 3.1. We select the k-point meshes of 9 × 17 × 1 and 
7 × 13 × 1 for the NM and PM calculations in the EMTO 
method, respectively, in order to ensure the same convergence 
criterion for γisf  at both magnetic states (the difference 
between the γisf  with two proximate k-point samplings is less 
than 5.0%). In the EMTO calculations, the symmetry of the 
computational cell is set to be triclinic.

Previous studies have shown that the C-induced atomic 
relaxation is most significant in the first coordination shell 
and decreases fast in the further shells [37, 38]. Therefore, 
in the present work, only the atomic relaxation in the the first 
coordination shell is considered for both EMTO and VASP 
methods. Figure  1 shows the relative total energies of the 
Fe24C1 configurations with different expansions for the first 
coordination shell of C, which is calculated by the EMTO 
method for the NM and PM states. We find that EMTO gives 
similar relaxations for the first coordination shell in the NM 
and PM Fe24C1: both relaxations corresponding to the lowest 
total energy are approximately 7.0%, which are consistent 
with the value given by VASP for the NM Fe24C1 (6.8%)  
[39, 40]. Considering the weak magnetic state dependence 

of the local relaxation and the good parallelism between the 
EMTO and VASP results, in the following we employ the 
optimized atomic configurations obtained by VASP in both 
the NM and PM EMTO calculations for Fe24C1.

3.  Results

3.1.  NM and PM γ-surfaces of fcc Fe at 0 K

According to recent studies [15, 16], γutw is a critical param
eter to build the relationship between GSFE and plasticity. 
Unfortunately, γutw is missing in most of previous γ-surface 
calculations for γ-Fe [14, 19, 21]. In this section, the GSFE 
of pure γ-Fe is calculated at both NM and PM states with 
their corresponding equilibrium volumes at 0 K and the γutw is 
provided. Further, the magnetic effect on the GSFE is demon-
strated for pure γ-Fe.

The calculated GSFE for the NM γ-Fe at 0 K is featured in 
figure 2. The numerical values of the stacking fault energies 

Figure 1.  The relative total energy of fcc Fe24C1 (the configuration 
with the lowest total energy is set to be reference) as a function 
of the relative expansion of the nearest-neighbour Fe–C bonding 
length (%) obtained by EMTO at NM (solid line) and PM (dash 
line) states.

Figure 2.  The γ-surfaces of NM γ-Fe obtained by VASP 
and EMTO. The relaxed and unrelaxed results are shown for 
comparison.

J. Phys.: Condens. Matter 31 (2019) 065703



R Xie et al

4

are summarized in table  1, together with some previous 
results. Pure γ-Fe is known to be stable at high temperatures, 
which is also indicated by the negative γisf  at 0 K. Previous 
theoretical studies [6, 14, 19, 21] with different ab initio 
methods have reported consistent stacking fault energies, with 
γisf  and γusf  in the ranges of approximately −460 to −390 
and 500 to 520 mJ m−2, respectively. The deviations are due 
to the calculation details, e.g. different exchange-correlation 
functionals, relaxation schemes or Brillouin zone samplings. 
In figure 2, we compare the results obtained with VASP and 
EMTO for the unrelaxed lattices (rigidly shifting the upper 
half of the crystal). The γisf  and γesf are in perfect agreement, 
while the γusf  and γutw differ by 6.6% and 10.3%, respectively. 
The discrepancy may partly be ascribed to the muffin-tin 
approximation that leads to relatively large errors in the less 
close-packed structures (e.g. for the unstable stacking faults) 
[14]. Based on this observation, we introduce a parameter ∆γ 
to bring the EMTO results to the level of the VASP results. 
The ∆γ is defined as the difference between the stacking 
fault energies obtained with VASP and EMTO in the same 
configuration (u), ∆γ(u) = γVASP(u)− γEMTO(u) [14]. We 
assume that ∆γ is independent of the magnetic state, and use 
the ∆γ values obtained from the NM results to correct the 
stacking fault energies calculated by EMTO at the PM state. 
For reference, wherever is possible we also present results 
obtained without this correction. The VASP results with a full- 
relaxation and the EMTO results with an interlayer relaxa-
tion in the vicinity of a slip plane are also plotted in figure 2 
for comparison in order to probe the effect of atomic relaxa-
tion on the GSFE of γ-Fe. Whereas both methods show weak 
influence of the relaxation on γisf  (<6.0%), the atomic relaxa-
tion causes a much stronger effect on γusf  and γutw, which is 
consistent with previous studies [14].

In order to demonstrate the magnetic effect on the GSFE 
of γ-Fe, we list the stacking fault energies obtained at the 
PM state in the lower part of table 1. The stacking fault ener-
gies are given with the correction ∆γ. The equilibrium lattice 
parameter of γ-Fe at the PM state (3.498 ̊A) increases as com-
pared to that for the NM state (3.457 ̊A). The optimized lattice 
parameter of the PM Fe agrees better with the experimental 
lattice parameters obtained by extrapolating from Fe–Cu 
alloys (3.562 Å) [41] and from the high-temperature lattice 
parameter of γ-Fe (3.569 Å) [42]. Here, we should notice 

that the difference between the theoretical and extrapolated 
experimental data is mainly due to the employed exchange-
correlation approximation. Recently, Dong et al [43] used the 
quasi-non-uniform approximation (QNA) [44, 45] and found 
nearly perfect agreement between experimental values and 
theoretical predictions. Regarding the stacking fault ener-
gies, the γisf  is significantly increased (from  −393 to  −171  
mJ m−2) by the introduction of local spin polarization. γisf  was 
previously calculated at various magnetic states for γ-Fe [14], 
including NM, low-spin and high-spin ferromagnetic (LS-FM 
and HS-FM), PM, single- and double-layer antiferromagnetic 
(AFMS and AFMD) states. Different magnetic states lead to 
different equilibrium lattice parameters, which significantly 
affect the obtained γisf . The NM and LS-FM calculations give 
similar equilibrium lattice parameters (∼3.460 Å  for NM  
and ∼3.470 Å  for LS-FM) and the magnetic moment at 
LS-FM state is very small, thus resulting in similar γisf  of γ-Fe  
(∼3.0% difference) [6, 22]. In contrast, the HS-FM simulation 
shows a much larger lattice parameter (∼3.640 Å), which in 
turn leads to much larger γisf  [22]. For PM γ-Fe, the equilib-
rium lattice parameter (∼3.498 Å) is only slightly larger than 
that at NM state, but the paramagnetism itself (local magnetic 
moments) significantly influences the γisf . The present DLM 
approximation for the PM calculations gives similar conclu-
sion as obtained previously by the special quasi-random struc-
tures (SQS) approximation for the PM state [46]. Whereas the 
γisf  is increased with the PM coupling, the γusf  is decreased 
from 562 to 337 mJ m−2. However, the magnetic effect on the 
γutw is relatively small. The reason is that an unstable twinning 
fault may geometrically be approximated as an ISF plus an 
unstable stacking fault (USF) thus the two magnetic effects 
cancel each other to a large extent.

3.2. The impact of C on the γ-surface in NM Fe

Several attempts have been made to study the γ-surface of 
the γ-Fe with interstitials at the NM state [6, 19, 21]. Before 
extending the GSFE calculation to PM state, the performance 
of EMTO on describing the interstitial structure is assessed by 
comparing the GSFE obtained by EMTO and VASP for the 
NM Fe24C1. The accuracy of the EMTO method is similar 
to the full-potential density functional theory (DFT) methods 
for close-packed structures but might be somewhat lower for 

Table 1.  The calculated stacking fault energies (in units of mJ m−2 ) for γ-Fe. The non-magnetic and paramagnetic results are listed in the 
upper and lower parts of the table, respectively. At PM state, the stacking fault energies are with correction ∆γ. The uncorrected values are 
listed in the parentheses. The references for the experimental and former calculations are indicated.

Method Relaxation a (Å) γusf γisf γutw γesf

VASP Unrelaxed 3.445 527, 524 [14] −393 319 −302
Relaxed 467, 508 [19] −442, −380 [19], −452 to −464 [6] 205 −308

EMTO Unrelaxed 3.457 562, 712 [14] −393, −393 [14] 352 −268
Interlayer Relax. 528 −416 350 −273

WIEN2k Relaxed 503 [21] −450 [21]
EMTO Unrelaxed 3.498, 3.510 [7] 337 (382), −171 (−171), −107 [14] 281 (314) −130

(0 K volume) 3.530 [14] ∼524 [14] (−96)
Unrelaxed (Room 3.562 [41] 275 (310) −8 (−8) 275 (308) −23 (11)
temperature volume)

J. Phys.: Condens. Matter 31 (2019) 065703
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open or low symmetry structures, which is actually the case of 
interstitial impurities.

The equilibrium lattice parameters of the NM Fe24C1 
(γ-Fe) obtained using VASP and EMTO are 3.487 (3.445) and 
3.497 (3.457) Å , respectively (see tables 1 and 2). The calcu-
lated volume expansion is approximately 0.048 Å  per wt.% C 
in VASP and 0.045 Å  per wt.% C in EMTO at the NM state, 
which are located in the experimental range (0.028–0.060 Å  
per wt.% C [47]).

The dependences of the γisf  and γusf  on the distance of the 
C atom from the slip plane in the NM Fe24C1 are illustrated 
in figure 3. Both the EMTO and VASP results show that only 
the C atom close to the slip plane has a strong effect. When 
the distance between C and the slip plane is larger than 2–3 
interlayer spacing, the chemical effect diminishes and the 
remained difference may be ascribed to the lattice expansion 
effect [6]. In addition, a Friedel-like oscillation is found for γisf  
and γusf , explaining why γd3 is larger than γd2 [6, 21]. The γisf  
values obtained by EMTO and VASP are in good agreement 
for different C sites. However, the quantitative agreement for 
the γusf  is less impressive, especially for the C sites d2 and d3. 
The larger difference between the γusf  for the d3 configura-
tion and the corresponding bulk Fe obtained in EMTO com-
pared to that in VASP also points in this direction. To look 
into the origin of this discrepancy, we consider the accuracy of 
the muffin-tin approximation when the USF is formed. In the 

configuration with both USF and interstitial C, the muffin-tin 
zero discontinuity, which represents the jump in the muffin-
tin potential at the potential sphere boundary [26], is found 
enlarged as compared to the fcc configuration. The overlap 
errors are expected to decrease the accuracy when muffin-
tin zero discontinuity is increased [48]. We perform some 
additional calculations where the C atom and its first-nearest 
neighbouring Fe atoms are excluded from establishing the 
muffin-tin zero potential. The new γd2 and γd3 values decrease 
to 509 and 521 m−2 from 568 and 623 mJ m−2, respectively 
(see figure 3(b)), which agree better with the VASP results. 
On this ground, we conclude that at least part of the deviations 
observed between the EMTO and VASP results for the NM 
Fe24C1 (see figure 3(b)) are due to the increased overlap error 
around the unstable stacking fault. In the following, we do not 
consider separately the overlap error since that is explicitly 
included in the ∆γ correction.

The γisf , γusf, γutw and γesf  of the NM Fe24C1 calculated 
according to equations  (2) and (3) are listed in the upper 
part of table  2, together with available previous theoretical 
results [6, 21]. Despite the discrepancies shown in figure  3 
(solid lines), the averaged stacking fault energies obtained by 
EMTO and VASP are consistent with each other. Similarly 
to the case of the pure γ-Fe, the energy differences between 
the VASP and EMTO results obtained for the NM Fe24C1 
(∆γ) are used to correct the GSFE of the PM Fe24C1. The 

Table 2.  The averaged stacking fault energies (in units of mJ m−2) for Fe24C1 (∼0.9 wt.% C). The NM and PM results are listed in the 
upper and lower parts of the table, respectively. At PM state, the stacking fault energies are corrected by ∆γ. The uncorrected values are 
listed in the parentheses. The references are indicated.

Method a (Å) γusf γisf γutw γesf

VASP 3.487, 563 −121 537 −60
∼−140 [6]

EMTO 3.497 605 −111 619 −47
WIEN2k 3.498 [21] 594 [21] −116 [21]

EMTO - 3.536, 3.524 [7] 450 (492) 57 (67) 471 (553) 37 (50)
0 K volume
EMTO 3.595 [41] 351 (393) 106 (116) 385 (467) 66 (79)
- Room temperature volume

Figure 3.  The calculated (a) γisf  and (b) γusf  with C at different distances from the stacking fault (SF) for NM Fe24C1 via VASP and 
EMTO. The new EMTO calculation of γusf  after improving muffin-tin orbitals approximation for NM Fe24C1 are illustrated with a red 
dash line in (b). γisf  and γusf  of NM γ-Fe are also shown in the figure.

J. Phys.: Condens. Matter 31 (2019) 065703
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uncorrected data for the PM Fe24C1 (without ∆γ) are shown 
for reference in parentheses. Here, we should stress that the 
differences between the EMTO and VASP values for γisf , γusf 
and γutw are very similar for the NM γ-Fe and NM Fe24C1. 
Therefore, we believe that the EMTO method is suitable for 
describing the interstitial impurity in γ-Fe.

3.3. The impact of C on the γ-surface in PM Fe

Based on the work shown in sections 3.1 and 3.2, the EMTO 
method is believed to be able to describe the GSFE of a Fe–C 
system, and the PM coupling is a more accurate approx
imation for γ-Fe and Fe–C alloys. The GSFE calculations for 
Fe24C1 are then extended to the PM state, which is the main 
focus in the present work.

The equilibrium lattice parameters for the PM Fe24C1 
and γ-Fe are 3.536 and 3.498 Å , respectively. The calculated 
volume expansion is approximately 0.043 Å  per wt.% C at 
the PM state, which is similar to the C effect on the volume 
expansion at the NM state (0.045 ̊A  per wt.% C). The stacking 
fault energies of the PM Fe24C1 corresponding to the equilib-
rium (0 K) volume are listed in the lower part of table 2. The 
γisf  increases dramatically from −171 to 57 mJ m−2 at the 
PM state when 4.0 at.% of C is added to γ-Fe. The γusf and 
γutw increase with the C addition from 337 to 450 mJ m−2 and 
from 281 to 471 mJ m−2, respectively. The above figures cor-
respond to the results including the ∆γ correction obtained 
from the NM calculations.

Considering the strongly volume-dependent C effect on the 
γ-surface [18], here we also present the volume dependence 
of the GSFE in the PM γ-Fe and Fe24C1 (see figure 4). The 
γusf and γutw decrease while γisf  and γesf  increase with volume 
in Fe24C1 (see figure 4(b)) and γ-Fe (see figure 4(c)). In par
ticular, a dramatic growth of the γisf  (δγisf/δa, see figure 4(a)) 
for the PM γ-Fe appears around its equilibrium lattice param
eter (a = 3.498 Å , see table  1), which is attributed to the 
magnetic transition from low spin to high spin state. Details 
of the magnetic structures are presented in the next section. 
In figure  4(a), we also compare the volume dependence of 

the γisf  obtained using the supercell technique with previous 
results using the supercell [18] and the AIM model [7]. It 
is found that the supercell and the AIM techniques display 
quantitative agreement. The somewhat weaker agreement at 
lower volumes is ascribed to the deviating magnetic structure 
descriptions around the stacking fault in these two methods 
[18].

We should emphasize here that the C effect on the γ- 
surface is strongly volume-dependent because of the magn
etic-volume coupling effect in PM γ-Fe [7, 18]. In practice, 
the C effect on the SFE (γisf) at room temperature is usually 
discussed in stable/metastable austenitic steels. The austen-
itic phase of γ-Fe can be stabilized at room temperature by 
alloying with e.g. C, N, Ni. The room temperature lattice 
parameter of γ-Fe can be obtained by extrapolating from 
Fe–Mn alloys with high Mn contents [49, 50], Fe–C alloys 
[41], Fe–Cr–Ni austenitic steels [51] or high-temperature γ-Fe 
[41, 42]. In the present work, the room temperature volumes of 
γ-Fe and Fe24C1 are taken according to an experimental rela-
tion (a = 3.562 + 0.037xC) given in [41], in which a denotes 
the room temperature volume of Fe–C alloys and 3.562 is 
the lattice parameter of pure γ-Fe at room temperature with 
a unit of Å . xC  is the weight percent of the C atom in γ-Fe. 
Correspondingly, the room temperature volume of Fe24C1 is 
estimated to be 3.595 Å .

The stacking fault energies corresponding to the room 
temperature volumes for the PM γ-Fe (3.562 Å) and PM 
Fe24C1 (3.595 Å) are listed in the lower parts of tables  1 
and 2, respectively. The differences in the stacking fault ener-
gies between the PM Fe24C1 and PM γ-Fe are calculated 
and denoted correspondingly as ∆γisf , ∆γusf, ∆γutw and 
∆γesf . Further, the dependences of the stacking fault energies 
on C concentration are calculated by ∆γisf/∆xC, ∆γusf/∆xC, 
∆γutw/∆xC and ∆γesf/∆xC, respectively, in which ∆xC is equal 
to ∼0.9 wt.%. These slopes are used to represent the C effects 
on the stacking fault energies. Using the stacking fault ener-
gies obtained for the PM γ-Fe (see the lower part of table 1) 
and PM Fe24C1 (see the lower part of table 2) at their corre
sponding equilibrium volumes at 0 K (3.498 ̊A  for the PM γ-Fe 

Figure 4.  (a) γisf  as a function of volume. The calculated γisf  versus lattice parameter for PM γ-Fe and Fe24C1 are compared to the 
previous theoretical data by Lu et al for PM Fe and Fe32C1 obtained using the AIM [7] and Li et al for PM Fe obtained with a supercell 
technique [18]. The GSFE dependences on lattice parameter for PM (b) Fe24C1 and (c) γ-Fe. The legend for (b) and (c) shows stacking 
fault energy in mJ m−2.

J. Phys.: Condens. Matter 31 (2019) 065703



R Xie et al

7

and 3.536 Å  for the PM Fe24C1), ∆γisf/∆xC, ∆γusf/∆xC, 
∆γutw/∆xC and ∆γesf/∆xC are approximately 256, 127, 213, 
188 mJ m−2 per wt.% C, respectively. Similarly, using the 
stacking fault energies corresponding to the room temper
ature volumes of the PM γ-Fe (3.562 Å , see the lower part 
of table 1) and PM Fe24C1 (3.595 Å , see the lower part of 
table 2), ∆γisf/∆xC, ∆γusf/∆xC, ∆γutw/∆xC and ∆γesf/∆xC 
are approximately 130, 86, 125 and 101 mJ m−2 per wt.% C, 
respectively. Both of the above sets of data take into account 
the correction ∆γ . Obviously, the theoretically predicted C 
effects on the stacking fault energies are dramatically reduced 
with volume in the PM γ-Fe.

4.  Discussion

4.1.  Simple assessment of the theoretical results and C effect 
on energy barriers

The stacking fault energies for γ-Fe and Fe24C1 calculated in 
this work are screened against the universal scaling law (see 
figure 5). The universal scaling law approximately holds for 
various intrinsic energy barriers in metals and alloys [29, 52]. 
It expresses a relationship between unstable stacking fault 
energy, unstable twinning fault energy and intrinsic stacking 
fault energy. The physics behind the universal scaling law is 
the short range nature of the above planar faults and the fact 
that an unstable twinning fault is composed of a USF plus half 
of an ISF (since the intrinsic and unstable stacking faults share 
a common layer in an unstable twinning fault configuration). 
Figure 5 shows that all the present results fit well the universal 
scaling law, regardless of volume, magnetic state and configu-
ration, thus verifying the accuracy of our theoretical calcul
ations with respect to the universal relationship between the 
individual stacking fault energies.

We observe that the calculated γisf  of the PM Fe24C1 is 
106 mJ m−2 at room temperature as shown in table 2, which 
is higher than the experimental SFE (γisf) shown in Fe–Mn–C 
TWIP steels (0–50 mJ m−2 ) [53–56]. This overestimation 

may be due to the current assumption that C is homogeneously 
distributed in γ-Fe. Instead, the interstitial C is found to be 
repelled from the stacking fault [57] in high-Mn steels and the 
C diffusion out of the slip plane would substantially decrease 
the SFE (γisf). We should also notice that the in-plane C atomic 
concentration of our supercell is 1/5 (20.0 at.%). However, in 
the pure Fe–C austenite with a high C content, the tendency 
towards Fe8C ordering is suggested [58], which shows a lower 
local C concentration (∼11.0 at.%) than our computational 
model. Therefore, the local C concentration in the present 
work is relatively high (nevertheless, the size of the supercell 
is sufficient to avoid the in-plane interaction of two adjacent 
C atoms). In order to illustrate this presumption, we may con-
sider the present result obtained in the situation where C is 
located far away from the stacking fault. The corresponding 
γisf  is 35 mJ m−2 at the room temperature volume, which is in 
a much better agreement with the above experimental values 
[53–56]. In general, one should be cautious when comparing 
the present result to the experimental ones which are affected 
by many factors. For example, the TEM measurements may be 
strongly affected by the local temperature rise caused by elec-
tron beam, causing the local C depletion from stacking fault 
[57]. Moreover, the C distribution in reality is not perfectly 
random, and up to 25% fluctuation in concentration can occur 
on the scale of a few nanometres [57]. C may also segregate in 
grain boundary and causes the deviation of local C concentra-
tion around stacking fault from the nominal C content [23].

Our work for the first time presents the C effect on the 
stacking fault energy barriers in the PM γ-Fe. Using the 
theory for plasticity of fcc metals proposed by Jo et al [59], 
we transform the stacking fault energies of the PM γ-Fe 
and PM Fe24C1 to the effective energy barriers as a func-
tion of θ according to the equations given in [59]. Here, θ is 
the angle between the resolved shear stress direction and the 
stacking fault’s easy direction. The effective energy barriers 
for stacking fault, twinning and full slip are

γsf (θ) =
γisf

cos θ
,� (4)

γtw(θ) =
γutw − γisf

cos θ
, and� (5)

γsl (θ) =
γusf − γisf

cos (60◦ − θ)
,� (6)

respectively.
The stacking fault energies of the PM γ-Fe and PM Fe24C1 

obtained at the corresponding room temperature volumes are 
used to calculate the effective energy barriers. For the PM 
Fe24C1, γsf , γtw and γsl are calculated using both the aver-
aged γusf , γisf  and γutw and those for C located far away from 
the stacking fault (with the consideration that the C concentra-
tion may be small close to the stacking fault zone). The γusf , 
γisf  and γutw are 275, −8 and 275 mJ m−2 for the PM γ-Fe, 
respectively. The averaged γusf , γisf  and γutw (over layers) for 
the PM Fe24C1 are 351, 106 and 385 mJ m−2, respectively. In 
the case with C located far away from the stacking fault, the 
γusf , γisf  and γutw are 348, 35 and 363 mJ m−2, respectively. 
The effective energy barriers for stacking fault, twinning and 

Figure 5.  Universal scaling law for the present stacking fault 
energies calculated using EMTO and VASP for NM and PM γ-Fe 
and Fe24C1 systems. The corrected EMTO results are indicated as 
‘+∆γ’.
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full slip of the PM γ-Fe and PM Fe24C1 as a function of θ are 
then shown in figure 6. The effective energy barriers of the 
PM γ-Fe are increased with C addition. In the PM Fe24C1, 
the effective energy barrier for twinning (γtw) is lower than 
that for stacking fault (γsf ), showing that twinning is the pre-
ferred deformation mechanism. However, the PM γ-Fe shows 
an opposite trend: namely the γtw is larger than γsf , indi-
cating that pure Fe shows martensitic transformation rather 
than twinning and the presence of C stabilizes the austenitic 
phase. Moreover, in the PM γ-Fe, γtw is equal to γsl when θ is 
slightly above 30°. In the PM Fe24C1, the θ corresponding to 
γtw  =  γsl is smaller than 30°, indicating a smaller probability 
of activating twinning with C alloying theoretically. We also 
compare the effective energy barriers obtained with the aver-
aged fault energies to those obtained in the case when C is 
located far away from the stacking fault for the PM Fe24C1 
(see the inset in figure  6). Note that averaging the stacking 
fault energies over all the layers is an approximation of homo-
geneous C distribution in γ-Fe. On the one hand, the C seg-
regation to the stacking fault increases the effective energy 
barriers for twinning and full slip but enhances the probability 
of activating twinning relative to the homogeneous C distribu-
tion. On the other hand, the C segregation case shows similar 
behaviours to pure γ-Fe, which makes sense since the stacking 
fault energies of Fe24C1 are close to those of pure γ-Fe when 
C is far away from the stacking fault. Nevertheless, the gen-
eral C effect on the effective energy barriers is not altered by 
the C segregation as compared to the homogeneously distrib-
uted C. Hence, although C stabilizes the fcc phase it decreases 
the twinning probability in γ-Fe from a theoretical point of 
view regarding the GSFE calculations.

4.2.  Magnetic structure

As concluded in [7], the introduction of paramagnetism sig-
nificantly weakens the C effect on γisf  with respect to the C 

effect at the NM state. This phenomenon is also illustrated 
in figure 7, where we show that the slope ∆γisf/∆xC of 130 
mJ m−2/wt.% at room temperature for the PM state is consis-
tent with [7]. Furthermore, the experimental measurement for 
Fe–18Cr–10Ni–C alloys with different C contents [60] gives a 
similar C impact like the one reported in this work. However, 
a four-dimensional regression analysis in Schramm’s [8] 
and Brofman’s [9] work yields different C-driven SFE (γisf) 

Figure 6.  Effective energy barriers of PM γ-Fe and Fe24C1 
(averaged over the layers) with their corresponding room 
temperature volumes as a function of θ. The inset shows the 
effective energy barriers for the case with C located far away 
from the stacking fault as compared to the averaged values in PM 
Fe24C1. The legends for Fe24C1 (averaged over the layers) also 
apply for the inset.

Figure 7.  C-driven change of γisf  (SFE) for PM Fe24C1 calculated 
at room temperature volume as a function of C concentration, 
together with previous results reported by Schramm [8], Gholizadeh 
[21] and Abbasi [6], Petrov [60], Lu [7] and Brofman [9].

Figure 8.  Schematic diagram for the γisf  and γusf  changes with C 
addition and the consideration of paramagnetic coupling. The black 
and red solid lines are for NM (with NM equilibrium volume) and 
PM results (with PM equilibrium volume), respectively. The black 
solid lines are shifted (dash line) to have the same starting points 
as the red lines in order to gain a clearer comparison between the 
slopes. The specific stacking fault energies are also given. The 
arrows show the energy change from the NM to PM state.
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changes. One potential reason is that the regression analysis is 
adopted in the austenites with different C concentrations [7]. 
Note that the regression analysis is also based on the austenite 
stainless steels with different Cr and Ni contents. Hence, the 
regression analysis may lead to totally inconsistent results 
[30]. Theoretically, the C-driven SFE (γisf) change is com-
puted using ab initio method by Gholizadeh et  al [21] and 
Abbasi et al [6] at the NM state, which shows much larger SFE 
(γisf) change as compared to the PM calculation. Therefore, 
the neglect of the magnetic transition during the generation 
of stacking faults can be fatal for understanding appropriately 
the C effect on the GSFE.

Note that the ∆γisf  versus C concentration in figure 7 is 
obtained with the corresponding room temperature volumes 
of the PM γ-Fe and PM Fe24C1. Such a weakening impact 
of paramagnetism on the C effect can be also observed for the 
γ-Fe and Fe24C1 with their corresponding equilibrium vol-
umes. The γisf  of the pure γ-Fe and Fe24C1 with equilibrium 
volumes are extracted from tables 1 and 2, respectively, and 
are illustrated in figure 8.

Figure 8 illustrates that the slope of the line connecting the 
γisf  of γ-Fe and Fe24C1 at the PM state is smaller than that at 
the NM state, indicating that the C effect on enhancing γisf  is 
weakened by paramagnetism. Furthermore, the introduction 

of paramagnetism stabilizes fcc phase (see the upward arrow 
for γisf) and the paramagnetism-induced stabilization is more 
profound in γ-Fe with respect to Fe24C1. In contrast, the 
enhancing effect of C on γusf  is strengthened by paramag-
netism. The downward arrows from the NM to the PM γusf  in 
figure 8 indicate that the introduction of paramagnetism stabi-
lizes the USF configuration instead of fcc phase for both γ-Fe 
and Fe24C1, and this stabilization effect is stronger in γ-Fe 
than that in Fe24C1. Here, we need to stress that the volume 
expansion caused by C addition is almost the same at NM and 
PM states (0.045 and 0.043 per wt.% C, respectively) thus 
the volume effect on the γisf  and γusf  changes from γ-Fe to 
Fe24C1 can be neglected.

The above behaviour upon C alloying can be detected from 
the magnetic structures of γ-Fe and Fe24C1 (see figure  9). 
Figure  9(a) shows the local magnetic moments of the Fe 
atoms in the pure Fe with fcc, USF and ISF configurations as 
a function of lattice parameter. The top and the second panels 
are for Fe atoms at the stacking fault plane and in the next 
nearest neighbouring layer from the slip plane, respectively. 
For the Fe atoms farther away from the stacking fault, their 
local magnetic moments are almost the same as bulk Fe (not 
shown). In figure  9(a), from the equilibrium volume of the 
NM γ-Fe to that of the PM γ-Fe, the Fe atom in the γ-Fe 

Figure 9.  (a) The local magnetic moment of Fe in γ-Fe containing USF (red line) and ISF (blue line) as a function of volume. The panels 
from top to bottom are for the first- and second-nearest neighbouring Fe around the stacking fault. Panel (b)–(d) show the local magnetic 
states of Fe atoms surrounding a C atom in Fe24C1 with fcc structure, ISF and USF, respectively, in which C is located at the stacking fault 
plane. The Fe–C bonding length in fcc Fe before optimization is 1.744 Å . The dash line corresponds to the equilibrium volume at the NM 
state for γ-Fe and Fe24C1. The dash-dot line corresponds to the equilibrium volume at the PM state for γ-Fe and Fe24C1. The magnetic 
transition within this volume range is highlighted in bold type for the Fe atoms close to the stacking fault in pure Fe and the first-nearest 
neighbours of C in Fe24C1.
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containing the ISF gains local magnetic moment and its size 
is smaller than that of the bulk Fe, while the magnetic moment 
of the Fe atom in the Fe24C1 containing the ISF still remains 
zero within the corresponding volume range (see figure 9(c)). 
On the one hand, the smaller magnetic moment of the Fe atom 
in the ISF configuration for γ-Fe indicates the destabilized 
effect of paramagnetism on the ISF structure, and such an 
effect also stays for Fe24C1. However, the C addition to γ-Fe 
pushes this effect to a larger volume in Fe24C1 through sup-
pressing the local magnetic coupling. Therefore, we conclude 
that paramagnetism stabilizes/destabilizes the fcc Fe/Fe with 
the ISF more strongly than the fcc Fe24C1/Fe24C1 with the 
ISF. Actually, this phenomenon is equivalent to the weakened 
C effect on γisf  with the consideration of paramagnetism (see 
figure 8). Similarly, the speculation that paramagnetism sta-
bilizes/destabilizes the Fe with the USF/fcc Fe more strongly 
than the Fe24C1 with the USF/fcc Fe24C1 can be correlated 
with the magnetic behaviours shown in figures 9(a) and (d). 
The pure Fe with the USF shows relatively strong spin polari-
zation at small volumes, while the first-nearest neighbouring 
Fe atoms of C are either non-magnetic or just starting to gain 
local magnetic moment within the volume range from the NM 
to the PM equilibrium in Fe24C1. Here, the stabilization effect 
on the USF configuration is constrained by the interstitial C 
due to its suppressing effect on the local magnetic moment. In 
general, the different paramagnetic effects appeared in γ-Fe 
and Fe24C1 rely on the C-induced magnetic suppression in 
the spin polarized environment.

A previous study shows that the local magnetic interactions 
are strongly affected by the interstitial C in Fe–Mn–C alloys; 
the ferromagnetic Fe–Fe and antiferromagnetic Fe–Mn inter-
actions are in competition [61]. Such competition together 
with the C-driven frustrated magnetic coupling may result in 
the spin-glass-like behaviour observed in austenitic Fe–Mn–C 
alloys [61, 62]. Moreover, the magnetic discrimination shown 
in fcc and hcp Fe–Cr–Ni alloys contributes to the different 
alloying effects on SFE (γisf) [30]. Therefore, an appropriate 
description on the magnetic state is significant for under-
standing the C effect on the GSFE. On the one hand, the intro-
duction of paramagnetism causes the opposite changes of the 
C effects on γisf  and γusf , i.e. the C effect is weakened for γisf  
while it is enhanced for γusf  as compared to the NM case. On 
the other hand, the interstitial C, which suppresses the magn
etic moments of its adjacent Fe atoms, results in the different 
stabilities of the pure Fe and Fe24C1 with stacking faults rela-
tive to their corresponding fcc phases.

5.  Conclusions

The C effect on the GSFE of PM γ-Fe is investigated using 
two density functional theory solvers. Since VASP can 
account for the local lattice relaxation and EMTO for the dis
ordered magnetic state, we employ both methods to provide a 
reasonable theoretical description of the complex problem of 
C alloying. The accuracy of the GSFE calculations for γ-Fe 
and Fe24C1 is tested against the universal scaling law. Based 
on the calculated stacking fault energies at room temperature 

volumes, the effective energy barriers are constructed for PM 
γ-Fe and Fe24C1. It is found that the C addition increases the 
effective energy barriers of pure γ-Fe and the twinning prob-
ability is slightly lower with C alloying. We also analyse the 
magnetic structures of the C-alloyed γ-Fe containing stacking 
faults in detail. The introduction of paramagnetism suppresses 
the C-driven change on γisf  while it enhances the C-driven 
change on γusf . The different behaviours for γisf  and γusf  are 
correlated to the magnetic transitions within the NM and PM 
equilibrium volume ranges in the configurations with fcc 
phase and generalized stacking fault for pure Fe and Fe24C1. 
The suppression effect of C on the magnetic moments of its 
adjacent Fe atoms results in the different relative stabilities of 
pure Fe and Fe24C1 with stacking faults as compared to their 
corresponding fcc phases. In summary, the present theoretical 
results confirm the relatively weak C effect on γisf  at the PM 
state in line with recent experimental findings. The difference 
between theoretical and experimental γisf  at room temperature 
is mainly ascribed to the exchange-correlation functionals, the 
magnetic excitations and the anharmonic phonon contribution. 
Furthermore, the C effect on γusf  is found to be strengthened 
at the PM state, thus emphasizing the importance of investi-
gating the GSFE with a proper magnetic state in Fe–C alloys.
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