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Abstract: Adrenocortical carcinoma (ACC) and pheochromocytoma and paraganglioma (PPGL)
are defined by clinicopathological criteria and can be further sub-divided based on different
molecular features. Whether differences between these molecular subgroups are significant enough
to re-challenge their current clinicopathological classification is currently unknown. It is also
not fully understood to which other cancers ACC and PPGL show similarity to. To address
these questions, we included recent RNA-Seq data from the Cancer Genome Atlas (TCGA) and
Therapeutically Applicable Research to Generate Effective Treatments (TARGET) datasets. Two
bioinformatics pipelines were used for unsupervised clustering and principal components analysis.
Results were validated using consensus clustering model and interpreted according to previous
pan-cancer experiments. Two datasets consisting of 3319 tumors from 35 disease categories were
studied. Consistent with the current classification, ACCs clustered as a homogenous group in
a pan-cancer context. It also clustered close to neural crest derived tumors, including gliomas,
neuroblastomas, pancreatic neuroendocrine tumors, and PPGLs. Contrary, some PPGLs mixed with
pancreatic neuroendocrine tumors or neuroblastomas. Thus, our unbiased gene-expression analysis
of PPGL did not overlap with their current clinicopathological classification. These results emphasize
some importances of the shared embryological origin of these tumors, all either related or close
to neural crest tumors, and opens for investigation of a complementary categorization based on
gene-expression features.

Keywords: pheochromocytoma; paraganglioma; adrenocortical carcinoma; adrenal tumor;
pan-cancer analysis; neural crest; neuroendocrine

1. Introduction

The adrenal gland is derived from two components that are developmentally and physiologically
distinct: Cells of the adrenal cortex are derived from mesoderm and are characterized by steroid
metabolism. Neuroectodermally derived adrenal medulla is encircled by the adrenal cortex and
contains neuroendocrine (chromaffin) cells synthesizing catecholamines [1]. These characteristics are
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retained in adrenal neoplasms that are classified accordingly by the World Health Organization into
tumors of the adrenal cortex and tumors of chromaffin cells of the adrenal medulla and extra-adrenal
paraganglia (PPGL) [2]. Molecular techniques further stratifies these tumors into distinct categories [3,4].
The adrenal cortex derived adrenocortical carcinoma (ACC) is separated into three subgroups; cluster
of clusters 1–3 with differences in steroid differentiation, cell proliferation, DNA methylation and
spectrum of genetic driver events [5,6]. Similarly, PPGLs are separated into 4 groups named after
their molecular characteristics: pseudohypoxia related to succinate dehydrogenase or VHL/EPAS1
disturbances, wnt-altered and kinase-signaling pathways [7–9].

New approaches and methods for analysis of molecular pan-cancer datasets may obtain novel
insights into the characteristics of a wide range of neoplasms in a single experiment. Their results can
be used to test whether the current clinicopathological classification of a particular tumor remains
relevant on a molecular level [10,11]. Current state of the art and views suggest that a majority of tumor
types categorize accordingly to their established clinicopathological classifications in such pan-cancer
analyses [11]. However, an alternative scenario where new molecular analyses proposed a new
disease categorization has been shown for some cancers [12]. One example is esophageal carcinoma
where the squamous cell subtype resembled squamous cell carcinomas of other organs, whereas
the esophageal adenocarcinoma clustered with gastric adenocarcinoma [12]. Thus, we hypothesized
that the differences between subgroups of ACC and PPGL could be significant enough to support
an updated classification of these tumors. One example could be the pronounced pseudohypoxia
phenotype that is shared among some PPGLs and other neural crest tumors. We used a pan-cancer
analysis, that allowed for an unbiased clustering of tumors based on gene expression data, to test
this hypothesis.

2. Results

2.1. Aim 1: To Determine if ACC and PPGL Show Integrity in a Transcriptomic Pan-Cancer Context

To address whether the current clinicopathological classification of ACC and PPGL remains
relevant in a transcriptomic pan-cancer context, we performed unsupervised clustering and principal
component analyses. RNA-seq data from 3319 tumor samples of 35 different categories from the Cancer
Genome Atlas (TCGA) and Therapeutically Applicable Research to Generate Effective Treatments
(TARGET) (Figure 1A, Table 1) were included.

Cases were grouped by TCGA tumor category and genes with high variability between tumor
categories were extracted. Dendrograms of unsupervised clustering showed integrity of both ACC
and PPGL which formed two separate clusters (Supplementary Figures S1A–C and S2). In the second
series of experiments we analyzed the dataset on a per sample basis. Genes with a variable expression
in-between 3319 cases were selected and analyzed with unsupervised clustering. The pan-cancer
dendrogram recapitulated previous findings described by Hoadley et al. including clustering
accordingly to organ (e.g., kidney, gastrointestinal tract) and cell of origin (e.g., squamous cell cluster)
(Supplementary Figure S3A–C) [10,11]. Except for a few outliers, ACC remained a homogenous group
whereas PPGL mixed with pancreatic neuroendocrine tumors (PNETs) in 2 out of 3 unsupervised
clustering experiments (Figure 1B, Supplementary Figure S3A–C). In order to investigate the robustness
of these results, we designed a second bioinformatics pipeline that used different software for sample
selection, identification of genes with variable expression and unsupervised clustering. These results
validated that ACC formed one homogenous cluster whereas a group of kinase signaling PPGL mixed
with a group of neuroblastoma (NBL) (Supplementary Figure S4A,B). Inspection of the clustering
dendrogram revealed sub-separation of ACC Cluster of Clusters 1 (COC1) from COC2 and 3. In PPGL,
kinase signaling tumors separated either gradually (bioinformatics pipeline 1) and distinctively
(bioinformatics pipeline 2) from pseudohypoxic and wnt-altered tumors (Figure 1, Supplementary
Figure S4A).
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Table 1. Samples included from the Cancer Genome Atlas (TCGA) and Therapeutically Applicable
Research To Generate Effective Treatments (TARGET). TCGA official nomenclature is shown in
parentheses. n, number of cases included; ref, reference.

Cohort Cohort, Full Name n Reference

ACC Adrenocortical carcinoma 78 [5]
BLCA Bladder urothelial carcinoma 100 [13,14]
BRCA Breast invasive carcinoma 100 [15]

CESC Cervical squamous cell carcinoma and Endocervical
adenocarcinoma 100 [16]

CHOL Cholangiocarcinoma 44 [17]
COAD Colon adenocarcinoma 100 [18]
DLBC Lymphoid neoplasm diffuse large B-cell lymphoma 47
ESCA Esophageal carcinoma 100 [12]
GBM Glioblastoma multiforme 100 [19,20]

HNSC Head and neck squamous cell carcinoma 100 [21]
KICH Kidney chromophobe 88 [22]
KIRC Kidney renal clear cell carcinoma 100 [23]
KIRP Kidney renal papillary cell carcinoma 100 [24]

LAML Acute myeloid leukemia 100 [25]
LGG Brain Lower Grade Glioma 100 [19,26]
LIHC Liver hepatocellular carcinoma 100 [27]
LUAD Lung adenocarcinoma 100 [28]
LUSC Lung squamous cell carcinoma 100 [29]
MESO Mesothelioma 85

OV Ovarian serous cystadenocarcinoma 100 [30]
PAAD Pancreatic adenocarcinoma 100 [31]

PNET (PAAD) Pancreatic neuroendocrine tumor 8 [31]
PPGL (PCPG) Pheochromocytoma and paraganglioma 179 [9]

PRAD Prostate adenocarcinoma 100 [32]
READ Rectum adenocarcinoma 100 [18]
SARC Sarcoma 100 [33]
SKCM Skin cutaneous melanoma 100 [34]
STAD Stomach adenocarcinoma 100 [35]
TGCT Testicular germ cell tumors 100 [36]
THCA Thyroid carcinoma 100 [37]
THYM Thymoma 100 [38]
UCEC Uterine corpus endometrial Carcinoma 100 [39]
UCS Uterine carcinosarcoma 55 [40]
UVM Uveal melanoma 79 [41]
NBL Neuroblastoma 156 [42]
Total 3319
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Figure 1. Pan-cancer dataset and transcriptomic classification. (A) Pan-cancer analysis dataset and pipeline. Results from bioinformatics pipeline 1. (B) Unsupervised 
hierarchal clustering of RNA-seq data from 3319 TCGA and TARGET samples annotated for cancer type processed by bioinformatics pipeline 1. Abbreviations; 
ACC, Adrenocortical Carcinoma; GBM, Glioblastoma Multiforme; LGG, Brain Lower Grade Glioma Neuroblastoma; PNET, Pancreatic Neuroendocrine Tumor; 
PPGL, Pheochromocytoma and Paraganglioma; Cortical, Cortical Admixture PPGL; Hypoxia, Pseudohypoxic PPGL; Kinase; Kinase signaling PPGL and Wnt, wnt-
altered PPGL. 

 

Figure 1. Pan-cancer dataset and transcriptomic classification. (A) Pan-cancer analysis dataset and pipeline. Results from bioinformatics pipeline 1. (B) Unsupervised
hierarchal clustering of RNA-seq data from 3319 TCGA and TARGET samples annotated for cancer type processed by bioinformatics pipeline 1. Abbreviations;
ACC, Adrenocortical Carcinoma; GBM, Glioblastoma Multiforme; LGG, Brain Lower Grade Glioma Neuroblastoma; PNET, Pancreatic Neuroendocrine Tumor;
PPGL, Pheochromocytoma and Paraganglioma; Cortical, Cortical Admixture PPGL; Hypoxia, Pseudohypoxic PPGL; Kinase; Kinase signaling PPGL and Wnt,
wnt-altered PPGL.
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Detailed Analysis of ACC and PPGL Outliers

ACC and PPGL samples that clustered outside their disease group in both bioinformatics pipelines
were carefully examined. There was one ACC, OR-A5J8, of sarcomatoid type with 100% purity that
clustered among sarcomas (SARC). It showed a cortical differentiation score of 7.9, 4th lowest among
ACCs (Figure 2). Analysis of all ACCs and all SARCs available in TCGA that showed that OR-A5J8
clustered to the SARC group (Supplementary Figure S5A–C). The second sarcomatoid ACC available
in the TCGA dataset clustered among ACCs.
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Figure 2. Chromaffin and cortical cell differentiation. Cortical and chromaffin cell differentiation
of adrenocortical carcinoma (ACC), pheochromocytoma and paraganglioma (PPGL) and adrenal
gland samples. Each column represents a unique sample that was ordered according to cortical cell
differentiation. From above: differentiation scores for adrenal cortex (black) and adrenal medulla
(grey). Middle; heatmap with expression values of genes representing chromaffin cells (upper half) and
cortical cells (bottom half). Bottom: annotation of sample type accordingly to PPGL and ACC molecular
subtypes. COC, Cluster of Clusters; Cortical, Cortical Admixture PPGL; Hypoxia, Pseudohypoxic
PPGL; Kinase; Kinase signaling PPGL and Wnt, wnt-altered PPGL.

One PPGL mixed into the ACC cluster: TT-A6YO of the cortical admixture subgroup with 66%
purity. It had a cortical differentiation score of 12 (higher than all ACCs) and a chromaffin differentiation
score of −12 (lower than all PPGLs). In TCGA, this sample was noted to have cortical cells through
histopathological analysis [9]. Two additional PPGLs clustered outside the main group, both were
pheochromocytomas of the cortical admixture subgroup (one had admixture of adrenocortical cells
by histopathology) and their tumor purity was 54 and 100%, respectively. Cortical differentiation
score was 6.1 and −3.5, respectively (2nd and 8th highest among PPGL). Chromaffin differentiation
score was −5.9 and 2.9, respectively (2nd and 8th lowest among PPGL). Thus, we have concluded that
sample misclassification and infiltration of non-tumor cells are two likely explanations for samples
that consistently clustered outside ACC or PPGL main groups (Figure 2).

PNETs (bioinformatics pipeline 1, Section 4.1) and NBL (bioinformatics pipeline 2, Section 4.2)
infiltrated the PPGL group (Figure 2, Supplementary Figures S3A–C and S4A,B). Inspection of samples
that clustered outside PPGL main group in one of two bioinformatics pipelines revealed a pattern
with enrichment of either dopamine secreting thoracic PPGL with metastatic disease (bioinformatics
pipeline 1) or kinase signaling PPGL (bioinformatics pipeline 2).



Cancers 2018, 10, 518 6 of 15

2.2. Aim 2: To Identify with Which Cancers ACC and PPGL Show Similarities

Adrenocortical carcinoma, glioblastoma multiforme (GBM), low grade glioma (LGG), NBL,
PNET, and PPGL clustered together in the 6 of the 8 experiments performed in the bioinformatics
pipelines (Supplementary Figures S1A–C, S2, S3A–C and S4A,B). The relative associations within
this group of tumors varied between the different experiments. To exclude that the inclusion of
ACC and PPGL molecular subtypes skewed the results of the per-TCGA tumor category analysis,
unsupervised clustering was repeated without separation of ACC and PPGL into molecular subgroups.
This experiment showed similar results (Supplementary Figures S6A–C and S7). We also investigated
whether a signal of adrenocortical cells in PPGL could influence the outcome and thus, we removed
all pheochromocytomas. Unsupervised clustering showed that ACC remained among neural crest
tumors (Supplementary Figure S8). Consensus clustering experiments validated an ACC, GBM,
LGG, NBL, PNET, and PPGL cluster that also included skin cutaneous melanoma (SKCM) and uveal
melanoma (UVM) (Figure 3A,B, Supplementary Figure S9A–C). As the number of permitted clusters
was increased, this cluster was partitioned into: (1) GBM, LGG, NBL, PNET, and PPGL as well as (2)
ACC, SKCM and UVM (Figure 3B). These results overlapped previous pan-cancer findings where
PPGL grouped together with either GBM and LGG or NBL [11].
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Figure 3. Pan-cancer consensus clustering. Unsupervised consensus clustering of 3319 TCGA and
TARGET samples annotated for their specific cancer type. (A), Delta CDF plot with information on
the additional explanatory power provided through increasing the number of clusters. Y-axis, relative
change in the area under CDF curve and y-axis; k, the number of consensus clusters. (B), Proportion of
cases assigned to the different clusters ranging from 0% (white) to 100% (red) in both 10 and 13 clusters.
X-axis, consensus cluster numbers and y-axis, a cancer type.

The clustering of ACCs to neural crest tumors was an unexpected finding lacking an obvious
explanation [11,43]. In order to identify the gene expression profile that drove these results, we have
identified transcripts that were able to discriminate ACC, GBM, LGG, NBL, PNET, and PPGL from
the remaining tumors. A total of 78 transcripts showed an AUC of >0.9. Fifteen of these fulfilled the
following criteria: 2-fold higher expression in ACC compared to remaining tumors (pan-cancer minus
GBM, LGG, NBL, PNET and PPGL) and no less than 0.1-fold difference in expression compared to
GBM, LGG, NBL, PNET, and PPGL. Of these 15 genes, 14 had lower expression in ACC compared to
neural crest tumors (Supplementary Table S1a). There were no shared molecular hallmarks between
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ACC to the group of GBM, LGG, PNET, and PPGL detectable through annotation with gene-ontology
information (Supplementary Table S1b).

A Separate Pan-Glioma-Neuroendocrine Tumor Cluster Analysis

In the previous analyses we found that GBM, LGG, NBL, PNET, and PPGL form a group of
tumors with overlapping transcriptomic profiles. We further analyzed this neural crest group using
unsupervised clustering and principal component analysis after removal cortical admixture PPGLs
(total n = 152) to reduce signal from non-chromaffin cells. To balance the size of the different groups,
GBM and LGG were restricted to 150 samples each. Results showed a separation into two clusters, one
consisting of low and high grade gliomas and a second including NBL, PNET, and PPGL (Figure 4,
Supplementary Figures S10A–C and S11A–C).
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n = 152) processed by bioinformatics pipeline 1.

3. Discussion

In this study we used a pan-cancer model to investigate the degree of overlap between unbiased
gene-expression clustering to the current clinicopathological classifications of ACC and PPGL. A second
aim was to investigate which other cancer types these two diseases show similarity to. We found
that ACC was a homogenous transcriptomic group that showed a surprising association with neural
crest derived tumors. PPGLs mixed with either pancreatic NETs or NBL. In addition, it also clustered
together with GBM and LGG as well as ACC.

The unique aspect of this study is the combination of two datasets that together has a high number
of samples from many different tumor types. The included data provides a very comprehensive
characterization of gene expression that has the highest standard for quality control. Specifically,
we used the publically available TCGA and TARGET resources to include 3319 tumor samples
originating from 35 different tumor types. The most important and novel aspect came from merging a
large number of NBLs (TARGET cohort) with other neural crest tumors, including GBM, LGG, PNET,
and PPGL (TCGA cohort).

Our first aim was to determine whether findings from an unsupervised clustering of a pan-cancer
gene expression dataset overlapped current clinocopathological classifications of ACC and PPGL.
Through eight different unsupervised clustering experiments as well as principal component analysis
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and consensus clustering, we found that both ACCs and PPGLs were relatively homogenous groups
of diseases, but that PPGLs mixed with either NBLs or PNETs. As such, our unbiased clustering based
on gene expression features did not fully overlap with the current clinicopathological classification
of PPGL. This was similar to previous findings related to pancreatic and small intestinal NETs,
where clustering by gene expression data revealed mixing of a minority of tumors independently of
their primary location [44]. Future studies aggregating NETs from many different primary sites
could be used to test whether this group of diseases could use gene-expression data to form a
complementary classification.

Our second aim was to identify with which tumor types either ACC or PPGL transcriptomes
show similarities to. Our findings corroborate previous pan-cancer studies that identified similarities
between PPGLs to both NBLs as well as to low and high grade gliomas (GBMs and LGGs) on the
transcriptomic level [11,43]. However the associations of ACC to these cancers differed from a recent
pan-cancer study where ACC clustered together with chromophobe renal cancer [11]. We failed to
identify a distinct gene expression signature that drove clustering of ACCs to the neural crest group in
our experiments. Our conclusion from these observations is that ACC, in relative terms, is more similar
to neural crest tumors than other entities included in this pan-cancer study. However, in absolute terms,
the similarities between ACC and neural crest tumors are likely not strong. We must note that although
the cortical cell has its unique features related to steroid synthesis and metabolism, certain aspects
of the ACC genetic landscape overlaps with that of neural crest tumors. This includes presence of
both telomerase activation and alternative lengthening of telomeres due to ATRX or DAXX truncation
as well as somatic or germline driver mutations in MEN1 [5,6,45,46]. Another interesting conclusion
from this study is that ACC did not cluster with tumors originating from gonadal cells (ovarian
serous cystadenocarcinoma and testicular germ cell tumors) with which it shares its developmental
origin. This improved knowledge of disease relationships may ultimately be used to motivate cautious
extrapolation of results from more extensively studied diseases such as GBM, LGG, and NBL to a
rare tumor type such as PPGL that lacks both representative disease models and curative systemic
treatment options.

Our analysis validated previous findings in pan-cancer studies including separation tumors
accordingly to organ (kidney, gastrointestinal adenocarcinomas etc.) and cell of origin (squamous
cell cancers, including separation of esophageal carcinoma). But when interpreting our results some
weaknesses should be acknowledged: only one group of neoplasms derived from adrenal cortex
(ACC) was included compared to four different diagnoses and 5-fold higher number of samples of
GBM, LGG, NBL, PNET and PPGL. Another weakness is that the transcriptomic data was generated
from tissue homogenates that do not allow for separation of tumor and non-tumoral cells. Third,
our method for transcript selection is likely to select gene expression patterns that are specific to
cell-of-origin. As show by Creighton et al., cell-of-origin specific transcripts can be filtered out using an
alternative bioinformatics strategy, resulting in a separation according to disease driving mechanisms
and a very different clustering of tumors [47]. Finally, our study used only one class of molecular data.
As already demonstrated in a pan-cancer analysis of >10000 tumors included in the TCGA consortium,
a pan-molecular analysis have the potential to provide additional insights [11].

4. Methods

TCGA and TARGET datasets are well suited for comparative studies due to (1) the high number
of samples across different disease categories, and (2) the extraordinary standardization in data
generation including tissue collection, genome analysis as well as bioinformatics processing. All cases
were annotated accordingly to established clinicopathological classifications used in the TCGA and
TARGET cohorts (Table 1). ACCs and PPGLs were further annotated accordingly to the molecular
classifications proposed in the respective TCGA projects [5,9]. We selected mRNA expression as a
proxy of tissue biology due to the gene-specific correlation between mRNA and protein levels [48].
This study falls under an approval from the regional Ethics Committee in Uppsala (544/2015).
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4.1. Bioinformatics Pipeline 1

4.1.1. Sample Selection and Annotation

Publicly available level 3 data; RNA-seq V2 and clinical annotations available through
TCGA and TARGET consortiums were downloaded 2017-08-23 from Genomics Data Commons
https://gdc.cancer.gov (Table 1). In the pan-cancer experiments each cohort was restricted to a
maximum of 100 samples in order to limit the size for the dataset and to balance the relative weight
in-between subgroups. All samples were included for two cohorts; PPGLs (n = 179) and NBL (n = 156).
A total of 8 samples with histopathology of neuroendocrine tumors were included from the pancreatic
ductal adenocarcinoma project and annotated as PNET [31]. Samples from primary tumors (01A)
were prioritized. For RNA-seq analysis FPKM normalized files were selected and annotated on a per
transcript basis for further analysis. Cases were annotated by (1) TCGA tumor type, and (2) sample
type (primary tumor, metastasis or normal tissue). Molecular clusters defined by primary TCGA
publications were used; ACC, cluster of clusters 1–3; and PPGL, pseudohypoxia, wnt-altered, kinase
signaling, and cortical admixture [5,9]. ACC samples without any molecular subtype had a COC value
randomly assigned; PPGL samples without a molecular subtype were assigned identical value of
tumor samples available from the same patient. Tumor purity values were extracted from the primary
publications for PPGL and ACC [5,9]. Three samples from normal adrenal was available through the
PPGL cohort and annotated as “Adrenal” [9].

4.1.2. Unsupervised Clustering

Files were imported into the Subio Platform version v1.21.5074 (Subio Inc, Kagoshima, Japan,
https://www.subioplatform.com). FPKM transcript counts were subjected to Log2 normalization
and genes with low expression values (mean FPKM < 1) were discarded. Genes with high standard
deviation of expression in-between (1) TCGA categories, or (2) individual samples were selected for
further analysis, three different datasets with different standard deviation thresholds was used for
each unsupervised clustering experiment. Unsupervised clustering was performed using a Spearman
test as the distance metric. Subio Platform raw data figures were imported into Microsoft PowerPoint
(Microsoft Inc, Redmond, WA, USA) and edited for improved readability.

4.2. Bioinformatics Pipeline 2

4.2.1. Sample Selection and Annotation

FPKM and raw count files release 10.0 were downloaded between 2018-02-05 and 2018-02-08 from
https://gdc.cancer.gov. Cohort size and annotation was performed identical to previous experiments:
all NBL, PNET and PPGL samples were included. ACC that were not assigned to a COC in the original
publication were assigned as N/A. For other cohorts, a maximum of 100 samples were selected through
a random process that was independent to previous experiments.

4.2.2. Unsupervised Clustering

Sample based clustering: All genes with an index of dispersion (variance/mean) with at least 60
were included. This cutoff was arbitrarily selected to obtain an appropriate number of genes. Values
were log2-transformed, using an offset of 1 in order to avoid errors for any samples with FPKM-values
of 0 for any of the included genes. A heatmap was generated and clustering based on the Euclidean
distance was performed using the heatmap.2 function in the gplots R package [49–51].

TCGA category-based clustering: The mean expression of each of the included genes in each
tumor type was calculated on the basis of the selected samples and heatmap generation and clustering
was performed as described.

https://gdc.cancer.gov
https://www.subioplatform.com
https://gdc.cancer.gov
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4.3. Consensus Clustering

The dataset comprising 2262 genes identified through extraction of mRNAs with a high variance in
expression in-between samples through bioinformatics pipeline 1 was used. Consensus clustering was
performed using the ConsensusClusterPlus R package [52]. One thousand iterations were performed
with a sample inclusion probability of 0.8 and an item inclusion probability of 1. The number of
clusters was selected based on inspection of the Delta CDF plot.

4.4. Interpretation of Results

Supported by the findings of Hoadley et al. [10] we considered two principle outcomes of the
experiments: (1) Concordance between the clinicopathological/anatomic and molecular classification
if ACC and PPGL cluster into two homogenous groups, or (2) discordance if ACC or PPGL cluster
with other tumor types into intermixed groups or if ACC or PPGL are separated across multiple
different clusters.

4.5. Multidimensional Scaling Plots

The raw count files of the included samples were processed with the voom function in the limma R
package. Multidimensional scaling-plots were generated using the plotMDS function and the ggplot2
R package.

4.6. Adrenal Medulla and Cortex Differentiation Scores

A dataset of 2262 genes identified through extraction of mRNAs with a high deviance in expression
through bioinformatics pipeline 1 was used to select transcripts that were previously identified as
preferentially expressed in either adrenal cortex or medulla from the proteinatlas.org [53]. Twenty-two
transcripts were selected, 11 from adrenal medulla and 11 from adrenal cortex. The dataset was
analyzed using Gene Set Enrichment Analysis version 9.09 on the gene pattern platform (https:
//genepattern.broadinstitute.org) [54,55]. Samples were normalized to log-scale and analyzed with
default settings.

4.7. Identification of Transcripts Shared between Cancer Types

The dataset comprising 2262 genes identified through extraction of mRNAs with a high deviance
in expression through bioinformatics pipeline 1 was used. Genes with area under the Receiver
Operating Characteristic (ROC) curve (Harrell’s C-statistic) of >0.9 for ACC, GBM, LGG, PPGL, NBL,
and PNET versus remaining tumor types were selected. Difference between median gene expression
value in ACC compared to (1) GBM, LGG, NBL, PNET and PPGL, and (2) remaining tumors were
determined. Genes with fold change in ACC of <0.1 (compared to GBM, LGG, NBL, PNET and PPGL)
and <2 (compared to remaining tumor types) were excluded. Remaining genes were annotated for
overlapping gene ontology annotations version 2018-05-07 (https://www.ebi.ac.uk/QuickGO/).

5. Conclusions

ACC was a homogenous molecular group that showed a surprising association with neural crest
derived tumors. PPGL mixed with both pancreatic NETs and NBL. Thus, the unbiased gene-expression
analysis did not fully overlap with current clinicopathological classification of these tumors. In line
with previous results, PPGL clustered together with other neural crest derived neoplasms.

https://genepattern.broadinstitute.org
https://genepattern.broadinstitute.org
https://www.ebi.ac.uk/QuickGO/
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/10/12/
518/s1, Figure S1: Bioinformatics pipeline 1. Unsupervised hierarchal clustering based on transcriptome data
from 35 TCGA tumor categories with adrenal tumors annotated accordingly to molecular subtype, Figure S2:
Bioinformatics pipeline 2. 1975 transcripts selected. Unsupervised clustering of 35 TCGA tumor categories with
adrenal tumors annotated accordingly to molecular subtype, Figure S3: Bioinformatics pipeline 1. Unsupervised
hierarchal clustering of 3319 samples annotated for TCGA tumor category with selected tumors annotated
accordingly to molecular subtype, Figure S4: (A) Bioinformatics pipeline 2. 1975 transcripts selected. Unsupervised
hierarchal clustering of 3319 samples annotated for TCGA tumor category with selected tumors annotated
accordingly to molecular subtype. (B) Bioinformatics pipeline 2. Principal component analysis of 3319 samples
with selected tumors annotated for TCGA or TARGET tumor category, Figure S5: Bioinformatics pipeline 1.
Unsupervised hierarchal clustering of all ACC and SARC samples available in the TCGA database, Figure
S6: Bioinformatics pipeline 1. Unsupervised clustering of 35 TCGA tumor categories as well as 8 PAAD
samples annotated as PNET, Figure S7: Bioinformatics pipeline 2. 1975 transcripts selected. Unsupervised
clustering of 35 TCGA tumor categories as well as 8 PAAD samples annotated as PNET, Figure S8: Bioinformatics
pipeline 1. Unsupervised hierarchal clustering based on transcriptome data from 35 TCGA tumor categories
with adrenal tumors annotated accordingly to molecular subtype. All samples in the PPGL cohort labeled as
pheochromocytoma were removed, Figure S9: Consensus matrices of unsupervised cluster of cluster classification
of 3319 TCGA and TARGET samples, Figure S10: Bioinformatics pipeline 1. Unsupervised hierarchal clustering of
all PPGL as well as 8 PAAD samples annotated as PNET, Figure S11: Unsupervised hierarchal clustering of GBM,
LGG, NBL, PNET and PPGL (minus cortical admixture subgroup), Table S1a: Genes preferentially expressed in
Adrenocortical carcinoma (ACC) as well in as neural crest tumors (glioblastoma, low grade glioma, neuroblastoma,
pancreatic neuroendocrine tumor and pheochromocytoma and paraganglioma), Table S1b: Go-enrichment analysis
of genes co-expressed in Adrenocortical carcinoma (ACC) and glioma (glioblastoma and low grade glioma)
and neuroendocrine tumors (neuroblastoma, pancreatic neuroendocrine tumor and pheochromocytoma and
paraganglioma).
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Abbreviations

Abbrev. Defination
TCGA the Cancer Genome Atlas
TARGET Therapeutically Applicable Research to Generate Effective Treatments
ACC Adrenocortical carcinoma
PPGL pheochromocytoma and paraganglioma
PNET pancreatic neuroendocrine tumor
NBL Neuroblastoma
COC Cluster of Clusters
BRCA Breast invasive carcinoma
BLCA Bladder urothelial carcinoma
CESC Cervical squamous cell carcinoma and Endocervical adenocarcinoma
CHOL Cholangiocarcinoma
COAD Colon adenocarcinoma
DLBC Lymphoid neoplasm diffuse large B-cell lymphoma
ESCA Esophageal carcinoma
GBM Glioblastoma multiforme
KICH Kidney chromophobe
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KIRC Kidney renal clear cell carcinoma
KIRP Kidney renal papillary cell carcinoma
LAML Acute myeloid leukemia
LGG Brain Lower Grade Glioma
LIHC Liver hepatocellular carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
MESO Mesothelioma
OV Ovarian serous cystadenocarcinoma
PAAD Pancreatic adenocarcinoma
PRAD Prostate adenocarcinoma
READ Rectum adenocarcinoma
SARC Sarcoma
SKCM Skin cutaneous melanoma
STAD Stomach adenocarcinoma
HNSC Head and neck squamous cell carcinoma
TGCT Testicular germ cell tumors
THCA Thyroid carcinoma
THYM Thymoma
UCEC Uterine corpus endometrial Carcinoma
UCS Uterine carcinosarcoma
UVM Uveal melanoma

References

1. Kölliker, R.V. Handbuch der Braunschweig Gewebelehre der Menschen; Druck und Verlag von Freidrich Vieweg
und Sohn: Braunschweig, Germany, 1855.

2. Lloyd, R.V.; Osamura, R.Y.; Kloppel, G.; Rosai, J. WHO Classification of Tumours: Pathology and Genetics of
Tumours of Endocrine Organs; IARC: Lyon, France, 2017.

3. Akerstrom, T.; Carling, T.; Beuschlein, F.; Hellman, P. Genetics of adrenocortical tumours. J. Intern. Med.
2016, 280, 540–550. [CrossRef] [PubMed]

4. Crona, J.; Taieb, D.; Pacak, K. New Perspectives on Pheochromocytoma and Paraganglioma: Toward a
Molecular Classification. Endocr. Rev. 2017, 38, 489–515. [CrossRef] [PubMed]

5. Zheng, S.; Cherniack, A.D.; Dewal, N.; Moffitt, R.A.; Danilova, L.; Murray, B.A.; Lerario, A.M.; Else, T.;
Knijnenburg, T.A.; Ciriello, G.; et al. Comprehensive Pan-Genomic Characterization of Adrenocortical
Carcinoma. Cancer Cell 2016, 29, 723–736. [CrossRef] [PubMed]

6. Assie, G.; Letouze, E.; Fassnacht, M.; Jouinot, A.; Luscap, W.; Barreau, O.; Omeiri, H.; Rodriguez, S.;
Perlemoine, K.; Rene-Corail, F.; et al. Integrated genomic characterization of adrenocortical carcinoma.
Nat. Genet. 2014, 46, 607–612. [CrossRef] [PubMed]

7. Flynn, A.; Benn, D.; Clifton-Bligh, R.; Robinson, B.; Trainer, A.H.; James, P.; Hogg, A.; Waldeck, K.; George, J.;
Li, J.; et al. The genomic landscape of phaeochromocytoma. J. Pathol. 2014, 236, 78–89. [CrossRef] [PubMed]

8. Castro-Vega, L.J.; Letouze, E.; Burnichon, N.; Buffet, A.; Disderot, P.H.; Khalifa, E.; Loriot, C.; Elarouci, N.;
Morin, A.; Menara, M.; et al. Multi-omics analysis defines core genomic alterations in pheochromocytomas
and paragangliomas. Nat. Commun. 2015, 6, 6044. [CrossRef] [PubMed]

9. Fishbein, L.; Leshchiner, I.; Walter, V.; Danilova, L.; Robertson, G.; Johnson, A.R.; Lichtenberg, T.M.;
Murray, B.A.; Ghayee, H.K.; Else, T.; et al. Comprehensive Molecular Characterization of Pheochromocytoma
and Paraganglioma. Cancer Cell 2017, 31, 1–13. [CrossRef]

10. Hoadley, K.A.; Yau, C.; Wolf, D.M.; Cherniack, A.D.; Tamborero, D.; Ng, S.; Leiserson, M.D.; Niu, B.;
McLellan, M.D.; Uzunangelov, V.; et al. Multiplatform analysis of 12 cancer types reveals molecular
classification within and across tissues of origin. Cell 2014, 158, 929–944. [CrossRef] [PubMed]

11. Hoadley, K.A.; Yau, C.; Hinoue, T.; Wolf, D.M.; Lazar, A.J.; Drill, E.; Shen, R.; Taylor, A.M.; Cherniack, A.D.;
Thorsson, V.; et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33
Types of Cancer. Cell 2018, 173, 291–304. [CrossRef]

http://dx.doi.org/10.1111/joim.12452
http://www.ncbi.nlm.nih.gov/pubmed/27864864
http://dx.doi.org/10.1210/er.2017-00062
http://www.ncbi.nlm.nih.gov/pubmed/28938417
http://dx.doi.org/10.1016/j.ccell.2016.04.002
http://www.ncbi.nlm.nih.gov/pubmed/27165744
http://dx.doi.org/10.1038/ng.2953
http://www.ncbi.nlm.nih.gov/pubmed/24747642
http://dx.doi.org/10.1002/path.4503
http://www.ncbi.nlm.nih.gov/pubmed/25545346
http://dx.doi.org/10.1038/ncomms7044
http://www.ncbi.nlm.nih.gov/pubmed/25625332
http://dx.doi.org/10.1016/j.ccell.2017.01.001
http://dx.doi.org/10.1016/j.cell.2014.06.049
http://www.ncbi.nlm.nih.gov/pubmed/25109877
http://dx.doi.org/10.1016/j.cell.2018.03.022


Cancers 2018, 10, 518 13 of 15

12. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma.
Nature 2017, 541, 169–175. [CrossRef] [PubMed]

13. Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.;
Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder
Cancer. Cell 2017, 171, 540–556. [CrossRef] [PubMed]

14. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder
carcinoma. Nature 2014, 507, 315–322. [CrossRef] [PubMed]

15. Ciriello, G.; Gatza, M.L.; Beck, A.H.; Wilkerson, M.D.; Rhie, S.K.; Pastore, A.; Zhang, H.; McLellan, M.;
Yau, C.; Kandoth, C.; et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell 2015,
163, 506–519. [CrossRef] [PubMed]

16. Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical
cancer. Nature 2017, 543, 378–384. [CrossRef] [PubMed]

17. Farshidfar, F.; Zheng, S.; Gingras, M.C.; Newton, Y.; Shih, J.; Robertson, A.G.; Hinoue, T.; Hoadley, K.A.;
Gibb, E.A.; Roszik, J.; et al. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct
IDH-Mutant Molecular Profiles. Cell Rep. 2017, 18, 2780–2794. [CrossRef] [PubMed]

18. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal
cancer. Nature 2012, 487, 330–337. [CrossRef] [PubMed]

19. Ceccarelli, M.; Barthel, F.P.; Malta, T.M.; Sabedot, T.S.; Salama, S.R.; Murray, B.A.; Morozova, O.; Newton, Y.;
Radenbaugh, A.; Pagnotta, S.M.; et al. Molecular Profiling Reveals Biologically Discrete Subsets and
Pathways of Progression in Diffuse Glioma. Cell 2016, 164, 550–563. [CrossRef]

20. Brennan, C.W.; Verhaak, R.G.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.;
Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; et al. The somatic genomic landscape of glioblastoma. Cell
2013, 155, 462–477. [CrossRef]

21. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell
carcinomas. Nature 2015, 517, 576–582. [CrossRef]

22. Davis, C.F.; Ricketts, C.J.; Wang, M.; Yang, L.; Cherniack, A.D.; Shen, H.; Buhay, C.; Kang, H.; Kim, S.C.;
Fahey, C.C.; et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 2014, 26,
319–330. [CrossRef]

23. Cancer Genome Atlas Network. Comprehensive molecular characterization of clear cell renal cell carcinoma.
Nature 2013, 499, 43–49. [CrossRef] [PubMed]

24. Linehan, W.M.; Spellman, P.T.; Ricketts, C.J.; Creighton, C.J.; Fei, S.S.; Davis, C.; Wheeler, D.A.; Murray, B.A.;
Schmidt, L.; Vocke, C.D.; et al. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma.
N. Engl. J. Med. 2016, 374, 135–145. [CrossRef] [PubMed]

25. Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.; Hoadley, K.; Triche, T.J., Jr.;
Laird, P.W.; Baty, J.D.; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia.
N. Engl. J. Med. 2013, 368, 2059–2074. [CrossRef] [PubMed]

26. Brat, D.J.; Verhaak, R.G.; Aldape, K.D.; Yung, W.K.; Salama, S.R.; Cooper, L.A.; Rheinbay, E.; Miller, C.R.;
Vitucci, M.; Morozova, O.; et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade
Gliomas. N. Engl. J. Med. 2015, 372, 2481–2498. [CrossRef] [PubMed]

27. Ally, A.; Balasundaram, M.; Carlsen, R.; Chuah, E.; Clarke, A.; Dhalla, N.; Holt, R.A.; Jones, S.J.; Lee, D.;
Ma, Y.; et al. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell
2017, 169, 1327–1341. [CrossRef] [PubMed]

28. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma.
Nature 2014, 511, 543–550. [CrossRef] [PubMed]

29. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung
cancers. Nature 2012, 489, 519–525. [CrossRef]

30. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011,
474, 609–615. [CrossRef]

31. Raphael, B.J.; Hruban, R.H.; Aguirre, A.J.; Moffitt, R.A.; Yeh, J.J.; Stewart, C.; Robertson, A.G.; Cherniack, A.D.;
Gupta, M.; Getz, G.; et al. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer
Cell 2017, 32, 185–203. [CrossRef]

32. Abeshouse, A.; Ahn, J.; Akbani, R.; Ally, A.; Amin, S.; Andry, C.D.; Annala, M.; Aprikian, A.; Armenia, J.;
Arora, A.; et al. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015, 163, 1011–1025. [CrossRef]

http://dx.doi.org/10.1038/nature20805
http://www.ncbi.nlm.nih.gov/pubmed/28052061
http://dx.doi.org/10.1016/j.cell.2017.09.007
http://www.ncbi.nlm.nih.gov/pubmed/28988769
http://dx.doi.org/10.1038/nature12965
http://www.ncbi.nlm.nih.gov/pubmed/24476821
http://dx.doi.org/10.1016/j.cell.2015.09.033
http://www.ncbi.nlm.nih.gov/pubmed/26451490
http://dx.doi.org/10.1038/nature21386
http://www.ncbi.nlm.nih.gov/pubmed/28112728
http://dx.doi.org/10.1016/j.celrep.2017.02.033
http://www.ncbi.nlm.nih.gov/pubmed/28297679
http://dx.doi.org/10.1038/nature11252
http://www.ncbi.nlm.nih.gov/pubmed/22810696
http://dx.doi.org/10.1016/j.cell.2015.12.028
http://dx.doi.org/10.1016/j.cell.2013.09.034
http://dx.doi.org/10.1038/nature14129
http://dx.doi.org/10.1016/j.ccr.2014.07.014
http://dx.doi.org/10.1038/nature12222
http://www.ncbi.nlm.nih.gov/pubmed/23792563
http://dx.doi.org/10.1056/NEJMoa1505917
http://www.ncbi.nlm.nih.gov/pubmed/26536169
http://dx.doi.org/10.1056/NEJMoa1301689
http://www.ncbi.nlm.nih.gov/pubmed/23634996
http://dx.doi.org/10.1056/NEJMoa1402121
http://www.ncbi.nlm.nih.gov/pubmed/26061751
http://dx.doi.org/10.1016/j.cell.2017.05.046
http://www.ncbi.nlm.nih.gov/pubmed/28622513
http://dx.doi.org/10.1038/nature13385
http://www.ncbi.nlm.nih.gov/pubmed/25079552
http://dx.doi.org/10.1038/nature11404
http://dx.doi.org/10.1038/nature10166
http://dx.doi.org/10.1016/j.ccell.2017.07.007
http://dx.doi.org/10.1016/j.cell.2015.10.025


Cancers 2018, 10, 518 14 of 15

33. Cancer Genome Atlas Research Network. Comprehensive and Integrated Genomic Characterization of
Adult Soft Tissue Sarcomas. Cell 2017, 171, 950–965. [CrossRef]

34. Akbani, R.; Akdemir, K.C.; Aksoy, B.A.; Albert, M.; Ally, A.; Amin, S.B.; Arachchi, H.; Arora, A.; Auman, J.T.;
Ayala, B.; et al. Genomic Classification of Cutaneous Melanoma. Cell 2015, 161, 1681–1696. [CrossRef] [PubMed]

35. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric
adenocarcinoma. Nature 2014, 513, 202–209. [CrossRef] [PubMed]

36. Shen, H.; Shih, J.; Hollern, D.P.; Wang, L.; Bowlby, R.; Tickoo, S.K.; Thorsson, V.; Mungall, A.J.; Newton, Y.;
Hegde, A.M.; et al. Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Rep. 2018, 23,
3392–3406. [CrossRef] [PubMed]

37. Agrawal, N.; Akbani, R.; Aksoy, B.A.; Ally, A.; Arachchi, H.; Asa, S.L.; Auman, J.T.; Balasundaram, M.;
Balu, S.; Baylin, S.B.; et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014,
159, 676–690. [CrossRef]

38. Radovich, M.; Pickering, C.R.; Felau, I.; Ha, G.; Zhang, H.; Jo, H.; Hoadley, K.A.; Anur, P.; Zhang, J.;
McLellan, M.; et al. The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 2018, 33,
244–258. [CrossRef] [PubMed]

39. Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.;
Benz, C.C.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73.
[CrossRef] [PubMed]

40. Cherniack, A.D.; Shen, H.; Walter, V.; Stewart, C.; Murray, B.A.; Bowlby, R.; Hu, X.; Ling, S.; Soslow, R.A.;
Broaddus, R.R.; et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell 2017, 31,
411–423. [CrossRef]

41. Robertson, A.G.; Shih, J.; Yau, C.; Gibb, E.A.; Oba, J.; Mungall, K.L.; Hess, J.M.; Uzunangelov, V.; Walter, V.;
Danilova, L.; et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma.
Cancer Cell 2017, 32, 204–220. [CrossRef] [PubMed]

42. Wei, J.S.; Kuznetsov, I.B.; Zhang, S.; Song, Y.K.; Asgharzadeh, S.; Sindiri, S.; Wen, X.; Patidar, R.; Nagaraj, S.;
Walton, A.; et al. Clinically Relevant Cytotoxic Immune Cell Signatures and Clonal Expansion of T Cell Receptors
in High-risk MYCN-not-amplified Human Neuroblastoma. Clin. Cancer Res. 2018. [CrossRef] [PubMed]

43. Szabo, P.M.; Pinter, M.; Szabo, D.R.; Zsippai, A.; Patocs, A.; Falus, A.; Racz, K.; Igaz, P. Integrative analysis of
neuroblastoma and pheochromocytoma genomics data. BMC Med. Genomics 2012, 5, 48. [CrossRef] [PubMed]

44. Alvarez, M.J.; Subramaniam, P.S.; Tang, L.H.; Grunn, A.; Aburi, M.; Rieckhof, G.; Komissarova, E.V.;
Hagan, E.A.; Bodei, L.; Clemons, P.A.; et al. A precision oncology approach to the pharmacological targeting
of mechanistic dependencies in neuroendocrine tumors. Nat. Genet. 2018, 50, 979–989. [CrossRef] [PubMed]

45. Scarpa, A.; Chang, D.K.; Nones, K.; Corbo, V.; Patch, A.M.; Bailey, P.; Lawlor, R.T.; Johns, A.L.; Miller, D.K.;
Mafficini, A.; et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 2017, 543, 65–71.
[CrossRef] [PubMed]

46. Job, S.; Draskovic, I.; Burnichon, N.; Buffet, A.; Cros, J.; Lepine, C.; Venisse, A.; Robidel, E.; Verkarre, V.;
Meatchi, T.; et al. Telomerase activation and ATRX mutations are independent risk factors for metastatic
pheochromocytoma and paraganglioma. Clin. Cancer Res. 2018. [CrossRef] [PubMed]

47. Chen, F.; Zhang, Y.; Gibbons, D.L.; Deneen, B.; Kwiatkowski, D.J.; Ittmann, M.; Creighton, C.J. Pan-Cancer
Molecular Classes Transcending Tumor Lineage Across 32 Cancer Types, Multiple Data Platforms, and over
10,000 Cases. Clin. Cancer Res. 2018, 24, 2182–2193. [CrossRef] [PubMed]

48. Edfors, F.; Danielsson, F.; Hallstrom, B.M.; Kall, L.; Lundberg, E.; Ponten, F.; Forsstrom, B.; Uhlen, M.
Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol. Syst. Biol. 2016, 12, 883.
[CrossRef] [PubMed]

49. Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.;
Magnusson, A.; Moeller, S.; et al. gplots: Various R Programming Tools for Plotting Data. R package version
3.0.1. Available online: https://CRAN.R-project.org/package=gplots (accessed on 26 March 2018).

50. R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-
project.org/ (accessed on 26 March 2018).

51. RStudio Team. RStudio: Integrated Development for R. Available online: http://www.rstudio.com/
(accessed on 26 March 2018).

52. Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments
and item tracking. Bioinformatics 2010, 26, 1572–1573. [CrossRef]

http://dx.doi.org/10.1016/j.cell.2017.10.014
http://dx.doi.org/10.1016/j.cell.2015.05.044
http://www.ncbi.nlm.nih.gov/pubmed/26091043
http://dx.doi.org/10.1038/nature13480
http://www.ncbi.nlm.nih.gov/pubmed/25079317
http://dx.doi.org/10.1016/j.celrep.2018.05.039
http://www.ncbi.nlm.nih.gov/pubmed/29898407
http://dx.doi.org/10.1016/j.cell.2014.09.050
http://dx.doi.org/10.1016/j.ccell.2018.01.003
http://www.ncbi.nlm.nih.gov/pubmed/29438696
http://dx.doi.org/10.1038/nature12113
http://www.ncbi.nlm.nih.gov/pubmed/23636398
http://dx.doi.org/10.1016/j.ccell.2017.02.010
http://dx.doi.org/10.1016/j.ccell.2017.07.003
http://www.ncbi.nlm.nih.gov/pubmed/28810145
http://dx.doi.org/10.1158/1078-0432.CCR-18-0599
http://www.ncbi.nlm.nih.gov/pubmed/29784674
http://dx.doi.org/10.1186/1755-8794-5-48
http://www.ncbi.nlm.nih.gov/pubmed/23106811
http://dx.doi.org/10.1038/s41588-018-0138-4
http://www.ncbi.nlm.nih.gov/pubmed/29915428
http://dx.doi.org/10.1038/nature21063
http://www.ncbi.nlm.nih.gov/pubmed/28199314
http://dx.doi.org/10.1158/1078-0432.CCR-18-0139
http://www.ncbi.nlm.nih.gov/pubmed/30301828
http://dx.doi.org/10.1158/1078-0432.CCR-17-3378
http://www.ncbi.nlm.nih.gov/pubmed/29440175
http://dx.doi.org/10.15252/msb.20167144
http://www.ncbi.nlm.nih.gov/pubmed/27951527
https://CRAN.R-project.org/package=gplots
https://www.R-project.org/
https://www.R-project.org/
http://www.rstudio.com/
http://dx.doi.org/10.1093/bioinformatics/btq170


Cancers 2018, 10, 518 15 of 15

53. Bergman, J.; Botling, J.; Fagerberg, L.; Hallstrom, B.M.; Djureinovic, D.; Uhlen, M.; Ponten, F. The Human
Adrenal Gland Proteome Defined by Transcriptomics and Antibody-Based Profiling. Endocrinology 2017, 158,
239–251. [CrossRef]

54. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.;
Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef]

55. Barbie, D.A.; Tamayo, P.; Boehm, J.S.; Kim, S.Y.; Moody, S.E.; Dunn, I.F.; Schinzel, A.C.; Sandy, P.; Meylan, E.;
Scholl, C.; et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.
Nature 2009, 462, 108–112. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1210/en.2016-1758
http://dx.doi.org/10.1073/pnas.0506580102
http://dx.doi.org/10.1038/nature08460
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Aim 1: To Determine if ACC and PPGL Show Integrity in a Transcriptomic Pan-Cancer Context 
	Aim 2: To Identify with Which Cancers ACC and PPGL Show Similarities 

	Discussion 
	Methods 
	Bioinformatics Pipeline 1 
	Sample Selection and Annotation 
	Unsupervised Clustering 

	Bioinformatics Pipeline 2 
	Sample Selection and Annotation 
	Unsupervised Clustering 

	Consensus Clustering 
	Interpretation of Results 
	Multidimensional Scaling Plots 
	Adrenal Medulla and Cortex Differentiation Scores 
	Identification of Transcripts Shared between Cancer Types 

	Conclusions 
	References

